ADV7183BKSTZ [ADI]

Multiformat SDTV Video Decoder; 多格式SDTV视频解码器
ADV7183BKSTZ
型号: ADV7183BKSTZ
厂家: ADI    ADI
描述:

Multiformat SDTV Video Decoder
多格式SDTV视频解码器

解码器 转换器 色度信号转换器 消费电路 商用集成电路 电视
文件: 总100页 (文件大小:903K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiformat SDTV Video Decoder  
ADV7183B  
0.5 V to 1.6 V analog signal input range  
Differential gain: 0.5% typ  
Differential phase: 0.5° typ  
FEATURES  
Multiformat video decoder supports NTSC-(J, M, 4.43),  
PAL-(B/D/G/H/I/M/N), SECAM  
Programmable video controls  
Integrates three 54 MHz, 10-bit ADCs  
Clocked from a single 27 MHz crystal  
Line-locked clock-compatible (LLC)  
Adaptive Digital Line Length Tracking (ADLLT™), signal  
processing, and enhanced FIFO management give mini-  
TBC functionality  
Peak white/hue/brightness/saturation/contrast  
Integrated on-chip video timing generator  
Free-run mode (generates stable video output with no I/P)  
VBI decode support for close captioning, WSS, CGMS, EDTV,  
Gemstar® 1×/2×  
Power-down mode  
5-line adaptive comb filters  
2-wire serial MPU interface (I2C®-compatible)  
3.3 V analog, 1.8 V digital core; 3.3 V IO supply  
2 temperature grades: 0°C to +70°C and –40°C to +85°C  
80-lead LQFP Pb-free package  
Proprietary architecture for locking to weak, noisy, and  
unstable video sources such as VCRs and tuners  
Subcarrier frequency lock and status information output  
Integrated AGC with adaptive peak white mode  
Macrovision® copy protection detection  
Chroma transient improvement (CTI)  
Digital noise reduction (DNR)  
Multiple programmable analog input formats  
Composite video (CVBS)  
S-Video (Y/C)  
YPrPb component (VESA, MII, SMPTE, and BetaCam)  
12 analog video input channels  
Automatic NTSC/PAL/SECAM identification  
Digital output formats (8-bit or 16-bit)  
ITU-R BT.656 YCrCb 4:2:2 output + HS, VS, and FIELD  
APPLICATIONS  
DVD recorders  
Video projectors  
HDD-based PVRs/DVDRs  
LCD TVs  
Set-top boxes  
Security systems  
Digital televisions  
AVR receivers  
GENERAL DESCRIPTION  
combinations. AGC and clamp restore circuitry allow an input  
video signal peak-to-peak range of 0.5 V up to 1.6 V.  
Alternatively, these can be bypassed for manual settings.  
The ADV7183B integrated video decoder automatically detects  
and converts a standard analog baseband television signal-  
compatible with worldwide standards NTSC, PAL, and SECAM  
into 4:2:2 component video data-compatible with 16-/8-bit  
CCIR601/CCIR656.  
The fixed 54 MHz clocking of the ADCs and datapath for all  
modes allows very precise, accurate sampling and digital  
filtering. The line-locked clock output allows the output data  
rate, timing signals, and output clock signals to be synchronous,  
asynchronous, or line locked even with 5% line length variation.  
The output control signals allow glueless interface connections  
in almost any application. The ADV7183B modes are set up  
over a 2-wire, serial, bidirectional port (I2C-compatible).  
The advanced and highly flexible digital output interface  
enables performance video decoding and conversion in line-  
locked clock-based systems. This makes the device ideally  
suited for a broad range of applications with diverse analog  
video characteristics, including tape-based sources, broadcast  
sources, security/surveillance cameras, and professional  
systems.  
The ADV7183B is fabricated in a 3.3 V CMOS process. Its  
monolithic CMOS construction ensures greater functionality  
with lower power dissipation.  
The 10-bit accurate A/D conversion provides professional  
quality video performance and is unmatched. This allows true  
8-bit resolution in the 8-bit output mode.  
The ADV7183B is packaged in a small 80-lead LQFP  
Pb-free package.  
The 12 analog input channels accept standard composite,  
S-Video, YPrPb video signals in an extensive number of  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADV7183B  
TABLE OF CONTENTS  
Introduction ...................................................................................... 4  
Analog Front End......................................................................... 4  
Standard Definition Processor (SDP)........................................ 4  
Functional Block Diagram .......................................................... 5  
specifications..................................................................................... 6  
Electrical Characteristics............................................................. 6  
Video Specifications..................................................................... 7  
Timing Specifications .................................................................. 8  
Analog Specifications................................................................... 8  
Thermal Specifications ................................................................ 9  
Timing Diagrams.......................................................................... 9  
Absolute Maximum Ratings.......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Analog Front End ........................................................................... 13  
Analog Input Muxing ................................................................ 13  
Manual Input Muxing................................................................ 15  
Global Control Registers ............................................................... 16  
Power-Save Modes...................................................................... 16  
Reset Control .............................................................................. 16  
Global Pin Control..................................................................... 17  
Global Status Registers................................................................... 19  
Identification............................................................................... 19  
Status 1 ......................................................................................... 19  
Autodetection Result.................................................................. 19  
Status 2 ......................................................................................... 19  
Status 3 ......................................................................................... 19  
Standard Definition Processor (SDP).......................................... 20  
SD Luma Path ............................................................................. 20  
SD Chroma Path......................................................................... 20  
Sync Processing........................................................................... 21  
VBI Data Recovery..................................................................... 21  
General Setup.............................................................................. 21  
Color Controls............................................................................ 23  
Clamp Operation........................................................................ 25  
Luma Filter.................................................................................. 26  
Chroma Filter.............................................................................. 29  
Gain Operation........................................................................... 30  
Chroma Transient Improvement (CTI) .................................. 33  
Digital Noise Reduction (DNR)............................................... 34  
Comb Filters................................................................................ 35  
AV Code Insertion and Controls ............................................. 37  
Synchronization Output Signals............................................... 39  
Sync Processing .......................................................................... 46  
VBI Data Decode ....................................................................... 47  
Pixel Port Configuration ............................................................... 59  
MPU Port Description................................................................... 60  
Register Accesses........................................................................ 61  
Register Programming............................................................... 61  
I2C Sequencer.............................................................................. 61  
IP2PC Register Maps ..................................................................... 62  
I2C Register Map Details ........................................................... 66  
I2C Programming Examples.......................................................... 88  
Examples in this Section use a 28 MHz Clock. ...................... 88  
Examples Using 27 MHz Clock................................................ 92  
PCB Layout Recommendations.................................................... 94  
Analog Interface Inputs............................................................. 94  
Power Supply Decoupling ......................................................... 94  
PLL ............................................................................................... 94  
Digital Outputs (Both Data and Clocks) ................................ 94  
Digital Inputs .............................................................................. 94  
Antialiasing Filters ..................................................................... 95  
Rev. B | Page 2 of 100  
ADV7183B  
Crystal Load Capacitor Value Selection...................................95  
Typical Circuit Connection ...........................................................96  
Outline Dimensions........................................................................98  
Ordering Guide ...........................................................................98  
REVISION HISTORY  
9/05—Rev. A to Rev. B  
Changes to Table 3 and Table 4 .......................................................8  
Changes to Analog Specifications Section.....................................8  
Changes to Table 7 ..........................................................................11  
Changes to Clamp Operation Section..........................................26  
Renamed Figure 14 and Figure 15................................................30  
Changes to Table 31 ........................................................................31  
Changed LAGC Register Address in Luma Gain Section .........32  
Changed VSBHE VS Default .........................................................41  
Changes to Table 55 ........................................................................43  
Changes to Table 56 ........................................................................45  
Changed Comments for CTAPSP[1:0] in Table 85 ....................81  
Changes to Table 86 ........................................................................89  
Changes to Table 87 ........................................................................90  
Changes to Table 88 ........................................................................91  
Changes to Table 89 ........................................................................92  
Added Examples Using 27 MHz Clock Section..........................93  
Added XTAL Load Capacitor Value Selection Section..............96  
Changes to Ordering Guide...........................................................99  
Changes to Table 1 ............................................................................6  
Changes to Table 2 ............................................................................7  
Changes to Table 3 and Table 4 .......................................................8  
Changes to Table 5 ............................................................................9  
Change to Figure 6 ..........................................................................13  
Change Formatting of Table 15 to Table 17.................................19  
Change to Figure 8 ..........................................................................21  
Changes to Lock Related Controls Section..................................24  
Changes to Table 34 ........................................................................32  
Changes to Table Reference in BETACAM Section ...................33  
Change to PAL Comb Filter Settings Section..............................37  
Change to NFTOG Section............................................................44  
Changes to Table 85 ........................................................................68  
Changes to Table 86 ........................................................................72  
6/05—Rev. 0 to Rev. A  
Changed Crystal References to 28 MHz Crystal............ Universal  
Changes to Features Section ............................................................1  
9/04—Revision 0: Initial Version  
Rev. B | Page 3 of 100  
ADV7183B  
INTRODUCTION  
The ADV7183B is a high quality, single chip, multiformat video  
decoder that automatically detects and converts PAL, NTSC,  
and SECAM standards in the form of composite, S-Video, and  
component video into a digital ITU-R BT.656 format.  
STANDARD DEFINITION PROCESSOR (SDP)  
The ADV7183B is capable of decoding a large selection of  
baseband video signals in composite, S-Video, and component  
formats. The video standards supported include PAL B/D/I/G/H,  
PAL60, PAL M, PAL N, PAL Nc, NTSC M/J, NTSC 4.43, and  
SECAM B/D/G/K/L. The ADV7183B can automatically detect  
the video standard and process it accordingly.  
The advanced and highly flexible digital output interface enables  
performance video decoding and conversion in line-locked,  
clock-based systems. This makes the device ideally suited for a  
broad range of applications with diverse analog video charac-  
teristics, including tape based sources, broadcast sources,  
security/surveillance cameras, and professional systems.  
The ADV7183B has a 5-line, superadaptive, 2D comb filter that  
gives superior chrominance and luminance separation when  
decoding a composite video signal. This highly adaptive filter  
automatically adjusts its processing mode according to video  
standard and signal quality with no user intervention required.  
Video user controls such as brightness, contrast, saturation, and  
hue are also available within the ADV7183B.  
ANALOG FRONT END  
The ADV7183B analog front end comprises three 10-bit ADCs  
that digitize the analog video signal before applying it to the  
standard definition processor. The analog front end uses  
differential channels to each ADC to ensure high performance  
in mixed-signal applications.  
The ADV7183B implements a patented adaptive digital line-  
length tracking (ADLLT) algorithm to track varying video line  
lengths from sources. ADLLT enables the ADV7183B to track  
and decode poor quality video sources such as VCRs, noisy  
sources from tuner outputs, VCD players, and camcorders. The  
ADV7183B contains a chroma transient improvement (CTI)  
processor that sharpens the edge rate of chroma transitions,  
resulting in sharper vertical transitions.  
The front end also includes a 12-channel input mux that enables  
multiple video signals to be applied to the ADV7183B. Current  
and voltage clamps are positioned in front of each ADC to  
ensure the video signal remains within the range of the  
converter. Fine clamping of the video signals is performed  
downstream by digital fine clamping within the ADV7183B.  
The ADCs are configured to run in 4× oversampling mode.  
The ADV7183B can process a variety of VBI data services, such  
as closed captioning (CC), wide screen signaling (WSS), copy  
generation management system (CGMS), EDTV, Gemstar 1×/2×,  
and extended data service (XDS). The ADV7183B is fully  
Macrovision® certified; detection circuitry enables Type I, II,  
and III protection levels to be identified and reported to the  
user. The decoder is also fully robust to all Macrovision signal  
inputs.  
Rev. B | Page 4 of 100  
 
ADV7183B  
FUNCTIONAL BLOCK DIAGRAM  
OUTPUT FORMATTER  
Figure 1.  
Rev. B | Page 5 of 100  
 
ADV7183B  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V, operating temperature range, unless  
otherwise specified.  
Table 1.  
Parameter1, 2  
F
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
F
STATIC PERFORMANCE  
Resolution (each ADC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS  
N
INL  
DNL  
10  
3
–0.7/+2  
Bits  
LSB  
LSB  
BSL at 54 MHz  
BSL at 54 MHz  
–0.475/+0.6  
–0.25/+0.5  
Input High Voltage  
Input Low Voltage  
Input Current  
VIH  
VIL  
IIN  
2
V
V
μA  
μA  
pF  
0.8  
Pins listed in Note  
All other pins  
F
3
–50  
–10  
+50  
+10  
10  
Input Capacitance  
DIGITAL OUTPUTS  
CIN  
Output High Voltage  
Output Low Voltage  
High Impedance Leakage Current  
VOH  
VOL  
ILEAK  
ISOURCE = 0.4 mA  
ISINK = 3.2 mA  
Pins listed in Note  
All other pins  
2.4  
V
V
μA  
μA  
pF  
0.4  
50  
10  
20  
F
4
Output Capacitance  
COUT  
POWER REQUIREMENTS5  
F
Digital Core Power Supply  
Digital I/O Power Supply  
PLL Power Supply  
Analog Power Supply  
Digital Core Supply Current  
Digital I/O Supply Current  
PLL Supply Current  
DVDD  
DVDDIO  
PVDD  
AVDD  
IDVDD  
IDVDDIO  
IPVDD  
1.65  
3.0  
1.65  
3.15  
1.8  
3.3  
1.8  
3.3  
82  
2
10.5  
85  
2
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
ms  
3.6  
2.0  
3.45  
Analog Supply Current  
IAVDD  
CVBS input6  
YPrPb input7  
F
F
180  
1.5  
20  
Power-Down Current  
Power-Up Time  
IPWRDN  
tPWRUP  
1Temperature range: TMIN to TMAX, –40°C to +85°C (0°C to 70°C for ADV7183BKSTZ).  
2The min/max specifications are guaranteed over this range.  
3 Pins 36 and 79.  
4 Pins 1, 2, 5, 6, 8, 12, 17, 18 to 24, 32 to 35, 74 to 76, 80.  
5 Guaranteed by characterization.  
6 ADC1 powered on.  
7 All three ADCs powered on.  
Rev. B | Page 6 of 100  
 
ADV7183B  
VIDEO SPECIFICATIONS  
At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V, operating temperature range, unless  
otherwise specified.  
Table 2.  
Parameter1, 2  
F
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
F
NONLINEAR SPECIFICATIONS  
Differential Phase  
Differential Gain  
Luma Nonlinearity  
NOISE SPECIFICATIONS  
SNR Unweighted  
DP  
DG  
LNL  
CVBS I/P, modulate 5-step  
CVBS I/P, modulate 5-step  
CVBS I/P, 5-step  
0.5  
0.5  
0.5  
0.7  
0.7  
0.7  
Degrees  
%
%
Luma ramp  
54  
58  
56  
60  
60  
dB  
dB  
dB  
Luma flat field  
Analog Front End Crosstalk  
LOCK TIME SPECIFICATIONS  
Horizontal Lock Range  
Vertical Lock Range  
–5  
40  
+5  
70  
%
Hz  
FSC Subcarrier Lock Range  
Color Lock In Time  
Sync Depth Range  
1.3  
60  
Hz  
Lines  
%
20  
5
200  
200  
Color Burst Range  
%
Vertical Lock Time  
2
100  
Fields  
Lines  
Autodetection Switch Speed  
CHROMA SPECIFICATIONS  
Hue Accuracy  
Color Saturation Accuracy  
Color AGC Range  
HUE  
CL_AC  
1
1
Degrees  
%
%
5
400  
Chroma Amplitude Error  
Chroma Phase Error  
Chroma Luma Intermodulation  
LUMA SPECIFICATIONS  
Luma Brightness Accuracy  
Luma Contrast Accuracy  
0.5  
0.4  
0.2  
%
Degrees  
%
CVBS, 1 V I/P  
CVBS, 1 V I/P  
1
1
%
%
1 Temperature range: TMIN to TMAX, –40°C to +85°C (0°C to 70°C for ADV7183BKSTZ).  
2 The min/max specifications are guaranteed over this range.  
Rev. B | Page 7 of 100  
 
ADV7183B  
TIMING SPECIFICATIONS  
Guaranteed by characterization. At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V,  
operating temperature range, unless otherwise specified.  
Table 3.  
Parameter1, 2  
F
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
F
SYSTEM CLOCK AND CRYSTAL  
Nominal Frequency  
Frequency Stability  
28.6363  
MHz  
ppm  
50  
I2C PORT  
SCLK Frequency  
400  
kHz  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
SCLK Min Pulse Width High  
SCLK Min Pulse Width Low  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
SDA Setup Time  
SCLK and SDA Rise Time  
SCLK and SDA Fall Time  
Setup Time for Stop Condition  
RESET FEATURE  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0.6  
1.3  
0.6  
0.6  
100  
300  
300  
0.6  
Reset Pulse Width  
5
ms  
CLOCK OUTPUTS  
LLC1 Mark Space Ratio  
LLC1 Rising to LLC2 Rising  
LLC1 Rising to LLC2 Falling  
DATA AND CONTROL OUTPUTS  
Data Output Transitional Time  
t9:t10  
t11  
t12  
45:55  
55:45  
% duty cycle  
ns  
ns  
0.5  
0.5  
t13  
t14  
Negative clock edge to start of  
valid data; (tACCESS = t10 – t13)  
End of valid data to negative clock  
edge; (tHOLD = t9 + t14)  
3.4  
2.4  
ns  
ns  
Data Output Transitional Time  
Propagation Delay to Hi-Z  
Max Output Enable Access Time  
Min Output Enable Access Time  
t15  
t16  
t17  
6
7
4
ns  
ns  
ns  
1 Temperature range: TMIN to TMAX, –40°C to +85°C (0°C to 70°C for ADV7183BKSTZ).  
2 The min/max specifications are guaranteed over this range.  
ANALOG SPECIFICATIONS  
Guaranteed by characterization. AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V (operating  
temperature range, unless otherwise noted). Recommended analog input video signal range: 0.5 V to 1.6 V, typically 1 V p-p.  
Table 4.  
Parameter1, 2  
F
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
F
CLAMP CIRCUITRY  
External Clamp Capacitor  
Input Impedance  
Large Clamp Source Current  
Large Clamp Sink Current  
Fine Clamp Source Current  
Fine Clamp Sink Current  
0.1  
10  
0.75  
0.75  
60  
μF  
Clamps switched off  
MΩ  
mA  
mA  
μA  
60  
μA  
1 Temperature range: TMIN to TMAX, –40°C to +85°C (0°C to 70°C for ADV7183BKSTZ).  
2 The min/max specifications are guaranteed over this range.  
Rev. B | Page 8 of 100  
 
ADV7183B  
THERMAL SPECIFICATIONS  
Table 5.  
Parameter1,2  
F
Symbol  
θJC  
θJA  
Test Conditions  
Min Typ  
7.6  
Max Unit  
°C/W  
F
Junction-to-Case Thermal Resistance  
Junction-to-Ambient Thermal Resistance (Still Air)  
4-layer PCB with solid ground plane  
4-layer PCB with solid ground plane  
38.1  
°C/W  
1 Temperature range: TMIN to TMAX, –40°C to +85°C (0°C to 70°C for ADV7183BKSTZ).  
2 The min/max specifications are guaranteed over this range.  
TIMING DIAGRAMS  
t5  
t3  
t3  
SDA  
t1  
t6  
SCLK  
t4  
t7  
t8  
t2  
Figure 2. I2C Timing  
t9  
t10  
OUTPUT LLC 1  
OUTPUT LLC 2  
t11  
t12  
t13  
t14  
OUTPUTS P0–P15, VS,  
HS, FIELD,  
SFL  
Figure 3. Pixel Port and Control Output Timing  
OE  
t15  
t17  
P0–P15, HS,  
VS, FIELD,  
SFL  
t16  
OE  
Figure 4.  
Timing  
Rev. B | Page 9 of 100  
 
ADV7183B  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
AVDD to GND  
AVDD to AGND  
DVDD to DGND  
PVDD to AGND  
DVDDIO to DGND  
DVDDIO to AVDD  
PVDD to DVDD  
DVDDIO – PVDD  
DVDDIO – DVDD  
4 V  
4 V  
2.2 V  
2.2 V  
4 V  
–0.3 V to +0.3 V  
–0.3 V to +0.3 V  
–0.3 V to +2 V  
–0.3 V to +2 V  
–0.3 V to +2 V  
–0.3 V to +2 V  
–0.3 V to DVDDIO + 0.3 V  
–0.3 V to DVDDIO + 0.3 V  
AGND – 0.3 V to AVDD + 0.3 V  
150°C  
AVDD – PVDD  
AVDD – DVDD  
Digital Inputs Voltage to DGND  
Digital Output Voltage to DGND  
Analog Input to AGND  
Maximum Junction Temperature  
(TJ max)  
Storage Temperature Range  
–65°C to +150°C  
Infrared Reflow Soldering (20 sec) 260°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 10 of 100  
 
ADV7183B  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VS  
AIN5  
PIN 1  
2
3
HS  
DGND  
DVDDIO  
P11  
AIN11  
AIN4  
4
AIN10  
AGND  
CAPC2  
CAPC1  
AGND  
CML  
5
6
P10  
7
P9  
ADV7183B  
TOP VIEW  
(Not to Scale)  
8
P8  
9
DGND  
DVDD  
INTRQ  
SFL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
REFOUT  
AVDD  
CAPY2  
CAPY1  
AGND  
AIN3  
NC  
DGND  
DVDDIO  
NC  
AIN9  
NC  
AIN2  
NC  
AIN8  
P7  
AIN1  
P6  
AIN7  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NC = NO CONNECT  
Figure 5. 80-Lead LQFP Pin Configuration  
Rev. B | Page 11 of 100  
 
ADV7183B  
Table 7. Pin Function Descriptions  
Pin No.  
3, 9, 14, 31, 71  
39, 40, 47, 53, 56  
4, 15  
10, 30, 72  
50  
Mnemonic  
Type Description  
DGND  
AGND  
DVDDIO  
DVDD  
AVDD  
G
G
P
P
P
P
I
Digital Ground.  
Analog Ground.  
Digital I/O Supply Voltage (3.3 V).  
Digital Core Supply Voltage (1.8 V).  
Analog Supply Voltage (3.3 V).  
PLL Supply Voltage (1.8 V).  
Analog Video Input Channels.  
38  
PVDD  
AIN1 to AIN12  
42, 44, 46, 58, 60,  
62, 41, 43, 45, 57,  
59, 61  
11  
INTRQ  
O
Interrupt Request Output. Interrupt occurs when certain signals are detected on the input  
video. See the interrupt register map in Table 83.  
13, 16 to 18, 25, 34, NC  
35, 63, 65, 69, 70,  
77, 78  
No Connect Pins.  
33, 32, 24, 23, 22,  
21, 20, 19, 8, 7, 6, 5,  
76, 75, 74, 73  
P0 to P15  
O
Video Pixel Output Port.  
2
1
80  
67  
68  
66  
HS  
VS  
FIELD  
SDA  
SCLK  
ALSB  
O
O
O
I/O  
I
Horizontal Synchronization Output Signal.  
Vertical Synchronization Output Signal.  
Field Synchronization Output Signal.  
I2C Port Serial Data Input/Output Pin.  
I2C Port Serial Clock Input. Maximum clock rate of 400 kHz.  
This pin selects the I2C address for the ADV7183B. ALSB set to Logic 0 sets the address for a  
write as 0x40; for ALSB set to logic high, the address selected is 0x42.  
I
64  
27  
26  
29  
28  
RESET  
LLC1  
I
System Reset Input, Active Low. A minimum low reset pulse width of 5 ms is required to  
reset the ADV7183B circuitry.  
This is a line-locked output clock for the pixel data output by the ADV7183B. Nominally  
27 MHz, but varies up or down according to video line length.  
This is a divide-by-2 version of the LLC1 output clock for the pixel data output by the  
ADV7183B. Nominally 13.5 MHz, but varies up or down according to video line length.  
This is the input pin for the 28.6363 MHz crystal, or can be overdriven by an external 3.3 V,  
27 MHz clock oscillator source. In crystal mode, the crystal must be a fundamental crystal.  
O
O
I
LLC2  
XTAL  
XTAL1  
O
This pin should be connected to the 28.6363 MHz crystal or left as a no connect if an  
external 3.3 V, 27 MHz clock oscillator source is used to clock the ADV7183B. In crystal  
mode, the crystal must be a fundamental crystal.  
36  
79  
PWRDN  
OE  
I
I
A logic low on this pin places the ADV7183B in a power-down mode. Refer to the IP2PC  
Register Maps section for more options on power-down modes for the ADV7183B.  
When set to a logic low, OE enables the pixel output bus, P15 to P0 of the ADV7183B. A  
logic high on the OE pin places Pins P15 to P0, HS, VS, SFL into a high impedance state.  
37  
12  
ELPF  
SFL  
I
The recommended external loop filter must be connected to this ELPF pin, as shown in  
Figure 46.  
Subcarrier Frequency Lock. This pin contains a serial output stream that can be used to lock  
the subcarrier frequency when this decoder is connected to any Analog Devices, Inc. digital  
video encoder.  
O
51  
REFOUT  
O
O
I
Internal Voltage Reference Output. Refer to Figure 46 for a recommended capacitor network  
for this pin.  
The CML pin is a common-mode level for the internal ADCs. Refer to Figure 46 for a  
recommended capacitor network for this pin.  
ADC’s Capacitor Network. Refer to Figure 46 for a recommended capacitor network for  
this pin.  
ADC’s Capacitor Network. Refer to Figure 46 for a recommended capacitor network for  
this pin.  
52  
CML  
48, 49  
54, 55  
CAPY1, CAPY2  
CAPC1, CAPC2  
I
Rev. B | Page 12 of 100  
ADV7183B  
ANALOG FRONT END  
ADC_SW_MAN_EN  
INSEL[3:0]  
INTERNAL  
MAPPING  
FUNCTIONS  
AIN1  
AIN7  
AIN2  
AIN8  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
ADC0_SW[3:0]  
1
0
ADC0  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
ADC1_SW[3:0]  
1
0
ADC1  
ADC2_SW[3:0]  
ADC2  
AIN2  
AIN8  
AIN5  
AIN11  
AIN6  
AIN12  
1
0
Figure 6. Internal Pin Connections  
ANALOG INPUT MUXING  
The ADV7183B has an integrated analog muxing section that  
allows more than one source of video signal to be connected to  
the decoder. Figure 6 outlines the overall structure of the input  
muxing provided in the ADV7183B.  
Refer to Figure 7 for an overview of the two methods of  
controlling the ADV7183Bs input muxing.  
ADI Recommended Input Muxing  
A maximum of 12 CVBS inputs can be connected and decoded  
by the ADV7183B. As seen in Figure 5, this means the sources  
will have to be connected to adjacent pins on the IC. This calls  
for a careful design of the PCB layout, such as ground shielding  
between all signals routed through tracks that are physically  
close together.  
As seen in Figure 6, the analog input muxes can be controlled  
by functional registers (INSEL) or manually. Using INSEL[3:0]  
simplifies the setup of the muxes and minimizes crosstalk  
between channels by pre-assigning the input channels. This is  
referred to as ADI recommended input muxing.  
Control via an I2C manual override (ADC_sw_man_en,  
ADC0_sw, and ADC1_sw, ADC2_sw) is provided for  
applications with special requirements (for example, number/  
combinations of signals) that would not be served by the pre-  
assigned input connections. This is referred to as manual input  
muxing.  
INSEL[3:0] Input Selection, Address 0x00[3:0]  
The INSEL bits allow the user to select an input channel as well  
as the input format. Depending on the PCB connections, only a  
subset of the INSEL modes is valid. The INSEL[3:0] not only  
switches the analog input muxing, it also configures the  
standard definition processor core to process CVBS (Comp),  
S-Video (Y/C), or component (YPbPr) format.  
Rev. B | Page 13 of 100  
 
