ADV7180WBST48Z-RL [ADI]

10-Bit, 4× Oversampling SDTV Video Decoder; 10位, 4A ?过采样SDTV视频解码器
ADV7180WBST48Z-RL
型号: ADV7180WBST48Z-RL
厂家: ADI    ADI
描述:

10-Bit, 4× Oversampling SDTV Video Decoder
10位, 4A ?过采样SDTV视频解码器

解码器 转换器 色度信号转换器 消费电路 商用集成电路 电视
文件: 总120页 (文件大小:2118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 4× Oversampling  
SDTV Video Decoder  
ADV7180  
Data Sheet  
FEATURES  
APPLICATIONS  
Qualified for automotive applications  
Digital camcorders and PDAs  
Worldwide NTSC/PAL/SECAM color demodulation support  
One 10-bit ADC, 4× oversampling for CVBS, 2× oversampling  
for Y/C mode, and 2× oversampling for YPrPb (per channel)  
3 video input channels with on-chip antialiasing filter  
CVBS (composite), Y/C (S-Video), and YPrPb (component)  
video input support  
Low cost SDTV PIP decoders for digital TVs  
Multichannel DVRs for video security  
AV receivers and video transcoding  
PCI-/USB-based video capture and TV tuner cards  
Personal media players and recorders  
Smartphone/multimedia handsets  
5-line adaptive comb filters and CTI/DNR video  
enhancement  
In-car/automotive infotainment units  
Rearview camera/vehicle safety systems  
Mini-TBC functionality provided by adaptive digital line  
length tracking (ADLLT), signal processing, and enhanced  
FIFO management  
FUNCTIONAL BLOCK DIAGRAM  
CLOCK PROCESSING BLOCK  
XTAL1  
LLC  
Integrated AGC with adaptive peak white mode  
Macrovision copy protection detection  
NTSC/PAL/SECAM autodetection  
8-bit ITU-R BT.656 YCrCb 4:2:2 output and HS, VS, and FIELD1  
1.0 V analog input signal range  
Full-featured VBI data slicer with teletext support (WST)  
Power-down mode and ultralow sleep mode current  
2-wire serial MPU interface (I2C compatible)  
Single 1.8 V supply possible  
PLL  
ADLLT PROCESSING  
XTAL  
2
ANALOG  
VIDEO  
INPUTS  
8-BIT/16-BIT  
PIXEL DATA  
DIGITAL  
PROCESSING  
BLOCK  
10-BIT, 86MHz  
ADC  
P15 TO P0  
A
A
A
1
2
IN  
IN  
IN  
AA  
FILTER  
2D COMB  
VS  
HS  
3
1
AA  
FILTER  
SHA  
A/D  
VBI SLICER  
A
4
5
6
IN  
IN  
IN  
3
FIELD  
1
1
A
A
AA  
FILTER  
5
COLOR  
DEMOD  
GPO  
SFL  
INTRQ  
2
REFERENCE  
I C/CONTROL  
ADV7180  
1.8 V analog, 1.8 V PLL, 1.8 V digital, 1.8 V to 3.3 V I/O supply  
−10°C to +70°C commercial temperature grade  
−40°C to +85°C industrial/automotive qualified temperature  
grade  
4
SCLK SDATA ALSB RESET PWRDWN  
1
2
3
4
5
ONLY AVAILABLE ON 64-LEAD PACKAGE AND 48-LEAD PACKAGES.  
16-BIT ONLY AVAILABLE ON 64-LEAD PACKAGE.  
48-LEAD, 40-LEAD, AND 32-LEAD PACKAGE USES ONE LEAD FOR VS/FIELD.  
NOT AVAILABLE ON 32-LEAD PACKAGE.  
ONLY AVAILABLE ON 48-LEAD AND 64-LEAD PACKAGES.  
Figure 1.  
−40°C to +125°C temperature grade for automotive qualified  
4 package types  
64-lead, 10 mm × 10 mm, RoHS-compliant LQFP  
48-Lead, 7 mm × 7 mm, RoHS-compliant LQFP  
40-lead, 6 mm × 6 mm, RoHS-compliant LFCSP  
32-lead, 5 mm × 5 mm, RoHS-compliant LFCSP  
video performance for consumer applications with true 8-bit  
data resolution. Three analog video input channels accept standard  
composite, S-Video, or component video signals, supporting a  
wide range of consumer video sources. AGC and clamp-restore  
circuitry allow an input video signal peak-to-peak range to 1.0 V.  
Alternatively, these can be bypassed for manual settings.  
GENERAL DESCRIPTION  
The line-locked clock output allows the output data rate, timing  
signals, and output clock signals to be synchronous, asynchronous, or  
line locked even with 5% line length variation. Output control  
signals allow glueless interface connections in many applications.  
The ADV7180 is programmed via a 2-wire, serial bidirectional port  
(I2C® compatible) and is fabricated in a 1.8 V CMOS process. Its  
monolithic CMOS construction ensures greater functionality with  
lower power dissipation. LFCSP package options make the decoder  
ideal for space-constrained portable applications. The 64-lead  
LQFP package is pin compatible with the ADV7181C.  
The ADV7180 automatically detects and converts standard  
analog baseband television signals compatible with worldwide  
NTSC, PAL, and SECAM standards into 4:2:2 component video  
data compatible with the 8-bit ITU-R BT.656 interface standard.  
The simple digital output interface connects gluelessly to a wide  
range of MPEG encoders, codecs, mobile video processors, and  
Analog Devices, Inc., digital video encoders, such as the ADV7391.  
External HS, VS, and FIELD signals provide timing references  
for LCD controllers and other video ASICs, if required. Accurate  
10-bit analog-to-digital conversion provides professional quality  
1 The 48-Lead LQFP, 40-lead LFCSP, and 32-lead LFCSP use one pin to output  
VS or FIELD.  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006-2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADV7180  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Sync Processing .......................................................................... 26  
VBI Data Recovery..................................................................... 26  
General Setup.............................................................................. 26  
Color Controls ............................................................................ 28  
Clamp Operation........................................................................ 30  
Luma Filter.................................................................................. 31  
Chroma Filter.............................................................................. 34  
Gain Operation........................................................................... 35  
Chroma Transient Improvement (CTI) .................................. 39  
Digital Noise Reduction (DNR) and Luma Peaking Filter... 40  
Comb Filters................................................................................ 41  
IF Filter Compensation ............................................................. 43  
AV Code Insertion and Controls ............................................. 44  
Synchronization Output Signals............................................... 46  
Sync Processing .......................................................................... 53  
VBI Data Decode ....................................................................... 53  
I2C Readback Registers.............................................................. 62  
Pixel Port Configuration ............................................................... 75  
GPO Control ................................................................................... 76  
MPU Port Description................................................................... 77  
Register Access............................................................................ 78  
Register Programming............................................................... 78  
I2C Sequencer.............................................................................. 78  
I2C Register Maps ........................................................................... 79  
I2C Programming Examples........................................................ 106  
64-Lead LQFP........................................................................... 106  
48-Lead LQFP........................................................................... 107  
40-Lead LFCSP......................................................................... 108  
32-Lead LFCSP......................................................................... 109  
PCB Layout Recommendations.................................................. 110  
Analog Interface Inputs........................................................... 110  
Power Supply Decoupling ....................................................... 110  
PLL ............................................................................................. 110  
VREFN and VREFP................................................................. 110  
Digital Outputs (Both Data and Clocks) .............................. 110  
Digital Inputs ............................................................................ 110  
Typical Circuit Connection......................................................... 111  
Outline Dimensions ..................................................................... 115  
Ordering Guide ........................................................................ 117  
Automotive Products............................................................... 117  
General Description ......................................................................... 1  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Introduction ...................................................................................... 5  
Analog Front End......................................................................... 5  
Standard Definition Processor.................................................... 5  
Functional Block Diagrams............................................................. 6  
Specifications..................................................................................... 8  
Electrical Characteristics............................................................. 8  
Video Specifications..................................................................... 9  
Timing Specifications ................................................................ 10  
Analog Specifications................................................................. 11  
Thermal Specifications .............................................................. 11  
Absolute Maximum Ratings.......................................................... 12  
ESD Caution................................................................................ 12  
Pin Configurations and Function Descriptions ......................... 13  
32-Lead LFCSP ........................................................................... 13  
40-Lead LFCSP ........................................................................... 14  
64-Lead LQFP............................................................................. 15  
48-Lead LQFP............................................................................. 17  
Analog Front End ........................................................................... 18  
Input Configuration................................................................... 19  
RESET  
Power-On  
...................................................................... 20  
Analog Input Muxing ................................................................ 20  
Antialiasing Filters ..................................................................... 21  
Global Control Registers ............................................................... 22  
Power-Saving Modes.................................................................. 22  
Reset Control .............................................................................. 22  
Global Pin Control ..................................................................... 22  
Global Status Register .................................................................... 24  
Identification............................................................................... 24  
Status 1 ......................................................................................... 24  
Autodetection Result.................................................................. 24  
Status 2 ......................................................................................... 24  
Status 3 ......................................................................................... 24  
Video Processor .............................................................................. 25  
SD Luma Path ............................................................................. 25  
SD Chroma Path......................................................................... 25  
Rev. G | Page 2 of 120  
 
Data Sheet  
ADV7180  
REVISION HISTORY  
3/12—Rev. F to Rev. G  
Changes to Power-On Reset Section, Analog Input Muxing  
Changed ADV7179 to ADV7391 Throughout .............................1  
Changes to Figure 12 ......................................................................18  
Changes to Table 14 ........................................................................19  
Section, and Table 14......................................................................17  
Changes to PDBP Section and TOD Section ..............................19  
Changes to Identification Section.................................................21  
Changes to VS and FIELD Configuration Section and SQPE  
Section ..............................................................................................44  
Changes to Table 99 and Table 100...............................................72  
Changes to GPO Control Section.................................................73  
Changes to Table 104......................................................................76  
Changes to Table 106......................................................................80  
Added Figure 56............................................................................108  
Added Figure 59............................................................................110  
Changes to Ordering Guide.........................................................110  
RESET  
Changes to Power-On  
Section and MAN_MUX_EN,  
Manual Input Muxing Enable, Address 0xC4[7] Section..........20  
Changed NTSM to NTSC Throughout........................................24  
Deleted ADV7190, ADV7191, and ADV7192 Throughout......27  
Change to DEF_C[7:0], Default Value C, Address 0x0D[7:0]  
Section ..............................................................................................29  
Changes to Luma Filter Section ....................................................31  
Changes to Table 39 and LAGT[1:0], Luma Automatic Gain  
Timing, Address 0x2F[7:6] Section ..............................................36  
Changed Calculation of the Luma Calibration Factor Section  
Heading to Calculation of the Chroma Calibration Factor  
Section ..............................................................................................38  
Changes to Range, Range Selection, Address 0x04[0]  
Section ..............................................................................................45  
Changes to PHS, Polarity HS, Address 0x37[7] Section............46  
Changes to 0x0D, 0x1D, 0x2C, 0x37, and 0x41, Table 107........85  
Changes to Power Supply Decoupling Section .........................110  
Deleted Figure 55; Renumbered Sequentially ...........................110  
Changes to Figure 55 ....................................................................111  
Changes to Figure 56 ....................................................................112  
Changes to Figure 57 ....................................................................113  
Changes to Figure 58 ....................................................................114  
Changes to Ordering Guide.........................................................117  
6/09—Rev. C to Rev. D  
Change to General Description.......................................................1  
Deleted Comparison with the ADV7181B Section......................5  
Deleted Figure 2; Renumbered Sequentially.................................5  
Changes to Power Requirements Parameter, Table 2...................6  
Changes to Table 29 ........................................................................25  
Changes to Figure 33 ......................................................................44  
Changes to Subaddress 0x0A Notes, Table 104...........................81  
Changes to Ordering Guide.........................................................110  
4/09—Rev. B to Rev. C  
Changes to Features Section............................................................1  
Changes to Absolute Maximum Ratings, Table 7.......................11  
Changes to Figure 7 and Table 8, EPAD Addition......................12  
RESET  
Added Power-On  
Section.................................................17  
7/10—Rev. E to Rev. F  
Added 48-Lead LQFP .................................................. Throughout  
Changes to Features Section ............................................................1  
Changes to Table 2 ............................................................................4  
Added Figure 5; Renumbered Sequentially ...................................6  
Added Input Current (SDA, SCLK) Parameter and Input  
Changes to MAN_MUX_EN, Manual Input Muxing Enable,  
Address 0xC4[7] Section and Table 12.........................................17  
Changes to Identification Section.................................................21  
Added Table 16; Renumbered Sequentially.................................21  
Changes to Table 21 ........................................................................23  
Changes to CIL[2:0], Count Into Lock, Address 0x51[2:0]  
Section and COL[2:0], Count Out of Lock, Address 0x51[5:3]  
Section ..............................................................................................25  
Changes to Table 32 and Table 33.................................................30  
Changes to Table 34 ........................................................................32  
Changes to Table 42 ........................................................................35  
Changes to Table 52 ........................................................................38  
Changes to Table 53 and Table 56.................................................39  
Changes to Table 61 and Figure 32...............................................43  
Added SQPE, Square Pixel Mode, Address 0x01[2] Section.....44  
Changes to NEWAVMODE, New AV Mode, Address 0x31[4]  
Section ..............................................................................................44  
Changes to Figure 34 ......................................................................45  
Changes to NFTOG[4:0], NTSC Field Toggle,  
PWRDWN  
Current (  
) Parameter, Table 3 ......................................7  
Added Figure 11 and Table 12; Renumbered Sequentially........16  
Changes to MAN_MUX_EN, Manual Input Muxing Enable,  
Address 0xC4[7] Section................................................................19  
Added GDE_SEL_OLD_ADF Bit Description, Table 107 ........92  
Moved 32-Lead LFCSP Section...................................................108  
Added Figure 58 ............................................................................112  
Updated Outline Dimensions......................................................115  
Changes to Ordering Guide.........................................................116  
2/10—Rev. D to Rev. E  
Added 32-Lead LFCSP ................................................ Throughout  
Changes to Features ..........................................................................1  
Changes to Figure 1...........................................................................1  
Changes to Introduction ..................................................................4  
Added Figure 4, Renumbered Sequentially ...................................8  
Added Figure 9 and Table 11 .........................................................14  
Changes to Figure 11 ......................................................................15  
Changes to Table 12 and Table 13.................................................16  
Address 0xE7[4:0] Section.............................................................47  
Changes to PFTOG, PAL Field Toggle, Address 0xEA[4:0]  
Section ..............................................................................................49  
Changes to VDP Manuel Configuration Section .......................50  
Changes to Table 66 ........................................................................51  
Rev. G | Page 3 of 120  
 
ADV7180  
Data Sheet  
Changes to Table 71........................................................................ 54  
Changes to Table 72........................................................................ 55  
Changes to VPS Section and PDC/UTC Section....................... 63  
Changes to Gemstar_2x Format, Half-Byte Output Mode  
11/06—Rev. 0 to Rev. A  
Changes to Table 10 and Table 11 ................................................ 16  
Changes to Table 30 ....................................................................... 28  
Changes to Gain Operation Section ............................................ 33  
Changes to Table 43 ....................................................................... 35  
Changes to Table 97 ....................................................................... 72  
Changes to Table 99 ....................................................................... 73  
Changes to Table 103 ..................................................................... 80  
Changes to Figure 54.................................................................... 110  
Section.............................................................................................. 66  
Changes to NTSC CCAP Data Section and PAL CCAP Data  
Section.............................................................................................. 69  
Changes to Figure 48...................................................................... 74  
Changes to I2C Sequencer Section ............................................... 75  
Changes to Table 102...................................................................... 76  
Changes to Table 104...................................................................... 80  
Changes to Table 105...................................................................... 97  
Changes to Figure 53.................................................................... 108  
Changes to Figure 54.................................................................... 109  
Added Exposed Paddle Notation to Outline Dimensions ...... 110  
Changes to Ordering Guide ........................................................ 111  
1/06—Revision 0: Initial Version  
2/07—Rev. A to Rev. B  
Changes to SFL_INV, Subcarrier Frequency Lock Inversion  
Section.............................................................................................. 24  
Changes to Table 103, Register 0x41............................................ 90  
Updated Outline Dimensions..................................................... 111  
Rev. G | Page 4 of 120  
Data Sheet  
ADV7180  
INTRODUCTION  
The ADV7180 is a versatile one-chip multiformat video decoder  
that automatically detects and converts PAL, NTSC, and SECAM  
standards in the form of composite, S-Video, and component  
video into a digital ITU-R BT.656 format.  
STANDARD DEFINITION PROCESSOR  
The ADV7180 is capable of decoding a large selection of baseband  
video signals in composite, S-Video, and component formats.  
The video standards supported by the video processor include  
PAL B/D/I/G/H, PAL 60, PAL M, PAL N, PAL Nc, NTSC M/J,  
NTSC 4.43, and SECAM B/D/G/K/L. The ADV7180 can  
The simple digital output interface connects gluelessly to a wide  
range of MPEG encoders, codecs, mobile video processors, and  
Analog Devices digital video encoders, such as the ADV7391.  
External HS, VS, and FIELD signals provide timing references  
for LCD controllers and other video ASICs that do not support the  
ITU-R BT.656 interface standard. The different package options  
available for the ADV7180 are shown in Table 2.  
automatically detect the video standard and process it accordingly.  
The ADV7180 has a five-line, superadaptive, 2D comb filter  
that gives superior chrominance and luminance separation  
when decoding a composite video signal. This highly adaptive filter  
automatically adjusts its processing mode according to the video  
standard and signal quality without requiring user intervention.  
Video user controls such as brightness, contrast, saturation, and  
hue are also available with the ADV7180.  
ANALOG FRONT END  
The ADV7180 analog front end comprises a single high speed,  
10-bit analog-to-digital converter (ADC) that digitizes the  
analog video signal before applying it to the standard definition  
processor. The analog front end employs differential channels to  
the ADC to ensure high performance in mixed-signal applications.  
The ADV7180 implements a patented ADLLT™ algorithm to  
track varying video line lengths from sources such as a VCR.  
ADLLT enables the ADV7180 to track and decode poor quality  
video sources such as VCRs and noisy sources from tuner outputs,  
VCD players, and camcorders. The ADV7180 contains a chroma  
transient improvement (CTI) processor that sharpens the edge  
rate of chroma transitions, resulting in sharper vertical transitions.  
The front end also includes a 3-channel input mux that enables  
multiple composite video signals to be applied to the ADV7180.  
Current clamps are positioned in front of the ADC to ensure  
that the video signal remains within the range of the converter.  
A resistor divider network is required before each analog input  
channel to ensure that the input signal is kept within the range  
of the ADC (see Figure 27). Fine clamping of the video signal  
is performed downstream by digital fine clamping within the  
ADV7180.  
The video processor can process a variety of VBI data services,  
such as closed captioning (CCAP), wide screen signaling (WSS),  
copy generation management system (CGMS), EDTV, Gemstar®  
1×/2×, and extended data service (XDS). Teletext data slicing  
for world standard teletext (WST), along with program delivery  
control (PDC) and video programming service (VPS), are  
provided. Data is transmitted via the 8-bit video output port as  
ancillary data packets (ANC). The ADV7180 is fully Macrovision®  
certified; detection circuitry enables Type I, Type II, and Type III  
protection levels to be identified and reported to the user. The  
decoder is also fully robust to all Macrovision signal inputs.  
Table 1 shows the three ADC clocking rates that are determined by  
the video input format to be processed—that is, INSEL[3:0].  
These clock rates ensure 4× oversampling per channel for CVBS  
mode and 2× oversampling per channel for Y/C and YPrPb modes.  
Table 1. ADC Clock Rates  
Oversampling  
Rate per Channel  
Input Format  
CVBS  
ADC Clock Rate (MHz)1  
57.27  
86  
86  
4×  
2×  
2×  
Y/C (S-Video)2  
YPrPb  
1 Based on a 28.6363 MHz crystal between the XTAL and XTAL1 pins.  
2 See INSEL[3:0] in Table 107 for the mandatory write for Y/C (S-Video) mode.  
Table 2. ADV7180 Selection Guide  
Part Number  
Package Type  
32-lead LFCSP  
32-lead LFCSP  
40-lead LFCSP  
40-lead LFCSP  
64-lead LQFP  
64-lead LQFP  
48-lead LQFP  
Analog Inputs  
Digital Outputs  
8-bit  
8-bit  
8-bit  
8-bit  
8-bit/16-bit  
8-bit/16-bit  
8-bit  
Temperature Grade  
−10°C to +70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +85°C  
ADV7180KCP32Z  
ADV7180WBCP32Z (Automotive)1  
ADV7180BCPZ  
ADV7180WBCPZ (Automotive)1  
ADV7180BSTZ  
ADV7180WBSTZ (Automotive)1  
ADV7180WBST48Z (Automotive)1  
3
3
3
3
6
6
6
1 Automotive qualification completed.  
Rev. G | Page 5 of 120  
 
 
 
 
 
ADV7180  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAMS  
CLOCK PROCESSING BLOCK  
XTAL1  
XTAL  
LLC  
PLL  
ADLLT PROCESSING  
8-BIT  
PIXEL DATA  
DIGITAL  
PROCESSING  
BLOCK  
10-BIT, 86MHz  
ADC  
P7 TO P0  
AA  
FILTER  
A
A
A
1
2
3
IN  
IN  
IN  
2D COMB  
ANALOG  
VIDEO  
INPUTS  
HS  
AA  
FILTER  
SHA  
A/D  
VBI SLICER  
VS/FIELD  
SFL  
AA  
FILTER  
COLOR  
DEMOD  
INTRQ  
2
REFERENCE  
I C/CONTROL  
SCLK SDATA ALSB RESET  
Figure 2. 32-Lead LFCSP Functional Diagram  
CLOCK PROCESSING BLOCK  
XTAL1  
XTAL  
LLC  
PLL  
ADLLT PROCESSING  
8-BIT  
PIXEL DATA  
DIGITAL  
PROCESSING  
BLOCK  
10-BIT, 86MHz  
ADC  
P7 TO P0  
AA  
FILTER  
A
A
A
1
2
3
IN  
IN  
IN  
2D COMB  
ANALOG  
VIDEO  
INPUTS  
HS  
AA  
FILTER  
SHA  
A/D  
VBI SLICER  
VS/FIELD  
SFL  
AA  
FILTER  
COLOR  
DEMOD  
INTRQ  
2
REFERENCE  
I C/CONTROL  
SCLK SDATA ALSB RESET PWRDWN  
Figure 3. 40-Lead LFCSP Functional Block Diagram  
CLOCK PROCESSING BLOCK  
XTAL1  
XTAL  
LLC  
PLL  
ADLLT PROCESSING  
16-BIT  
PIXEL DATA  
DIGITAL  
PROCESSING  
BLOCK  
10-BIT, 86MHz  
ADC  
P15 TO P0  
A
A
A
A
A
A
1
2
3
4
5
6
IN  
IN  
IN  
IN  
IN  
IN  
AA  
FILTER  
2D COMB  
HS  
ANALOG  
VIDEO  
INPUTS  
AA  
FILTER  
SHA  
A/D  
VS  
VBI SLICER  
FIELD  
AA  
FILTER  
COLOR  
DEMOD  
GPO0 TO GPO3  
SFL  
INTRQ  
2
REFERENCE  
I C/CONTROL  
SCLK SDATA ALSB RESET PWRDWN  
Figure 4. 64-Lead LQFP Functional Block Diagram  
Rev. G | Page 6 of 120  
 
Data Sheet  
ADV7180  
CLOCK PROCESSING BLOCK  
XTAL1  
XTAL  
LLC  
PLL  
ADLLT PROCESSING  
8-BIT  
PIXEL DATA  
DIGITAL  
PROCESSING  
BLOCK  
10-BIT, 86MHz  
ADC  
P7 TO P0  
A
A
A
A
A
A
1
2
3
4
5
6
IN  
IN  
IN  
IN  
IN  
IN  
AA  
FILTER  
2D COMB  
ANALOG  
VIDEO  
INPUTS  
AA  
FILTER  
HS  
SHA  
A/D  
VBI SLICER  
VS/FIELD  
GPO0 TO GPO3  
SFL  
AA  
FILTER  
COLOR  
DEMOD  
INTRQ  
2
REFERENCE  
I C/CONTROL  
SCLK SDATA ALSB RESET PWRDWN  
Figure 5. 48-Lead LQFP Functional Block Diagram  
Rev. G | Page 7 of 120  
ADV7180  
Data Sheet  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
AVDD = 1.71 V to 1.89 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 1.62 V to 3.6 V, PVDD = 1.65 V to 2.0 V, specified at operating temperature range,  
unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE  
Resolution (Each ADC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS  
N
INL  
DNL  
10  
Bits  
LSB  
LSB  
BSL in CVBS mode  
CVBS mode  
2
−0.6/+0.6  
Input High Voltage (DVDDIO = 3.3 V)  
Input High Voltage (DVDDIO = 1.8 V)  
Input Low Voltage (DVDDIO = 3.3 V)  
Input Low Voltage (DVDDIO = 1.8 V)  
Crystal Inputs  
VIH  
VIH  
VIL  
VIL  
VIH  
VIL  
IIN  
2
1.2  
V
V
V
V
V
V
µA  
µA  
µA  
pF  
0.8  
0.4  
1.2  
0.4  
Input Current  
−10  
−10  
−10  
+10  
+15  
+40  
10  
Input Current (SDA, SCLK)1  
Input Current (PWRDWN)2  
Input Capacitance  
IIN  
IIN  
CIN  
DIGITAL OUTPUTS  
Output High Voltage (DVDDIO = 3.3 V)  
Output High Voltage (DVDDIO = 1.8 V)  
Output Low Voltage (DVDDIO = 3.3 V)  
Output Low Voltage (DVDDIO = 1.8 V)  
High Impedance Leakage Current  
Output Capacitance  
VOH  
VOH  
VOL  
VOL  
ILEAK  
COUT  
ISOURCE = 0.4 mA  
ISOURCE = 0.4 mA  
ISINK = 3.2 mA  
ISINK = 1.6 mA  
2.4  
1.4  
V
V
V
V
µA  
pF  
0.4  
0.2  
10  
20  
POWER REQUIREMENTS3, 4, 5  
Digital Power Supply  
Digital I/O Power Supply  
PLL Power Supply  
Analog Power Supply  
Digital Supply Current  
Digital I/O Supply Current6  
DVDD  
DVDDIO  
PVDD  
AVDD  
IDVDD  
IDVDDIO  
IPVDD  
1.65  
1.62  
1.65  
1.71  
1.8  
3.3  
1.8  
1.8  
77  
3
12  
33  
59  
77  
6
0.1  
1
1
15  
20  
2
V
V
V
V
3.6  
2.0  
1.89  
85  
5
15  
43  
75  
94  
10  
1
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µW  
ms  
PLL Supply Current  
Analog Supply Current  
IAVDD  
CVBS input  
Y/C input  
YPrPb input  
Power-Down Current  
IDVDD  
IDVDDIO  
IPVDD  
5
5
44  
IAVDD  
Total Power Dissipation in Power-Down Mode7  
Power-Up Time  
tPWRUP  
1 ADV7180KCP32Z, ADV7180WBCP32Z, and ADV7180WBST48Z only.  
2 ADV7180WBST48Z only.  
3 Guaranteed by characterization.  
4 Typical current consumption values are recorded with nominal voltage supply levels and a SMPTEBAR pattern.  
5 Maximum current consumption values are recorded with maximum rated voltage supply levels and a multiburst pattern.  
6 Typical (Typ) number is measured with DVDDIO = 3.3 V and maximum (Max) number is measured with DVDDIO = 3.6 V.  
7 ADV7180 clocked.  
Rev. G | Page 8 of 120  
 
 
Data Sheet  
ADV7180  
VIDEO SPECIFICATIONS  
Guaranteed by characterization. AVDD = 1.71 V to 1.89 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 1.62 V to 3.6 V, PVDD = 1.65 V to 2.0 V, specified  
at operating temperature range, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max  
Unit  
NONLINEAR SPECIFICATIONS  
Differential Phase  
Differential Gain  
Luma Nonlinearity  
NOISE SPECIFICATIONS  
SNR Unweighted  
DP  
DG  
LNL  
CVBS input, modulate five-step [NTSC]  
CVBS input, modulate five-step [NTSC]  
CVBS input, five-step [NTSC]  
0.6  
0.5  
2.0  
Degrees  
%
%
Luma ramp  
57.1  
58  
60  
dB  
dB  
dB  
Luma flat field  
Analog Front-End Crosstalk  
LOCK TIME SPECIFICATIONS  
Horizontal Lock Range  
Vertical Lock Range  
fSC Subcarrier Lock Range  
Color Lock-In Time  
−5  
40  
1.3  
60  
20  
5
+5  
70  
%
Hz  
kHz  
Lines  
%
Sync Depth Range  
Color Burst Range  
200  
200  
%
Vertical Lock Time  
Autodetection Switch Speed  
Chroma Luma Gain Delay  
2
Fields  
Lines  
ns  
ns  
ns  
100  
2.9  
5.6  
−3.0  
CVBS  
Y/C  
YPrPb  
LUMA SPECIFICATIONS  
Luma Brightness Accuracy  
Luma Contrast Accuracy  
CVBS, 1 V input  
CVBS, 1 V input  
1
1
%
%
Rev. G | Page 9 of 120  
 
ADV7180  
Data Sheet  
TIMING SPECIFICATIONS  
Guaranteed by characterization. AVDD = 1.71 V to 1.89 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 1.62 V to 3.6 V, PVDD = 1.65 V to 2.0 V, specified  
at operating temperature range, unless otherwise noted.  
Table 5.  
Parameter  
Symbol Test Conditions  
Min  
Typ  
Max  
Unit  
SYSTEM CLOCK AND CRYSTAL  
Nominal Frequency  
Frequency Stability  
28.6363  
MHz  
ppm  
50  
I2C PORT  
SCLK Frequency  
400  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
SCLK Minimum Pulse Width High  
SCLK Minimum Pulse Width Low  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
SDA Setup Time  
SCLK and SDA Rise Times  
SCLK and SDA Fall Times  
Setup Time for Stop Condition  
RESET FEATURE  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0.6  
1.3  
0.6  
0.6  
100  
300  
300  
0.6  
Reset Pulse Width  
5
ms  
CLOCK OUTPUTS  
LLC Mark Space Ratio  
DATA AND CONTROL OUTPUTS  
Data Output Transitional Time  
t9:t10  
45:55  
55:45 % duty cycle  
t11  
t12  
Negative clock edge to start of valid data  
(tACCESS = t10 − t11)  
End of valid data to negative clock edge  
(tHOLD = t9 + t12)  
3.6  
2.4  
ns  
ns  
Data Output Transitional Time  
Timing Diagrams  
t5  
t3  
t3  
SDATA  
SCLK  
t1  
t6  
t4  
t7  
t8  
t2  
Figure 6. I2C Timing  
t9  
t10  
OUTPUT LLC  
t11  
t12  
OUTPUTS P0 TO P15, VS,  
HS, FIELD,  
SFL  
Figure 7. Pixel Port and Control Output Timing  
Rev. G | Page 10 of 120  
 
 
 
 
 
 
 
 
Data Sheet  
ADV7180  
ANALOG SPECIFICATIONS  
Guaranteed by characterization. AVDD = 1.71 V to 1.89 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 1.62 V to 3.6 V, PVDD = 1.65 V to 2.0 V, specified  
at operating temperature range, unless otherwise noted.  
Table 6.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
CLAMP CIRCUITRY  
External Clamp Capacitor  
Input Impedance  
Large-Clamp Source Current  
Large-Clamp Sink Current  
Fine Clamp Source Current  
Fine Clamp Sink Current  
0.1  
10  
0.4  
0.4  
10  
µF  
Clamps switched off  
MΩ  
mA  
mA  
µA  
10  
µA  
THERMAL SPECIFICATIONS  
Table 7.  
Parameter  
Symbol Test Conditions  
Min Typ Max Unit  
THERMAL CHARACTERISTICS  
Junction-to-Ambient Thermal  
Resistance (Still Air)  
θJA  
4-layer PCB with solid ground plane, 32-lead LFCSP  
32.5  
°C/W  
Junction-to-Case Thermal Resistance  
Junction-to-Ambient Thermal  
Resistance (Still Air)  
θJC  
θJA  
4-layer PCB with solid ground plane, 32-lead LFCSP  
4-layer PCB with solid ground plane, 40-lead LFCSP  
2.3  
30  
°C/W  
°C/W  
Junction-to-Case Thermal Resistance  
Junction-to-Ambient Thermal  
Resistance (Still Air)  
θJC  
θJA  
4-layer PCB with solid ground plane, 40-lead LFCSP  
4-layer PCB with solid ground plane, 64-lead LQFP  
3
47  
°C/W  
°C/W  
Junction-to-Case Thermal Resistance  
Junction-to-Ambient Thermal  
Resistance (Still Air)  
θJC  
θJA  
4-layer PCB with solid ground plane, 64-lead LQFP  
4-layer PCB with solid ground plane, 48-lead LQFP  
11.1  
50  
°C/W  
°C/W  
Junction-to-Case Thermal Resistance  
θJC  
4-layer PCB with solid ground plane, 48-lead LQFP  
20  
°C/W  
Rev. G | Page 11 of 120  
 
 
ADV7180  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
This device is a high performance integrated circuit with an  
ESD rating of <2 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
Table 8.  
Parameter  
AVDD to AGND  
Rating  
2.2 V  
DVDD to DGND  
PVDD to AGND  
2.2 V  
2.2 V  
ESD CAUTION  
DVDDIO to DGND  
DVDDIO to AVDD  
PVDD to DVDD  
DVDDIO to PVDD  
DVDDIO to DVDD  
4 V  
−0.3 V to +4 V  
−0.3 V to +0.9 V  
–0.3 V to +4 V  
−0.3 V to +4 V  
−0.3 V to +0.3 V  
−0.3 V to +0.9 V  
DGND − 0.3 V to DVDDIO + 0.3 V  
DGND − 0.3 V to DVDDIO + 0.3 V  
AGND − 0.3 V to AVDD + 0.3 V  
140°C  
AVDD to PVDD  
AVDD to DVDD  
Digital Inputs Voltage  
Digital Outputs Voltage  
Analog Inputs to AGND  
Maximum Junction Temperature  
(TJ max)  
Storage Temperature Range  
−65°C to +150°C  
Infrared Reflow Soldering (20 sec) 260°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. G | Page 12 of 120  
 
 
Data Sheet  
ADV7180  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
32-LEAD LFCSP  
PIN1  
HS 1  
DGND 2  
DVDDIO 3  
SFL 4  
INDICATOR  
24 A  
23 A  
3
2
IN  
IN  
22 AVDD  
21 VREFN  
20 VREFP  
ADV7180  
LFCSP  
P7 5  
P6 6  
P5 7  
TOP VIEW  
(Not to Scale)  
19 A  
1
IN  
18 PVDD  
17 ELPF  
P4 8  
NOTES  
1. THE EXPOSEDPAD MUST BE CONNECTEDTO GND.  
Figure 8. 32-Lead LFCSP Pin Configuration  
Table 9. 32-Lead LFCSP Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
1
2, 29  
3
4
HS  
O
G
P
O
Horizontal Synchronization Output Signal.  
Ground for Digital Supply.  
Digital I/O Supply Voltage (1.8 V to 3.3 V).  
Subcarrier Frequency Lock. This pin contains a serial output stream that can be used to lock the  
subcarrier frequency when this decoder is connected to any Analog Devices digital video encoder.  
DGND  
DVDDIO  
SFL  
5 to 10, 15, 16  
11  
P7 to P2, P1, P0  
LLC  
O
O
Video Pixel Output Port.  
Line-Locked Output Clock for the Output Pixel Data. Nominally 27 MHz but varies up or  
down according to video line length.  
12  
13  
XTAL1  
XTAL  
O
I
This pin should be connected to the 28.6363 MHz crystal or not connected if an external  
1.8 V,28.6363 MHz clock oscillator source is used to clock the ADV7180. In crystal mode, the  
crystal must be a fundamental crystal.  
Input Pin for the 28.6363 MHz Crystal. This pin can be overdriven by an external 1.8 V,  
28.6363 MHz clock oscillator source. In crystal mode, the crystal must be a fundamental crystal.  
14, 30  
17  
18  
19, 23, 24  
20  
21  
DVDD  
ELPF  
PVDD  
AIN1 to AIN3  
VREFP  
VREFN  
AVDD  
P
I
P
I
O
O
P
I
Digital Supply Voltage (1.8 V).  
The recommended external loop filter must be connected to this ELPF pin, as shown in Figure 58.  
PLL Supply Voltage (1.8 V).  
Analog Video Input Channels.  
Internal Voltage Reference Output. See Figure 58 for recommended output circuitry.  
Internal Voltage Reference Output. See Figure 58 for recommended output circuitry.  
Analog Supply Voltage (1.8 V).  
System Reset Input. Active low. A minimum low reset pulse width of 5 ms is required to  
reset the ADV7180 circuitry.  
22  
25  
RESET  
26  
ALSB  
I
This pin selects the I2C address for the ADV7180. For ALSB set to Logic 0, the address selected  
for a write is 0x40; for ALSB set to Logic 1, the address selected is 0x42.  
27  
28  
31  
32  
SDATA  
SCLK  
VS/FIELD  
INTRQ  
I/O  
I
O
O
I2C Port Serial Data Input/Output Pin.  
I2C Port Serial Clock Input. The maximum clock rate is 400 kHz.  
Vertical Synchronization Output Signal/Field Synchronization Output Signal.  
Interrupt Request Output. Interrupt occurs when certain signals are detected on the input video  
(see Table 108).  
EPAD (EP)  
The exposed pad must be connected to GND.  
Rev. G | Page 13 of 120  
 
 
ADV7180  
Data Sheet  
40-LEAD LFCSP  
PIN 1  
DVDDIO  
SFL  
DGND  
DVDDIO  
P7  
1
2
3
4
5
6
7
8
9
30  
29  
A
A
3
2
IN  
IN  
INDICATOR  
28 AGND  
27 AVDD  
26 VREFN  
25 VREFP  
24 AGND  
23 A 1  
22 TEST_0  
21 AGND  
ADV7180  
LFCSP  
P6  
P5  
P4  
P3  
TOP VIEW  
(Not to Scale)  
IN  
P2 10  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO GND.  
Figure 9. 40-Lead LFCSP Pin Configuration  
Table 10. 40-Lead LFCSP Pin Function Descriptions  
Pin No.  
Mnemonic  
DVDDIO  
SFL  
Type  
Description  
1, 4  
2
P
O
Digital I/O Supply Voltage (1.8 V to 3.3 V).  
Subcarrier Frequency Lock. This pin contains a serial output stream that can be used to lock the  
subcarrier frequency when this decoder is connected to any Analog Devices digital video encoder.  
3, 15, 35, 40  
5 to 10, 16, 17  
11  
DGND  
P7 to P2, P1, P0  
LLC  
G
O
O
Ground for Digital Supply.  
Video Pixel Output Port.  
Line-Locked Output Clock for the Output Pixel Data. Nominally 27 MHz but varies up or  
down according to video line length.  
12  
13  
XTAL1  
XTAL  
O
I
This pin should be connected to the 28.6363 MHz crystal or not connected if an external 1.8 V,  
28.6363 MHz clock oscillator source is used to clock the ADV7180. In crystal mode, the crystal  
must be a fundamental crystal.  
Input Pin for the 28.6363 MHz Crystal. This pin can be overdriven by an external 1.8 V,  
28.6363 MHz clock oscillator source. In crystal mode, the crystal must be a fundamental crystal.  
14, 36  
18  
DVDD  
PWRDWN  
ELPF  
PVDD  
AGND  
TEST_0  
AIN1 to AIN3  
VREFP  
VREFN  
AVDD  
P
I
Digital Supply Voltage (1.8 V).  
A logic low on this pin places the ADV7180 into power-down mode.  
The recommended external loop filter must be connected to this ELPF pin, as shown in Figure 55.  
PLL Supply Voltage (1.8 V).  
Ground for Analog Supply.  
This pin must be tied to DGND.  
19  
20  
21, 24, 28  
22  
I
P
G
I
23, 29, 30  
I
Analog Video Input Channels.  
25  
26  
27  
31  
O
O
P
I
Internal Voltage Reference Output. See Figure 55 for recommended output circuitry.  
Internal Voltage Reference Output. See Figure 55 for recommended output circuitry.  
Analog Supply Voltage (1.8 V).  
System Reset Input. Active low. A minimum low reset pulse width of 5 ms is required to  
reset the ADV7180 circuitry.  
RESET  
32  
ALSB  
I
This pin selects the I2C address for the ADV7180. For ALSB set to Logic 0, the address selected  
for a write is 0x40; for ALSB set to Logic 1, the address selected is 0x42.  
33  
34  
37  
38  
SDATA  
SCLK  
VS/FIELD  
INTRQ  
I/O  
I
O
O
I2C Port Serial Data Input/Output Pin.  
I2C Port Serial Clock Input. The maximum clock rate is 400 kHz.  
Vertical Synchronization Output Signal/Field Synchronization Output Signal.  
Interrupt Request Output. Interrupt occurs when certain signals are detected on the input video  
(see Table 108).  
39  
HS  
EPAD (EP)  
O
Horizontal Synchronization Output Signal.  
The exposed pad must be connected to GND.  
Rev. G | Page 14 of 120  
 
Data Sheet  
ADV7180  
64-LEAD LQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
INTRQ  
HS  
A
A
A
5
4
3
IN  
IN  
IN  
PIN 1  
3
DGND  
DVDDIO  
P11  
4
NC  
NC  
5
6
P10  
AGND  
NC  
ADV7180  
7
P9  
LQFP  
TOP VIEW  
(Not to Scale)  
8
P8  
NC  
9
SFL  
AVDD  
VREFN  
VREFP  
AGND  
10  
11  
12  
13  
14  
15  
16  
DGND  
DVDDIO  
GPO1  
GPO0  
P7  
A
A
2
1
IN  
IN  
P6  
TEST_0  
NC  
P5  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC = NO CONNECT  
Figure 10. 64-Lead LQFP Pin Configuration  
Table 11. 64-Lead LQFP Pin Function Description  
Pin No.  
Mnemonic  
Type Description  
1
INTRQ  
O
Interrupt Request Output. Interrupt occurs when certain signals are detected on the input  
video (see Table 108).  
2
HS  
DGND  
DVDDIO  
O
G
P
Horizontal Synchronization Output Signal.  
Digital Ground.  
Digital I/O Supply Voltage (1.8 V to 3.3 V).  
3, 10, 24, 57  
4, 11  
5 to 8, 14 to 19,  
25, 26, 59 to 62  
P11 to P8,  
P7 to P2, P1,  
P0, P15 to P12  
O
Video Pixel Output Port. See Table 100 for output configuration for 8-bit and 16-bit modes.  
9
SFL  
O
Subcarrier Frequency Lock. This pin contains a serial output stream that can be used to lock  
the subcarrier frequency when this decoder is connected to any Analog Devices digital  
video encoder.  
12, 13, 55, 56  
20  
GPO0 to GPO3  
LLC  
O
O
General-Purpose Outputs. These pins can be configured via I2C to allow control of external devices.  
This is a line-locked output clock for the pixel data output by the ADV7180. It is nominally  
27 MHz but varies up or down according to video line length.  
21  
XTAL1  
XTAL  
O
I
This pin should be connected to the 28.6363 MHz crystal or left as a no connect if an external  
1.8 V, 28.6363 MHz clock oscillator source is used to clock the ADV7180. In crystal mode,  
the crystal must be a fundamental crystal.  
This is the input pin for the 28.6363 MHz crystal, or this pin can be overdriven by an external  
1.8 V, 28.6363 MHz clock oscillator source. In crystal mode, the crystal must be a fundamental  
crystal.  
22  
23, 58  
DVDD  
P
Digital Supply Voltage (1.8 V).  
27, 28, 33, 41, 42, NC  
44, 45, 50  
No Connect. These pins are not connected internally.  
29  
PWRDWN  
I
A logic low on this pin places the ADV7180 in power-down mode.  
The recommended external loop filter must be connected to the ELPF pin, as shown in Figure 56.  
PLL Supply Voltage (1.8 V).  
Analog Ground.  
This pin must be tied to DGND.  
30  
31  
ELPF  
PVDD  
AGND  
TEST_0  
AIN1 to AIN6  
I
P
G
I
32, 37, 43  
34  
35, 36, 46 to 49  
I
Analog Video Input Channels.  
Rev. G | Page 15 of 120  
 
ADV7180  
Data Sheet  
Pin No.  
38  
39  
40  
51  
Mnemonic  
VREFP  
VREFN  
AVDD  
Type Description  
O
O
P
I
Internal Voltage Reference Output. See Figure 56 for recommended output circuitry.  
Internal Voltage Reference Output. See Figure 56 for recommended output circuitry.  
Analog Supply Voltage (1.8 V).  
System Reset Input. Active low. A minimum low reset pulse width of 5 ms is required to reset  
the ADV7180 circuitry.  
RESET  
52  
ALSB  
I
This pin selects the I2C address for the ADV7180. For ALSB set to Logic 0, the address selected  
for a write is 0x40; for ALSB set to Logic 1, the address selected is 0x42.  
53  
54  
63  
64  
SDATA  
SCLK  
FIELD  
VS  
I/O  
I
O
O
I2C Port Serial Data Input/Output Pin.  
I2C Port Serial Clock Input. The maximum clock rate is 400 kHz.  
Field Synchronization Output Signal.  
Vertical Synchronization Output Signal.  
Rev. G | Page 16 of 120  
Data Sheet  
ADV7180  
48-LEAD LQFP  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
DGND  
DVDDIO  
SFL  
A
A
A
A
6
5
4
3
IN  
IN  
IN  
IN  
PIN 1  
3
4
DVDDIO  
GPO1  
GPO0  
P7  
5
AGND  
AVDD  
ADV7180  
6
LQFP  
TOP VIEW  
(Not to Scale)  
7
VFEFN  
VREFP  
AGND  
8
P6  
9
P5  
10  
11  
12  
P4  
A
A
2
1
IN  
IN  
P3  
P2  
PVDD  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
Figure 11. 48-Lead LQFP Pin Configuration  
Table 12. 48-Lead LQFP Pin Function Descriptions  
Pin No.  
Mnemonic  
Type Description  
1, 13, 19, 43  
2, 4  
3
DGND  
DVDDIO  
SFL  
G
P
O
Digital Ground.  
Digital I/O Supply Voltage (1.8V to 3.3 V).  
Subcarrier Frequency Lock. This pin contains a serial output stream that can be used to lock the  
subcarrier frequency when this decoder is connected to any Analog Devices digital video encoder.  
General-Purpose Outputs. These pins can be configured via I2C to allow control of external devices.  
Video Pixel Output Port. See Table 100 for output configuration for 8-bit and 16-bit modes.  
This is a line-locked output clock for the pixel data output by the ADV7180. It is nominally  
27 MHz but varies up or down according to video line length.  
5, 6, 41, 42  
7 to 12, 20, 22  
14  
GPO0 to GPO3  
P7 to P2, P1, P0  
LLC  
O
O
O
15, 48  
16  
NC  
XTAL1  
No Connect Pins. These pins are not connected internally.  
O
I
This pin should be connected to the 28.6363 MHz crystal or left as a no connect if an external 1.8 V,  
28.6363 MHz clock oscillator source is used to clock the ADV7180. In crystal mode, the crystal  
must be a fundamental crystal.  
This is the input pin for the 28.6363 MHz crystal, or this pin can be overdriven by an external 1.8 V,  
28.6363 MHz clock oscillator source. In crystal mode, the crystal must be a fundamental crystal.  
17  
XTAL  
18, 44  
21  
DVDD  
PWRDWN  
AGND  
P
I
Digital Supply Voltage (1.8 V).  
A logic low on this pin places the ADV7180 in power-down mode.  
Analog Ground.  
23, 28, 32  
G
24  
25  
ELPF  
PVDD  
AIN1 to AIN6  
VREFP  
VREFN  
AVDD  
I
P
I
O
O
P
I
The recommended external loop filter must be connected to the ELPF pin, as shown in Figure 57.  
PLL Supply Voltage (1.8 V).  
Analog Video Input Channels.  
Internal Voltage Reference Output. See Figure 57 for recommended output circuitry.  
Internal Voltage Reference Output. See Figure 57 for recommended output circuitry.  
Analog Supply Voltage (1.8 V).  
System Reset Input. Active low. A minimum low reset pulse width of 5 ms is required to reset  
the ADV7180 circuitry.  
26, 27, 33 to 36  
29  
30  
31  
37  
RESET  
38  
ALSB  
I
This pin selects the I2C address for the ADV7180. For ALSB set to Logic 0, the address selected  
for a write is 0x40; for ALSB set to Logic 1, the address selected is 0x42.  
39  
40  
45  
46  
SDATA  
SCLK  
VS/FIELD  
INTRQ  
I/O  
I
O
O
I2C Port Serial Data Input/Output Pin.  
I2C Port Serial Clock Input. The maximum clock rate is 400 kHz.  
Vertical Synchronization Output Signal/Field Synchronization Output Signal.  
Interrupt Request Output. Interrupt occurs when certain signals are detected on the input video  
(see Table 108).  
47  
HS  
O
Horizontal Synchronization Output Signal.  
Rev. G | Page 17 of 120  
 