ADV7183B  
CONNECTING  
ANALOG SIGNALS  
TO ADV7183B  
ADI RECOMMENDED  
INPUT MUXING; SEE TABLE 9  
YES  
NO  
SET INSEL[3:0] FOR REQUIRED  
MUXING CONFIGURATION  
SET INSEL[3:0] TO  
CONFIGURE ADV7183B TO  
DECODE VIDEO FORMAT:  
CVBS: 0000  
YC: 0110  
YPrPb: 1001  
USE MANUAL INPUT MUXING  
(ADC_SW_MAN_EN, ADC0_SW,  
ADC1_SW, ADC2_SW)  
Figure 7. Input Muxing Overview  
Table 8. Input Channel Switching Using INSEL[3:0]  
Table 9. Input Channel Assignments  
Description  
Input  
Channel No.  
Pin  
ADI Recommended Input Muxing Control  
INSEL[3:0]  
INSEL[3:0]  
0000 (default)  
0001  
0010  
0011  
0100  
0101  
0110  
Analog Input Pins  
CVBS1 = AIN1  
CVBS2 = AIN2  
CVBS3 = AIN3  
CVBS4 = AIN4  
CVBS5 = AIN5  
CVBS6 = AIN6  
Y1 = AIN1  
Video Format  
Composite  
Composite  
Composite  
Composite  
Composite  
Composite  
Y/C  
AIN7  
AIN1  
AIN8  
AIN2  
AIN9  
AIN3  
AIN10  
AIN4  
AIN11  
AIN5  
AIN12  
AIN6  
41  
42  
43  
44  
45  
46  
57  
58  
59  
60  
61  
62  
CVBS7  
CVBS1  
CVBS8  
CVBS2  
CVBS9  
CVBS3  
CVBS10  
CVBS4  
CVBS11  
CVBS5  
Not available  
CVBS6  
Y/C1-Y  
Y/C2-Y  
Y/C3-Y  
Y/C1-C  
Y/C2-C  
Y/C3-C  
YPrPb1-Y  
YPrPb2-Y  
YPrPb2-Pb  
YPrPb1-Pb  
YPrPb1-Pr  
YPrPb2-Pr  
C1 = AIN4  
Y2 = AIN2  
C2 = AIN5  
Y3 = AIN3  
Y/C  
Y/C  
Y/C  
Y/C  
0111  
1000  
1001  
C3 = AIN6  
Y/C  
Y1 = AIN1  
PB1 = AIN4  
PR1 = AIN5  
Y2 = AIN2  
YPrPb  
YPrPb  
YPrPb  
YPrPb  
ADI recommended input muxing is designed to minimize  
crosstalk between signal channels and to obtain the highest  
level of signal integrity. Table 9 summarizes how the PCB layout  
should connect analog video signals to the ADV7183B.  
1010  
PB2 = AIN3  
YPrPb  
It is strongly recommended to connect any unused analog input  
pins to AGND to act as a shield.  
PR2 = AIN6  
YPrPb  
1011  
1100  
1101  
1110  
1111  
CVBS7 = AIN7  
CVBS8 = AIN8  
CVBS9 = AIN9  
CVBS10 = AIN10  
CVBS11 = AIN11  
Composite  
Composite  
Composite  
Composite  
Composite  
Inputs AIN7 to AIN11 should be connected to AGND when  
only six input channels are used. This improves the quality of  
the sampling due to better isolation between the channels.  
AIN12 is not under the control of INSEL[3:0]. It can be routed  
to ADC0/ADC1/ADC2 only by manual muxing. See Table 10  
for details.  
Rev. B | Page 14 of 100  
ADV7183B  
MANUAL INPUT MUXING  
Restrictions in the channel routing are imposed by the analog  
signal routing inside the IC; every input pin cannot be routed to  
each ADC. Refer to Figure 6 for an overview on the routing  
capabilities inside the chip. The three mux sections can be  
controlled by the reserved control signal buses ADC0/ADC1/  
ADC2_sw[3:0]. Table 10 explains the control words used.  
By accessing a set of manual override muxing registers, the  
analog input muxes of the ADV7183B can be controlled  
directly. This is referred to as manual input muxing.  
Manual input muxing overrides other input muxing control  
bits, such as INSEL.  
SETADC_sw_man_en, Manual Input Muxing Enable,  
Address 0xC4[7]  
The manual muxing is activated by setting the  
ADC_SW_MAN_EN bit. It affects only the analog switches in  
front of the ADCs. This means if the settings of INSEL and the  
manual input muxing registers (ADC0/ADC1/ADC2_sw)  
contradict each other, the ADC0/ADC1/ADC2_sw settings  
apply, and INSEL is ignored.  
ADC0_sw[3:0], ADC0 mux configuration, Address 0xC3[3:0]  
ADC1_sw[3:0], ADC1 mux configuration, Address 0xC3[7:4]  
ADC2_sw[3:0], ADC2 mux configuration, Address 0xC4[3:0]  
Manual input muxing controls only the analog input muxes.  
INSEL[3:0] still has to be set so the follow-on blocks process the  
video data in the correct format. This means INSEL must still  
be used to tell the ADV7183B whether the input signal is of  
component, Y/C, or CVBS format.  
Table 10. Manual Mux Settings for All ADCs (SETADC_sw_man_en = 1)  
ADC0_sw[3:0]  
ADC0 Connected to  
No connection  
AIN1  
AIN2  
AIN3  
ADC1_sw[3:0]  
ADC1 Connected to  
No connection  
No connection  
No connection  
AIN3  
ADC2_sw[3:0]  
0000  
0001  
0010  
0011  
ADC2 Connected to  
No connection  
No connection  
AIN2  
No connection  
No connection  
AIN5  
0000  
0001  
0010  
0011  
0100  
0101  
0000  
0001  
0010  
0011  
0100  
0101  
AIN4  
AIN5  
AIN4  
AIN5  
0100  
0101  
0110  
AIN6  
0110  
AIN6  
0110  
AIN6  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
No connection  
No connection  
AIN7  
AIN8  
AIN9  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
No connection  
No connection  
No connection  
No connection  
AIN9  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
No connection  
No connection  
No connection  
AIN8  
No connection  
No connection  
AIN11  
AIN10  
AIN11  
AIN10  
AIN11  
1110  
AIN12  
1110  
AIN12  
1110  
AIN12  
1111  
No connection  
1111  
No connection  
1111  
No connection  
Rev. B | Page 15 of 100  
 
ADV7183B  
GLOBAL CONTROL REGISTERS  
PWRDN_ADC_0, Address 0x3A[3]  
Register control bits listed in this section affect the whole chip.  
When PWRDN_ADC_0 is 0 (default), the ADC is in normal  
operation.  
POWER-SAVE MODES  
Power-Down  
When PWRDN_ADC_0 is 1, ADC 0 is powered down.  
PDBP, Address 0x0F[2]  
The digital core of the ADV7183B can be shut down by using  
PWRDN_ADC_1, Address 0x3A[2]  
the  
pin and the PWRDN bit (see below). The PDBP  
PWRDN  
controls which of the two pins has the higher priority. The  
default is to give priority to the pin. This allows the  
When PWRDN_ADC_1 is 0 (default), the ADC is in normal  
operation.  
PWRDN  
When PWRDN_ADC_1 is 1, ADC 1 is powered down.  
user to have the ADV7183B powered down by default.  
PWRDN_ADC_2, Address 0x3A[1]  
When PDBD is 0 (default), the digital core power is controlled  
by the  
pin (the bit is disregarded).  
PWRDN  
When PWRDN_ADC_2 is 0 (default), the ADC is in normal  
operation.  
When PDBD is 1, the bit has priority (the pin is disregarded).  
When PWRDN_ADC_2 is 1, ADC 2 is powered down.  
PWRDN, Address 0x0F[5]  
RESET CONTROL  
Chip Reset (RES), Address 0x0F[7]  
Setting the PWRDN bit switches the ADV7183B into a chip-  
wide power-down mode. The power-down stops the clock from  
entering the digital section of the chip, thereby freezing its  
operation. No I2C bits are lost during power-down. The  
PWRDN bit also affects the analog blocks and switches them  
into low current modes. The I2C interface is unaffected and  
remains operational in power-down mode.  
Setting this bit, equivalent to controlling the  
pin on the  
RESET  
ADV7183B, issues a full chip reset. All I2C registers are reset to  
their default values. (Some register bits do not have a reset value  
specified. They keep their last written value. Those bits are  
marked as having a reset value of x in the register table.) After  
the reset sequence, the part immediately starts to acquire the  
incoming video signal.  
The ADV7183B leaves the power-down state if the PWRDN  
bit is set to 0 (via I2C), or if the overall part is reset using the  
pin.  
RESET  
After setting the RES bit (or initiating a reset via the pin), the  
part returns to the default mode of operation with respect to its  
primary mode of operation. All I2C bits are loaded with their  
default values, making this bit self-clearing.  
PDBP must be set to 1 for the PWRDN bit to power down the  
ADV7183B.  
When PWRDN is 0 (default), the chip is operational.  
When PWRDN is 1, the ADV7183B is in chip-wide power-down.  
ADC Power-Down Control  
Executing a software reset takes approximately 2 ms. However,  
it is recommended to wait 5 ms before any further I2C writes are  
performed.  
The I2C master controller receives a no acknowledge condition  
on the ninth clock cycle when chip reset is implemented. See  
the MPU Port Description section.  
The ADV7183B contains three 10-bit ADCs (ADC 0, ADC 1,  
and ADC 2). If required, each ADC can be powered down  
individually.  
When RES is 0 (default), operation is normal.  
When RES is 1, the reset sequence starts.  
The ADCs should be powered down when in:  
CVBS mode. ADC 1 and ADC 2 should be powered down  
to save on power consumption.  
S-Video mode. ADC 2 should be powered down to save on  
power consumption.  
Rev. B | Page 16 of 100  
 
ADV7183B  
Timing Signals Output Enable  
GLOBAL PIN CONTROL  
Three-State Output Drivers  
TOD, Address 0x03[6]  
TIM_OE, Address 0x04[3]  
The TIM_OE bit should be regarded as an addition to the TOD  
bit. Setting it high forces the output drivers for HS, VS, and  
FIELD pins into the active (driving) state even if the TOD bit is  
set. If set to low, the HS, VS, and FIELD pins are three-stated,  
dependent on the TOD bit. This functionality is useful if the  
decoder is used as a timing generator only. This can happen  
when only the timing signals are to be extracted from an  
incoming signal, or if the part is in free-run mode where a  
separate chip can output, for an example, a company logo.  
This bit allows the user to three-state the output drivers of the  
ADV7183B.  
Upon setting the TOD bit, the P15 to P0, HS, VS, FIELD, and  
SFL pins are three-stated.  
The timing pins (HS/VS/FIELD) can be forced active via the  
TIM_OE bit. For more information on three-state control, refer  
to the Three-State LLC Driver and the Timing Signals Output  
Enable sections.  
For more information on three-state control, refer to the Three-  
State Output Drivers and the Three-State LLC Driver sections.  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
The ADV7183B supports three-stating via a dedicated pin.  
When TIM_OE is 0 (default), the HS, VS, and FIELD pins are  
three-stated according to the TOD bit.  
When set high, the  
pin three-states the output drivers for  
OE  
the P15 to P0, HS, VS, FIELD, and SFL pins. The output drivers  
are three-stated if the TOD bit or the pin is set high.  
OE  
When TIM_OE is 1, HS, VS, and FIELD are forced active all  
the time.  
When TOD is 0 (default), the output drivers are enabled.  
When TOD is 1, the output drivers are three-stated.  
Drive Strength Selection (Data)  
DR_STR[1:0] Address 0xF4[5:4]  
Three-State LLC Driver  
For EMC and crosstalk reasons, it can be desirable to strengthen  
or weaken the drive strength of the output drivers. The  
DR_STR[1:0] bits affect the P[15:0] output drivers.  
TRI_LLC, Address 0x1D[7]  
This bit allows the output drivers for the LLC1 and LLC2 pins  
of the ADV7183B to be three-stated. For more information on  
three-state control, refer to the Three-State Output Drivers and  
the Timing Signals Output Enable sections.  
For more information on three-state control, refer to the Drive  
Strength Selection (Clock) and the Drive Strength Selection  
(Sync) sections.  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
Table 11. DR_STR Function  
DR_STR[1:0]  
Description  
00  
Low drive strength (1×)  
Medium low drive strength (2×)  
Medium high drive strength (3×)  
High drive strength (4×)  
When TRI_LLC is 0 (default), the LLC pin drivers work  
according to the DR_STR_C[1:0] setting (pin enabled).  
01 (default)  
10  
11  
When TRI_LLC is 1, the LLC pin drivers are three-stated.  
Rev. B | Page 17 of 100  
 
ADV7183B  
Drive Strength Selection (Clock)  
Enable Subcarrier Frequency Lock Pin  
DR_STR_C[1:0] Address 0xF4[3:2]  
EN_SFL_PIN Address 0x04[1]  
The DR_STR_C[1:0] bits can be used to select the strength of  
the clock signal output driver (LLC pin). For more information,  
refer to the Drive Strength Selection (Sync) and the Drive  
Strength Selection (Data) sections.  
The EN_SFL_PIN bit enables the output of subcarrier lock  
information (also known as GenLock) from the ADV7183B to  
an encoder in a decoder-encoder back-to-back arrangement.  
When EN_SFL_PIN is 0 (default), the subcarrier frequency lock  
output is disabled.  
Table 12. DR_STR_C Function  
DR_STR_C[1:0]  
Description  
When EN_SFL_PIN is 1, the subcarrier frequency lock infor-  
mation is presented on the SFL pin.  
00  
Low drive strength (1×)  
Medium low drive strength (2×)  
Medium high drive strength (3×)  
High drive strength (4×)  
01 (default)  
10  
11  
Polarity LLC Pin  
PCLK Address 0x37[0]  
The polarity of the clock that leaves the ADV7183B via the  
LLC1 and LLC2 pins can be inverted using the PCLK bit.  
Drive Strength Selection (Sync)  
DR_STR_S[1:0] Address 0xF4[1:0]  
Changing the polarity of the LLC clock output can be necessary  
to meet the setup-and-hold time expectations of follow-on  
chips.  
The DR_STR_S[1:0] bits allow the user to select the strength of  
the synchronization signals with which HS, VS, and F are  
driven. For more information, refer to the Drive Strength  
Selection (Clock) and the Drive Strength Selection (Data)  
sections.  
This bit also inverts the polarity of the LLC2 clock.  
When PCLK is 0, the LLC output polarity is inverted.  
Table 13. DR_STR_S Function  
DR_STR_S[1:0]  
Description  
When PCLK is 1 (default), the LLC output polarity is normal  
(as per the timing diagrams).  
00  
Low drive strength (1×)  
Medium low drive strength (2×)  
Medium high drive strength (3×)  
High drive strength (4×)  
01 (default)  
10  
11  
Rev. B | Page 18 of 100  
ADV7183B  
GLOBAL STATUS REGISTERS  
Four registers provide summary information about the video  
decoder. The IDENT register allows the user to identify the  
revision code of the ADV7183B. The three other registers  
contain status bits regarding IC operation.  
Table 15. STATUS 1 Function  
STATUS 1[7:0]  
Bit Name  
Description  
0
1
IN_LOCK  
LOST_LOCK  
In lock (right now)  
Lost lock (since last read of  
this register)  
IDENTIFICATION  
IDENT[7:0] Address 0x11[7:0]  
2
3
FSC_LOCK  
FOLLOW_PW AGC follows peak white  
algorithm  
FSC locked (right now)  
This register provides identification of the revision of the  
ADV7183B.  
4
5
6
7
AD_RESULT.0 Result of autodetection  
AD_RESULT.1 Result of autodetection  
AD_RESULT.2 Result of autodetection  
An identification value of 0x11 indicates the ADV7183, released  
silicon.  
COL_KILL  
Color kill active  
An identification value of 0x13 indicates the ADV7183B silicon.  
STATUS 2  
STATUS_2[7:0], Address 0x12[7:0]  
Table 16. STATUS 2 Function  
STATUS 1  
STATUS_1[7:0] Address 0x10[7:0]  
STATUS 2[7:0] Bit Name  
Description  
This read-only register provides information about the internal  
status of the ADV7183B.  
0
MVCS DET  
Detected Macrovision color  
striping  
1
MVCS T3  
Macrovision color striping  
protection. Conforms to  
Type 3 if high and to Type 2  
if low  
See VS_Coast[1:0] Address 0xF9[3:2], CIL[2:0] Count Into  
Lock, Address 0x51[2:0], and COL[2:0] Count Out-of-Lock,  
Address 0x51[5:3] for information on the timing.  
2
3
MV_PS DET  
Detected Macrovision  
pseudo sync pulses  
Detected Macrovision AGC  
pulses  
Line length is nonstandard  
FSC frequency is nonstandard  
Depending on the setting of the FSCLE bit, the Status[0] and  
Status[1] bits are based solely on horizontal timing information  
on the horizontal timing and lock status of the color subcarrier.  
See the FSCLE FSC Lock Enable, Address 0x51[7] section.  
MV_AGC DET  
4
5
6
7
LL_NSTD  
FSC_NSTD  
Reserved  
Reserved  
AUTODETECTION RESULT  
AD_RESULT[2:0] Address 0x10[6:4]  
The AD_RESULT[2:0] bits report back on the findings from the  
autodetection block. For more information on enabling the  
autodetection block, see the General Setup section. For  
information on configuring it, see the Autodetection of SD  
Modes section.  
STATUS 3  
STATUS_3[7:0], Address 0x13[7:0]  
Table 17. STATUS 3 Function  
STATUS 3[7:0] Bit Name  
Description  
0
INST_HLOCK  
Horizontal lock indicator  
(instantaneous).  
Table 14. AD_RESULT Function  
AD_RESULT[2:0]  
Description  
1
2
GEMD  
SD_OP_50HZ  
Gemstar detect.  
Flags whether 50 Hz or  
60 Hz are present at output.  
Reserved for future use.  
Outputs a blue screen (see the  
DEF_VAL_AUTO_EN Default  
Value Automatic Enable,  
000  
001  
010  
011  
100  
101  
110  
111  
NTSM-MJ  
NTSC-443  
PAL-M  
PAL-60  
PAL-BGHID  
SECAM  
3
4
FREE_RUN_ACT  
STD_FLD_LEN  
Address 0x0C[1] section).  
PAL-Combination N  
SECAM 525  
5
Field length is correct for  
currently selected video  
standard.  
6
7
INTERLACED  
Interlaced video detected  
(field sequence found).  
Reliable sequence of swinging  
bursts detected.  
PAL_SW_LOCK  
Rev. B | Page 19 of 100  
 
ADV7183B  
STANDARD DEFINITION PROCESSOR (SDP)  
STANDARD DEFINITION PROCESSOR  
MACROVISION  
DETECTION  
STANDARD  
AUTODETECTION  
SLLC  
CONTROL  
VBI DATA  
RECOVERY  
DIGITIZED CVBS  
DIGITIZED Y (YC)  
LUMA  
DIGITAL  
FINE  
LUMA  
FILTER  
GAIN  
CONTROL  
LUMA  
RESAMPLE  
LUMA  
2D COMB  
CLAMP  
LINE  
AV  
SYNC  
EXTRACT  
RESAMPLE  
CONTROL  
VIDEO DATA  
OUTPUT  
LENGTH  
CODE  
PREDICTOR  
INSERTION  
DIGITIZED CVBS  
DIGITIZED C (YC)  
CHROMA  
DIGITAL  
FINE  
MEASUREMENT  
BLOCK (I C)  
CHROMA  
DEMOD  
CHROMA  
FILTER  
GAIN  
CONTROL  
CHROMA  
RESAMPLE  
CHROMA  
2D COMB  
2
CLAMP  
VIDEO DATA  
PROCESSING  
BLOCK  
F
SC  
RECOVERY  
Figure 8. Block Diagram of the Standard Definition Processor  
A block diagram of the ADV7183Bs standard definition  
processor (SDP) is shown in Figure 8.  
SD CHROMA PATH  
The input signal is processed by the following blocks:  
The SDP block can handle standard definition video in CVBS,  
Y/C, and YPrPb formats. It can be divided into a luminance and  
a chrominance path. If the input video is of a composite type  
(CVBS), both processing paths are fed with the CVBS input.  
Digital Fine Clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Chroma Demodulation. This block uses a color subcarrier  
(FSC) recovery unit to regenerate the color subcarrier for  
any modulated chroma scheme. The demodulation block  
then performs an AM demodulation for PAL and NTSC,  
and an FM demodulation for SECAM.  
SD LUMA PATH  
The input signal is processed by the following blocks:  
Digital Fine Clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Chroma Filter Block. This block contains a chroma  
decimation filter (CAA) with a fixed response and some  
shaping filters (CSH) that have selectable responses.  
Luma Filter Block. This block contains a luma decimation  
filter (YAA) with a fixed response and some shaping filters  
(YSH) that have selectable responses.  
Gain Control. Automatic gain control (AGC) can operate  
on several different modes, including gain based on the  
color subcarriers amplitude, gain based on the depth of  
the horizontal sync pulse on the luma channel, or fixed  
manual gain.  
Luma Gain Control. The automatic gain control (AGC)  
can operate on a variety of different modes, including gain  
based on the depth of the horizontal sync pulse, peak white  
mode, and fixed manual gain.  
Chroma Resample. The chroma data is digitally resampled  
to keep it perfectly aligned with the luma data. The  
resampling is done to correct for static and dynamic line-  
length errors of the incoming video signal.  
Luma Resample. To correct for line-length errors as well as  
dynamic line-length changes, the data is digitally resampled.  
Luma 2D Comb. The two-dimensional comb filter  
provides Y/C separation.  
Chroma 2D Comb. The two-dimensional, 5-line,  
superadaptive comb filter provides high quality Y/C  
separation when the input signal is CVBS.  
AV Code Insertion. At this point, the decoded luma (Y)  
signal is merged with the retrieved chroma values. AV  
codes (as per ITU-R. BT-656) can be inserted.  
AV Code Insertion. At this point, the demodulated chroma  
(Cr and Cb) signal is merged with the retrieved luma  
values. AV codes (as per ITU-R. BT-656) can be inserted.  
Rev. B | Page 20 of 100  
 
ADV7183B  
SYNC PROCESSING  
GENERAL SETUP  
Video Standard Selection  
The ADV7183B extracts syncs embedded in the video data  
stream. There is currently no support for external HS/VS  
inputs. The sync extraction has been optimized to support  
imperfect video sources such as VCRs with head switches. The  
actual algorithm used employs a coarse detection based on a  
threshold crossing followed by a more detailed detection using  
an adaptive interpolation algorithm. The raw sync information  
is sent to a line-length measurement and prediction block. The  
output of this is then used to drive the digital resampling  
section to ensure the ADV7183B outputs 720 active pixels per  
line.  
The VID_SEL[3:0] bits allows the user to force the digital core  
into a specific video standard. Under normal circumstances,  
this should not be necessary. The VID_SEL[3:0] bits default to  
an autodetection mode that supports PAL, NTSC, SECAM, and  
variants thereof. The following section describes the autodetec-  
tion system.  
Autodetection of SD Modes  
To guide the autodetection system, individual enable bits are  
provided for each of the supported video standards. Setting the  
relevant bit to 0 inhibits the standard from being detected  
automatically. Instead, the system picks the closest of the  
remaining enabled standards. The results of the autodetection  
can be read back via the status registers. See the Global Status  
Registers section for more information.  
The sync processing on the ADV7183B also includes the  
following specialized postprocessing blocks that filter and  
condition the raw sync information retrieved from the digitized  
analog video.  
Vsync Processor. This block provides extra filtering of the  
detected Vsyncs to give improved vertical lock.  
VID_SEL[3:0] Address 0x00[7:4]  
Table 18. VID_SEL Function  
VID_SEL  
Description  
Hsync Processor. The Hsync processor is designed to filter  
incoming Hsyncs that are corrupted by noise, providing  
much improved performance for video signals with stable  
time base but poor SNR.  
0000 (default)  
Autodetect (PAL BGHID) <–> NTSC J  
(no pedestal), SECAM  
Autodetect (PAL BGHID) <–> NTSC M  
(pedestal), SECAM  
Autodetect (PAL N) (pedestal) <–> NTSC J  
(no pedestal), SECAM  
Autodetect (PAL N) (pedestal) <–> NTSC M  
(pedestal), SECAM  
0001  
0010  
0011  
VBI DATA RECOVERY  
The ADV7183B can retrieve the following information from the  
input video:  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
NTSC-J (1)  
NTSC-M (1)  
PAL60  
NTSC-.43 (1)  
Wide-screen signaling (WSS)  
Copy generation management system (CGMS)  
Closed caption (CC)  
PAL-B/G/H/I/D  
PAL-N (= PAL BGHID (with pedestal))  
PAL-M (without pedestal)  
PAL-M  
PAL-Combination N  
PAL COMBINATION N (with pedestal)  
SECAM  
Macrovision protection presence  
EDTV data  
Gemstar-compatible data slicing  
The ADV7183B is also capable of automatically detecting the  
incoming video standard with respect to  
SECAM (with pedestal)  
AD_SEC525_EN Enable Autodetection of SECAM 525  
Line Video, Address 0x07[7]  
Color subcarrier frequency  
Field rate  
Setting AD_SEC525_EN to 0 (default) disables the autodetection  
of a 525-line system with a SECAM style, FM-modulated color  
component.  
Line rate  
The SPD can configure itself to support PAL-B/G/H/I/D,  
PAL-M/N, PAL-combination N, NTSC-M, NTSC-J, SECAM  
50 Hz/60 Hz, NTSC4.43, and PAL60.  
Setting AD_SEC525_EN to 1 enables the detection.  
Rev. B | Page 21 of 100  
 