ADV7180  
Data Sheet  
ANALOG FRONT END  
MAN_MUX_EN  
A
A
A
A
A
A
2
IN  
1
MUX_0[2:0]  
IN  
IN  
IN  
IN  
IN  
4
3
6
5
A
A
A
A
4
3
6
5
IN  
IN  
IN  
IN  
MUX_1[2:0]  
MUX_2[2:0]  
ADC  
A
A
A
2
6
5
IN  
IN  
IN  
Figure 12. 64-Lead and 48-Lead LQFP Internal Pin Connections  
MAN_MUX_EN  
A
A
A
1
2
3
MUX_0[2:0]  
IN  
IN  
IN  
A
A
2
3
IN  
IN  
MUX_1[2:0]  
MUX_2[2:0]  
ADC  
A
3
IN  
Figure 13. 40-Lead and 32-Lead LFCSP Internal Pin Connections  
Rev. G | Page 18 of 120  
 
 
 
Data Sheet  
ADV7180  
INPUT CONFIGURATION  
Table 13. 64-Lead and 48-Lead LQFP INSEL[3:0]  
The following are the two key steps for configuring the  
ADV7180 to correctly decode the input video:  
INSEL[3:0]  
Video Format  
Composite  
Composite  
Composite  
Composite  
Composite  
Composite  
Y/C (S-Video)  
Analog Input  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
CVBS input on AIN1  
CVBS input on AIN2  
CVBS input on AIN3  
CVBS input on AIN4  
CVBS input on AIN5  
CVBS input on AIN6  
Y input on AIN1  
C input on AIN4  
Y input on AIN2  
C input on AIN5  
Y input on AIN3  
C input on AIN6  
Y input on AIN1  
Pb input on AIN4  
Pr input on AIN5  
Y input on AIN2  
Pr input on AIN6  
Pb input on AIN3  
Reserved  
1. Use INSEL[3:0] to configure the routing and format decoding  
(CVBS, Y/C, or YPrPb). For the 64-lead and 48-lead L QF P,  
see Table 13. For the 40-lead and 32-lead LFCSP, see Table 14.  
2. If the input requirements are not met using the INSEL[3:0]  
options, the analog input muxing section must be configured  
manually to correctly route the video from the analog  
input pins to the ADC. The standard definition processor  
block, which decodes the digital data, should be configured  
to process the CVBS, Y/C, or YPrPb format. This is performed  
by INSEL[3:0] selection.  
0111  
1000  
1001  
Y/C (S-Video)  
Y/C (S-Video)  
YPrPb  
CONNECT ANALOG VIDEO  
SIGNALS TO ADV7180.  
SET INSEL[3:0] TO CONFIGURE  
VIDEO FORMAT. USE PREDEFINED  
FORMAT/ROUTING.  
1010  
YPrPb  
NO  
1011 to 1111  
Reserved  
YES  
LQFP-64  
LQFP-48  
LFCSP-40  
LFCSP-32  
Table 14. 40-Lead and 32-Lead LFCSP INSEL[3:0]  
CONFIGURE ADC INPUTS USING  
MANUAL MUXING CONTROL BITS:  
MUX_0[2:0], MUX_1[2:0], MUX_2[2:0].  
SEE TABLE 15.  
INSEL[3:0]  
Video Format  
Composite  
Reserved  
Composite  
Composite  
Reserved  
Analog Input  
CVBS input on AIN1  
Reserved  
CVBS input on AIN2  
CVBS input on AIN3  
Reserved  
REFER TO  
TABLE 13  
REFER TO  
TABLE 14  
0000  
0001 to 0010  
0011  
0100  
0101  
Figure 14. Signal Routing Options  
INSEL[3:0], Input Selection, Address 0x00[3:0]  
The INSEL bits allow the user to select the input format. They  
also configure the standard definition processor core to process  
composite (CVBS), S-Video (Y/C), or component (YPrPb) format.  
0110  
Y/C (S-Video)  
Y input on AIN1  
C input on AIN2  
Reserved  
Y input on AIN1  
Pr input on AIN3  
Pb input on AIN2  
Reserved  
0111 to 1000  
1001  
Reserved  
YPrPb  
INSEL[3:0] has predefined analog input routing schemes that  
do not require manual mux programming (see Table 13 and  
Table 14). This allows the user to route the various video signal  
types to the decoder and select them using INSEL[3:0] only.  
The added benefit is that if, for example, the CVBS input is  
selected, the remaining channels are powered down.  
1010 to 1111  
Reserved  
Rev. G | Page 19 of 120  
 
 
 
ADV7180  
Data Sheet  
MAN_MUX_EN, Manual Input Muxing Enable,  
Address 0xC4[7]  
POWER-ON RESET  
After power-up, it is necessary to execute a reset operation. For  
To configure the ADV7180 analog muxing section, the user  
must select the analog input (AIN1 to AIN6 for the 64-lead LQFP  
and 48-lead devices or AIN1 to AIN3 for the 40-lead and 32-lead  
LFCSP devices) that is to be processed by the ADC. MAN_MUX_  
EN must be set to 1 to enable the following muxing blocks:  
RESET  
correct operation,  
5 ms after power supplies are stable and within specification  
PWRDWN  
should remain asserted/pulled low for  
and  
pulled high.  
(not available in 32-lead LFCSP) is deasserted/  
ANALOG INPUT MUXING  
MUX0[2:0], ADC Mux Configuration, Address 0xC3[2:0]  
MUX1[2:0], ADC Mux Configuration, Address 0xC3[6:4]  
MUX2[2:0], ADC Mux Configuration, Address 0xC4[2:0]  
The ADV7180 has an integrated analog muxing section that  
allows more than one source of video signal to be connected to  
the decoder. Figure 12 and Figure 13 outline the overall structure of  
the input muxing provided in the ADV7180.  
The three mux sections are controlled by the signal buses MUX0/  
MUX1/MUX2[2:0]. Table 15 explains the control words used.  
A maximum of six CVBS inputs can be connected to and  
decoded by the 64-lead and 48-lead devices, and a maximum of  
three CVBS inputs can be connected to and decoded by the 40-lead  
and 32-lead LFCSP devices. As shown in the Pin Configurations  
and Function Description section, these analog input pins lie in  
close proximity to one another, which requires careful design of  
the printed circuit board (PCB) layout. For example, ground  
shielding between all signals should be routed through tracks that are  
physically close together. It is strongly recommended to connect  
any unused analog input pins to AGND to act as a shield.  
The input signal that contains the timing information (HS and VS)  
must be processed by MUX0. For example, in a Y/C input  
configuration, MUX0 should be connected to the Y channel  
and MUX1 to the C channel. When one or more muxes are not  
used to process video, such as the CVBS input, the idle mux and  
associated channel clamps and buffers should be powered down  
(see the description of Register 0x3A in Table 107).  
Table 15. Manual Mux Settings for the ADC (MAN_MUX_EN Must be Set to 1)  
ADC Connected To ADC Connected To  
LQFP-64 or LFCSP-40 or LQFP-64 or LFCSP-40 or  
ADC Connected To  
LQFP-64 or LFCSP-40 or  
MUX0[2:0]  
LQFP-48  
No connect  
AIN1  
AIN2  
AIN3  
LFCSP-32  
No connect  
AIN1  
No connect  
No connect  
AIN2  
MUX1[2:0]  
LQFP-48  
No connect  
No connect  
No connect  
AIN3  
LFCSP-32  
No connect  
No connect  
No connect  
No connect  
AIN2  
MUX2[2:0]  
000  
001  
010  
011  
LQFP-48  
No connect  
No connect  
AIN2  
LFCSP-32  
No connect  
No connect  
No connect  
No connect  
No connect  
AIN3  
000  
001  
010  
011  
000  
001  
010  
011  
No connect  
No connect  
AIN5  
100  
AIN4  
100  
AIN4  
100  
101  
101  
AIN5  
AIN3  
101  
AIN5  
AIN3  
110  
111  
AIN6  
No connect  
No connect  
No connect  
110  
111  
AIN6  
No connect  
No connect  
No connect  
110  
111  
AIN6  
No connect  
No connect  
No connect  
Note the following:  
CVBS can only be processed by MUX0.  
Y/C can only be processed by MUX0 and MUX1.  
YPrPb can only be processed by MUX0, MUX1, and MUX2.  
Rev. G | Page 20 of 120  
 
 
 
 
Data Sheet  
ADV7180  
AA_FILT_EN, Address 0xF3[1]  
ANTIALIASING FILTERS  
When AA_FILT_EN[1] is 0, AA Filter 2 is bypassed.  
When AA_FILT_EN[1] is 1, AA Filter 2 is enabled.  
AA_FILT_EN, Address 0xF3[2]  
The ADV7180 has optional on-chip antialiasing (AA) filters on  
each of the three channels that are multiplexed to the ADC (see  
Figure 15). The filters are designed for standard definition video  
up to 10 MHz bandwidth. Figure 16 and Figure 17 show the  
filter magnitude and phase characteristics.  
When AA_FILT_EN[2] is 0, AA Filter 3 is bypassed.  
When AA_FILT_EN[2] is 1, AA Filter 3 is enabled.  
The antialiasing filters are enabled by default and the selection  
of INSEL[3:0] determines which filters are powered up at any  
given time. For example, if CVBS mode is selected, the filter  
circuits for the remaining input channels are powered down to  
conserve power. However, the antialiasing filters can be disabled  
or bypassed using the AA_FILT_MAN_OVR control.  
0
–4  
–8  
–12  
–16  
–20  
–24  
–28  
–32  
–36  
10-BIT, 86MHz  
ADC  
A
A
A
1
2
IN  
IN  
IN  
AA  
FILTER 1  
3
1
AA  
FILTER 2  
SHA  
A/D  
A
4
5
6
IN  
IN  
IN  
1
1
A
A
AA  
FILTER 3  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 16. Antialiasing Filter Magnitude Response  
1
ONLY AVAILABLE IN 64-LEAD AND 48-LEAD PACKAGES.  
0
Figure 15. Antialias Filter Configuration  
–10  
–20  
AA_FILT_MAN_OVR, Antialiasing Filter Override,  
Address 0xF3[3]  
–30  
–40  
This feature allows the user to override the antialiasing filters  
on/off settings, which are automatically selected by INSEL[3:0].  
–50  
–60  
–70  
AA_FILT_EN, Antialiasing Filter Enable, Address 0xF3[2:0]  
–80  
–90  
These bits allow the user to enable or disable the antialiasing  
filters on each of the three input channels multiplexed to the  
ADC. When disabled, the analog signal bypasses the AA filter  
and is routed directly to the ADC.  
–100  
–110  
–120  
–130  
–140  
–150  
AA_FILT_EN, Address 0xF3[0]  
1k  
10k  
100k  
1M  
10M  
100M  
When AA_FILT_EN[0] is 0, AA Filter 1 is bypassed.  
When AA_FILT_EN[0] is 1, AA Filter 1 is enabled.  
FREQUENCY (Hz)  
Figure 17. Antialiasing Filter Phase Response  
Rev. G | Page 21 of 120  
 
 
 
 
ADV7180  
Data Sheet  
GLOBAL CONTROL REGISTERS  
Register control bits listed in this section affect the whole chip.  
RESET  
pin),  
After setting the reset bit (or initiating a reset via the  
the part returns to the default for its primary mode of operation.  
All I2C bits are loaded with their default values, making this bit  
self-clearing.  
POWER-SAVING MODES  
Power-Down  
PDBP, Address 0x0F[2]  
Executing a software reset takes approximately 2 ms. However,  
it is recommended to wait 5 ms before any further I2C writes are  
performed.  
The I2C master controller receives a no acknowledge condition  
on the ninth clock cycle when chip reset is implemented (see  
the MPU Port Description section).  
The digital supply of the ADV7180 can be shut down by using  
2
1
PWRDWN  
the  
pin or via I C (see the PWRDWN, Address  
0x0F[5] section). PDBP controls whether the I2C control or the  
pin has the higher priority. The default is to give the pin  
2
PWRDWN  
(
) priority . This allows the user to have the  
ADV7180 powered down by default at power-up without the  
need for an I2C write.  
When the reset bit is 0 (default), operation is normal.  
When the reset bit is 1, the reset sequence starts.  
When PDBP is 0 (default), the digital supply power is controlled by  
2
PWRDWN  
the  
pin (the PWRDWN bit, 0x0F[5], is disregarded).  
GLOBAL PIN CONTROL  
Three-State Output Drivers  
TOD, Address 0x03[6]  
When PDBP is 1, the PWRDWN bit has priority (the pin is  
disregarded).  
PWRDWN, Address 0x0F[5]  
This bit allows the user to three-state the output drivers of the  
ADV7180.  
When PDBP is set to 1, setting the PWRDWN bit switches the  
ADV7180 to a chip-wide power-down mode. The power-down  
stops the clock from entering the digital section of the chip,  
thereby freezing its operation. No I2C bits are lost during power-  
down. The PWRDWN bit also affects the analog blocks and  
switches them into low current modes. The I2C interface is  
unaffected and remains operational in power-down mode.  
Upon setting the TOD bit, the P15 to P0 (P7 to P0 for the 48-lead,  
40-lead, and 32-lead devices), HS, VS, FIELD (VS/FIELD pin for  
the 48-lead, 40-lead, and 32-lead LFCSP), and SFL pins are  
three-stated.  
The timing pins (HS, VS, FIELD) can be forced active via the  
TIM_OE bit. For more information on three-state control, see  
the Three-State LLC Driver and the Timing Signals Output  
Enable sections.  
The ADV7180 leaves the power-down state if the PWRDWN bit is  
2
RESET  
set to 0 (via I C) or if the ADV7180 is reset using the  
pin.  
PDBP must be set to 1 for the PWRDWN bit to power down  
the ADV7180.  
Individual drive strength controls are provided via the  
DR_STR_x bits.  
When PWRDWN is 0 (default), the chip is operational. When  
PWRDWN is 1, the ADV7180 is in a chip-wide power-down mode.  
When TOD is 0 (default), the output drivers are enabled.  
When TOD is 1, the output drivers are three-stated.  
Three-State LLC Driver  
RESET CONTROL  
Reset, Chip Reset, Address 0x0F[7]  
TRI_LLC, Address 0x1D[7]  
RESET  
Setting this bit, which is equivalent to controlling the  
pin  
This bit allows the output drivers for the LLC pin of the  
ADV7180 to be three-stated. For more information on three-  
state control, refer to the Three-State Output Drivers and the  
Timing Signals Output Enable sections.  
on the ADV7180, issues a full chip reset. All I2C registers are reset  
to their default/power-up values. Note that some register bits do  
not have a reset value specified. They keep their last written value.  
Those bits are marked as having a reset value of x in the register  
tables (see Table 107 and Table 108). After the reset sequence,  
the part immediately starts to acquire the incoming video signal.  
Individual drive strength controls are provided via the  
DR_STR_x bits.  
When TRI_LLC is 0 (default), the LLC pin drivers work  
according to the DR_STR_C[1:0] setting (pin enabled).  
1 For 32-lead, I2C is the only power-down option.  
2 For 64-lead, 48-lead, and 40-lead only.  
When TRI_LLC is 1, the LLC pin drivers are three-stated.  
Rev. G | Page 22 of 120  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADV7180  
Timing Signals Output Enable  
Table 17. DR_STR_C Function  
TIM_OE, Address 0x04[3]  
DR_STR_C[1:0]  
Description  
00  
Low drive strength (1×)  
The TIM_OE bit should be regarded as an addition to the TOD bit.  
Setting it high forces the output drivers for HS, VS, and FIELD into  
the active state (that is, driving state) even if the TOD bit is set.  
If TIM_OE is set to low, the HS, VS, and FIELD pins are three-  
stated depending on the TOD bit. This functionality is beneficial if  
the decoder is only used as a timing generator. This may be the  
case if only the timing signals are extracted from an incoming  
signal or if the part is in free-run mode, where a separate chip  
can output a company logo, for example.  
01 (default)  
10  
11  
Medium low drive strength (2×)  
Medium high drive strength (3×)  
High drive strength (4×)  
Drive Strength Selection (Sync)  
DR_STR_S[1:0], Address 0xF4[1:0]  
The DR_STR_S[1:0] bits allow the user to select the strength of  
the synchronization signals with which HS, VS, and FIELD are  
driven. For more information, see the Drive Strength Selection  
(Data) section.  
For more information on three-state control, see the Three-  
State Output Drivers section and the Three-State LLC Driver  
section.  
Table 18. DR_STR_S Function  
Individual drive strength controls are provided via the  
DR_STR_x bits.  
DR_STR_S[1:0]  
Description  
00  
Low drive strength (1×)  
Medium low drive strength (2×)  
Medium high drive strength (3×)  
High drive strength (4×)  
01 (default)  
10  
11  
When TIM_OE is 0 (default), HS, VS, and FIELD are three-  
stated according to the TOD bit.  
When TIM_OE is 1, HS, VS, and FIELD are forced active all  
the time.  
Enable Subcarrier Frequency Lock Pin  
EN_SFL_PIN, Address 0x04[1]  
Drive Strength Selection (Data)  
DR_STR[1:0], Address 0xF4[5:4]  
The EN_SFL_PIN bit enables the output of subcarrier lock  
information (also known as genlock) from the ADV7180 core  
to an encoder in a decoder/encoder back-to-back arrangement.  
For EMC and crosstalk reasons, it may be desirable to strengthen or  
weaken the drive strength of the output drivers. The DR_STR[1:0]  
bits affect the P[15:0] for the 64-lead device or P[7:0] for the  
48-lead, 40-lead, and 32-lead devices output drivers.  
When EN_SFL_PIN is 0 (default), the subcarrier frequency lock  
output is disabled.  
When EN_SFL_PIN is 1, the subcarrier frequency lock information  
is presented on the SFL pin.  
For more information on three-state control, see the Drive  
Strength Selection (Clock) and the Drive Strength Selection  
(Sync) sections.  
Polarity LLC Pin  
PCLK, Address 0x37[0]  
Table 16. DR_STR Function  
DR_STR[1:0]  
Description  
The polarity of the clock that leaves the ADV7180 via the LLC  
pin can be inverted using the PCLK bit.  
00  
Low drive strength (1×)  
Medium low drive strength (2×)  
Medium high drive strength (3×)  
High drive strength (4×)  
01 (default)  
10  
11  
Changing the polarity of the LLC clock output may be necessary to  
meet the setup-and-hold time expectations of follow-on chips.  
When PCLK is 0, the LLC output polarity is inverted.  
Drive Strength Selection (Clock)  
When PCLK is 1 (default), the LLC output polarity is normal  
(see the Timing Specifications section).  
DR_STR_C[1:0], Address 0xF4[3:2]  
The DR_STR_C[1:0] bits can be used to select the strength of  
the clock signal output driver (LLC pin). For more information,  
see the Drive Strength Selection (Sync) and the Drive Strength  
Selection (Data) sections.  
Rev. G | Page 23 of 120  
 
 
 
 
ADV7180  
Data Sheet  
GLOBAL STATUS REGISTER  
Four registers provide summary information about the video  
decoder. The IDENT register allows the user to identify the  
revision code of the ADV7180. The other three registers (0x10,  
0x12, and 0x13) contain status bits from the ADV7180.  
Table 21. Status 1 Function  
Status 1[7:0]  
Bit Name  
Description  
0
1
IN_LOCK  
LOST_LOCK  
In lock (now)  
Lost lock (since last read of  
this register)  
fSC locked (now)  
AGC follows peak white  
algorithm  
Result of autodetection  
Result of autodetection  
Result of autodetection  
Color kill active  
IDENTIFICATION  
IDENT[7:0], Address 0x11[7:0]  
2
3
FSC_LOCK  
FOLLOW_PW  
This is the register identification of the ADV7180s revision.  
Table 19 describes the various versions of the ADV7180.  
4
5
6
7
AD_RESULT[0]  
AD_RESULT[1]  
AD_RESULT[2]  
COL_KILL  
Table 19. IDENT CODE  
IDENT[7:0]  
0x1B1  
0x1C1  
Description  
Initial release silicon  
Improved ESD and PDC fix  
STATUS 2  
Status 2[7:0], Address 0x12[7:0]  
0x1E  
48-lead and 32-lead devices only  
1 64-lead and 40-lead models only.  
Table 22. Status 2 Function  
STATUS 1  
Status 1[7:0], Address 0x10[7:0]  
Status 2[7:0]  
Bit Name  
Description  
0
MVCS DET  
Detected Macrovision color  
striping  
Macrovision color striping  
protection; conforms to Type 3  
if high, Type 2 if low  
Detected Macrovision pseudo-  
sync pulses  
Detected Macrovision AGC  
pulses  
This read-only register provides information about the internal  
status of the ADV7180.  
1
MVCS T3  
See the CIL[2:0], Count Into Lock, Address 0x51[2:0] section  
and the COL[2:0], Count Out of Lock, Address 0x51[5:3]  
section for details on timing.  
2
3
MV PS DET  
MV AGC DET  
Depending on the setting of the FSCLE bit, the Status Register 0  
and Status Register 1 are based solely on horizontal timing  
information or on the horizontal timing and lock status of  
the color subcarrier. See the FSCLE, fSC Lock Enable, Address  
0x51[7] section.  
4
5
6
7
LL NSTD  
Line length is nonstandard  
fSC frequency is nonstandard  
FSC NSTD  
Reserved  
Reserved  
AUTODETECTION RESULT  
AD_RESULT[2:0], Address 0x10[6:4]  
STATUS 3  
Status 3[7:0], Address 0x13[7:0]  
The AD_RESULT[2:0] bits report back on the findings from the  
ADV7180 autodetection block. See the General Setup section for  
more information on enabling the autodetection block and the  
Autodetection of SD Modes section for more information on  
how to configure it.  
Table 23. Status 3 Function  
Status 3[7:0]  
Bit Name  
Description  
0
INST_HLOCK  
Horizontal lock indicator  
(instantaneous)  
1
2
GEMD  
SD_OP_50Hz  
Gemstar detect  
Flags whether 50 Hz or 60 Hz is  
present at output  
Table 20. AD_RESULT Function  
AD_RESULT[2:0]  
Description  
000  
001  
010  
011  
100  
101  
110  
111  
NTSC M/J  
NTSC 4.43  
PAL M  
PAL 60  
PAL B/G/H/I/D  
SECAM  
3
4
Reserved  
Reserved for future use  
FREE_RUN_ACT ADV7180 outputs a blue  
screen (see the DEF_VAL_EN,  
Default Value Enable,  
Address 0x0C[0] section)  
5
STD FLD LEN  
Field length is correct for  
currently selected video  
standard  
Interlaced video detected  
(field sequence found)  
PAL Combination N  
SECAM 525  
6
7
Interlaced  
PAL_SW_LOCK  
Reliable sequence of  
swinging bursts detected  
Rev. G | Page 24 of 120  
 
 
 
 
 
 
 
 
Data Sheet  
ADV7180  
VIDEO PROCESSOR  
STANDARD DEFINITION PROCESSOR  
MACROVISION  
DETECTION  
STANDARD  
AUTODETECTION  
SLLC  
CONTROL  
VBI DATA  
RECOVERY  
DIGITIZED CVBS  
DIGITIZED Y (YC)  
LUMA  
DIGITAL  
FINE  
LUMA  
GAIN  
CONTROL  
LUMA  
FILTER  
LUMA  
RESAMPLE  
LUMA  
2D COMB  
CLAMP  
LINE  
AV  
SYNC  
EXTRACT  
RESAMPLE  
CONTROL  
VIDEO DATA  
OUTPUT  
LENGTH  
CODE  
PREDICTOR  
INSERTION  
DIGITIZED CVBS  
DIGITIZED C (YC)  
CHROMA  
DIGITAL  
FINE  
CHROMA  
GAIN  
CONTROL  
MEASUREMENT  
BLOCK (≥ I C)  
CHROMA  
DEMOD  
CHROMA  
FILTER  
CHROMA  
RESAMPLE  
CHROMA  
2D COMB  
2
CLAMP  
VIDEO DATA  
PROCESSING  
BLOCK  
f
SC  
RECOVERY  
Figure 18. Block Diagram of the Video Processor  
Figure 18 shows a block diagram of the ADV7180 video processor.  
The ADV7180 can handle standard definition video in CVBS,  
Y/C, and YPrPb formats. It can be divided into a luminance and  
chrominance path. If the input video is of a composite type  
(CVBS), both processing paths are fed with the CVBS input.  
SD CHROMA PATH  
The input signal is processed by the following blocks:  
Chroma digital fine clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Chroma demodulation. This block employs a color  
subcarrier (fSC) recovery unit to regenerate the color  
subcarrier for any modulated chroma scheme. The  
demodulation block then performs an AM demodulation  
for PAL and NTSC, and an FM demodulation for SECAM.  
Chroma filter. This block contains a chroma decimation  
filter (CAA) with a fixed response and some shaping filters  
(CSH) that have selectable responses.  
Chroma gain control. AGC can operate on several different  
modes, including gain based on the color subcarrier  
amplitude, gain based on the depth of the horizontal sync  
pulse on the luma channel, or fixed manual gain.  
Chroma resample. The chroma data is digitally resampled  
to keep it perfectly aligned with the luma data. The  
resampling is done to correct for static and dynamic line  
length errors of the incoming video signal.  
SD LUMA PATH  
The input signal is processed by the following blocks:  
Luma digital fine clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Luma filter. This block contains a luma decimation filter  
(YAA) with a fixed response and some shaping filters  
(YSH) that have selectable responses.  
Luma gain control. The automatic gain control (AGC) can  
operate on a variety of different modes, including gain based  
on the depth of the horizontal sync pulse, peak white mode,  
and fixed manual gain.  
Luma resample. To correct for line length errors as well as  
dynamic line length changes, the data is digitally resampled.  
Luma 2D comb. The 2D comb filter provides Y/C separation.  
AV code insertion. At this point, the decoded luma (Y) signal  
is merged with the retrieved chroma values. AV codes can  
be inserted (as per ITU-R BT.656).  
Chroma 2D comb. The 2D, five line, superadaptive comb  
filter provides high quality Y/C separation in case the input  
signal is CVBS.  
AV code insertion. At this point, the demodulated chroma  
(Cr and Cb) signal is merged with the retrieved luma values.  
AV codes can be inserted (as per ITU-R BT.656).  
Rev. G | Page 25 of 120  
 
 
 
 
ADV7180  
Data Sheet  
SYNC PROCESSING  
GENERAL SETUP  
Video Standard Selection  
The ADV7180 extracts syncs embedded in the analog input  
video signal. There is currently no support for external HS/VS  
inputs. The sync extraction is optimized to support imperfect  
video sources, such as VCRs with head switches. The actual  
algorithm used employs a coarse detection based on a threshold  
crossing, followed by a more detailed detection using an adaptive  
interpolation algorithm. The raw sync information is sent to a  
line length measurement and prediction block. The output of  
this is then used to drive the digital resampling section to  
ensure that the ADV7180 outputs 720 active pixels per line.  
The VID_SEL[3:0] bits (Address 0x00[7:4]) allow the user to  
force the digital core into a specific video standard. Under  
normal circumstances, this is not necessary. The VID_SEL[3:0]  
bits default to an autodetection mode that supports PAL, NTSC,  
SECAM, and variants thereof.  
Autodetection of SD Modes  
To guide the autodetect system of the ADV7180, individual  
enable bits are provided for each of the supported video standards.  
Setting the relevant bit to 0 inhibits the standard from being  
detected automatically. Instead, the system chooses the closest of  
the remaining enabled standards. The results of the autodetection  
block can be read back via the status registers (see the Global  
Status Register section for more information).  
The sync processing on the ADV7180 also includes the following  
specialized postprocessing blocks that filter and condition the  
raw sync information retrieved from the digitized analog video:  
VSYNC processor. This block provides extra filtering of the  
detected VSYNCs to improve vertical lock.  
VID_SEL[3:0], Address 0x00[7:4]  
HSYNC processor. The HSYNC processor is designed to  
filter incoming HSYNCs that have been corrupted by  
noise, providing much improved performance for video  
signals with a stable time base but poor SNR.  
Table 24. VID_SEL Function  
VID_SEL[3:0]  
Description  
0000 (default)  
Autodetect (PAL B/G/H/I/D), NTSC J  
(no pedestal), SECAM  
VBI DATA RECOVERY  
0001  
0010  
0011  
Autodetect (PAL B/G/H/I/D), NTSC M  
(pedestal), SECAM  
Autodetect (PAL N) (pedestal), NTSC J  
(no pedestal), SECAM  
Autodetect (PAL N) (pedestal), NTSC M  
(pedestal), SECAM  
The ADV7180 can retrieve the following information from the  
input video:  
Wide screen signaling (WSS)  
Copy generation management system (CGMS)  
Closed captioning (CCAP)  
Macrovision protection presence  
EDTV data  
Gemstar-compatible data slicing  
Teletext  
VITC/VPS  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
NTSC J  
NTSC M  
PAL 60  
NTSC 4.43  
PAL B/G/H/I/D  
PAL N = PAL B/G/H/I/D (with pedestal)  
PAL M (without pedestal)  
PAL M  
PAL Combination N  
PAL Combination N (with pedestal)  
SECAM  
The ADV7180 is also capable of automatically detecting the  
incoming video standard with respect to  
Color subcarrier frequency  
Field rate  
Line rate  
SECAM (with pedestal)  
AD_SEC525_EN, Enable Autodetection of SECAM 525  
Line Video, Address 0x07[7]  
The ADV7180 can configure itself to support PAL B/D/I/G/H,  
PAL M, PAL N, PAL Combination N, NTSC M, NTSC J,  
SECAM 50 Hz/60 Hz, NTSC 4.43, and PAL 60.  
Setting AD_SEC525_EN to 0 (default) disables the autodetection  
of a 525-line system with a SECAM style, FM-modulated color  
component.  
Setting AD_SEC525_EN to 1 enables the detection of a SECAM  
style, FM-modulated color component.  
Rev. G | Page 26 of 120  
 
 
 
 
 
Data Sheet  
ADV7180  
AD_SECAM_EN, Enable Autodetection of SECAM,  
Address 0x07[6]  
AD_PAL_EN, Enable Autodetection of PAL B/D/I/G/H,  
Address 0x07[0]  
Setting AD_SECAM_EN to 0 (default) disables the autodetection  
of SECAM.  
Setting AD_PAL_EN to 0 (default) disables the detection of  
standard PAL.  
Setting AD_SECAM_EN to 1 enables the detection of SECAM.  
Setting AD_PAL_EN to 1 enables the detection of standard PAL.  
SFL_INV, Subcarrier Frequency Lock Inversion  
AD_N443_EN, Enable Autodetection of NTSC 4.43,  
Address 0x07[5]  
This bit controls the behavior of the PAL switch bit in the SFL  
(genlock telegram) data stream. It was implemented to solve  
some compatibility issues with video encoders. It solves two  
problems.  
Setting AD_N443_EN to 0 disables the autodetection of NTSC  
style systems with a 4.43 MHz color subcarrier.  
Setting AD_N443_EN to 1 (default) enables the detection of  
NTSC style systems with a 4.43 MHz color subcarrier.  
First, the PAL switch bit is only meaningful in PAL. Some  
encoders (including Analog Devices encoders) also look at the  
state of this bit in NTSC.  
AD_P60_EN, Enable Autodetection of PAL 60,  
Address 0x07[4]  
Second, there was a design change in Analog Devices encoders  
from ADV717x to ADV719x. The older versions used the SFL  
(genlock telegram) bit directly, whereas the newer ones invert  
the bit prior to using it. The reason for this is that the inversion  
compensated for the one line delay of an SFL (genlock telegram)  
transmission.  
Setting AD_P60_EN to 0 disables the autodetection of PAL  
systems with a 60 Hz field rate.  
Setting AD_P60_EN to 1 (default) enables the detection of PAL  
systems with a 60 Hz field rate.  
AD_PALN_EN, Enable Autodetection of PAL N,  
Address 0x07[3]  
As a result, for the ADV717x and ADV73xx encoders, the PAL  
switch bit in the SFL (genlock telegram) must be 0 for NTSC to  
work. For the ADV7194 video encoder, the PAL switch bit in the  
SFL must be 1 to work in NTSC. If the state of the PAL switch bit  
is wrong, a 180° phase shift occurs.  
Setting AD_PALN_EN to 0 (default) disables the detection of  
the PAL N standard.  
Setting AD_PALN_EN to 1 enables the detection of the PAL N  
standard.  
In a decoder/encoder back-to-back system in which SFL is used,  
this bit must be set up properly for the specific encoder used.  
AD_PALM_EN, Enable Autodetection of PAL M,  
Address 0x07[2]  
SFL_INV, Subcarrier Frequency Lock Inversion,  
Address 0x41[6]  
Setting AD_PALM_EN to 0 (default) disables the autodetection  
of PAL M.  
Setting SFL_INV to 0 (default) makes the part SFL compatible  
with the ADV717x and ADV73xx video encoders.  
Setting AD_PALM_EN to 1 enables the detection of PAL M.  
AD_NTSC_EN, Enable Autodetection of NTSC,  
Address 0x07[1]  
Setting SFL_INV to 1 makes the part SFL compatible with the  
ADV7194 video encoder.  
Setting AD_NTSC_EN to 0 (default) disables the detection of  
standard NTSC.  
Lock Related Controls  
Lock information is presented to the user through Bits[1:0] of  
the Status 1 register (see the Status 1[7:0], Address 0x10[7:0]  
section). Figure 19 outlines the signal flow and the controls  
available to influence the way the lock status information is  
generated.  
Setting AD_NTSC_EN to 1 enables the detection of standard NTSC.  
SELECT THE RAW LOCK SIGNAL  
SRLS  
FILTER THE RAW LOCK SIGNAL  
CIL[2:0], COL[2:0]  
TIME_WIN  
FREE_RUN  
1
0
0
1
COUNTER INTO LOCK  
COUNTER OUT OF LOCK  
STATUS 1[0]  
STATUS 1[1]  
f
LOCK  
SC  
MEMORY  
TAKE f LOCK INTO ACCOUNT  
SC  
FSCLE  
Figure 19. Lock Related Signal Path  
Rev. G | Page 27 of 120  
ADV7180  
Data Sheet  
SRLS, Select Raw Lock Signal, Address 0x51[6]  
COL[2:0], Count Out of Lock, Address 0x51[5:3]  
Using the SRLS bit, the user can choose between two sources for  
determining the lock status (per Bits[1:0] in the Status 1 register).  
See Figure 19.  
COL[2:0] determines the number of consecutive lines for which  
the out-of-lock condition must be true before the system switches  
into the unlocked state and reports this via Status 1[1:0]. It counts  
the value in lines of video.  
The TIME_WIN signal is based on a line-to-line evaluation  
of the horizontal synchronization pulse of the incoming  
video. It reacts quite quickly.  
Table 26. COL Function  
COL[2:0]  
Number of Video Lines  
The FREE_RUN signal evaluates the properties of the  
incoming video over several fields, taking vertical  
synchronization information into account.  
000  
1
001  
2
010  
5
Setting SRLS to 0 (default) selects the FREE_RUN signal.  
Setting SRLS to 1 selects the TIME_WIN signal.  
FSCLE, fSC Lock Enable, Address 0x51[7]  
011  
100 (default)  
101  
110  
111  
10  
100  
500  
1000  
100,000  
The FSCLE bit allows the user to choose whether the status of  
the color subcarrier loop is taken into account when the overall  
lock status is determined and presented via Bits[1:0] in the  
Status 1 register. This bit must be set to 0 when operating the  
ADV7180 in YPrPb component mode to generate a reliable  
HLOCK status bit.  
COLOR CONTROLS  
These registers allow the user to control picture appearance,  
including control of the active data in the event of video being  
lost. These controls are independent of any other controls. For  
instance, brightness control is independent of picture clamping,  
although both controls affect the dc level of the signal.  
When FSCLE is set to 0 (default), only the overall lock status is  
dependent on horizontal sync lock.  
CON[7:0], Contrast Adjust, Address 0x08[7:0]  
When FSCLE is set to 1, the overall lock status is dependent on  
horizontal sync lock and fSC lock.  
This register allows the user to control contrast adjustment of  
the picture.  
CIL[2:0], Count Into Lock, Address 0x51[2:0]  
Table 27. CON Function  
CIL[2:0] determines the number of consecutive lines for which  
the lock condition must be true before the system switches into  
the locked state and reports this via Status 1[1:0]. The bit counts  
the value in lines of video.  
CON[7:0]  
0x80 (default)  
0x00  
Description  
Gain on luma channel = 1  
Gain on luma channel = 0  
Gain on luma channel = 2  
0xFF  
Table 25. CIL Function  
SD_SAT_Cb[7:0], SD Saturation Cb Channel,  
Address 0xE3[7:0]  
CIL[2:0]  
Number of Video Lines  
000  
1
001  
010  
011  
2
5
10  
This register allows the user to control the gain of the Cb channel  
only, which in turn adjusts the saturation of the picture.  
Table 28. SD_SAT_Cb Function  
SD_SAT_Cb[7:0] Description  
100 (default)  
101  
110  
100  
500  
1000  
100,000  
0x80 (default)  
0x00  
0xFF  
Gain on Cb channel = 0 dB  
Gain on Cb channel = −42 dB  
Gain on Cb channel = +6 dB  
111  
SD_SAT_Cr[7:0], SD Saturation Cr Channel,  
Address 0xE4[7:0]  
This register allows the user to control the gain of the Cr channel  
only, which in turn adjusts the saturation of the picture.  
Table 29. SD_SAT_Cr Function  
SD_SAT_Cr[7:0] Description  
0x80 (default)  
0x00  
0xFF  
Gain on Cr channel = 0 dB  
Gain on Cr channel = −42 dB  
Gain on Cr channel = +6 dB  
Rev. G | Page 28 of 120  
 
 
 
 
Data Sheet  
ADV7180  
SD_OFF_Cb[7:0], SD Offset Cb Channel, Address 0xE1[7:0]  
DEF_Y[5:0], Default Value Y, Address 0x0C[7:2]  
This register allows the user to select an offset for the Cb channel  
only and to adjust the hue of the picture. There is a functional  
overlap with the HUE[7:0] register.  
When the ADV7180 loses lock on the incoming video signal or  
when there is no input signal, the DEF_Y[5:0] register allows  
the user to specify a default luma value to be output. This value  
is used under the following conditions:  
Table 30. SD_OFF_Cb Function  
SD_OFF_Cb[7:0] Description  
If the DEF_VAL_AUTO_EN bit is set to high and the  
ADV7180 has lost lock to the input video signal. This is  
the intended mode of operation (automatic mode).  
The DEF_VAL_EN bit is set, regardless of the lock status of  
the video decoder. This is a forced mode that may be useful  
during configuration.  
0x80 (default)  
0x00  
0xFF  
0 mV offset applied to the Cb channel  
−312 mV offset applied to the Cb channel  
+312 mV offset applied to the Cb channel  
SD_OFF_Cr[7:0], SD Offset Cr Channel, Address 0xE2[7:0]  
This register allows the user to select an offset for the Cr channel  
only and to adjust the hue of the picture. There is a functional  
overlap with the HUE[7:0] register.  
The DEF_Y[5:0] values define the six MSBs of the output video.  
The remaining LSBs are padded with 0s. For example, in 8-bit  
mode, the output is Y[7:0] = {DEF_Y[5:0], 0, 0}.  
For DEF_Y[5:0], 0x0D (blue) is the default value for Y.  
Register 0x0C has a default value of 0x36.  
Table 31. SD_OFF_Cr Function  
SD_OFF_Cr[7:0]  
0x80 (default)  
0x00  
Description  
0 mV offset applied to the Cr channel  
−312 mV offset applied to the Cr channel  
+312 mV offset applied to the Cr channel  
DEF_C[7:0], Default Value C, Address 0x0D[7:0]  
The DEF_C[7:0] register complements the DEF_Y[5:0] value. It  
defines the four MSBs of Cr and Cb values to be output if  
0xFF  
BRI[7:0], Brightness Adjust, Address 0x0A[7:0]  
The DEF_VAL_AUTO_EN bit is set to high and the  
ADV7180 cannot lock to the input video (automatic mode).  
DEF_VAL_EN bit is set to high (forced output).  
This register controls the brightness of the video signal. It allows  
the user to adjust the brightness of the picture.  
Table 32. BRI Function  
The data that is finally output from the ADV7180 for the  
chroma side is Cr[3:0] = {DEF_C[7:4], 0, 0, 0, 0}, and  
Cb[3:0] = {DEF_C[3:0], 0, 0, 0, 0}.  
BRI[7:0]  
0x00 (default)  
0x7F  
Description  
Offset of the luma channel = 0 IRE  
Offset of the luma channel = +30 IRE  
Offset of the luma channel = −30 IRE  
For DEF_C[7:0], 0x7C (blue) is the default value for Cr and Cb.  
0x80  
DEF_VAL_EN, Default Value Enable, Address 0x0C[0]  
HUE[7:0], Hue Adjust, Address 0x0B[7:0]  
This bit forces the use of the default values for Y, Cr, and Cb. See  
the descriptions in the DEF_Y[5:0], Default Value Y, Address  
0x0C[7:2] and DEF_C[7:0], Default Value C, Address 0x0D[7:0]  
sections for additional information. In this mode, the decoder  
also outputs a stable 27 MHz clock, HS, and VS.  
This register contains the value for the color hue adjustment. It  
allows the user to adjust the hue of the picture.  
HUE[7:0] has a range of 90°, with 0x00 equivalent to an  
adjustment of 0°. The resolution of HUE[7:0] is 1 bit = 0.7°.  
Setting DEF_VAL_EN to 0 (default) outputs a colored screen  
determined by user-programmable Y, Cr, and Cb values when  
the decoder free-runs. Free-run mode is turned on and off by  
the DEF_VAL_AUTO_EN bit.  
The hue adjustment value is fed into the AM color demodulation  
block. Therefore, it applies only to video signals that contain  
chroma information in the form of an AM-modulated carrier  
(CVBS or Y/C in PAL or NTSC). It does not affect SECAM  
and does not work on component video inputs (YPrPb).  
Setting DEF_VAL_EN to 1 forces a colored screen output  
determined by user-programmable Y, Cr, and Cb values.  
This overrides picture data even if the decoder is locked.  
Table 33. HUE Function  
HUE[7:0]  
0x00 (default)  
0x7F  
Description (Adjust Hue of the Picture)  
Phase of the chroma signal = 0°  
Phase of the chroma signal = −90°  
Phase of the chroma signal = +90°  
0x80  
Rev. G | Page 29 of 120  
 
 
 
ADV7180  
Data Sheet  
After digitization, the digital fine clamp block corrects for any  
remaining variations in dc level. Because the dc level of an input  
video signal refers directly to the brightness of the picture  
transmitted, it is important to perform a fine clamp with high  
accuracy; otherwise, brightness variations may occur. Further-  
more, dynamic changes in the dc level almost certainly lead to  
visually objectionable artifacts and must, therefore, be prohibited.  
DEF_VAL_AUTO_EN, Default Value Automatic Enable,  
Address 0x0C[1]  
This bit enables the automatic use of the default values for Y, Cr,  
and Cb when the ADV7180 cannot lock to the video signal.  
Setting DEF_VAL_AUTO_EN to 0 disables free-run mode. If  
the decoder is unlocked, it outputs noise.  
Setting DEF_VAL_EN to 1 (default) enables free-run mode, and  
a colored screen set by user-programmable Y, Cr, and Cb values  
is displayed when the decoder loses lock.  
The clamping scheme has to complete two tasks. It must acquire  
a newly connected video signal with a completely unknown dc  
level, and it must maintain the dc level during normal operation.  
CLAMP OPERATION  
To acquire an unknown video signal quickly, the large current  
clamps should be activated. It is assumed that the amplitude of  
the video signal at this point is of a nominal value. Control of  
the coarse and fine current clamp parameters is performed  
automatically by the decoder.  
The input video is ac-coupled into the ADV7180. Therefore, its dc  
value needs to be restored. This process is referred to as clamping  
the video. This section explains the general process of clamping  
on the ADV7180 and shows the different ways in which a user  
can configure its behavior.  
Standard definition video signals may have excessive noise on  
them. In particular, CVBS signals transmitted by terrestrial  
broadcast and demodulated using a tuner usually show very  
large levels of noise (>100 mV). A voltage clamp is unsuitable  
for this type of video signal. Instead, the ADV7180 employs a  
set of four current sources that can cause coarse (>0.5 mA) and  
fine (<0.1 mA) currents to flow into and away from the high  
impedance node that carries the video signal (see Figure 20).  
The ADV7180 uses a combination of current sources and a  
digital processing block for clamping, as shown in Figure 20.  
The analog processing channel shown is replicated three times  
inside the IC. While only one single channel is needed for a  
CVBS signal, two independent channels are needed for Y/C  
(SVHS) type signals, and three independent channels are  
needed to allow component signals (YPrPb) to be processed.  
The following sections describe the I2C signals that can be used  
to influence the behavior of the clamping block.  
The clamping can be divided into two sections:  
Clamping before the ADC (analog domain): current  
sources.  
CCLEN, Current Clamp Enable, Address 0x14[4]  
Clamping after the ADC (digital domain): digital  
processing block.  
The current clamp enable bit allows the user to switch off the  
current sources in the analog front end altogether. This may be  
useful if the incoming analog video signal is clamped externally.  
The ADC can digitize an input signal only if it resides within  
the ADC 1.0 V input voltage range. An input signal with a dc  
level that is too large or too small is clipped at the top or bottom  
of the ADC range.  
When CCLEN is 0, the current sources are switched off.  
When CCLEN is 1 (default), the current sources are enabled.  
The primary task of the analog clamping circuits is to ensure that  
the video signal stays within the valid ADC input window so that  
the analog-to-digital conversion can take place. It is not necessary  
to clamp the input signal with a very high accuracy in the analog  
domain as long as the video signal fits within the ADC range.  
FINE CURRENT SOURCES  
COARSE CURRENT SOURCES  
DATA  
ANALOG  
VIDEO  
INPUT  
VIDEO PROCESSOR  
PRE-  
ADC  
WITH DIGITAL  
PROCESSOR  
FINE CLAMP  
(DPP)  
CLAMP CONTROL  
Figure 20. Clamping Overview  
Rev. G | Page 30 of 120  
 
 
Data Sheet  
ADV7180  
DCT[1:0], Digital Clamp Timing, Address 0x15[6:5]  
Luma shaping filters (YSH). The shaping filter block is a  
programmable low-pass filter with a wide variety of responses.  
It can be used to selectively reduce the luma video signal  
bandwidth (needed prior to scaling, for example). For  
some video sources that contain high frequency noise,  
reducing the bandwidth of the luma signal improves visual  
picture quality. A follow-on video compression stage may  
work more efficiently if the video is low-pass filtered.  
The clamp timing register determines the time constant of the  
digital fine clamp circuitry. It is important to note that the digital  
fine clamp reacts quickly because it immediately corrects any  
residual dc level error for the active line. The time constant from  
the digital fine clamp must be much quicker than the one from  
the analog blocks.  
By default, the time constant of the digital fine clamp is adjusted  
dynamically to suit the currently connected input signal.  
The ADV7180 has two responses for the shaping filter: one  
that is used for good quality composite, component, and SVHS  
type sources, and a second for nonstandard CVBS signals.  
Table 34. DCT Function  
DCT[1:0]  
Description  
The YSH filter responses also include a set of notches for  
PAL and NTSC. However, using the comb filters for Y/C  
separation is recommended.  
Digital resampling filter. This block allows dynamic  
resampling of the video signal to alter parameters such as  
the time base of a line of video. Fundamentally, the resampler  
is a set of low-pass filters. The actual response is chosen by the  
system with no requirement for user intervention.  
00 (default)  
Slow (TC = 1 sec)  
Medium (TC = 0.5 sec)  
Fast (TC = 0.1 sec)  
Determined by ADV7180, depending on the  
input video parameters  
01  
10  
11  
DCFE, Digital Clamp Freeze Enable, Address 0x15[4]  
This register bit allows the user to freeze the digital clamp loop  
at any time. It is intended for users who would like to do their  
own clamping. Users should disable the current sources for  
analog clamping via the appropriate register bits, wait until the  
digital clamp loop settles, and then freeze it via the DCFE bit.  
Figure 22 through Figure 25 show the overall response of all filters  
together. Unless otherwise noted, the filters are set into a typical  
wideband mode.  
Y Shaping Filter  
When DCFE is 0 (default), the digital clamp is operational.  
When DCFE is 1, the digital clamp loop is frozen.  
LUMA FILTER  
For input signals in CVBS format, the luma shaping filters play  
an essential role in removing the chroma component from a  
composite signal. Y/C separation must aim for best possible  
crosstalk reduction while still retaining as much bandwidth  
(especially on the luma component) as possible. High quality  
Y/C separation can be achieved by using the internal comb  
filters of the ADV7180. Comb filtering, however, relies on the  
frequency relationship of the luma component (multiples of the  
video line rate) and the color subcarrier (fSC). For good quality  
CVBS signals, this relationship is known; the comb filter algorithms  
can be used to separate luma and chroma with high accuracy.  
Data from the digital fine clamp block is processed by the three  
sets of filters that follow. Note that the data format at this point  
is CVBS for CVBS input or luma only for Y/C and YPrPb input  
formats.  
Luma antialias filter (YAA). The ADV7180 receives video  
at a rate of 28.6363 MHz. (In the case of 4× oversampled  
video, the ADC samples at 57.27 MHz, and the first  
decimation is performed inside the DPP filters. Therefore,  
the data rate into the ADV7180 is always 28.6363 MHz.)  
The ITU-R BT.601 recommends a sampling frequency of  
13.5 MHz. The luma antialias filter decimates the  
In the case of nonstandard video signals, the frequency relationship  
may be disturbed, and the comb filters may not be able to remove  
all crosstalk artifacts in the best fashion without the assistance  
of the shaping filter block.  
oversampled video using a high quality linear phase, low-  
pass filter that preserves the luma signal while at the same  
time attenuating out-of-band components. The luma  
antialias filter (YAA) has a fixed response.  
Rev. G | Page 31 of 120  
 