ADV7183B  
AD_SECAM_EN Enable Autodetection of SECAM,  
Address 0x07[6]  
SFL_INV Subcarrier Frequency Lock Inversion  
This bit controls the behavior of the PAL switch bit in the SFL  
(GenLock Telegram) data stream. It was implemented to solve  
some compatibility issues with video encoders. It solves two  
problems.  
Setting AD_SECAM_EN to 0 disables the autodetection of  
SECAM.  
Setting AD_SECAM_EN to 1 (default) enables the detection.  
First, the PAL switch bit is only meaningful in PAL. Some  
encoders (including ADI encoders) also look at the state of this  
bit in NTSC.  
AD_N443_EN Enable Autodetection of NTSC 443,  
Address 0x07[5]  
Setting AD_N443_EN to 0 disables the autodetection of NTSC  
style systems with a 4.43 MHz color subcarrier.  
Second, there was a design change in ADI encoders from  
ADV717x to ADV719x. The older versions used the SFL  
(Genlock Telegram) bit directly, while the later ones invert the  
bit prior to using it. The reason for this is that the inversion  
compensated for the 1-line delay of an SFL (GenLock Telegram)  
transmission.  
Setting AD_N443_EN to 1 (default) enables the detection.  
AD_P60_EN Enable Autodetection of PAL60,  
Address 0x07[4]  
Setting AD_P60_EN to 0 disables the autodetection of PAL  
systems with a 60 Hz field rate.  
As a result, ADV717x encoders need the PAL switch bit in the  
SFL (Genlock Telegram) to be 1 for NTSC to work, and  
ADV7190/ADV7191/ADV7194 encoders need the PAL switch  
bit in the SFL to be 0 to work in NTSC. If the state of the PAL  
switch bit is wrong, a 180° phase shift occurs.  
Setting AD_P60_EN to 1 (default) enables the detection.  
AD_PALN_EN Enable Autodetection of PAL N,  
Address 0x07[3]  
In a decoder/encoder back-to-back system in which SFL is used,  
this bit must be set up properly for the specific encoder used.  
Setting AD_PALN_EN to 0 disables the detection of the PAL N  
standard.  
SFL_INV Address 0x41[6]  
Setting AD_PALN_EN to 1 (default) enables the detection.  
Setting SFL_INV to 0 makes the part SFL-compatible with  
ADV7190/ADV7191/ADV7194 encoders.  
AD_PALM_EN Enable Autodetection of PAL M,  
Address 0x07[2]  
Setting SFL_INV to 1 (default), makes the part SFL-compatible  
with ADV717x/ADV7173x encoders.  
Setting AD_PALM_EN to 0 disables the autodetection of PAL M.  
Setting AD_PALM_EN to 1 (default) enables the detection.  
Lock-Related Controls  
AD_NTSC_EN Enable Autodetection of NTSC,  
Address 0x07[1]  
Lock information is presented to the user through Bits[1:0] of  
the Status 1 register. See the STATUS_1[7:0] Address 0x10[7:0]  
section. Figure 9 outlines the signal flow and the controls  
available to influence the way the lock status information is  
generated.  
Setting AD_NTSC_EN to 0 disables the detection of standard  
NTSC.  
Setting AD_NTSC_EN to 1 (default) enables the detection.  
AD_PAL_EN Enable Autodetection of PAL,  
Address 0x07[0]  
Setting AD_PAL_EN to 0 disables the detection of standard PAL.  
Setting AD_PAL_EN to 1 (default) enables the detection.  
SELECT THE RAW LOCK SIGNAL  
SRLS  
FILTER THE RAW LOCK SIGNAL  
CIL[2:0], COL[2:0]  
TIME_WIN  
1
0
0
1
FREE_RUN  
COUNTER INTO LOCK  
COUNTER OUT OF LOCK  
STATUS 1 [0]  
STATUS 1 [1]  
F
LOCK  
SC  
MEMORY  
TAKE F LOCK INTO ACCOUNT  
SC  
FSCLE  
Figure 9. Lock-Related Signal Path  
Rev. B | Page 22 of 100  
ADV7183B  
SRLS Select Raw Lock Signal, Address 0x51[6]  
COL[2:0] Count Out-of-Lock, Address 0x51[5:3]  
Using the SRLS bit, the user can choose between two sources for  
determining the lock status (per Bits[1:0] in the Status 1 register).  
COL[2:0] determines the number of consecutive lines for which  
the out-of-lock condition must be true before the system switches  
into unlocked state, and reports this via Status 0[1:0]. It counts  
the value in lines of video.  
The time_win signal is based on a line-to-line evaluation of  
the horizontal synchronization pulse of the incoming video.  
It reacts quite quickly.  
Table 21. COL Function  
COL[2:0]  
Description  
The free_run signal evaluates the properties of the  
incoming video over several fields and takes vertical  
synchronization information into account.  
000  
1
001  
2
010  
5
011  
100 (default)  
101  
110  
111  
10  
Setting SRLS to 0 (default) selects the free_run signal.  
Setting SRLS to 1 selects the time_win signal.  
FSCLE FSC Lock Enable, Address 0x51[7]  
100  
500  
1000  
100000  
The FSCLE bit allows the user to choose whether the status of  
the color subcarrier loop is taken into account when the overall  
lock status is determined and presented via Bits[1:0] in Status  
Register 1. This bit must be set to 0 when operating in YPrPb  
component mode to generate a reliable HLOCK status bit.  
COLOR CONTROLS  
These registers allow the user to control the picture appearance,  
including control of the active data in the event of video being  
lost. These controls are independent of any other controls. For  
instance, brightness control is independent from picture clamp-  
ing, although both controls affect the signal’s dc level.  
Setting FSCLE to 0 (default) makes the overall lock status  
dependent on only horizontal sync lock.  
Setting FSCLE to 1 makes the overall lock status dependent on  
horizontal sync lock and FSC lock.  
CON[7:0] Contrast Adjust, Address 0x08[7:0]  
This allows the user to adjust the contrast of the picture.  
Table 22. CON Function  
CON[7:0]  
0x80 (default)  
0x00  
VS_Coast[1:0] Address 0xF9[3:2]  
These bits are used to set VS free-run (coast) frequency.  
Description  
Table 19. VS_COAST[1:0] Function  
Gain on luma channel = 1  
Gain on luma channel = 0  
Gain on luma channel = 2  
VS_COAST[1:0]  
Description  
00 (default)  
Auto coast mode—follows VS  
frequency from last video input  
0xFF  
01  
10  
11  
Forces 50 Hz coast mode  
Forces 60 Hz coast mode  
Reserved  
SD_SAT_Cb[7:0] SD Saturation Cb Channel,  
Address 0xE3[7:0]  
This register allows the user to control the gain of the Cb  
channel only. The user can adjust the saturation of the picture.  
CIL[2:0] Count Into Lock, Address 0x51[2:0]  
CIL[2:0] determines the number of consecutive lines for which  
the lock condition must be true before the system switches into  
the locked state, and reports this via Status 0[1:0]. It counts the  
value in lines of video.  
Table 23. SD_SAT_Cb Function  
SD_SAT_Cb[7:0]  
0x80 (default)  
0x00  
Description  
Gain on Cb channel = 0 dB  
Gain on Cb channel = −42 dB  
Gain on Cb channel = +6 dB  
Table 20. CIL Function  
0xFF  
CIL[2:0]  
Description  
000  
1
001  
2
010  
5
011  
10  
100 (default)  
101  
110  
100  
500  
1000  
100000  
111  
Rev. B | Page 23 of 100  
 
ADV7183B  
SD_SAT_Cr[7:0] SD Saturation Cr Channel, Address  
0xE4[7:0]  
HUE[7:0] Hue Adjust, Address 0x0B[7:0]  
This register contains the value for the color hue adjustment. It  
allows the user to adjust the hue of the picture.  
This register allows the user to control the gain of the Cr channel  
only. The user can adjust the saturation of the picture.  
HUE[7:0] has a range of 90°, with 0x00 equivalent to an  
adjustment of 0°. The resolution of HUE[7:0] is 1 bit = 0.7°.  
Table 24. SD_SAT_Cr Function  
SD_SAT_Cr[7:0] Description  
The hue adjustment value is fed into the AM color demodulation  
block. Therefore, it applies only to video signals that contain  
chroma information in the form of an AM modulated carrier  
(CVBS or Y/C in PAL or NTSC). It does not affect SECAM and  
does not work on component video inputs (YPrPb).  
0x80 (default)  
0x00  
0xFF  
Gain on Cr channel = 0 dB  
Gain on Cb channel = −42 dB  
Gain on Cb channel = +6 dB  
SD_OFF_Cb[7:0] SD Offset Cb Channel,  
Address 0xE1[7:0]  
Table 28. HUE Function  
HUE[7:0]  
0x00 (default)  
0x7F  
Description  
This register allows the user to select an offset for data on the  
Cb channel only and adjust the hue of the picture. There is a  
functional overlap with the Hue[7:0] register.  
Phase of the chroma signal = 0°  
Phase of the chroma signal = –90°  
Phase of the chroma signal = +90°  
0x80  
Table 25.SD_OFF_Cb Function  
SD_OFF_Cb[7:0] Description  
DEF_Y[5:0] Default Value Y, Address 0x0C[7:2]  
0x80 (default)  
0x00  
0 offset applied to the Cb channel  
−312 mV offset applied to the Cb channel  
+312 mV offset applied to the Cb channel  
If the ADV7183B loses lock on the incoming video signal or if  
there is no input signal, the DEF_Y[5:0] bits allow the user to  
specify a default luma value to be output. This value is used if  
0xFF  
SD_OFF_Cr[7:0] SD Offset Cr Channel, Address  
0xE2[7:0]  
The DEF_VAL_AUTO_EN bit is set to high and the  
ADV7183B lost lock to the input video signal. This is the  
intended mode of operation (automatic mode).  
This register allows the user to select an offset for data on the Cr  
channel only and adjust the hue of the picture. There is a func-  
tional overlap with the Hue[7:0] register.  
The DEF_VAL_EN bit is set, regardless of the lock status of  
the video decoder. This is a forced mode that may be useful  
during configuration.  
Table 26. SD_OFF_Cr Function  
SD_OFF_Cr[7:0] Description  
The DEF_Y[5:0] values define the 6 MSBs of the output video.  
The remaining LSBs are padded with 0s. For example, in 8-bit  
mode, the output is Y[7:0] = {DEF_Y[5:0], 0, 0}.  
0x80 (default)  
0x00  
0xFF  
0 offset applied to the Cr channel  
−312 mV offset applied to the Cr channel  
+312 mV offset applied to the Cr channel  
DEF_Y[5:0] is 0x0D (blue) is the default value for Y.  
Register 0x0C has a default value of 0x36.  
BRI[7:0] Brightness Adjust, Address 0x0A[7:0]  
This register controls the brightness of the video signal. It  
allows the user to adjust the brightness of the picture.  
DEF_C[7:0] Default Value C, Address 0x0D[7:0]  
Table 27. BRI Function  
The DEF_C[7:0] register complements the DEF_Y[5:0] value. It  
defines the 4 MSBs of Cr and Cb values to be output if  
BRI[7:0]  
0x00 (default)  
0x7F  
Description  
Offset of the luma channel = 0IRE  
Offset of the luma channel = +100IRE  
Offset of the luma channel = –100IRE  
The DEF_VAL_AUTO_EN bit is set to high and the  
ADV7183B cannot lock to the input video (automatic  
mode).  
0xFF  
The DEF_VAL_EN bit is set to high (forced output).  
The data that is finally output from the ADV7183B for the  
chroma side is Cr[7:0] = {DEF_C[7:4], 0, 0, 0, 0}, Cb[7:0] =  
{DEF_C[3:0], 0, 0, 0, 0}.  
DEF_C[7:0] is 0x7C (blue) is the default value for Cr and Cb.  
Rev. B | Page 24 of 100  
ADV7183B  
The clamping can be divided into two sections:  
DEF_VAL_EN Default Value Enable, Address 0x0C[0]  
This bit forces the use of the default values for Y, Cr, and Cb.  
Refer to the descriptions for DEF_Y and DEF_C for additional  
information. In this mode, the decoder also outputs a stable  
27 MHz clock, HS, and VS.  
Clamping before the ADC (analog domain): current sources  
Clamping after the ADC (digital domain): digital  
processing block  
The ADCs can digitize an input signal only if it resides within  
the ADCs 1.6 V input voltage range. An input signal with a dc  
level that is too large or too small is clipped at the top or bottom  
of the ADC range.  
Setting DEF_VAL_EN to 0 (default) outputs a colored screen  
determined by user-programmable Y, Cr, and Cb values when  
the decoder free-runs. Free-run mode is turned on and off by the  
DEF_VAL_AUTO_EN bit.  
The primary task of the analog clamping circuits is to ensure  
the video signal stays within the valid ADC input window so  
that the analog-to-digital conversion can take place. It is not  
necessary to clamp the input signal with a very high accuracy in  
the analog domain as long as the video signal fits the ADC range.  
Setting DEF_VAL_EN to 1 forces a colored screen output  
determined by user-programmable Y, Cr, and Cb values. This  
overrides picture data even if the decoder is locked.  
DEF_VAL_AUTO_EN Default Value Automatic Enable,  
Address 0x0C[1]  
After digitization, the digital fine clamp block corrects for any  
remaining variations in dc level. Since the dc level of an input  
video signal refers directly to the brightness of the picture  
transmitted, it is important to perform a fine clamp with high  
accuracy; otherwise, brightness variations can occur. Further-  
more, dynamic changes in the dc level almost certainly lead to  
visually objectionable artifacts and must therefore be prohibited.  
This bit enables the automatic usage of the default values for  
Y, Cr, and Cb when the ADV7183B cannot lock to the  
video signal.  
Setting DEF_VAL_AUTO_EN to 0 disables free-run mode. If  
the decoder is unlocked, it outputs noise.  
Setting DEF_VAL_EN to 1 (default) enables free-run mode. A  
colored screen set by the user-programmable Y, Cr, and Cb  
values is displayed when the decoder loses lock.  
The clamping scheme has to be able to acquire a newly connected  
video signal with a completely unknown dc level, and it must  
maintain the dc level during normal operation.  
CLAMP OPERATION  
The input video is ac-coupled into the ADV7183B through a  
0.1 μF capacitor. The recommended range of the input video  
signal is 0.5 V to 1.6 V (typically 1 V p-p). If the signal exceeds  
this range, it cannot be processed correctly in the decoder. Since  
the input signal is ac-coupled into the decoder, its dc value  
needs to be restored. This process is referred to as clamping the  
video. This section explains the general process of clamping on  
the ADV7183B and shows the different ways in which a user  
can configure its behavior.  
For quickly acquiring an unknown video signal, the large cur-  
rent clamps can be activated. (It is assumed that the amplitude  
of the video signal at this point is of a nominal value.) Control  
of the coarse and fine current clamp parameters is performed  
automatically by the decoder.  
Standard definition video signals can have excessive noise on  
them. In particular, CVBS signals transmitted by terrestrial  
broadcast and demodulated using a tuner usually show very  
large levels of noise (>100 mV). A voltage clamp is unsuitable  
for this type of video signal. Instead, the ADV7183B uses a set  
of four current sources that can cause coarse (>0.5 mA) and fine  
(<0.1 mA) currents to flow into and away from the high  
impedance node that carries the video signal (see Figure 10).  
The ADV7183B uses a combination of current sources and a  
digital processing block for clamping, as shown in Figure 10.  
The analog processing channel shown is replicated three times  
inside the IC. While only one single channel (and only one  
ADC) is needed for a CVBS signal, two independent channels  
are needed for Y/C (S-VHS) type signals, and three  
independent channels are needed to allow component signals  
(YPrPb) to be processed.  
FINE  
CURRENT  
SOURCES  
COARSE  
CURRENT  
SOURCES  
DATA  
SDP  
WITH DIGITAL  
PROCESSOR  
FINE CLAMP  
(DPP)  
ANALOG  
VIDEO  
INPUT  
PRE-  
ADC  
CLAMP CONTROL  
Figure 10. Clamping Overview  
Rev. B | Page 25 of 100  
 
ADV7183B  
The following sections describe the I2C signals that can be used  
to influence the behavior of the clamps on the ADV7183B.  
LUMA FILTER  
Data from the digital fine clamp block is processed by three sets  
of filters. The data format at this point is CVBS for CVBS input  
or luma only for Y/C and YPrPb input formats.  
Previous revisions of the ADV7183B had controls (FACL/FICL,  
fast and fine clamp length) to allow configuration of the length  
for which the coarse (fast) and fine current sources are switched  
on. These controls were removed on the ADV7183B-FT and  
replaced by an adaptive scheme.  
Luma Antialias Filter (YAA). The ADV7183B receives  
video at a rate of 27 MHz. (For 4× oversampled video, the  
ADCs sample at 54 MHz, and the first decimation is  
performed inside the DPP filters. Therefore, the data rate  
into the SDP core is always 27 MHz.) The ITU-R BT.601  
recommends a sampling frequency of 13.5 MHz. The luma  
antialias filter decimates the oversampled video using a  
high quality, linear phase, low-pass filter that preserves the  
luma signal while at the same time attenuating out-of-band  
components. The luma antialias filter has a fixed response.  
CCLEN Current Clamp Enable, Address 0x14[4]  
The current clamp enable bit allows the user to switch off the  
current sources in the analog front end altogether. This can be  
useful if the incoming analog video signal is clamped externally.  
When CCLEN is 0, the current sources are switched off.  
When CCLEN is 1 (default), the current sources are enabled.  
DCT[1:0] Digital Clamp Timing, Address 0x15[6:5]  
Luma Shaping Filters (YSH). The shaping filter block is a  
programmable low-pass filter with a wide variety of  
responses. It can be used to selectively reduce the luma  
video signal bandwidth (needed prior to scaling, for  
example). For some video sources that contain high  
frequency noise, reducing the bandwidth of the luma  
signal improves visual picture quality. A follow-on video  
compression stage can work more efficiently if the video is  
low-pass filtered.  
The clamp timing register determines the time constant of the  
digital fine clamp circuitry. It is important to realize that the  
digital fine clamp reacts very quickly because it is supposed to  
immediately correct any residual dc level error for the active  
line. The time constant of the digital fine clamp must be much  
faster than the one from the analog blocks.  
By default, the time constant of the digital fine clamp is adjusted  
dynamically to suit the currently connected input signal.  
The ADV7183B has two responses for the shaping filter:  
one that is used for good quality CVBS, component, and  
S-VHS type sources, and a second for nonstandard CVBS  
signals.  
Table 29. DCT Function  
DCT[1:0]  
Description  
00  
01  
Slow (TC = 1 sec)  
Medium (TC = 0.5 sec)  
Fast (TC = 0.1 sec)  
Determined by the ADV7183B, depending on  
the I/P video parameters  
The YSH filter responses also include a set of notches for  
PAL and NTSC. However, using the comb filters for Y/C  
separation is recommended.  
10 (default)  
11  
Digital Resampling Filter. This block is used to allow  
dynamic resampling of the video signal to alter parameters  
such as the time base of a line of video. Fundamentally, the  
resampler is a set of low-pass filters. The actual response is  
selected by the system, and user intervention is not  
required.  
DCFE Digital Clamp Freeze Enable, Address 0x15[4]  
This register bit allows the user to freeze the digital clamp loop  
at any time. It is intended for users who would like to do their  
own clamping. Users should disable the current sources for  
analog clamping via the appropriate register bits, wait until the  
digital clamp loop settles, and then freeze it via the DCFE bit.  
Figure 12 through Figure 15 show the overall response of all  
filters together. Unless otherwise noted, the filters are set into a  
typical wideband mode.  
When DCFE is 0 (default), the digital clamp is operational.  
When DCFE is 1, the digital clamp loop is frozen.  
Rev. B | Page 26 of 100  
 
ADV7183B  
In automatic mode, the system preserves the maximum possible  
bandwidth for good CVBS sources, since they can successfully  
be combed, as well as for luma components of YPrPb and Y/C  
sources, since they need not be combed. For poor quality  
signals, the system selects from a set of proprietary shaping  
filter responses that complements comb filter operation to  
reduce visual artifacts.  
Y-Shaping Filter  
For input signals in CVBS format, the luma shaping filters play  
an essential role in removing the chroma component from a  
composite signal. Y/C separation must aim for best possible  
crosstalk reduction while still retaining as much bandwidth  
(especially on the luma component) as possible. High quality  
Y/C separation can be achieved by using the internal comb  
filters of the ADV7183B. Comb filtering, however, relies on the  
frequency relationship of the luma component (multiples of the  
video line rate) and the color subcarrier (FSC). For good quality  
CVBS signals, this relationship is known; the comb filter  
algorithms can be used to separate out luma and chroma with  
high accuracy.  
The decisions of the control logic are shown in Figure 11.  
YSFM[4:0] Y-Shaping Filter Mode, Address 0x17[4:0]  
The Y shaping filter mode bits allow the user to select from a  
wide range of low-pass and notch filters. When switched in  
automatic mode, the filter is selected based on other register  
selections (for example, detected video standard) as well as  
properties extracted from the incoming video itself (for  
example, quality, time-base stability). The automatic selection  
always selects the widest possible bandwidth for the video input  
encountered.  
For nonstandard video signals, the frequency relationship may  
be disturbed, and the comb filters may not be able to optimally  
remove all crosstalk artifacts without the assistance of the  
shaping filter block.  
An automatic mode is provided. The ADV7183B evaluates the  
quality of the incoming video signal and selects the filter  
responses in accordance with the signal quality and video  
standard. YFSM, WYSFMOVR, and WYSFM allow the user to  
manually override the automatic decisions in part or in full.  
If the YSFM settings specify a filter (where YSFM is set to values  
other than 00000 or 00001), the chosen filter is applied to all  
video, regardless of its quality.  
In automatic selection mode, the notch filters are used only for  
bad quality video signals. For all other video signals, wideband  
filters are used.  
The luma shaping filter has three control registers:  
YSFM[4:0] allows the user to manually select a shaping  
filter mode (applied to all video signals) or to enable an  
automatic selection (dependent on video quality and video  
standard).  
WYSFMOVR Wideband Y-Shaping Filter Override,  
Address 0x18[7]  
Setting the WYSFMOVR bit enables the use of the  
WYSFM[4:0] settings for good quality video signals. For more  
information, refer to the general discussion of the luma shaping  
filters in the Y-Shaping Filter section and the flowchart shown  
in Figure 11.  
WYSFMOVR allows the user to manually override the  
WYSFM decision.  
WYSFM[4:0] allows the user to select a different shaping  
filter mode for good quality CVBS, component (YPrPb),  
and S-VHS (Y/C) input signals.  
When WYSFMOVR is 0, the shaping filter for good quality  
video signals is selected automatically.  
Setting WYSFMOVR to 1 enables manual override via  
WYSFM[4:0] (default).  
Rev. B | Page 27 of 100  
ADV7183B  
SET YSFM  
YSFM IN AUTO MODE?  
00000 OR 00001  
YES  
NO  
VIDEO  
QUALITY  
BAD  
GOOD  
USE YSFM SELECTED  
FILTER REGARDLESS FOR  
GOOD AND BAD VIDEO  
AUTO SELECT LUMA  
SHAPING FILTER TO  
COMPLEMENT COMB  
WYSFMOVR  
1
0
SELECT WIDEBAND  
FILTER AS PER  
WYSFM[4:0]  
SELECT AUTOMATIC  
WIDEBAND FILTER  
Figure 11. YSFM and WYSFM Control Flowchart  
Table 30. YSFM Function  
WYSFM[4:0] Wideband Y-Shaping Filter Mode,  
Address 0x18[4:0]  
YSFM[4:0]  
Description  
0'0000  
Automatic selection including a wide notch  
response (PAL/NTSC/SECAM)  
The WYSFM[4:0] bits allow the user to manually select a shaping  
filter for good quality video signals, for example, CVBS with  
time-base stability, luma component of YPrPb and luma  
component of Y/C. The WYSFM bits are active only if the  
WYSFMOVR bit is set to 1. See the general discussion of the  
shaping filter settings in the Y-Shaping Filter section.  
0'0001 (default) Automatic selection including a narrow notch  
response (PAL/NTSC/SECAM)  
0'0010  
0'0011  
0'0100  
0'0101  
0'0110  
0'0111  
0'1000  
0'1001  
0'1010  
0'1011  
0'1100  
0'1101  
0'1110  
0'1111  
1'0000  
1'0001  
1'0010  
1'0011  
1'0100  
1'0101  
1'0110  
1'0111  
1'1000  
1'1001  
1'1010  
1'1011  
1'1100  
1'1101  
1'1110  
1'1111  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS 8  
Table 31. WYSFM Function  
WYSFM[4:0]  
Description  
Do not use  
Do not use  
SVHS 1  
0'0000  
0'0001  
0'0010  
SVHS 9  
0'0011  
SVHS 2  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
PAL NN 1  
PAL NN 2  
PAL NN 3  
PAL WN 1  
PAL WN 2  
NTSC NN 1  
NTSC NN 2  
NTSC NN 3  
NTSC WN 1  
NTSC WN 2  
NTSC WN 3  
Reserved  
0'0100  
SVHS 3  
0'0101  
SVHS 4  
0'0110  
SVHS 5  
0'0111  
SVHS 6  
0'1000  
SVHS 7  
0'1001  
SVHS 8  
0'1010  
SVHS 9  
0'1011  
0'1100  
0'1101  
0'1110  
0'1111  
1'0000  
1'0001  
1'0010  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
Do not use  
1'0011 (default)  
1'0100 to 1’1111  
Rev. B | Page 28 of 100  
ADV7183B  
COMBINED Y ANTIALIAS, NTSC NOTCH FILTERS,  
Y RESAMPLE  
The filter plots in Figure 12 show the S-VHS 1 (narrowest) to  
S-VHS 18 (widest) shaping filter settings. Figure 14 shows the  
PAL notch filter responses. The NTSC-compatible notches are  
shown in Figure 15.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
COMBINED Y ANTIALIAS, S-VHS LOW-PASS FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 15. NTSC Notch Filter Response  
CHROMA FILTER  
0
2
4
6
8
10  
12  
Data from the digital fine clamp block is processed by three sets  
of filters. The data format at this point is CVBS for CVBS inputs,  
chroma only for Y/C, or U/V interleaved for YPrPb input  
formats.  
FREQUENCY (MHz)  
Figure 12. Y S-VHS Combined Responses  
COMBINED Y ANTIALIAS, CCIR MODE SHAPING FILTER,  
Y RESAMPLE  
0
–20  
Chroma Antialias Filter (CAA). The ADV7183B over-  
samples the CVBS by a factor of 2 and the Chroma/PrPb  
by a factor of 4. A decimating filter (CAA) is used to  
preserve the active video band and to remove any out-of-  
band components. The CAA filter has a fixed response.  
–40  
–60  
Chroma Shaping Filters (CSH). The shaping filter block  
(CSH) can be programmed to perform a variety of low-  
pass responses. It can be used to selectively reduce the  
bandwidth of the chroma signal for scaling or  
compression.  
–80  
–100  
–120  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Digital Resampling Filter. This block is used to allow  
dynamic resampling of the video signal to alter parameters  
such as the time base of a line of video. Fundamentally, the  
resampler is a set of low-pass filters. The actual response is  
chosen by the system without user intervention.  
Figure 13. Y S-VHS 18 Extra Wideband Filter (CCIR 601 Compliant)  
COMBINED Y ANTIALIAS, PAL NOTCH FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
The plots in Figure 16 show the overall response of all filters  
together.  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 14. PAL Notch Filter Response  
Rev. B | Page 29 of 100  
 
ADV7183B  
CSFM[2:0] C- Shaping Filter Mode, Address 0x17[7]  
GAIN OPERATION  
The gain control within the ADV7183B is performed strictly on  
a digital basis. The input ADCs support a 10-bit range, mapped  
into a 1.6 V analog voltage range. Gain correction occurs after  
the digitization in the form of a digital multiplier.  
The C-shaping filter mode bits allow the user to select from a  
range of low-pass filters, SH1 to SH5 and wideband mode for  
the chrominance signal. The autoselection options automa-  
tically select from the filter options to give the specified  
response. (See settings 000 and 001 in Table 32).  
One advantage of this architecture over the commonly used  
programmable gain amplifier (PGA) before the ADCs is that  
the gain is now completely independent of supply, temperature,  
and process variations.  
Table 32. CSFM Function  
CSFM[2:0]  
000 (default)  
001  
Description  
Autoselect 1.5 MHz bandwidth  
Autoselect 2.17 MHz bandwidth  
As shown in Figure 17, the ADV7183B can decode a video  
signal providing it fits into the ADC window. Two components  
to this are the amplitude of the input signal and the dc level on  
which it resides. The dc level is set by the clamping circuitry  
(see the Clamp Operation section).  
010  
SH1  
011  
SH2  
100  
SH3  
101  
SH4  
110  
SH5  
111  
Wideband mode  
If the amplitude of the analog video signal is too high, clipping  
can occur, resulting in visual artifacts. The analog input range  
of the ADC, together with the clamp level, determines the  
maximum supported amplitude of the video signal.  
COMBINED C ANTIALIAS, C SHAPING FILTER,  
C RESAMPLER  
0
–10  
–20  
–30  
–40  
–50  
The minimum supported amplitude of the input video is  
determined by the ADV7183Bs ability to retrieve horizontal  
and vertical timing and to lock to the color burst, if present.  
There are two gain control units, one each for luma and chroma  
data. Both can operate independently of each other. The  
chroma unit, however, can also take its gain value from the  
luma path.  
The possible AGC modes are summarized in Table 33.  
–60  
0
It is possible to freeze the automatic gain control loops. This  
causes the loops to stop updating and the AGC determined  
gain, at the time of the freeze, to stay active. The ACG  
determined gain stays active until the automatic gain control  
loop is either unfrozen, or the gain mode of the operation is  
changed.  
1
2
3
4
5
6
FREQUENCY (MHz)  
Figure 16. Chroma Shaping Filter Responses  
Figure 16 shows the responses of SH1 (narrowest) to SH5  
(widest) and the wide band mode (in red).  
The currently active gain from any of the modes can be read  
back. Refer to the description of the dual function manual gain  
registers, LG[11:0] Luma Gain and CG[11:0] Chroma Gain, in  
the Luma Gain and Chroma Gain sections.  
ANALOG VOLTAGE  
RANGE SUPPORTED BY ADC (1.6V RANGE FOR ADV7189B)  
MAXIMUM  
VOLTAGE  
SDP  
(GAIN SELECTION ONLY)  
DATA  
PRE-  
ADC  
PROCESSOR  
(DPP)  
GAIN  
CONTROL  
MINIMUM  
VOLTAGE  
CLAMP  
LEVEL  
Figure 17. Gain Control Overview  
Rev. B | Page 30 of 100  
 
ADV7183B  
Table 33. AGC Modes  
Input Video Type  
Luma Gain  
Chroma Gain  
Any  
Manual gain luma  
Manual gain chroma  
CVBS  
Dependent on horizontal sync depth  
Dependent on color burst amplitude  
Taken from luma path  
Peak white  
Dependent on color burst amplitude  
Taken from luma path  
Y/C  
Dependent on horizontal sync depth  
Peak white  
Dependent on color burst amplitude  
Taken from luma path  
Dependent on color burst amplitude  
Taken from luma path  
YPrPb  
Dependent on horizontal sync depth  
Taken from luma path  
Table 35. LAGT Function  
Luma Gain  
LAGT[1:0]  
Description  
LAGC[2:0] Luma Automatic Gain Control,  
Address 0x2C[7:0]  
00  
01  
10  
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
The luma automatic gain control mode bits select the mode of  
operation for the gain control in the luma path.  
11 (default)  
ADI internal parameters are available to customize the peak  
white gain control. Contact ADI sales for more information.  
LG[11:0] Luma Gain, Address 0x2F[3:0];  
Address 0x30[7:0]; LMG[11:0] Luma Manual Gain,  
Address 0x2F[3:0]; Address 0x30[7:0]  
Table 34. LAGC Function  
LAGC[2:0]  
Description  
Luma gain[11:0] is a dual-function register. If written to, a  
desired manual luma gain can be programmed. This gain  
becomes active if the LAGC[2:0] mode is switched to manual  
fixed gain. Equation 1 shows how to calculate a desired gain.  
000  
001  
Manual fixed gain (use LMG[11:0])  
AGC (blank level to sync tip); peak white  
algorithm off  
AGC (blank level to sync tip); peak white  
algorithm on  
010 (default)  
If read back, this register returns the current gain value.  
Depending on the setting in the LAGC[2:0] bits, one of these  
gain values is returned  
011  
100  
101  
110  
111  
Reserved  
Reserved  
Reserved  
Reserved  
Freeze gain  
Luma manual gain value (LAGC[2:0] set to luma manual  
gain mode)  
LAGT[1:0] Luma Automatic Gain Timing,  
Address 0x2F[7:6]  
Luma automatic gain value (LAGC[2:0] set to any of the  
automatic modes)  
Table 36. LG/LMG Function  
LG[11:0]/LMG[11:0] Read/Write Description  
The luma automatic gain timing register allows the user to  
influence the tracking speed of the luminance automatic gain  
control. Note that this register has an effect only if the  
LAGC[2:0] register is set to 001, 010, 011, or 100 (automatic  
gain control modes).  
LMG[11:0] = X  
Write  
Manual gain for luma  
path  
Actually used gain  
LG[11:0]  
Read  
If peak white AGC is enabled and active (see the  
STATUS_1[7:0] Address 0x10[7:0] section), the actual gain  
update speed is dictated by the peak white AGC loop and, as a  
result, the LAGT settings have no effect. As soon as the part  
leaves peak white AGC, LAGT becomes relevant again.  
(
0 < LG 4095  
)
Luma _ Gain =  
= 0...2  
(1)  
2048  
The update speed for the peak white algorithm can be custom-  
ized by the use of internal parameters. Contact ADI sales for  
more information.  
Rev. B | Page 31 of 100  
ADV7183B  
For example, program the ADV7183B into manual fixed gain  
mode with a desired gain of 0.89.  
PW_UPD Peak White Update, Address 0x2B[0]  
The peak white and average video algorithms determine the  
gain based on measurements taken from the active video. The  
PW_UPD bit determines the rate of gain change. The  
LAGC[2:0] must be set to the appropriate mode to enable the  
peak white or average video mode in the first place. For more  
information, refer to the LAGC[2:0] Luma Automatic Gain  
Control,  
1. Use Equation 1 to convert the gain:  
0.89 × 2048 = 1822.72  
2. Truncate to integer value:  
1822.72 = 1822  
3. Convert to hexadecimal:  
1822d = 0x71E  
Address 0x2C[7:0] section.  
4. Split into two registers and program:  
Luma Gain Control 1[3:0] = 0x7  
Setting PW_UPD to 0 updates the gain once per video line.  
Setting PW_UPD to 1 (default) updates the gain once per field.  
Chroma Gain  
Luma Gain Control 2[7:0] = 0x1E  
5. Enable manual fixed gain mode:  
Set LAGC[2:0] to 000  
BETACAM Enable Betacam Levels, Address 0x01[5]  
CAGC[1:0] Chroma Automatic Gain Control,  
Address 0x2C[1:0]  
If YPrPb data is routed through the ADV7183B, the automatic  
gain control modes can target different video input levels, as  
outlined in Figure 40. The BETACAM bit is valid only if the  
input mode is YPrPb (component). The BETACAM bit sets the  
target value for AGC operation.  
The two bits of the Color Automatic Gain Control mode select  
the basic mode of operation for automatic gain control in the  
chroma path.  
Table 38. CAGC Function  
A review of the following sections is useful:  
CAGC[1:0]  
Description  
INSEL[3:0] Input Selection, Address 0x00[3:0] to find how  
component video (YPrPb) can be routed through the  
ADV7183B.  
00  
01  
Manual fixed gain (use CMG[11:0])  
Use luma gain for chroma  
Automatic gain (based on color burst)  
Freeze chroma gain  
10 (default)  
11  
Video Standard Selection to select the various standards,  
such as those with and without pedestal.  
CAGT[1:0] Chroma Automatic Gain Timing,  
Address 0x2D[7:6]  
The automatic gain control (AGC) algorithms adjust the levels  
based on the setting of the BETACAM bit (see Table 37).  
Table 37. BETACAM Function  
The chroma automatic gain timing register allows the user to  
influence the tracking speed of the chroma automatic gain con-  
trol. This register has an effect only if the CAGC[1:0] register is  
set to 10 (automatic gain).  
BETACAM Description  
0 (default) Assuming YPrPb is selected as input format  
Selecting PAL with pedestal selects MII  
Selecting PAL without pedestal selects SMPTE  
Selecting NTSC with pedestal selects MII  
Selecting NTSC without pedestal selects SMPTE  
Table 39. CAGT Function  
CAGT[1:0]  
Description  
00  
01  
10  
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
1
Assuming YPrPb is selected as input format  
Selecting PAL with pedestal selects BETACAM  
Selecting PAL without pedestal selects BETACAM  
variant  
11 (default)  
Selecting NTSC with pedestal selects BETACAM  
Selecting NTSC without pedestal selects BETACAM  
variant  
Table 40. Betacam Levels  
Name  
Betacam (mV)  
Betacam Variant (mV)  
SMPTE (mV)  
MII (mV)  
Y Range  
Pb and Pr Range  
Sync Depth  
0 to 714 (includes 7.5% pedestal) 0 to 714  
0 to 700  
–350 to +350  
300  
0 to 700 (includes 7.5% pedestal)  
–324 to +324  
300  
–467 to +467  
286  
–505 to +505  
286  
Rev. B | Page 32 of 100  
ADV7183B  
CG[11:0] Chroma Gain, Address 0x2D[3:0]; Address  
0x2E[7:0] CMG[11:0] Chroma Manual Gain, Address  
0x2D[3:0]; Address 0x2E[7:0]  
CKILLTHR[2:0] Color Kill Threshold,  
Address 0x3D[6:4]  
The CKILLTHR[2:0] bits allow the user to select a threshold for  
the color kill function. The threshold applies only to QAM  
based (NTSC and PAL) or FM-modulated (SECAM) video  
standards.  
Chroma Gain[11:0] is a dual-function register. If written to, a  
desired manual chroma gain can be programmed. This gain  
becomes active if the CAGC[1:0] mode is switched to manual  
fixed gain. Refer to Equation 2 for calculating a desired gain. If  
read back, this register returns the current gain value. Depending  
on the setting in the CAGC[1:0] bits, one of these gain values is  
returned  
To enable the color kill function, the CKE bit must be set. For  
settings 000, 001, 010, and 011, chroma demodulation inside  
the ADV7183B may not work satisfactorily for poor input video  
signals.  
Chroma manual gain value (CAGC[1:0] set to chroma  
manual gain mode)  
Table 42. CKILLTHR Function  
Description  
CKILLTHR[2:0] SECAM  
NTSC, PAL  
Chroma automatic gain value (CAGC[1:0] set to any of the  
automatic modes)  
000  
No color kill  
Kill at < 0.5%  
Kill at < 1.5%  
Kill at < 2.5%  
Kill at < 4.0%  
Kill at < 8.5%  
Kill at < 16.0%  
Kill at < 32.0%  
001  
010  
011  
100 (default)  
101  
Kill at < 5%  
Kill at < 7%  
Kill at < 8%  
Kill at < 9.5%  
Kill at < 15%  
Kill at < 32%  
Table 41. CG/CMG Function  
CG[11:0]/CMG[11:0]  
CMG[11:0]  
Read/Write Description  
Write  
Manual gain for chroma  
path  
CG[11:0]  
Read  
Currently active gain  
110  
111  
Reserved for ADI internal use only; do not  
select  
(
0 < CG 4095  
)
Chroma _Gain =  
= 0...4  
(2)  
1024  
CHROMA TRANSIENT IMPROVEMENT (CTI)  
For example, freezing the automatic gain loop and reading back  
the CG[11:0] register results in a value of 0x47A.  
The signal bandwidth allocated for chroma is typically much  
smaller than that of luminance. In the past, this was a valid way  
to fit a color video signal into a given overall bandwidth because  
the human eye is less sensitive to chrominance than to  
luminance.  
1. Convert the readback value to decimal:  
0x47A = 1146d  
2. Apply Equation 2 to convert the readback value:  
1146/1024 = 1.12  
The uneven bandwidth, however, can lead to visual artifacts in  
sharp color transitions. At the border of two bars of color, both  
components (luma and chroma) change at the same time (see  
Figure 18). Due to the higher bandwidth, the signal transition  
of the luma component is usually much sharper than that of the  
chroma component. The color edge is not sharp but blurred, in  
the worst case, over several pixels.  
CKE Color Kill Enable, Address 0x2B[6]  
The color kill enable bit allows the optional color kill function  
to be switched on or off.  
For QAM-based video standards (PAL and NTSC) and FM-  
based systems (SECAM), the threshold for the color kill  
decision is selectable via the CKILLTHR[2:0] bits.  
If color kill is enabled, and if the color carrier of the incoming  
video signal is less than the threshold for 128 consecutive video  
lines, color processing is switched off (black and white output).  
To switch the color processing back on, another 128 consecutive  
lines with a color burst greater than the threshold are required.  
LUMA SIGNAL WITH A  
TRANSITION, ACCOMPANIED  
LUMA  
SIGNAL  
BY A CHROMA TRANSITION  
ORIGINAL, SLOW CHROMA  
DEMODULATED  
The color kill option works only for input signals with a modu-  
lated chroma part. For component input (YPrPb), there is no  
color kill.  
TRANSITION PRIOR TO CTI  
CHROMA  
SHARPENED CHROMA  
TRANSITION AT THE  
OUTPUT OF CTI  
SIGNAL  
Figure 18. CTI Luma/Chroma Transition  
Setting CKE to 0 disables color kill.  
Setting CKE to 1 (default) enables color kill.  
Rev. B | Page 33 of 100  
 
ADV7183B  
The chroma transient improvement block examines the input  
video data. It detects transitions of chroma and can be  
programmed to steepen the chroma edges in an attempt to  
artificially restore lost color bandwidth. The CTI block,  
however, operates only on edges above a certain threshold to  
ensure that noise is not emphasized. Care has also been taken to  
ensure that edge ringing and undesirable saturation or hue  
distortion are avoided.  
Table 43. CTI_AB Function  
CTI_AB[1:0] Description  
00  
Sharpest mixing between sharpened and original  
chroma signal  
01  
Sharp mixing  
10  
Smooth mixing  
11 (default)  
Smoothest alpha blend function  
CTI_C_TH[7:0] CTI Chroma Threshold,  
Address 0x4E[7:0]  
Chroma transient improvements are needed primarily for  
signals that experienced severe chroma bandwidth limitations.  
For those types of signals, it is strongly recommended to enable  
the CTI block via CTI_EN.  
The CTI_C_TH[7:0] value is an unsigned, 8-bit number speci-  
fying how big the amplitude step in a chroma transition must be  
steepened by the CTI block. Programming a small value into  
this register causes even smaller edges to be steepened by the  
CTI block. Making CTI_C_TH[7:0] a large value causes the  
block to improve large transitions only.  
CTI_EN Chroma Transient Improvement Enable,  
Address 0x4D[0]  
The CTI_EN bit enables the CTI function. If set to 0, the CTI  
block is inactive and the chroma transients are left untouched.  
The default value for CTI_C_TH[7:0] is 0x08, indicating the  
threshold for the chroma edges prior to CTI.  
Setting CTI_EN to 0 disables the CTI block.  
DIGITAL NOISE REDUCTION (DNR)  
Setting CTI_EN to 1 (default) enables the CTI block.  
Digital noise reduction is based on the assumption that high  
frequency signals with low amplitude are probably noise and  
that their removal, therefore, improves picture quality.  
CTI_AB_EN Chroma Transient Improvement Alpha  
Blend Enable, Address 0x4D[1]  
DNR_EN Digital Noise Reduction Enable,  
Address 0x4D[5]  
The CTI_AB_EN bit enables an alpha-blend function within  
the CTI block. If set to 1, the alpha blender mixes the transient  
improved chroma with the original signal. The sharpness of the  
alpha blending can be configured via the CTI_AB[1:0] bits.  
The DNR_EN bit enables or bypasses the DNR block.  
Setting DNR_EN to 0 bypasses DNR (disables it).  
For the alpha blender to be active, the CTI block must be  
enabled via the CTI_EN bit.  
Setting DNR_EN to 1 (default) enables digital noise reduction  
on the luma data.  
Setting CTI_AB_EN to 0 disables the CTI alpha blender.  
DNR_TH[7:0] DNR Noise Threshold, Address 0x50[7:0]  
Setting CTI_AB_EN to 1 (default) enables the CTI alpha-blend  
mixing function.  
The DNR_TH[7:0] value is an unsigned 8-bit number used to  
determine the maximum edge to be interpreted as noise and,  
therefore, blanked from the luma data. Programming a large  
value into DNR_TH[7:0] causes the DNR block to interpret  
even large transients as noise and remove them. The effect on  
the video data is, therefore, more visible.  
CTI_AB[1:0] Chroma Transient Improvement Alpha  
Blend, Address 0x4D[3:2]  
The CTI_AB[1:0] controls the behavior of alpha-blend circuitry  
that mixes the sharpened chroma signal with the original one. It  
thereby controls the visual impact of CTI on the output data.  
Programming a small value causes only small transients to be  
seen as noise and to be removed.  
For CTI_AB[1:0] to become active, the CTI block must be  
enabled via the CTI_EN bit, and the alpha blender must be  
switched on via CTI_AB_EN.  
The recommended DNR_TH[7:0] setting for A/V inputs is  
0x04, and the recommended DNR_TH[7:0] setting for tuner  
inputs is 0x0A.  
Sharp blending maximizes the effect of CTI on the picture, but  
can also increase the visual impact of small amplitude, high  
frequency chroma noise.  
The default value for DNR_TH[7:0] is 0x08, indicating the  
threshold for maximum luma edges to be interpreted as noise.  
Rev. B | Page 34 of 100  
 
ADV7183B  
Table 44. NSFSEL Function  
NSFSEL[1:0]  
COMB FILTERS  
Description  
Narrow  
Medium  
Medium  
Wide  
The comb filters of the ADV7183B have been greatly improved  
to automatically handle video of all types, standards, and levels  
of quality. The NTSC and PAL configuration registers allow the  
user to customize comb filter operation, depending on which  
video standard is detected (by autodetection) or selected (by  
manual programming). In addition to the bits listed in this  
section, there are some other ADI internal controls; contact  
ADI for more information.  
00 (default)  
01  
10  
11  
CTAPSN[1:0] Chroma Comb Taps NTSC, Address x38[7:6]  
Table 45. CTAPSN Function  
CTAPSN[1:0]  
Description  
NTSC Comb Filter Settings  
00  
01  
Do not use  
Used for NTSC-M/J CVBS inputs.  
NTSC chroma comb adapts 3 lines (3 taps) to  
2 lines (2 taps)  
NTSC chroma comb adapts 5 lines (5 taps) to  
3 lines (3 taps)  
NTSC chroma comb adapts 5 lines (5 taps) to  
4 lines (4 taps)  
NSFSEL[1:0] Split Filter Selection NTSC, Address  
0x19[3:2]  
10 (default)  
11  
The NSFSEL[1:0] control selects how much of the overall signal  
bandwidth is fed to the combs. A narrow split filter selection  
gives better performance on diagonal lines, but leaves more dot  
crawl in the final output image; the opposite is true for selecting a  
wide bandwidth split filter.  
CCMN[2:0] Chroma Comb Mode NTSC, Address 0x38[5:3]  
Table 46. CCMN Function  
CCMN[2:0]  
Description  
0xx (default)  
Adaptive comb mode  
Adaptive 3-line chroma comb for CTAPSN = 01  
Adaptive 4-line chroma comb for CTAPSN = 10  
Adaptive 5-line chroma comb for CTAPSN = 11  
100  
101  
Disable chroma comb  
Fixed chroma comb (top lines of line memory)  
Fixed 2-line chroma comb for CTAPSN = 01  
Fixed 3-line chroma comb for CTAPSN = 10  
Fixed 4-line chroma comb for CTAPSN = 11  
Fixed 3-line chroma comb for CTAPSN = 01  
Fixed 4-line chroma comb for CTAPSN = 10  
Fixed 5-line chroma comb for CTAPSN = 11  
Fixed 2-line chroma comb for CTAPSN = 01  
Fixed 3-line chroma comb for CTAPSN = 10  
Fixed 4-line chroma comb for CTAPSN = 11  
110  
111  
Fixed chroma comb (all lines of line memory)  
Fixed chroma comb (bottom lines of line memory)  
YCMN[2:0] Luma Comb Mode NTSC, Address 0x38[2:0]  
Table 47.YCMN Function  
YCMN[2:0]  
0xx (default)  
100  
101  
110  
Description  
Adaptive comb mode  
Disable luma comb  
Fixed luma comb (top lines of line memory)  
Fixed luma comb (all lines of line memory)  
Fixed luma comb (bottom lines of line memory)  
Adaptive 3-line (3 taps) luma comb  
Use low-pass/notch filter; see the Y-Shaping Filter section  
Fixed 2-line (2 taps) luma comb  
Fixed 3-line (3 taps) luma comb  
Fixed 2-line (2 taps) luma comb  
111  
Rev. B | Page 35 of 100  
 
ADV7183B  
Table 48. PSFSEL Function  
PSFSEL[1:0]  
PAL Comb Filter Settings  
Description  
Narrow  
Medium  
Wide  
Used for PAL-B/G/H/I/D, PAL-M, PAL-Combination N,  
PAL60 and NTSC443 CVBS inputs.  
00  
01 (default)  
PSFSEL[1:0] Split Filter Selection PAL,  
Address 0x19[1:0]  
10  
11  
Widest  
The PSFSEL[1:0] control selects how much of the overall signal  
bandwidth is fed to the combs. A wide split filter selection  
eliminates dot crawl, but shows imperfections on diagonal lines;  
the opposite is true for selecting a narrow bandwidth split filter.  
CTAPSP[1:0] Chroma Comb Taps PAL, Address 0x39[7:6]  
Table 49. CTAPSP Function  
CTAPSP[1:0]  
Description  
00  
01  
Do not use.  
PAL chroma comb adapts 5 lines (3 taps) to  
3 lines (2 taps); cancels cross luma only  
10  
PAL chroma comb adapts 5 lines (5 taps) to  
3 lines (3 taps); cancels cross luma and hue error less well  
11 (default)  
PAL chroma comb adapts 5 lines (5 taps) to  
4 lines (4 taps); cancels cross luma and hue error well  
CCMP[2:0] Chroma Comb Mode PAL, Address 0x39[5:3]  
Table 50. CCMP Function  
CCMP[2:0]  
Description  
Configuration  
0xx (default)  
Adaptive comb mode  
Adaptive 3-line chroma comb for CTAPSP = 01  
Adaptive 4-line chroma comb for CTAPSP = 10  
Adaptive 5-line chroma comb for CTAPSP = 11  
100  
101  
Disable chroma comb  
Fixed chroma comb (top lines of line memory)  
Fixed 2-line chroma comb for CTAPSP = 01  
Fixed 3-line chroma comb for CTAPSP = 10  
Fixed 4-line chroma comb for CTAPSP = 11  
Fixed 3-line chroma comb for CTAPSP = 01  
Fixed 4-line chroma comb for CTAPSP = 10  
Fixed 5-line chroma comb for CTAPSP = 11  
Fixed 2-line chroma comb for CTAPSP = 01  
Fixed 3-line chroma comb for CTAPSP = 10  
Fixed 4-line chroma comb for CTAPSP = 11  
110  
111  
Fixed chroma comb (all lines of line memory)  
Fixed chroma comb (bottom lines of line memory)  
YCMP[2:0] Luma Comb Mode PAL, Address 0x39[2:0]  
Table 51. YCMP Function  
YCMP[2:0]  
0xx (default)  
100  
101  
110  
Description  
Configuration  
Adaptive comb mode  
Disable luma comb  
Fixed luma comb (top lines of line memory)  
Fixed luma comb (all lines of line memory)  
Fixed luma comb (bottom lines of line memory)  
Adaptive 5 lines (3 taps) luma comb  
Use low-pass/notch filter; see the Y-Shaping Filter section  
Fixed 3 lines (2 taps) luma comb  
Fixed 5 lines (3 taps) luma comb  
Fixed 3 lines (2 taps) luma comb  
111  
Rev. B | Page 36 of 100  
ADV7183B  
SD_DUP_AV Duplicate AV Codes, Address 0x03[0]  
AV CODE INSERTION AND CONTROLS  
This section describes the I2C based controls that affect:  
Depending on the output interface width, it can be necessary to  
duplicate the AV codes from the luma path into the chroma path.  
Insertion of AV codes into the data stream  
In an 8-bit-wide output interface (Cb/Y/Cr/Y interleaved data),  
the AV codes are defined as FF/00/00/AV, with AV as the  
transmitted word that contains information about H/V/F.  
Data blanking during the vertical blank interval (VBI)  
The range of data values permitted in the output data  
stream  
In this output interface mode, the following assignment takes  
place: Cb = FF, Y = 00, Cr = 00, and Y = AV.  
The relative delay of luma vs. chroma signals  
In a 16-bit output interface where Y and Cr/Cb are delivered via  
separate data buses, the AV code is over the whole 16 bits. The  
SD_DUP_AV bit allows the user to replicate the AV codes on  
both busses, so the full AV sequence can be found on the Y bus  
and on the Cr/Cb bus. See Figure 19.  
Some of the decoded VBI data is inserted during the horizontal  
blanking interval. See the Gemstar Data Recovery section for  
more information.  
BT656-4 ITU Standard BT-R.656-4 Enable, Address  
0x04[7]  
When SD_DUP_AV is 0 (default), the AV codes are in single  
fashion (for 8-bit interleaved data output).  
The ITU has changed the position for toggling of the V bit  
within the SAV EAV codes for NTSC between revisions 3 and 4.  
The BT656-4 standard bit allows the user to select an output  
mode that is compliant with either the previous or the new  
standard. For more information, review the standard at  
www.itu.int.  
When SD_DUP_AV is 1, the AV codes are duplicated (for  
16-bit interfaces).  
VBI_EN Vertical Blanking Interval Data Enable,  
Address 0x03[7]  
Note that the standard change affects NTSC only and has no  
bearing on PAL.  
The VBI enable bit allows data such as intercast and closed  
caption data to be passed through the luma channel of the  
decoder with a minimal amount of filtering. All data for Line 1  
to Line 21 is passed through and available at the output port.  
The ADV7183B does not blank the luma data, and auto-  
matically switches all filters along the luma data path into their  
widest bandwidth. For active video, the filter settings for YSH  
and YPK are restored.  
When BT656-4 is 0 (default), the BT656-3 specification is used.  
The V bit goes low at EAV of Line 10 and Line 273.  
When BT656-4 is 1, the BT656-4 specification is used. The  
V bit goes low at EAV of Line 20 and Line 283.  
Refer to the BL_C_VBI Blank Chroma During VBI, Address  
0x04[2] section for information on the chroma path.  
When VBI_EN is 0 (default), all video lines are filtered/scaled.  
When VBI_EN is 1, only the active video region is  
filtered/scaled.  
SD_DUP_AV = 1  
SD_DUP_AV = 0  
16-BIT INTERFACE  
16-BIT INTERFACE  
8-BIT INTERFACE  
Y DATA BUS  
FF  
FF  
00  
00  
AV  
AV  
Y
00  
AV  
Y
Cb/Y/Cr/Y  
INTERLEAVED  
FF  
00  
00 AV Cb  
Cr/Cb DATA BUS  
00  
00  
Cb  
FF  
00  
Cb  
AV CODE SECTION  
AV CODE SECTION  
AV CODE SECTION  
Figure 19. AV Code Duplication Control  
Rev. B | Page 37 of 100  
 