 
ADV7180  
Data Sheet  
An automatic mode is provided that allows the ADV7180 to  
evaluate the quality of the incoming video signal and select the  
filter responses in accordance with the signal quality and video  
standard. YFSM, WYSFMOVR, and WYSFM allow the user to  
manually override the automatic decisions in part or in full.  
YSFM[4:0], Y Shaping Filter Mode, Address 0x17[4:0]  
The Y shaping filter mode bits allow the user to select from a  
wide range of low-pass and notch filters. When switched in  
automatic mode, the filter selection is based on other register  
selections, such as detected video standard, as well as properties  
extracted from the incoming video itself, such as quality and  
time base stability. The automatic selection always selects the  
widest possible bandwidth for the video input encountered.  
The luma shaping filter has three control registers.  
YSFM[4:0] allows the user to manually select a shaping  
filter mode (applied to all video signals) or to enable an  
automatic selection (depending on video quality and video  
standard).  
The Y-shaping filter mode operates as follows:  
If the YSFM settings specify a filter (that is, YSFM is set to  
values other than 00000 or 00001), the chosen filter is  
applied to all video, regardless of its quality.  
In automatic selection mode, the notch filters are only used  
for bad quality video signals. For all other video signals,  
wideband filters are used.  
WYSFMOVR allows the user to manually override the  
WYSFM decision.  
WYSFM[4:0] allows the user to select a different shaping  
filter mode for good quality composite (CVBS), component  
(YPrPb), and SVHS (Y/C) input signals.  
In automatic mode, the system preserves the maximum possible  
bandwidth for good CVBS sources (because they can be successfully  
combed) as well as for luma components of YPrPb and Y/C  
sources (because they need not be combed). For poor quality  
signals, the system selects from a set of proprietary shaping  
filter responses that complements comb filter operation to  
reduce visual artifacts.  
WYSFMOVR, Wideband Y Shaping Filter Override,  
Address 0x18[7]  
Setting the WYSFMOVR bit enables the use of the WYSFM[4:0]  
settings for good quality video signals. For more information on  
luma shaping filters, see the Y Shaping Filter section and the  
flowchart shown in Figure 21.  
When WYSFMOVR is 0, the shaping filter for good quality  
video signals is selected automatically.  
The decisions of the control logic are shown in Figure 21.  
Setting WYSFMOVR to 1 (default) enables manual override via  
WYSFM[4:0].  
SET YSFM  
YSFM IN AUTO MODE?  
00000 OR 00001  
YES  
NO  
VIDEO  
QUALITY  
BAD  
GOOD  
USE YSFM SELECTED  
FILTER REGARDLESS OF  
VIDEO QUALITY  
AUTO SELECT LUMA  
SHAPING FILTER TO  
COMPLEMENT COMB  
WYSFMOVR  
1
0
SELECT WIDEBAND  
FILTER AS PER  
WYSFM[4:0]  
SELECT AUTOMATIC  
WIDEBAND FILTER  
Figure 21. YSFM and WYSFM Control Flowchart  
Rev. G | Page 32 of 120  
 
Data Sheet  
ADV7180  
Table 35. YSFM Function  
Table 36. WYSFM Function  
WYSFM[4:0]  
00000  
YSFM[4:0]  
Description  
Description  
Do not use  
Do not use  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
00000  
Automatic selection including a wide notch  
response (PAL/NTSC/SECAM)  
00001  
00001 (default) Automatic selection including a narrow notch  
response (PAL/NTSC/SECAM)  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS 8  
SVHS 8  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
Do not use  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
PAL NN1  
PAL NN2  
PAL NN3  
PAL WN1  
PAL WN2  
NTSC NN1  
NTSC NN2  
NTSC NN3  
NTSC WN1  
NTSC WN2  
NTSC WN3  
Reserved  
10010  
10011 (default)  
10100 to 11111  
The filter plots in Figure 22 show the SVHS 1 (narrowest) to  
SVHS 18 (widest) shaping filter settings. Figure 24 shows the  
PAL notch filter responses. The NTSC-compatible notches are  
shown in Figure 25.  
COMBINED Y ANTIALIAS, SVHS LOW-PASS FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
WYSFM[4:0], Wideband Y Shaping Filter Mode,  
Address 0x18[4:0]  
The WYSFM[4:0] bits allow the user to manually select a shaping  
filter for good quality video signals, for example, CVBS with  
stable time base, luma component of YPrPb, and luma component  
of Y/C. The WYSFM bits are active only if the WYSFMOVR bit  
is set to 1. See the general discussion of the shaping filter settings in  
the Y Shaping Filter section.  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 22. Y SVHS Combined Responses  
Rev. G | Page 33 of 120  
 
ADV7180  
Data Sheet  
Chroma shaping filters (CSH). The shaping filter block  
CHROMA FILTER  
(CSH) can be programmed to perform a variety of low-pass  
responses. It can be used to selectively reduce the bandwidth  
of the chroma signal for scaling or compression.  
Digital resampling filter. This block allows dynamic  
resampling of the video signal to alter parameters such as  
the time base of a line of video. Fundamentally, the resampler  
is a set of low-pass filters. The actual response is chosen by  
the system without user intervention.  
Data from the digital fine clamp block is processed by the three  
sets of filters that follow. Note that the data format at this point is  
CVBS for CVBS inputs, chroma only for Y/C, or U/V interleaved  
for YPrPb input formats.  
Chroma antialias filter (CAA). The ADV7180 oversamples the  
CVBS by a factor of 4 and the chroma/YPrPb by a factor of 2.  
A decimating filter (CAA) is used to preserve the active video  
band and to remove any out-of-band components. The  
CAA filter has a fixed response.  
Figure 26 shows the overall response of all filters together.  
COMBINED Y ANTIALIAS, NTSC NOTCH FILTERS,  
Y RESAMPLE  
COMBINED Y ANTIALIAS, CCIR MODE SHAPING FILTER,  
Y RESAMPLE  
0
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 25. Combined Y Antialias Filter, NTSC Notch Filters  
Figure 23. Combined Y Antialias, CCIR Mode Shaping Filter  
COMBINED C ANTIALIAS, C SHAPING FILTER,  
C RESAMPLER  
COMBINED Y ANTIALIAS, PAL NOTCH FILTERS,  
Y RESAMPLE  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
0
1
2
3
4
5
6
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 26. Chroma Shaping Filter Responses  
Figure 24. Combined Y Antialias, PAL Notch Filters  
Rev. G | Page 34 of 120  
 
 
 
 
Data Sheet  
ADV7180  
Figure 27 shows a typical voltage divider network that is required  
to keep the input video signal within the allowed range of the ADC,  
0 V to 1 V. This circuit should be placed before all analog inputs  
to the ADV7180.  
CSFM[2:0], C Shaping Filter Mode, Address 0x17[7:5]  
The C shaping filter mode bits allow the user to select from a  
range of low-pass filters for the chrominance signal. When  
switched in automatic mode, the widest filter is selected based  
on the video standard/format and user choice (see Setting 000  
and Setting 001 in Table 37).  
ANALOG VIDEO  
INPUT  
100nF  
AIN_OF_ADV7180  
36Ω  
39Ω  
Table 37. CSFM Function  
CSFM[2:0]  
000 (default)  
001  
010  
011  
Description  
Figure 27. Input Voltage Divider Network  
Autoselection 1.5 MHz bandwidth  
Autoselection 2.17 MHz bandwidth  
SH1  
SH2  
The minimum supported amplitude of the input video is  
determined by the ability of the ADV7180 to retrieve horizontal  
and vertical timing and to lock to the color burst, if present.  
There are separate gain control units for luma and chroma data.  
Both can operate independently of each other. The chroma unit,  
however, can also take its gain value from the luma path.  
100  
101  
110  
SH3  
SH4  
SH5  
111  
Wideband mode  
The possible AGC modes are shown in Table 38.  
Figure 26 shows the responses of SH1 (narrowest) to SH5  
(widest) in addition to the wideband mode (shown in red).  
Table 38. AGC Modes  
Input  
Video Type Luma Gain  
Chroma Gain  
GAIN OPERATION  
Any  
Manual gain luma  
Manual gain chroma  
The gain control within the ADV7180 is done on a purely  
digital basis. The input ADC supports a 10-bit range mapped  
into a 1.0 V analog voltage range. Gain correction takes place  
after the digitization in the form of a digital multiplier.  
CVBS  
Dependent on  
Dependent on color-burst  
amplitude taken from  
luma path  
Dependent on color-burst  
amplitude taken from  
luma path  
horizontal sync depth  
Peak white  
Advantages of this architecture over the commonly used  
programmable gain amplifier (PGA) before the ADC include  
the fact that the gain is now completely independent of supply,  
temperature, and process variations.  
Y/C  
Dependent on  
Dependent on color-burst  
amplitude taken from  
luma path  
horizontal sync depth  
Peak white  
Dependent on color-burst  
amplitude  
As shown in Figure 28, the ADV7180 can decode a video signal  
as long as it fits into the ADC window. The components for this  
are the amplitude of the input signal and the dc level it resides on.  
The dc level is set by the clamping circuitry (see the Clamp  
Operation section).  
YPrPb  
Dependent on  
horizontal sync depth  
Taken from luma path  
It is possible to freeze the automatic gain control loops. This  
causes the loops to stop updating and the AGC determined gain  
at the time of the freeze to stay active until the loop is either  
unfrozen or the gain mode of operation is changed.  
If the amplitude of the analog video signal is too high, clipping  
may occur, resulting in visual artifacts. The analog input range  
of the ADC, together with the clamp level, determines the  
maximum supported amplitude of the video signal.  
The currently active gain from any of the modes can be read  
back. Refer to the description of the dual-function manual gain  
registers, LG[11:0] luma gain and CG[11:0] chroma gain, in the  
Luma Gain and Chroma Gain sections.  
ANALOG VOLTAGE  
RANGE SUPPORTED BY ADC (1V RANGE FOR ADV7180)  
MAXIMUM  
VOLTAGE  
VIDEO PROCESSOR  
(GAIN SELECTION ONLY)  
DATA PRE-  
PROCESSOR  
(DPP)  
ADC  
GAIN  
CONTROL  
MINIMUM  
VOLTAGE  
CLAMP  
LEVEL  
Figure 28. Gain Control Overview  
Rev. G | Page 35 of 120  
 
 
 
 
 
ADV7180  
Data Sheet  
Luma Gain  
LG[11:0], Luma Gain, Address 0x2F[3:0], Address  
0x30[7:0]  
LAGC[2:0], Luma Automatic Gain Control,  
Address 0x2C[6:4]  
LMG[11:0], Luma Manual Gain, Address 0x2F[3:0],  
Address 0x30[7:0]  
The luma automatic gain control mode bits select the operating  
mode for the gain control in the luma path.  
Luma gain[11:0] is a dual-function register. If all of these registers  
are written to, a desired manual luma gain can be programmed.  
This gain becomes active if the LAGC[2:0] mode is switched to  
manual fixed gain. Equation 1 shows how to calculate a desired gain.  
There are internal parameters (Analog Devices proprietary  
algorithms) to customize the peak white gain control. Contact  
local Analog Devices field applications engineers or local  
Analog Devices distributor for more information.  
If read back, this register returns the current gain value.  
Depending on the setting in the LAGC[2:0] bits, the value is  
one of the following:  
Table 39. LAGC Function  
LAGC[2:0]  
Description  
000  
001  
Manual fixed gain (use LMG[11:0])  
AGC (blank level to sync tip), peak white algorithm off  
Luma manual gain value (LAGC[2:0] set to luma manual  
gain mode)  
010 (default) AGC (blank level to sync tip), peak white algorithm on  
Luma automatic gain value (LAGC[2:0] set to any of the  
automatic modes)  
011  
100  
101  
110  
111  
Reserved  
Reserved  
Reserved  
Reserved  
Freeze gain  
Table 41. LG/LMG Function  
LG[11:0]/LMG[11:0] Read/Write Description  
LMG[11:0] = x  
LG[11:0] = x  
Write  
Read  
Manual gain for luma path  
Actual used gain  
LAGT[1:0], Luma Automatic Gain Timing,  
Address 0x2F[7:6]  
LMG[11: 0]  
LumaCalibrationFactor  
Luma Gain =  
(1)  
The luma automatic gain timing register allows the user to  
influence the tracking speed of the luminance automatic gain  
control. This register only has an effect if the LAGC[2:0] register is  
set to 001 or 010 (automatic gain control modes).  
where LMG[11:0] is a decimal value between 1024 and 4095.  
Calculation of the Luma Calibration Factor  
1. Using a video source, set content to a grey field and apply  
as a standard CVBS signal to the CVBS input of the board.  
2. Using an oscilloscope, measure the signal at CVBS input to  
ensure that its sync depth, colour burst, and luma are at the  
standard levels.  
If peak white AGC is enabled and active (see the Status 1[7:0],  
Address 0x10[7:0] section), the actual gain update speed is  
dictated by the peak white AGC loop and, as a result, the LAGT  
settings have no effect. As soon as the part leaves peak white  
AGC, LAGT becomes relevant again.  
3. Connect the output parallel pixel bus of the ADV7180 to a  
backend system that has unity gain and monitor output  
voltage.  
4. Measure the luma level correctly from the black level. Turn  
off the Luma AGC and manually change the value of the  
luma gain control register, LMG[11:0], until the output  
luma level matches the input measured in Step 2.  
The update speed for the peak white algorithm can be  
customized by the use of internal parameters. Contact Analog  
Devices local field engineers for more information.  
Table 40. LAGT Function  
LAGT[1:0]  
Description  
00  
01  
10  
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
This value, in decimal, is the luma calibration factor.  
11 (default)  
Rev. G | Page 36 of 120  
 
 
Data Sheet  
ADV7180  
BETACAM, Enable Betacam Levels, Address 0x01[5]  
PW_UPD, Peak White Update, Address 0x2B[0]  
If YPrPb data is routed through the ADV7180, the automatic  
gain control modes can target different video input levels, as  
outlined in Table 44. The BETACAM bit is valid only if the  
input mode is YPrPb (component). The BETACAM bit sets the  
target value for AGC operation.  
The peak white and average video algorithms determine the  
gain based on measurements taken from the active video. The  
PW_UPD bit determines the rate of gain change. LAGC[2:0] must  
be set to the appropriate mode to enable the peak white or average  
video mode in the first place. For more information, see the  
LAGC[2:0], Luma Automatic Gain Control, Address 0x2C[6:4]  
section.  
A review of the following sections is useful:  
The MAN_MUX_EN, Manual Input Muxing Enable,  
Address 0xC4[7] section for how component video  
(YPrPb) can be routed through the ADV7180.  
The Video Standard Selection section to select the various  
standards, for example, with and without pedestal.  
Setting PW_UPD to 0 updates the gain once per video line.  
Setting PW_UPD to 1 (default) updates the gain once per field.  
Chroma Gain  
CAGC[1:0], Chroma Automatic Gain Control,  
Address 0x2C[1:0]  
The AGC algorithms adjust the levels based on the setting of  
the BETACAM bit (see Table 42).  
The two bits of color automatic gain control mode select the  
basic mode of operation for automatic gain control in the  
chroma path.  
Table 42. BETACAM Function  
BETACAM  
Description  
0 (default)  
Assuming YPrPb is selected as input format:  
Selecting PAL with pedestal selects MII.  
Selecting PAL without pedestal selects SMPTE.  
Selecting NTSC with pedestal selects MII.  
Selecting NTSC without pedestal selects SMPTE.  
Assuming YPrPb is selected as input format:  
Selecting PAL with pedestal selects BETACAM.  
Selecting PAL without pedestal selects BETACAM variant.  
Selecting NTSC with pedestal selects BETACAM.  
1
Selecting NTSC without pedestal selects BETACAM variant.  
Table 43. CAGC Function  
CAGC[1:0]  
Description  
00  
01  
Manual fixed gain (use CMG[11:0])  
Luma gain used for chroma  
Automatic gain (based on color burst)  
Freeze chroma gain  
10 (default)  
11  
Table 44. BETACAM Levels  
Name  
BETACAM (mV)  
0 to +714 (including 7.5% pedestal)  
−467 to +467  
BETACAM Variant (mV)  
0 to +714  
−505 to +505  
+286  
SMPTE (mV)  
0 to +700  
−350 to +350  
+300  
MII (mV)  
Y
0 to +700 (including 7.5% pedestal)  
−324 to +324  
+300  
Pb and Pr  
Sync Depth  
+286  
Rev. G | Page 37 of 120  
 
 
 
ADV7180  
Data Sheet  
4. Turn off the Chroma AGC and manually change the  
CAGT[1:0], Chroma Automatic Gain Timing,  
Address 0x2D[7:6]  
Chroma Gain Control Register CMG[11:0] until the  
chroma level matches that measured directly from the  
source.  
The chroma automatic gain timing register allows the user to  
influence the tracking speed of the chroma automatic gain  
control. This register has an effect only if the CAGC[1:0]  
register is set to 10 (automatic gain).  
This value, in decimal, is the chroma calibration factor.  
CKE, Color Kill Enable, Address 0x2B[6]  
Table 45. CAGT Function  
The color kill enable bit allows the optional color kill function  
to be switched on or off.  
CAGT[1:0]  
Description  
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Reserved  
00  
01  
10  
For QAM-based video standards (PAL and NTSC) as well as  
FM-based systems (SECAM), the threshold for the color kill  
decision is selectable via the CKILLTHR[2:0] bits.  
11 (default)  
Adaptive  
If color kill is enabled and the color carrier of the incoming  
video signal is less than the threshold for 128 consecutive video  
lines, color processing is switched off (black and white output).  
To switch the color processing back on, another 128 consecutive  
lines with a color burst greater than the threshold are required.  
CG[11:0], Chroma Gain, Address 0x2D[3:0],  
Address 0x2E[7:0]; CMG[11:0], Chroma Manual Gain,  
Address 0x2D[3:0], Address 0x2E[7:0]  
Chroma gain[11:0] is a dual-function register. If written to, a  
desired manual chroma gain can be programmed. This gain  
becomes active if the CAGC[1:0] function is switched to  
manual fixed gain. See Equation 2 for calculating a desired gain.  
The color kill option works only for input signals with a modulated  
chroma part. For component input (YPrPb), there is no color kill.  
Setting CKE to 0 disables color kill.  
If read back, this register returns the current gain value.  
Depending on the setting in the CAGC[1:0] bits, this is either:  
Setting CKE to 1 (default) enables color kill.  
CKILLTHR[2:0], Color Kill Threshold, Address 0x3D[6:4]  
The chroma manual gain value (CAGC[1:0] set to chroma  
manual gain mode).  
The CKILLTHR[2:0] bits allow the user to select a threshold for  
the color kill function. The threshold applies only to QAM-based  
(NTSC and PAL) or FM-modulated (SECAM) video standards.  
The chroma automatic gain value (CAGC[1:0] set to any of  
the automatic modes).  
To enable the color kill function, the CKE bit must be set. For  
Setting 000, Setting 001, Setting 010, and Setting 011, chroma  
demodulation inside the ADV7180 may not work satisfactorily  
for poor input video signals.  
Table 46. CG/CMG Function  
CG[11:0]/CMG[11:0] Read/Write Description  
CMG[11:0]  
Write  
Manual gain for chroma  
path  
CG[11:0]  
Read  
Currently active gain  
Table 47. CKILLTHR Function  
Description  
CMG[11: 0]decimal  
ChromaCalibrationFactor  
Chroma_Gain  
(2)  
CKILLTHR[2:0] SECAM  
NTSC, PAL  
Kill at <0.5%  
Kill at <1.5%  
Kill at <2.5%  
Kill at <4%  
Kill at <8.5%  
Kill at <16%  
Kill at <32%  
000  
No color kill  
where ChromaCalibrationFactor is a decimal value between 0  
001  
010  
011 (default)  
100  
101  
Kill at <5%  
Kill at <7%  
Kill at <8%  
Kill at <9.5%  
Kill at <15%  
Kill at <32%  
and 4095.  
Calculation of the Chroma Calibration Factor  
1. Apply a CVBS signal with the color bars/SMPTE bars test  
pattern content directly to the measurement equipment.  
2. Ensure correct termination of 75 Ω on the measurement  
equipment. Measure chroma output levels.  
3. Reconnect the source to the CVBS input of the ADV7180  
system that has a backend gain of 1. Repeat the  
110  
111  
Reserved for Analog Devices internal use only;  
do not select  
measurement of chroma levels.  
Rev. G | Page 38 of 120  
Data Sheet  
ADV7180  
CHROMA TRANSIENT IMPROVEMENT (CTI)  
The signal bandwidth allocated for chroma is typically much  
smaller than that for luminance. In the past, this was a valid way  
to fit a color video signal into a given overall bandwidth because  
the human eye is less sensitive to chrominance than to luminance.  
CTI_AB_EN, Chroma Transient Improvement  
Alpha Blend Enable, Address 0x4D[1]  
The CTI_AB_EN bit enables an alpha blend function within  
the CTI block. If set to 1, the alpha blender mixes the transient  
improved chroma with the original signal. The sharpness of the  
alpha blending can be configured via the CTI_AB[1:0] bits.  
The uneven bandwidth, however, may lead to visual artifacts in  
sharp color transitions. At the border of two bars of color, both  
components (luma and chroma) change at the same time (see  
Figure 29). Due to the higher bandwidth, the signal transition  
of the luma component is usually much sharper than that of the  
chroma component. The color edge is not sharp and can be  
blurred, in the worst case, over several pixels.  
For the alpha blender to be active, the CTI block must be  
enabled via the CTI_EN bit.  
Setting CTI_AB_EN to 0 disables the CTI alpha blender.  
Setting CTI_AB_EN to 1 (default) enables the CTI alpha-blend  
mixing function.  
CTI_AB[1:0], Chroma Transient Improvement Alpha  
Blend, Address 0x4D[3:2]  
LUMA SIGNAL WITH A  
TRANSITION, ACCOMPANIED  
LUMA SIGNAL  
BY A CHROMA TRANSITION  
The CTI_AB[1:0] controls the behavior of alpha blend circuitry  
that mixes the sharpened chroma signal with the original one. It  
thereby controls the visual impact of CTI on the output data.  
ORIGINAL, SLOW CHROMA  
TRANSITION PRIOR TO CTI  
DEMODULATED  
CHROMA SIGNAL  
For CTI_AB[1:0] to become active, the CTI block must be  
enabled via the CTI_EN bit, and the alpha blender must be  
switched on via CTI_AB_EN.  
SHARPENED CHROMA  
TRANSITION AT THE  
OUTPUT OF CTI  
Figure 29. CTI Luma/Chroma Transition  
Sharp blending maximizes the effect of CTI on the picture but  
may also increase the visual impact of small amplitude, high  
frequency chroma noise.  
The chroma transient improvement block examines the input video  
data. It detects transitions of chroma and can be programmed to  
create steeper chroma edges in an attempt to artificially restore  
lost color bandwidth. The CTI block, however, operates only  
on edges above a certain threshold to ensure that noise is not  
emphasized. Care has also been taken to ensure that edge  
ringing and undesirable saturation or hue distortion are avoided.  
Table 48. CTI_AB Function  
CTI_AB[1:0]  
Description  
00  
Sharpest mixing between sharpened and  
original chroma signal  
01  
Sharp mixing  
Chroma transient improvements are needed primarily for  
signals that have severe chroma bandwidth limitations. For  
those types of signals, it is strongly recommended to enable  
the CTI block via CTI_EN.  
10  
Smooth mixing  
11 (default)  
Smoothest alpha blend function  
CTI_C_TH[7:0], CTI Chroma Threshold, Address 0x4E[7:0]  
CTI_EN, Chroma Transient Improvement Enable,  
Address 0x4D[0]  
The CTI_C_TH[7:0] value is an unsigned, 8-bit number specifying  
how big the amplitude step in a chroma transition must be to be  
steepened by the CTI block. Programming a small value into this  
register causes even smaller edges to be steepened by the CTI  
block. Making CTI_C_TH[7:0] a large value causes the block to  
improve large transitions only.  
Setting CTI_EN to 0 disables the CTI block.  
Setting CTI_EN to 1 (default) enables the CTI block.  
The default value for CTI_C_TH[7:0] is 0x08, indicating the  
threshold for the chroma edges prior to CTI.  
Rev. G | Page 39 of 120  
 
 
ADV7180  
Data Sheet  
PEAKING_GAIN[7:0], Luma Peaking Gain,  
Address 0xFB[7:0]  
DIGITAL NOISE REDUCTION (DNR) AND LUMA  
PEAKING FILTER  
Digital noise reduction is based on the assumption that high  
frequency signals with low amplitude are probably noise and  
that their removal, therefore, improves picture quality. The  
following are the two DNR blocks in the ADV7180: the DNR1  
block before the luma peaking filter and the DNR2 block after  
the luma peaking filter, as shown in Figure 30.  
This filter can be manually enabled. The user can select to boost  
or to attenuate the mid region of the Y spectrum around 3 MHz.  
The peaking filter can visually improve the picture by showing  
more definition on the picture details that contain frequency  
components around 3 MHz. The default value on this register  
passes through the luma data unaltered. A lower value attenuates  
the signal, and a higher value gains the luma signal. A plot of  
the filters responses is shown in Figure 31.  
Table 51. PEAKING_GAIN[7:0] Function  
LUMA  
SIGNAL  
LUMA  
OUTPUT  
LUMA PEAKING  
FILTER  
DNR2  
DNR1  
Setting  
Description  
0x40 (Default)  
0 dB response  
PEAKING GAIN USING BP FILTER  
15  
10  
5
Figure 30. DNR and Peaking Block Diagram  
DNR_EN, Digital Noise Reduction Enable, Address 0x4D[5]  
The DNR_EN bit enables the DNR block or bypasses it.  
Table 49. DNR_EN Function  
0
Setting  
Description  
0
Bypasses DNR (disable)  
Enables digital noise reduction on the luma data  
–5  
–10  
–15  
1 (default)  
DNR_TH[7:0], DNR Noise Threshold, Address 0x50[7:0]  
The DNR1 block is positioned before the luma peaking block.  
The DNR_TH[7:0] value is an unsigned, 8-bit number used to  
determine the maximum edge that is interpreted as noise and,  
therefore, blanked from the luma data. Programming a large  
value into DNR_TH[7:0] causes the DNR block to interpret  
even large transients as noise and remove them. As a result, the  
effect on the video data is more visible. Programming a small  
value causes only small transients to be seen as noise and to be  
removed.  
–20  
0
1
2
3
4
5
6
7
FREQUENCY (MHz)  
Figure 31. Peaking Filter Responses  
DNR_TH2[7:0], DNR Noise Threshold 2,  
Address 0xFC[7:0]  
The DNR2 block is positioned after the luma peaking block  
and, therefore, affects the gained luma signal. It operates in the  
same way as the DNR1 block, but there is an independent  
threshold control, DNR_TH2[7:0], for this block. This value is  
an unsigned, 8-bit number used to determine the maximum  
edge that is interpreted as noise and, therefore, blanked from  
the luma data. Programming a large value into DNR_TH2[7:0]  
causes the DNR block to interpret even large transients as noise  
and remove them. As a result, the effect on the video data is more  
visible. Programming a small value causes only small transients  
to be seen as noise and to be removed.  
Table 50. DNR_TH[7:0] Function  
Setting  
Description  
0x08 (default)  
Threshold for maximum luma edges to be  
interpreted as noise  
Table 52. DNR_TH2[7:0] Function  
Setting  
Description  
0x04 (default)  
Threshold for maximum luma edges to be  
interpreted as noise  
Rev. G | Page 40 of 120  
 
 
 
Data Sheet  
ADV7180  
NTSC Comb Filter Settings  
COMB FILTERS  
These settings are used for NTSC M/J CVBS inputs.  
The comb filters of the ADV7180 have been greatly improved to  
automatically handle video of all types, standards, and levels of  
quality. The NTSC and PAL configuration registers allow the  
user to customize the comb filter operation depending on which  
video standard is detected (by autodetection) or selected (by  
manual programming). In addition to the bits listed in this  
section, there are some other internal controls (based on  
Analog Devices proprietary algorithms); contact local Analog  
Devices field engineers for more information.  
NSFSEL[1:0], Split Filter Selection NTSC, Address 0x19[3:2]  
The NSFSEL[1:0] control selects how much of the overall signal  
bandwidth is fed to the combs. A narrow split filter selection  
results in better performance on diagonal lines but more dot  
crawl in the final output image. The opposite is true for selecting  
a wide bandwidth split filter.  
Table 53. NSFSEL Function  
NSFSEL[1:0]  
Description  
Narrow  
00 (default)  
01  
10  
11  
Medium  
Medium  
Wide  
CTAPSN[1:0], Chroma Comb Taps, NTSC, Address 0x38[7:6]  
Table 54. CTAPSN Function  
CTAPSN[1:0]  
Description  
00  
Do not use  
01  
NTSC chroma comb adapts three lines (three taps) to two lines (two taps)  
NTSC chroma comb adapts five lines (five taps) to three lines (three taps)  
NTSC chroma comb adapts five lines (five taps) to four lines (four taps)  
10 (default)  
11  
CCMN[2:0], Chroma Comb Mode, NTSC, Address 0x38[5:3]  
Table 55. CCMN Function  
CCMN[2:0]  
Description  
Configuration  
000 (default)  
Adaptive comb mode  
Adaptive three-line chroma comb for CTAPSN = 01  
Adaptive four-line chroma comb for CTAPSN = 10  
Adaptive five-line chroma comb for CTAPSN = 11  
100  
101  
Disable chroma comb  
Fixed chroma comb (top lines of line memory)  
Fixed two-line chroma comb for CTAPSN = 01  
Fixed three-line chroma comb for CTAPSN = 10  
Fixed four-line chroma comb for CTAPSN = 11  
Fixed three-line chroma comb for CTAPSN = 01  
Fixed four-line chroma comb for CTAPSN = 10  
Fixed five-line chroma comb for CTAPSN = 11  
Fixed two-line chroma comb for CTAPSN = 01  
Fixed three-line chroma comb for CTAPSN = 10  
Fixed four-line chroma comb for CTAPSN = 11  
110  
111  
Fixed chroma comb (all lines of line memory)  
Fixed chroma comb (bottom lines of line memory)  
Rev. G | Page 41 of 120  
 
ADV7180  
Data Sheet  
CCMP[2:0], Chroma Comb Mode PAL, Address 0x39[5:3]  
YCMN[2:0], Luma Comb Mode NTSC, Address 0x38[2:0]  
Table 59. CCMP Function  
Table 56. YCMN Function  
CCMP[2:0]  
Description  
Configuration  
YCMN[2:0]  
Description  
Configuration  
000 (default)  
Adaptive comb mode  
Adaptive three-line  
chroma comb for  
CTAPSN = 01  
Adaptive four-line  
chroma comb for  
CTAPSN = 10  
Adaptive five-line  
chroma comb for  
CTAPSN = 11  
000 (default) Adaptive comb mode Adaptive three-line  
(three taps) luma comb  
100  
Disable luma comb  
Use low-pass/notch  
filter; see the Y Shaping  
Filter section  
101  
110  
111  
Fixed luma comb (top Fixed two-line (two  
lines of line memory)  
taps) luma comb  
Fixed luma comb (all  
lines of line memory)  
Fixed three-line (three  
taps) luma comb  
100  
101  
Disable chroma comb  
Fixed luma comb  
(bottom lines of line  
memory)  
Fixed two-line (two  
taps) luma comb  
Fixed chroma comb  
(top lines of line  
memory)  
Fixed two-line chroma  
comb for CTAPSN = 01  
Fixed three-line chroma  
comb for CTAPSN = 10  
Fixed four-line chroma  
comb for CTAPSN = 11  
PAL Comb Filter Settings  
These settings are used for PAL B/G/H/I/D, PAL M, PAL  
Combinational N, PAL 60, and NTSC 4.43 CVBS inputs.  
110  
111  
Fixed chroma comb (all Fixed three-line chroma  
lines of line memory)  
comb for CTAPSN = 01  
Fixed four-line chroma  
comb for CTAPSN = 10  
Fixed five-line chroma  
comb for CTAPSN = 11  
Fixed two-line chroma  
comb for CTAPSN = 01  
Fixed three-line chroma  
comb for CTAPSN = 10  
Fixed four-line chroma  
comb for CTAPSN = 11  
PSFSEL[1:0], Split Filter Selection, PAL, Address 0x19[1:0]  
The PSFSEL[1:0] control selects how much of the overall signal  
bandwidth is fed to the combs. A wide split filter selection  
eliminates dot crawl but shows imperfections on diagonal lines.  
The opposite is true for selecting a narrow bandwidth split filter.  
Fixed chroma comb  
(bottom lines of line  
memory)  
Table 57. PSFSEL Function  
PSFSEL[1:0] Description  
00  
Narrow  
Medium  
Wide  
01 (default)  
10  
11  
YCMP[2:0], Luma Comb Mode PAL, Address 0x39[2:0]  
Table 60. YCMP Function  
Widest  
CTAPSP[1:0], Chroma Comb Taps PAL, Address 0x39[7:6]  
YCMP[2:0]  
Description  
Configuration  
000 (default) Adaptive comb mode  
Adaptive five lines (three  
taps) luma comb  
Use low-pass/notch filter;  
see the Y Shaping Filter  
section  
Fixed three lines (two  
taps) luma comb  
Fixed five lines (three taps)  
luma comb  
Table 58. CTAPSP Function  
CTAPSP[1:0] Description  
100  
Disable luma comb  
00  
01  
Do not use.  
PAL chroma comb adapts five lines (three taps)  
to three lines (two taps); cancels cross luma only  
101  
110  
111  
Fixed luma comb (top  
lines of line memory)  
Fixed luma comb (all  
lines of line memory)  
Fixed luma comb  
(bottom lines of line  
memory)  
10  
PAL chroma comb adapts five lines (five taps) to  
three lines (three taps); cancels cross luma and  
hue error less well  
11 (default)  
PAL chroma comb adapts five lines (five taps) to  
four lines (four taps); cancels cross luma and hue  
error well  
Fixed three lines (two  
taps) luma comb  
Rev. G | Page 42 of 120  
Data Sheet  
ADV7180  
IF COMP FILTERS NTSC ZOOMED AROUND FSC  
IF FILTER COMPENSATION  
IFFILTSEL[2:0], IF Filter Select, Address 0xF8[2:0]  
6
4
The IFFILTSEL[2:0] register allows the user to compensate for  
SAW filter characteristics on a composite input, as would be  
observed on tuner outputs. Figure 32 and Figure 33 show IF  
filter compensation for NTSC and PAL, respectively.  
2
0
–2  
–4  
–6  
–8  
–10  
–12  
The options for this feature are as follows:  
Bypass mode  
NTSC, consists of three filter characteristics  
PAL, consists of three filter characteristics  
See Table 107 for programming details.  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
Figure 32. NTSC IF Filter Compensation  
IF COMP FILTERS PAL ZOOMED AROUND FSC  
6
4
2
0
–2  
–4  
–6  
–8  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
FREQUENCY (MHz)  
Figure 33. PAL IF Filter Compensation  
Rev. G | Page 43 of 120  
 
 
 
ADV7180  
Data Sheet  
In this output interface mode, the following assignment takes  
place: Cb = FF, Y = 00, Cr = 00, and Y = AV.  
AV CODE INSERTION AND CONTROLS  
This section describes the I2C-based controls that affect the  
following:  
In a 16-bit output interface (64-lead LQFP only), where Y and  
Cr/Cb are delivered via separate data buses, the AV code is  
spread over the whole 16 bits. The SD_DUP_AV bit allows the  
user to replicate the AV codes on both buses; therefore, the full  
AV sequence can be found on the Y bus as well as on the Cr/Cb  
bus (see Figure 34).  
Insertion of AV codes into the data stream  
Data blanking during the vertical blank interval (VBI)  
The range of data values permitted in the output data stream  
The relative delay of luma vs. chroma signals  
Some of the decoded VBI data is inserted during the horizontal  
blanking interval. See the Gemstar Data Recovery section for  
more information.  
When SD_DUP_AV is 0 (default), the AV codes are in single  
fashion (to suit 8-bit interleaved data output).  
When SD_DUP_AV is 1, the AV codes are duplicated (for  
16-bit interfaces).  
BT.656-4, ITU-R BT.656-4 Enable, Address 0x04[7]  
Between Revision 3 and Revision 4 of the ITU-R BT.656 standards,  
the ITU has changed the toggling position for the V bit within  
the SAV EAV codes for NTSC. The ITU-R BT.656-4 standard  
bit allows the user to select an output mode that is compliant  
with either the previous or new standard. For further information,  
visit the International Telecommunication Union website.  
VBI_EN, Vertical Blanking Interval Data Enable,  
Address 0x03[7]  
The VBI enable bit allows data such as intercast and closed  
caption data to be passed through the luma channel of the decoder  
with a minimal amount of filtering. All data for Line 1 to Line 21 is  
passed through and available at the output port. The ADV7180  
does not blank the luma data and automatically switches all filters  
along the luma data path into their widest bandwidth. For active  
video, the filter settings for YSH and YPK are restored.  
Note that the standard change only affects NTSC and has no  
bearing on PAL.  
When ITU-R BT.656-4 is 0 (default), the ITU-R BT.656-3  
specification is used. The V bit goes low at EAV of Line 10  
and Line 273.  
See the BL_C_VBI, Blank Chroma During VBI, Address  
0x04[2] section for information on the chroma path.  
When ITU-R BT.656-4 is 1, the ITU-R BT.656-4 specification is  
used. The V bit goes low at EAV of Line 20 and Line 283.  
When VBI_EN is 0 (default), all video lines are filtered/scaled.  
When VBI_EN is 1, only the active video region is filtered/scaled.  
SD_DUP_AV, Duplicate AV Codes, Address 0x03[0]  
Depending on the output interface width, it may be necessary to  
duplicate the AV codes from the luma path into the chroma path.  
In an 8-bit wide output interface (Cb/Y/Cr/Y interleaved data),  
the AV codes are defined as FF/00/00/AV, with AV being the  
transmitted word that contains information about H/V/F.  
SD_DUP_AV = 1  
SD_DUP_AV = 0  
16-BIT INTERFACE  
16-BIT INTERFACE  
8-BIT INTERFACE  
Y DATA BUS  
FF  
FF  
00  
00  
AV  
AV  
Y
00  
AV  
Y
Cb/Y/Cr/Y  
INTERLEAVED  
FF  
00  
00 AV Cb  
Cr/Cb DATA BUS  
00  
00  
Cb  
FF  
00  
Cb  
AV CODE SECTION  
AV CODE SECTION  
AV CODE SECTION  
Figure 34. AV Code Duplication Control (64-Lead LQFP Only)  
Rev. G | Page 44 of 120  
 
 
Data Sheet  
ADV7180  
When AUTO_PDC_EN is 1 (default), the ADV7180 automatically  
determines the LTA and CTA values to have luma and chroma  
aligned at the output.  
BL_C_VBI, Blank Chroma During VBI, Address 0x04[2]  
Setting BL_C_VBI high blanks the Cr and Cb values of all VBI  
lines. This is done so any data that may arrive during VBI is not  
decoded as color and is output through Cr and Cb. As a result,  
it is possible to send VBI lines into the decoder and then output  
them through an encoder again, undistorted. Without this  
blanking, any color that is incorrectly decoded would be encoded  
by the video encoder, thus distorting the VBI lines.  
LTA[1:0], Luma Timing Adjust, Address 0x27[1:0]  
The luma timing adjust register allows the user to specify a  
timing difference between chroma and luma samples.  
There is a functionality overlap with the CTA[2:0] register. For  
manual programming, use the following defaults:  
Setting BL_C_VBI to 0 decodes and outputs color during VBI.  
CVBS input LTA[1:0] = 00  
Y/C input LTA[1:0] = 01  
YPrPb input LTA[1:0] = 01  
Setting BL_C_VBI to 1 (default) blanks Cr and Cb values  
during VBI.  
Range, Range Selection, Address 0x04[0]  
Table 62. LTA Function  
AV codes (as per ITU-R BT.656, formerly known as CCIR-656)  
consist of a fixed header made up of 0xFF and 0x00 values.  
These two values are reserved and, therefore, are not to be used  
for active video. Additionally, the ITU specifies that the nominal  
range for video should be restricted to values between 16 and  
235 for luma and 16 and 240 for chroma.  
LTA[1:0]  
Description  
00 (default)  
No delay  
01  
10  
11  
Luma 1 clock (37 ns) late  
Luma 2 clock (74 ns) early  
Luma 1 clock (37 ns) early  
CTA[2:0], Chroma Timing Adjust, Address 0x27[5:3]  
The range bit allows the user to limit the range of values output  
by the ADV7180 to the recommended value range. The  
ADV7180 does not scale the data to fit within the smaller range.  
Any value outside of the range is ignored. In any case, it ensures  
that the reserved values of 255d (0xFF) and 00d (0x00) are not  
presented on the output pins unless they are part of an AV code  
header.  
The chroma timing adjust register allows the user to specify a  
timing difference between chroma and luma samples. This can  
be used to compensate for external filter group delay differences  
in the luma vs. chroma path and to allow a different number of  
pipeline delays while processing the video downstream. Review  
this functionality together with the LTA[1:0] register.  
The chroma can be delayed or advanced only in chroma pixel  
steps. One chroma pixel step is equal to two luma pixels. The  
programmable delay occurs after demodulation, where delay  
cannot be made by luma pixel steps.  
Table 61. RANGE Function  
Range  
Description  
0
16 ≤ Y ≤ 235, 16 ≤ C/P ≤ 240  
1 ≤ Y ≤ 254, 1 ≤ C/P ≤ 254  
1 (default)  
For manual programming, use the following defaults:  
AUTO_PDC_EN, Automatic Programmed Delay Control,  
Address 0x27[6]  
CVBS input CTA[2:0] = 011  
Y/C input CTA[2:0] = 101  
YPrPb input CTA[2:0] = 110  
Enabling AUTO_PDC_EN activates a function within the  
ADV7180 that automatically programs the LTA[1:0] and CTA[2:0]  
registers to have the chroma and luma data match delays for all  
modes of operation. If AUTO_PDC__EN is set, the LTA[1:0]  
and CTA[2:0] manual registers are not used. If the automatic  
mode is disabled (by setting the AUTO_PDC_EN bit to 0), the  
values programmed into the LTA[1:0] and CTA[2:0] registers  
become active.  
Table 63. CTA Function  
CTA[2:0]  
Description  
000  
Not a valid setting  
001  
010  
011 (default)  
100  
101  
Chroma + two pixels (early)  
Chroma + one pixel (early)  
No delay  
Chroma − one pixel (late)  
Chroma − two pixels (late)  
Chroma − three pixels (late)  
Not a valid setting  
When AUTO_PDC_EN is 0, the ADV7180 uses the LTA[1:0] and  
CTA[2:0] values for delaying luma and chroma samples. See the  
LTA[1:0], Luma Timing Adjust, Address 0x27[1:0] section and  
the CTA[2:0], Chroma Timing Adjust, Address 0x27[5:3]  
section.  
110  
111  
Rev. G | Page 45 of 120  
 
 
 
ADV7180  
Data Sheet  
HSE[10:0], HS End, Address 0x34[2:0], Address 0x36[7:0]  
SYNCHRONIZATION OUTPUT SIGNALS  
The position of this edge is controlled by placing a binary  
number into HSE[10:0]. The number applied offsets the edge  
with respect to an internal counter that is reset to 0 immediately  
after EAV Code FF, 00, 00, XY (see Figure 35). HSE is set to  
00000000000b, which is 0 LLC clock cycles from count [0].  
HS Configuration  
The following controls allow the user to configure the behavior  
of the HS output pin only:  
Beginning of HS signal via HSB[10:0]  
End of HS signal via HSE[10:0]  
Polarity of HS using PHS  
The default value of HSE[10:0] is 00, indicating that the HS  
pulse ends 0 pixels after the falling edge of HS.  
The HS begin (HSB) and HS end (HSE) registers allow the user  
to freely position the HS output (pin) within the video line. The  
values in HSB[10:0] and HSE[10:0] are measured in pixel units  
from the falling edge of HS. Using both values, the user can  
program both the position and length of the HS output signal.  
For example,  
To shift the HS toward active video by 20 LLCs, add  
20 LLCs to both HSB and HSE, that is,  
HSB[10:0] = [00000010110], HSE[10:0] = [00000010100].  
To shift the HS away from active video by 20 LLCs, add  
1696 LLCs to both HSB and HSE (for NTSC), that is,  
HSB[10:0] = [11010100010], HSE[10:0] = [11010100000].  
Therefore, 1696 is derived from the NTSC total number of  
pixels, 1716.  
HSB[10:0], HS Begin, Address 0x34[6:4], Address 0x35[7:0]  
The position of this edge is controlled by placing a binary  
number into HSB[10:0]. The number applied offsets the edge  
with respect to an internal counter that is reset to 0 immediately  
after EAV Code FF, 00, 00, XY (see Figure 35). HSB is set to  
00000000010b, which is two LLC clock cycles from count [0].  
To move 20 LLCs away from active video, subtract 20 from  
1716 and add the result in binary to both HSB[10:0] and  
HSE[10:0].  
The default value of HSB[10:0] is 0x02, indicating that the HS  
pulse starts two pixels after the falling edge of HS.  
PHS, Polarity HS, Address 0x37[7]  
The polarity of the HS pin can be inverted using the PHS bit.  
When PHS is 0 (default), HS is active low.  
When PHS is 1, HS is active high.  
Table 64. HS Timing Parameters (See Figure 35)  
Characteristic  
HS to Active Video  
LLC Clock Cycles, C  
in Figure 35 (Default)  
HS Begin Adjust  
Standard HSB[10:0] (Default)  
HS End Adjust  
HSE[10:0] (Default)  
Active Video Samples/  
Line, D in Figure 35  
Total LLC Clock  
Cycles, E in Figure 35  
NTSC  
PAL  
00000000010b  
00000000010b  
00000000000b  
00000000000b  
272  
284  
720Y + 720C = 1440  
720Y + 720C = 1440  
1716  
1728  
LLC  
PIXEL  
BUS  
Cr  
Y
FF  
00  
EAV  
00  
XY 80  
10  
80  
10  
80  
10  
FF  
00  
00  
SAV  
XY Cb  
Y
Cr  
Y
Cb  
Y
Cr  
ACTIVE  
VIDEO  
H BLANK  
ACTIVE VIDEO  
HS  
HSE[10:0]  
4 LLC  
HSB[10:0]  
C
D
D
E
E
Figure 35. HS Timing  
Rev. G | Page 46 of 120  
 