ADV7183B  
BL_C_VBI Blank Chroma During VBI, Address 0x04[2]  
LTA[1:0] Luma Timing Adjust, Address 0x27[1:0]  
Setting BL_C_VBI high, the Cr and Cb values of all VBI lines  
are blanked. This is done so any data that arrives during VBI is  
not decoded as color and output through Cr and Cb. As a result,  
it should be possible to send VBI lines into the decoder, then  
output them through an encoder again, undistorted. Without  
this blanking, any wrongly decoded color is encoded by the  
video encoder; therefore, the VBI lines are distorted.  
The Luma Timing Adjust register allows the user to specify a  
timing difference between chroma and luma samples.  
There is a certain functionality overlap with the CTA[2:0]  
register. For manual programming, use the following defaults:  
CVBS input LTA[1:0] = 00  
Y/C input LTA[1:0] = 01  
YPrPb input LTA[1:0] = 01  
Setting BL_C_VBI to 0 decodes and outputs color during VBI.  
Setting BL_C_VBI to 1 (default) blanks Cr and Cb values  
during VBI.  
Table 53. LTA Function  
LTA[1:0]  
Description  
RANGE Range Selection, Address 0x04[0]  
00 (default)  
No delay  
AV codes (as per ITU-R BT-656, formerly known as CCIR-656)  
consist of a fixed header made up of 0xFF and 0x00 values.  
These two values are reserved and therefore cannot be used for  
active video. Additionally, the ITU specifies that the nominal  
range for video should be restricted to values between 16 and  
235 for luma and 16 to 240 for chroma.  
01  
10  
11  
Luma 1 clk (37 ns) delayed  
Luma 2 clk (74 ns) early  
Luma 1 clk (37 ns) early  
CTA[2:0] Chroma Timing Adjust, Address 0x27[5:3]  
The Chroma Timing Adjust register allows the user to specify a  
timing difference between chroma and luma samples. This can  
be used to compensate for external filter group delay differences  
in the luma vs. chroma path, and to allow a different number of  
pipeline delays while processing the video downstream. Review  
this functionality together with the LTA[1:0] register.  
The RANGE bit allows the user to limit the range of values  
output by the ADV7183B to the recommended value range. In  
any case, it ensures that the reserved values of 255d (0xFF) and  
00d (0x00) are not presented on the output pins unless they are  
part of an AV code header.  
Table 52. RANGE Function  
The chroma can only be delayed/advanced in chroma pixel  
steps. One chroma pixel step is equal to two luma pixels. The  
programmable delay occurs after demodulation, where one  
can no longer delay by luma pixel steps.  
RANGE  
Description  
16 ≤ Y ≤ 235  
1 ≤ Y ≤ 254  
0
16 ≤ C/P ≤ 240  
1 ≤ C/P ≤ 254  
1 (default)  
For manual programming, use the following defaults:  
AUTO_PDC_EN Automatic Programmed Delay Control,  
Address 0x27[6]  
CVBS input CTA[2:0] = 011  
Y/C input CTA[2:0] = 101  
YPrPb input CTA[2:0] =110  
Enabling the AUTO_PDC_EN function activates a function  
within the ADV7183B that automatically programs the  
LTA[1:0] and CTA[2:0] to have the chroma and luma data  
match delays for all modes of operation. If set, manual registers  
LTA[1:0] and CTA[2:0] are not used. If the automatic mode  
is disabled (via setting the AUTO_PDC_EN bit to 0), the  
values programmed into LTA[1:0] and CTA[2:0] registers  
become active.  
Table 54. CTA Function  
CTA[2:0]  
Description  
000  
Not used  
001  
010  
011 (default)  
100  
101  
Chroma + 2 chroma pixel (early)  
Chroma + 1 chroma pixel (early)  
No delay  
Chroma – 1 chroma pixel (late)  
Chroma – 2 chroma pixel (late)  
Chroma – 3 chroma pixel (late)  
Not used  
When AUTO_PDC_EN is 0, the ADV7183 uses the LTA[1:0]  
and CTA[2:0] values for delaying luma and chroma samples.  
Refer to the LTA[1:0] Luma Timing Adjust, Address 0x27[1:0]  
and the CTA[2:0] Chroma Timing Adjust, Address 0x27[5:3]  
sections.  
110  
111  
When AUTO_PDC_EN is 1 (default), the ADV7183B auto-  
matically determines the LTA and CTA values to have luma  
and chroma aligned at the output.  
Rev. B | Page 38 of 100  
ADV7183B  
HSE[10:0] HS End, Address 0x34[2:0], Address 0x36[7:0]  
SYNCHRONIZATION OUTPUT SIGNALS  
HS Configuration  
The position of this edge is controlled by placing a binary  
number into HSE[10:0]. The number applied offsets the edge  
with respect to an internal counter that is reset to 0 immediately  
after EAV Code FF, 00, 00, XY (see Figure 20). HSE is set to  
00000000000b, which is 0 LLC1 clock cycles from Count[0].  
The following controls allow the user to configure the behavior  
of the HS output pin only:  
Beginning of HS signal via HSB[10:0]  
End of HS signal via HSE[10:0]  
Polarity of HS using PHS  
The default value of HSE[9:0] is 000, indicating that the HS  
pulse ends zero pixels after falling edge of HS.  
For example:  
The HS begin and HS end registers allow the user to freely  
position the HS output (pin) within the video line. The values  
in HSB[10:0] and HSE[10:0] are measured in pixel units from  
the falling edge of HS. Using both values, the user can program  
both the position and length of the HS output signal.  
1. To shift the HS toward active video by 20 LLC1s, add  
20 LLC1s to both HSB and HSE, that is, HSB[10:0] =  
[00000010110], HSE[10:0] = 00000010100].  
2. To shift the HS away from active video by 20 LLC1s, add  
1696 LLC1s to both HSB and HSE (for NTSC), that is,  
HSB[10:0] = [11010100010], HSE[10:0] = [11010100000].  
1696 is derived from the NTSC total number of pixels =  
1716.  
HSB[10:0] HS Begin, Address 0x34[6:4], Address  
0x35[7:0]  
The position of this edge is controlled by placing a binary  
number into HSB[10:0]. The number applied offsets the edge  
with respect to an internal counter that is reset to 0 immediately  
after EAV Code FF, 00, 00, XY (see Figure 20). HSB is set to  
00000000010b, which is 2 LLC1 clock cycles from Count[0].  
To move 20 LLC1s away from active video is equal to  
subtracting 20 from 1716 and adding the result in binary to  
both HSB[10:0] and HSE[10:0].  
The default value of HSB[10:0] is 0x002, indicating the HS pulse  
starts two pixels after the falling edge of HS.  
PHS Polarity HS, Address 0x37[7]  
The polarity of the HS pin can be inverted using the PHS bit.  
When PHS is 0 (default), HS is active high.  
When PHS is 1, HS is active low.  
Table 55. HS Timing Parameters (see Figure 20)  
Characteristic  
HS Begin Adjust  
(HSB[10:0])  
HS to Active Video  
(LLC1 Clock Cycles)  
Active Video  
Samples/Line  
Total LLC1  
Clock Cycles  
HS End Adjust  
Standard  
NTSC  
(Default)  
(HSE[10:0]) (Default) (C in Figure 20) (Default) (D in Figure 20)  
(E in Figure 20)  
00000000010b  
00000000010b  
00000000010b  
00000000000b  
00000000000b  
00000000000b  
272  
276  
284  
720Y + 720C = 1440  
640Y + 640C = 1280  
720Y + 720C = 1440  
1716  
1560  
1728  
NTSC Square Pixel  
PAL  
LLC1  
PIXEL  
BUS  
Cr  
Y
FF  
00  
00 XY 80  
10  
80  
10  
80  
10  
FF  
00  
00 XY Cb  
SAV  
Y
Cr  
Y
Cb  
Y
Cr  
ACTIVE  
VIDEO  
EAV  
H BLANK  
ACTIVE VIDEO  
HS  
HSE[10:0]  
4 LLC1  
HSB[10:0]  
C
D
D
E
E
Figure 20. HS Timing  
Rev. B | Page 39 of 100  
 
ADV7183B  
VS and FIELD Configuration  
VSBHO VS Begin Horizontal Position Odd,  
Address 0x32[7]  
The following controls allow the user to configure the behavior  
of the VS and FIELD output pins and to generate embedded AV  
codes:  
The VSBHO and VSBHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high/low.  
ADV encoder-compatible signals via NEWAVMODE  
PVS, PF  
When VSBHO is 0 (default), the VS pin goes high at the middle  
of a line of video (odd field).  
HVSTIM  
VSBHO, VSBHE  
VSEHO, VSEHE  
For NTSC control:  
When VSBHO is 1, the VS pin changes state at the start of a line  
(odd field).  
VSBHE VS Begin Horizontal Position Even,  
Address 0x32[6]  
The VSBHO and VSBHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state when  
only HS is high/low.  
NVBEGDELO, NVBEGDELE, NVBEGSIGN,  
NVBEG[4:0]  
NVENDDELO, NVENDDELE, NVENDSIGN,  
NVEND[4:0]  
When VSBHE is 0, the VS pin goes high at the middle of a line  
of video (even field).  
NFTOGDELO, NFTOGDELE, NFTOGSIGN,  
NFTOG[4:0]  
When VSBHE is 1 (default), the VS pin changes state at the start  
of a line (even field).  
For PAL control:  
PVBEGDELO, PVBEGDELE, PVBEGSIGN,  
PVBEG[4:0]  
VSEHO VS End Horizontal Position Odd,  
Address 0x33[7]  
The VSEHO and VSEHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high/low.  
PVENDDELO, PVENDDELE, PVENDSIGN,  
PVEND[4:0]  
PFTOGDELO, PFTOGDELE, PFTOGSIGN,  
PFTOG[4:0]  
When VSEHO is 0 (default), the VS pin goes low (inactive) at  
the middle of a line of video (odd field).  
NEWAVMODE New AV Mode, Address 0x31[4]  
When VSEHO is 1, the VS pin changes state at the start of a line  
(odd field).  
When NEWAVMODE is 0, EAV/SAV codes are generated to  
suit ADI encoders. No adjustments are possible.  
VSEHE VS End Horizontal Position Even,  
Address 0x33[6]  
Setting NEWAVMODE to 1 (default) enables the manual posi-tion  
of the Vsync, Field, and AV codes using Register 0x34 to Register  
0x37 and Register 0xE5 to Register 0xEA. Default register settings  
are CCIR656-compliant; see Figure 21 for NTSC and Figure 26 for  
PAL. For recommended manual user settings, see Table 56 and  
Figure 22 for NTSC; see Table 57 and Figure 27 for PAL.  
The VSEHO and VSEHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high/low.  
When VSEHE is 0 (default), the VS pin goes low (inactive) at  
the middle of a line of video (even field).  
HVSTIM Horizontal VS Timing, Address 0x31[3]  
The HVSTIM bit allows the user to select where the VS signal is  
being asserted within a line of video. Some interface circuitry  
can require VS to go low while HS is low.  
When VSEHE is 1, the VS pin changes state at the start of a line  
(even field).  
PVS Polarity VS, Address 0x37[5]  
The polarity of the VS pin can be inverted using the PVS bit.  
When HVSTIM is 0 (default), the start of the line is relative  
to HSE.  
When PVS is 0 (default), VS is active high.  
When HVSTIM is 1, the start of the line is relative to HSB.  
Rev. B | Page 40 of 100  
ADV7183B  
When PVS is 1, VS is active low. PF Polarity FIELD,  
Address 0x37[3]  
The polarity of the FIELD pin can be inverted using the PF bit.  
When PF is 0 (default), FIELD is active high.  
When PF is 1, FIELD is active low.  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
19  
20  
21  
22  
OUTPUT  
VIDEO  
H
V
1
NVBEG[4:0] = 0x5  
NVEND[4:0] = 0x4  
BT.656-4  
REG 0x04, BIT 7 = 1  
F
NFTOG[4:0] = 0x3  
FIELD 2  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275 276  
283  
284  
285  
OUTPUT  
VIDEO  
H
V
1
BT.656-4  
REG 0x04, BIT 7 = 1  
NVBEG[4:0] = 0x5  
NVEND[4:0] = 0x4  
F
NFTOG[4:0] = 0x3  
APPLIES IF NEWAVMODE = 0:  
1
MUST BE MANUALLY SHIFTED IF NEWAVMODE = 1.  
Figure 21. NTSC Default (BT.656). The Polarity of H, V, and F is Embedded in the Data.  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
21  
22  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
FIELD  
NVBEG[4:0] =0x0  
NVEND[4:0] = 0x3  
OUTPUT  
NFTOG[4:0] = 0x5  
FIELD 2  
267  
262  
263  
264  
265  
266  
268  
269  
270  
271  
272  
273  
274  
275  
276 277  
284  
285  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
NVBEG[4:0] = 0x0  
NVEND[4:0] = 0x3  
FIELD  
OUTPUT  
NFTOG[4:0] = 0x5  
Figure 22. NTSC Typical Vsync/Field Positions Using Register Writes in Table 56  
Rev. B | Page 41 of 100  
ADV7183B  
Table 56. Recommended User Settings for NTSC (See Figure 22)  
Register  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0xE5  
0xE6  
0xE7  
Register Name  
Write  
0x1A  
0x81  
0x84  
0x00  
0x00  
0x7D  
0xA1  
0x41  
0x84  
0x06  
Vsync Field Control 1  
Vsync Field Control 2  
Vsync Field Control 3  
Hsync Pos. Control 1  
Hsync Pos. Control 2  
Hsync Pos. Control 3  
Polarity  
NTSV_V_Bit_Beg  
NTSC_V_Bit_End  
NTSC_F_Bit_Tog  
NVBEGDELO NTSC Vsync Begin Delay on Odd Field,  
Address 0xE5[7]  
1
NVBEGSIGN  
0
When NVBEGDELO is 0 (default), there is no delay.  
ADVANCE BEGIN OF  
VSYNC BY NVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY NVBEG[4:0]  
Setting NVBEGDELO to 1, delay Vsync going high on an odd  
field by a line relative to NVBEG.  
NOT VALID FOR USER  
PROGRAMMING  
NVBEGDELE NTSC Vsync Begin Delay on Even Field,  
Address 0xE5[6]  
ODD FIELD?  
YES  
NO  
When NVBEGDELE is 0 (default), there is no delay.  
NVBEGDELO  
1
NVBEGDELE  
1
Setting NVBEGDELE to 1 delays Vsync going high on an even  
field by a line relative to NVBEG.  
0
0
NVBEGSIGN NTSC Vsync Begin Sign, Address 0xE5[5]  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
Setting NVBEGSIGN to 0 delays the start of Vsync. Set for user  
manual programming.  
Setting NVBEGSIGN to 1 (default), advances the start of Vsync.  
Not recommended for user programming.  
VSBHO  
1
VSBHE  
1
NVBEG[4:0] NTSC Vsync Begin, Address 0xE5[4:0]  
0
0
The default value of NVBEG is 00101, indicating the NTSC  
Vsync begin position.  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
For all NTSC/PAL Vsync timing controls, both the V bit in the  
AV code and the Vsync on the VS pin are modified.  
VSYNC BEGIN  
Figure 23. NTSC Vsync Begin  
Rev. B | Page 42 of 100  
ADV7183B  
NVEND NTSC[4:0] Vsync End, Address 0xE6[4:0]  
1
NVENDSIGN  
0
The default value of NVEND is 00100, indicating the NTSC  
Vsync end position.  
ADVANCE END OF  
VSYNC BY NVEND[4:0]  
DELAY END OF VSYNC  
BY NVEND[4:0]  
For all NTSC/PAL Vsync timing controls, both the V bit in the  
AV code and the Vsync on the VS pin are modified.  
NOT VALID FOR USER  
PROGRAMMING  
NFTOGDELO NTSC Field Toggle Delay on Odd Field,  
Address 0xE7[7]  
ODD FIELD?  
YES  
NO  
When NFTOGDELO is 0 (default), there is no delay.  
NVENDDELO  
1
NVENDDELE  
1
Setting NFTOGDELO to 1 delays the field toggle/transition on  
an odd field by a line relative to NFTOG.  
0
0
NFTOGDELE NTSC Field Toggle Delay on Even Field,  
Address 0xE7[6]  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
When NFTOGDELE is 0, there is no delay.  
Setting NFTOGDELE to 1 (default) delays the field toggle/  
transition on an even field by a line relative to NFTOG.  
VSEHO  
1
VSEHE  
1
1
NFTOGSIGN  
0
0
0
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
ADVANCE TOGGLE OF  
FIELD BY NFTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY NFTOG[4:0]  
NOT VALID FOR USER  
PROGRAMMING  
VSYNC END  
ODD FIELD?  
Figure 24. NTSC Vsync End  
YES  
NO  
NVENDDELO NTSC Vsync End Delay on Odd Field,  
Address 0xE6[7]  
NFTOGDELO  
1
NFTOGDELE  
1
When NVENDDELO is 0 (default), there is no delay.  
0
0
Setting NVENDDELO to 1 delays Vsync from going low on an  
odd field by a line relative to NVEND.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
NVENDDELE NTSC Vsync End Delay on Even Field,  
Address 0xE6[6]  
When NVENDDELE is set to 0 (default), there is no delay.  
FIELD  
TOGGLE  
Setting NVENDDELE to 1 delays Vsync from going low on an  
even field by a line relative to NVEND.  
Figure 25. NTSC FIELD Toggle  
NVENDSIGN NTSC Vsync End Sign, Address 0xE6[5]  
NFTOGSIGN NTSC Field Toggle Sign, Address 0xE7[5]  
Setting NVENDSIGN to 0 (default) delays the end of Vsync  
(default). Set for user manual programming.  
Setting NFTOGSIGN to 0 delays the field transition. Set for  
user manual programming.  
Setting NVENDSIGN to 1 advances the end of Vsync. Not  
recommended for user programming.  
Setting NFTOGSIGN to 1 (default) advances the field  
transition. Not recommended for user programming.  
Rev. B | Page 43 of 100  
ADV7183B  
Table 57. Recommended User Settings for PAL (see Figure 27)  
NFTOG[4:0] NTSC Field Toggle, Address 0xE7[4:0]  
Register  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0xE8  
0xE9  
0xEA  
Register Name  
Write  
0x1A  
0x81  
0x84  
0x00  
0x00  
0x7D  
0x29  
0x41  
0x84  
0x06  
The default value of NFTOG is 00011, indicating the NTSC  
Field toggle position.  
Vsync Field Control 1  
Vsync Field Control 2  
Vsync Field Control 3  
Hsync Pos. Control 1  
Hsync Pos. Control 2  
Hsync Pos. Control 3  
Polarity  
For all NTSC/PAL Field timing controls, both the F bit in the  
AV code and the Field signal on the FIELD pin are modified.  
PAL_V_Bit_Beg  
PAL_V_Bit_End  
PAL_F_Bit_Tog  
FIELD 1  
622  
623  
624  
625  
1
2
3
4
5
6
7
8
9
10  
22  
23  
24  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 0x5  
PVEND[4:0] = 0x4  
F
PFTOG[4:0] = 0x3  
FIELD 2  
314  
310  
311  
312  
313  
315  
316  
317  
318  
319  
320  
321 322  
335  
336  
337  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 0x5  
PVEND[4:0] = 0x4  
F
PFTOG[4:0] = 0x3  
Figure 26. PAL Default (BT.656). The Polarity of H, V, and F is Embedded in the Data.  
FIELD 1  
622  
623 624  
1
2
3
4
5
6
7
8
9
10  
11  
23  
24  
625  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 0x1  
PVEND[4:0] = 0x4  
FIELD  
OUTPUT  
PFTOG[4:0] = 0x6  
FIELD 2  
314  
310  
311  
312  
315  
316  
317  
318  
319  
320  
321  
322  
323  
336  
337  
313  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 0x1  
PVEND[4:0] = 0x4  
FIELD  
OUTPUT  
PFTOG[4:0] = 0x6  
Figure 27. PAL Typical Vsync/Field Positions Using Register Writes in Table 57  
Rev. B | Page 44 of 100  
ADV7183B  
1
PVBEGSIGN  
0
PVBEG[4:0] PAL Vsync Begin, Address 0xE8[4:0]  
ADVANCE BEGIN OF  
VSYNC BY PVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY PVBEG[4:0]  
The default value of PVBEG is 00101, indicating the PAL Vsync  
begin position.  
For all NTSC/PAL Vsync timing controls, both the V bit in the  
AV code and the Vsync on the VS pin are modified.  
NOT VALID FOR USER  
PROGRAMMING  
ODD FIELD?  
YES  
NO  
1
PVENDSIGN  
0
PVBEGDELO  
1
PVBEGDELE  
1
ADVANCE END OF  
VSYNC BY PVEND[4:0]  
DELAY END OF VSYNC  
BY PVEND[4:0]  
0
0
NOT VALID FOR USER  
PROGRAMMING  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
ODD FIELD?  
YES  
NO  
PVENDDELO  
1
PVENDDELE  
1
VSBHO  
1
VSBHE  
1
0
0
0
0
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
VSYNC BEGIN  
VSEHO  
1
VSEHE  
1
Figure 28. PAL Vsync Begin  
0
0
PVBEGDELO PAL Vsync Begin Delay on Odd Field,  
Address 0xE8[7]  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
When PVBEGDELO is 0 (default), there is no delay.  
Setting PVBEGDELO to 1 delays Vsync going high on an odd  
field by a line relative to PVBEG.  
VSYNC END  
Figure 29. PAL Vsync End  
PVBEGDELE PAL Vsync Begin Delay on Even Field,  
Address 0xE8[6]  
PVENDDELO PAL Vsync End Delay on Odd Field,  
Address 0xE9[7]  
When PVBEGDELE is 0, there is no delay.  
When PVENDDELO is 0 (default), there is no delay.  
Setting PVBEGDELE to 1 (default) delays Vsync going high on  
an even field by a line relative to PVBEG.  
Setting PVENDDELO to 1 delays Vsync going low on an odd  
field by a line relative to PVEND.  
PVBEGSIGN PAL Vsync Begin Sign, Address 0xE8[5]  
PVENDDELE PAL Vsync End Delay on Even Field,  
Address 0xE9[6]  
Setting PVBEGSIGN to 0 delays the beginning of Vsync. Set for  
user manual programming.  
When PVENDDELE is 0 (default), there is no delay.  
Setting PVBEGSIGN to 1 (default) advances the beginning of  
Vsync. Not recommended for user programming.  
Setting PVENDDELE to 1 delays Vsync going low on an even  
field by a line relative to PVEND.  
Rev. B | Page 45 of 100  
ADV7183B  
PVENDSIGN PAL Vsync End Sign, Address 0xE9[5]  
1
PFTOGSIGN  
0
Setting PVENDSIGN to 0 (default) delays the end of Vsync. Set  
for user manual programming.  
ADVANCE TOGGLE OF  
FIELD BY PTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY PFTOG[4:0]  
Setting PVENDSIGN to 1 advances the end of Vsync. Not  
recommended for user programming.  
NOT VALID FOR USER  
PROGRAMMING  
PVEND[4:0] PAL Vsync End, Address 0xE9[4:0]  
ODD FIELD?  
YES  
NO  
The default value of PVEND is 10100, indicating the PAL Vsync  
end position.  
For all NTSC/PAL Vsync timing controls, both the V bit in the  
AV code and the Vsync on the VS pin are modified.  
PFTOGDELO  
1
PFTOGDELE  
1
0
0
PFTOGDELO PAL Field Toggle Delay on Odd Field,  
Address 0xEA[7]  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
When PFTOGDELO is 0 (default), there is no delay.  
Setting PFTOGDELO to 1 delays the F toggle/transition on an  
odd field by a line relative to PFTOG.  
FIELD  
TOGGLE  
PFTOGDELE PAL Field Toggle Delay on Even Field,  
Address 0xEA[6]  
Figure 30. PAL F Toggle  
SYNC PROCESSING  
When PFTOGDELE is 0, there is no delay.  
The ADV7183B has two additional sync processing blocks that  
postprocess the raw synchronization information extracted  
from the digitized input video. If desired, the blocks can be  
disabled via the following two I2C bits.  
Setting PFTOGDELE to 1 (default) delays the F toggle/  
transition on an even field by a line relative to PFTOG.  
PFTOGSIGN PAL Field Toggle Sign, Address 0xEA[5]  
Setting PFTOGSIGN to 0 delays the field transition. Set for user  
manual programming.  
ENHSPLL Enable Hsync Processor, Address 0x01[6]  
The Hsync processor is designed to filter incoming Hsyncs that  
have been corrupted by noise, providing improved performance  
for video signals with stable time bases but poor SNR.  
Setting PFTOGSIGN to 1 (default) advances the field transition.  
Not recommended for user programming.  
Setting ENHSPLL to 0 disables the Hsync processor.  
PFTOG PAL Field Toggle, Address 0xEA[4:0]  
The default value of PFTOG is 00011, indicating the PAL field  
toggle position.  
Setting ENHSPLL to 1 (default) enables the Hsync processor.  
ENVSPROC Enable Vsync Processor, Address 0x01[3]  
For all NTSC/PAL Field timing controls, the F bit in the AV  
code and the field signal on the FIELD/DE pin are modified.  
This block provides extra filtering of the detected Vsyncs to give  
improved vertical lock.  
Setting ENVSPROC to 0 disables the Vsync processor.  
Setting ENVSPROC to 1 (default) enables the Vsync processor.  
Rev. B | Page 46 of 100  
 
ADV7183B  
VBI DATA DECODE  
CCAPD Closed Caption Detected, Address 0x90[1]  
The following low data rate VBI signals can be decoded by the  
ADV7183B:  
A Logic 1 for this bit indicates that the data in the CCAP1 and  
CCAP2 registers is valid.  
Wide screen signaling (WSS)  
Copy generation management systems (CGMS)  
Closed captioning (CCAP)  
The CCAPD bit goes high if the rising edge of the start bit is  
detected within a time window and if the polarity of the parity  
bit matches the data transmitted.  
When CCAPD is 0, no CCAP sequences are detected and  
confidence in the decoded data is low.  
EDTV  
Gemstar 1×- and 2×-compatible data recovery  
When CCAPD is 1, the CCAP sequence is detected and  
confidence in the decoded data is high.  
The presence of any of the above signals is detected and, if  
applicable, a parity check is performed. The result of this testing  
is contained in a confidence bit in the VBI Info[7:0] register.  
Users are encouraged to first examine the VBI Info register  
before reading the corresponding data registers. All VBI data  
decode bits are read only.  
EDTVD EDTV Sequence Detected, Address 0x90[2]  
A Logic 1 for this bit indicates the data in the EDTV1, 2, 3  
registers is valid.  
The EDTVD bit goes high if the rising edge of the start bit is  
detected within a time window and if the polarity of the parity  
bit matches the data transmitted.  
All VBI data registers are double-buffered with the field signals.  
This means that data is extracted from the video lines and  
appears in the appropriate I2C registers with the next field  
transition. They are then static until the next field.  
When EDTVD is 0, no EDTV sequence is detected and  
confidence in the decoded data is low.  
The user should start an I2C read sequence with VS by first  
examining the VBI Info register. Then, depending on what data  
was detected, the appropriate data registers should be read.  
When EDTVD is 1, an EDTV sequence is detected and  
confidence in the decoded data is high.  
CGMSD CGMS-A Sequence Detected, Address 0x90[3]  
Note that the data registers are filled with decoded VBI data  
even if their corresponding detection bits are low; it is likely  
that bits within the decoded data stream are wrong.  
Logic 1 for this bit indicates that the data in the CGMS1, 2, 3  
registers is valid. The CGMSD bit goes high if a valid CRC  
checksum has been calculated from a received CGMS packet.  
The closed captioning data (CCAP) is available in the I2C  
registers and is also inserted into the output video data stream  
during horizontal blanking.  
When CGMSD is 0, no CGMS transmission is detected and  
confidence in the decoded data is low.  
The Gemstar-compatible data is not available in the I2C  
registers and is inserted into the data stream only during  
horizontal blanking.  
When CGMSD is 1, the CGMS sequence is decoded and  
confidence in the decoded data is high.  
CRC_ENABLE CRC, Address 0xB2[2]  
WSSD Wide Screen Signaling Detected, Address 0x90[0]  
For certain video sources, the CRC data bits can have an invalid  
format. In these circumstances, the CRC checksum validation  
procedure can be disabled. The CGMSD bit goes high if the  
rising edge of the start bit is detected within a time window.  
Logic 1 for this bit indicates the data in the WSS1 and WSS2  
registers is valid.  
The WSSD bit goes high if the rising edge of the start bit is  
detected within a time window and if the polarity of the parity  
bit matches the data transmitted.  
When CRC_ENABLE is 0, no CRC check is performed. The  
CGMSD bit goes high if the rising edge of the start bit is  
detected within a time window.  
When WSSD is 0, no WSS is detected and confidence in the  
decoded data is low.  
When CRC_ENABLE is 1 (default), CRC checksum is used to  
validate the CGMS sequence. The CGMSD bit goes high for a  
valid checksum. The default is ADIs recommended setting.  
When WSSD is 1, WSS is detected and confidence in the  
decoded data is high.  
Rev. B | Page 47 of 100  
 
ADV7183B  
Wide Screen Signaling Data  
EDTV Data Registers  
WSS1[7:0], Address 0x91[7:0],  
WSS2[7:0], Address 0x92[7:0]  
EDTV1[7:0], Address 0x93[7:0],  
EDTV2[7:0], Address 0x94[7:0],  
EDTV3[7:0], Address 0x95[7:0]  
Figure 31 shows the bit correspondence between the analog  
video waveform and the WSS1/WSS2 registers. WSS2[7:6] are  
undetermined and should be masked out by software.  
Figure 32 shows the bit correspondence between the analog  
video waveform and the EDTV1/EDTV2/EDTV3 registers.  
EDTV3[7:6] are undetermined and should be masked out by  
software. EDTV3[5] is reserved for future use and, for now,  
contains 0. The 3 LSBs of the EDTV waveform are currently not  
supported.  
WSS1[7:0]  
WSS2[5:0]  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
11.0μs  
38.4μs  
42.5μs  
Figure 31. WSS Data Extraction  
Table 58. WSS Access Information  
Signal Name  
Register Location  
Address  
Register Default Value  
Readback Only  
Readback Only  
WSS1[7:0]  
WSS2[5:0]  
WSS 1[7:0]  
WSS 2[5:0]  
145d  
146d  
0x91  
0x92  
EDTV1[7:0]  
EDTV2[7:0]  
EDTV3[5:0]  
0
1
2
NOT SUPPORTED  
4 5  
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
Figure 32. EDTV Data Extraction  
Table 59. EDTV Access Information  
Signal Name  
EDTV1[7:0]  
EDTV2[7:0]  
EDTV3[7:0]  
Register Location  
Address  
Register Default Value  
Readback only  
Readback only  
EDTV 1[7:0]  
EDTV 2[7:0]  
EDTV 3[7:0]  
147d  
148d  
149d  
0x93  
0x94  
0x95  
Readback only  
Rev. B | Page 48 of 100  
ADV7183B  
Closed Caption Data Registers  
CGMS Data Registers  
CCAP1[7:0], Address 0x99[7:0],  
CCAP2[7:0], Address 0x9A[7:0]  
CGMS1[7:0], Address 0x96[7:0],  
CGMS2[7:0], Address 0x97[7:0],  
CGMS3[7:0], Address 0x98[7:0]  
Figure 34 shows the bit correspondence between the analog  
video waveform and the CCAP1/CCAP2 registers.  
Figure 33 shows the bit correspondence between the analog  
video waveform and the CGMS1/CGMS2/CGMS3 registers.  
CGMS3[7:4] are undetermined and should be masked out by  
software.  
CCAP1[7] contains the parity bit from the first word.  
CCAP2[7] contains the parity bit from the second word.  
Refer to the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section.  
+100 IRE  
REF  
CGMS1[7:0]  
CGMS2[7:0]  
CGMS3[3:0]  
+70 IRE  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0 IRE  
49.1ms ± 0.5μs  
–40 IRE  
11.2μs  
CRC SEQUENCE  
2.235μs ± 20ns  
Figure 33. CGMS Data Extraction  
Table 60. CGMS Access Information  
Signal Name  
CGMS1[7:0]  
CGMS2[7:0]  
CGMS3[3:0]  
Register Location  
Address  
Register Default Value  
Readback only  
Readback only  
CGMS 1[7:0]  
CGMS 2[7:0]  
CGMS 3[3:0]  
150d  
151d  
152d  
0x96  
0x97  
0x98  
Readback only  
10.5 ± 0.25μs  
12.91μs  
7 CYCLES  
OF 0.5035MHz  
(CLOCK RUN-IN)  
CCAP1[7:0]  
2 3 5 6  
CCAP2[7:0]  
0
1
4
7
0
1 2  
3
4 5  
6
7
S
T
A
R
T
P
A
R
I
T
Y
P
A
R
I
T
Y
50 IRE  
40 IRE  
BYTE 0  
BYTE 1  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003μs  
27.382μs  
33.764μs  
Figure 34. Closed Caption Data Extraction  
Table 61. CCAP Access Information  
Signal Name  
CCAP1[7:0]  
CCAP2[7:0]  
Register Location  
Address  
Register Default Value  
Readback only  
Readback only  
CCAP1[7:0]  
CCAP2[7:0]  
153d  
154d  
0x99  
0x9A  
Rev. B | Page 49 of 100  
ADV7183B  
LB_LCT[7:0] Letterbox Line Count Top, Address  
0x9B[7:0], LB_LCM[7:0] Letterbox Line Count Mid,  
Address 0x9C[7:0], LB_LCB[7:0] Letterbox Line Count  
Bottom, Address 0x9D[7:0]  
Letterbox Detection  
Incoming video signals may conform to different aspect ratios  
(16:9 wide screen of 4:3 standard). For certain transmissions in  
the wide screen format, a digital sequence (WSS) is transmitted  
with the video signal. If a WSS sequence is provided, the aspect  
ratio of the video can be derived from the digitally decoded bits  
WSS contains.  
Table 62. LB_LCx Access Information  
Signal Name  
LB_LCT[7:0]  
LB_LCM[7:0]  
LB_LCB[7:0]  
Address  
Register Default Value  
0x9B  
0x9C  
0x9D  
Readback only  
Readback only  
Readback only  
In the absence of a WSS sequence, letterbox detection may be  
used to find wide screen signals. The detection algorithm  
examines the active video content of lines at the start and end of  
a field. If black lines are detected, this indicates that the picture  
currently displayed is in wide screen format.  
LB_TH[4:0] Letterbox Threshold Control, Address  
0xDC[4:0]  
Table 63. LB_TH Function  
LB_TH[4:0]  
Description  
The active video content (luminance magnitude) over a line of  
video is summed together. At the end of a line, this accumulated  
value is compared with a threshold, and a decision is made as to  
whether or not a particular line is black. The threshold value  
needed depends on the type of input signal; some control is  
provided via LB_TH[4:0].  
01100 (default)  
01101 to 10000  
Default threshold for detection of black lines  
Increase threshold (need larger active video  
content before identifying nonblack lines)  
Decrease threshold (even small noise levels  
can cause the detection of nonblack lines)  
00000 to 01011  
Detection at the Start of a Field  
LB_SL[3:0] Letterbox Start Line, Address 0xDD[7:4]  
The ADV7183B expects a section of at least six consecutive  
black lines of video at the top of a field. Once those lines are  
detected, Register LB_LCT[7:0] reports back the number of  
black lines actually found. By default, the ADV7183B starts  
looking for those black lines in sync with the beginning of  
active video, for example, straight after the last VBI video line.  
LB_SL[3:0] allows the user to set the start of letterbox detection  
from the beginning of a frame on a line-by-line basis. The  
detection window closes in the middle of the field.  
The LB_SL[3:0] bits are set at 0100b by default. This means the  
letterbox detection window starts after the EDTV VBI data line.  
For an NTSC signal, this window is from Line 23 to Line 286.  
Changing the bits to 0101, the detection window starts on  
Line 24 and ends on Line 287.  
LB_EL[3:0] Letterbox End Line, Address 0xDD[3:0]  
The LB_EL[3:0] bits are set at 1101b by default. This means the  
letterbox detection window ends with the last active video line.  
For an NTSC signal, this window is from Line 262 to Line 525.  
Detection at the End of a Field  
The ADV7183B expects at least six continuous lines of black  
video at the bottom of a field before reporting back the number  
of lines actually found via the LB_LCB[7:0] value. The activity  
window for letterbox detection (end of field) starts in the  
middle of an active field. Its end is programmable via  
LB_EL[3:0].  
Changing the bits to 1100, the detection window starts on  
Line 261 and ends on Line 254.  
Gemstar Data Recovery  
The Gemstar-compatible data recovery block (GSCD) supports  
1× and 2× data transmissions. It can also serve as a closed  
caption decoder. Gemstar-compatible data transmissions can  
occur only in NTSC. Closed caption data can be decoded in  
both PAL and NTSC.  
Detection at the Midrange  
Some transmissions of wide screen video include subtitles  
within the lower black box. If the ADV7183B finds at least two  
black lines followed by some more nonblack video, for example,  
the subtitle, and is then followed by the remainder of the  
bottom black block, it reports back a midcount via LB_LCM[7:0].  
If no subtitles are found, LB_LCM[7:0] reports the same number  
as LB_LCB[7:0].  
The block is configured via I2C in the following ways:  
GDECEL[15:0] allow data recovery on selected video lines  
on even fields to be enabled and disabled.  
GDECOL[15:0] enable the data recovery on selected lines  
for odd fields.  
GDECAD configures the way in which data is embedded  
in the video data stream.  
There is a 2-field delay in the reporting of any line count  
parameters.  
There is no letterbox detected bit. The user is asked to read the  
LB_LCT[7:0] and LB_LCB[7:0] register values and to conclude  
whether or not the letterbox-type video is present in software.  
Rev. B | Page 50 of 100  
ADV7183B  
Entries within the packet are as follows:  
The recovered data is not available through I2C, but is inserted  
into the horizontal blanking period of an ITU-R BT656-com-  
patible data stream. The data format is intended to comply with  
the recommendation by the International Telecommunications  
Union, ITU-R BT.1364. For more information, see the ITU  
website at www.itu.ch. See Figure 35.  
Fixed preamble sequence of 0x00, 0xFF, 0xFF.  
Data identification word (DID). The value for the DID  
marking a Gemstar or CCAP data packet is 0x140  
(10-bit value).  
The format of the data packet depends on the following criteria:  
Secondary data identification word (SDID) contains  
information about the video line from which data was  
retrieved, whether the Gemstar transmission was of 1× or  
2× format, and whether it was retrieved from an even or  
odd field.  
Transmission is 1× or 2×.  
Data is output in 8-bit or 4-bit format (see the description  
of the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] bit).  
Data count byte, giving the number of user data-words that  
follow.  
Data is closed caption (CCAP) or Gemstar-compatible.  
User data section.  
Data packets are output if the corresponding enable bit is set  
(see the GDECEL and GDECOL descriptions) and if the  
decoder detects the presence of data. This means that for video  
lines where no data has been decoded, no data packet is output  
even if the corresponding line enable bit is set.  
Optional padding to ensure the length of the user data-  
word section of a packet is a multiple of four bytes  
(requirement as set in ITU-R BT.1364).  
Checksum byte.  
Each data packet starts immediately after the EAV code of the  
preceding line. See Figure 35 and Table 64, which show the  
overall structure of the data packet.  
Table 64 lists the values within a generic data packet that is  
output by the ADV7183B in 8-bit format.  
DATA IDENTIFICATION  
SECONDARY DATA IDENTIFICATION  
DATA  
COUNT  
OPTIONAL PADDING CHECK  
00  
FF  
FF  
DID  
SDID  
USER DATA  
BYTES  
SUM  
PREAMBLE FOR ANCILLARY DATA  
USER DATA (4 OR 8 WORDS)  
Figure 35. Gemstar and CCAP Embedded Data Packet (Generic)  
Table 64. Generic Data Output Packet  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
0
Description  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
2X  
0
Line[3:0]  
DC[1]  
0
0
SDID  
5
0
0
DC[0]  
0
0
Data count (DC)  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
6
0
0
Word1[7:4]  
Word1[3:0]  
Word2[7:4]  
Word2[3:0]  
Word3[7:4]  
Word3[3:0]  
Word4[7:4]  
Word4[3:0]  
0
0
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
0
0
Rev. B | Page 51 of 100  
ADV7183B  
Table 65. Data Byte Allocation  
Raw Information Bytes  
Retrieved from the Video Line  
User Data-Words  
(Including Padding)  
2×  
1
1
0
0
GDECAD  
Padding Bytes  
DC[1:0]  
10  
01  
01  
01  
4
4
2
2
0
1
0
1
8
4
4
4
0
0
0
2
Gemstar Bit Names  
CS[8:2]. The checksum is provided to determine the  
integrity of the ancillary data packet. It is calculated by  
summing up D[8:2] of DID, SDID, the Data Count byte,  
and all UDWs, and ignoring any overflow during the  
summation. Since all data bytes that are used to calculate  
the checksum have their two LSBs set to 0, the CS[1:0] bits  
are also always 0.  
DID. The data identification value is 0x140 (10-bit value).  
Care has been taken that in 8-bit systems, the two LSBs do  
not carry vital information.  
EP and !EP. The EP bit is set to ensure even parity on the  
data-word D[8:0]. Even parity means there will always be  
an even number of 1s within the D[8:0] bit arrangement.  
This includes the EP bit. !EP describes the logic inverse of  
EP and is output on D[9]. The !EP is output to ensure that  
the reserved codes of 00 and FF cannot happen.  
!CS[8] describes the logic inversion of CS[8]. The value  
!CS[8] is included in the checksum entry of the data packet  
to ensure the reserved values of 0x00 and 0xFF do not  
occur.  
EF. Even field identifier. EF = 1 indicates that the data was  
recovered from a video line on an even field.  
Table 66 to Table 71 outline the possible data packages.  
Gemstar 2× Format, Half-Byte Output Mode  
2X. This bit indicates whether the data sliced was in  
Gemstar 1× or 2× format. A high indicates 2× format.  
Half-byte output mode is selected by setting CDECAD = 0;  
full-byte output mode is selected by setting CDECAD = 1.  
See the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section.  
Line[3:0]. This entry provides a code that is unique for  
each of the possible 16 source lines of video from which  
Gemstar data can be retrieved. Refer to Table 74 and  
Table 75.  
Gemstar 1× Format  
Half-byte output mode is selected by setting CDECAD = 0;  
full-byte output mode is selected by setting CDECAD = 1.  
See the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section.  
DC[1:0]. Data count value. The number of user data-words  
in the packet divided by 4. The number of user data-words  
(UDW) in any packet must be an integral number of 4.  
Padding is required at the end, if necessary, as set in  
ITU-R BT.1364. See Table 65.  
The 2X bit determines whether the raw information  
retrieved from the video line was 2 or 4 bytes. The state of  
the GDECAD bit affects whether the bytes are transmitted  
straight (that is, two bytes transmitted as two bytes) or  
whether they are split into nibbles (that is, two bytes  
transmitted as four half bytes). Padding bytes are then  
added where necessary.  
Rev. B | Page 52 of 100  
ADV7183B  
Table 66. Gemstar 2× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
Line[3:0]  
0
0
SDID  
1
5
0
0
0
0
0
Data count  
1
0
6
0
0
Gemstar Word1[7:4]  
Gemstar Word1[3:0]  
Gemstar Word2[7:4]  
Gemstar Word2[3:0]  
Gemstar Word3[7:4]  
Gemstar Word3[3:0]  
Gemstar Word4[7:4]  
Gemstar Word4[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 67. Gemstar 2× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
Description  
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
0
Line[3:0]  
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
0
0
Data count  
1
6
Gemstar Word1[7:0]  
Gemstar Word2[7:0]  
Gemstar Word3[7:0]  
Gemstar Word4[7:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
8
0
0
9
0
0
10  
!CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 68. Gemstar 1× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
3
0
1
0
1
0
Line[3:0]  
0
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
SDID  
0
5
0
0
0
0
0
0
Data count  
1
6
0
0
Gemstar Word1[7:4]  
Gemstar Word1[3:0]  
Gemstar Word2[7:4]  
Gemstar Word2[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Checksum  
Rev. B | Page 53 of 100  
ADV7183B  
Table 69. Gemstar 1× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
Line[3:0]  
0
0
SDID  
5
0
0
0
0
Data count  
0
1
6
Gemstar Word1[7:0]  
Gemstar Word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
!CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 70. NTSC CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
SDID  
0
5
0
0
0
0
Data count  
6
0
0
CCAP Word1[7:4]  
CCAP Word1[3:0]  
CCAP Word2[7:4]  
CCAP Word2[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 71. NTSC CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data count  
6
CCAP Word1[7:0]  
CCAP Word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
!CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Rev. B | Page 54 of 100  
ADV7183B  
NTSC CCAP Data  
PAL CCAP Data  
Half-byte output mode is selected by setting CDECAD = 0;  
the full-byte mode is enabled by CDECAD = 1. See the  
GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section. The data packet formats are  
shown in Table 72 and Table 73.  
Half-byte output mode is selected by setting CDECAD = 0;  
full-byte output mode is selected by setting CDECAD = 1.  
See the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section.  
Table 72 and Table 73 list the bytes of the data packet.  
Only closed caption data can be embedded in the output  
data stream.  
Only closed caption data can be embedded in the output data  
stream. PAL closed caption data is sliced from Line 22 and  
Line 335. The corresponding enable bits have to be set.  
NTSC closed caption data is sliced on Line 21d on even and  
odd fields. The corresponding enable bit has to be set high.  
See the and the GDECOL[15:0] Gemstar Decoding Odd Lines,  
Address 0x4A[7:0]; Address 0x4B[7:0] sections.  
See the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] and GDECOL[15:0] Gemstar Decoding Odd  
Lines, Address 0x4A[7:0]; Address 0x4B[7:0] sections.  
Table 72. PAL CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
SDID  
0
5
0
0
0
0
Data count  
6
0
0
CCAP Word1[7:4]  
CCAP Word1[3:0]  
CCAP Word2[7:4]  
CCAP Word2[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 73. PAL CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
Description  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data count  
6
CCAP Word1[7:0]  
CCAP Word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
!CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Rev. B | Page 55 of 100  
ADV7183B  
Table 74. NTSC Line Enable Bits and  
Corresponding Line Numbering  
Line Number  
GDECEL[15:0] Gemstar Decoding Even Lines,  
Address 0x48[7:0]; Address 0x49[7:0]  
The 16 bits of the GDECEL[15:0] are interpreted as a collection  
of 16 individual line decode enable signals. Each bit refers to a  
line of video in an even field. Setting the bit enables the decoder  
block trying to find Gemstar or closed caption-compatible data  
on that particular line. Setting the bit to 0 prevents the decoder  
from trying to retrieve data. See Table 74 and Table 75.  
Line[3:0] (ITU-R BT.470)  
Enable Bit  
Comment  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
0
1
2
3
4
5
6
7
8
9
10  
11  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[8]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
To retrieve closed caption data services on NTSC (Line 284),  
GDECEL[11] must be set.  
To retrieve closed caption data services on PAL (Line 335),  
GDECEL[14] must be set.  
The default value of GDECEL[15:0] is 0x0000. This setting  
instructs the decoder not to attempt to decode Gemstar or  
CCAP data from any line in the even field.  
Gemstar or  
closed caption  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
22  
23  
24  
25  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[8]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
GDECOL[15:0] Gemstar Decoding Odd Lines,  
Address 0x4A[7:0]; Address 0x4B[7:0]  
The 16 bits of the GDECOL[15:0] form a collection of 16  
individual line decode enable signals. See Table 74 and Table 75.  
273 (10)  
274 (11)  
275 (12)  
276 (13)  
277 (14)  
278 (15)  
279 (16)  
280 (17)  
281 (18)  
282 (19)  
283 (20)  
284 (21)  
To retrieve closed caption data services on NTSC (Line 21),  
GDECOL[11] must be set.  
To retrieve closed caption data services on PAL (Line 22),  
GDECOL[14] must be set.  
The default value of GDECOL[15:0] is 0x0000. This setting  
instructs the decoder not to attempt to decode Gemstar or  
CCAP data from any line in the odd field.  
GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0]  
Gemstar or  
closed caption  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
The decoded data from Gemstar-compatible transmissions or  
closed caption is inserted into the horizontal blanking period of  
the respective line of video. There is a potential problem if the  
retrieved data bytes have the value 0x00 or 0xFF. In an  
ITU-R BT.656-compatible data stream, those values are  
reserved and used only to form a fixed preamble.  
12  
13  
14  
15  
285 (22)  
286 (23)  
287 (24)  
288 (25)  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
The GDECAD bit allows the data to be inserted into the  
horizontal blanking period in two ways:  
Insert all data straight into the data stream, even the  
reserved values of 0x00 and 0xFF, if they occur. This can  
violate the output data format specification ITU-R BT.1364.  
Split all data into nibbles and insert the half-bytes over  
double the number of cycles in a 4-bit format.  
When GDECAD is 0, the data is split into half-bytes and  
inserted (default).  
When GDECAD is 1, the data is output straight in 8-bit format.  
Rev. B | Page 56 of 100  
ADV7183B  
6
4
Table 75. PAL Line Enable Bits and Corresponding Line  
Numbering  
Line Number  
Line[3:0] (ITU-R BT.470)  
2
Enable Bit  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[8]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[8]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
Comment  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
0
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
321 (8)  
322 (9)  
323 (10)  
324 (11)  
325 (12)  
326 (13)  
327 (14)  
328 (15)  
329 (16)  
330 (17)  
331 (18)  
332 (19)  
333 (20)  
334 (21)  
335 (22)  
336 (23)  
–2  
–4  
–6  
–8  
–10  
–12  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
Figure 36. NTSC IF Compensation Filter Responses  
6
4
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
2
0
–2  
–4  
–6  
–8  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
FREQUENCY (MHz)  
Figure 37. PAL IF Compensation Filter Responses  
See Table 86 for programming details.  
I2C Interrupt System  
The ADV7183B has a comprehensive interrupt register set. This  
map is located in Register Access Page 2. See Table 84 for details  
of the interrupt register map.  
How to access this map is described in Figure 38.  
IF Compensation Filter  
IF FILTSEL[2:0] IF Filter Select Address 0xF8[2:0]  
2
COMMON I C SPACE  
ADDRESS 0x00 0x3F  
The IF FILTSEL[2:0] register allows the user to compensate for  
SAW filter characteristics on a composite input as observed on  
tuner outputs. Figure 36 and Figure 37 show IF filter  
compensation for NTSC and PAL.  
ADDRESS 0x0E BIT 6, 5 = 00b  
ADDRESS 0x0E BIT 6, 5 = 01b  
2
2
The options for this feature are as follows:  
I C SPACE  
I C SPACE  
REGISTER ACCESS PAGE 1  
ADDRESS 0x40 0xFF  
REGISTER ACCESS PAGE 2  
ADDRESS 0x40 0x4C  
Bypass mode (default)  
NORMAL REGISTER SPACE  
INTERRUPT REGISTER SPACE  
Figure 38. Register Access —Page 1 and Page 2  
NTSC—consists of three filter characteristics  
PAL—consists of three filter characteristics  
Rev. B | Page 57 of 100  
ADV7183B  
Interrupt Request Output Operation  
INTRQ_OP_SEL[1:0], Interrupt Duration Select  
Address 0x40 (Interrupt Space)[1:0]  
Table 77. INTRQ_OP_SEL  
INTRQ  
When an interrupt event occurs, the interrupt pin  
goes low with a programmable duration given by  
INTRQ_DUR_SEL[1:0]  
INTRQ_OP_SEL[1:0] Description  
00 (default)  
Open drain  
INTRQ_DURSEL[1:0], Interrupt Duration Select  
Address 0x40 (Interrupt Space)[7:6]  
Table 76. INTRQ_DUR_SEL  
01  
10  
11  
Drive low when active  
Drive high when active  
Reserved  
INTRQ_DURSEL[1:0] Description  
00 (default)  
3 Xtal periods  
Multiple Interrupt Events  
01  
10  
11  
15 Xtal periods  
63 Xtal periods  
Active until cleared  
If Interrupt Event 1 occurs and then Interrupt Event 2 occurs  
before the system controller has cleared or masked Interrupt  
Event 1, the ADV7183B will not generate a second interrupt  
signal. The system controller should check all unmasked  
interrupt status bits, as more than one can be active.  
When the active until cleared interrupt duration is selected and  
the event that caused the interrupt is no longer in force, the  
interrupt persists until it is masked or cleared.  
Macrovision Interrupt Selection Bits  
The user can select between pseudo sync pulse and color stripe  
detection as shown in this section.  
For example, if the ADV7183B loses lock, an interrupt is  
INTRQ  
generated and  
pin goes low. If the ADV7183B returns  
INTRQ  
to the locked state,  
continues to drive low until the  
MV_INTRQ_SEL[1:0], Macrovision Interrupt Selection  
Bits Address 0x40 (Interrupt Space)[5:4]  
Table 78. MV_INTRQ_SEL  
SD_LOCK bit is either masked or cleared.  
Interrupt Drive Level  
MV_INTRQ_SEL[1:0] Description  
00  
Reserved  
Pseudo sync only  
Color stripe only  
Either pseudo sync or color stripe  
The ADV7183B resets with open drain enabled and all  
01 (default)  
10  
11  
INTRQ  
interrupts masked off. Therefore,  
is in a high  
impedance state after reset. 01 or 10 has to be written to  
INTRQ_OP_SEL[1:0] for a logic level to be driven out from the  
INTRQ  
pin.  
Additional information relating to the interrupt system is  
detailed in Table 84.  
It is also possible to write to a register in the ADV7183B that  
manually asserts the  
INTRQ  
pin. This bit is MPU_STIM_INTRQ.  
Rev. B | Page 58 of 100  
ADV7183B  
PIXEL PORT CONFIGURATION  
SWPC Swap Pixel Cr/Cb, Address 0x27[7]  
The ADV7183B has a very flexible pixel port that can be confi-  
gured in a variety of formats to accommodate downstream ICs.  
Table 79 and Table 80 summarize the various functions that the  
ADV7183Bs pins can have in different modes of operation.  
This bit allows Cr and Cb samples to be swapped.  
When SWPC is 0 (default), no swapping is allowed.  
When SWPC is 1, the Cr and Cb values can be swapped.  
PAD_SEL[2:0], Address 0x8F[6:4]  
The ordering of components (for example, Cr versus Cb,  
CHA/B/C) can be changed. Refer to the section. Table 79  
indicates the default positions for the Cr/Cb components.  
This I2C write allows the user to select between the LLC1  
(nominally at 27 MHz) and LLC2 (nominally at 13.5 MHz).  
OF_SEL[3:0] Output Format Selection, Address 0x03[5:2]  
The modes in which the ADV7183B pixel port can be onfigured  
are under the control of OF_SEL[3:0]. See Table 80 for details.  
The LLC2 signal is useful for LLC2-compatible wide bus  
(16-bit) output modes. See the OF_SEL[3:0] Output Format  
Selection, Address 0x03[5:2] section for additional information.  
The LLC2 signal and data on the data bus are synchronized. By  
default, the rising edge of LLC1/LLC2 is aligned with the Y  
data; the falling edge occurs when the data bus holds C data.  
The polarity of the clock, and therefore the Y/C assignments to  
the clock edges, can be altered by using the Polarity LLC pin.  
The default LLC frequency output on the LLC1 pin is  
approximately 27 MHz. For modes that operate with a nominal  
data rate of 13.5 MHz (0001, 0010), the clock frequency on the  
LLC1 pin stays at the higher rate of 27 MHz. For information  
on outputting the nominal 13.5 MHz clock on the LLC1 pin, see  
the PAD_SEL[2:0], Address 0x8F[6:4] section.  
When LLC_PAD_SEL[2:0] is 000 (default), the output is  
nominally 27 MHz LLC on the LLC1 pin.  
When LLC_PAD_SEL[2:0] is 101, the output is nominally  
13.5 MHz LLC on the LLC1 pin.  
Table 79. P15 to P0 Output/Input Pin Mapping  
Data Port Pins P[15:0]  
Format, and Mode  
Video Out, 8-Bit, 4:2:2  
Video Out, 16-Bit, 4:2:2  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
YCrCb[7:0] OUT  
Y[7:0] OUT  
CrCb[7:0] OUT  
Table 80. Standard Definition Pixel Port Modes  
P[15: 0]  
OF_SEL[3:0]  
0010  
Format  
P[15:8]  
P[7: 0]  
16-bit @ LLC2 4:2:2  
Y[7:0]  
CrCb[7:0]  
0011 (default)  
0110-1111  
8-bit @ LLC1 4:2:2 (default)  
Reserved  
YCrCb[7:0] (default)  
Three-state  
Reserved. Do not use.  
Rev. B | Page 59 of 100  
 