 
Data Sheet  
ADV7180  
VS and FIELD Configuration  
HVSTIM, Horizontal VS Timing, Address 0x31[3]  
The following controls allow the user to configure the behavior  
of the VS and FIELD output pins, as well as the generation of  
embedded AV codes.  
The HVSTIM bit allows the user to select where the VS signal is  
asserted within a line of video. Some interface circuitry may require  
VS to go low while HS is low.  
The 64-lead LQFP has separate VS and FIELD pins. The 48-lead  
LQFP, 40-lead LFCSP, and 32-lead LFCSP do not have separate  
VS and FIELD pins but can output either VS or FIELD on Pin 45  
(48-lead LQFP), Pin 37 (40-lead LFCSP), or Pin 31 (32-lead  
LFCSP), which is the VS/FIELD pin.  
When HVSTIM is 0 (default), the start of the line is relative to HSE.  
When HVSTIM is 1, the start of the line is relative to HSB.  
VSBHO, VS Begin Horizontal Position Odd, Address 0x32[7]  
The VSBHO and VSBHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high or low.  
SQPE, Square Pixel Mode, Address 0x01[2]  
The SQPE bit allows the user to select the square pixel mode.  
This mode is not suitable for poor time-based video sources.  
This mode is recommended for professional applications only  
and should not be used with VCR or tuner sources.  
When VSBHO is 0 (default), the VS pin goes high in the middle  
of a line of video (odd field).  
When VSBHO is 1, the VS pin changes state at the start of a line  
(odd field).  
Setting SQPE to 1 enables square pixel mode. The LLC for  
NTSC is 24.5454 MHz and 29.5 MHz for PAL. The crystal  
frequency does not change.  
VSBHE, VS Begin Horizontal Position Even, Address 0x32[6]  
VS/FIELD, Address 0x58[0]  
The VSBHO and VSBHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to only change state  
when HS is high or low.  
This feature is used for the 48-lead LQFP, 40-lead LFCSP, and  
32-lead LFCSP only. The polarity of this bit determines what  
signal appears on the VS/FIELD pin.  
When VSBHE is 0 (default), the VS pin goes high in the middle  
of a line of video (even field).  
When this bit is set to 0 (default), the FIELD signal is output.  
When this bit is set to 1, the VSYNC signal is output.  
The 64-lead LQFP has dedicated FIELD and VSYNC pins.  
When VSBHE is 1, the VS pin changes state at the start of a line  
(even field).  
ADV encoder-compatible signals via the NEWAVMODE  
register follow:  
VSEHO, VS End Horizontal Position Odd, Address 0x33[7]  
The VSEHO and VSEHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high or low.  
PVS, PF  
HVSTIM  
VSBHO, VSBHE  
VSEHO, VSEHE  
When VSEHO is 0 (default), the VS pin goes low (inactive) in  
the middle of a line of video (odd field).  
For NTSC control,  
NVBEGDELO, NVBEGDELE, NVBEGSIGN, NVBEG[4:0]  
NVENDDELO, NVENDDELE, NVENDSIGN, NVEND[4:0]  
NFTOGDELO, NFTOGDELE, NFTOGSIGN, NFTOG[4:0]  
When VSEHO is 1, the VS pin changes state at the start of a line  
(odd field).  
VSEHE, VS End Horizontal Position Even, Address 0x33[6]  
For PAL control,  
The VSEHO and VSEHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high or low.  
PVBEGDELO, PVBEGDELE, PVBEGSIGN, PVBEG[4:0]  
PVENDDELO, PVENDDELE, PVENDSIGN, PVEND[4:0]  
PFTOGDELO, PFTOGDELE, PFTOGSIGN, PFTOG[4:0]  
NEWAVMODE, New AV Mode, Address 0x31[4]  
When VSEHE is 0 (default), the VS pin goes low (inactive) in  
the middle of a line of video (even field).  
When NEWAVMODE is 0, EAV/SAV codes are generated to  
suit Analog Devices encoders. No adjustments are possible.  
When VSEHE is 1, the VS pin changes state at the start of a line  
(even field).  
Setting NEWAVMODE to 1 (default) enables the manual position  
of the VSYNC, FIELD, and AV codes using Register 0x32 to  
Register 0x33 and Register 0xE5 to Register 0xEA. Default register  
settings are CCIR656 compliant; see Figure 36 for NTSC and  
Figure 41 for PAL. For recommended manual user settings, see  
Table 65 and Figure 37 for NTSC and Table 66 and Figure 42 for PAL.  
PVS, Polarity VS, Address 0x37[5]  
The polarity of the VS pin can be inverted using the PVS bit.  
When PVS is 0 (default), VS is active high.  
When PVS is 1, VS is active low.  
Rev. G | Page 47 of 120  
ADV7180  
Data Sheet  
PF, Polarity FIELD, Address 0x37[3]  
Table 65. User Settings for NTSC (See Figure 37)  
Register  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0xE5  
0xE6  
0xE7  
Register Name  
Write  
0x1A  
0x81  
0x84  
0x00  
0x00  
0x7D  
0xA1  
0x41  
0x84  
0x06  
The polarity of the FIELD pin for the 64-lead LQFP part can be  
inverted using the PF bit.  
VS/FIELD Control 1  
VS/FIELD Control 2  
VS/FIELD Control 3  
HS Position Control 1  
HS Position Control 2  
HS Position Control 3  
Polarity  
The FIELD pin can be inverted using the PF bit.  
When PF is 0 (default), FIELD is active high.  
When PF is 1, FIELD is active low.  
NTSV V bit begin  
NTSC V bit end  
NTSC F bit toggle  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
19  
20  
21  
22  
OUTPUT  
VIDEO  
H
V
1
NVBEG[4:0] = 0x05  
NVEND[4:0] = 0x04  
BT.656-4  
REG 0x04, BIT 7 = 1  
F
NFTOG[4:0] = 0x03  
FIELD 2  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275 276  
283  
284  
285  
OUTPUT  
VIDEO  
H
V
1
BT.656-4  
REG 0x04, BIT 7 = 1  
NVBEG[4:0] = 0x05  
NVEND[4:0] = 0x04  
F
NFTOG[4:0] = 0x03  
APPLIES IF NEWAVMODE = 0:  
1
MUST BE MANUALLY SHIFTED IF NEWAVMODE = 1.  
Figure 36. NTSC Default, ITU-R BT.656 (the Polarity of H, V, and F is Embedded in the Data)  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
21  
22  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
NVBEG[4:0] = 0x01  
NVEND[4:0] = 0x04  
FIELD  
OUTPUT  
NFTOG[4:0] = 0x06  
FIELD 2  
267  
262  
263  
264  
265  
266  
268  
269  
270  
271  
272  
273  
274  
275  
276 277  
284  
285  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
NVBEG[4:0] = 0x01  
NVEND[4:0] = 0x04  
FIELD  
OUTPUT  
NFTOG[4:0] = 0x06  
Figure 37. NTSC Typical VSYNC/FIELD Positions Using the Register Writes in Table 65  
Rev. G | Page 48 of 120  
 
 
 
Data Sheet  
ADV7180  
For all NTSC/PAL VSYNC timing controls, both the V bit in  
the AV code and the VSYNC signal on the VS pin are modified.  
1
NVBEGSIGN  
0
ADVANCE BEGIN OF  
VSYNC BY NVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY NVBEG[4:0]  
1
NVENDSIGN  
0
ADVANCE END OF  
VSYNC BY NVEND[4:0]  
DELAY END OF VSYNC  
BY NVEND[4:0]  
NOT VALID FOR USER  
PROGRAMMING  
ODD FIELD?  
YES  
NO  
NOT VALID FOR USER  
PROGRAMMING  
ODD FIELD?  
YES  
NO  
NVBEGDELO  
1
NVBEGDELE  
1
0
0
NVENDDELO  
1
NVENDDELE  
1
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
0
0
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
VSBHO  
1
VSBHE  
1
0
0
VSEHO  
1
VSEHE  
1
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
0
0
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
VSYNC BEGIN  
Figure 38. NTSC VSYNC Begin  
VSYNC END  
NVBEGDELO, NTSC VSYNC Begin Delay on Odd Field,  
Address 0xE5[7]  
Figure 39. NTSC VSYNC End  
NVENDDELO, NTSC VSYNC End Delay on Odd Field,  
Address 0xE6[7]  
When NVBEGDELO is 0 (default), there is no delay.  
Setting NVBEGDELO to 1 delays VSYNC going high on an odd  
field by a line relative to NVBEG.  
When NVENDDELO is 0 (default), there is no delay.  
Setting NVENDDELO to 1 delays VSYNC from going low on  
an odd field by a line relative to NVEND.  
NVBEGDELE, NTSC VSYNC Begin Delay on Even Field,  
Address 0xE5[6]  
NVENDDELE, NTSC VSYNC End Delay on Even Field,  
Address 0xE6[6]  
When NVBEGDELE is 0 (default), there is no delay.  
Setting NVBEGDELE to 1 delays VSYNC going high on an  
even field by a line relative to NVBEG.  
When NVENDDELE is set to 0 (default), there is no delay.  
Setting NVENDDELE to 1 delays VSYNC from going low on an  
even field by a line relative to NVEND.  
NVBEGSIGN, NTSC VSYNC Begin Sign, Address 0xE5[5]  
Setting NVBEGSIGN to 0 delays the start of VSYNC. Set for  
user manual programming.  
NVENDSIGN, NTSC VSYNC End Sign, Address 0xE6[5]  
Setting NVBEGSIGN to 1 (default) advances the start of  
VSYNC (not recommended for user programming).  
Setting NVENDSIGN to 0 (default) delays the end of VSYNC.  
Set for user manual programming.  
Setting NVENDSIGN to 1 advances the end of VSYNC (not  
recommended for user programming).  
NVBEG[4:0], NTSC VSYNC Begin, Address 0xE5[4:0]  
The default value of NVBEG is 00101, indicating the NTSC  
VSYNC begin position.  
Rev. G | Page 49 of 120  
ADV7180  
Data Sheet  
NVEND[4:0], NTSC VSYNC End, Address 0xE6[4:0]  
NFTOG[4:0], NTSC Field Toggle, Address 0xE7[4:0]  
The default value of NVEND is 00100, indicating the NTSC  
VSYNC end position.  
The default value of NFTOG is 00011, indicating the NTSC  
field toggle position.  
For all NTSC/PAL VSYNC timing controls, both the V bit in  
the AV code and the VSYNC signal on the VS pin are modified.  
For all NTSC/PAL field timing controls, both the F bit in the  
AV code and the field signal on the FIELD pin are modified.  
NFTOGDELO, NTSC FIELD Toggle Delay on Odd Field,  
Address 0xE7[7]  
1
NFTOGSIGN  
0
When NFTOGDELO is 0 (default), there is no delay.  
ADVANCE TOGGLE OF  
FIELD BY NFTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY NFTOG[4:0]  
Setting NFTOGDELO to 1 delays the field toggle/transition on  
an odd field by a line relative to NFTOG.  
NOT VALID FOR USER  
PROGRAMMING  
NFTOGDELE, NTSC Field Toggle Delay on Even Field,  
Address 0xE7[6]  
ODD FIELD?  
YES  
NO  
When NFTOGDELE is 0, there is no delay.  
Setting NFTOGDELE to 1 (default) delays the field toggle/  
transition on an even field by a line relative to NFTOG.  
NFTOGDELO  
1
NFTOGDELE  
1
NFTOGSIGN, NTSC Field Toggle Sign, Address 0xE7[5]  
0
0
Setting NFTOGSIGN to 0 delays the field transition. Set for  
user manual programming.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
Setting NFTOGSIGN to 1 (default) advances the field transition  
(not recommended for user programming).  
FIELD  
TOGGLE  
Figure 40. NTSC FIELD Toggle  
FIELD 1  
622  
623  
624  
625  
1
2
3
4
5
6
7
8
9
10  
22  
23  
24  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 0x05  
PVEND[4:0] = 0x04  
F
PFTOG[4:0] = 0x03  
FIELD 2  
314  
310  
311  
312  
313  
315  
316  
317  
318  
319  
320  
321 322  
335  
336  
337  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 0x05  
PVEND[4:0] = 0x04  
F
PFTOG[4:0] = 0x03  
Figure 41. PAL Default, ITU-R BT.656 (the Polarity of H, V, and F Is Embedded in the Data)  
Rev. G | Page 50 of 120  
 
Data Sheet  
ADV7180  
FIELD 1  
1
622  
623 624  
2
3
4
5
6
7
8
9
10  
11  
23  
24  
625  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 0x01  
PVEND[4:0] = 0x04  
FIELD  
OUTPUT  
PFTOG[4:0] = 0x06  
FIELD 2  
314  
310  
311  
312  
315  
316  
317  
318  
319  
320  
321  
322  
323  
336  
337  
313  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 0x01  
PVEND[4:0] = 0x04  
FIELD  
OUTPUT  
PFTOG[4:0] = 0x06  
Figure 42. PAL Typical VS/FIELD Positions Using the Register Writes Shown in Table 66  
PVBEG[4:0], PAL VSYNC Begin, Address 0xE8[4:0]  
Table 66. User Settings for PAL (See Figure 42)  
The default value of PVBEG is 00101, indicating the PAL VSYNC  
begin position. For all NTSC/PAL VSYNC timing controls, the  
V bit in the AV code and the VSYNC signal on the VS pin are  
modified.  
Register  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0xE8  
0xE9  
0xEA  
Register Name  
VS/FIELD Control 1  
VS/FIELD Control 2  
VS/FIELD Control 3  
HS Position Control 1  
HS Position Control 2  
HS Position Control 3  
Polarity  
Write  
0x1A  
0x81  
0x84  
0x00  
0x00  
0x7D  
0xA1  
0x41  
0x84  
0x06  
1
PVBEGSIGN  
0
ADVANCE BEGIN OF  
VSYNC BY PVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY PVBEG[4:0]  
PAL V bit begin  
NOT VALID FOR USER  
PROGRAMMING  
PAL V bit end  
PAL F bit toggle  
ODD FIELD?  
YES  
NO  
PVBEGDELO, PAL VSYNC Begin Delay on Odd Field,  
Address 0xE8[7]  
PVBEGDELO  
1
PVBEGDELE  
1
When PVBEGDELO is 0 (default), there is no delay.  
0
0
Setting PVBEGDELO to 1 delays VSYNC going high on an odd  
field by a line relative to PVBEG.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
PVBEGDELE, PAL VSYNC Begin Delay on Even Field,  
Address 0xE8[6]  
When PVBEGDELE is 0, there is no delay.  
VSBHO  
1
VSBHE  
1
Setting PVBEGDELE to 1 (default) delays VSYNC going high  
on an even field by a line relative to PVBEG.  
0
0
PVBEGSIGN, PAL VSYNC Begin Sign, Address 0xE8[5]  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
Setting PVBEGSIGN to 0 delays the beginning of VSYNC. Set  
for user manual programming.  
Setting PVBEGSIGN to 1 (default) advances the beginning of  
VSYNC (not recommended for user programming).  
VSYNC BEGIN  
Figure 43. PAL VSYNC Begin  
Rev. G | Page 51 of 120  
 
 
ADV7180  
Data Sheet  
PFTOGDELO, PAL Field Toggle Delay on Odd Field,  
Address 0xEA[7]  
1
PVENDSIGN  
0
When PFTOGDELO is 0 (default), there is no delay.  
ADVANCE END OF  
DELAY END OF VSYNC  
BY PVEND[4:0]  
VSYNC BY PVEND[4:0]  
Setting PFTOGDELO to 1 delays the F toggle/transition on an  
odd field by a line relative to PFTOG.  
NOT VALID FOR USER  
PROGRAMMING  
PFTOGDELE, PAL Field Toggle Delay on Even Field,  
Address 0xEA[6]  
ODD FIELD?  
YES  
NO  
When PFTOGDELE is 0, there is no delay.  
Setting PFTOGDELE to 1 (default) delays the F toggle/transition  
on an even field by a line relative to PFTOG.  
PVENDDELO  
1
PVENDDELE  
1
PFTOGSIGN, PAL Field Toggle Sign, Address 0xEA[5]  
0
0
Setting PFTOGSIGN to 0 delays the field transition. Set for user  
manual programming.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
Setting PFTOGSIGN to 1 (default) advances the field transition  
(not recommended for user programming).  
PFTOG, PAL Field Toggle, Address 0xEA[4:0]  
VSEHO  
1
VSEHE  
1
The default value of PFTOG is 00011, indicating the PAL field  
toggle position.  
0
0
For all NTSC/PAL field timing controls, the F bit in the AV  
code and the field signal on the FIELD pin are modified.  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
1
PFTOGSIGN  
0
VSYNC END  
ADVANCE TOGGLE OF  
FIELD BY PFTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY PFTOG[4:0]  
Figure 44. PAL VSYNC End  
PVENDDELO, PAL VSYNC End Delay on Odd Field,  
Address 0xE9[7]  
NOT VALID FOR USER  
PROGRAMMING  
ODD FIELD?  
When PVENDDELO is 0 (default), there is no delay.  
YES  
NO  
Setting PVENDDELO to 1 delays VSYNC going low on an odd  
field by a line relative to PVEND.  
PFTOGDELO  
1
PFTOGDELE  
1
PVENDDELE, PAL VSYNC End Delay on Even Field,  
Address 0xE9[6]  
0
0
When PVENDDELE is 0 (default), there is no delay.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
Setting PVENDDELE to 1 delays VSYNC going low on an even  
field by a line relative to PVEND.  
PVENDSIGN, PAL VSYNC End Sign, Address 0xE9[5]  
Setting PVENDSIGN to 0 (default) delays the end of VSYNC  
(set for user manual programming).  
FIELD  
TOGGLE  
Figure 45. PAL F Toggle  
Setting PVENDSIGN to 1 advances the end of VSYNC (not  
recommended for user programming).  
PVEND[4:0], PAL VSYNC End, Address 0xE9[4:0]  
The default value of PVEND is 10100, indicating the PAL  
VSYNC end position.  
For all NTSC/PAL VSYNC timing controls, both the V bit in  
the AV code and the VSYNC signal on the VS pin are modified.  
Rev. G | Page 52 of 120  
Data Sheet  
ADV7180  
Table 68. NTSC  
Feature  
SYNC PROCESSING  
Standard  
The ADV7180 has two additional sync processing blocks that  
postprocess the raw synchronization information extracted  
from the digitized input video. If desired, the blocks can be  
disabled via the following two I2C bits: ENHSPLL and  
ENVSPROC.  
Teletext System B and D  
Teletext System C/NABTS  
Vertical Interval Time Codes (VITC)  
Copy Generation Management  
System (CGMS)  
ITU-R BT.653  
ITU-R BT.653/EIA-516  
Not applicable  
EIA-J CPR-1204/IEC 61880  
ENHSPLL, Enable HSYNC Processor, Address 0x01[6]  
Gemstar  
Not applicable  
EIA-608  
Closed Captioning (CCAP)  
The HSYNC processor is designed to filter incoming HSYNCs that  
have been corrupted by noise, providing improved performance  
for video signals with stable time bases but poor SNR.  
The VBI data standard that the VDP decodes on a particular  
line of incoming video has been set by default as described in  
Table 69. This can be overridden manually and any VBI data can  
be decoded on any line. The details of manual programming are  
described in Table 70.  
Setting ENHSPLL to 0 disables the HSYNC processor.  
Setting ENHSPLL to 1 (default) enables the HSYNC processor.  
ENVSPROC, Enable VSYNC Processor, Address 0x01[3]  
VDP Default Configuration  
This block provides extra filtering of the detected VSYNCs to  
improve vertical lock.  
The VDP can decode different VBI data standards on a line-to-  
line basis. The various standards supported by default on different  
lines of VBI are explained in Table 69.  
Setting ENVSPROC to 0 disables the VSYNC processor.  
Setting ENVSPROC to 1 (default) enables the VSYNC processor.  
VBI DATA DECODE  
VDP Manual Configuration  
MAN_LINE_PGM, Enable Manual Line Programming of  
VBI Standards, Address 0x64[7], User Sub Map  
The following are the two VBI data slicers on the ADV7180: the  
VBI data processor (VDP) and the VBI System 2.  
The user can configure the VDP to decode different standards on  
a line-to-line basis through manual line programming. For this,  
the user must set the MAN_LINE_PGM bit. The user must write  
into all the line programming registers, VBI_DATA_Px_Ny and  
VBI_DATA_Px (see Register 0x64 to Register 0x77 in Table 108).  
The VDP can slice both low bandwidth standards and high  
bandwidth standards such as teletext. VBI System 2 can slice  
low data rate VBI standards only.  
The VDP is capable of slicing multiple VBI data standards on  
SD video. It decodes the VBI data on the incoming CVBS and  
Y/C or YUV data. The decoded results are available as ancillary  
data in output 656 data stream. For low data rate VBI standards  
like CC/WSS/CGMS, users can read the decoded data bytes  
from the I2C registers.  
When MAN_LINE_PGM to 0 (default) is set, the VDP decodes  
default standards on lines, as shown in Table 69.  
When MAN_LINE_PGM to 1 is set, the VBI standards to be  
decoded are manually programmed.  
VBI_DATA_Px_Ny[3:0], VBI_DATA_Px[3:0], VBI  
Standard to be Decoded on Line X for PAL, Line Y for  
NTSC, Address 0x64 to Address 0x77, User Sub Map  
The VBI data standards that can be decoded by the VDP are  
listed in Table 67 and Table 68.  
These are related 4-bit clusters in Register 0x64 to Register 0x77  
of the user sub map. These 4-bit, line programming registers,  
VBI_DATA_Px_Ny and VBI_DATA_Px, identify the VBI data  
standard that are decoded on Line X in PAL mode or on Line Y  
in NTSC mode. The different types of VBI standards decoded  
by VBI_DATA_Px_Ny and VBI_DATA_Px are shown in  
Table 70. Note that the X or Y value depends on whether the  
ADV7180 is in PAL or NTSC mode.  
Table 67. PAL  
Feature  
Standard  
Teletext System A, C, or D  
Teletext System B/WST  
Video Programming System (VPS)  
Vertical Interval Time Codes (VITC)  
Wide Screen Signaling (WSS)  
ITU-R BT.653  
ITU-R BT.653  
ETSI EN 300 231 V 1.3.1  
Not applicable  
ITU-R BT.1119-1/  
ETSI EN.300294  
Closed Captioning (CCAP)  
Not applicable  
Rev. G | Page 53 of 120  
 
 
 
 
ADV7180  
Data Sheet  
Table 69. Default Standards on Lines for PAL and NTSC  
PAL—625/50  
NTSC—525/60  
Default VBI  
Data Decoded  
Default VBI  
Data Decoded  
Default VBI  
Default VBI  
Data Decoded  
Line No.  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Line No.  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
332  
333  
334  
335  
Line No.  
23  
24  
25  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22 + full  
Data Decoded  
Gemstar_1×  
Gemstar_1×  
Gemstar_1×  
NABTS  
NABTS  
NABTS  
NABTS  
VITC  
NABTS  
VITC  
NABTS  
NABTS  
NABTS  
CGMS  
CCAP  
NABTS  
Line No.  
286  
287  
288  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
VPS  
N/A  
N/A  
VITC  
WST  
WST  
VPS  
Gemstar_1×  
Gemstar_1×  
Gemstar_1×  
NABTS  
NABTS  
NABTS  
NABTS  
NABTS  
VITC  
NABTS  
VITC  
NABTS  
NABTS  
NABTS  
CGMS  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
VPS  
VITC  
WST  
WST  
CCAP  
CCAP  
odd field  
22  
23  
CCAP  
WSS  
WST  
336  
WST  
WST  
285 + full  
even field  
NABTS  
337 + full  
even field  
24 + full  
odd field  
Table 70. VBI Data Standards for Manual Configuration  
VBI_DATA_Px_Ny  
625/50—PAL  
525/60—NTSC  
0000  
Disable VDP  
Disable VDP  
0001  
Teletext system identified by VDP_TTXT_TYPE  
Teletext system identified by VDP_TTXT_TYPE  
0010  
VPS-ETSI EN 300 231 V 1.3.1  
Reserved  
0011  
VITC  
VITC  
0100  
0101  
0110  
0111  
WSS ITU-R BT.1119-1/ETSI.EN.300294  
CGMS EIA-J CPR-1204/IEC 61880  
Gemstar_1×  
Gemstar_2×  
CCAP EIA-608  
Reserved  
Reserved  
Reserved  
CCAP  
1000 to 1111  
Reserved  
Rev. G | Page 54 of 120  
 
 
Data Sheet  
ADV7180  
Table 71.VBI Data Standards to be Decoded on Line Px (PAL) or Line Ny (NTSC)  
Signal Name  
Register Location  
VDP_LINE_00F[7:4]  
VDP_LINE_010[7:4]  
VDP_LINE_011[7:4]  
VDP_LINE_012[7:4]  
VDP_LINE_013[7:4]  
VDP_LINE_014[7:4]  
VDP_LINE_015[7:4]  
VDP_LINE_016[7:4]  
VDP_LINE_017[7:4]  
VDP_LINE_018[7:4]  
VDP_LINE_019[7:4]  
VDP_LINE_01A[7:4]  
VDP_LINE_01B[7:4]  
VDP_LINE_01C[7:4]  
VDP_LINE_01D[7:4]  
VDP_LINE_01E[7:4]  
VDP_LINE_01F[7:4]  
VDP_LINE_020[7:4]  
VDP_LINE_021[7:4]  
VDP_LINE_00E[3:0]  
VDP_LINE_00F[3:0]  
VDP_LINE_010[3:0]  
VDP_LINE_011[3:0]  
VDP_LINE_012[3:0]  
VDP_LINE_013[3:0]  
VDP_LINE_014[3:0]  
VDP_LINE_015[3:0]  
VDP_LINE_016[3:0]  
VDP_LINE_017[3:0]  
VDP_LINE_018[3:0]  
VDP_LINE_019[3:0]  
VDP_LINE_01A[3:0]  
VDP_LINE_01B[3:0]  
VDP_LINE_01C[3:0]  
VDP_LINE_01D[3:0]  
VDP_LINE_01E[3:0]  
VDP_LINE_01F[3:0]  
VDP_LINE_020[3:0]  
VDP_LINE_021[3:0]  
Dec Address  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
Hex Address  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
VBI_DATA_P6_N23  
VBI_DATA_P7_N24  
VBI_DATA_P8_N25  
VBI_DATA_P9  
VBI_DATA_P10  
VBI_DATA_P11  
VBI_DATA_P12_N10  
VBI_DATA_P13_N11  
VBI_DATA_P14_N12  
VBI_DATA_P15_N13  
VBI_DATA_P16_N14  
VBI_DATA_P17_N15  
VBI_DATA_P18_N16  
VBI_DATA_P19_N17  
VBI_DATA_P20_N18  
VBI_DATA_P21_N19  
VBI_DATA_P22_N20  
VBI_DATA_P23_N21  
VBI_DATA_P24_N22  
VBI_DATA_P318  
VBI_DATA_P319_N286  
VBI_DATA_P320_N287  
VBI_DATA_P321_N288  
VBI_DATA_P322  
VBI_DATA_P323  
VBI_DATA_P324_N272  
VBI_DATA_P325_N273  
VBI_DATA_P326_N274  
VBI_DATA_P327_N275  
VBI_DATA_P328_N276  
VBI_DATA_P329_N277  
VBI_DATA_P330_N278  
VBI_DATA_P331_N279  
VBI_DATA_P332_N280  
VBI_DATA_P333_N281  
VBI_DATA_P334_N282  
VBI_DATA_P335_N283  
VBI_DATA_P336_N284  
VBI_DATA_P337_N285  
For teletext system identification, VDP assumes that if teletext  
is present in a video channel, all the teletext lines comply with a  
single standard system. Therefore, the line programming using  
the VBI_DATA_Px_Ny and VBI_DATA_Px registers identifies  
whether the data in line is teletext; the actual standard is  
identified by the VDP_TTXT_TYPE_MAN bit.  
Note that full field detection (lines other than VBI lines)  
of any standard can also be enabled by writing into the  
VBI_DATA_P24_N22[3:0] and VBI_DATA_P337_N285[3:0]  
registers. So, if VBI_DATA_P24_N22[3:0] is programmed with  
any teletext standard, then teletext is decoded off for the entire odd  
field. The corresponding register for the even field is VBI_DATA_  
P337_N285[3:0].  
To program the VDP_TTXT_TYPE_MAN bit, the  
VDP_TTXT_TYPE_MAN_ENABLE bit must be set to 1.  
Rev. G | Page 55 of 120  
 
ADV7180  
Data Sheet  
Setting ADF_ENABLE to 1 enables the insertion of VBI  
decoded data into the ancillary 656 stream.  
VDP_TTXT_TYPE_MAN_ENABLE, Enable Manual  
Selection of Teletext Type, Address 0x60[2], User Sub Map  
The user may select the data identification word (DID) and the  
secondary data identification word (SDID) through programming  
the ADF_DID[4:0] and ADF_SDID[5:0] bits, respectively.  
Setting VDP_TTXT_TYPE_MAN_ENABLE to 0 (default), the  
manual programming of the teletext type is disabled.  
Setting VDP_TTXT_TYPE_MAN_ENABLE to 1, the manual  
programming of the teletext type is enabled.  
ADF_DID[4:0], User-Specified Data ID Word in Ancillary  
Data, Address 0x62[4:0], User Sub Map  
VDP_TTXT_TYPE_MAN[1:0], Specify the Teletext Type,  
Address 0x60[1:0], User Sub Map  
This bit selects the data ID word to be inserted into the ancillary  
data stream with the data decoded by the VDP.  
These bits specify the teletext type to be decoded. These bits are  
functional only if VDP_TTXT_TYPE_MAN_ENABLE is set to 1.  
The default value of ADF_DID[4:0] is 10101.  
ADF_SDID[5:0], User-Specified Secondary Data ID Word  
in Ancillary Data, Address 0x63[5:0], User Sub Map  
Table 72. VDP_TTXT_TYPE_MAN Function  
VDP_TTXT_  
TYPE_MAN[1:0] 625/50 (PAL)  
525/60 (NTSC)  
Teletext-ITU-BT.653- Reserved  
625/50-A  
Teletext-ITU-BT.653- Teletext-ITU-BT.653-  
625/50-B (WST) 525/60-B  
Teletext-ITU-BT.653- Teletext-ITU-BT.653-  
These bits select the secondary data ID word to be inserted in  
the ancillary data stream with the data decoded by the VDP.  
00 (default)  
The default value of ADF_SDID[5:0] is 101010.  
01  
10  
DUPLICATE_ADF, Enable Duplication/Spreading of  
Ancillary Data over Y and C Buses, Address 0x63[7], User  
Sub Map  
625/50-C  
525/60-C or EIA516  
(NABTS)  
This bit determines whether the ancillary data is duplicated  
over both Y and C buses or if the data packets are spread  
between the two channels.  
11  
Teletext-ITU-BT.653- Teletext-ITU-BT.653-  
625/50-D 525/60-D  
VDP Ancillary Data Output  
When DUPLICATE_ADF to 0 (default) is set, the ancillary data  
packet is spread across the Y and C data streams.  
Reading the data back via I2C may not be feasible for VBI data  
standards with high data rates (for example, teletext). An alternative  
is to place the sliced data in a packet in the line blanking of the  
digital output CCIR656 stream. This is available for all standards  
sliced by the VDP module.  
When DUPLICATE_ADF to 1 is set, the ancillary data packet is  
duplicated on the Y and C data streams.  
ADF_MODE[1:0], Determine the Ancillary Data Output  
Mode, Address 0x62[6:5], User Sub Map  
When data is sliced on a given line, the corresponding ancillary  
data packet is placed immediately after the next EAV code that  
occurs at the output (that is, data sliced from multiple lines are  
not buffered up and then emitted in a burst). Note that, due to  
the vertical delay through the comb filters, the line number on  
which the packet is placed differs from the line number on  
which the data was sliced.  
These bits determine whether the ancillary data output mode is  
in byte mode or nibble mode.  
Table 73. ADF_MODE  
ADF_MODE[1:0] Description  
00 (default)  
Nibble mode  
01  
10  
Byte mode, no code restrictions  
Byte mode, but 0x00 and 0xFF prevented  
(0x00 replaced by 0x01, 0xFF replaced by 0xFE)  
The user can enable or disable the insertion of VDP results that  
have been decoded into the 656 ancillary streams by using the  
ADF_ENABLE bit.  
11  
Reserved  
ADF_ENABLE, Enable Ancillary Data Output Through  
656 Stream, Address 0x62[7], User Sub Map  
Setting ADF_ENABLE to 0 (default) disables the insertion of  
VBI decoded data into the ancillary 656 stream.  
Rev. G | Page 56 of 120  
Data Sheet  
ADV7180  
The ancillary data packet sequence is explained in Table 74 and  
Table 75. The nibble output mode is the default mode of output  
from the ancillary stream when ancillary stream output is  
enabled. This format is in compliance with ITU-R BT.1364.  
EP  
—The MSB, B9, is the inverse of EP. This ensures that  
restricted Code 0x00 and Code 0xFF do not occur.  
LINE_NUMBER[9:0]—The line number of the line that  
immediately precedes the ancillary data packet. The line  
number is from the numbering system in ITU-R BT.470.  
The line number runs from 1 to 625 in a 625-line system  
and from 1 to 263 in a 525-line system. Note that, due to  
the vertical delay through the comb filters, the line number  
on which the packet is output differs from the line number  
on which the VBI data was sliced.  
Data count—The data count specifies the number of  
UDWs in the ancillary stream for the standard. The total  
number of user data-words is four times the data count.  
Padding words can be introduced to make the total  
number of UDWs divisible by 4.  
The following abbreviations are used in Table 74 and Table 75:  
EP—Even parity for Bit B8 to Bit B2. The parity bit’s EP is  
set so that an even number of 1s are in Bit B8 to Bit B2,  
including the parity bit, D8.  
CS—Checksum word. The CS word is used to increase  
confidence of the integrity of the ancillary data packet  
from the DID, SDID, and DC through user data-words  
(UDWs). It consists of 10 bits that include the following:  
a 9-bit calculated value and B9 as the inverse of B8. The  
checksum value B8 to B0 is equal to the nine LSBs of the  
sum of the nine LSBs of the DID, SDID, and DC and all  
UDWs in the packet. Prior to the start of the checksum  
count cycle, all checksum and carry bits are preset to 0.  
Any carry resulting from the checksum count cycle is  
ignored.  
Table 74. Ancillary Data in Nibble Output Format  
Byte  
B9  
B8  
B7  
B6  
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
B0  
0
Description  
0
1
2
3
0
0
0
0
Ancillary data preamble  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
EP  
EP  
0
I2C_DID6_2[4:0]  
0
0
DID (data identification  
word)  
4
EP  
EP  
I2C_SDID7_2[5:0]  
0
0
SDID (secondary data  
identification word)  
5
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
0
0
DC[4:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Data count  
6
Padding[1:0]  
VBI_DATA_STD[3:0]  
LINE_NUMBER[9:5]  
LINE_NUMBER[4:0]  
ID0 (User Data-Word 1)  
ID1 (User Data-Word 2)  
ID2 (User Data-Word 3)  
ID3 (User Data-Word 4)  
ID4 (User Data-Word 5)  
ID5 (User Data-Word 6)  
ID6 (User Data-Word 7)  
ID7 (User Data-Word 8)  
ID8 (User Data-Word 9)  
7
8
EVEN_FIELD  
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VDP_TTXT_TYPE[1:0]  
VBI_WORD_1[7:4]  
10  
11  
12  
13  
14  
VBI_WORD_1[3:0]  
VBI_WORD_2[7:4]  
VBI_WORD_2[3:0]  
VBI_WORD_3[7:4]  
Pad 0x200; these  
padding words may be  
present, depending on  
ancillary data type; user  
data-word  
n − 3  
n − 2  
n − 1  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
B8  
Checksum (CS)  
CS (checksum word)  
Rev. G | Page 57 of 120  
 
ADV7180  
Data Sheet  
Table 75. Ancillary Data in Byte Output Format1  
Byte  
B9  
B8  
B7  
B6  
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
B0  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
Description  
0
0
0
0
0
Ancillary data preamble  
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
3
EP  
EP  
EP  
EP  
EP  
EP  
EP  
0
I2C_DID6_2[4:0]  
I2C_SDID7_2[5:0]  
DC[4:0]  
DID  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
4
SDID  
5
0
Data count  
6
Padding[1:0]  
VBI_DATA_STD[3:0]  
LINE_NUMBER[9:5]  
LINE_NUMBER[4:0]  
ID0 (User Data-Word 1)  
ID1 (User Data-Word 2)  
ID2 (User Data-Word 3)  
ID3 (User Data-Word 4)  
ID4 (User Data-Word 5)  
ID5 (User Data-Word 6)  
ID6 (User Data-Word 7)  
ID7 (User Data-Word 8)  
ID8 (User Data-Word 9)  
7
0
8
EVEN_FIELD  
0
9
0
0
0
VDP_TTXT_TYPE[1:0]  
10  
11  
12  
13  
14  
VBI_WORD_1[7:0]  
VBI_WORD_2[7:0]  
VBI_WORD_3[7:0]  
VBI_WORD_4[7:0]  
VBI_WORD_5[7:0]  
Pad 0x200; these  
padding words may be  
present, depending on  
ancillary data type; user  
data-word  
n − 3  
n − 2  
n − 1  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
B8  
Checksum  
CS (checksum word)  
1 This mode does not fully comply with ITU-R BT.1364.  
Example  
Structure of VBI Words in the Ancillary Data Stream  
For teletext (B-WST), the framing code byte is 11100100 (0xE4),  
with bits shown in the order of transmission. VBI_WORD_1 =  
0x27, VBI_WORD_2 = 0x00, and VBI_WORD_3 = 0x00  
translated into UDWs in the ancillary data stream for nibble  
mode are as follows:  
Each VBI data standard has been split into a clock-run-in  
(CRI), a framing code (FC), and a number of data bytes (n).  
The data packet in the ancillary stream includes only the FC  
and data bytes. Table 76 shows the format of VBI_WORD_x in  
the ancillary data stream.  
UDW5[5:2] = 0010  
Table 76. Structure of VBI Data-Words in the Ancillary Stream  
UDW6[5:2] = 0111  
Ancillary Data Byte No.  
VBI_WORD_1  
VBI_WORD_2  
VBI_WORD_3  
VBI_WORD_4  
Byte Type  
Description  
UDW7[5:2] = 0000 (undefined bits set to 0)  
UDW8[5:2] = 0000 (undefined bits set to 0)  
UDW9[5:2] = 0000 (undefined bits set to 0)  
UDW10[5:2] = 0000 (undefined bits set to 0)  
For byte mode,  
FC0  
FC1  
FC2  
DB1  
Framing Code[23:16]  
Framing Code[15:8]  
Framing Code[7:0]  
First data byte  
VBI_WORD_N + 3  
DBn  
Last (nth) data byte  
UDW5[9:2] = 0010_0111  
VDP Framing Code  
The length of the actual framing code depends on the VBI data  
standard. For uniformity, the length of the framing code reported  
in the ancillary data stream is always 24 bits. For standards with  
a smaller framing code length, the extra LSB bits are set to 0.  
The valid length of the framing code can be decoded from the  
VBI_DATA_STD bits available in ID0 (UDW 1). The framing  
code is always reported in the inverse-transmission order.  
UDW6[9:2] = 0000_0000 (undefined bits set to 0)  
UDW7[9:2] = 0000_0000 (undefined bits set to 0)  
Table 77 shows the framing code and its valid length for VBI  
data standards supported by VDP.  
Rev. G | Page 58 of 120  
 
 
Data Sheet  
ADV7180  
The data bytes in the ancillary data stream are as follows:  
Data Bytes  
VBI_WORD_4 = Byte 1[7:0]  
VBI_WORD_5 = Byte 2[7:0]  
VBI_WORD_4 to VBI_WORD_N + 3 contain the data-words  
that were decoded by the VDP in the transmission order. The  
position of bits in bytes is in the inverse transmission order.  
The number of VBI_WORDS for each VBI data standard and  
the total number of UDWs in the ancillary data stream is shown  
in Table 78.  
For example, closed captioning has two user data bytes, as  
shown in Table 82.  
Table 77. Framing Code Sequence for Different VBI Standards  
Error-Free Framing Code Bits  
(in Order of Transmission)  
Error-Free Framing Code Reported by  
VDP (in Reverse Order of Transmission)  
VBI Standard  
Length in Bits  
TTXT_SYSTEM_A (PAL)  
TTXT_SYSTEM_B (PAL)  
TTXT_SYSTEM_B (NTSC)  
TTXT_SYSTEM_C (PAL and NTSC)  
TTXT_SYSTEM_D (PAL and NTSC)  
VPS (PAL)  
VITC (NTSC and PAL)  
WSS (PAL)  
GEMSTAR_1× (NTSC)  
GEMSTAR_2× (NTSC)  
CCAP (NTSC and PAL)  
CGMS (NTSC)  
8
8
8
8
8
16  
1
24  
3
11  
3
11100111  
11100100  
11100100  
11100111  
11100101  
10001010100011001  
0
000111100011110000011111  
001  
1001_1011_101  
001  
0
11100111  
00100111  
00100111  
11100111  
10100111  
1001100101010001  
0
111110000011110001111000  
100  
101_1101_1001  
100  
0
1
Table 78. Total User Data-Words for Different VBI Standards1  
VBI Standard  
ADF Mode  
Framing Code UDWs VBI Data-Words No. of Padding Words Total UDWs  
TTXT_SYSTEM_A (PAL)  
00 (nibble mode)  
01, 10 (byte mode)  
00 (nibble mode)  
01, 10 (byte mode)  
00 (nibble mode)  
01, 10 (byte mode)  
00 (nibble mode)  
01, 10 (byte mode)  
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
74  
37  
84  
42  
68  
34  
66  
33  
68  
34  
26  
13  
18  
9
4
2
4
2
8
4
4
2
0
0
2
3
2
3
0
2
2
3
0
0
0
0
2
3
2
3
2
1
2
3
0
2
84  
44  
96  
52  
80  
44  
76  
42  
80  
44  
36  
20  
28  
16  
16  
12  
16  
12  
20  
12  
16  
12  
16  
12  
TTXT_SYSTEM_B (PAL)  
TTXT_SYSTEM_B (NTSC)  
TTXT_SYSTEM_C (PAL and NTSC)  
TTXT_SYSTEM_D (PAL and NTSC) 00 (nibble mode)  
01, 10 (byte mode)  
VPS (PAL)  
00 (nibble mode)  
01, 10 (byte mode)  
00 (nibble mode)  
01, 10 (byte mode)  
00 (nibble mode)  
01, 10 (byte mode)  
00 (nibble mode)  
01, 10 (byte mode)  
00 (nibble mode)  
01, 10 (byte mode)  
00 (nibble mode)  
01, 10 (byte mode)  
00 (nibble mode)  
01, 10 (byte mode)  
VITC (NTSC and PAL)  
WSS (PAL)  
GEMSTAR_1× (NTSC)  
GEMSTAR_2× (NTSC)  
CCAP (NTSC and PAL)  
CGMS (NTSC)  
6
3 + 3  
1 The first four UDWs are always the ID.  
Rev. G | Page 59 of 120  
 
 
ADV7180  
Data Sheet  
I2C Interface  
Content-based updating also applies to lines with lost data.  
Dedicated I2C readback registers are available for CCAP, CGMS,  
WSS, Gemstar, VPS, PDC/UTC, and VITC. Because teletext is a  
high data rate standard, data extraction is supported only through  
the ancillary data packet.  
Therefore, for standards like VPS, Gemstar, CGMS, and WSS, if no  
data arrives in the next four lines programmed, the corresponding  
available bit in the VDP_STATUS register is set high and the  
content in the I2C registers for that standard is set to 0. The user  
must write high to the corresponding clear bit so that when a  
valid line is decoded after some time, the decoded results are  
available in the I2C registers, with the available status bit set high.  
User Interface for I2C Readback Registers  
The VDP decodes all enabled VBI data standards in real time.  
Because the I2C access speed is much lower than the decoded  
rate, when the registers are accessed, they may be updated with  
data from the next line. To avoid this, VDP has a self-clearing  
clear bit and an available (AVL) status bit accompanying all I2C  
readback registers.  
The user must clear the I2C readback register by writing a high to  
the clear bit. This resets the state of the available bit to low and  
indicates that the data in the associated readback registers is not  
valid. After the VDP decodes the next line of the corresponding  
VBI data, the decoded data is placed into the I2C readback  
register and the available bit is set to high to indicate that valid  
data is now available.  
If content-based updating is enabled, the available bit is set high  
(assuming the clear bit was written) in the following cases:  
The data contents have changed.  
Data was being decoded and four lines with no data have  
been detected.  
No data was being decoded and new data is now being  
decoded.  
GS_VPS_PDC_UTC_CB_CHANGE, Enable Content-  
Based Updating for Gemstar/VPS/PDC/UTC,  
Address 0x9C[5], User Sub Map  
Setting GS_VPS_PDC_UTC_CB_CHANGE to 0 disables  
content-based updating.  
Though the VDP decodes this VBI data in subsequent lines if  
present, the decoded data is not updated to the readback registers  
until the clear bit is set high again. However, this data is  
available through the 656 ancillary data packets.  
Setting GS_VPS_PDC_UTC_CB_CHANGE to 1 (default)  
enables content-based updating.  
WSS_CGMS_CB_CHANGE, Enable Content-Based  
Updating for WSS/CGMS, Address 0x9C[4],  
User Sub Map  
The clear and available bits are in the VDP_STATUS_CLEAR  
(0x78, user sub map, write only) and VDP_STATUS (0x78, user  
sub map, read only) registers, respectively.  
Setting WSS_CGMS_CB_CHANGE to 0 disables content-based  
updating.  
Example I2C Readback Procedure  
The following tasks must be performed to read one packet  
(line) of PDC data from the decoder:  
1. Write 10 to I2C_GS_VPS_PDC_UTC[1:0] (0x9C, user sub  
map) to specify that PDC data must be updated to I2C  
registers.  
Setting WSS_CGMS_CB_CHANGE to 1 (default) enables  
content-based updating.  
VDP—Interrupt-Based Reading of VDP I2C Registers  
Some VDP status bits are also linked to the interrupt request  
controller so that the user does not have to poll the available status  
bit. The user can configure the video decoder to trigger an  
2. Write high to the GS_PDC_VPS_UTC_CLEAR bit (0x78,  
user sub map) to enable I2C register updating.  
3. Poll the GS_PDC_VPS_UTC_AVL bit (0x78, user sub  
map) going high to check the availability of the PDC  
packets.  
INTRQ  
interrupt request on the  
pin in response to the valid  
data available in the I2C registers. This function is available for  
the following data types:  
4. Read the data bytes from the PDC I2C registers. Repeat  
Step 1 to Step 3 to read another line or packet of data.  
CGMS or WSS. The user can select either triggering an  
interrupt request each time sliced data is available or  
triggering an interrupt request only when the sliced data  
has changed. Selection is made via the WSS_CGMS_CB_  
CHANGE bit.  
Gemstar, PDC, VPS, or UTC. The user can select to trigger  
an interrupt request each time sliced data is available or to  
trigger an interrupt request only when the sliced data has  
changed. Selection is made via the GS_VPS_PDC_UTC_  
CB_CHANGE bit.  
To read a packet of CCAP, CGMS, or WSS data, Step 1 to Step 3  
are required only because they have dedicated registers.  
VDP—Content-Based Data Update  
For certain standards, such as WSS, CGMS, Gemstar, PDC, UTC,  
and VPS, the information content in the signal transmitted remains  
the same over numerous lines, and the user may want to be notified  
only when there is a change in the information content or loss of  
the information content. The user must enable content-based  
updating for the required standard through the GS_VPS_PDC_  
UTC_CB_CHANGE and WSS_CGMS_CB_CHANGE bits.  
Therefore, the available bit shows the availability of that  
standard only when its content has changed.  
Rev. G | Page 60 of 120  
 
Data Sheet  
ADV7180  
The sequence for the interrupt-based reading of the VDP I2C  
data registers is as follows for the CCAP standard:  
VDP_VITC_MSK  
to 1 enables the interrupt on the  
Setting  
VDP_VITC_Q signal.  
Interrupt Status Register Details  
1. The user unmasks the CCAP interrupt mask bit (Register 0x50,  
Bit 0, user sub map = 1). CCAP data occurs on the incoming  
video. VDP slices CCAP data and places it into the VDP  
readback registers.  
2. The VDP CCAP available bit CC_CAP goes high, and the  
VDP module signals to the interrupt controller to stimulate  
an interrupt request (for CCAP in this case).  
3. The user reads the interrupt status bits (user sub map) and  
sees that new CCAP data is available (Register 0x4E, Bit 0,  
user sub map = 1).  
The following read-only bits contain data detection information  
from the VDP module since the status bit was last cleared or  
unmasked.  
VDP_CCAPD_Q, Address 0x4E[0], User Sub Map  
When VDP_CCAPD_Q is 0 (default), CCAP data has not been  
detected.  
When VDP_CCAPD_Q is 1, CCAP data has been detected.  
VDP_CGMS_WSS_CHNGD_Q, Address 0x4E[2],  
User Sub Map  
4. The user writes 1 to the CCAP interrupt clear bit (Register 0x4F,  
Bit 0, user sub map = 1) in the interrupt I2C space (this is a  
INTRQ  
self-clearing bit). This clears the interrupt on the  
pin but does not have an effect in the VDP I2C area.  
When VDP_CGMS_WSS_CHNGD_Q is 0 (default), CGMS or  
WSS data has not been detected.  
5. The user reads the CCAP data from the VDP I2C area.  
6. The user writes to Bit CC_CLEAR in the  
VDP_STATUS_CLEAR register, (Register 0x78, Bit 0,  
user sub map = 1) to signify the CCAP data has been read  
(therefore the VDP CCAP can be updated at the next  
occurrence of CCAP).  
When VDP_CGMS_WSS_CHNGD_Q is 1, CGM or WSS data  
has been detected.  
VDP_GS_VPS_PDC_UTC_CHNG_Q, Address 0x4E[4],  
User Sub Map  
When VDP_GS_VPS_PDC_UTC_CHNG_Q is 0 (default),  
Gemstar, PDC, UTC, or VPS data has not been detected.  
7. The user goes back to Step 2.  
Interrupt Mask Register Details  
When VDP_GS_VPS_PDC_UTC_CHNG_Q is 1, Gemstar,  
PDC, UTC, or VPS data has been detected.  
The following bits set the interrupt mask on the signal from the  
VDP VBI data slicer.  
VDP_VITC_Q, Address 0x4E[6], User Sub Map,  
Read Only  
VDP_CCAPD_MSK  
, Address 0x50[0], User Sub Map  
When VDP_VITC_Q is 0 (default), VITC data has not been  
detected.  
VDP_CCAPD_MSK  
on the VDP_CCAPD_Q signal.  
Setting  
to 0 (default) disables the interrupt  
When VDP_VITC_Q is 1, VITC data has been detected.  
VDP_CCAPD_MSK  
Setting  
VDP_CCAPD_Q signal.  
to 1 enables the interrupt on the  
Interrupt Status Clear Register Details  
It is not necessary to write 0 to these write-only bits because  
they automatically reset after they have been set to 1 (self-clearing).  
VDP_CGMS_WSS_CHNGD_MSK  
Sub Map  
, Address 0x50[2], User  
VDP_CCAPD_CLR, Address 0x4F[0], User Sub Map  
VDP_CGMS_WSS_CHNGD_MSK  
Setting  
the interrupt on the VDP_CGMS_WSS_ CHNGD_Q signal.  
VDP_CGMS_WSS_CHNGD_MSK  
to 0 (default) disables  
Setting VDP_CCAPD_CLR to 1 clears the VDP_CCAP_Q bit.  
VDP_CGMS_WSS_CHNGD_CLR, Address 0x4F[2],  
User Sub Map  
Setting  
to 1 enables the  
interrupt on the VDP_CGMS_WSS_CHNGD_Q signal.  
Setting VDP_CGMS_WSS_CHNGD_CLR to 1 clears the  
VDP_CGMS_WSS_CHNGD_Q bit.  
VDP_GS_VPS_PDC_UTC_CHNG_MSK  
Address 0x50[4], User Sub Map  
,
VDP_GS_VPS_PDC_UTC_CHNG_CLR,  
Address 0x4F[4], User Sub Map  
VDP_GS_VPS_PDC_UTC_CHNG_MSK  
(default) disables the interrupt on the  
Setting  
to 0  
VDP_GS_VPS_PDC_UTC_CHNG_Q signal.  
Setting VDP_GS_VPS_PDC_UTC_CHNG_CLR to 1 clears the  
VDP_GS_VPS_PDC_UTC_CHNG_Q bit.  
VDP_GS_VPS_PDC_UTC_CHNG_MSK  
Setting  
to 1 enables  
the interrupt on the VDP_GS_VPS_PDC_UTC_CHNG_Q signal.  
VDP_VITC_CLR, Address 0x4F[6], User Sub Map  
VDP_VITC_MSK  
, Address 0x50[6], User Sub Map  
Setting VDP_VITC_CLR to 1 clears the VDP_VITC_Q bit.  
VDP_VITC_MSK  
Setting  
to 0 (default) disables the interrupt  
on the VDP_VITC_Q signal.  
Rev. G | Page 61 of 120  
 
ADV7180  
Data Sheet  
I2C READBACK REGISTERS  
WST_PKT_DECODE_DISABLE, Disable Hamming  
Decoding of Bytes in WST, Address 0x60[3], User Sub Map  
Teletext  
Setting WST_PKT_DECODE_DISABLE to 0 enables hamming  
decoding of WST packets.  
Because teletext is a high data rate standard, the decoded bytes  
are available only as ancillary data. However, a TTXT_AVL bit  
has been provided in I2C so that the user can check whether the  
VDP has detected teletext. Note that the TTXT_AVL bit is a  
plain status bit and does not use the protocol identified in the  
I2C Interface section.  
Setting WST_PKT_DECODE_DISABLE to 1 (default) disables  
hamming decoding of WST packets.  
For hamming-coded bytes, the dehammed nibbles are output  
along with some error information from the hamming decoder  
as follows:  
TTXT_AVL, Teletext Detected Status, Address 0x78[7],  
User Sub Map, Read Only  
Input hamming coded byte: {D3, P3, D2, P2, D1, P1, D0, P0}  
(bits in decoded order)  
When TTXT_AVL is 0, teletext was not detected.  
When TTXT_AVL is 1, teletext was detected.  
WST Packet Decoding  
Output dehammed byte: {E1, E0, 0, 0, D3', D2', D1', D0'}  
(Di' – corrected bits, Ei error information).  
Table 79. Error Bits in the Dehammed Output Byte  
Output Data Bits  
in Nibble  
For WST only, the VDP decodes the magazine and row address  
of teletext packets and further decodes the packets 8 × 4  
hamming coded words. This feature can be disabled using the  
WST_PKT_DECODE_DISABLE bit (Bit 3, Register 0x60, user  
sub map). This feature is valid for WST only.  
E[1:0] Error Information  
00  
01  
10  
11  
No errors detected  
Error in P4  
Double error  
Okay  
Okay  
Bad  
Single error found and corrected  
Okay  
Table 80 describes the WST packets that are decoded.  
Table 80. WST Packet Description  
Packet  
Byte  
Description  
Header Packet (X/00)  
1st  
Magazine number—Dehammed Byte 4  
Row number—Dehammed Byte 5  
Page number—Dehammed Byte 6  
Page number—Dehammed Byte 7  
Control bytes—Dehammed Byte 8 to Byte 13  
Raw data bytes  
2nd  
3rd  
4th  
5th to 10th  
11th to 42nd  
1st  
Text Packets (X/01 to X/25)  
Magazine number—Dehammed Byte 4  
Row number—Dehammed Byte 5  
Raw data bytes  
2nd  
3rd to 42nd  
1st  
2nd  
3rd  
4th to 10th  
11th to 23rd  
24th to 42nd  
1st  
2nd  
3rd  
4th to 10th  
11th to 23rd  
24th to 42nd  
1st  
2nd  
3rd  
4th to 42nd  
8/30 (Format 1) Packet  
Design Code = 0000 or 0001  
UTC  
Magazine number—Dehammed Byte 4  
Row number—Dehammed Byte 5  
Design code—Dehammed Byte 6  
Dehammed initial teletext page, Byte 7 to Byte 12  
UTC bytes—Dehammed Byte 13 to Byte 25  
Raw status bytes  
8/30 (Format 2) Packet  
Design Code = 0010 or 0011  
PDC  
Magazine number—Dehammed Byte 4  
Row number—Dehammed Byte 5  
Design code—Dehammed Byte 6  
Dehammed initial teletext page, Byte 7 to Byte 12  
PDC bytes—Dehammed Byte 13 to Byte 25  
Raw status bytes  
X/26, X/27, X/28, X/29, X/30, X/311  
Magazine number—Dehammed Byte 4  
Row number—Dehammed Byte 5  
Design code—Dehammed Byte 6  
Raw data bytes  
1 For X/26, X/28, and X/29, further decoding needs 24 × 18 hamming decoding. Not supported at present.  
Rev. G | Page 62 of 120  
 
 
 
Data Sheet  
ADV7180  
CGMS_WSS_AVL, CGMS/WSS Available, Address 0x78[2],  
User Sub Map, Read Only  
CGMS and WSS  
The CGMS and WSS data packets convey the same type of  
information for different video standards. WSS is for PAL and  
CGMS is for NTSC; therefore, the CGMS and WSS readback  
registers are shared. WSS is biphase coded; the VDP performs a  
biphase decoding to produce the 14 raw WSS bits in the CGMS/  
WSS readback I2C registers and to set the CGMS_WSS_AVL bit.  
When CGMS_WSS_AVL is 0, CGMS/WSS was not detected.  
When CGMS_WSS_AVL is 1, CGMS/WSS was detected.  
VDP_CGMS_WSS_DATA_0[3:0], Address 0x7D[3:0];  
VDP_CGMS_WSS_DATA_1[7:0], Address 0x7E[7:0];  
VDP_CGMS_WSS_DATA_2[7:0], Address 0x7F[7:0];  
User Sub Map, Read Only  
CGMS_WSS_CLEAR, CGMS/WSS Clear, Address 0x78[2],  
User Sub Map, Write Only, Self-Clearing  
These bits hold the decoded CGMS or WSS data.  
Refer to Figure 46 and Figure 47 for the I2C-to-WSS and I2C-to-  
CGMS bit mapping.  
Setting CGMS_WSS_CLEAR to 1 reinitializes the CGMS/WSS  
readback registers.  
VDP_CGMS_WSS_  
VDP_CGMS_WSS_DATA_2 DATA_1[5:0]  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
11.0µs  
38.4µs  
42.5µs  
Figure 46. WSS Waveform  
+100 IRE  
+70 IRE  
VDP_CGMS_WSS_  
DATA_0[3:0]  
REF  
VDP_CGMS_WSS_DATA_2  
VDP_CGMS_WSS_DATA_1  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0 IRE  
49.1µs ± 0.5µs  
–40 IRE  
11.2µs  
CRC SEQUENCE  
2.235µs ± 20ns  
Figure 47. CGMS Waveform  
Table 81. CGMS Readback Registers1  
Signal Name  
Register Location  
Address (User Sub Map)  
CGMS_WSS_DATA_0[3:0]  
CGMS_WSS_DATA_1[7:0]  
CGMS_WSS_DATA_2[7:0]  
VDP_CGMS_WSS_DATA_0[3:0]  
VDP_CGMS_WSS_DATA_1[7:0]  
VDP_CGMS_WSS_DATA_2[7:0]  
125  
126  
127  
0x7D  
0x7E  
0x7F  
1 These registers are readback registers; default value does not apply.  
Rev. G | Page 63 of 120  
 
 
 
ADV7180  
Data Sheet  
CCAP  
CC_EVEN_FIELD, Address 0x78[1], User Sub Map,  
Read Only  
Two bytes of decoded closed caption data are available in the  
I2C registers. The field information of the decoded CCAP data  
can be obtained from the CC_EVEN_FIELD bit (Register 0x78).  
Identifies the field from which the CCAP data was decoded.  
When CC_EVEN_FIELD is 0, closed captioning was detected  
from an odd field.  
CC_CLEAR, Closed Caption Clear, Address 0x78[0],  
User Sub Map, Write Only, Self-Clearing  
When CC_EVEN_FIELD is 1, closed captioning was detected  
from an even field.  
Setting CC_CLEAR to 1 reinitializes the CCAP readback  
registers.  
VDP_CCAP_DATA_0, Address 0x79[7:0], User Sub Map,  
Read Only  
CC_AVL, Closed Caption Available, Address 0x78[0],  
User Sub Map, Read Only  
Decoded Byte 1 of CCAP data.  
When CC_AVL is 0, closed captioning was not detected.  
When CC_AVL is 1, closed captioning was detected.  
VDP_CCAP_DATA_1, Address 0x7A[7:0], User Sub Map,  
Read Only  
Decoded Byte 2 of CCAP data.  
10.5 ± 0.25µs  
12.91µs  
7 CYCLES  
OF 0.5035MHz  
(CLOCK RUN-IN)  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
S
T
A
R
T
P
A
R
I
T
Y
P
A
R
I
T
Y
50 IRE  
40 IRE  
VDP_CCAP_D ATA_0 VDP_CCAP_D ATA_1  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = f = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
27.382µs  
33.764µs  
Figure 48. CCAP Waveform and Decoded Data Correlation  
Table 82. CCAP Readback Registers1  
Signal Name  
Register Location  
Address (User Sub Map)  
CCAP_BYTE_1[7:0]  
CCAP_BYTE_2[7:0]  
VDP_CCAP_DATA_0[7:0]  
VDP_CCAP_DATA_1[7:0]  
121  
122  
0x79  
0x7A  
1 These registers are readback registers; default value does not apply.  
Rev. G | Page 64 of 120  
 
Data Sheet  
ADV7180  
VITC  
VITC_CLEAR, VITC Clear, Address 0x78[6],  
User Sub Map, Write Only, Self-Clearing  
VITC has a sequence of 10 syncs between each data byte. The  
VDP strips these syncs from the data stream to output only the  
data bytes. The VITC results are available in Register  
VDP_VITC_DATA_0 to Register VDP_VITC_DATA_8  
(Register 0x92 to Register 0x9A, user sub map).  
Setting VITC_CLEAR to 1 reinitializes the VITC readback  
registers.  
VITC_AVL, VITC Available, Address 0x78[6],  
User Sub Map, Read Only  
The VITC has a CRC byte at the end; the syncs in between each  
data byte are also used in this CRC calculation. Because the syncs  
in between each data byte are not output, the CRC is calculated  
internally. The calculated CRC is available for the user in the  
VDP_VITC_CALC_CRC register (Resister 0x9B, user sub map).  
When the VDP completes decoding the VITC line, the  
VITC_DATA_x and VITC_CRC registers are updated and the  
VITC_AVL bit is set.  
When VITC_AVL is 0, VITC data was not detected.  
When VITC_AVL is 1, VITC data was detected.  
VITC Readback Registers  
See Figure 49 for the I2C-to-VITC bit mapping.  
TO  
VITC WAVEFORM  
BIT 0, BIT 1  
BIT 88, BIT 89  
Figure 49. VITC Waveform and Decoded Data Correlation  
Table 83. VITC Readback Registers1  
Signal Name  
Register Location  
Address (User Sub Map)  
VITC_DATA_0[7:0]  
VITC_DATA_1[7:0]  
VITC_DATA_2[7:0]  
VITC_DATA_3[7:0]  
VITC_DATA_4[7:0]  
VITC_DATA_5[7:0]  
VITC_DATA_6[7:0]  
VITC_DATA_7[7:0]  
VITC_DATA_8[7:0]  
VITC_CRC[7:0]  
VDP_VITC_DATA_0[7:0] (VITC Bits[9:2])  
VDP_VITC_DATA_1[7:0] (VITC Bits[19:12])  
VDP_VITC_DATA_2[7:0] (VITC Bits[29:22])  
VDP_VITC_DATA_3[7:0] (VITC Bits[39:32])  
VDP_VITC_DATA_4[7:0] (VITC Bits[49:42])  
VDP_VITC_DATA_5[7:0] (VITC Bits[59:52])  
VDP_VITC_DATA_6[7:0] (VITC Bits[69:62])  
VDP_VITC_DATA_7[7:0] (VITC Bits[79:72])  
VDP_VITC_DATA_8[7:0] (VITC Bits[89:82])  
VDP_VITC_CALC_CRC[7:0]  
146  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
147  
148  
149  
150  
151  
152  
153  
154  
155  
1 These registers are readback registers; default value does not apply.  
Rev. G | Page 65 of 120  
 
ADV7180  
Data Sheet  
VPS/PDC/UTC/GEMSTAR  
VDP supports autodetection of the Gemstar standard,  
either Gemstar 1× or Gemstar 2×, and decodes accordingly.  
For the autodetection mode to work, the user must set the  
AUTO_DETECT_GS_TYPE bit (Register 0x61, user sub map)  
and program the decoder to decode Gemstar 2× on the required  
lines through line programming. The type of Gemstar decoded  
can be determined by observing the GS_DATA_TYPE bit  
(Register 0x78, user sub map).  
The readback registers for VPS, PDC, and UTC are shared.  
Gemstar is a high data rate standard and is available only through  
the ancillary stream. However, for evaluation purposes, any one  
line of Gemstar is available through the I2C registers sharing the  
same register space as PDC, UTC, and VPS. Therefore, only VPS,  
PDC, UTC, or Gemstar can be read through the I2C at one time.  
To identify the data that should be made available in the I2C  
registers, the user must program I2C_GS_VPS_PDC_UTC[1:0]  
(Register Address 0x9C, user sub map).  
AUTO_DETECT_GS_TYPE, Address 0x61[4], User Sub Map  
Setting AUTO_DETECT_GS_TYPE to 0 (default) disables the  
autodetection of the Gemstar type.  
I2C_GS_VPS_PDC_UTC[1:0] (VDP), Address 0x9C[7:6],  
User Sub Map  
Specifies which standard result is available for I2C readback.  
Setting AUTO_DETECT_GS_TYPE to 1 enables the  
autodetection of the Gemstar type.  
GS_DATA_TYPE, Address 0x78[5], User Sub Map, Read Only  
GS_PDC_VPS_UTC_CLEAR, GS/PDC/VPS/UTC Clear,  
Address 0x78[4], User Sub Map, Write Only, Self-Clearing  
Identifies the decoded Gemstar data type.  
When GS_DATA_TYPE is 0, Gemstar 1× mode is detected.  
Read two data bytes from 0x84.  
Setting GS_PDC_VPS_UTC_CLEAR to 1 reinitializes the  
GS/PDC/VPS/UTC data readback registers.  
When GS_DATA_TYPE is 1, Gemstar 2× mode is detected.  
Read four data bytes from 0x84.  
GS_PDC_VPS_UTC_AVL, GS/PDC/VPS/UTC Available,  
Address 0x78[4], User Sub Map, Read Only  
The Gemstar data that is available in the I2C register can be  
from any line of the input video on which Gemstar was decoded.  
To read the Gemstar data on a particular video line, the user  
should use the manual configuration described in Table 70 and  
Table 71 and enable Gemstar decoding only on the required line.  
When GS_PDC_VPS_UTC_AVL is 0, no GS, PDC, VPS, or  
UTC data was detected.  
When GS_PDC_VPS_UTC_AVL is 1, one GS, PDC, VPS, or  
UTC data was detected.  
VDP_GS_VPS_PDC_UTC, Readback Registers,  
Address 0x84 to Address 0x90  
PDC/UTC  
PDC and UTC are data transmitted through Teletext Packet 8/30  
Format 2 (Magazine 8, Row 30, Design Code 2 or Design Code 3)  
and Packet 8/30 Format 1 (Magazine 8, Row 30, Design Code 0  
or Design Code 1). Therefore, if PDC or UTC data is to be read  
through I2C, the corresponding teletext standard (WST or PAL  
System B) should be decoded by VDP. The whole teletext  
decoded packet is output on the ancillary data stream. The user  
can look for the magazine number, row number, and design  
code and qualify the data as PDC, UTC, or neither of these.  
See Table 85 for information on the readback registers.  
VPS  
The VPS data bits are biphase decoded by the VDP. The decoded  
data is available in both the ancillary stream and in the I2C  
readback registers. VPS decoded data is available in the  
VDP_GS_VPS_PDC_UTC_0 to VDP_VPS_PDC_UTC_12  
registers (Address 0x84 to Address 0x90, User Sub Map). The  
GS_PDC_VPS_UTC_AVL bit is set if the user programmed  
I2C_GS_VPS_PDC_UTC to 01, as explained in Table 84.  
If PDC/UTC packets are identified, Byte 0 to Byte 12 are updated  
to the VDP_GS_VPS_PDC_UTC_0 to VDP_VPS_PDC_UTC_12  
registers, and the GS_PDC_VPS_UTC_AVL bit is set. The full  
packet data is also available in the ancillary data format.  
Note that the data available in the I2C register depends on the  
status of the WST_PKT_DECODE_DISABLE bit (Bit 3,  
Subaddress 0x60, user sub map).  
Gemstar  
The Gemstar-decoded data is made available in the ancillary  
stream, and any one line of Gemstar is also available in the I2C  
registers for evaluation purposes. To read Gemstar results  
through the I2C registers, the user must program  
I2C_GS_VPS_PDC_UTC to 00, as explained in Table 84.  
Table 84. I2C_GS_VPS_PDC_UTC[1:0] Function  
I2C_GS_VPS_PDC_UTC[1:0]  
Description  
Gemstar 1×/2×  
VPS  
PDC  
UTC  
00 (default)  
01  
10  
11  
Rev. G | Page 66 of 120  
 
Data Sheet  
ADV7180  
Table 85. GS/VPS/PDC/UTC Readback Registers1  
Signal Name  
Register Location  
Dec Address (User Sub Map) Hex Address (User Sub Map)  
GS_VPS_PDC_UTC_BYTE_0[7:0]  
GS_VPS_PDC_UTC_BYTE_1[7:0]  
GS_VPS_PDC_UTC_BYTE_2[7:0]  
GS_VPS_PDC_UTC_BYTE_3[7:0]  
VPS_PDC_UTC_BYTE_4[7:0]  
VPS_PDC_UTC_BYTE_5[7:0]  
VPS_PDC_UTC_BYTE_6[7:0]  
VPS_PDC_UTC_BYTE_7[7:0]  
VPS_PDC_UTC_BYTE_8[7:0]  
VPS_PDC_UTC_BYTE_9[7:0]  
VPS_PDC_UTC_BYTE_10[7:0]  
VPS_PDC_UTC_BYTE_11[7:0]  
VPS_PDC_UTC_BYTE_12[7:0]  
VDP_GS_VPS_PDC_UTC_0[7:0] 132  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
VDP_GS_VPS_PDC_UTC_1[7:0] 133  
VDP_GS_VPS_PDC_UTC_2[7:0] 134  
VDP_GS_VPS_PDC_UTC_3[7:0] 135  
VDP_VPS_PDC_UTC_4[7:0]  
VDP_VPS_PDC_UTC_5[7:0]  
VDP_VPS_PDC_UTC_6[7:0]  
VDP_VPS_PDC_UTC_7[7:0]  
VDP_VPS_PDC_UTC_8[7:0]  
VDP_VPS_PDC_UTC_9[7:0]  
VDP_VPS_PDC_UTC_10[7:0]  
VDP_VPS_PDC_UTC_11[7:0]  
VDP_VPS_PDC_UTC_12[7:0]  
136  
137  
138  
139  
140  
141  
142  
143  
144  
1 The default value does not apply to readback registers.  
VBI System 2  
GDE_SEL_OLD_ADF, Address 0x4C[3], User Sub Map  
The user has an option of using a different VBI data slicer called  
VBI System 2. This data slicer is used to decode Gemstar and  
closed caption VBI signals only.  
The ADV7180 has a new ancillary data output block that  
can be used by the VDP data slicer and the VBI System 2  
data slicer. The new ancillary data formatter is used by setting  
GDE_SEL_OLD_ADF to 0 (default). See Table 74 and Table 75  
for information about how the data is packaged in the ancillary  
data stream when this bit is set low.  
Using this system, the Gemstar data is available only in the  
ancillary data stream. A special mode enables one line of data to  
be read back through I2C.  
To use the old ancillary data formatter (to be backward compatible  
with the ADV7183B), set GDE_SEL_OLD_ADF to 1. The ancillary  
data format in this section refers to the ADV7183B-compatible  
ancillary data formatter.  
Gemstar Data Recovery  
The Gemstar-compatible data recovery block (GSCD) supports  
1× and 2× data transmissions. In addition, it can serve as a closed  
caption decoder. Gemstar-compatible data transmissions can  
occur only in NTSC. Closed caption data can be decoded in  
both PAL and NTSC.  
Setting GDE_SEL_OLD_ADF to 0 (default) enables a new  
ancillary data system for use with the VDP and VBI System 2.  
The block can be configured via I2C as follows:  
Setting GDE_SEL_OLD_ADF to 1 enables the old ancillary  
data system for use with the VBI System 2 only (ADV7183B  
compatible).  
GDECEL[15:0] allows data recovery on selected video lines  
on even fields to be enabled or disabled.  
GDECOL[15:0] enables the data recovery on selected lines  
for odd fields.  
GDECAD[0] configures the way in which data is  
embedded in the video data stream.  
The format of the data packet depends on the following criteria:  
Transmission is 1× or 2×.  
Data is output in 8-bit or 4-bit format (see the description  
of the bit).  
Data is closed caption (CCAP) or Gemstar compatible.  
The recovered data is not available through I2C but is inserted into  
the horizontal blanking period of an ITU-R BT.656-compatible  
data stream. The data format is intended to comply with the  
recommendation by the International Telecommunications  
Union, ITU-R BT.1364. For more information, visit the  
International Telecommunication Union website. See Figure 50.  
Data packets are output if the corresponding enable bit is set  
(see the GDECEL[15:0], Gemstar Decoding Even Lines,  
Address 0x48[7:0], Address 0x49[7:0] and the GDECOL[15:0],  
Gemstar Decoding Odd Lines, Address 0x4A[7:0], Address  
0x4B[7:0] sections), and the decoder detects the presence of data.  
For video lines where no data is decoded, no data packet is output,  
even if the corresponding line enable bit is set.  
Rev. G | Page 67 of 120  
 
 
ADV7180  
Data Sheet  
Each data packet starts immediately after the EAV code of the  
preceding line. Figure 50 and Table 86 show the overall structure  
of the data packet.  
Data count byte, giving the number of user data-words that  
follow.  
User data section.  
Optional padding to ensure that the length of the user  
data-word section of a packet is a multiple of four bytes  
(requirement as set in ITU-R BT.1364).  
Checksum byte.  
Entries within the packet are as follows:  
Fixed preamble sequence of 0x00, 0xFF, and 0xFF.  
DID. The value for the DID marking a Gemstar or CCAP  
data packet is 0x140 (10-bit value).  
Table 86 lists the values within a generic data packet that is  
output by the ADV7180 in 8-bit format.  
SDID, which contains information about the video line  
from which data was retrieved, whether the Gemstar  
transmission was in 1× or 2× format, and whether it was  
retrieved from an even or odd field.  
DATA IDENTIFICATION  
SECONDARY DATA IDENTIFICATION  
DATA  
COUNT  
OPTIONAL PADDING CHECK  
00  
FF  
FF  
DID  
SDID  
USER DATA  
BYTES  
SUM  
PREAMBLE FOR ANCILLARY DATA  
USER DATA (4 OR 8 WORDS)  
Figure 50. Gemstar- and CCAP-Embedded Data Packet (Generic)  
Table 86. Generic Data Output Packet  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
1
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
2X  
0
0
SDID  
Line[3:0]  
DC[1]  
5
0
0
DC[0]  
0
Data count (DC)  
6
0
0
0
Word1[7:4]  
Word1[3:0]  
Word2[7:4]  
Word2[3:0]  
Word3[7:4]  
Word3[3:0]  
Word4[7:4]  
Word4[3:0]  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
8
0
0
0
9
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
0
Table 87. Data Byte Allocation  
2× Raw Information Bytes Retrieved from the Video Line  
User Data-Words  
(Including Padding)  
GDECAD  
Padding Bytes  
DC[1:0]  
10  
01  
01  
01  
1
1
0
0
4
4
2
2
0
1
0
1
8
4
4
4
0
0
0
2
Rev. G | Page 68 of 120  
 
 
 
 
Data Sheet  
ADV7180  
Gemstar Bit Names  
DC[1:0]—Data count value. The number of UDWs in the  
packet divided by 4. The number of UDWs in any packet  
must be an integral number of 4. Padding may be required  
at the end, as set in ITU-R BT.1364. See Table 87.  
CS[8:2]—The checksum is provided to determine the  
integrity of the ancillary data packet. It is calculated by  
summing up D[8:2] of DID, SDID, the data count byte, and  
all UDWs and ignoring any overflow during the summation.  
Because all data bytes that are used to calculate the checksum  
have their two LSBs set to 0, the CS[1:0] bits are also always 0.  
The following are the Gemstar bit names:  
DID—The data identification value is 0x140 (10-bit value).  
Care has been taken so that in 8-bit systems, the two LSBs  
do not carry vital information.  
EP  
EP and —The EP bit is set to ensure even parity on the  
D[8:0] data-word. Even parity means there is always an  
even number of 1s within the D[8:0] bit arrangement. This  
includes the EP bit.  
and is output on D[9]. The  
reserved codes of 00 and FF do not occur.  
EP  
describes the logic inverse of EP  
EP  
is output to ensure that the  
CS  
CS  
[8]—describes the logic inversion of CS[8]. The value [8]  
is included in the checksum entry of the data packet to ensure  
that the reserved values of 0x00 and 0xFF do not occur. Table 88  
to Table 91 outline the possible data packages.  
EF—Even field identifier. EF = 1 indicates that the data was  
recovered from a video line on an even field.  
2×—This bit indicates whether the data sliced was in  
Gemstar 1× or 2× format. A high indicates 2× format.  
The 2× bit determines whether the raw information  
retrieved from the video line was two bytes or four bytes.  
The state of the GDECAD bit affects whether the bytes are  
transmitted straight (that is, two bytes transmitted as two  
bytes) or whether they are split into nibbles (that is, two  
bytes transmitted as four half bytes). Padding bytes are  
then added where necessary.  
Gemstar_2× Format, Half-Byte Output Mode  
Half-byte output mode is selected by setting GDECAD to 0;  
full-byte output mode is selected by setting GDECAD to 1. See  
the GDECAD, Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section.  
Gemstar_1× Format  
Half-byte output mode is selected by setting CDECAD to 0,  
full-byte output mode is selected by setting CDECAD to 1. See  
the GDECAD, Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section.  
Line[3:0]—This entry provides a code that is unique for  
each of the possible 16 source lines of video from which  
Gemstar data may have been retrieved. Refer to Table 96  
and Table 97.  
Table 88. Gemstar_2× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
1
0
0
SDID  
Line[3:0]  
5
0
0
0
1
0
0
0
Data count  
6
0
0
0
0
Gemstar Word1[7:4]  
Gemstar Word1[3:0]  
Gemstar Word2[7:4]  
Gemstar Word2[3:0]  
Gemstar Word3[7:4]  
Gemstar Word3[3:0]  
Gemstar Word4[7:4]  
Gemstar Word4[3:0]  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Rev. G | Page 69 of 120  
 
ADV7180  
Data Sheet  
Table 89. Gemstar_2× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
EP  
EP  
EP  
EP  
EF  
0
0
0
SDID  
Line[3:0]  
5
0
0
0
1
0
0
Data count  
6
Gemstar Word1[7:0]  
Gemstar Word2[7:0]  
Gemstar Word3[7:0]  
Gemstar Word4[7:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
8
0
0
9
0
0
10  
CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 90. Gemstar_1× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
3
0
1
0
1
0
Line[3:0]  
0
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
0
SDID  
5
0
0
0
0
1
0
0
Data count  
6
0
0
0
0
Gemstar Word1[7:4]  
Gemstar Word1[3:0]  
Gemstar Word2[7:4]  
Gemstar Word2[3:0]  
User data-words  
User data-words  
User data-words  
User data-words  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Checksum  
Table 91. Gemstar_1× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
Line[3:0]  
0
0
4
EP  
EP  
EP  
EP  
EF  
0
0
SDID  
5
0
0
1
0
Data count  
6
Gemstar Word1[7:0]  
Gemstar Word2[7:0]  
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
8
1
0
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
10  
CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Rev. G | Page 70 of 120  
 
 
Data Sheet  
ADV7180  
Table 92. NTSC CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
0
SDID  
5
0
0
0
0
Data count  
6
0
0
0
0
CCAP Word1[7:4]  
CCAP Word1[3:0]  
CCAP Word2[7:4]  
CCAP Word2[3:0]  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 93. NTSC CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
EP  
EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data count  
6
CCAP Word1[7:0]  
CCAP Word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Rev. G | Page 71 of 120  
 
 
ADV7180  
Data Sheet  
Table 94. PAL CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
0
SDID  
5
0
0
0
0
Data count  
6
0
0
0
0
CCAP Word1[7:4]  
CCAP Word1[3:0]  
CCAP Word2[7:4]  
CCAP Word2[3:0]  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 95. PAL CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
Description  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
EP  
EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data count  
6
CCAP Word1[7:0]  
CCAP Word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
See the GDECEL[15:0], Gemstar Decoding Even Lines,  
Address 0x48[7:0], Address 0x49[7:0] section and the  
GDECOL[15:0], Gemstar Decoding Odd Lines,  
Address 0x4A[7:0], Address 0x4B[7:0] section.  
NTSC CCAP Data  
Half-byte output mode is selected by setting GDECAD to 0, and  
the full-byte mode is enabled by setting GDECAD to 1. See the  
GDECAD, Gemstar Decode Ancillary Data Format, Address  
0x4C[0] section. The data packet formats are shown in Table 92  
and Table 93. Only closed caption data can be embedded in the  
output data stream.  
GDECEL[15:0], Gemstar Decoding Even Lines,  
Address 0x48[7:0], Address 0x49[7:0]  
The 16 bits of GDECEL[15:0] are interpreted as a collection of  
16 individual line decode enable signals. Each bit refers to a line  
of video in an even field. Setting the bit enables the decoder block  
trying to find Gemstar or closed caption-compatible data on  
that particular line. Setting the bit to 0 prevents the decoder  
from trying to retrieve data. See Table 96 and Table 97.  
NTSC closed caption data is sliced on Line 21 of even and odd  
fields. The corresponding enable bit must be set high. See the  
GDECAD, Gemstar Decode Ancillary Data Format, Address  
0x4C[0] section and the GDECOL[15:0], Gemstar Decoding  
Odd Lines, Address 0x4A[7:0], Address 0x4B[7:0] section.  
PAL CCAP Data  
To retrieve closed caption data services on NTSC (Line 284),  
GDECEL[11] must be set.  
Half-byte output mode is selected by setting GDECAD to 0, and  
full-byte output mode is selected by setting GDECAD to 1. See  
the GDECAD, Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section. Table 94 and Table 95 list the bytes of  
the data packet.  
To retrieve closed caption data services on PAL (Line 335),  
GDECEL[14] must be set.  
The default value of GDECEL[15:0] is 0x0000. This setting  
instructs the decoder not to attempt to decode Gemstar or  
CCAP data from any line in the even field. The user should  
only enable Gemstar slicing on lines where VBI data is expected.  
Only closed caption data can be embedded in the output data  
stream. PAL closed caption data is sliced from Line 22 and  
Line 335. The corresponding enable bits must be set.  
Rev. G | Page 72 of 120  
 
 
 
 
Data Sheet  
ADV7180  
Table 96. NTSC Line Enable Bits and Corresponding Line  
Numbering  
GDECAD, Gemstar Decode Ancillary Data Format,  
Address 0x4C[0]  
Line Number  
Line[3:0] (ITU-R BT.470)  
The decoded data from Gemstar-compatible transmissions or  
closed caption-compatible transmissions is inserted into the  
horizontal blanking period of the respective line of video. A  
potential problem can arise if the retrieved data bytes have a  
value of 0x00 or 0xFF. In an ITU-R BT.656-compatible data  
stream, these values are reserved and used only to form a fixed  
preamble. The GDECAD bit allows the data to be inserted into  
the horizontal blanking period in two ways:  
Enable Bit  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[8]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
Comment  
0
1
2
3
4
5
6
7
8
9
10  
11  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar or  
closed caption  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar or  
closed caption  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Insert all data straight into the data stream, even the  
reserved values of 0x00 and 0xFF, if they occur. This may  
violate output data format specification ITU-R BT.1364.  
Split all data into nibbles and insert the half-bytes over  
double the number of cycles in a 4-bit format.  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
22  
23  
24  
25  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[8]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
When GDECAD is 0 (default), the data is split into half-bytes  
and inserted.  
When GDECAD is 1, the data is output straight into the data  
stream in 8-bit format.  
273 (10)  
274 (11)  
275 (12)  
276 (13)  
277 (14)  
278 (15)  
279 (16)  
280 (17)  
281 (18)  
282 (19)  
283 (20)  
284 (21)  
Table 97. PAL Line Enable Bits and Line Numbering  
Line Number  
Line[3:0] (ITU-R BT.470)  
Enable Bit  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[8]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[8]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
Comment  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
321 (8)  
322 (9)  
323 (10)  
324 (11)  
325 (12)  
326 (13)  
327 (14)  
328 (15)  
329 (16)  
330 (17)  
331 (18)  
332 (19)  
333 (20)  
334 (21)  
335 (22)  
336 (23)  
12  
13  
14  
15  
285 (22)  
286 (23)  
287 (24)  
288 (25)  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
GDECOL[15:0], Gemstar Decoding Odd Lines,  
Address 0x4A[7:0], Address 0x4B[7:0]  
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
The 16 bits of GDECOL[15:0] form a collection of 16 individual  
line decode enable signals. See Table 96 and Table 97.  
To retrieve closed caption data services on NTSC (Line 21),  
GDECOL[11] must be set.  
To retrieve closed caption data services on PAL (Line 22),  
GDECOL[14] must be set.  
The default value of GDECOL[15:0] is 0x0000. This setting  
instructs the decoder not to attempt to decode Gemstar or CCAP  
data from any line in the odd field. The user should only enable  
Gemstar slicing on lines where VBI data is expected.  
Rev. G | Page 73 of 120  
 
 
 
 
ADV7180  
Data Sheet  
Letterbox Detection  
There is a two-field delay in reporting any line count parameter.  
Incoming video signals may conform to different aspect ratios  
(16:9 wide screen or 4:3 standard). For certain transmissions in  
the wide-screen format, a digital sequence (WSS) is transmitted  
with the video signal. If a WSS sequence is provided, the aspect  
ratio of the video can be derived from the digitally decoded bits  
that WSS contains.  
There is no letterbox detected bit. Read the LB_LCT[7:0] and  
LB_LCB[7:0] register values to determine whether the letterbox-  
type video is present in the software.  
LB_LCT[7:0], Letterbox Line Count Top, Address 0x9B[7:0];  
LB_LCM[7:0], Letterbox Line Count Mid, Address 0x9C[7:0];  
LB_LCB[7:0], Letterbox Line Count Bottom, Address 0x9D[7:0]  
In the absence of a WSS sequence, letterbox detection can be  
used to find wide-screen signals. The detection algorithm examines  
the active video content of lines at the start and end of a field. If  
black lines are detected, this may indicate that the currently  
shown picture is in wide-screen format.  
Table 98. LB_LCx Access Information  
Signal Name  
LB_LCT[7:0]  
LB_LCM[7:0]  
LB_LCB[7:0]  
Address  
0x9B  
0x9C  
0x9D  
The active video content (luminance magnitude) over a line of  
video is summed together. At the end of a line, this accumulated  
value is compared with a threshold, and a decision is made as to  
whether or not a particular line is black. The threshold value  
needed may depend on the type of input signal; some control is  
provided via LB_TH[4:0].  
LB_TH[4:0], Letterbox Threshold Control,  
Address 0xDC[4:0]  
Table 99. LB_TH Function  
LB_TH[4:0]  
Description  
Detection at the Start of a Field  
01100 (default)  
01101 to 10000  
Default threshold for detection of black lines  
Increase threshold (need larger active video  
content before identifying nonblack lines)  
Decrease threshold (even small noise levels  
can cause the detection of nonblack lines)  
The ADV7180 expects a section of at least six consecutive black  
lines of video at the top of a field. After those lines are detected,  
LB_LCT[7:0] reports the number of black lines that were actually  
found. By default, the ADV7180 starts looking for those black  
lines in sync with the beginning of active video, for example,  
immediately after the last VBI video line. LB_SL[3:0] allows the  
user to set the start of letterbox detection from the beginning of  
a frame on a line-by-line basis. The detection window closes in  
the middle of the field.  
00000 to 01011  
LB_SL[3:0], Letterbox Start Line, Address 0xDD[7:4]  
The LB_SL[3:0] bits are set at 0100 by default. For an NTSC  
signal, this window is from Line 23 to Line 286.  
By changing the bits to 0101, the detection window starts on  
Line 24 and ends on Line 287.  
Detection at the End of a Field  
The ADV7180 expects at least six continuous lines of black video  
at the bottom of a field before reporting the number of lines  
actually found via the LB_LCB[7:0] value. The activity window  
for letterbox detection (end of field) starts in the middle of an  
active field. Its end is programmable via LB_EL[3:0].  
LB_EL[3:0], Letterbox End Line, Address 0xDD[3:0]  
The LB_EL[3:0] bits are set at 1101 by default. This means that the  
letterbox detection window ends with the last active video line.  
For an NTSC signal, this window is from Line 262 to Line 525.  
By changing the bits to 1100, the detection window starts on  
Line 261 and ends on Line 254.  
Detection at the Midrange  
Some transmissions of wide-screen video include subtitles  
within the lower black box. If the ADV7180 finds at least two  
black lines followed by some more nonblack video, for example, the  
subtitle followed by the remainder of the bottom black block, it  
reports a midcount via LB_LCM[7:0]. If no subtitles are found,  
LB_LCM[7:0] reports the same number as LB_LCB[7:0].  
Rev. G | Page 74 of 120  
Data Sheet  
ADV7180  
PIXEL PORT CONFIGURATION  
The ADV7180 has a very flexible pixel port that can be configured  
in a variety of formats to accommodate downstream ICs.  
SWPC, Swap Pixel Cr/Cb, Address 0x27[7]  
This bit allows Cr and Cb samples to be swapped.  
Table 100, Table 101, and Table 102 summarize the various  
functions that the ADV7180 pins can have in different modes of  
operation.  
When SWPC is 0 (default), no swapping is allowed.  
When SWPC is 1, the Cr and Cb values can be swapped.  
LLC_PAD_SEL[2:0] LLC Output Selection,  
Address 0x8F[6:4]  
The following I2C write allows the user to select between LLC  
(nominally at 27 MHz) and LLC (nominally at 13.5 MHz).  
The ordering of components, for example, Cr vs. Cb for  
Channel A, Channel B, and Channel C can be changed. See the  
SWPC, Swap Pixel Cr/Cb, Address 0x27[7] section. Table 100  
indicates the default positions for the Cr/Cb components.  
OF_SEL[3:0], Output Format Selection, Address 0x03[5:2]  
The LLC signal is useful for LLC-compatible wide bus (16-bit)  
output modes. See the OF_SEL[3:0], Output Format Selection,  
Address 0x03[5:2] section for additional information. The LLC  
signal and data on the data bus are synchronized. By default, the  
rising edge of LLC/LLC is aligned with the Y data; the falling  
edge occurs when the data bus holds C data. The polarity of the  
clock, and therefore the Y/C assignments to the clock edges, can  
be altered by using the polarity LLC pin.  
The modes in which the ADV7180 pixel port can be configured  
are under the control of OF_SEL[3:0]. See Table 102 for details.  
The default LLC frequency output on the LLC pin is approximately  
27 MHz. For modes that operate with a nominal data rate of  
13.5 MHz (0001, 0010), the clock frequency on the LLC pin  
stays at the higher rate of 27 MHz. For information on outputting  
the nominal 13.5 MHz clock on the LLC pin, see the  
LLC_PAD_SEL[2:0] LLC Output Selection, Address 0x8F[6:4]  
section.  
When LLC_PAD_SEL is 000, the output is nominally 27 MHz  
LLC on the LLC pin (default).  
When LLC_PAD_SEL is 101, the output is nominally 13.5 MHz  
LLC on the LLC pin.  
Table 100. 64-Lead LQFP P15 to P0 Output/Input Pin Mapping  
Data Port Pins P[15:0]  
Format and Mode  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Video Out, 8-Bit, 4:2:2  
Video Out, 16-Bit, 4:2:2  
YCrCb[7:0]OUT  
Y[7:0]OUT  
CrCb[7:0]OUT  
Table 101. 48-Lead, 40-Lead, and 32-Lead Devices P7 to P0 Output/Input Pin Mapping  
Data Port Pins P[7:0]  
Format and Mode  
7
6
5
4
3
2
1
0
Video Out, 8-Bit, 4:2:2  
YCrCb[7:0]OUT  
Table 102. ADV7180 Standard Definition Pixel Port Modes  
64-Lead LQFP P[15:0]  
P[15:8] P[7:0]  
48-Lead LQFP, 40-Lead LFCSP, or 32-Lead LFCSP  
OF_SEL[3:0]  
0000 to 0001  
0010  
Format  
P[7:0]  
Reserved  
Reserved, do not use  
Not valid  
16-bit at LLC 4:2:2  
8-bit at LLC 4:2:2 (default)  
Reserved  
Y[7:0]  
YCrCb[7:0]  
CrCb[7:0]  
Three-state  
0011 (default)  
0100 to 1111  
YCrCb[7:0]  
Reserved, do not use  
Rev. G | Page 75 of 120  
 
 
 
 
 
 
 
 
 
ADV7180  
Data Sheet  
GPO CONTROL  
The 64-lead and 48-lead LQFP has four general-purpose  
outputs (GPO). These outputs allow the user to control other  
devices in a system via the I2C port of the device.  
Table 103. General-Purpose Output Truth Table  
GPO_ENABLE GPO[3:0] GPO3 GPO2 GPO1 GPO0  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
XXXX1  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Z
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Z
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Z
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Z
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
The 40-lead and 32-lead LFCSP do not have GPO pins.  
GPO_ENABLE, General-Purpose Output Enable,  
Address 0x59[4]  
When GPO_ENABLE is set to 0, all GPO pins are three-stated.  
When GPO_ENABLE is set to 1, all GPO pins are in a driven  
state. The polarity output from each GPO is controlled by  
GPO[3:0] for the 64-lead and 48-lead LQFP.  
GPO[3:0], General-Purpose Outputs, Address 0x59[3:0]  
Individual control of the four GPO ports is achieved using  
GPO[3:0].  
GPO_ENABLE must be set to 1 for the GPO pins to become active.  
GPO[0]  
When GPO[0] is set to 0, Logic 0 is output from the GPO0 pin.  
When GPO[0] is set to 1, Logic 1 is output from the GPO0 pin.  
GPO[1]  
1 X indicates any value.  
When GPO[1] is set to 0, Logic 0 is output from the GPO1 pin.  
When GPO[1] is set to 1, Logic 1 is output from the GPO1 pin.  
GPO[2]  
When GPO[2] is set to 0, Logic is output from the GPO2 pin.  
When GPO[2] is set to 1, Logic 1 is output from the GPO2 pin.  
GPO[3]  
When GPO[3] is set to 0, Logic 0 is output from the GPO3 pin.  
When GPO[3] is set to 1, Logic 1 is output from the GPO3 pin.  
Rev. G | Page 76 of 120  
 
Data Sheet  
ADV7180  
MPU PORT DESCRIPTION  
The ADV7180 supports a 2-wire (I2C-compatible) serial interface.  
Two inputs, serial data (SDATA) and serial clock (SCLK), carry  
information between the ADV7180 and the system I2C master  
controller. Each slave device is recognized by a unique address.  
The ADV7180 I2C port allows the user to set up and configure  
the decoder and to read back the captured VBI data. The  
ADV7180 has four possible slave addresses for both read and  
write operations, depending on the logic level of the ALSB pin.  
The four unique addresses are shown in Table 104. The ADV7180  
ALSB pin controls Bit 1 of the slave address. By altering the  
ALSB, it is possible to control two ADV7180s in an application  
without the conflict of using the same slave address. The LSB  
(Bit 0) sets either a read or write operation. Logic 1 corresponds to  
a read operation, and Logic 0 corresponds to a write operation.  
the first byte means that the master writes information to the  
peripheral. Logic 1 on the LSB of the first byte means that the  
master reads information from the peripheral.  
The ADV7180 acts as a standard slave device on the bus. The  
data on the SDATA pin is eight bits long, supporting the 7-bit  
W
address plus the R/ bit. The device has 249 subaddresses to  
enable access to the internal registers. It, therefore, interprets  
the first byte as the device address and the second byte as the  
starting subaddress. The subaddresses auto-increment, allowing  
data to be written to or read from the starting subaddress. A data  
transfer is always terminated by a stop condition. The user can  
also access any unique subaddress register on a one-by-one  
basis without updating all the registers.  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, they cause an immediate jump  
to the idle condition. During a given SCLK high period, the user  
should only issue one start condition, one stop condition, or a  
single stop condition followed by a single start condition. If an  
invalid subaddress is issued by the user, the ADV7180 does not  
issue an acknowledge and returns to the idle condition.  
Table 104. I2C Address for ADV7180  
R/W  
ALSB  
Slave Address  
0x40  
0x41  
0x42  
0x43  
0
0
1
1
0
1
0
1
To control the device on the bus, a specific protocol must be  
followed. First, the master initiates a data transfer by establishing a  
start condition, which is defined by a high-to-low transition on  
SDATA while SCLK remains high. This indicates that an address/  
data stream follows. All peripherals respond to the start condition  
In auto-increment mode, if the user exceeds the highest  
subaddress, the following action is taken:  
In read mode, the highest subaddress register contents  
continue to be output until the master device issues a  
no acknowledge. This indicates the end of a read. A no  
acknowledge condition occurs when the SDATA line is  
not pulled low on the ninth pulse.  
W
and shift the next eight bits (the 7-bit address plus the R/ bit).  
The bits are transferred from MSB down to LSB. The peripheral  
that recognizes the transmitted address responds by pulling the  
data line low during the ninth clock pulse; this is known as an  
acknowledge bit. All other devices withdraw from the bus at  
this point and maintain an idle condition. The idle condition is  
where the device monitors the SDATA and SCLK lines for the  
In write mode, the data for the invalid byte is not loaded  
into any subaddress register. A no acknowledge is issued by  
the ADV7180, and the part returns to the idle condition.  
W
start condition and the correct transmitted address. The R/  
bit determines the direction of the data. Logic 0 on the LSB of  
SDATA  
SCLK  
S
P
1–7  
8
9
1–7  
8
9
1–7  
DATA  
8
9
START ADDR R/W ACK SUBADDRESS ACK  
ACK  
STOP  
Figure 51. Bus Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S) SUB ADDR  
LSB = 0  
A(S)  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S) SUB ADDR  
A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A(S) = NO ACKNOWLEDGE BY SLAVE  
A(M) = NO ACKNOWLEDGE BY MASTER  
Figure 52. Read and Write Sequence  
Rev. G | Page 77 of 120  
 