ADV7183B  
MPU PORT DESCRIPTION  
The ADV7183B supports a 2-wire (I2C-compatible) serial inter-  
face. Two inputs, serial data (SDA) and serial clock (SCLK),  
carry information between the ADV7183B and the system I2C  
master controller. Each slave device is recognized by a unique  
address. The ADV7183Bs I2C port allows the user to set up and  
configure the decoder and to read back captured VBI data. The  
ADV7183B has two possible slave addresses for both read and  
write operations, depending on the logic level on the ALSB pin.  
These four unique addresses are shown in Table 81. The  
ADV7183Bs ALSB pin controls Bit 1 of the slave address. By  
altering the ALSB, it is possible to control two ADV7183Bs in  
an application without having a conflict with the same slave  
address. The LSB (Bit 0) sets either a read or write operation.  
Logic 1 corresponds to a read operation; Logic 0 corresponds to  
a write operation.  
address. The R/W bit determines the direction of the data.  
Logic 0 on the LSB of the first byte means the master writes  
information to the peripheral. Logic 1 on the LSB of the first  
byte means the master reads information from the peripheral.  
The ADV7183B acts as a standard slave device on the bus. The  
data on the SDA pin is eight bits long, supporting the 7-bit  
addresses and the R/W bit. The ADV7183B has 249 subad-  
dresses to enable access to the internal registers. It therefore  
interprets the first byte as the device address and the second  
byte as the starting subaddress. The subaddresses auto-increment,  
which allows data to be written to or read from the starting sub-  
address. A data transfer is always terminated by a stop condition.  
The user can also access any unique subaddress register on a  
one-by-one basis without updating all the registers.  
Table 81. I2C Address for the ADV7183B  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCLK high period,  
the user should only issue one start condition, one stop condition,  
or a single stop condition followed by a single start condition. If  
an invalid subaddress is issued by the user, the ADV7183B does  
not issue an acknowledge and returns to the idle condition.  
ALSB  
R/W  
Slave Address  
0
0
1
1
0
1
0
1
0x40  
0x41  
0x42  
0x43  
To control the device on the bus, a specific protocol must be  
followed. First, the master initiates a data transfer by  
If the user exceeds the highest subaddress in auto-increment  
mode, the following occurs:  
establishing a start condition, which is defined by a high-to-low  
transition on SDA while SCLK remains high. This indicates that  
an address/data stream will follow. All peripherals respond to  
the start condition and shift the next eight bits (7-bit address +  
R/W bit). The bits are transferred from MSB down to LSB. The  
peripheral that recognizes the transmitted address responds by  
pulling the data line low during the ninth clock pulse; this is  
known as an acknowledge bit. All other devices withdraw from  
the bus at this point and maintain an idle condition. The idle  
condition is where the device monitors the SDA and SCLK lines,  
waiting for the start condition and the correct transmitted  
In read mode, the highest subaddress register contents  
continue to be output until the master device issues a  
no-acknowledge. This indicates the end of a read. A no  
acknowledge condition is where the SDA line is not pulled  
low on the ninth pulse.  
In write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no acknowledge is issued by  
the ADV7183B, and the part returns to the idle condition.  
SDATA  
SCLOCK  
S
P
1–7  
8
9
1–7  
8
9
1–7  
DATA  
8
9
START ADDR R/W ACK SUBADDRESS ACK  
ACK  
STOP  
Figure 39. Bus Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S) SUB ADDR  
LSB = 0  
A(S)  
DATA  
A(S)  
DATA  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S) SUB ADDR  
A(S)  
S
SLAVE ADDR A(S)  
DATA  
A(M)  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 40. Read and Write Sequence  
Rev. B | Page 60 of 100  
 
ADV7183B  
I2C SEQUENCER  
REGISTER ACCESSES  
An I2C sequencer is used when a parameter exceeds eight bits  
and is, therefore, distributed over two or more I2C registers,  
such as HSB[11:0].  
The MPU can write to or read from most of the ADV7183Bs  
registers, except the registers that are read only or write only.  
The subaddress register determines which register the next read  
or write operation accesses. All communications with the part  
through the bus start with an access to the subaddress register.  
Next, a read/write operation is performed from/to the target  
address, which then increments to the next address until a stop  
command on the bus is performed.  
When such a parameter is changed using two or more I2C write  
operations, the parameter can hold an invalid value for the time  
between the first I2C completion and the last I2C completion.  
This means, the top bits of the parameter can already hold the  
new value while the remaining bits of the parameter still hold  
the previous value.  
REGISTER PROGRAMMING  
To avoid this problem, the I2C sequencer holds the already  
updated bits of the parameter in local memory; all bits of the  
parameter are updated together once the last register write  
operation has completed.  
This section describes the configuration of each register. The  
communications register is an 8-bit, write only register. After  
the part has been accessed over the bus and a read/write  
operation is selected, the subaddress is set up. The subaddress  
register determines to/from which register the operation takes  
place. Table 82 lists the various operations under the control of  
the subaddress register for the control port.  
The correct operation of the I2C sequencer relies on the  
following:  
All I2C registers for the target parameter must be written to  
in order of ascending addresses. For example, for  
HSB[10:0], write to Address 0x34 first, followed by 0x35.  
Register Select (SR7 to SR0)  
These bits are set up to point to the required starting address.  
No other I2C can take place between the two (or more) I2C  
writes for the sequence. For example, for HSB[10:0], write  
to Address 0x34 first, immediately followed by 0x35.  
Rev. B | Page 61 of 100  
 
ADV7183B  
IP2PC REGISTER MAPS  
Table 82. Common and Normal (Page 1) Register Map Details  
Subaddress  
Hex  
Register Name  
Input Control  
Reset Value  
0000 0000  
1100 1000  
0000 0100  
0000 1100  
01xx 0101  
0000 0000  
0000 0010  
0111 1111  
1000 0000  
1000 0000  
0000 0000  
0000 0000  
0011 0110  
0111 1100  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0001 0010  
0100 xxxx  
xxxx xxxx  
0000 0001  
1001 0011  
1111 0001  
xxxx xxxx  
0000 0xxx  
xxxx xxxx  
0101 1000  
xxxx xxxx  
1110 0001  
1010 1110  
1111 0100  
0000 0000  
1111 xxxx  
xxxx xxxx  
0001 0010  
0100 0001  
1000 0100  
0000 0000  
0000 0010  
0000 0000  
0000 0001  
1000 0000  
1100 0000  
0001 0000  
xxxx xxxx  
0100 0011  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
r
Dec  
0
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
Video Selection  
Reserved  
1
2
Output Control  
Extended Output Control  
Reserved  
3
4
5
Reserved  
6
Autodetect Enable  
Contrast  
7
8
Reserved  
9
Brightness  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26 to 28  
29  
30 to 38  
39  
40 to 42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59 to 60  
61  
Hue  
Default Value Y  
Default Value C  
ADI Control  
Power Management  
Status 1  
Ident  
r
Status 2  
r
Status 3  
r
Analog Clamp Control  
Digital Clamp Control 1  
Reserved  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Shaping Filter Control  
Shaping Filter Control 2  
Comb Filter Control  
Reserved  
0x1A to 0x1C  
ADI Control 2  
0x1D  
Reserved  
0x1E to 0x26  
0x27  
Pixel Delay Control  
Reserved  
0x28 to 0x2A  
0x2B  
Misc Gain Control  
AGC Mode Control  
Chroma Gain Control 1  
Chroma Gain Control 2  
Luma Gain Control 1  
Luma Gain Control 2  
Vsync Field Control 1  
Vsync Field Control 2  
Vsync Field Control 3  
Hsync Position Control 1  
Hsync Position Control 2  
Hsync Position Control 3  
Polarity  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
NTSC Comb Control  
PAL Comb Control  
ADC Control  
0x38  
0x39  
0x3A  
Reserved  
0x3B to 0x3C  
0x3D  
Manual Window Control  
Rev. B | Page 62 of 100  
 
ADV7183B  
Subaddress  
Hex  
Register Name  
Reserved  
Reset Value  
xxxx xxxx  
0100 0001  
xxxx xxxx  
00000000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxx0  
1110 1111  
0000 1000  
xxxx xxxx  
0000 1000  
0010 0100  
xxxx xxxx  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0001 1100  
xxxx xxxx  
xxxx xxxx  
0xxx xxxx  
xxxx xxxx  
1010 1100  
0100 1100  
0000 0000  
0000 0000  
0001 0100  
1000 0000  
1000 0000  
1000 0000  
1000 0000  
0010 0101  
0000 0100  
0110 0011  
0110 0101  
0001 0100  
0110 0011  
xxxx xxxx  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
w
Dec  
62 to 64  
65  
0x3E to 0x40  
0x41  
Resample Control  
Reserved  
66 to 71  
72  
0x42 to 0x47  
0x48  
Gemstar Ctrl 1  
Gemstar Ctrl 2  
Gemstar Ctrl 3  
Gemstar Ctrl 4  
GemStar Ctrl 5  
CTI DNR Ctrl 1  
CTI DNR Ctrl 2  
Reserved  
73  
0x49  
74  
0x4A  
75  
0x4B  
76  
0x4C  
77  
0x4D  
78  
0x4E  
79  
0x4F  
CTI DNR Ctrl 4  
Lock Count  
Reserved  
80  
0x50  
81  
0x51  
82 to 142  
143  
0x52 to 0x8E  
0x8F  
Free-Run Line Length 1  
Reserved  
w
144  
0x90  
VBI Info  
r
144  
0x90  
WSS 1  
r
145  
0x91  
WSS 2  
r
146  
0x92  
EDTV 1  
r
147  
0x93  
EDTV 2  
r
148  
0x94  
EDTV 3  
r
149  
0x95  
CGMS 1  
r
150  
0x96  
CGMS 2  
r
151  
0x97  
CGMS 3  
r
152  
0x98  
CCAP1  
r
153  
0x99  
CCAP2  
r
154  
0x9A  
Letterbox 1  
Letterbox 2  
Letterbox 3  
Reserved  
r
155  
0x9B  
r
156  
0x9C  
r
157  
0x9D  
rw  
w
158 to 177  
178  
0x9E to 0xB1  
0xB2  
CRC Enable  
Reserved  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
179 to 194  
195  
0xB2 to 0xC2  
0xC3  
ADC Switch 1  
ADC Switch 2  
Reserved  
196  
0xC4  
197 to 219  
220  
0xC5 to 0xDB  
0xDC  
0xDD  
0xDE  
Letterbox Control 1  
Letterbox Control 2  
Reserved  
221  
222  
Reserved  
223  
0xDF  
Reserved  
224  
0xE0  
SD Offset Cb  
SD Offset Cr  
SD Saturation Cb  
SD Saturation Cr  
NTSC V Bit Begin  
NTSC V Bit End  
NTSC F Bit Toggle  
PAL V Bit Begin  
PAL V Bit End  
PAL F Bit Toggle  
Reserved  
225  
0xE1  
226  
0xE2  
227  
0xE3  
228  
0xE4  
229  
0xE5  
230  
0xE6  
231  
0xE7  
232  
0xE8  
233  
0xE9  
234  
0xEA  
235 to 243  
0xEB to 0xF3  
Rev. B | Page 63 of 100  
ADV7183B  
Subaddress  
Hex  
Register Name  
Drive Strength  
Reserved  
Reset Value  
xx01 0101  
xxxx xxxx  
rw  
rw  
rw  
rw  
rw  
Dec  
244  
0xF4  
245 to 247  
248  
0xF5 to 0xF7  
IF Comp Control  
VS Mode Control  
0000 0000  
0000 0000  
0xF8  
0xF9  
249  
Table 83. Common and Normal (Page 1) Register Map Bit Names  
Register Name  
Input Control  
Video Selection  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VID_SEL.3  
VID_SEL.2  
ENHSPLL  
VID_SEL.1  
BETACAM  
VID_SEL.0  
INSEL.3  
INSEL.2  
INSEL.1  
INSEL.0  
ENVSPROC  
Output Control  
Extended Output Control  
Reserved  
VBI_EN  
TOD  
OF_SEL.3  
OF_SEL.2  
OF_SEL.1  
TIM_OE  
OF_SEL.0  
BL_C_VBI  
SD_DUP_AV  
RANGE  
BT656-4  
EN_SFL_PI  
Reserved  
AD_SEC525_EN  
CON.7  
AD_SECAM_EN  
CON.6  
Autodetect Enable  
Contrast  
AD_N443_EN  
CON.5  
AD_P60_EN  
CON.4  
AD_PALN_EN  
CON.3  
AD_PALM_EN  
CON.2  
AD_NTSC_EN  
CON.1  
AD_PAL_EN  
CON.0  
Reserved  
Brightness  
BRI.7  
BRI.6  
BRI.5  
BRI.4  
BRI.3  
BRI.2  
BRI.1  
BRI.0  
Hue  
HUE.7  
DEF_Y.5  
HUE.6  
DEF_Y.4  
HUE.5  
DEF_Y.3  
HUE.4  
DEF_Y.2  
HUE.3  
DEF_Y.1  
HUE.2  
DEF_Y.0  
HUE.1  
HUE.0  
Default Value Y  
DEF_VAL_  
AUTO_EN  
DEF_VAL_EN  
Default Value C  
ADI Control  
DEF_C.7  
DEF_C.6  
DEF_C.5  
DEF_C.4  
DEF_C.3  
DEF_C.2  
DEF_C.1  
DEF_C.0  
SUB_USR_EN.0  
Power Management  
Status 1  
RES  
PWRDN  
PDBP  
COL_KILL  
IDENT.7  
AD_RESULT.2  
IDENT.6  
AD_RESULT.1  
IDENT.5  
AD_RESULT.0  
IDENT.4  
FOLLOW_PW  
IDENT.3  
FSC_LOCK  
IDENT.2  
LOST_LOCK  
IDENT.1  
IN_LOCK  
Ident  
IDENT.0  
Status 2  
FSC NSTD  
STD FLD LEN  
LL NSTD  
MV AGC DET  
MV PS DET  
SD_OP_50HZ  
MVCS T3  
GEMD  
MVCS DET  
INST_HLOCK  
FREE_RUN_ACT  
CCLEN  
Status 3  
PAL SW LOCK  
INTERLACE  
DCT.1  
Analog Clamp Control  
Digital Clamp Control 1  
Reserved  
DCT.0  
Shaping Filter Control  
Shaping Filter Control 2  
Comb Filter Control  
Reserved  
CSFM.2  
CSFM.1  
CSFM.0  
YSFM.4  
YSFM.3  
YSFM.2  
YSFM.1  
YSFM.0  
WYSFMOVR  
WYSFM.4  
WYSFM.3  
NSFSEL.1  
WYSFM.2  
NSFSEL.0  
WYSFM.1  
PSFSEL.1  
WYSFM.0  
PSFSEL.0  
ADI Control 2  
TRI_LLC  
SWPC  
EN28XTAL  
VS_JIT_  
COMP_EN  
Reserved  
AUTO_PDC_EN  
Pixel Delay Control  
Reserved  
CTA.2  
CTA.1  
CTA.0  
LTA.1  
LTA.0  
Misc Gain Control  
AGC Mode Control  
Chroma Gain Control 1  
Chroma Gain Control 2  
Luma Gain Control 1  
Luma Gain Control 2  
Vsync Field Control 1  
Vsync Field Control 2  
Vsync Field Control 3  
Hsync Position Control 1  
Hsync Position Control 2  
Hsync Position Control 3  
Polarity  
CKE  
PW_UPD  
CAGC.0  
CMG.8  
CMG.0  
LMG.8  
LAGC.2  
CAGT.0  
CMG.6  
LGAT.0  
LMG.6  
LAGC.1  
CMG.5  
LMG.5  
LAGC.0  
CMG.4  
CAGC.1  
CMG.9  
CMG.1  
LMG.9  
LMG.1  
CAGT.1  
CMG.7  
LAGT.1  
LMG.7  
CMG.11  
CMG.3  
LMG.11  
LMG.3  
CMG.10  
CMG.2  
LMG.10  
LMG.2  
LMG.4  
LMG.0  
NEWAVMODE  
HVSTIM  
VSBHO  
VSEHO  
VSBHE  
VSEHE  
HSB.10  
HSB.6  
HSE.6  
HSB.9  
HSB.5  
HSE.5  
PVS  
HSB.8  
HSB.4  
HSE.4  
HSE.10  
HSB.2  
HSE.2  
HSE.9  
HSB.1  
HSE.1  
HSE.8  
HSB.7  
HSB.3  
HSB.0  
HSE.0  
HSE.7  
HSE.3  
PHS  
PF  
PCLK  
NTSC Comb Control  
PAL Comb Control  
ADC Control  
CTAPSN.1  
CTAPSP.1  
CTAPSN.0  
CTAPSP.0  
CCMN.2  
CCMP.2  
CCMN.1  
CCMP.1  
CCMN.0  
CCMP.0  
PWRDN_AD C_0  
YCMN.2  
YCMP.2  
YCMN.1  
YCMN.0  
YCMP.0  
YCMP.1  
PWRDN_AD C_  
1
PWRDN_ADC_2  
Reserved  
Manual Window Control  
CKILLTHR.2  
CKILLTHR.1  
CKILLTHR.0  
Rev. B | Page 64 of 100  
ADV7183B  
Register Name  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Resample Control  
Reserved  
SFL_INV  
Gemstar Ctrl 1  
Gemstar Ctrl 2  
Gemstar Ctrl 3  
Gemstar Ctrl 4  
Gemstar Ctrl 5  
CTI DNR Ctrl 1  
CTI DNR Ctrl 2  
Reserved  
GDECEL.15  
GDECEL.7  
GDECOL.15  
GDECOL.7  
GDECEL.14  
GDECEL.6  
GDECOL.14  
GDECOL.6  
GDECEL.13  
GDECEL.5  
GDECOL.13  
GDECOL.5  
GDECEL.12  
GDECEL.4  
GDECOL.12  
GDECOL.4  
GDECEL.11  
GDECEL.3  
GDECOL.11  
GDECOL.3  
GDECEL.10  
GDECEL.2  
GDECOL.10  
GDECOL.2  
GDECEL.9  
GDECEL.1  
GDECOL.9  
GDECOL.1  
GDECEL.8  
GDECEL.0  
GDECOL.8  
GDECOL.0  
GDECAD  
CTI_EN  
DNR_EN  
CTI_AB.1  
CTI_AB.0  
CTI_AB_EN  
CTI_C_TH.1  
CTI_C_TH.7  
CTI_C_TH.6  
CTI_C_TH.5  
CTI_C_TH.4  
CTI_C_TH.3  
CTI_C_TH.2  
CTI_C_TH.0  
CTI DNR Ctrl 4  
Lock Count  
Reserved  
DNR_TH.7  
FSCLE  
DNR_TH.6  
SRLS  
DNR_TH.5  
COL.2  
DNR_TH.4  
COL.1  
DNR_TH.3  
COL.0  
DNR_TH.2  
CIL.2  
DNR_TH.1  
CIL.1  
DNR_TH.0  
CIL.0  
LLC_PAD_SEL.2  
LLC_PAD_SEL.1  
LLC_PAD_SEL.0  
Free-run Line Length 1  
Reserved  
VBI Info  
CGMSD  
EDTVD  
CCAPD  
WSSD  
WSS 1  
WSS1.7  
WSS1.6  
WSS1.5  
WSS1.4  
WSS1.3  
WSS1.2  
WSS1.1  
WSS1.0  
WSS 2  
WSS2.7  
WSS2.6  
WSS2.5  
WSS2.4  
WSS2.3  
WSS2.2  
WSS2.1  
WSS2.0  
EDTV 1  
EDTV1.7  
EDTV2.7  
EDTV3.7  
CGMS1.7  
CGMS2.7  
CGMS3.7  
CCAP1.7  
CCAP2.7  
LB_LCT.7  
LB_LCM.7  
LB_LCB.7  
EDTV1.6  
EDTV2.6  
EDTV3.6  
CGMS1.6  
CGMS2.6  
CGMS3.6  
CCAP1.6  
CCAP2.6  
LB_LCT.6  
LB_LCM.6  
LB_LCB.6  
EDTV1.5  
EDTV2.5  
EDTV3.5  
CGMS1.5  
CGMS2.5  
CGMS3.5  
CCAP1.5  
CCAP2.5  
LB_LCT.5  
LB_LCM.5  
LB_LCB.5  
EDTV1.4  
EDTV2.4  
EDTV3.4  
CGMS1.4  
CGMS2.4  
CGMS3.4  
CCAP1.4  
CCAP2.4  
LB_LCT.4  
LB_LCM.4  
LB_LCB.4  
EDTV1.3  
EDTV2.3  
EDTV3.3  
CGMS1.3  
CGMS2.3  
CGMS3.3  
CCAP1.3  
CCAP2.3  
LB_LCT.3  
LB_LCM.3  
LB_LCB.3  
EDTV1.2  
EDTV2.2  
EDTV3.2  
CGMS1.2  
CGMS2.2  
CGMS3.2  
CCAP1.2  
CCAP2.2  
LB_LCT.2  
LB_LCM.2  
LB_LCB.2  
EDTV1.1  
EDTV2.1  
EDTV3.1  
CGMS1.1  
CGMS2.1  
CGMS3.1  
CCAP1.1  
CCAP2.1  
LB_LCT.1  
LB_LCM.1  
LB_LCB.1  
EDTV1.0  
EDTV2.0  
EDTV3.0  
CGMS1.0  
CGMS2.0  
CGMS3.0  
CCAP1.0  
CCAP2.0  
LB_LCT.0  
LB_LCM.0  
LB_LCB.0  
EDTV 2  
EDTV 3  
CGMS 1  
CGMS 2  
CGMS 3  
CCAP1  
CCAP2  
Letterbox 1  
Letterbox 2  
Letterbox 3  
Reserved  
CRC Enable  
Reserved  
CRC_ENABLE  
ADC Switch 1  
ADC Switch 2  
ADC1_SW.3  
ADC1_SW.2  
LB_SL.2  
ADC1_SW.1  
LB_SL.1  
ADC1_SW.0  
ADC0_SW.3  
ADC2_SW.3  
ADC0_SW.2  
ADC2_SW.2  
ADC0_SW.1  
ADC2_SW.1  
ADC0_SW.0  
ADC2_SW.0  
ADC_SW_M  
AN  
Reserved  
Letterbox Control 1  
Letterbox Control 2  
Reserved  
LB_TH.4  
LB_SL.0  
LB_TH.3  
LB_EL.3  
LB_TH.2  
LB_EL.2  
LB_TH.1  
LB_EL.1  
LB_TH.0  
LB_EL.0  
LB_SL.3  
Reserved  
Reserved  
SD Offset Cb  
SD_OFF_CB.7  
SD_OFF_CR.7  
SD_SAT_CB.7  
SD_SAT_CR.7  
NVBEGDEL O  
NVENDDEL O  
NFTOGDEL O  
PVBEGDEL O  
PVENDDEL O  
PFTOGDEL O  
SD_OFF_CB.6  
SD_OFF_CR.6  
SD_SAT_CB.6  
SD_SAT_CR.6  
NVBEGDEL E  
NVENDDEL E  
NFTOGDEL E  
PVBEGDEL E  
PVENDDEL E  
PFTOGDEL E  
SD_OFF_CB.5  
SD_OFF_CR.5  
SD_SAT_CB.5  
SD_SAT_CR.5  
NVBEGSIGN  
NVENDSIGN  
NFTOGSIGN  
PVBEGSIGN  
PVENDSIGN  
PFTOGSIGN  
SD_OFF_CB.4  
SD_OFF_CR.4  
SD_SAT_CB.4  
SD_SAT_CR.4  
NVBEG.4  
SD_OFF_CB.3  
SD_OFF_CR.3  
SD_SAT_CB.3  
SD_SAT_CR.3  
NVBEG.3  
SD_OFF_CB.2  
SD_OFF_CR.2  
SD_SAT_CB.2  
SD_SAT_CR.2  
NVBEG.2  
SD_OFF_CB.1  
SD_OFF_CR .1  
SD_SAT_CB.1  
SD_SAT_CR.1  
NVBEG.1  
SD_OFF_CB.0  
SD_OFF_CR.0  
SD_SAT_CB.0  
SD_SAT_CR.0  
NVBEG.0  
SD Offset Cr  
SD Saturation Cb  
SD Saturation Cr  
NTSC V Bit Begin  
NTSC V Bit End  
NTSC F Bit Toggle  
PAL V Bit Begin  
PAL V Bit End  
PAL F Bit Toggle  
Reserved  
NVEND.4  
NVEND.3  
NVEND.2  
NVEND.1  
NVEND.0  
NFTOG.4  
NFTOG.3  
NFTOG.2  
NFTOG.1  
NFTOG.0  
PVBEG.4  
PVBEG.3  
PVBEG.2  
PVBEG.1  
PVBEG.0  
PVEND.4  
PVEND.3  
PVEND.2  
PVEND.1  
PVEND.0  
PFTOG.4  
PFTOG.3  
PFTOG.2  
PFTOG.1  
PFTOG.0  
Drive Strength  
Reserved  
DR_STR.1  
DR_STR.0  
DR_STR_C.1  
DR_STR_C.0  
DR_STR_S.1  
DR_STR_S.0  
IF Comp Control  
VS Mode Control  
IFFILTSEL.2  
IFFILTSEL.1  
IFFILTSEL.0  
VS_COAST_  
MODE.1  
VS_COAST_  
MODE.0  
EXTEND_VS_  
MIN_FREQ  
EXTEND_VS_  
MAX_FREQ  
Rev. B | Page 65 of 100  
ADV7183B  
I2C REGISTER MAP DETAILS  
The following registers are located in the Common I2C Map and Register Access Page 2.  
1
Table 84. Interrupt (Page 2) Register Map Bit Names  
F
Subaddress  
Register  
Name  
Reset  
Value  
rw  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Dec  
Hex  
Interrupt  
Config 0  
0001  
x000  
rw  
64  
0x40  
INTRQ_DUR  
_SEL.1  
INTRQ_DUR  
_SEL.0  
MV_INTRQ_  
SEL.1  
MV_INTRQ_  
SEL.0  
MPU_STIM_  
INTRQ  
INTRQ_OP_  
SEL.1  
INTRQ_OP_  
SEL.0  
Reserved  
65  
66  
0x41  
0x42  
Interrupt  
Status 1  
r
MV_PS_CS_  
Q
SD_FR_CHN  
G_Q  
SD_UNLOCK  
_Q  
SD_LOCK_Q  
Interrupt  
Clear 1  
x000  
0000  
w
rw  
67  
68  
0x43  
0x44  
MV_PS_CS_  
CLR  
SD_FR_CHN  
G_CLR  
SD_UNLOCK  
_CLR  
SD_LOCK_  
CLR  
Interrupt  
Maskb 1  
x000  
0000  
MV_PS_CS_  
MSKB  
SD_FR_CHN  
G_MSKB  
SD_UNLOCK  
_MSKB  
SD_LOCK_  
MSKB  
Reserved  
69  
70  
0x45  
0x46  
Interrupt  
Status 2  
r
MPU_STIM_  
INTRQ_Q  
WSS_  
CHNGD_Q  
CGMS_  
CHNGD_Q  
GEMD_Q  
CCAPD_Q  
Interrupt  
Clear 2  
0xxx  
0000  
w
rw  
71  
72  
0x47  
0x48  
MPU_STIM_  
INTRQ_CLR  
WSS_  
CHNGD_CLR  
CGMS_CHN  
GD_CLR  
GEMD_CLR  
CCAPD_CLR  
Interrupt  
Maskb 2  
0xxx  
0000  
MPU_STIM_  
INTRQ_  
MSKB  
WSS_  
CHNGD_  
MSKB  
CGMS_  
CHNGD_  
MSKB  
GEMD_  
MSKB  
CCAPD_  
MSKB  
Raw  
Status 3  
r
73  
74  
75  
76  
0x49  
0x4A  
0x4B  
0x4C  
SCM_LOCK  
SD_H_LOCK  
SD_V_LOCK  
SD_OP_  
50HZ  
Interrupt  
Status 3  
r
PAL_SW_LK  
_CHNG_Q  
SCM_LOCK_  
CHNG_Q  
SD_AD_  
CHNG_Q  
SD_H_LOCK  
_CHNG_Q  
SD_V_LOCK  
_CHNG_Q  
SD_OP_  
CHNG_Q  
Interrupt  
Clear 3  
xx00  
0000  
w
rw  
PAL_SW_LK  
_CHNG_CLR  
SCM_LOCK_  
CHNG_CLR  
SD_AD_CH  
NG_CLR  
SD_H_LOCK  
_CHNG_CLR  
SD_V_LOCK  
_CHNG_CLR  
SD_OP_  
CHNG_CLR  
Interrupt  
Maskb 3  
xx00  
0000  
PAL_SW_LK  
_CHNG_  
MSKB  
SCM_LOCK_  
CHNG_  
MSKB  
SD_AD_  
CHNG_  
MSKB  
SD_H_LOCK  
_CHNG_  
MSKB  
SD_V_LOCK  
_CHNG_  
MSKB  
SD_OP_  
CHNG_  
MSKB  
1 To access the Interrupt Register Map, the Register Access page[1:0] in Register Address 0x0E must be programmed to 01b.  
Rev. B | Page 66 of 100  
 