 
ADV7180  
Data Sheet  
Register Select (SR7 to SR0)  
REGISTER ACCESS  
These bits are set up to point to the required starting address.  
I2C SEQUENCER  
The MPU can write to or read from all of the ADV7180 registers  
except the subaddress register, which is write only. The subaddress  
register determines which register the next read or write operation  
accesses. All communications with the part through the bus start  
with an access to the subaddress register. A read/write operation is  
then performed from or to the target address, which increments  
to the next address until a stop command on the bus is performed.  
An I2C sequencer is used when a parameter exceeds eight bits  
and is therefore distributed over two or more I2C registers, for  
example, HSB[10:0].  
When such a parameter is changed using two or more I2C write  
operations, the parameter may hold an invalid value for the  
time between the first I2C being completed and the last I2C  
being completed. In other words, the top bits of the parameter  
may hold the new value while the remaining bits of the parameter  
still hold the previous value.  
To avoid this problem, the I2C sequencer holds the updated bits  
of the parameter in local memory, and all bits of the parameter  
are updated together once the last register write operation has  
completed.  
REGISTER PROGRAMMING  
The following sections describe the configuration for each  
register. The communication register is an 8-bit, write-only  
register. After the part is accessed over the bus and a read/write  
operation is selected, the subaddress is set up. The subaddress  
register determines to or from which register the operation  
takes place. Table 105 lists the various operations under the  
control of the subaddress register for the control port.  
SUB_USR_EN, Address 0x0E[5]  
The correct operation of the I2C sequencer relies on the following:  
This bit splits the register map at Register 0x40.  
All I2C registers for the parameter in question must be  
written to in order of ascending addresses. For example, for  
HSB[10:0], write to Address 0x34 first, followed by 0x35,  
and so on.  
USER MAP  
USER SUB MAP  
2
COMMON I C SPACE  
ADDRESS 0x00 0x3F  
No other I2C can take place between the two (or more) I2C  
writes for the sequence. For example, for HSB[10:0], write to  
Address 0x34 first, immediately followed by 0x35, and so on.  
ADDRESS 0x0E BIT 5 = 0b  
ADDRESS 0x0E BIT 5 = 1b  
2
2
I C SPACE  
I C SPACE  
ADDRESS 0x40 0xFF  
ADDRESS 0x40 0x9C  
NORMAL REGISTER SPACE  
INTERRUPT AND VDP REGISTER SPACE  
Figure 53. Register Access—User Map and User Sub Map  
Rev. E | Page 78 of 120  
 
 
 
 
Data Sheet  
ADV7180  
I2C REGISTER MAPS  
Table 105. Main Register Map Details  
Address  
Reset  
Dec Hex Register Name  
RW 7  
6
5
4
3
2
1
0
Value  
(Hex)  
0
1
3
4
5
6
7
8
9
00 Input control  
01 Video selection  
03 Output control  
RW VID_SEL[3]  
RW  
VID_SEL[2]  
ENHSPLL  
TOD  
VID_SEL[1]  
BETACAM  
OF_SEL[3]  
VID_SEL[0]  
INSEL[3]  
ENVSPROC  
OF_SEL[1]  
TIM_OE  
INSEL[2]  
SQPE  
INSEL[1]  
INSEL[0]  
00000000 00  
11001000 C8  
00001100 0C  
01xx0101 45  
RW VBI_EN  
OF_SEL[2]  
OF_SEL[0]  
BL_C_VBI  
SD_DUP_AV  
Range  
04 Extended output control RW BT.656-4  
05 Reserved  
EN_SFL_PIN  
06 Reserved  
07 Autodetect enable  
08 Contrast  
RW AD_SEC525_EN AD_SECAM_EN AD_N443_EN AD_P60_EN  
AD_PALN_EN  
CON[3]  
AD_PALM_EN  
CON[2]  
AD_NTSC_EN  
CON[1]  
AD_PAL_EN  
CON[0]  
01111111 7F  
10000000 80  
RW CON[7]  
CON[6]  
CON[5]  
CON[4]  
09 Reserved  
10 0A Brightness  
11 0B Hue  
RW BRI[7]  
BRI[6]  
BRI[5]  
BRI[4]  
BRI[3]  
BRI[2]  
BRI[1]  
BRI[0]  
00000000 00  
00000000 00  
00110110 36  
RW HUE[7]  
RW DEF_Y[5]  
HUE[6]  
DEF_Y[4]  
HUE[5]  
DEF_Y[3]  
HUE[4]  
DEF_Y[2]  
HUE[3]  
DEF_Y[1]  
HUE[2]  
DEF_Y[0]  
HUE[1]  
HUE[0]  
12 0C Default Value Y  
DEF_VAL_  
AUTO_EN  
DEF_VAL_EN  
13 0D Default Value C  
14 0E ADI Control 1  
RW DEF_C[7]  
RW  
DEF_C[6]  
DEF_C[5]  
DEF_C[4]  
DEF_C[3]  
DEF_C[2]  
DEF_C[1]  
DEF_C[0]  
01111100 7C  
00000000 00  
00000000 00  
SUB_USR_EN  
PWRDWN  
15 0F Power management  
16 10 Status 1  
RW Reset  
PDBP  
R
COL_KILL  
IDENT[7]  
AD_RESULT[2]  
IDENT[6]  
AD_RESULT[1] AD_RESULT[0] FOLLOW_PW  
FSC_LOCK  
IDENT[2]  
LOST_LOCK  
IDENT[1]  
MVCS T3  
GEMD  
IN_LOCK  
17 11 IDENT  
R
IDENT[5]  
IDENT[4]  
LL NSTD  
IDENT[3]  
IDENT[0]  
00011100 1C  
18 12 Status 2  
R
FSC NSTD  
MV AGC DET  
MV PS DET  
SD_OP_50Hz  
MVCS DET  
INST_HLOCK  
19 13 Status 3  
R
PAL_SW_LOCK Interlaced  
DCT[1]  
STD FLD LEN FREE_RUN_ACT Reserved  
CCLEN  
20 14 Analog clamp control  
21 15 Digital Clamp Control 1  
22 16 Reserved  
RW  
RW  
00010010 12  
0000xxxx 00  
DCT[0]  
DCFE  
23 17 Shaping Filter Control 1  
24 18 Shaping Filter Control 2  
25 19 Comb filter control  
29 1D ADI Control 2  
RW CSFM[2]  
RW WYSFMOVR  
RW  
CSFM[1]  
CSFM[0]  
YSFM[4]  
YSFM[3]  
YSFM[2]  
YSFM[1]  
YSFM[0]  
00000001 01  
10010011 93  
11110001 F1  
01000xxx 40  
01011000 58  
11100001 E1  
10101110 AE  
11110100 F4  
WYSFM[4]  
WYSFM[3]  
NSFSEL[1]  
WYSFM[2]  
NSFSEL[0]  
WYSFM[1]  
PSFSEL[1]  
WYSFM[0]  
PSFSEL[0]  
RW TRI_LLC  
RW SWPC  
RW  
EN28XTAL  
39 27 Pixel delay control  
43 2B Misc gain control  
44 2C AGC mode control  
45 2D Chroma Gain Control 1  
45 2D Chroma Gain 1  
46 2E Chroma Gain Control 2  
46 2E Chroma Gain 2  
47 2F Luma Gain Control 1  
47 2F Luma Gain 1  
AUTO_PDC_EN CTA[2]  
CKE  
CTA[1]  
CTA[0]  
LTA[1]  
LTA[0]  
PW_UPD  
CAGC[0]  
CMG[8]  
CG[8]  
RW  
LAGC[2]  
CAGT[0]  
LAGC[1]  
LAGC[0]  
CAGC[1]  
CMG[9]  
CG[9]  
W
R
CAGT[1]  
CMG[11]  
CG[11]  
CMG[3]  
CG[3]  
CMG[10]  
CG[10]  
CMG[2]  
CG[2]  
W
R
CMG[7]  
CG[7]  
CMG[6]  
CG[6]  
CMG[5]  
CG[5]  
CMG[4]  
CG[4]  
CMG[1]  
CG[1]  
CMG[0]  
CG[0]  
00000000 00  
1111xxxx F0  
xxxxxxxx 00  
W
R
LAGT[1]  
LAGT[0]  
LMG[11]  
LG[11]  
LMG[3]  
LG[3]  
LMG[10]  
LG[10]  
LMG[2]  
LG[2]  
LMG[9]  
LG[9]  
LMG[8]  
LG[8]  
48 30 Luma Gain Control 2  
48 30 Luma Gain 2  
W
R
LMG[7]  
LG[7]  
LMG[6]  
LG[6]  
LMG[5]  
LG[5]  
LMG[4]  
LG[4]  
LMG[1]  
LG[1]  
LMG[0]  
LG[0]  
49 31 VS/FIELD Control 1  
50 32 VS/FIELD Control 2  
51 33 VS/FIELD Control 3  
52 34 HS Position Control 1  
53 35 HS Position Control 2  
54 36 HS Position Control 3  
55 37 Polarity  
RW  
NEWAVMODE HVSTIM  
00010010 12  
01000001 41  
10000100 84  
00000000 00  
00000010 02  
00000000 00  
00000001 01  
10000000 80  
11000000 C0  
RW VSBHO  
RW VSEHO  
RW  
VSBHE  
VSEHE  
HSB[10]  
HSB[6]  
HSE[6]  
HSB[9]  
HSB[5]  
HSE[5]  
PVS  
HSB[8]  
HSE[10]  
HSB[2]  
HSE[2]  
HSE[9]  
HSB[1]  
HSE[1]  
HSE[8]  
HSB[0]  
HSE[0]  
PCLK  
RW HSB[7]  
RW HSE[7]  
RW PHS  
HSB[4]  
HSE[4]  
HSB[3]  
HSE[3]  
PF  
56 38 NTSC comb control  
57 39 PAL comb control  
58 3A ADC control  
RW CTAPSN[1]  
RW CTAPSP[1]  
RW  
CTAPSN[0]  
CTAPSP[0]  
CCMN[2]  
CCMP[2]  
CCMN[1]  
CCMP[1]  
CCMN[0]  
CCMP[0]  
YCMN[2]  
YCMP[2]  
YCMN[1]  
YCMP[1]  
YCMN[0]  
YCMP[0]  
PWRDWN_MUX_0 PWRDWN_MUX_1  
PWRDWN_MUX_2 MUX PDN override 00010000 10  
61 3D Manual window control RW  
CKILLTHR[2]  
SFL_INV  
CKILLTHR[1]  
CKILLTHR[0]  
01110010 B2  
00000001 01  
65 41 Resample control  
72 48 Gemstar Control 1  
73 49 Gemstar Control 2  
74 4A Gemstar Control 3  
75 4B Gemstar Control 4  
76 4C Gemstar Control 5  
77 4D CTI DNR Control 1  
78 4E CTI DNR Control 2  
80 50 CTI DNR Control 4  
81 51 Lock count  
RW  
RW GDECEL[15]  
RW GDECEL[7]  
RW GDECOL[15]  
RW GDECOL[7]  
RW  
GDECEL[14]  
GDECEL[6]  
GDECOL[14]  
GDECOL[6]  
GDECEL[13]  
GDECEL[5]  
GDECEL[12]  
GDECEL[4]  
GDECEL[11]  
GDECEL[3]  
GDECEL[10]  
GDECEL[2]  
GDECOL[10]  
GDECOL[2]  
GDECEL[9]  
GDECEL[1]  
GDECOL[9]  
GDECOL[1]  
GDECEL[8]  
GDECEL[0]  
GDECOL[8]  
GDECOL[0]  
GDECAD  
00000000 00  
00000000 00  
00000000 00  
00000000 00  
xxxx0000 00  
11101111 EF  
00001000 08  
00001000 08  
00100100 24  
00000000 00  
GDECOL[13] GDECOL[12]  
GDECOL[11]  
GDECOL[3]  
GDE_SEL_OLD_ADF  
CTI_AB[1]  
GDECOL[5]  
GDECOL[4]  
RW  
DNR_EN  
CTI_AB[0]  
CTI_AB_EN  
CTI_C_TH[1]  
DNR_TH[1]  
CIL[1]  
CTI_EN  
RW CTI_C_TH[7]  
RW DNR_TH[7]  
RW FSCLE  
RW  
CTI_C_TH[6]  
DNR_TH[6]  
SRLS  
CTI_C_TH[5]  
DNR_TH[5]  
COL[2]  
CTI_C_TH[4]  
DNR_TH[4]  
COL[1]  
CTI_C_TH[3]  
DNR_TH[3]  
COL[0]  
CTI_C_TH[2]  
DNR_TH[2]  
CIL[2]  
CTI_C_TH[0]  
DNR_TH[0]  
CIL[0]  
88 58 VS/FIELD pin control1  
ADC sampling control  
VS/FIELD  
89 59 General-purpose outputs2 RW  
GPO_ENABLE  
GPO[3]  
GPO[2]  
GPO[1]  
GPO[0]  
00000000 00  
00000000 00  
143 8F Free-Run Line Length 1  
W
LLC_PAD_SEL[2] LLC_PAD_  
SEL[1]  
LLC_PAD_  
SEL[0]  
153 99 CCAP 1  
154 9A CCAP 2  
R
R
CCAP1[7]  
CCAP2[7]  
CCAP1[6]  
CCAP2[6]  
CCAP1[5]  
CCAP2[5]  
CCAP1[4]  
CCAP2[4]  
CCAP1[3]  
CCAP2[3]  
CCAP1[2]  
CCAP2[2]  
CCAP1[1]  
CCAP2[1]  
CCAP1[0]  
CCAP2[0]  
Rev. E | Page 79 of 120  
 
 
ADV7180  
Data Sheet  
Address  
Reset  
Dec Hex Register Name  
155 9B Letterbox 1  
RW 7  
6
5
4
3
2
1
0
Value  
(Hex)  
R
LB_LCT[7]  
LB_LCT[6]  
LB_LCM[6]  
LB_LCB[6]  
LB_LCT[5]  
LB_LCM[5]  
LB_LCB[5]  
LB_LCT[4]  
LB_LCM[4]  
LB_LCB[4]  
LB_LCT[3]  
LB_LCM[3]  
LB_LCB[3]  
LB_LCT[2]  
LB_LCM[2]  
LB_LCB[2]  
CRC_ENABLE  
MUX0[2]  
LB_LCT[1]  
LB_LCM[1]  
LB_LCB[1]  
LB_LCT[0]  
LB_LCM[0]  
LB_LCB[0]  
156 9C Letterbox 2  
R
LB_LCM[7]  
LB_LCB[7]  
157 9D Letterbox 3  
R
178 B2 CRC enable  
W
00011100 1C  
xxxxxxxx 00  
0xxxxxxx 00  
10101100 AC  
01001100 4C  
195 C3 ADC Switch 1  
196 C4 ADC Switch 2  
220 DC Letterbox Control 1  
221 DD Letterbox Control 2  
222 DE ST Noise Readback 1  
223 DF ST Noise Readback 2  
224 E0 Reserved  
RW Reserved  
MUX1[2]  
MUX1[1]  
MUX1[0]  
Reserved  
MUX0[1]  
MUX0[0]  
RW MAN_MUX_EN  
Reserved  
MUX2[2]  
MUX2[1]  
MUX2[0]  
RW  
LB_TH[4]  
LB_SL[0]  
LB_TH[3]  
LB_TH[2]  
LB_EL[2]  
LB_TH[1]  
LB_TH[0]  
RW LB_SL[3]  
R
LB_SL[2]  
LB_SL[1]  
LB_EL[3]  
LB_EL[1]  
LB_EL[0]  
ST_NOISE_VLD  
ST_NOISE[3]  
ST_NOISE[10]  
ST_NOISE[2]  
ST_NOISE[9]  
ST_NOISE[1]  
ST_NOISE[8]  
ST_NOISE[0]  
R
ST_NOISE[7]  
ST_NOISE[6]  
ST_NOISE[5]  
ST_NOISE[4]  
225 E1 SD Offset Cb  
226 E2 SD Offset Cr  
RW SD_OFF_Cb[7] SD_OFF_Cb[6] SD_OFF_Cb[5] SD_OFF_Cb[4] SD_OFF_Cb[3]  
SD_OFF_Cb[2]  
SD_OFF_Cr[2]  
SD_SAT_Cb[2]  
SD_SAT_Cr[2]  
NVBEG[2]  
SD_OFF_Cb[1]  
SD_OFF_Cr[1]  
SD_SAT_Cb[1]  
SD_SAT_Cr[1]  
NVBEG[1]  
SD_OFF_Cb[0]  
SD_OFF_Cr[0]  
SD_SAT_Cb[0]  
SD_SAT_Cr[0]  
NVBEG[0]  
10000000 80  
10000000 80  
10000000 80  
10000000 80  
00100101 25  
00000100 04  
01100011 63  
01100101 65  
00010100 14  
01100011 63  
01010101 55  
01010101 55  
00000000 00  
RW SD_OFF_Cr[7] SD_OFF_Cr[6]  
RW SD_SAT_Cb[7] SD_SAT_Cb[6]  
RW SD_SAT_Cr[7] SD_SAT_Cr[6]  
SD_OFF_Cr[5] SD_OFF_Cr[4] SD_OFF_Cr[3]  
SD_SAT_Cb[5] SD_SAT_Cb[4] SD_SAT_Cb[3]  
SD_SAT_Cr[5] SD_SAT_Cr[4] SD_SAT_Cr[3]  
227 E3 SD Saturation Cb  
228 E4 SD Saturation Cr  
229 E5 NTSC V bit begin  
230 E6 NTSC V bit end  
231 E7 NTSC F bit toggle  
232 E8 PAL V bit begin  
233 E9 PAL V bit end  
234 EA PAL F bit toggle  
235 EB Vblank Control 1  
236 EC Vblank Control 2  
243 F3 AFE_CONTROL 1  
RW NVBEGDELO  
RW NVENDDELO  
RW NFTOGDELO  
RW PVBEGDELO  
RW PVENDDELO  
RW PFTOGDELO  
RW NVBIOLCM[1]  
NVBEGDELE  
NVENDDELE  
NFTOGDELE  
PVBEGDELE  
PVENDDELE  
PFTOGDELE  
NVBIOLCM[0]  
NVBEGSIGN  
NVENDSIGN  
NFTOGSIGN  
PVBEGSIGN  
PVENDSIGN  
PFTOGSIGN  
NVBEG[4]  
NVEND[4]  
NFTOG[4]  
PVBEG[4]  
PVEND[4]  
PFTOG[4]  
NVBEG[3]  
NVEND[3]  
NFTOG[3]  
PVBEG[3]  
NVEND[2]  
NVEND[1]  
NVEND[0]  
NFTOG[2]  
NFTOG[1]  
NFTOG[0]  
PVBEG[2]  
PVBEG[1]  
PVBEG[0]  
PVEND[3]  
PFTOG[3]  
PVEND[2]  
PVEND[1]  
PVEND[0]  
PFTOG[2]  
PFTOG[1]  
PFTOG[0]  
NVBIELCM[1] NVBIELCM[0]  
NVBIECCM[1] NVBIECCM[0]  
PVBIOLCM[1]  
PVBIOCCM[1]  
PVBIOLCM[0]  
PVBIOCCM[0]  
AA_FILT_EN[2]  
PVBIELCM[1]  
PVBIECCM[1]  
AA_FILT_EN[1]  
PVBIELCM[0]  
PVBIECCM[0]  
AA_FILT_EN[0]  
RW NVBIOCCM[1] NVBIOCCM[0]  
RW  
AA_FILT_  
MAN_OVR  
244 F4 Drive strength  
248 F8 IF comp control  
249 F9 VS mode control  
RW  
RW  
RW  
DR_STR[1]  
DR_STR[0]  
DR_STR_C[1]  
DR_STR_C[0]  
IFFILTSEL[2]  
DR_STR_S[1]  
IFFILTSEL[1]  
DR_STR_S[0]  
IFFILTSEL[0]  
xx010101 15  
00000000 00  
00000011 03  
VS_COAST_  
MODE[1]  
VS_COAST_  
MODE[0]  
EXTEND_VS_  
MIN_FREQ  
EXTEND_VS_  
MAX_FREQ  
251 FB Peaking control  
252 FC Coring threshold  
RW PEAKING_  
GAIN[7]  
PEAKING_  
GAIN[6]  
PEAKING_  
GAIN[5]  
PEAKING_  
GAIN[4]  
PEAKING_  
GAIN[3]  
PEAKING_  
GAIN[2]  
PEAKING_  
GAIN[1]  
PEAKING_  
GAIN[0]  
01000000 40  
00000100 04  
RW DNR_TH2[7]  
DNR_TH2[6]  
DNR_TH2[5]  
DNR_TH2[4]  
DNR_TH2[3]  
DNR_TH2[2]  
DNR_TH2[1]  
DNR_TH2[0]  
1 This feature applies to the 48-lead, 40-lead, and 32-lead LFCSP only because VS or FIELD is shared on a single pin.  
2 This feature applies to the 64-lead and 48-lead LQFP only.  
Rev. E | Page 80 of 120  
Data Sheet  
ADV7180  
Table 106. Interrupt System Register Map Details1, 2  
Address  
Dec  
Hex  
Register Name  
RW  
7
6
5
4
3
2
1
0
Reset Value (Hex)  
64  
40  
Interrupt  
Configuration 1  
RW  
INTRQ_DUR_  
SEL[1]  
INTRQ_DUR_  
SEL[0]  
MV_INTRQ_  
SEL[1]  
MV_INTRQ_  
SEL[0]  
MPU_STIM_  
INTRQ  
INTRQ_OP_  
SEL[1]  
INTRQ_OP_SEL[0] 0001x000  
10  
66  
67  
42  
43  
Interrupt Status 1  
Interrupt Clear 1  
R
MV_PS_CS_Q  
SD_FR_CHNG_Q  
SD_UNLOCK_Q SD_LOCK_Q  
W
MV_PS_CS_CLR SD_FR_CHNG_  
CLR  
SD_UNLOCK_  
CLR  
SD_LOCK_CLR  
x0000000  
00  
00  
68  
69  
70  
71  
72  
44  
45  
46  
47  
48  
Interrupt Mask 1  
Raw Status 1  
RW  
R
MV_PS_CS_  
MSKB  
SD_FR_CHNG_  
MSKB  
SD_UNLOCK_  
MSKB  
SD_LOCK_MSKB x0000000  
CCAPD  
MPU_STIM_  
INTRQ  
EVEN_FIELD  
Interrupt Status 2  
Interrupt Clear 2  
Interrupt Mask 2  
R
MPU_STIM_  
INTRQ_Q  
SD_FIELD_  
CHNGD_Q  
GEMD_Q  
CCAPD_Q  
W
RW  
MPU_STIM_  
INTRQ_CLR  
SD_FIELD_  
CHNGD_CLR  
GEMD_CLR  
GEMD_MSKB  
SD_V_LOCK  
CCAPD_CLR  
0xx00000  
0xx00000  
00  
00  
MPU_STIM_  
INTRQ_MSKB  
SD_FIELD_  
CHNGD_MSKB  
CCAPD_MSKB  
73  
74  
49  
4A  
Raw Status 2  
R
R
SCM_LOCK  
SD_H_LOCK  
SD_OP_50Hz  
Interrupt Status 3  
PAL_SW_LK_  
CHNG_Q  
SCM_LOCK_  
CHNG_Q  
SD_AD_CHNG_Q SD_H_LOCK_  
CHNG_Q  
SD_V_LOCK_  
CHNG_Q  
SD_OP_CHNG_Q  
75  
76  
78  
4B  
4C  
4E  
Interrupt Clear 3  
Interrupt Mask 3  
Interrupt Status 4  
W
RW  
R
PAL_SW_LK_  
CHNG_CLR  
SCM_LOCK_  
CHNG_CLR  
SD_AD_CHNG_ SD_H_LOCK_  
SD_V_LOCK_  
CHNG_CLR  
SD_OP_CHNG_ xx000000  
CLR  
00  
00  
CLR  
CHNG_CLR  
PAL_SW_LK_  
CHNG_MSKB  
SCM_LOCK_  
CHNG_MSKB  
SD_AD_CHNG_ SD_H_LOCK_  
SD_V_LOCK_  
CHNG_MSKB  
SD_OP_CHNG_ xx000000  
MSKB  
MSKB  
CHNG_MSKB  
VDP_VITC_Q  
VDP_GS_VPS_  
PDC_UTC_  
CHNG_Q  
VDP_CGMS_  
WSS_CHNGD_Q  
VDP_CCAPD_Q  
79  
80  
96  
97  
4F  
50  
60  
61  
Interrupt Clear 4  
Interrupt Mask 4  
VDP_Config_1  
VDP_Config_2  
W
VDP_VITC_CLR  
VDP_VITC_MSKB  
VDP_GS_VPS_  
PDC_UTC_  
CHNG_CLR  
VDP_CGMS_  
WSS_CHNGD_  
CLR  
VDP_CCAPD_CLR 00x0x0x0  
00  
00  
88  
10  
RW  
RW  
RW  
VDP_GS_VPS_  
PDC_UTC_  
CHNG_MSKB  
VDP_CGMS_  
WSS_CHNGD_  
MSKB  
VDP_CCAPD_  
MSKB  
00x0x0x0  
10001000  
0001xx00  
WST_PKT_  
DECODE_  
DISABLE  
VDP_TTXT_  
TYPE_MAN_  
ENABLE  
VDP_TTXT_  
TYPE_MAN[1]  
VDP_TTXT_  
TYPE_MAN[0]  
AUTO_DETECT_  
GS_TYPE  
98  
62  
63  
64  
VDP_ADF_Config_1 RW  
VDP_ADF_Config_2 RW  
ADF_ENABLE  
ADF_MODE[1]  
ADF_MODE[0]  
ADF_SDID[5]  
ADF_DID[4]  
ADF_SDID[4]  
ADF_DID[3]  
ADF_SDID[3]  
ADF_DID[2]  
ADF_SDID[2]  
ADF_DID[1]  
ADF_SDID[1]  
ADF_DID[0]  
ADF_SDID[0]  
00010101  
0x101010  
0xxx0000  
15  
2A  
00  
99  
DUPLICATE_ADF  
MAN_LINE_PGM  
100  
VDP_LINE_00E  
VDP_LINE_00F  
VDP_LINE_010  
VDP_LINE_011  
VDP_LINE_012  
VDP_LINE_013  
VDP_LINE_014  
VDP_LINE_015  
VDP_LINE_016  
VDP_LINE_017  
VDP_LINE_018  
VDP_LINE_019  
VDP_LINE_01A  
VDP_LINE_01B  
VDP_LINE_01C  
VDP_LINE_01D  
VDP_LINE_01E  
VDP_LINE_01F  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VBI_DATA_  
P318[3]  
VBI_DATA_  
P318[2]  
VBI_DATA_  
P318[1]  
VBI_DATA_  
P318[0]  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
VBI_DATA_  
P6_N23[3]  
VBI_DATA_  
P6_N23[2]  
VBI_DATA_  
P6_N23[1]  
VBI_DATA_  
P6_N23[0]  
VBI_DATA_  
P319_N286[3]  
VBI_DATA_  
P319_N286[2]  
VBI_DATA_  
P319_N286[1]  
VBI_DATA_  
P319_N286[0]  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
VBI_DATA_  
P7_N24[3]  
VBI_DATA_  
P7_N24[2]  
VBI_DATA_  
P7_N24[1]  
VBI_DATA_  
P7_N24[0]  
VBI_DATA_  
P320_N287[3]  
VBI_DATA_  
P320_N287[2]  
VBI_DATA_  
P320_N287[1]  
VBI_DATA_  
P320_N287[0]  
VBI_DATA_  
P8_N25[3]  
VBI_DATA_  
P8_N25[2]  
VBI_DATA_  
P8_N25[1]  
VBI_DATA_  
P8_N25[0]  
VBI_DATA_  
P321_N288[3]  
VBI_DATA_  
P321_N288[2]  
VBI_DATA_  
P321_N288[1]  
VBI_DATA_  
P321_N288[0]  
VBI_DATA_  
P9[3]  
VBI_DATA_  
P9[2]  
VBI_DATA_  
P9[1]  
VBI_DATA_  
P9[0]  
VBI_DATA_  
P322[3]  
VBI_DATA_  
P322[2]  
VBI_DATA_  
P322[1]  
VBI_DATA_  
P322[0]  
VBI_DATA_  
P10[3]  
VBI_DATA_  
P10[2]  
VBI_DATA_  
P10[1]  
VBI_DATA_  
P10[0]  
VBI_DATA_  
P323[3]  
VBI_DATA_  
P323[2]  
VBI_DATA_  
P323[1]  
VBI_DATA_  
P323[0]  
VBI_DATA_  
P11[3]  
VBI_DATA_  
P11[2]  
VBI_DATA_  
P11[1]  
VBI_DATA_  
P11[0]  
VBI_DATA_  
P324_N272[3]  
VBI_DATA_  
P324_N272[2]  
VBI_DATA_  
P324_N272[1]  
VBI_DATA_  
P324_N272[0]  
VBI_DATA_  
P12_N10[3]  
VBI_DATA_  
P12_N10[2]  
VBI_DATA_  
P12_N10[1]  
VBI_DATA_  
P12_N10[0]  
VBI_DATA_  
P325_N273[3]  
VBI_DATA_  
P325_N273[2]  
VBI_DATA_  
P325_N273[1]  
VBI_DATA_  
P325_N273[0]  
VBI_DATA_  
P13_N11[3]  
VBI_DATA_  
P13_N11[2]  
VBI_DATA_  
P13_N11[1]  
VBI_DATA_  
P13_N11[0]  
VBI_DATA_  
P326_N274[3]  
VBI_DATA_  
P326_N274[2]  
VBI_DATA_  
P326_N274[1]  
VBI_DATA_  
P326_N274[0]  
VBI_DATA_  
P14_N12[3]  
VBI_DATA_  
P14_N12[2]  
VBI_DATA_  
P14_N12[1]  
VBI_DATA_  
P14_N12[0]  
VBI_DATA_  
P327_N275[3]  
VBI_DATA_  
P327_N275[2]  
VBI_DATA_  
P327_N275[1]  
VBI_DATA_  
P327_N275[0]  
VBI_DATA_  
P15_N13[3]  
VBI_DATA_  
P15_N13[2]  
VBI_DATA_  
P15_N13[1]  
VBI_DATA_  
P15_N13[0]  
VBI_DATA_  
P328_N276[3]  
VBI_DATA_  
P328_N276[2]  
VBI_DATA_  
P328_N276[1]  
VBI_DATA_  
P328_N276[0]  
VBI_DATA_  
P16_N14[3]  
VBI_DATA_  
P16_N14[2]  
VBI_DATA_  
P16_N14[1]  
VBI_DATA_  
P16_N14[0]  
VBI_DATA_  
P329_N277[3]  
VBI_DATA_  
P329_N277[2]  
VBI_DATA_  
P329_N277[1]  
VBI_DATA_  
P329_N277[0]  
VBI_DATA_  
P17_N15[3]  
VBI_DATA_  
P17_N15[2]  
VBI_DATA_  
P17_N15[1]  
VBI_DATA_  
P17_N15[0]  
VBI_DATA_  
P330_N278[3]  
VBI_DATA_  
P330_N278[2]  
VBI_DATA_  
P330_N278[1]  
VBI_DATA_  
P330_N278[0]  
VBI_DATA_  
P18_N16[3]  
VBI_DATA_  
P18_N16[2]  
VBI_DATA_  
P18_N16[1]  
VBI_DATA_  
P18_N16[0]  
VBI_DATA_  
P331_N279[3]  
VBI_DATA_  
P331_N279[2]  
VBI_DATA_  
P331_N279[1]  
VBI_DATA_  
P331_N279[0]  
VBI_DATA_  
P19_N17[3]  
VBI_DATA_  
P19_N17[2]  
VBI_DATA_  
P19_N17[1]  
VBI_DATA_  
P19_N17[0]  
VBI_DATA_  
P332_N280[3]  
VBI_DATA_  
P332_N280[2]  
VBI_DATA_  
P332_N280[1]  
VBI_DATA_  
P332_N280[0]  
VBI_DATA_  
P20_N18[3]  
VBI_DATA_  
P20_N18[2]  
VBI_DATA_  
P20_N18[1]  
VBI_DATA_  
P20_N18[0]  
VBI_DATA_  
P333_N281[3]  
VBI_DATA_  
P333_N281[2]  
VBI_DATA_  
P333_N281[1]  
VBI_DATA_  
P333_N281[0]  
VBI_DATA_  
P21_N19[3]  
VBI_DATA_  
P21_N19[2]  
VBI_DATA_  
P21_N19[1]  
VBI_DATA_  
P21_N19[0]  
VBI_DATA_  
P334_N282[3]  
VBI_DATA_  
P334_N282[2]  
VBI_DATA_  
P334_N282[1]  
VBI_DATA_  
P334_N282[0]  
VBI_DATA_  
P22_N20[3]  
VBI_DATA_  
P22_N20[2]  
VBI_DATA_  
P22_N20[1]  
VBI_DATA_  
P22_N20[0]  
VBI_DATA_  
P335_N283[3]  
VBI_DATA_  
P335_N283[2]  
VBI_DATA_  
P335_N283[1]  
VBI_DATA_  
P335_N283[0]  
Rev. G | Page 81 of 120  
 
ADV7180  
Data Sheet  
Address  
Dec  
Hex  
Register Name  
RW  
7
6
5
4
3
2
1
0
Reset Value (Hex)  
118  
76  
VDP_LINE_020  
RW  
VBI_DATA_  
P23_N21[3]  
VBI_DATA_  
P23_N21[2]  
VBI_DATA_  
P23_N21[1]  
VBI_DATA_  
P23_N21[0]  
VBI_DATA_  
P336_N284[3]  
VBI_DATA_  
P336_N284[2]  
VBI_DATA_  
P336_N284[1]  
VBI_DATA_  
P336_N284[0]  
00000000  
00  
119  
120  
120  
121  
122  
125  
126  
127  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
77  
78  
78  
79  
7A  
7D  
7E  
7F  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
VDP_LINE_021  
VDP_STATUS  
RW  
R
W
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
VBI_DATA_  
P24_N22[3]  
VBI_DATA_  
P24_N22[2]  
VBI_DATA_  
P24_N22[1]  
VBI_DATA_  
P24_N22[0]  
VBI_DATA_  
P337_N285[3]  
VBI_DATA_  
P337_N285[2]  
VBI_DATA_  
P337_N285[1]  
VBI_DATA_  
P337_N285[0]  
00000000  
00  
TTXT_AVL  
VITC_AVL  
GS_DATA_  
TYPE  
GS_PDC_VPS_  
UTC_AVL  
CGMS_WSS_AVL CC_EVEN_FIELD CC_AVL  
VDP_STATUS_  
CLEAR  
VITC_CLEAR  
GS_PDC_VPS_  
UTC_CLEAR  
CGMS_WSS_  
CLEAR  
CC_CLEAR  
00000000  
00  
VDP_CCAP_  
DATA_0  
CCAP_BYTE_1[7] CCAP_BYTE_1[6] CCAP_BYTE_1[5] CCAP_BYTE_1[4] CCAP_BYTE_1[3] CCAP_BYTE_1[2] CCAP_BYTE_1[1] CCAP_BYTE_1[0]  
CCAP_BYTE_2[7] CCAP_BYTE_2[6] CCAP_BYTE_2[5] CCAP_BYTE_2[4] CCAP_BYTE_2[3] CCAP_BYTE_2[2] CCAP_BYTE_2[1] CCAP_BYTE_2[0]  
VDP_CCAP_  
DATA_1  
VDP_CGMS_  
WSS_DATA_0  
CGMS_CRC[5]  
CGMS_CRC[4]  
CGMS_CRC[3]  
CGMS_CRC[2]  
CGMS_WSS[8]  
CGMS_WSS[0]  
GS_VPS_PDC_  
VDP_CGMS_  
WSS_DATA_1  
CGMS_CRC[1]  
CGMS_WSS[7]  
GS_VPS_PDC_  
CGMS_CRC[0]  
CGMS_WSS[6]  
GS_VPS_PDC_  
CGMS_WSS[13] CGMS_WSS[12] CGMS_WSS[11] CGMS_WSS[10] CGMS_WSS[9]  
VDP_CGMS_  
WSS_DATA_2  
CGMS_WSS[5]  
GS_VPS_PDC_  
CGMS_WSS[4]  
GS_VPS_PDC_  
CGMS_WSS[3]  
GS_VPS_PDC_  
CGMS_WSS[2]  
GS_VPS_PDC_  
CGMS_WSS[1]  
GS_VPS_PDC_  
VDP_GS_VPS_  
PDC_UTC_0  
UTC_BYTE_0[7] UTC_BYTE_0[6] UTC_BYTE_0[5] UTC_BYTE_0[4] UTC_BYTE_0[3] UTC_BYTE_0[2] UTC_BYTE_0[1] UTC_BYTE_0[0]  
GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_  
UTC_BYTE_1[7] UTC_BYTE_1[6] UTC_BYTE_1[5] UTC_BYTE_1[4] UTC_BYTE_1[3] UTC_BYTE_1[2] UTC_BYTE_1[1] UTC_BYTE_1[0]  
GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_  
UTC_BYTE_2[7] UTC_BYTE_2[6] UTC_BYTE_2[5] UTC_BYTE_2[4] UTC_BYTE_2[3] UTC_BYTE_2[2] UTC_BYTE_2[1] UTC_BYTE_2[0]  
GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_  
VDP_GS_VPS_  
PDC_UTC_1  
VDP_GS_VPS_  
PDC_UTC_2  
VDP_GS_VPS_  
PDC_UTC_3  
UTC_BYTE_3[7] UTC_BYTE_3[6] UTC_BYTE_3[5] UTC_BYTE_3[4] UTC_BYTE_3[3] UTC_BYTE_3[2] UTC_BYTE_3[1] UTC_BYTE_3[0]  
VDP_VPS_  
PDC_UTC_4  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_4[7]  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_5[7] BYTE_5[6] BYTE_5[5] BYTE_5[4] BYTE_5[3] BYTE_5[2] BYTE_5[1] BYTE_5[0]  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_6[7] BYTE_6[6] BYTE_6[5] BYTE_6[4] BYTE_6[3] BYTE_6[2] BYTE_6[1] BYTE_6[0]  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_7[7] BYTE_7[6] BYTE_7[5] BYTE_7[4] BYTE_7[3] BYTE_7[2] BYTE_7[1] BYTE_7[0]  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_8[7] BYTE_8[6] BYTE_8[5] BYTE_8[4] BYTE_8[3] BYTE_8[2] BYTE_8[1] BYTE_8[0]  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_9[7] BYTE_9[6] BYTE_9[5] BYTE_9[4] BYTE_9[3] BYTE_9[2] BYTE_9[1] BYTE_9[0]  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_10[7] BYTE_10[6] BYTE_10[5] BYTE_10[4] BYTE_10[3] BYTE_10[2] BYTE_10[1] BYTE_10[0]  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_11[7] BYTE_11[6] BYTE_11[5] BYTE_11[4] BYTE_11[3] BYTE_11[2] BYTE_11[1] BYTE_11[0]  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_12[7] BYTE_12[6] BYTE_12[5] BYTE_12[4] BYTE_12[3] BYTE_12[2] BYTE_12[1] BYTE_12[0]  
BYTE_4[6]  
BYTE_4[5]  
BYTE_4[4]  
BYTE_4[3]  
BYTE_4[2]  
BYTE_4[1]  
BYTE_4[0]  
VDP_VPS_  
PDC_UTC_5  
VDP_VPS_  
PDC_UTC_6  
VDP_VPS_PDC_  
UTC_7  
VDP_VPS_PDC_  
UTC_8  
VDP_VPS_PDC_  
UTC_9  
VDP_VPS_PDC_  
UTC_10  
VDP_VPS_PDC_  
UTC_11  
VDP_VPS_PDC_  
UTC_12  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
VDP_VITC_DATA_0 R  
VDP_VITC_DATA_1 R  
VDP_VITC_DATA_2 R  
VDP_VITC_DATA_3 R  
VDP_VITC_DATA_4 R  
VDP_VITC_DATA_5 R  
VDP_VITC_DATA_6 R  
VDP_VITC_DATA_7 R  
VDP_VITC_DATA_8 R  
VITC_DATA_0[7] VITC_DATA_0[6] VITC_DATA_0[5] VITC_DATA_0[4] VITC_DATA_0[3] VITC_DATA_0[2] VITC_DATA_0[1] VITC_DATA_0[0]  
VITC_DATA_1[7] VITC_DATA_1[6] VITC_DATA_1[5] VITC_DATA_1[4] VITC_DATA_1[3] VITC_DATA_1[2] VITC_DATA_1[1] VITC_DATA_1[0]  
VITC_DATA_2[7] VITC_DATA_2[6] VITC_DATA_2[5] VITC_DATA_2[4] VITC_DATA_2[3] VITC_DATA_2[2] VITC_DATA_2[1] VITC_DATA_2[0]  
VITC_DATA_3[7] VITC_DATA_3[6] VITC_DATA_3[5] VITC_DATA_3[4] VITC_DATA_3[3] VITC_DATA_3[2] VITC_DATA_3[1] VITC_DATA_3[0]  
VITC_DATA_4[7] VITC_DATA_4[6] VITC_DATA_4[5] VITC_DATA_4[4] VITC_DATA_4[3] VITC_DATA_4[2] VITC_DATA_4[1] VITC_DATA_4[0]  
VITC_DATA_5[7] VITC_DATA_5[6] VITC_DATA_5[5] VITC_DATA_5[4] VITC_DATA_5[3] VITC_DATA_5[2] VITC_DATA_5[1] VITC_DATA_5[0]  
VITC_DATA_6[7] VITC_DATA_6[6] VITC_DATA_6[5] VITC_DATA_6[4] VITC_DATA_6[3] VITC_DATA_6[2] VITC_DATA_6[1] VITC_DATA_6[0]  
VITC_DATA_7[7] VITC_DATA_7[6] VITC_DATA_7[5] VITC_DATA_7[4] VITC_DATA_7[3] VITC_DATA_7[2] VITC_DATA_7[1] VITC_DATA_7[0]  
VITC_DATA_8[7] VITC_DATA_8[6] VITC_DATA_8[5] VITC_DATA_8[4] VITC_DATA_8[3] VITC_DATA_8[2] VITC_DATA_8[1] VITC_DATA_8[0]  
VDP_VITC_CALC_  
CRC  
R
VITC_CRC[7]  
VITC_CRC[6]  
VITC_CRC[5]  
VITC_CRC[4]  
VITC_CRC[3]  
VITC_CRC[2]  
VITC_CRC[1]  
VITC_CRC[0]  
156  
9C  
VDP_OUTPUT_SEL RW  
I2C_GS_VPS_  
PDC_UTC[1]  
I2C_GS_VPS_  
PDC_UTC[0]  
GS_VPS_  
PDC_UTC_  
CB_CHANGE  
WSS_CGMS_  
CB_CHANGE  
00110000  
30  
1 To access the registers listed in Table 106, SUB_USR_EN in Register Address 0x0E must be programmed to 1.  
2 x in a reset value indicates do not care.  
Rev. G | Page 82 of 120  
Data Sheet  
ADV7180  
Table 107. Register Map Descriptions (Normal Operation)1, 2  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Comments  
Notes  
0x00  
Input control  
INSEL[3:0]; the INSEL bits  
allow the user to select  
an input channel and  
the input format; refer  
to Table 13 and Table 14  
for full routing details  
Composite (LQFP and LFCSP)  
Composite (LQFP)/reserved (LFCSP)  
Composite (LQFP)/reserved (LFCSP)  
Composite (LQFP and LFCSP)  
Composite (LQFP and LFCSP)  
Composite (LQFP)/reserved (LFCSP)  
S-Video (LQFP and LFCSP)  
Mandatory write  
required for Y/C  
(S-Video mode)  
Reg 0x58 = 0x04;  
see Reg 0x58 for  
bit description  
S-Video (LQFP)/reserved (LFCSP)  
S-Video (LQFP)/reserved (LFCSP)  
YPrPb (LQFP and LFCSP)  
YPrPb (LQFP)/reserved (LFCSP)  
Reserved (LQFP and LFCSP)  
Reserved (LQFP and LFCSP)  
Reserved (LQFP and LFCSP)  
Reserved (LQFP and LFCSP)  
Reserved (LQFP and LFCSP)  
VID_SEL[3:0]; the VID_SEL  
bits allow the user to  
select the input video  
standard  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
Autodetect PAL B/G/H/I/D,NTSC J  
(no pedestal), SECAM  
Autodetect PAL B/G/H/I/D, NTSC M  
(pedestal), SECAM  
Autodetect (PAL N) (pedestal), NTSC J  
(no pedestal), SECAM  
Autodetect (PAL N) (pedestal), NTSC M  
(pedestal), SECAM  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
NTSC J  
NTSC M  
PAL 60  
NTSC 4.43  
PAL B/G/H/I/D  
PAL N = PAL B/G/H/I/D (with pedestal)  
PAL M (without pedestal)  
PAL M  
PAL Combination N  
PAL Combination N (with pedestal)  
SECAM  
SECAM (with pedestal)  
Rev. G | Page 83 of 120  
 