ADV7183B  
Table 85. Interrupt Register Map Details  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
Comments  
Notes  
0x40  
Interrupt  
Config 1  
INTRQ_OP_SEL[1:0].  
Interrupt Drive Level Select  
Open drain.  
Drive low when active.  
Drive high when active.  
Reserved.  
Register  
Access  
Page 2  
MPU_STIM_INTRQ[1:0].  
Manual Interrupt Set Mode  
0
1
Manual interrupt mode disabled.  
Manual interrupt mode enabled.  
Not used.  
Reserved  
x
MV_INTRQ_SEL[1:0].  
Macrovision Interrupt  
Select  
0
0
1
1
0
1
0
1
Reserved.  
Pseudo sync only.  
Color stripe only.  
Pseudo sync or color stripe.  
3 Xtal periods.  
INTRQ_DUR_SEL[1:0].  
Interrupt Duration Select  
0
0
1
1
x
0
1
0
1
x
15 Xtal periods.  
63 Xtal periods.  
Active until cleared.  
0x41  
0x42  
Reserved  
x
x
x
x
x
x
0
1
Interrupt  
Status 1  
SD_LOCK_Q  
No change.  
These bits  
can be  
SD input has caused the decoder  
to go from an un-locked state to a  
locked state.  
cleared or  
masked in  
Registers  
0x43 and  
0x44,  
Read Only  
SD_UNLOCK_Q  
0
1
No change.  
SD input has caused the decoder  
to go from a locked state to an  
unlocked state.  
Register  
Access  
Page 2  
respectively.  
Reserved  
x
Reserved  
x
Reserved  
x
SD_FR_CHNG_Q  
0
1
No change.  
Denotes a change in the free-run  
status.  
MV_PS_CS_Q  
0
1
No change.  
Pseudo sync/color striping  
detected. See  
MV_INTRQ_SEL[1:0],  
Macrovision Interrupt Selection  
Bits Address 0x40 (Interrupt  
Space)[5:4] for selection.  
Reserved  
x
0x43  
Interrupt  
Clear 1  
SD_LOCK_CLR  
0
1
Do not clear.  
Clears SD_LOCK_Q bit.  
Do not clear.  
SD_UNLOCK_CLR  
0
1
Write Only  
Clears SD_UNLOCK_Q bit.  
Not used.  
Reserved  
0
Register  
Access  
Page 2  
Reserved  
0
Not used.  
Reserved  
0
Not used.  
SD_FR_CHNG_CLR  
0
1
Do not clear.  
Clears SD_FR_CHNG_Q bit.  
Do not clear.  
MV_PS_CS_CLR  
Reserved  
0
1
Clears MV_PS_CS_Q bit.  
Not used.  
x
Rev. B | Page 67 of 100  
ADV7183B  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Comments  
Notes  
0x44  
Interrupt  
Mask 1  
SD_LOCK_MSKB  
Masks SD_LOCK_Q bit.  
Unmasks SD_LOCK_Q bit.  
Masks SD_UNLOCK_Q bit.  
Unmasks SD_UNLOCK_Q bit  
Not used.  
SD_UNLOCK_MSKB  
0
1
Read/Write  
Register  
Reserved  
0
Reserved  
0
Not used.  
Register  
Access  
Page 2  
Reserved  
0
x
Not used.  
SD_FR_CHNG_MSKB  
0
1
Masks SD_FR_CHNG_Q bit.  
Unmasks SD_FR_CHNG_Q bit.  
Masks MV_PS_CS_Q bit.  
Unmasks MV_PS_CS_Q bit.  
Not used.  
MV_PS_CS_MSKB  
Reserved  
0
1
x
x
0x45  
0x46  
Reserved  
x
x
x
x
x
x
Interrupt  
Status 2  
CCAPD_Q  
0
Closed captioning not detected in These bits  
the input video signal  
can be  
cleared or  
masked by  
Registers  
0x47 and  
0x48,  
1
Closed captioning data detected  
in the video input signal.  
Read Only  
Register  
GEMD_Q  
0
1
Gemstar data not detected in the  
input video signal.  
Gemstar data detected in the  
input video signal.  
Register  
Access  
respectively.  
Page 2  
CGMS_CHNGD_Q  
WSS_CHNGD_Q  
0
1
No change detected in CGMS  
data in the input video signal.  
A change is detected in the CGMS  
data in the input video signal.  
0
1
No change detected in WSS data  
in the input video signal.  
A change is detected in the WSS  
data in the input video signal.  
Reserved  
x
Not used.  
Reserved  
x
Not used.  
Reserved  
x
Not used.  
MPU_STIM_INTRQ_Q  
0
1
Manual interrupt not set.  
Manual interrupt set.  
Do not clear.  
0x47  
Interrupt  
Clear 2  
CCAPD_CLR  
0
1
Clears CCAPD_Q bit.  
Do not clear.  
GEMD_CLR  
0
1
Write Only  
Clears GEMD_Q bit.  
Do not clear.  
CGMS_CHNGD_CLR  
WSS_CHNGD_CLR  
0
1
Register  
Access  
Page 2  
Clears CGMS_CHNGD_Q bit.  
Do not clear.  
0
1
Clears WSS_CHNGD_Q bit.  
Not used.  
Reserved  
x
Reserved  
x
Not used.  
Reserved  
x
Not used.  
MPU_STIM_INTRQ_CLR  
0
1
Do not clear.  
Clears MPU_STIM_INTRQ_Q bit.  
Rev. B | Page 68 of 100  
ADV7183B  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Comments  
Notes  
0x48  
Interrupt  
Mask 2  
CCAPD_MSKB  
Masks CCAPD_Q bit.  
Unmasks CCAPD_Q bit.  
Masks GEMD_Q bit.  
Unmasks GEMD_Q bit.  
Masks CGMS_CHNGD_Q bit.  
Unmasks CGMS_CHNGD_Q bit.  
Masks WSS_CHNGD_Q bit..  
Unmasks WSS_CHNGD_Q bit.  
Not used.  
GEMD_MSKB  
0
1
Read/Write  
CGMS_CHNGD_MSKB  
WSS_CHNGD_MSKB  
0
1
Register  
Access  
Page 2  
0
1
Reserved  
0
Reserved  
0
Not used.  
Reserved  
0
Not used.  
MPU_STIM_INTRQ_MSKB  
0
1
Masks MPU_STIM_INTRQ_Q bit.  
Unmasks MPU_STIM_INTRQ_Q  
bit.  
0x49  
Raw  
Status 3  
SD_OP_50Hz  
SD 60/50Hz frame rate at  
output  
0
1
SD 60 Hz signal output.  
SD 50 Hz signal output.  
These bits  
cannot be  
cleared or  
masked.  
Register 0x4A  
is used for  
this purpose.  
SD_V_LOCK  
SD_H_LOCK  
0
1
SD vertical sync lock not  
established.  
Read Only  
Register  
SD vertical sync lock established.  
0
1
SD horizontal sync lock not  
established.  
Register  
Access  
Page 2  
SD horizontal sync lock  
established.  
Reserved  
x
Not used.  
SCM_LOCK  
SECAM Lock  
0
1
SECAM lock not established.  
SECAM lock established.  
Not used.  
Reserved  
Reserved  
Reserved  
x
x
Not used.  
x
Not used.  
0x4A  
Interrupt  
Status 3  
SD_OP_CHNG_Q  
SD 60/50 Hz frame rate at  
input  
0
1
No change in SD signal standard  
detected at the input.  
These bits  
can be  
cleared and  
masked by  
Registers  
0x4B and  
0x4C,  
A change in SD signal standard is  
detected at the input.  
Read Only  
Register  
SD_V_LOCK_CHNG_Q  
0
1
No change in SD vertical sync lock  
status.  
SD vertical sync lock status has  
changed.  
Register  
Access  
respectively.  
Page 2  
SD_H_LOCK_CHNG_Q  
0
1
No change in SD horizontal sync  
lock status.  
SD horizontal sync lock status has  
changed.  
SD_AD_CHNG_Q  
SD autodetect changed  
x
No change in AD_RESULT[2:0]  
bits in Status Register 1.  
AD_RESULT[2:0] bits in Status  
Register 1 have changed.  
SCM_LOCK_CHNG_Q  
SECAM Lock  
0
1
No change in SECAM lock status.  
SECAM lock status has changed.  
PAL_SW_LK_CHNG_Q  
x
No change in PAL swinging burst  
lock status.  
PAL swinging burst lock status  
has changed.  
Reserved  
Reserved  
x
Not used.  
Not used.  
x
Rev. B | Page 69 of 100  
ADV7183B  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Comments  
Notes  
0x4B  
Interrupt  
Clear 3  
SD_OP_CHNG_CLR  
Do not clear.  
Clears SD_OP_CHNG_Q bit.  
Do not clear.  
SD_V_LOCK_CHNG_CLR  
SD_H_LOCK_CHNG_CLR  
SD_AD_CHNG_CLR  
0
1
Write Only  
Register  
Clears SD_V_LOCK_CHNG_Q bit.  
Do not clear.  
0
1
Clears SD_H_LOCK_CHNG_Q bit.  
Do not clear.  
Register  
Access  
Page 2  
0
1
Clears SD_AD_CHNG_Q bit.  
Do not clear.  
SCM_LOCK_CHNG_CLR  
PAL_SW_LK_CHNG_CLR  
0
1
Clears SCM_LOCK_CHNG_Q bit.  
Do not clear.  
0
1
Clears PAL_SW_LK_CHNG_Q bit.  
Not used.  
Reserved  
x
Reserved  
x
Not used.  
0x4C  
Interrupt  
Mask 2  
SD_OP_CHNG_MSKB  
0
1
Masks SD_OP_CHNG_Q bit.  
Unmasks SD_OP_CHNG_Q bit.  
Masks SD_V_LOCK_CHNG_Q bit.  
SD_V_LOCK_CHNG_ MSKB  
SD_H_LOCK_CHNG_ MSKB  
0
1
Read/Write  
Register  
Unmasks SD_V_LOCK_CHNG_Q  
bit.  
0
1
Masks SD_H_LOCK_CHNG_Q bit.  
Register  
Access  
Page 2  
Unmasks SD_H_LOCK_CHNG_Q  
bit.  
SD_AD_CHNG_ MSKB  
0
1
Masks SD_AD_CHNG_Q bit.  
Unmasks SD_AD_CHNG_Q bit.  
Masks SCM_LOCK_CHNG_Q bit  
SCM_LOCK_CHNG_ MSKB  
0
1
Unmasks SCM_LOCK_CHNG_Q  
bit.  
PAL_SW_LK_CHNG_ MSKB  
0
1
Masks PAL_SW_LK_CHNG_Q bit.  
Unmasks PAL_SW_LK_CHNG_Q  
bit.  
Reserved  
Reserved  
x
Not used.  
Not used.  
x
Rev. B | Page 70 of 100  
ADV7183B  
The following registers are located in the Common I2C Map and Register Access Page 1.  
Table 86. Interrupt Register Map Details  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
0
0
0
0
0
0
0
0
1
1
2
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
Comments  
Notes  
0x00  
Input  
Control  
INSEL[3:0]. The INSEL bits allow the  
user to select an input channel as  
well as the input format.  
CVBS in on AIN1.  
CVBS in on AIN2.  
CVBS in on AIN3.  
CVBS in on AIN4.  
CVBS in on AIN5.  
CVBS in on AIN6.  
Y on AIN1, C on AIN4.  
Y on AIN2, C on AIN5.  
Y on AIN3, C on AIN6.  
Composite.  
S-Video  
YPbPr  
Y on AIN1, Pr on AIN4,  
Pb on AIN5.  
1
0
1
0
Y on AIN2, Pr on AIN3,  
Pb on AIN6.  
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
CVBS in on AIN7.  
CVBS in on AIN8.  
CVBS in on AIN9.  
CVBS in on AIN10.  
CVBS in on AIN11.  
Composite  
VID_SEL[3:0]. The VID_SEL bits allow  
the user to select the input video  
standard.  
0
0
0
0
Auto-detect PAL  
(B/G/H/I/D), NTSC  
(without pedestal),  
SECAM.  
0
0
0
0
0
0
0
1
1
1
0
1
Auto-detect PAL  
(B/G/H/I/D), NTSC-M (with  
pedestal), SECAM.  
Auto-detect PAL-N,  
NTSC-M (without  
pedestal), SECAM.  
Auto-detect PAL-N,  
NTSC-M (with pedestal),  
SECAM.  
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
NTSC-J.  
NTSC-M.  
PAL60.  
NTSC-4.43.  
PAL-B/G/H/I/D.  
PAL-N (B/G/H/I/D without  
pedestal).  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
PAL-M (without pedestal).  
PAL-M.  
PAL Combination N.  
PAL Combination N.  
SECAM (with pedestal).  
SECAM (with pedestal).  
Rev. B | Page 71 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
Reserved  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x01  
Video  
0
0
0
Set to default.  
Selection  
ENVSPROC  
0
1
Disable Vsync processor.  
Enable Vsync processor.  
Set to default.  
Reserved  
BETACAM  
0
0
1
Standard video input.  
Betacam input enable.  
Disable Hsync processor.  
Enable Hsync processor.  
Set to default.  
ENHSPLL  
0
1
Reserved  
1
0x03  
Output  
Control  
SD_DUP_AV. Duplicates the AV  
codes from the luma into the  
chroma path.  
0
1
AV codes to suit 8-bit  
interleaved data output.  
AV codes duplicated (for  
16-bit interfaces).  
Reserved  
0
Set as default.  
Reserved.  
OF_SEL[3:0]. Allows the user to  
choose from a set of output formats.  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
Reserved.  
16-bit @ LLC1 4:2:2.  
8-bit @ LLC1 4:2:2  
ITU-R BT.656.  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Output pins enabled.  
TOD. Three-State Output Drivers.  
This bit allows the user to three-  
state the output drivers: P[19:0], HS,  
VS, FIELD, and SFL.  
0
1
See TIM_OE, Address  
0x04[3] and  
Introduction.  
Drivers three-stated.  
VBI_EN. Allows VBI data (Lines 1 to  
21) to be passed through with only a  
minimum amount of filtering  
performed.  
0
1
All lines filtered and  
scaled.  
Only active video region  
filtered.  
0x04  
Extended  
Output  
Control  
RANGE. Allows the user to select the  
range of output values. Can be  
BT656 compliant, or can fill the  
whole accessible number range.  
0
1
16 < Y < 235,  
16 < C < 240.  
ITU-R BT.656.  
1 < Y < 254, 1 < C < 254.  
Extended range.  
EN_SFL_PIN  
0
1
SFL output is disabled.  
SFL output enables  
encoder and decoder  
to be connected  
directly.  
SFL information output  
on the SFL pin.  
BL_C_VBI. Blank Chroma during VBI.  
If set, enables data in the VBI region  
to be passed through the decoder  
undistorted.  
0
1
Decode and output color.  
Blank Cr and Cb.  
During VBI.  
TIM_OE. Timing signals output  
enable.  
0
1
HS, VS, F three-stated.  
HS, VS, F forced active.  
Controlled by TOD.  
Reserved  
Reserved  
x
x
1
BT656-4. Allows the user to select  
an output mode-compatible with  
ITU- R BT656-3/4.  
0
1
BT656-3-compatible.  
BT656-4-compatible.  
Rev. B | Page 72 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Comments  
Disable.  
Enable.  
Notes  
Autodetect  
Enable  
0x07  
AD_PAL_EN. PAL B/G/I/H autodetect  
enable.  
AD_NTSC_EN. NTSC autodetect  
enable.  
0
1
Disable.  
Enable.  
Disable.  
AD_PALM_EN. PAL M autodetect  
enable.  
0
1
Enable.  
Disable.  
AD_PALN_EN. PAL N autodetect  
enable.  
0
1
Enable.  
Disable.  
AD_P60_EN. PAL60 autodetect  
enable.  
0
1
Enable.  
Disable.  
AD_N443_EN. NTSC443 autodetect  
enable.  
0
1
Enable.  
Disable.  
AD_SECAM_EN. SECAM autodetect  
enable.  
0
1
Enable  
AD_SEC525_EN. SECAM 525  
autodetect enable.  
0
Disable.  
1
1
Enable.  
0x08  
Contrast  
Register  
CON[7:0]. Contrast adjust. This is the  
user control for contrast adjustment.  
0
0
0
0
0
0
0
Luma gain = 1.  
0x00 Gain = 0;  
0x80 Gain = 1;  
0xFF Gain = 2.  
0x09  
0x0A  
Reserved  
Reserved  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Brightness  
Register  
BRI[7:0]. This register controls the  
brightness of the video signal.  
0x00 = 0IRE;  
0x7F = +100IRE;  
0x80 = –100IRE.  
0x0B  
0x0C  
Hue  
Register  
HUE[7:0]. This register contains the  
value for the color hue adjustment.  
0
0
0
0
0
0
0
0
0
Hue range =  
–90° to +90°.  
Default  
Value Y  
DEF_VAL_EN. Default value enable.  
Free-run mode  
dependent on  
DEF_VAL_AUTO_EN.  
1
Force free-run mode on  
and output blue screen.  
DEF_VAL_AUTO_EN. Default value.  
0
1
Disable free-run mode.  
When lock is lost, free-  
run mode can be  
enabled to output  
stable timing, clock,  
and a set color.  
Enable automatic free-  
run mode (blue screen).  
DEF_Y[5:0]. Default value Y. This  
register holds the Y default value.  
0
0
0
1
1
1
1
1
0
1
1
1
Y[7:0] = {DEF_Y[5:0], 0, 0}.  
Default Y value output  
in free-run mode.  
0x0D  
0x0E  
Default  
Value C  
DEF_C[7:0]. Default value C. The Cr  
and Cb default values are defined in  
this register.  
0
0
0
0
Cr[7:0] = DEF_C[7:4], 0, 0,  
0, 0};  
Cb[7:0] = DEF_C[3:0], 0, 0,  
0, 0}.  
Default Cb/Cr value  
output in free-run  
mode. Default values  
give blue screen  
output.  
ADI  
Control  
Reserved.  
0
0
0
Set as default.  
SUB_USR_EN. Enables the user to  
access the interrupt map.  
0
1
Access user reg map.  
Access interrupt reg map.  
Set as default.  
See Figure 38.  
Reserved.  
0
0
Rev. B | Page 73 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
Power  
Management  
0x0F  
Reserved  
0
0
Set to default.  
PDBP. Power-down bit priority  
selects between PWRDN bit or PIN.  
0
1
Chip power-down  
controlled by pin.  
Bit has priority (pin  
disregarded).  
Reserved  
0
0
Set to default.  
PWRDN. Power-down places the  
decoder in a full power-down mode.  
0
1
System functional.  
Powered down.  
Set to default.  
See PDBP, 0x0F Bit 2.  
Reserved  
0
RES. Chip reset loads all I2C bits with  
default values.  
0
1
Normal operation.  
Start reset sequence.  
Executing reset takes  
approximately 2 ms.  
This bit is self-clearing.  
0x10  
Status  
Register 1,  
Read Only  
IN_LOCK  
x
In lock (right now) = 1.  
Lost lock (since last read) = 1.  
FSC lock (right now) = 1.  
Provides information  
about the internal  
status of the decoder.  
LOST_LOCK  
FSC_LOCK  
FOLLOW_PW  
x
x
x
Peak white AGC mode  
active = 1.  
AD_RESULT[2:0]. Autodetection  
result reports the standard of the  
input video.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
NTSM-MJ.  
Detected standard.  
NTSC-443.  
PAL-M.  
PAL60.  
PAL-B/G/H/I/D.  
SECAM.  
PAL-combination N.  
SECAM 525.  
Color kill is active = 1.  
COL_KILL  
x
x
Color kill.  
0x11  
0x12  
IDENT  
IDENT[7:0]. Provides identification  
on the revision of the part.  
x
x
x
x
x
x
x
x
x
x
x
ADV7183B = 0x13.  
Read Only  
MV color striping detected.  
MV color striping type.  
Status  
MVCS DET  
MVCS T3  
1 = detected.  
Register 2,  
Read Only.  
0 = Type 2,  
1 = Type 3.  
MV PS DET  
MV pseudo sync  
detected.  
1 = detected.  
MV AGC DET  
LL NSTD  
MV AGC pulses detected.  
Nonstandard line length.  
FSC frequency nonstandard.  
1 = detected.  
1 = detected.  
1 = detected.  
x
FSC NSTD  
Reserved  
x
x
x
0x13  
Status  
Register 3,  
Read Only.  
INST_HLOCK  
x
1 = horizontal lock  
achieved.  
Unfiltered.  
1 = Gemstar data detected.  
SD 60 Hz detected.  
GEMD  
x
SD_OP_50HZ  
Reserved  
x
SD Field rate detect.  
Blue screen output.  
x
SD 50 Hz detected.  
FREE_RUN_ACT  
STD FLD_LEN  
x
1 = free-run mode active.  
1 = field length standard.  
x
Correct field length  
found.  
INTERLACED  
PAL_SW_LOCK  
Reserved  
x
1 = interlaced video  
detected.  
Field sequence found.  
x
1 = swinging burst  
detected.  
Reliable swinging  
burst sequence.  
0x14  
Analog  
Clamp  
Control  
0
0
1
0
Set to default.  
CCLEN. Current clamp enable allows  
the user to switch off the current  
sources in the analog front.  
0
1
Current sources switched  
off.  
Current sources enabled.  
Set to default.  
Reserved  
0
0
0
Rev. B | Page 74 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x15  
Digital  
Clamp  
Control 1  
Reserved  
0
x
x
x
x
Set to default.  
DCT[1:0]. Digital clamp timing  
determines the time constant of the  
digital fine clamp circuitry.  
0
0
1
1
0
1
0
1
Slow (TC = 1 sec).  
Medium (TC = 0.5 sec).  
Fast (TC = 0.1 sec).  
TC dependent on video.  
Set to default.  
Reserved  
0
0x17  
Shaping  
Filter  
Control  
YSFM[4:0]. Selects Y-Shaping Filter  
mode when in CVBS only mode.  
0
0
0
0
0
0
0
0
0
1
Auto wide notch for poor  
quality sources or wide-  
band filter with comb for  
good quality input.  
Auto narrow notch for  
poor quality sources or  
wideband filter with  
comb for good quality  
input.  
SVHS 1.  
SVHS 2.  
SVHS 3.  
SVHS 4.  
SVHS 5.  
SVHS 6.  
SVHS 7.  
SVHS 8.  
SVHS 9.  
SVHS 10.  
SVHS 11.  
SVHS 12.  
SVHS 13.  
SVHS 14.  
SVHS 15.  
SVHS 16.  
SVHS 17.  
SVHS 18 (CCIR601).  
PAL NN1.  
PAL NN2.  
PAL NN3.  
PAL WN 1.  
PAL WN 2.  
NTSC NN1.  
NTSC NN2.  
NTSC NN3.  
NTSC WN1.  
NTSC WN2.  
NTSC WN3.  
Reserved.  
Auto selection 1.5 MHz.  
Auto selection 2.17 MHz.  
Decoder selects  
optimum Y-shaping  
filter depending on  
CVBS quality.  
Allows the user to select a wide  
range of low-pass and notch filters.  
If either auto mode is selected, the  
decoder selects the optimum Y filter  
depending on the CVBS video  
source quality (good vs. bad).  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
If one of these modes  
is selected, the  
decoder does not  
change filter modes.  
Depending on video  
quality, a fixed filter  
response (the one  
selected) is used for  
good and bad quality  
video.  
CSFM[2:0].  
0
0
0
0
0
1
Automatically selects  
a C filter for the  
specified bandwidth.  
C-Shaping Filter mode allows the  
selection from a range of low-pass  
chrominance filters, SH1 to SH5 and  
wideband mode.  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
SH1.  
SH2.  
SH3.  
SH4.  
SH5.  
Wideband mode.  
Rev. B | Page 75 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
0
0
0
0
0
0
2
0
0
0
0
1
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
Comments  
Reserved. Do not use.  
Reserved. Do not use.  
SVHS 1.  
Notes  
0x18  
Shaping  
Filter  
Control 2  
WYSFM[4:0]. Wideband Y shaping  
filter mode allows the user to select  
which Y shaping filter is used for the  
Y component of Y/C, YPbPr, B/W  
input signals; it is also used when a  
good quality input CVBS signal is  
detected. For all other inputs, the Y  
shaping filter chosen is controlled  
by YSFM[4:0].  
0
0
0
0
0
0
SVHS 2.  
SVHS 3.  
SVHS 4.  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
~
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
~
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
~
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
~
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
~
1
SVHS 5.  
SVHS 6.  
SVHS 7.  
SVHS 8.  
SVHS 9.  
SVHS 10.  
SVHS 11.  
SVHS 12.  
SVHS 13.  
SVHS 14.  
SVHS 15.  
SVHS 16.  
SVHS 17.  
SVHS 18 (CCIR 601).  
Reserved. Do not use.  
Reserved. Do not use.  
Reserved. Do not use.  
Reserved  
0
0
Set to default.  
WYSFMOVR. Enables the use of  
automatic WYSFN filter.  
0
1
Auto selection of best  
filter.  
Manual select filter using  
WYSFM[4:0].  
0x19  
Comb  
Filter  
Control  
PSFSEL[1:0]. Controls the signal  
bandwidth that is fed to the comb  
filters (PAL).  
0
0
1
1
0
1
0
1
Narrow.  
Medium.  
Wide.  
Widest.  
NSFSEL[1:0]. Controls the signal  
bandwidth that is fed to the comb  
filters (NTSC).  
0
0
1
1
0
1
0
1
Narrow.  
Medium.  
Medium.  
Wide.  
Reserved  
1
1
1
1
0
Set as default.  
Set as default.  
Enabled.  
0x1D  
ADI  
Control 2  
Reserved  
0
x
x
x
VS_JIT_COMP_EN  
0
1
Disabled.  
EN28XTAL  
TRI_LLC  
0
1
Use 27 MHz crystal.  
Use 28 MHz crystal.  
LLC pin active.  
0
1
LLC pin three-stated.  
Rev. B | Page 76 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x27  
Pixel Delay LTA[1:0]. Luma timing adjust allows  
0
0
No delay.  
CVBS mode  
Control  
the user to specify a timing  
difference between chroma and  
luma samples.  
LTA[1:0] = 00b;  
S-Video mode  
LTA[1:0]= 01b,  
YPrPb mode  
1
0
Luma 1 clk (37 ns)  
delayed.  
1
1
0
1
Luma 2 clk (74 ns) early.  
LTA[1:0] = 01b.  
Luma 1 clk (37 ns) early.  
Reserved  
0
Set to zero.  
CTA[2:0]. Chroma timing adjust  
allows a specified timing difference  
between the luma and chroma  
samples.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Not valid setting.  
CVBS mode  
CTA[2:0] = 011b.  
Chroma + 2 pixels (early).  
Chroma + 1 pixel (early).  
No delay.  
S-Video mode  
CTA[2:0] = 101b.  
Chroma − 1 pixel (late).  
Chroma − 2 pixels (late).  
Chroma − 3 pixels (late).  
Not valid setting.  
YPrPb mode  
CTA[2:0] = 110b.  
AUTO_PDC_EN. Automatically  
programs the LTA/CTA values so  
that luma and chroma are aligned at  
the output for all modes of  
operation.  
0
1
Use values in LTA[1:0] and  
CTA[2:0] for delaying  
luma/chroma.  
LTA and CTA values  
determined  
automatically.  
SWPC. Allows the Cr and Cb samples  
to be swapped.  
0
1
No swapping.  
Swap the Cr and Cb O/P  
samples.  
0x2B  
Misc Gain  
Control  
PW_UPD. Peak white update  
determines the rate of gain.  
0
1
Update once per video  
line.  
Peak white must be  
enabled. See LAGC[2:0]  
Luma Automatic Gain  
Control,  
Update once per field.  
Address 0x2C[7:0]  
Reserved  
1
0
0
0
0
Set to default.  
CKE. Color kill enable allows the  
color kill function to be switched on  
and off.  
0
1
Color kill disabled.  
Color kill enabled.  