ADV7180  
Data Sheet  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Video selection  
Bit Description  
Reserved  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x01  
0
0
Set to default  
SQPE  
0
1
Disable square pixel mode  
Enable square pixel mode  
Disable VSYNC processor  
Enable VSYNC processor  
Set to default  
ENVSPROC  
0
1
Reserved  
BETACAM  
0
0
1
Standard video input  
Betacam input enable  
Disable HSYNC processor  
Enable HSYNC processor  
Set to default  
ENHSPLL  
0
1
Reserved  
1
0x03  
Output control  
SD_DUP_AV; duplicates  
the AV codes from the  
luma into the chroma path  
0
1
AV codes to suit 8-bit interleaved data  
output  
AV codes duplicated (for 16-bit interfaces)  
Set as default  
Reserved  
0
OF_SEL[3:0]; allows the  
user to choose from a set  
of output formats  
0
0
0
0
0
0
0
0
1
0
1
0
Reserved  
Reserved  
16-bit at LLC 4:2:2  
Options apply to  
64-lead LQFP only  
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
8-bit at LLC 4:2:2 ITU-R BT.656  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TOD; three-state output  
drivers; this bit allows the  
user to three-state the  
output drivers; pixel  
outputs, HS, VS, FIELD,  
and SFL  
0
1
Output pins enabled  
See also TIM_OE  
and TRI_LLC  
Drivers three-stated  
VBI_EN; allows VBI data  
(Line 1 to Line 21) to be  
passed through with  
only a minimum amount  
of filtering performed  
0
1
All lines filtered and scaled  
Only active video region filtered  
0x04  
Extended  
output control  
Range; allows the user  
to select the range of  
output values; can be  
ITU-R BT.656 compliant or  
can fill the whole accessible  
number range  
0
1
16 ≤ Y ≤ 235, 16 ≤ C/P ≤ 240  
1 ≤ Y ≤ 254, 1 ≤ C/P ≤ 254  
ITU-R BT.656  
Extended range  
EN_SFL_PIN  
0
1
SFL output is disabled  
SFL output  
enables encoder  
and decoder to be  
connected directly  
SFL information output on the SFL pin  
BL_C_VBI; blank chroma  
during VBI; if set, it enables  
data in the VBI region  
to be passed through the  
decoder undistorted  
0
1
Decode and output color  
Blank Cr and Cb  
During VBI  
TIM_OE; timing signals  
output enable  
0
1
HS, VS, FIELD three-stated  
HS, VS, FIELD forced active  
Controlled by TOD  
Rev. G | Page 84 of 120  
Data Sheet  
ADV7180  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
Reserved  
7
6
5
4
3
2
1
0
Comments  
Notes  
x
x
Reserved  
1
BT.656-4; allows the  
user to select an output  
mode compatible with  
ITU-R BT.656-3/-4  
0
1
ITU-R BT.656-3 compatible  
ITU-R BT.656-4 compatible  
0x07  
Autodetect  
enable  
AD_PAL_EN; PAL B/D/I/G/H  
autodetect enable  
0
1
Disable  
Enable  
Disable  
AD_NTSC_EN; NTSC  
autodetect enable  
0
1
Enable  
Disable  
AD_PALM_EN; PAL M  
autodetect enable  
0
1
Enable  
Disable  
AD_PALN_EN; PAL N  
autodetect enable  
0
1
Enable  
Disable  
AD_P60_EN; PAL 60  
autodetect enable  
0
1
Enable  
Disable  
AD_N443_EN; NTSC 4.43  
autodetect enable  
0
1
Enable  
Disable  
AD_SECAM_EN; SECAM  
autodetect enable  
0
1
Enable  
Disable  
AD_SEC525_EN; SECAM  
525 autodetect enable  
0
1
1
Enable  
0x08  
0x0A  
0x0B  
0x0C  
Contrast  
CON[7:0]; contrast adjust;  
this is the user control for  
contrast adjustment  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Luma gain = 1  
0x00 gain = 0,  
0x80 gain = 1,  
0xFF gain = 2  
Brightness  
Hue  
BRI[7:0]; this register  
controls the brightness  
of the video signal  
0
0
0x00 = 0 IRE,  
0x7F = +30 IRE,  
0x80 = −30 IRE  
HUE[7:0]; this register  
contains the value for  
the color hue adjustment  
Hue range =  
−90° to +90°  
Default Value Y  
DEF_VAL_EN;  
default value enable  
0
1
Free-run mode dependent on  
DEF_VAL_AUTO_EN  
Force free-run mode on and output  
blue screen  
DEF_VAL_AUTO_EN;  
default value automatic  
enable  
0
1
Disable free-run mode  
When lock is lost,  
free-run mode  
can be enabled to  
output stable  
Enable automatic free-run mode  
(blue screen)  
timing, clock, and  
a set color  
DEF_Y[5:0]; default value is  
Y; this register holds the Y  
default value  
0
0
0
1
1
1
1
1
0
1
1
1
Y[7:0] = {DEF_Y[5:0], 0, 0}  
Default Y value  
output in free-run  
mode  
0x0D  
Default Value C  
DEF_C[7:0]; default value  
is C; the Cr and Cb default  
values are defined in this  
register  
0
0
Cr[3:0] = {DEF_C[7:4], 0, 0, 0, 0}  
Cb[3:0] = {DEF_C[3:0], 0, 0, 0, 0}  
Default Cb/Cr  
value output in  
free-run mode;  
default values give  
blue screen output  
Rev. G | Page 85 of 120  
ADV7180  
Data Sheet  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x0E  
ADI Control 1  
Reserved  
0
0
0
0
0
Set as default  
SUB_USR_EN; enables  
user to access the interrupt/  
VDP register map  
0
1
Access main register space  
Access interrupt/VDP register space  
See Figure 53  
Reserved  
Reserved  
0
0
Set as default  
0x0F  
Power  
management  
0
0
Set to default  
PDBP; power-down bit  
priority selects between  
PWRDWN bit or pin control  
0
1
Chip power-down controlled by pin  
Not applicable for  
32-lead LFCSP  
Bit has priority (pin disregarded)  
Set to default  
Reserved  
0
0
PWRDWN; power-down  
places the decoder into a  
full power-down mode  
0
1
System functional  
Powered down  
See PDBP,  
0x0F Bit 2  
Reserved  
0
Set to default  
Reset; chip reset, loads  
all I2C bits with default  
values  
0
1
Normal operation  
Start reset sequence  
Executing reset  
takes approxi-  
mately 2 ms; this  
bit is self-clearing  
0x10  
Status 1  
(read only)  
IN_LOCK  
x
1 = in lock (now)  
1 = lost lock (since last read)  
1 = fSC lock (now)  
1 = peak white AGC mode active  
NTSC M/J  
Provides info  
about the internal  
status of the  
decoder  
LOST_LOCK  
FSC_LOCK  
FOLLOW_PW  
x
x
x
AD_RESULT[2:0]; auto-  
detection result reports  
the standard of the  
input video  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Detected  
standard  
NTSC 4.43  
PAL M  
PAL 60  
PAL B/G/H/I/D  
SECAM  
PAL Combination N  
SECAM 525  
COL_KILL  
x
1 = color kill is active  
Color kill  
0x11  
0x12  
IDENT  
(read only)  
IDENT[7:0]; provides  
identification on the  
revision of the part  
0
0
0
1
1
x
1
x
0
x
0
x
Power-up  
value = 0x1C  
Status 2  
(read only)  
MVCS DET  
MVCS T3  
MV color striping detected  
MV color striping type  
1 = detected  
0 = Type 2,  
1 = Type 3  
MV PS DET  
MV AGC DET  
LL NSTD  
MV pseudosync detected  
MV AGC pulses detected  
Nonstandard line length  
fSC frequency nonstandard  
1 = detected  
1 = detected  
1 = detected  
1 = detected  
x
FSC NSTD  
Reserved  
x
x
x
0x13  
Status 3  
(read only)  
INST_HLOCK  
GEMD  
x
1 = horizontal lock achieved  
1 = Gemstar data detected  
SD 60 Hz detected  
Unfiltered  
x
SD_OP_50Hz  
0
1
SD field rate detect  
SD 50 Hz detected  
Reserved  
x
FREE_RUN_ACT  
STD FLD LEN  
x
1 = free-run mode active  
1 = field length standard  
Blue screen output  
x
Correct field  
length found  
Interlaced  
x
1 = interlaced video detected  
1 = swinging burst detected  
Field sequence  
found  
PAL_SW_LOCK  
x
Reliable swinging  
burst sequence  
Rev. G | Page 86 of 120  
Data Sheet  
ADV7180  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x14  
Analog  
clamp control  
Reserved  
0
0
1
0
Set to default  
CCLEN; current clamp  
enable allows the user  
to switch off the current  
sources in the analog  
front  
0
1
Current sources switched off  
Current sources enabled  
Reserved  
Reserved  
0
0
0
Set to default  
0x15  
Digital Clamp  
Control 1  
x
x
x
x
Set to default  
DCFE; digital clamp  
freeze enable  
0
1
Digital clamp on  
Digital clamp off  
Slow (TC = 1 sec)  
Medium (TC = 0.5 sec)  
Fast (TC = 0.1 sec)  
TC dependent on video  
Set to default  
DCT[1:0]; digital clamp  
timing determines the  
time constant of the  
0
0
1
1
0
1
0
1
digital fine clamp circuitry  
Reserved  
0
0x17  
Shaping Filter  
Control 1  
YSFM[4:0]; selects Y  
shaping filter mode in  
CVBS-only mode;  
0
0
0
0
0
0
0
0
0
1
Autowide notch for poor quality  
sources or wideband filter with  
comb for good quality input  
Autonarrow notch for poor quality  
sources or wideband filter with  
comb for good quality input  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS 8  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
PAL NN1  
PAL NN2  
PAL NN3  
PAL WN1  
PAL WN2  
NTSC NN1  
NTSC NN2  
NTSC NN3  
NTSC WN1  
NTSC WN2  
NTSC WN3  
Reserved  
Autoselection 1.5 MHz  
Autoselection 2.17 MHz  
Decoder selects  
optimum Y  
shaping filter  
depending on  
CVBS quality  
allows the user to select  
a wide range of low-pass  
and notch filters; if either  
auto mode is selected,  
the decoder selects  
the optimum Y filter  
depending on the CVBS  
video source quality  
(good vs. poor)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
If one of these  
modes is selected,  
the decoder does  
not change filter  
modes; depending  
on video quality, a  
fixed filter response  
(the one selected)  
is used for good  
and bad quality  
video  
CSFM[2:0]; C shaping filter  
mode allows selection  
from a range of low-pass  
chrominance filters;  
if either auto mode is  
selected, the decoder  
selects the optimum C  
filter depending on the  
CVBS video source quality  
(good vs. bad); nonauto  
settings force a C filter for  
all standards and quality  
of CVBS video  
0
0
0
0
0
1
Automatically  
selects a C filter  
based on video  
standard and  
quality  
Selects a C filter for  
all video standards  
and for good and  
bad video  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
SH1  
SH2  
SH3  
SH4  
SH5  
Wideband mode  
Rev. G | Page 87 of 120  
ADV7180  
Data Sheet  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
~
1
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
~
1
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
~
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
~
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
~
1
Comments  
Reserved, do not use  
Reserved, do not use  
SVHS 1  
Notes  
0x18  
Shaping Filter  
Control 2  
WYSFM[4:0]; wideband Y  
shaping filter mode allows  
the user to select which Y  
shaping filter is used for  
the Y component of Y/C,  
YPrPb, B/W input signals;  
it is also used when a  
good quality input CVBS  
signal is detected; for all  
other inputs, the Y  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
shaping filter chosen is  
controlled by YSFM[4:0]  
SVHS 7  
SVHS 8  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
Reserved, do not use  
Reserved, do not use  
Reserved, do not use  
Set to default  
Autoselection of best filter  
Manual select filter using WYSFM[4:0]  
Reserved  
0
0
WYSFMOVR; enables  
use of the automatic  
WYSFM filter  
0
1
0x19  
Comb filter  
control  
PSFSEL[1:0]; controls  
the signal bandwidth  
that is fed to the comb  
filters (PAL)  
0
0
1
1
0
1
0
1
Narrow  
Medium  
Wide  
Widest  
NSFSEL[1:0]; controls  
the signal bandwidth  
that is fed to the comb  
filters (NTSC)  
0
0
1
1
0
1
0
1
Narrow  
Medium  
Medium  
Wide  
Reserved  
Reserved  
EN28XTAL  
1
1
1
0
1
0
Set as default  
Set to default  
Reserved, do not use  
Use 28 MHz crystal  
LLC pin active  
LLC pin three-stated  
0x1D  
ADI Control 2  
0
x
x
x
0
1
TRI_LLC  
0
1
Rev. G | Page 88 of 120  
 
 
Data Sheet  
ADV7180  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
0
0
1
Comments  
Notes  
0x27  
Pixel delay  
control  
LTA[1:0]; luma timing  
adjust allows the user to  
specify a timing difference  
between chroma and  
luma samples  
No delay  
CVBS mode  
LTA[1:0] = 00b,  
S-Video mode  
LTA[1:0] = 01b,  
YPrPb mode  
LTA[1:0] = 01b  
Luma one clock (37 ns) late  
1
1
0
1
Luma two clocks (74 ns) early  
Luma one clock (37 ns) early  
Reserved  
0
Set to 0  
CTA[2:0]; chroma  
timing adjust allows  
a specified timing  
difference between  
the luma and chroma  
samples  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Not a valid setting  
CVBS mode  
CTA[2:0] = 011b,  
S-Video mode  
CTA[2:0] =101b,  
YPrPb mode  
Chroma + two pixels (early)  
Chroma + one pixel (early)  
No delay  
CTA[2:0] = 110b  
Chroma − one pixel (late)  
Chroma − two pixels (late)  
Chroma − three pixels (late)  
Not a valid setting  
AUTO_PDC_EN;  
0
1
Use values in LTA[1:0] and CTA[2:0]  
for delaying luma/chroma  
automatically programs  
the LTA/CTA values so  
that luma and chroma are  
aligned at the output for  
all modes of operation  
LTA and CTA values determined  
automatically  
SWPC; allows the Cr and  
Cb samples to be swapped  
0
1
No swapping  
Swap the Cr and Cb output samples  
Update once per video line  
Update once per field  
0x2B  
Misc gain  
control  
PW_UPD; peak white  
update determines the  
rate of gain  
0
1
Peak white must  
be enabled; see  
LAGC[2:0]  
Reserved  
1
0
0
0
0
Set to default  
CKE; color kill enable  
allows the color kill  
function to be switched  
on and off  
0
1
Color kill disabled  
Color kill enabled  
For SECAM color  
kill, the threshold is  
set at 8%; see  
CKILLTHR[2:0]  
Reserved  
1
Set to default  
0x2C  
AGC mode  
control  
CAGC[1:0]; chroma auto-  
matic gain control selects  
the basic mode of  
operation for the AGC in  
the chroma path  
0
0
1
1
0
1
0
1
Manual fixed gain  
Use luma gain for chroma  
Automatic gain  
Use CMG[11:0]  
Based on color burst  
Freeze chroma gain  
Set to 1  
Reserved  
1
1
LAGC[2:0]; luma auto  
matic gain control selects  
the mode of operation for  
the gain control in the  
luma path  
0
0
0
0
0
1
Manual fixed gain  
Peak white algorithm off  
Use LMG[11:0]  
Blank level to  
sync tip  
0
1
0
Peak white algorithm on  
Blank level to  
sync tip  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Freeze gain  
Set to 1  
Reserved  
1
0x2D  
Chroma Gain  
Control 1,  
Chroma Gain1  
(CG)  
CMG[11:8]/CG[11:8]; in  
0
1
0
0
CAGC[1:0] settings  
decide in which  
mode CMG[11:0]  
operates  
manual mode, the chroma  
gain control can be used to  
program a desired manual  
chroma gain; in auto mode,  
it can be used to read back  
the current gain value  
Reserved  
1
1
Set to 1  
CAGT[1:0]; chroma auto  
matic gain timing allows  
adjustment of the chroma  
AGC tracking speed  
0
0
1
1
0
1
0
1
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Reserved  
Has an effect only  
if CAGC[1:0] is set  
to autogain (10)  
Adaptive  
Rev. G | Page 89 of 120  
ADV7180  
Data Sheet  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x2E  
Chroma Gain  
Control 2,  
Chroma Gain2  
(CG)  
CMG[7:0]/CG[7:0]; chroma  
manual gain lower eight  
bits; see CMG[11:8]/  
0
0
0
0
0
0
0
0
CMG[11:0] = see the CMG section  
CMG[11:0] = see the CMG section  
Min value = 0d,  
Max value = 4095d  
CG[11:8] for description  
0x2F  
Luma Gain  
Control 1, Luma  
Gain1 (LG)  
LMG[11:8]/LG[11:8]; in  
manual mode, luma gain  
control can be used to  
program a desired manual  
luma gain; in auto mode,  
it can be used to read  
back the actual gain value  
used  
x
x
x
x
LAGC[1:0] settings decide in which  
mode LMG[11:0] operates  
Reserved  
1
x
1
x
Set to 1  
LAGT[1:0]; luma auto  
matic gain timing allows  
adjustment of the luma  
AGC tracking speed  
0
0
1
1
x
0
1
0
1
x
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
Only has an effect  
if LAGC[1:0] is set  
to autogain (001,  
010, 011, or 100)  
LMG[7:0]/LG[7:0]; luma  
manual gain lower eight  
bits; see LMG[11:8]/  
x
x
x
x
LMG[11:0] - see the LMG section  
LMG[11:0] =- see the LMG section  
Min value = 1024d,  
Max value = 4095d  
0x30  
0x31  
Luma Gain  
Control 2, Luma  
Gain2 (LG)  
LG[11:8] for description  
Reserved  
0
1
0
Set to default  
VS/FIELD  
Control 1  
HVSTIM; selects where  
within a line of video the  
VS signal is asserted  
0
1
Start of line relative to HSE  
Start of line relative to HSB  
HSE = HSYNC end  
HSB = HSYNC begin  
NEWAVMODE; sets the  
EAV/SAV mode  
0
1
EAV/SAV codes generated to suit  
Analog Devices encoders  
Manual VS/FIELD position controlled by  
the 0x32, 0x33, and 0xE5 to 0xEA registers  
Reserved  
Reserved  
VSBHE  
0
0
0
0
Set to default  
Set to default  
0
0
0
1
0
0
0
0
1
0
0
NEWAVMODE bit  
must be set high  
0x32  
0x33  
0x34  
VS/FIELD  
Control 2  
0
1
VS goes high in the middle of the  
line (even field)  
VS changes state at the start of the  
line (even field)  
VSBHO  
0
1
VS goes high in the middle of the  
line (odd field)  
VS changes state at the start of the  
line (odd field)  
Reserved  
VSEHE  
0
0
0
Set to default  
VS/FIELD  
Control 3  
0
1
VS goes low in the middle of the  
line (even field)  
NEWAVMODE bit  
must be set high  
VS changes state at the start of the  
line (even field)  
VSEHO  
0
1
VS goes low in the middle of the line  
(odd field)  
VS changes state at the start of the  
line odd field  
HSE[10:8]; HS end allows  
positioning of the HS  
output within the  
video line  
HS output ends HSE[10:0] pixels after  
the falling edge of HSYNC  
Using HSB and  
HSE the user can  
program the  
position and length  
of the output  
HSYNC  
HS Position  
Control 1  
Reserved  
0
Set to 0  
HSB[10:8]; HS begin  
allows positioning of  
the HS output within  
the video line  
0
0
0
0
0
0
HS output starts HSB[10:0] pixels  
after the falling edge of HSYNC  
Reserved  
0
0
Set to 0  
0x35  
0x36  
HS Position  
Control 2  
HSB[7:0]; see Address 0x34,  
using HSB[10:0] and  
HSE[10:0], users can  
program the position  
and length of the HS  
output signal  
0
0
0
0
1
0
0
0
HS Position  
Control 3  
HSE[7:0]; see Address  
0x35 description  
0
0
0
0
Rev. G | Page 90 of 120  
Data Sheet  
ADV7180  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Comments  
Notes  
0x37  
Polarity  
PCLK; sets polarity of LLC  
Invert polarity  
Normal polarity as per the timing  
diagrams  
Reserved  
0
0
Set to 0  
PF; sets the FIELD polarity  
0
1
Active high  
Active low  
Reserved  
0
Set to 0  
PVS; sets the VS polarity  
0
1
Active high  
Active low  
Reserved  
0
Set to 0  
PHS; sets HS polarity  
0
1
Active low  
Active high  
YCMN[2:0]; luma comb  
mode, NTSC  
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
Adaptive three-line, three-tap luma  
Use low-pass notch  
Fixed luma comb (two-line)  
Fixed luma comb (three-line)  
Fixed luma comb (two-line)  
0x38  
NTSC comb  
control  
Top lines of memory  
All lines of memory  
Bottom lines of  
memory  
CCMN[2:0]; chroma  
comb mode, NTSC  
0
0
0
Three-line adaptive for CTAPSN = 01,  
Four-line adaptive for CTAPSN = 10,  
Five-line adaptive for CTAPSN = 11  
1
1
0
0
0
1
Disable chroma comb  
Fixed two-line for CTAPSN = 01,  
Fixed three-line for CTAPSN = 10,  
Fixed four-line for CTAPSN = 11  
Top lines of memory  
All lines of memory  
1
1
1
1
0
1
Fixed three-line for CTAPSN = 01,  
Fixed four-line for CTAPSN = 10,  
Fixed five-line for CTAPSN = 11  
Fixed two-line for CTAPSN = 01,  
Fixed three-line for CTAPSN = 10,  
Fixed four-line for CTAPSN = 11  
Bottom lines of  
memory  
CTAPSN[1:0]; chroma  
comb taps, NTSC  
0
0
1
1
0
1
0
1
Not used  
Adapts three lines to two lines  
Adapts five lines to three lines  
Adapts five lines to four lines  
Adaptive five-line, three-tap luma comb  
Use low-pass notch  
0x39  
PAL comb  
control  
YCMP[2:0]; luma  
comb mode, PAL  
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
Fixed luma comb (three-line)  
Fixed luma comb (five-line)  
Fixed luma comb (three-line)  
Top lines of memory  
All lines of memory  
Bottom lines of  
memory  
CCMP[2:0]; chroma  
comb mode, PAL  
0
0
0
Three-line adaptive for CTAPSN = 01,  
Four-line adaptive for CTAPSN = 10,  
Five-line adaptive for CTAPSN = 11  
1
1
0
0
0
1
Disable chroma comb  
Fixed two-line for CTAPSN = 01  
Fixed three-line for CTAPSN = 10  
Fixed four-line for CTAPSN = 11  
Fixed three-line for CTAPSN = 01  
Fixed four-line for CTAPSN = 10  
Fixed five-line for CTAPSN = 11  
Fixed two-line for CTAPSN = 01  
Top lines of memory  
All lines of memory  
1
1
1
1
0
1
Bottom lines  
of memory  
Fixed three-line for CTAPSN = 10  
Fixed four-line for CTAPSN = 11  
Not used  
CTAPSP[1:0]; chroma  
comb taps, PAL  
0
0
1
1
0
1
0
1
Adapts five lines to three lines (two taps)  
Adapts five lines to three lines (three taps)  
Adapts five lines to four lines (four taps)  
Rev. G | Page 91 of 120  
 
 
ADV7180  
Data Sheet  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x3A  
ADC control  
MUX PDN override; mux  
power-down override  
0
No control over  
power-down for  
muxes and associ-  
ated channel circuit  
1
Allows power-down  
of MUX0/MUX1/  
MUX2 and  
associated channel  
circuit. When  
INSEL[3:0] is used,  
unused channels  
are automatically  
powered down.  
PWRDWN_MUX_2;  
0
1
MUX2 and associated channel in  
normal operation  
enables power-down of  
MUX2 and associated  
channel clamp and buffer  
Power down MUX2 and associated  
channel operation  
MUX PDN  
Override = 1  
PWRDWN_MUX_1;  
0
1
MUX1 and associated channel in  
normal operation  
enables power-down of  
MUX1 and associated  
channel clamp and buffer  
Power down MUX1 and associated  
channel operation  
MUX PDN  
Override = 1  
PWRDWN_MUX_0;  
0
MUX0 and associated channel in  
normal operation  
enables power-down of  
MUX0 and associated  
channel clamp and buffer  
1
0
Power down MUX0 and associated  
channel operation  
MUX PDN  
Override = 1  
Reserved  
0
0
0
1
Set as default  
Set to default  
0x3D  
Manual  
window  
control  
Reserved  
0
1
0
CKE = 1 enables  
the color kill  
function and must  
be enabled for  
CKILLTHR[2:0] to  
take effect  
CKILLTHR[2:0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
NTSC, PAL color kill at <0.5%,  
SECAM no color kill  
NTSC, PAL color kill at <1.5%,  
SECAM color kill at <5%  
NTSC, PAL color kill at <2.5%,  
SECAM color kill at <7%  
NTSC, PAL color kill at <4%,  
SECAM color kill at <8%  
NTSC, PAL color kill at <8.5%,  
SECAM color kill at <9.5%  
NTSC, PAL color kill at <16%,  
SECAM color kill at <15%  
NTSC, PAL color kill at <32%,  
SECAM color kill at <32%  
Reserved  
Reserved  
Reserved  
1
Set to default  
Set to default  
0x41  
Resample  
control  
0
0
0
0
0
1
SFL_INV; controls the  
behavior of the PAL  
switch bit  
0
1
SFL-compatible with the ADV717x and  
ADV73xx video encoders  
SFL-compatible with the ADV7194  
video encoder  
Reserved  
0
0
Set to default  
GDECEL[15:8]; see the  
Comments column  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GDECEL[15:0]: 16 individual enable bits  
that select the lines of video (even field  
Line 10 to Line 25) that the decoder  
checks for Gemstar-compatible data  
LSB = Line 10,  
MSB = Line 25,  
Default = do not  
check for Gemstar-  
compatible data  
on any lines [10 to  
25] in even fields  
0x48  
0x49  
Gemstar  
Control 1  
GDECEL[7:0]  
0
Gemstar  
Control 2  
Rev. G | Page 92 of 120  
Data Sheet  
ADV7180  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
GDECOL[15:8]; see the  
Comments column  
0
0
0
0
0
0
0
0
GDECOL[15:0]: 16 individual enable bits  
that select the lines of video (odd field  
Line 10 to Line 25) that the decoder  
checks for Gemstar-compatible data  
LSB = Line 10,  
MSB = Line 25,  
0x4A  
Gemstar  
Control 3  
Default = do not  
check for Gemstar-  
compatible data on  
any lines [10 to 25]  
in odd fields  
GDECOL[7:0]  
0
0
0
0
0
0
0
0
0x4B  
Gemstar  
Control 4  
GDECAD; controls the  
0
1
Split data into half-byte  
To avoid 00/FF code  
0x4C  
Gemstar  
Control 5  
manner decoded Gemstar  
data is inserted into the  
horizontal blanking period  
Output in straight 8-bit format  
GDE_SEL_OLD_ADF  
Reserved  
0
Enables a new ancillary data system  
Undefined  
x
x
x
x
x
x
0x4D  
CTI DNR  
Control 1  
CTI_EN; CTI enable  
0
1
Disable CTI  
Enable CTI  
CTI_AB_EN; enables the  
mixing of the transient  
improved chroma with  
the original signal  
0
1
Disable CTI alpha blender  
Enable CTI alpha blender  
CTI_AB[1:0]; controls the  
behavior of the alpha-  
blend circuitry  
0
0
1
1
0
1
0
1
Sharpest mixing  
Sharp mixing  
Smooth mixing  
Smoothest mixing  
Set to default  
Reserved  
0
DNR_EN; enable or bypass  
the DNR block  
0
1
Bypass the DNR block  
Enable the DNR block  
Set to default  
Reserved  
1
0
1
0
0x4E  
0x50  
0x51  
CTI DNR  
Control 2  
CTI_C_TH[7:0]; specifies  
how big the amplitude  
step must be to be steep-  
ened by the CTI block  
0
0
0
1
1
0
0
0
0
0
0
Set to 0x04 for AV input;  
set to 0x0A for tuner input  
CTI DNR  
Control 4  
DNR_TH[7:0]; specifies  
the maximum edge that is  
interpreted as noise and is  
therefore blanked  
0
0
0
Lock count  
CIL[2:0]; count into lock  
determines the number of  
lines the system must  
remain in lock before  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
One line of video  
Two lines of video  
Five lines of video  
10 lines of video  
100 lines of video  
500 lines of video  
1000 lines of video  
100,000 lines of video  
1 line of video  
2 lines of video  
5 lines of video  
10 lines of video  
100 lines of video  
500 lines of video  
1000 lines of video  
100,000 lines of video  
Over field with vertical info  
Line-to-line evaluation  
showing a locked status  
COL[2:0]; count out of  
lock determines the  
number of lines the  
system must remain out-  
of-lock before showing a  
lost-locked status  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SRLS; select raw lock signal;  
selects the determination  
of the lock status  
0
1
FSCLE; fSC lock enable  
0
1
Lock status set only by horizontal lock  
Lock status set by horizontal lock and  
subcarrier lock  
0x58  
VS/FIELD  
pin control  
VS/FIELD; VSYNC or FIELD  
output; 40-lead and  
32-lead LFCSP only  
0
1
FIELD  
VSYNC  
Pin 37 on 40-lead  
LFCSP, Pin 31 on  
32-lead LFCSP  
Reserved  
0
Set to default  
ADC sampling control  
0
1
ADC sampling control  
Y/C mode only  
Set to default  
Mandatory write  
Reserved  
0
0
0
0
0
Rev. G | Page 93 of 120  
ADV7180  
Data Sheet  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Comments  
Notes  
0x59  
General-  
purpose  
outputs  
GPO[3:0]; LQFP only  
Outputs 0 to GPO0  
Outputs 1 to GPO0  
Outputs 0 to GPO1  
Outputs 1 to GPO1  
Outputs 0 to GPO2  
Outputs 1 to GPO2  
Outputs 0 to GPO3  
Outputs 1 to GPO3  
GPO[3:0] three-stated  
GPO[3:0] enabled  
GPO_ENABLE  
must be set to 1  
for these bits to  
take effect  
0
1
0
1
0
1
GPO_ENABLE  
0
1
Reserved  
Reserved  
0
0
0
0x8F  
Free-Run Line  
Length 1  
0
0
0
0
Set to default  
LLC_PAD_SEL[2:0]; enables  
manual selection of the  
clock for the LLC pin  
0
1
0
0
0
1
LLC (nominal 27 MHz) selected out  
on LLC pin  
LLC (nominal 13.5 MHz) selected out  
on LLC pin  
For 16-bit 4:2:2 out,  
OF_SEL[3:0] = 0010  
Reserved  
0
x
Set to default  
0x99  
0x9A  
0x9B  
CCAP1  
(read only)  
CCAP1[7:0]; closed  
caption data register  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
CCAP1[7] contains parity bit for Byte 0  
CCAP2  
(read only)  
CCAP2[7:0]; closed  
caption data register  
x
x
CCAP2[7] contains parity bit for Byte 0  
Letterbox 1  
(read only)  
LB_LCT[7:0]; letterbox  
data register  
Reports the number of black lines  
detected at the top of active video  
This feature  
examines the active  
video at the start  
and end of each  
field; it enables  
format detection  
even if the video is  
not accompanied  
by a CGMS or WSS  
sequence  
0x9C  
0x9D  
Letterbox 2  
(read only)  
LB_LCM[7:0]; letterbox  
data register  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Reports the number of black lines  
detected in the bottom half of active  
video if subtitles are detected  
Letterbox 3  
(read only)  
LB_LCB[7:0]; letterbox  
data register  
Reports the number of black lines  
detected at the bottom of active video  
0xB2  
0xC3  
CRC enable  
(write only)  
Reserved  
0
0
Set as default  
CRC_ENABLE; enable CRC  
checksum decoded from  
FMS packet to validate  
CGMSD  
0
1
Turn off CRC check  
CGMSD goes high with valid checksum  
Reserved  
0
0
0
1
1
Set as default  
ADC Switch 1  
MUX0[2:0]; manual  
LQFP  
No connect  
AIN1  
LFCSP  
MAN_MUX_EN = 1  
muxing control for MUX0;  
this setting controls which  
input is routed to the ADC  
for processing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No connect  
AIN1  
AIN2  
No connect  
No connect  
AIN2  
AIN3  
AIN4  
AIN5  
AIN3  
AIN6  
No connect  
No connect  
No connect  
Reserved  
0
MUX1[2:0]; manual  
LQFP  
LFCSP  
MAN_MUX_EN = 1  
muxing control for MUX1;  
this setting controls which  
input is routed to the ADC  
for processing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No connect  
No connect  
No connect  
AIN3  
No connect  
No connect  
No connect  
No connect  
AIN2  
AIN4  
AIN5  
AIN3  
AIN6  
No connect  
No connect  
No connect  
Reserved  
0
Rev. G | Page 94 of 120  
Data Sheet  
ADV7180  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
LQFP  
Notes  
0xC4  
ADC Switch 2  
MUX2[2:0]; manual  
LFCSP  
MAN_MUX_EN = 1  
muxing control for MUX2;  
this setting controls which  
input is routed to the ADC  
for processing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No connect  
No connect  
AIN2  
No connect  
No connect  
No connect  
No connect  
No connect  
AIN3  
No connect  
No connect  
AIN5  
AIN6  
No connect  
No connect  
No connect  
Reserved  
0
0
0
0
0
1
MAN_MUX_EN; enable  
manual setting of the  
input signal muxing  
0
1
Disable  
Enable  
This bit must be set  
to 1 for manual  
muxing  
0xDC  
0xDD  
Letterbox  
Control 1  
LB_TH[4:0]; sets the  
threshold value that  
determines if a line is  
black  
1
1
0
0
0
0
Default threshold for the detection of  
black lines  
01101 to 10000—increase threshold,  
00000 to 01011—decrease threshold  
Reserved  
1
0
0
1
1
0
Set as default  
Letterbox  
Control 2  
LB_EL[3:0]; programs the  
end line of the activity  
window for LB detection  
(end of field)  
1
LB detection ends with the last line of  
active video on a field, 1100b: 262/525  
LB_SL[3:0]; programs the  
start line of the activity  
window for LB detection  
(start of field)  
0
x
Letterbox detection aligned with the  
start of active video, 0100b: 23/286 NTSC  
0xDE  
0xDF  
0xE1  
ST Noise  
Readback 1  
(read only)  
ST_NOISE[10:8]  
ST_NOISE_VLD  
x
x
x
x
x
x
x
x
When = 1, ST_NOISE[10:0] is valid  
ST Noise  
Readback 2  
(read only)  
ST_NOISE[7:0]  
x
x
x
SD Offset Cb  
SD_OFF_Cb[7:0]; adjusts  
the hue by selecting the  
offset for the Cb channel  
0
1
1
0
1
1
0
1
1
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
1
−312 mV offset applied to the Cb channel  
0 mV offset applied to the Cb channel  
+312 mV offset applied to the Cb channel  
−312 mV offset applied to the Cr channel  
0 mV offset applied to the Cr channel  
+312 mV offset applied to the Cr channel  
Gain on Cb channel = −42 dB  
0xE2  
0xE3  
0xE4  
0xE5  
SD Offset Cr  
SD_OFF_Cr[7:0]; adjusts  
the hue by selecting the  
offset for the Cr channel  
SD Saturation Cb  
SD Saturation Cr  
SD_SAT_Cb[7:0]; adjusts  
the saturation by affecting  
gain on the Cb channel  
Gain on Cb channel = 0 dB  
Gain on Cb channel = +6 dB  
SD_SAT_Cr[7:0]; adjusts  
the saturation by affecting  
gain on the Cr channel  
Gain on Cr channel = −42 dB  
Gain on Cb channel = 0 dB  
Gain on Cb channel = +6 dB  
NTSC V bit  
begin  
NVBEG[4:0]; number of  
lines after lCOUNT rollover  
to set V high  
NTSC default (ITU-R BT.656)  
NVBEGSIGN  
0
1
Set to low when manual programming  
Not suitable for user programming  
No delay  
NVBEGDELE; delay V bit  
going high by one line  
relative to NVBEG (even  
field)  
0
1
Additional delay by one line  
NVBEGDELO; delay V bit  
going high by one line  
relative to NVBEG (odd  
field)  
0
1
No delay  
Additional delay by one line  
Rev. G | Page 95 of 120  
ADV7180  
Data Sheet  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0xE6  
NTSC V bit end  
NVEND[4:0]; number of  
lines after lCOUNT rollover  
to set V low  
0
0
1
0
0
NTSC default (ITU-R BT.656)  
NVENDSIGN  
0
1
Set to low when manual programming  
Not suitable for user programming  
No delay  
NVENDDELE; delay V bit  
going low by one line  
relative to NVEND (even  
field)  
0
1
Additional delay by one line  
NVENDDELO; delay V bit  
going low by one line  
relative to NVEND (odd  
field)  
0
1
No delay  
Additional delay by one line  
0xE7  
0xE8  
0xE9  
0xEA  
NTSC F bit  
toggle  
NFTOG[4:0]; number of  
lines after lCOUNT rollover to  
toggle F signal  
0
0
1
0
0
0
0
0
0
1
1
0
1
0
0
1
1
1
0
1
NTSC default  
NFTOGSIGN  
0
1
Set to low when manual programming  
Not suitable for user programming  
No delay  
NFTOGDELE; delay  
F transition by one line  
relative to NFTOG (even  
field)  
0
1
Additional delay by one line  
NFTOGDELO; delay  
F transition by one line  
relative to NFTOG  
(odd field)  
0
1
No delay  
Additional delay by one line  
PAL V bit begin  
PAL V bit end  
PAL F bit toggle  
PVBEG[4:0]; number of  
lines after lCOUNT rollover  
to set V high  
PAL default (ITU-R BT.656)  
PVBEGSIGN  
0
1
Set to low when manual programming  
Not suitable for user programming  
No delay  
PVBEGDELE; delay V bit  
going high by one line  
relative to PVBEG (even  
field)  
0
1
Additional delay by one line  
PVBEGDELO; delay V bit  
going high by one line  
relative to PVBEG (odd  
field)  
0
1
No delay  
Additional delay by one line  
PVEND[4:0]; number of  
lines after lCOUNT rollover  
to set V low.  
PAL default (ITU-R BT.656)  
PVENDSIGN  
0
1
Set to low when manual programming  
Not suitable for user programming  
No delay  
PVENDDELE; delay V bit  
going low by one line  
relative to PVEND (even  
field)  
0
1
Additional delay by one line  
PVENDDELO; delay V bit  
going low by one line  
relative to PVEND (odd  
field)  
0
1
No delay  
Additional delay by one line  
PFTOG[4:0]; number of  
lines after lCOUNT rollover  
to toggle F signal  
PAL default (ITU-R BT.656)  
PFTOGSIGN  
0
1
Set to low when manual programming  
Not suitable for user programming  
No delay  
PFTOGDELE; delay  
F transition by one line  
relative to PFTOG  
(even field)  
0
1
Additional delay by one line  
PFTOGDELO; delay  
F transition by one line  
relative to PFTOG  
(odd field)  
0
1
No delay  
Additional delay by one line  
Rev. G | Page 96 of 120  
Data Sheet  
ADV7180  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0xEB  
Vblank Control 1 PVBIELCM[1:0]; PAL VBI  
even field line control  
0
0
VBI ends one line earlier (Line 335)  
ITU-R BT.470 compliant (Line 336)  
VBI ends one line later (Line 337)  
VBI ends two lines later (Line 338)  
VBI ends one line earlier (Line 22)  
ITU-R BT.470 compliant (Line 23)  
VBI ends one line later (Line 24)  
VBI ends two lines later (Line 25)  
VBI ends one line earlier (Line 282)  
ITU-R BT.470 compliant (Line 283)  
VBI ends one line later (Line 284)  
VBI ends two lines later (Line 285)  
VBI ends one line earlier (Line 20)  
ITU-R BT.470 compliant (Line 21)  
VBI ends one line later (Line 22)  
VBI ends two lines later (Line 23)  
Color output beginning Line 335  
Controls position of  
first active (comb  
filtered) line after VBI  
on even field in PAL  
0
1
1
1
0
1
PVBIOLCM[1:0]; PAL VBI  
odd field line control  
0
0
Controls position of  
first active (comb  
filtered) line after VBI  
on odd field in PAL  
0
1
1
1
0
1
NVBIELCM[1:0]; NTSC VBI  
even field line control  
0
0
Controls position of  
first active (comb  
filtered) line after VBI  
on even field in NTSC  
0
1
1
1
0
1
NVBIOLCM[1:0]; NTSC VBI  
odd field line control  
0
0
Controls position of  
first active (comb  
filtered) line after VBI  
on odd field in NTSC  
0
1
1
1
0
1
0xEC  
Vblank Control 2 PVBIECCM[1:0]; PAL VBI  
even field color control  
0
0
0
1
Controls the position  
of first line that  
outputs color after  
VBI on even field in  
PAL  
ITU-R BT.470 compliant color output  
beginning Line 336  
1
1
0
1
Color output beginning Line 337  
Color output beginning Line 338  
Color output beginning Line 22  
PVBIOCCM[1:0]; PAL VBI  
odd field color control  
0
0
0
1
Controls the position  
of first line that  
outputs color after  
VBI on odd field in  
PAL  
ITU-R BT.470-compliant color output  
beginning Line 23  
1
1
0
1
Color output beginning Line 24  
Color output beginning Line 25  
Color output beginning Line 282  
NVBIECCM[1:0]; NTSC VBI  
even field color control  
0
0
0
1
Controls the position  
of first line that  
outputs color after  
VBI on even field in  
NTSC  
ITU-R BT.470-compliant color output  
beginning Line 283  
1
1
0
1
VBI ends one line later (Line 284)  
Color output beginning Line 285  
Color output beginning Line 20  
NVBIOCCM[1:0]; NTSC VBI  
odd field color control  
0
0
0
1
Controls the position  
of first line that  
outputs color after  
VBI on odd field in  
NTSC  
ITU-R BT.470 compliant color output  
beginning Line 21  
1
1
0
1
Color output beginning Line 22  
Color output beginning Line 23  
Antialiasing Filter 1 disabled  
0xF3  
AFE_CONTROL 1 AA_FILT_EN[2:0];  
antialiasing filter enable  
0
AA_FILT_MAN_OVR  
must be enabled  
to change settings  
defined by  
INSEL[3:0]  
1
Antialiasing Filter 1 enabled  
Antialiasing Filter 2 disabled  
Antialiasing Filter 2 enabled  
Antialiasing Filter 3 disabled  
Antialiasing Filter 3 enabled  
Override disabled  
0
1
0
1
AA_FILT_MAN_OVR;  
0
antialiasing filter override  
1
Override enabled  
Reserved  
0
0
0
0
Rev. G | Page 97 of 120  
ADV7180  
Data Sheet  
Bits  
(Shading Indicates Default State)  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
Comments  
Notes  
0xF4  
Drive strength  
DR_STR_S[1:0]; selects  
the drive strength for  
the sync output signals  
Low drive strength (1×)  
Medium low drive strength (2×)  
Medium high drive strength (3×)  
High drive strength (4×)  
DR_STR_C[1:0]; selects  
the drive strength for  
the clock output signal  
0
0
1
1
0
1
0
1
Low drive strength (1×)  
Medium low drive strength (2×)  
Medium high drive strength (3×)  
High drive strength (4×)  
DR_STR[1:0]; selects the  
drive strength for the data  
output signals; can be  
increased or decreased for  
EMC or crosstalk reasons  
0
0
1
1
0
1
0
1
Low drive strength (1×)  
Medium low drive strength (2×)  
Medium high drive strength (3×)  
High drive strength (4×)  
Reserved  
x
x
0xF8  
IF comp  
control  
IFFILTSEL[2:0]; IF filter  
selection for PAL and  
NTSC  
0
0
0
Bypass mode  
0 dB  
2 MHz  
−3 dB  
5 MHz  
−2 dB  
NTSC filters  
0
0
0
1
0
1
1
0
1
0
1
0
−6 dB  
+3.5 dB  
+5 dB  
−10 dB  
Reserved  
3 MHz  
−2 dB  
6 MHz  
+2 dB  
+3 dB  
+5 dB  
PAL filters  
1
1
1
0
1
1
1
0
1
−5 dB  
−7 dB  
Reserved  
0
0
0
0
0
0xF9  
VS mode  
control  
EXTEND_VS_MAX_FREQ  
0
1
Limits maximum VSYNC frequency to  
66.25 Hz (475 lines/frame)  
Limits maximum VSYNC frequency to  
70.09 Hz (449 lines/frame)  
EXTEND_VS_MIN_FREQ  
VS_COAST_MODE[1:0]  
0
1
Limits minimum VSYNC frequency to  
42.75 Hz (731 lines/frame)  
Limits minimum VSYNC frequency to  
39.51 Hz (791 lines/frame)  
0
0
1
1
0
1
0
1
Autocoast mode  
50 Hz coast mode  
60 Hz coast mode  
Reserved  
This value sets up  
the output coast  
frequency  
Reserved  
0
0
0
1
0
0
0
0
0xFB  
0xFC  
Peaking control  
PEAKING_GAIN[7:0]  
0
0
0
1
0
0
0
0
Increases/decreases the gain for high  
frequency portions of the video signal  
Coring  
threshold  
DNR_TH2[7:0]  
0
0
0
0
Specifies the maximum edge that is  
interpreted as noise and therefore  
blanked  
1 Shading indicates default values.  
2 x indicates a bit that keeps the last written value.  
Rev. G | Page 98 of 120  
Data Sheet  
ADV7180  
Table 108. Register Map Descriptions (Interrupt Operation)1, 2  
Bit (Shading Indicates  
Default State)  
User Sub Map  
Bit Description  
Address Register  
0x40 Interrupt Configuration 1  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
Comments  
Notes  
INTRQ_OP_SEL[1:0]; interrupt  
drive level select  
Open drain  
Drive low when active  
Drive high when active  
Reserved  
MPU_STIM_INTRQ; manual  
interrupt set mode  
0
1
Manual interrupt mode disabled  
Manual interrupt mode enabled  
Not used  
Reserved  
x
MV_INTRQ_SEL[1:0];  
Macrovision interrupt select  
0
0
1
1
0
1
0
1
Reserved  
Pseudo sync only  
Color stripe only  
Pseudo sync or color stripe  
Three XTAL periods  
15 XTAL periods  
63 XTAL periods  
Active until cleared  
No change  
INTRQ_DUR_SEL[1:0];  
interrupt duration select  
0
0
1
1
0
1
0
1
0x42  
Interrupt Status 1  
(read only)  
SD_LOCK_Q  
0
1
These bits can be cleared  
or masked in Register 0x43  
and Register 0x44, res-  
pectively  
SD input has caused the decoder to go  
from an unlocked state to a locked state  
SD_UNLOCK_Q  
0
1
No change  
SD input has caused the decoder to go  
from a locked state to an unlocked state  
Reserved  
x
x
x
SD_FR_CHNG_Q  
0
1
No change  
Denotes a change in the free-run status  
No change  
MV_PS_CS_Q  
0
1
Pseudo sync/color striping detected;  
see Register 0x40 MV_INTRQ_SEL[1:0]  
for selection  
Reserved  
x
x
x
0x43  
Interrupt Clear 1  
(write only)  
SD_LOCK_CLR  
0
1
Do not clear  
Clears SD_LOCK_Q bit  
Do not clear  
SD_UNLOCK_CLR  
0
1
Clears SD_UNLOCK_Q bit  
Not used  
Reserved  
0 0 0  
SD_FR_CHNG_CLR  
0
1
Do not clear  
Clears SD_FR_CHNG_Q bit  
Do not clear  
MV_PS_CS_CLR  
0
1
Clears MV_PS_CS_Q bit  
Not used  
Reserved  
0x44  
Interrupt Mask 1  
(read/write)  
SD_LOCK_MSK  
0
1
Masks SD_LOCK_Q bit  
Unmasks SD_LOCK_Q bit  
Masks SD_UNLOCK_Q bit  
Unmasks SD_UNLOCK_Q bit  
Not used  
SD_UNLOCK_MSK  
0
1
Reserved  
0 0 0  
SD_FR_CHNG_MSK  
0
1
Masks SD_FR_CHNG_Q bit  
Unmasks SD_FR_CHNG_Q bit  
Masks MV_PS_CS_Q bit  
Unmasks MV_PS_CS_Q bit  
Not used  
MV_PS_CS_MSK  
Reserved  
0
1
Rev. G | Page 99 of 120  
 
ADV7180  
Data Sheet  
Bit (Shading Indicates  
Default State)  
User Sub Map  
Bit Description  
Address Register  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x45  
Raw Status 2  
(read only)  
CCAPD  
0
No CCAPD data detected—  
VBI System 2  
These bits are status  
bits only; they cannot be  
cleared or masked;  
Register 0x46 is used for  
this purpose  
1
CCAPD data detected—VBI System 2  
Reserved  
x
x
x
EVEN_FIELD  
0
1
Current SD field is odd numbered  
Current SD field is even numbered  
Reserved  
x
x
MPU_STIM_INTRQ  
0
1
MPU_STIM_INTRQ = 0  
MPU_STIM_INTRQ = 1  
0x46  
Interrupt Status 2  
(read only)  
CCAPD_Q  
GEMD_Q  
0
1
Closed captioning not detected in the  
input video signal—VBI System 2  
These bits can be cleared  
or masked by Register 0x47  
and Register 0x48, res-  
pectively; note that the  
interrupt in Register 0x46  
for the CCAP, Gemstar,  
CGMS, and WSS data uses  
the Mode 1 data slicer  
Closed captioning data detected in the  
video input signal—VBI System 2  
0
1
Gemstar data not detected in the input  
video signal—VBI System 2  
Gemstar data detected in the input  
video signal—VBI System 2  
Reserved  
x
x
SD_FIELD_CHNGD_Q  
0
1
SD signal has not changed field from  
odd to even or vice versa  
SD signal has changed Field from odd to  
even or vice versa  
Reserved  
x
Not used  
Reserved  
x
x
0
Not used  
MPU_STIM_INTRQ_Q  
0
1
Manual interrupt not set  
Manual interrupt set  
Do not clear—VBI System 2  
Clears CCAPD_Q bit—VBI System 2  
Do not clear  
0x47  
0x48  
0x49  
Interrupt Clear 2  
(write only)  
CCAPD_CLR  
GEMD_CLR  
0
1
Note that interrupt in  
Register 0x46 for the  
CCAP, Gemstar, CGMS,  
and WSS data uses the  
Mode 1 data slicer  
0
1
Clears GEMD_Q bit  
Reserved  
0 0  
SD_FIELD_CHNGD_CLR  
0
1
Do not clear  
Clears SD_FIELD_CHNGD_Q bit  
Not used  
Reserved  
x
MPU_STIM_INTRQ_CLR  
0
1
Do not clear  
Clears MPU_STIM_INTRQ_Q bit  
Masks CCAPD_Q bit—VBI System 2  
Unmasks CCAPD_Q bit—VBI System 2  
Masks GEMD_Q bit—VBI System 2  
Unmasks GEMD_Q bit—VBI System 2  
Not used  
Interrupt Mask 2  
(read/write)  
CCAPD_MSK  
GEMD_MSK  
0
1
Note that interrupt in  
Register 0x46 for the  
CCAP, Gemstar, CGMS,  
and WSS data uses the  
Mode 1 data slicer  
0
1
Reserved  
0 0  
SD_FIELD_CHNGD_MSK  
0
1
Masks SD_FIELD_CHNGD_Q bit  
Unmasks SD_FIELD_CHNGD_Q bit  
Not used  
Reserved  
0
MPU_STIM_INTRQ_MSK  
0
1
Masks MPU_STIM_INTRQ_Q bit  
Unmasks MPU_STIM_INTRQ_Q bit  
SD 60 Hz signal output  
Raw Status 3  
(read only)  
SD_OP_50Hz; SD 60 Hz/50 Hz  
frame rate at output  
0
1
These bits are status  
bits only; they cannot be  
cleared or masked;  
Register 0x4A is used for  
this purpose  
SD 50 Hz signal output  
SD_V_LOCK  
0
1
SD vertical sync lock not established  
SD vertical sync lock established  
SD horizontal sync lock not established  
SD horizontal sync lock established  
Not used  
SD_H_LOCK  
0
1
Reserved  
x
SCM_LOCK  
0
1
SECAM lock not established  
SECAM lock established  
Not used  
Reserved  
x
x
x
Rev. G | Page 100 of 120  
Data Sheet  
ADV7180  
Bit (Shading Indicates  
Default State)  
User Sub Map  
Bit Description  
Address Register  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x4A  
Interrupt Status 3  
(read only)  
SD_OP_CHNG_Q; SD 60 Hz/50 Hz  
frame rate at output  
0
No change in SD signal standard  
detected at the output  
These bits can be cleared  
and masked by  
Register 0x4B and  
Register 0x4C, respectively  
1
A change in SD signal standard is  
detected at the output  
SD_V_LOCK_CHNG_Q  
SD_H_LOCK_CHNG_Q  
0
1
No change in SD VSYNC lock status  
SD VSYNC lock status has changed  
No change in HSYNC lock status  
SD HSYNC lock status has changed  
0
1
SD_AD_CHNG_Q; SD autodetect  
changed  
0
1
No change in AD_RESULT[2:0] bits in  
Status 1 register  
AD_RESULT[2:0] bits in Status 1 register  
have changed  
SCM_LOCK_CHNG_Q; SECAM lock  
PAL_SW_LK_CHNG_Q  
0
1
No change in SECAM lock status  
SECAM lock status has changed  
0
1
No change in PAL swinging burst  
lock status  
PAL swinging burst lock status has  
changed  
Reserved  
x
x
x
x
x
x
Not used  
0x4B  
0x4C  
0x4E  
Interrupt Clear 3  
(write only)  
SD_OP_CHNG_CLR  
0
1
Do not clear  
Clears SD_OP_CHNG_Q bit  
Do not clear  
SD_V_LOCK_CHNG_CLR  
SD_H_LOCK_CHNG_CLR  
SD_AD_CHNG_CLR  
0
1
Clears SD_V_LOCK_CHNG_Q bit  
Do not clear  
0
1
Clears SD_H_LOCK_CHNG_Q bit  
Do not clear  
0
1
Clears SD_AD_CHNG_Q bit  
Do not clear  
SCM_LOCK_CHNG_CLR  
PAL_SW_LK_CHNG_CLR  
0
1
Clears SCM_LOCK_CHNG_Q bit  
Do not clear  
0
1
Clears PAL_SW_LK_CHNG_Q bit  
Not used  
Reserved  
Interrupt Mask 3  
(read/write)  
SD_OP_CHNG_MSK  
0
1
Masks SD_OP_CHNG_Q bit  
Unmasks SD_OP_CHNG_Q bit  
Masks SD_V_LOCK_CHNG_Q bit  
Unmasks SD_V_LOCK_CHNG_Q bit  
Masks SD_H_LOCK_CHNG_Q bit  
Unmasks SD_H_LOCK_CHNG_Q bit  
Masks SD_AD_CHNG_Q bit  
Unmasks SD_AD_CHNG_Q bit  
Masks SCM_LOCK_CHNG_Q bit  
Unmasks SCM_LOCK_CHNG_Q bit  
Masks PAL_SW_LK_CHNG_Q bit  
Unmasks PAL_SW_LK_CHNG_Q bit  
Not used  
SD_V_LOCK_CHNG_MSK  
SD_H_LOCK_CHNG_MSK  
SD_AD_CHNG_MSK  
SCM_LOCK_CHNG_MSK  
PAL_SW_LK_CHNG_MSK  
Reserved  
0
1
0
1
0
1
0
1
0
1
Interrupt Status 4 (read only) VDP_CCAPD_Q  
0
1
Closed captioning not detected  
Closed captioning detected  
These bits can be cleared  
and masked by Register  
0x4F and Register 0x50,  
respectively; note that an  
interrupt in Register 0x4E  
for the CCAP, Gemstar,  
CGMS, WSS, VPS, PDC,  
UTC, and VITC data uses  
the VDP data slicer  
Reserved  
x
VDP_CGMS_WSS_CHNGD_Q; see  
0x9C Bit 4 of user sub map to determine  
whether interrupt is issued for a  
change in detected data or for when  
data is detected regardless of content  
0
1
CGMS/WSS data is not changed/  
not available  
CGMS/WSS data is changed/available  
Reserved  
x
VDP_GS_VPS_PDC_UTC_CHNG_Q;  
see 0x9C Bit 5 of User Sub Map to deter-  
mine whether interrupt is issued for a  
change in detected data or for when  
data is detected regardless of content  
0
1
Gemstar/PDC/VPS/UTC data is not  
changed/not available  
Gemstar/PDC/VPS/UTC data is  
changed/available  
Reserved  
x
VDP_VITC_Q  
0
1
VITC data is not available in the VDP  
VITC data is available in the VDP  
Reserved  
x
Rev. G | Page 101 of 120  
ADV7180  
Data Sheet  
Bit (Shading Indicates  
Default State)  
User Sub Map  
Bit Description  
Address Register  
7
6
5
4
3
2
1
0
0
1
Comments  
Notes  
0x4F  
Interrupt Clear 4  
(write only)  
VDP_CCAPD_CLR  
Do not clear  
Note that an interrupt  
in Register 0x4E for the  
CCAP, Gemstar, CGMS,  
WSS, VPS, PDC, UTC, and  
VITC data uses the VDP  
data slicer  
Clears VDP_CCAPD_Q  
Reserved  
0
VDP_CGMS_WSS_CHNGD_CLR  
0
1
Do not clear  
Clears VDP_CGMS_WSS_CHNGD_Q  
Reserved  
0
VDP_GS_VPS_PDC_UTC_CHNG_CLR  
0
1
Do not clear  
Clears VDP_GS_VPS_PDC_UTC_CHNG_Q  
Reserved  
0
VDP_VITC_CLR  
0
1
Do not clear  
Clears VDP_VITC_Q  
Reserved  
0
0x50  
Interrupt Mask 4  
VDP_CCAPD_MSK  
0
1
Masks VDP_CCAPD_Q  
Note that an interrupt  
in Register 0x4E for the  
CCAP, Gemstar, CGMS,  
WSS, VPS, PDC, UTC, and  
VITC data uses the VDP  
data slicer  
Unmasks VDP_CCAPD_Q  
Reserved  
0
VDP_CGMS_WSS_CHNGD_MSK  
0
1
Masks VDP_CGMS_WSS_CHNGD_Q  
Unmasks VDP_CGMS_WSS_CHNGD_Q  
Reserved  
0
VDP_GS_VPS_PDC_UTC_CHNG_MSK  
0
1
Masks VDP_GS_VPS_PDC_UTC_CHNG_Q  
Unmasks VDP_GS_VPS_PDC_UTC_  
CHNG_Q  
Reserved  
0
VDP_VITC_MSK  
0
1
Masks VDP_VITC_Q  
Unmasks VDP_VITC_Q  
Reserved  
0
0x60  
VDP_Config_1  
VDP_TTXT_TYPE_MAN[1:0]  
0
0
1
0
1
0
PAL: Teletext-ITU-BT.653-625/50-A,  
NTSC: reserved  
PAL: Teletext-ITU-BT.653-625/50-B (WST),  
NTSC: Teletext-ITU-BT.653-525/60-B  
PAL: Teletext-ITU-BT.653-625/50-C,  
NTSC: Teletext-ITU-BT.653-525/60-C, or  
EIA516 (NABTS)  
1
1
PAL: Teletext-ITU-BT.653-625/50-D,  
NTSC: Teletext-ITU-BT.653-525/60-D  
VDP_TTXT_TYPE_MAN_ENABLE  
WST_PKT_DECODE_DISABLE  
0
1
User programming of teletext type  
disabled  
User programming of teletext type  
enabled  
0
1
Enable hamming decoding of WST  
packets  
Disable hamming decoding of WST  
packets  
Reserved  
1
0
0
0
0
0
0
0x61  
0x62  
VDP_Config_2  
Reserved  
x
x
0
0
0
1
AUTO_DETECT_GS_TYPE  
0
1
Disable autodetection of Gemstar type  
Enable autodetection of Gemstar type  
Reserved  
VDP_ADF_Config_1  
ADF_DID[4:0]  
1
0
1
User-specified DID sent in the ancillary  
data stream with VDP decoded data  
ADF_MODE[1:0]  
0
0
1
0
1
0
Nibble mode  
Byte mode, no code restrictions  
Byte mode with 0x00 and 0xFF  
prevented  
1
1
Reserved  
ADF_ENABLE  
0
1
Disable insertion of VBI decoded data  
into ancillary 656 stream  
Enable insertion of VBI decoded data  
into ancillary 656 stream  
0x63  
VDP_ADF_Config_2  
ADF_SDID[5:0]  
1
0
1
0
1
0
User-specified SDID sent in the ancillary  
data stream with VDP decoded data  
Reserved  
x
DUPLICATE_ADF  
0
1
Ancillary data packet is spread across  
the Y and C data streams  
Ancillary data packet is duplicated on  
the Y and C data streams  
Rev. G | Page 102 of 120  
Data Sheet  
ADV7180  
Bit (Shading Indicates  
Default State)  
User Sub Map  
Bit Description  
Address Register  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x64  
VDP_LINE_00E  
VBI_DATA_P318[3:0]  
0
0
0
0
Sets VBI standard to be decoded from  
Line 318 (PAL), NTSC—N/A  
Reserved  
0
0
0
MAN_LINE_PGM  
0
1
Decode default standards on the lines  
indicated in Table 69  
Manually program the VBI standard  
If set to 1, all VBI_DATA_  
to be decoded on each line; see Table 70 Px_Ny bits can be set as  
desired  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
VDP_LINE_00F  
VDP_LINE_010  
VDP_LINE_011  
VDP_LINE_012  
VDP_LINE_013  
VDP_LINE_014  
VDP_LINE_015  
VDP_LINE_016  
VDP_LINE_017  
VDP_LINE_018  
VDP_LINE_019  
VDP_LINE_01A  
VDP_LINE_01B  
VDP_LINE_01C  
VDP_LINE_01D  
VBI_DATA_P319_N286[3:0]  
VBI_DATA_P6_N23[3:0]  
VBI_DATA_P320_N287[3:0]  
VBI_DATA_P7_N24[3:0]  
VBI_DATA_P321_N288[3:0]  
VBI_DATA_P8_N25[3:0]  
VBI_DATA_P322[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sets VBI standard to be decoded from  
Line 319 (PAL), Line 286 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sets VBI standard to be decoded from  
Line 6 (PAL), Line 23 (NTSC)  
Sets VBI standard to be decoded from  
Line 320 (PAL), Line 287 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 7 (PAL), Line 24 (NTSC)  
Sets VBI standard to be decoded from  
Line 321 (PAL), Line 288 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 8 (PAL), Line 25 (NTSC)  
Sets VBI standard to be decoded from  
Line 322 (PAL), NTSC—N/A  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
VBI_DATA_P9[3:0]  
Sets VBI standard to be decoded from  
Line 9 (PAL), NTSC—N/A  
VBI_DATA_P323[3:0]  
Sets VBI standard to be decoded from  
Line 323 (PAL), NTSC—N/A  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
VBI_DATA_P10[3:0]  
Sets VBI standard to be decoded from  
Line 10 (PAL), NTSC—N/A  
VBI_DATA_P324_N272[3:0]  
VBI_DATA_P11[3:0]  
Sets VBI standard to be decoded from  
Line 324 (PAL), Line 272 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 11 (PAL); NTSC—N/A  
VBI_DATA_P325_N273[3:0]  
VBI_DATA_P12_N10[3:0]  
VBI_DATA_P326_N274[3:0]  
VBI_DATA_P13_N11[3:0]  
VBI_DATA_P327_N275[3:0]  
VBI_DATA_P14_N12[3:0]  
VBI_DATA_P328_N276[3:0]  
VBI_DATA_P15_N13[3:0]  
VBI_DATA_P329_N277[3:0]  
VBI_DATA_P16_N14[3:0]  
VBI_DATA_P330_N278[3:0]  
VBI_DATA_P17_N15[3:0]  
VBI_DATA_P331_N279[3:0]  
VBI_DATA_P18_N16[3:0]  
VBI_DATA_P332_N280[3:0]  
VBI_DATA_P19_N17[3:0]  
VBI_DATA_P333_N281[3:0]  
VBI_DATA_P20_N18[3:0]  
Sets VBI standard to be decoded from  
Line 325 (PAL), Line 273 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 12 (PAL), Line 10 (NTSC)  
Sets VBI standard to be decoded from  
Line 326 (PAL), Line 274 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 13 (PAL), Line 11 (NTSC)  
Sets VBI standard to be decoded from  
Line 327 (PAL), Line 275 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 14 (PAL), Line 12 (NTSC)  
Sets VBI standard to be decoded from  
Line 328 (PAL), Line 276 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 15 (PAL), Line 13 (NTSC)  
Sets VBI standard to be decoded from  
Line 329 (PAL), Line 277 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 16 (PAL), Line 14 (NTSC)  
Sets VBI standard to be decoded from  
Line 330 (PAL), Line 278 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 17 (PAL), Line 15 (NTSC)  
Sets VBI standard to be decoded from  
Line 331 (PAL), Line 279 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 18 (PAL), Line 16 (NTSC)  
Sets VBI standard to be decoded from  
Line 332 (PAL), Line 280 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 19 (PAL), Line 17 (NTSC)  
Sets VBI standard to be decoded from  
Line 333 (PAL), Line 281 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 20 (PAL), Line 18 (NTSC)  
Rev. G | Page 103 of 120  
ADV7180  
Data Sheet  
Bit (Shading Indicates  
Default State)  
User Sub Map  
Bit Description  
Address Register  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x74  
0x75  
0x76  
0x77  
0x78  
VDP_LINE_01E  
VBI_DATA_P334_N282[3:0]  
VBI_DATA_P21_N19[3:0]  
VBI_DATA_P335_N283[3:0]  
VBI_DATA_P22_N20[3:0]  
VBI_DATA_P336_N284[3:0]  
VBI_DATA_P23_N21[3:0]  
VBI_DATA_P337_N285[3:0]  
VBI_DATA_P24_N22[3:0]  
CC_AVL  
0
0
0
0
Sets VBI standard to be decoded from  
Line 334 (PAL), Line 282 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
0
0
0
0
Sets VBI standard to be decoded from  
Line 21 (PAL), Line 19 (NTSC)  
VDP_LINE_01F  
VDP_LINE_020  
VDP_LINE_021  
0
0
0
0
0
0
0
0
0
0
0
0
Sets VBI standard to be decoded from  
Line 335 (PAL), Line 283 (NTSC)  
MAN_LINE_PGM must be  
set to 1 for these bits to  
be effective  
0
0
0
0
0
0
0
0
0
0
0
0
Sets VBI standard to be decoded from  
Line 22 (PAL), Line 20 (NTSC)  
Sets VBI standard to be decoded from  
Line 336 (PAL), Line 284 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 23 (PAL), Line 21 (NTSC)  
Sets VBI standard to be decoded from  
Line 337 (PAL), Line 285 (NTSC)  
MAN_LINE_PGM must  
be set to 1 for these bits  
to be effective  
Sets VBI standard to be decoded from  
Line 24 (PAL), Line 22 (NTSC)  
VDP_STATUS  
(read only)  
0
1
Closed captioning not detected  
Closed captioning detected  
CC_CLEAR resets the  
CC_AVL bit  
CC_EVEN_FIELD  
0
1
Closed captioning decoded from  
odd field  
Closed captioning decoded from  
even field  
CGMS_WSS_AVL  
0
1
CGMS/WSS not detected  
CGMS/WSS detected  
CGMS_WSS_CLEAR resets  
the CGMS_WSS_AVL bit  
Reserved  
0
GS_PDC_VPS_UTC_AVL  
0
1
GS/PDC/VPS/UTC not detected  
GS/PDC/VPS/UTC detected  
GS_PDC_VPS_UTC_CLEAR  
resets the  
GS_PDC_VPS_UTC_AVL  
bit  
GS_DATA_TYPE  
VITC_AVL  
0
1
Gemstar_1× detected  
Gemstar_2× detected  
VITC not detected  
VITC detected  
0
1
VITC_CLEAR resets the  
VITC_AVL bit  
TTXT_AVL  
0
1
Teletext not detected  
Teletext detected  
VDP_STATUS_CLEAR  
(write only)  
CC_CLEAR  
0
1
Does not reinitialize the CCAP readback  
registers  
This is a self-clearing bit  
This is a self-clearing bit  
Reinitializes the CCAP readback registers  
Reserved  
0
CGMS_WSS_CLEAR  
0
1
Does not reinitialize the CGMS/WSS  
readback registers  
Reinitializes the CGMS/WSS readback  
registers  
Reserved  
0
GS_PDC_VPS_UTC_CLEAR  
0
1
Does not reinitialize the GS/PDC/VPS/  
UTC readback registers  
This is a self-clearing bit  
This is a self-clearing bit  
Refreshes the GS/PDC/VPS/UTC  
readback registers  
Reserved  
0
VITC_CLEAR  
0
1
Does not reinitialize the VITC readback  
registers  
Reinitializes the VITC readback registers  
Reserved  
0
x
0x79  
0x7A  
0x7D  
VDP_CCAP_DATA_0  
(read only)  
VDP_CCAP_DATA_1  
(read only)  
VDP_CGMS_WSS_DATA_0  
(read only)  
CCAP_BYTE_1[7:0]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Decoded Byte 1 of CCAP  
CCAP_BYTE_2[7:0]  
x
Decoded Byte 2 of CCAP  
CGMS_CRC[5:2]  
Reserved  
CGMS_WSS[13:8]  
CGMS_CRC[1:0]  
CGMS_WSS[7:0]  
Decoded CRC sequence for CGMS  
0
0
0
x
0
x
0x7E  
VDP_CGMS_WSS_DATA_1  
(read only)  
x
x
x
x
Decoded CGMS/WSS data  
Decoded CRC sequence for CGMS  
Decoded CGMS/WSS data  
x
x
x
x
0x7F  
0x84  
0x85  
VDP_CGMS_WSS_DATA_2  
(read only)  
VDP_GS_VPS_PDC_UTC_0  
(read only)  
VDP_GS_VPS_PDC_UTC_1  
(read only)  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
GS_VPS_PDC_UTC_BYTE_0[7:0]  
GS_VPS_PDC_UTC_BYTE_1[7:0]  
x
x
x
x
Decoded Gemstar/VPS/PDC/UTC data  
Decoded Gemstar/VPS/PDC/UTC data  
Rev. G | Page 104 of 120  
Data Sheet  
ADV7180  
Bit (Shading Indicates  
Default State)  
User Sub Map  
Bit Description  
Address Register  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
VDP_GS_VPS_PDC_UTC_2  
(read only)  
VDP_GS_VPS_PDC_UTC_3  
(read only)  
VDP_VPS_PDC_UTC_4  
(read only)  
VDP_VPS_PDC_UTC_5  
(read only)  
VDP_VPS_PDC_UTC_6  
(read only)  
VDP_VPS_PDC_UTC_7  
(read only)  
VDP_VPS_PDC_UTC_8  
(read only)  
VDP_VPS_PDC_UTC_9  
(read only)  
VDP_VPS_PDC_UTC_10  
(read only)  
VDP_VPS_PDC_UTC_11  
(read only)  
VDP_VPS_PDC_UTC_12  
(read only)  
VDP_VITC_DATA_0  
(read only)  
VDP_VITC_DATA_1  
(read only)  
VDP_VITC_DATA_2  
(read only)  
VDP_VITC_DATA_3  
(read only)  
GS_VPS_PDC_UTC_BYTE_2[7:0]  
GS_VPS_PDC_UTC_BYTE_3[7:0]  
VPS_PDC_UTC_BYTE_4[7:0]  
VPS_PDC_UTC_BYTE_5[7:0]  
VPS_PDC_UTC_BYTE_6[7:0]  
VPS_PDC_UTC_BYTE_7[7:0]  
VPS_PDC_UTC_BYTE_8[7:0]  
VPS_PDC_UTC_BYTE_9[7:0]  
VPS_PDC_UTC_BYTE_10[7:0]  
VPS_PDC_UTC_BYTE_11[7:0]  
VPS_PDC_UTC_BYTE_12[7:0]  
VITC_DATA_0[7:0]  
x
x
x
x
x
x
x
x
Decoded Gemstar/VPS/PDC/UTC data  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
Decoded Gemstar/VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VITC data  
VITC_DATA_1[7:0]  
Decoded VITC data  
VITC_DATA_2[7:0]  
Decoded VITC data  
VITC_DATA_3[7:0]  
Decoded VITC data  
VDP_VITC_DATA_4  
(read only)  
VDP_VITC_DATA_5  
(read only)  
VDP_VITC_DATA_6  
(read only)  
VDP_VITC_DATA_7  
(read only)  
VDP_VITC_DATA_8  
(read only)  
VDP_VITC_CALC_CRC  
(read only)  
VITC_DATA_4[7:0]  
Decoded VITC data  
VITC_DATA_5[7:0]  
Decoded VITC data  
VITC_DATA_6[7:0]  
Decoded VITC data  
VITC_DATA_7[7:0]  
Decoded VITC data  
VITC_DATA_8[7:0]  
Decoded VITC data  
VITC_CRC[7:0]  
Decoded VITC CRC data  
VDP_OUTPUT_SEL  
Reserved  
WSS_CGMS_CB_CHANGE  
0
1
Disable content-based updating of  
CGMS and WSS data  
Enable content-based updating of  
CGMS and WSS data  
The available bit shows  
the availability of data  
only when its content  
has changed  
GS_VPS_PDC_UTC_CB_CHANGE  
I2C_GS_VPS_PDC_UTC[1:0]  
0
1
Disable content-based updating of  
Gemstar, VPS, PDC, and UTC data  
Enable content-based updating of  
Gemstar, VPS, PDC, and UTC data  
0
0
1
1
0
1
0
1
Gemstar_1×/Gemstar_2×  
Standard expected to  
be decoded  
VPS  
PDC  
UTC  
1 x indicates a bit that keeps the last written value.  
2 Shading indicates default values.  
Rev. G | Page 105 of 120  
ADV7180  
Data Sheet  
I2C PROGRAMMING EXAMPLES  
64-LEAD LQFP  
Mode 1 CVBS Input (Composite Video on AIN2)  
All standards are supported through autodetect, 8-bit, 4:2:2 ITU-R BT.656 output on P15 to P8 for the 64-lead LQFP.  
Table 109. Mode 1 CVBS Input  
Register Address (Hex)  
Register Value (Hex) Notes  
00  
04  
17  
31  
3D  
3E  
3F  
0E  
55  
0E  
01  
57  
41  
02  
A2  
6A  
A0  
80  
81  
00  
INSEL = CVBS in on AIN2  
Enable SFL  
Select SH1  
Clear NEWAV_MODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window, color kill threshold to 2  
BLM optimization  
BGB optimization  
Hidden space  
ADC configuration  
User space  
Mode 2 S-Video Input (Y on AIN3 and C on AIN6)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15 to P8 for the 64-lead LQFP.  
Table 110. Mode 2 S-Video Input  
Register Address (Hex)  
Register Value (Hex) Notes  
00  
04  
31  
3D  
3E  
3F  
58  
0E  
55  
0E  
08  
57  
02  
A2  
6A  
A0  
04  
80  
81  
00  
INSEL = Y/C, Y = AIN3, C = AIN6  
Enable SFL  
Clear NEWAVMODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window, color kill threshold to 2  
BLM optimization  
BGB optimization  
Mandatory write; this must be performed for correct operation  
Hidden space  
ADC configuration  
User space  
Mode 3 525i/625i YPrPb Input (Y on AIN1, Pr on AIN4, and Pb on AIN5)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15 to P8 for the 64-lead LQFP.  
Table 111. Mode 3 YPrPb Input  
Register Address (Hex)  
Register Value (Hex) Notes  
00  
31  
3D  
3E  
3F  
0E  
55  
0E  
09  
02  
A2  
6A  
A0  
80  
81  
00  
INSEL = YPrPb, Y = AIN1, Pr = AIN4, Pb = AIN5  
Clear NEWAV_MODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window  
BLM optimization  
ADI recommended  
Hidden space  
ADC configuration  
User space  
Rev. G | Page 106 of 120  
 
 
Data Sheet  
ADV7180  
48-LEAD LQFP  
Mode 1 CVBS Input (Composite Video on AIN2)  
All standards are supported through autodetect, 8-bit, 4:2:2 ITU-R BT.656 output on P0 to P7 for the 32-lead LQFP.  
Table 112. Mode 1 CVBS Input  
Register Address (Hex)  
Register Value (Hex) Notes  
00  
04  
17  
31  
3D  
3E  
3F  
0E  
55  
0E  
01  
57  
41  
02  
A2  
6A  
A0  
80  
81  
00  
INSEL = CVBS in on AIN2  
Enable SFL  
Select SH1  
Clear NEWAV_MODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window, color kill threshold to 2  
BLM optimization  
BGB optimization  
Hidden space  
ADC configuration  
User space  
Mode 2 S-Video Input (Y on AIN3 and C on AIN6)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P0 to P7 for the 32-lead LQF P.  
Table 113. Mode 2 S-Video Input  
Register Address (Hex)  
Register Value (Hex) Notes  
00  
04  
31  
3D  
3E  
3F  
58  
0E  
55  
0E  
08  
57  
02  
A2  
6A  
A0  
04  
80  
81  
00  
INSEL = Y/C, Y = AIN3, C = AIN6  
Enable SFL  
Clear NEWAVMODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window, color kill threshold to 2  
BLM optimization  
BGB optimization  
Mandatory write; this must be performed for correct operation  
Hidden space  
ADC configuration  
User space  
Mode 3 525i/625i YPrPb Input (Y on AIN1, Pr on AIN4, and Pb on AIN5)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P0 to P7 for the 32-lead LQFP.  
Table 114. Mode 3 YPrPb Input  
Register Address (Hex)  
Register Value (Hex) Notes  
00  
31  
3D  
3E  
3F  
54  
0E  
55  
0E  
09  
02  
A2  
6A  
A0  
4E  
80  
81  
00  
INSEL = YPrPb, Y = AIN1, Pr = AIN4, Pb = AIN5  
Clear NEWAV_MODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window  
BLM optimization  
ADI recommended  
ADI recommended  
Hidden space  
ADC configuration  
User space  
Rev. G | Page 107 of 120  
 
ADV7180  
Data Sheet  
40-LEAD LFCSP  
Mode 1 CVBS Input (Composite Video on AIN1)  
All standards are supported through autodetect, 8-bit, 4:2:2, ITU-R BT.656 output on P0 to P7.  
Table 115. Mode 1 CVBS Input  
Register Address (Hex)  
Register Value (Hex)  
Notes  
00  
04  
17  
31  
3D  
3E  
3F  
0E  
55  
0E  
00  
57  
41  
02  
A2  
6A  
A0  
80  
81  
00  
INSEL = CVBS in on AIN1  
Enable SFL  
Select SH1  
Clear NEWAVMODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window, color kill threshold to 2  
BLM optimization  
BGB optimization  
Hidden space  
ADC configuration  
User space  
Mode 2 S-Video Input (Y on AIN1 and C on AIN2)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P0 to P7.  
Table 116. Mode 2 S-Video Input  
Register Address (Hex)  
Register Value (Hex)  
Notes  
00  
04  
31  
3D  
3E  
3F  
58  
0E  
55  
0E  
06  
57  
02  
A2  
6A  
A0  
04  
80  
81  
00  
INSEL = Y/C, Y = AIN1, C = AIN2  
Enable SFL  
Clear NEWAVMODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window, color kill threshold to 2  
BLM optimization  
BGB optimization  
Mandatory write; this must be performed for correct operation  
Hidden space  
ADC configuration  
User space  
Mode 3 525i/625i YPrPb Input (Y on AIN1, Pb on AIN2, and Pr on AIN3)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P0 to P7.  
Table 117. Mode 3 YPrPb Input  
Register Address (Hex)  
Register Value (Hex)  
Notes  
00  
31  
3D  
3E  
3F  
0E  
55  
0E  
09  
02  
A2  
6A  
A0  
80  
81  
00  
INSEL = YPrPb, Y = AIN1, Pb = AIN2, Pr = AIN3  
Clear NEWAVMODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window  
BLM optimization  
ADI recommended  
Hidden space  
ADC configuration  
User space  
Rev. G | Page 108 of 120  
 
 
 
Data Sheet  
ADV7180  
32-LEAD LFCSP  
Mode 1 CVBS Input (Composite Video on AIN1)  
All standards are supported through autodetect, 8-bit, 4:2:2, ITU-R BT.656 output on P0 to P7.  
Table 118. Mode 1 CVBS Input  
Register Address (Hex)  
Register Value (Hex)  
Notes  
00  
04  
17  
31  
3D  
3E  
3F  
0E  
55  
0E  
00  
57  
41  
02  
A2  
6A  
A0  
80  
81  
00  
INSEL = CVBS in on AIN1  
Enable SFL  
Select SH1  
Clear NEWAVMODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window, color kill threshold to 2  
BLM optimization  
BGB optimization  
Hidden space  
ADC configuration  
User space  
Mode 2 S-Video Input (Y on AIN1 and C on AIN2)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P0 to P7.  
Table 119. Mode 2 S-Video Input  
Register Address (Hex)  
Register Value (Hex)  
Notes  
00  
04  
31  
3D  
3E  
3F  
58  
0E  
55  
0E  
06  
57  
02  
A2  
6A  
A0  
04  
80  
81  
00  
INSEL = Y/C, Y = AIN1, C = AIN2  
Enable SFL  
Clear NEWAVMODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window, color kill threshold to 2  
BLM optimization  
BGB optimization  
Mandatory write; this must be performed for correct operation  
Hidden space  
ADC configuration  
User space  
Mode 3 525i/625i YPrPb Input (Y on AIN1, Pb on AIN2, and Pr on AIN3)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P0 to P7.  
Table 120. Mode 3 YPrPb Input  
Register Address (Hex)  
Register Value (Hex)  
Notes  
00  
31  
3D  
3E  
3F  
54  
0E  
55  
0E  
09  
02  
A2  
6A  
A0  
4E  
80  
81  
00  
INSEL = YPrPb, Y = AIN1, Pb = AIN2, Pr = AIN3  
Clear NEWAVMODE, SAV/EAV to suit ADV video encoders  
MWE enable manual window  
BLM optimization  
ADI recommended  
ADI recommended  
Hidden space  
ADC configuration  
User space  
Rev. G | Page 109 of 120  
 
ADV7180  
Data Sheet  
PCB LAYOUT RECOMMENDATIONS  
Using a single ground plane for the entire board is also recom-  
mended.  
The ADV7180 is a high precision, high speed, mixed-signal  
device. To achieve the maximum performance from the part, it  
is important to have a well laid out PCB. The following is a  
guide for designing a board using the ADV7180.  
Experience has repeatedly shown that the noise performance is  
the same or better with a single ground plane. Using multiple  
ground planes can be detrimental because each separate ground  
plane is smaller, and long ground loops can result.  
ANALOG INTERFACE INPUTS  
Care should be taken when routing the inputs on the PCB.  
Track lengths should be kept to a minimum, and 75 Ω trace  
impedances should be used when possible. In addition, trace  
impedances other than 75 Ω increase the chance of reflections.  
PLL  
Place the PLL loop filter components as close as possible to the  
ELPF pin. It should also be placed on the same side of the PCB  
as the ADV7180. Do not place any digital or other high frequency  
traces near these components. Use the values suggested in this  
data sheet with tolerances of 10% or less.  
POWER SUPPLY DECOUPLING  
It is recommended to decouple each power supply pin with  
0.1 μF and 10 nF capacitors. The fundamental idea is to have a  
decoupling capacitor within about 0.5 cm of each power pin. In  
addition, avoid placing the capacitor on the opposite side of the  
PCB from the ADV7180 because doing so interposes inductive  
vias in the path. The decoupling capacitors should be located  
between the power plane and the power pin. Current should  
flow from the power plane to the capacitor and then to the  
power pin. Do not apply the power connection between the  
capacitor and the power pin. Placing a via underneath the  
100 nF capacitor pads, down to the power plane, is the best  
approach (see Figure 54).  
VREFN AND VREFP  
The circuit associated with these pins should be placed as close  
as possible and on the same side of the PCB as the ADV7180.  
DIGITAL OUTPUTS (BOTH DATA AND CLOCKS)  
Try to minimize the trace length that the digital outputs have to  
drive. Longer traces have higher capacitance, requiring more  
current and, in turn, causing more internal digital noise.  
Shorter traces reduce the possibility of reflections.  
Adding a 30 Ω to 50 Ω series resistor can suppress reflections,  
reduce EMI, and reduce the current spikes inside the ADV7180.  
If series resistors are used, place them as close as possible to the  
ADV7180 pins. However, try not to add vias or extra length to  
the output trace to place the resistors closer.  
SUPPLY  
VIA TO SUPPLY  
10nF  
100nF  
GROUND  
VIA TO GND  
If possible, limit the capacitance that each of the digital outputs  
drives to less than 15 pF. This can easily be accomplished by  
keeping traces short and by connecting the outputs to only one  
device. Loading the outputs with excessive capacitance increases  
the current transients inside the ADV7180, creating more digital  
noise on its power supplies.  
Figure 54. Recommended Power Supply Decoupling  
It is particularly important to maintain low noise and good  
stability of PVDD. Careful attention must be paid to regulation,  
filtering, and decoupling. It is highly desirable to provide separate  
regulated supplies for each of the analog circuitry groups (AVDD  
,
DVDD, DVDDIO, and PVDD).  
The 40-lead and 32-lead LFCSP have an exposed metal paddle  
on the bottom of the package. This paddle must be soldered to  
PCB ground for proper heat dissipation and for noise and  
mechanical strength benefits.  
Some graphic controllers use substantially different levels of  
power when active (during active picture time) and when idle  
(during horizontal and vertical sync periods). This can result in  
a measurable change in the voltage supplied to the analog supply  
regulator, which can in turn produce changes in the regulated  
analog supply voltage. This can be mitigated by regulating the  
analog supply, or at least PVDD, from a different, cleaner power  
source, for example, from a 12 V supply.  
DIGITAL INPUTS  
The digital inputs on the ADV7180 are designed to work with  
1.8 V to 3.3 V signals and are not tolerant of 5 V signals. Extra  
components are needed if 5 V logic signals are required to be  
applied to the decoder.  
Rev. G | Page 110 of 120  
 
 
 
 
 
 
 
 
Data Sheet  
ADV7180  
TYPICAL CIRCUIT CONNECTION  
Examples of how to connect the 40-lead LFCSP, 64-lead LQFP, 48-lead LQFP, and 32-lead LFCSP video decoders are shown in Figure 55,  
Figure 56, Figure 57, and Figure 58. For a detailed schematic of the ADV7180 evaluation boards, contact a local Analog Devices field  
applications engineer or Analog Devices distributor.  
D
_1.8V  
D
A
_1.8V  
ANALOG_INPUT_1  
VDD  
VDDIO  
VDD  
0.1µF  
A
A
A
1
2
3
IN  
IN  
IN  
36  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
39Ω  
10nF  
10nF  
10nF  
10nF  
ANALOG_INPUT_2  
0.1µF  
P
_1.8V  
VDD  
36Ω  
D
_3.3V  
VDDIO  
39Ω  
D
_1.8V  
VDD  
0.1µF  
A
_1.8V  
10nF  
VDD  
ANALOG_INPUT_3  
0.1µF  
P[0:7]  
36Ω  
39Ω  
23  
29  
30  
A
1
2
3
A
A
A
1
2
3
IN  
IN  
IN  
IN  
IN  
IN  
A
A
17  
16  
10  
9
8
7
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
YCrCb  
8-BIT  
656 DATA  
31  
RESET  
RESET  
6
5
ADV7180BCPZ  
LFCSP–40  
KEEP VREFN AND VREFP CAPACITOR AS CLOSE AS  
POSSIBLE TO THE ADV7180 AND ON THE SAME SIDE  
OF THE PCB AS THE ADV7180.  
26  
25  
VREFN  
VREFP  
0.1µF  
11  
38  
2
LLC  
LLC  
INTRQ  
SFL  
INTRQ  
SFL  
LOCATE CLOSE TO, AND ON THE  
SAME SIDE AS, THE ADV7180.  
13  
12  
XTAL  
37  
39  
47pF  
VS/FIELD  
HS  
VS/FIELD  
HS  
28.63636MHz  
1MΩ  
XTAL1  
47pF  
D
VDDIO  
4kΩ  
32  
ALSB  
P
_1.8V  
VDD  
2
2
ALSB TIED HI I C ADDRESS = 42h  
EXTERNAL  
LOOP FILTER  
ALSB TIED LOW I C ADDRESS = 40h  
10nF  
19  
ELPF  
18  
PWRDWN  
POWER_DOWN  
82nF  
34  
33  
SCLK  
SCLK  
SDA  
1.69kΩ  
SDATA  
KEEP CLOSE TO THE ADV7180 AND ON  
THE SAME SIDE OF PCB AS THE ADV7180.  
Figure 55. 40-Lead LFCSP Typical Connection Diagram  
Rev. G | Page 111 of 120  
 
 
ADV7180  
Data Sheet  
ANALOG_INPUT_1  
Y
THE SUGGESTED INPUT ARRANGEMENT  
IS AS SEEN ON THE EVAL BOARD AND IS  
DIRECTLY SUPPORTED BY INSEL.  
0.1µF  
A
A
A
A
A
A
1
2
3
4
5
6
IN  
IN  
IN  
IN  
IN  
IN  
36  
39Ω  
D
_1.8V  
D
_1.8V  
VDD  
VDD  
ANALOG_INPUT_2  
CVBS  
0.1µF  
0.1µF  
10nF  
0.1µF  
10nF  
36Ω  
39Ω  
D
_3.3V  
0.1µF  
ANALOG_INPUT_3  
YC_Y  
A
_1.8V  
VDDIO  
VDD  
0.1µF  
0.1µF  
36Ω  
10nF  
D
_3.3V  
P
_1.8V  
39Ω  
VDDIO  
VDD  
10nF  
ANALOG_INPUT_4  
Cr  
10nF  
0.1µF  
0.1µF  
0.1µF  
10nF  
36Ω  
39Ω  
P[0:7]  
ANALOG_INPUT_5  
Cb  
0.1µF  
8-BIT  
16-BIT  
35  
36  
46  
47  
48  
49  
A
A
A
A
A
A
1
2
3
4
5
6
A
1
2
3
4
5
6
DATA BUS OUTPUT MODE OUTPUT MODE  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
26  
25  
19  
18  
17  
16  
15  
14  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
36Ω  
P[0:7]  
N/A  
CbCr  
Y
39Ω  
A
A
A
A
A
P[8:15]  
656/601 YCbCr  
ANALOG_INPUT_6  
YC_C  
0.1µF  
P[8:15]  
36Ω  
39Ω  
ADV7180BSTZ  
8
7
6
5
62  
61  
60  
59  
P8  
P9  
LQFP–64  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P10  
P11  
P12  
P13  
P14  
P15  
KEEP VREFN AND VREFP CAPACITOR AS CLOSE AS  
POSSIBLE TO THE ADV7180 AND ON THE SAME  
SIDE OF THE PCB AS THE ADV7180.  
39  
38  
VREFN  
VREFP  
0.1µF  
1
INTRQ  
INT  
55  
56  
12  
13  
GPO3  
GPO2  
GPO1  
GPO0  
GPO3  
GPO2  
GPO1  
GPO0  
22  
21  
XTAL  
63  
64  
2
47pF  
FIELD  
VS  
FIELD  
28.63636MHz  
1MΩ  
VSYNC  
HS  
HS  
XTAL1  
47pF  
9
SFL  
SFL  
P
_1.8V  
VDD  
27, 28, 33,  
41, 42, 44,  
45, 50  
51  
29  
EXTERNAL  
RESET  
RESET  
NC  
LOOP FILTER  
PWRDWN  
POWER_DOWN  
10nF  
30  
ELPF  
D
_3.3V  
VDDIO  
82nF  
4kΩ  
52  
1.69kΩ  
ALSB  
2
TIE HI: I C ADDRESS = 42  
KEEP CLOSE TO THE ADV7180 AND ON  
THE SAME SIDE OF PCB AS THE ADV7180.  
2
TIE LOW: I C ADDRESS = 40  
20  
LLC  
LLC  
33Ω  
54  
53  
SCLK  
SCLK  
SDA  
SDATA  
33Ω  
NC = NO CONNECT  
Figure 56. 64-Lead LQFP Typical Connection Diagram  
Rev. G | Page 112 of 120  
 
Data Sheet  
ADV7180  
ANALOG_INPUT_1  
Y
THE SUGGESTED INPUT ARRANGEMENT  
IS AS SEEN ON THE EVAL BOARD AND IS  
DIRECTLY SUPPORTED BY INSEL.  
0.1µF  
A
A
A
A
A
A
1
2
3
4
5
6
IN  
IN  
IN  
IN  
IN  
IN  
36  
39Ω  
D
_1.8V  
D
_1.8V  
VDD  
VDD  
ANALOG_INPUT_2  
CVBS  
0.1µF  
0.1µF  
10nF  
0.1µF  
10nF  
36Ω  
39Ω  
D
_3.3V  
0.1µF  
A
_1.8V  
VDDIO  
VDD  
ANALOG_INPUT_3  
YC_Y  
0.1µF  
0.1µF  
10nF  
D
_3.3V  
36Ω  
P
_1.8V  
VDD  
VDDIO  
39Ω  
10nF  
ANALOG_INPUT_4  
Cr  
10nF  
0.1µF  
0.1µF  
10nF  
0.1µF  
36Ω  
P[0:7]  
39Ω  
ANALOG_INPUT_5  
Cb  
0.1µF  
26  
27  
33  
34  
35  
36  
A
A
A
A
A
A
1
2
3
4
5
6
A
1
2
3
4
5
6
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
22  
20  
12  
11  
10  
9
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
36Ω  
A
A
A
A
A
39Ω  
ANALOG_INPUT_6  
YC_C  
0.1µF  
8
7
36Ω  
39Ω  
ADV7180WBST48Z  
LQFP–48  
KEEP VREFN AND VREFP CAPACITOR AS CLOSE AS  
POSSIBLE TO THE ADV7180 AND ON THE SAME  
SIDE OF THE PCB AS THE ADV7180.  
30  
29  
VREFN  
VREFP  
0.1µF  
46  
INTRQ  
INT  
41  
42  
6
GPO3  
GPO2  
GPO1  
GPO0  
GPO3  
GPO2  
GPO1  
GPO0  
5
17  
16  
XTAL  
45  
47pF  
VS/FIELD  
VS/FIELD  
*
28.63636MHz  
1MΩ  
47  
3
HS  
HS  
XTAL1  
47pF  
SFL  
SFL  
P
_1.8V  
VDD  
37  
21  
EXTERNAL  
RESET  
RESET  
NC  
15, 48  
24  
LOOP FILTER  
PWRDWN  
POWER_DOWN  
10nF  
ELPF  
D
_3.3V  
VDDIO  
82nF  
4kΩ  
38  
1.69kΩ  
ALSB  
2
TIE HI: I C ADDRESS = 42  
KEEP CLOSE TO THE ADV7180 AND ON  
THE SAME SIDE OF PCB AS THE ADV7180.  
2
TIE LOW: I C ADDRESS = 40  
14  
LLC  
LLC  
33Ω  
40  
39  
SCLK  
SCLK  
SDA  
SDATA  
33Ω  
NOTES  
1. NC = NO CONNECT.  
*REFER TO ANALOG DEVICES CRYSTAL APPLICATION NOTE FOR PROPER CAPACITOR LOADING  
Figure 57. 48-Lead LQFP Typical Connection Diagram  
Rev. G | Page 113 of 120  
 
ADV7180  
Data Sheet  
D
_1.8V  
0.1µF  
D
A
VDD  
_1.8V  
10nF  
ANALOG_INPUT_1  
VDD  
VDDIO  
0.1µF  
A
A
A
1
2
3
IN  
IN  
IN  
36Ω  
0.1µF  
0.1µF  
39Ω  
10nF  
10nF  
ANALOG_INPUT_2  
0.1µF  
P
_1.8V  
10nF  
VDD  
36Ω  
D
_3.3V  
VDDIO  
39Ω  
D
_1.8V  
VDD  
0.1µF  
A
_1.8V  
VDD  
ANALOG_INPUT_3  
0.1µF  
P[0:7]  
36Ω  
39Ω  
19  
23  
24  
A
1
2
3
A
A
A
1
2
3
IN  
IN  
IN  
IN  
IN  
IN  
A
A
16  
15  
10  
9
8
7
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
YCrCb  
8-BIT  
656 DATA  
25  
RESET  
RESET  
6
5
ADV7180KCP32Z  
LFCSP–32  
KEEP VREFN AND VREFP CAPACITOR AS CLOSE AS  
POSSIBLE TO THE ADV7180 AND ON THE SAME SIDE  
OF THE PCB AS THE ADV7180.  
21  
20  
VREFN  
0.1µF  
VREFP  
11  
32  
4
LLC  
LLC  
INTRQ  
SFL  
INTRQ  
SFL  
LOCATE CLOSE TO, AND ON THE  
SAME SIDE AS, THE ADV7180.  
13  
12  
XTAL  
31  
1
47pF  
VS/FIELD  
HS  
VS/FIELD  
HS  
28.63636MHz  
1MΩ  
XTAL1  
47pF  
D
VDDIO  
4kΩ  
26  
ALSB  
P
_1.8V  
VDD  
2
2
ALSB TIED HI I C ADDRESS = 42h  
EXTERNAL  
LOOP FILTER  
ALSB TIED LOW I C ADDRESS = 40h  
10nF  
17  
ELPF  
82nF  
28  
27  
SCLK  
SCLK  
SDA  
1.69kΩ  
SDATA  
KEEP CLOSE TO THE ADV7180 AND ON  
THE SAME SIDE OF PCB AS THE ADV7180.  
Figure 58. 32-Lead LFCSP Typical Connection Diagram  
Rev. G | Page 114 of 120  
 
Data Sheet  
ADV7180  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
*
3.75  
EXPOSED  
PAD  
3.60 SQ  
3.55  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 59. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-12)  
Dimensions shown in millimeters  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
4.25  
4.10 SQ  
3.95  
5.75  
BSC SQ  
EXPOSED  
PAD  
(BOT TOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
20  
11  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 60. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm Body, Very Thin Quad  
(CP-40-1)  
Dimensions shown in millimeters  
Rev. G | Page 115 of 120  
 
ADV7180  
Data Sheet  
12.20  
12.00 SQ  
11.80  
0.75  
0.60  
0.45  
1.60  
MAX  
64  
49  
1
48  
PIN 1  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08  
COPLANARITY  
16  
33  
0.15  
0.05  
SEATING  
PLANE  
17  
32  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCD  
Figure 61. 64-Lead Low Profile Quad Flat Package [LQFP]  
10 mm × 10 mm Body  
(ST-64-2)  
Dimensions shown in millimeters  
9.20  
9.00 SQ  
8.80  
0.75  
0.60  
0.45  
1.60  
MAX  
37  
48  
36  
1
PIN 1  
7.20  
TOP VIEW  
(PINS DOWN)  
7.00 SQ  
6.80  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
25  
12  
0.15  
0.05  
13  
24  
SEATING  
0.08  
0.27  
0.22  
0.17  
PLANE  
VIEW A  
0.50  
BSC  
LEAD PITCH  
COPLANARITY  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BBC  
Figure 62. 48-Lead Low Profile Quad Flat Package [LQFP]  
7 mm × 7 mm Body  
(ST-48)  
Dimensions shown in millimeters  
Rev. G | Page 116 of 120  
 
 
Data Sheet  
ADV7180  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−10°C to +70°C  
−10°C to +70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−10°C to +70°C  
−10°C to +70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-32-12  
CP-32-12  
CP-40-1  
CP-40-1  
ST-64-2  
ST-64-2  
CP-32-12  
CP-32-12  
CP-40-1  
CP-40-1  
ST-64-2  
ST-64-2  
ST-48  
ST-48  
ST-48  
ST-48  
ST-48  
ST-48  
CP-32-12  
CP-32-12  
ADV7180KCP32Z  
ADV7180KCP32Z-RL  
ADV7180BCPZ  
ADV7180BCPZ-REEL  
ADV7180BSTZ  
ADV7180BSTZ-REEL  
ADV7180WBCP32Z  
ADV7180WBCP32Z-RL  
ADV7180WBCPZ  
ADV7180WBCPZ-REEL  
ADV7180WBSTZ  
ADV7180WBSTZ-REEL  
ADV7180WBST48Z  
ADV7180WBST48Z-RL  
ADV7180KST48Z  
ADV7180KST48Z-RL  
ADV7180BST48Z  
ADV7180BST48Z-RL  
ADV7180BCP32Z  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
48-Lead Low Profile Quad Flat Package [LQFP]  
48-Lead Low Profile Quad Flat Package [LQFP]  
48-Lead Low Profile Quad Flat Package [LQFP]  
48-Lead Low Profile Quad Flat Package [LQFP]  
48-Lead Low Profile Quad Flat Package [LQFP]  
48-Lead Low Profile Quad Flat Package [LQFP]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board for the 64-Lead LQFP  
ADV7180BCP32Z-RL  
EVAL-ADV7180LQEBZ  
EVAL-ADV7180LFEBZ  
EVAL-ADV7180-32EBZ  
EVAL-ADV7180-48EBZ  
Evaluation Board for the 40-Lead LFCSP  
Evaluation Board for the 32-Lead LFCSP  
Evaluation Board for the 48-Lead LQFP  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADV7180W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models, and designers should  
review the product Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific automotive reliability reports for these models.  
Note that the ADV7180 is a Pb-free, environmentally friendly product. It is manufactured using the most up-to-date materials and  
processes. The coating on the leads of each device is 100% pure Sn electroplate. The device is suitable for Pb-free applications and can  
withstand surface-mount soldering at up to 255°C ( 5°C).  
In addition, it is backward-compatible with conventional SnPb soldering processes. This means that the electroplated Sn coating can be  
soldered with Sn/Pb solder pastes at conventional reflow temperatures of 220°C to 235°C.  
Rev. G | Page 117 of 120  
 
 
ADV7180  
NOTES  
Data Sheet  
Rev. G | Page 118 of 120  
Data Sheet  
NOTES  
ADV7180  
Rev. G | Page 119 of 120  
ADV7180  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2006-2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05700-0-3/12(G)  
Rev. G | Page 120 of 120  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY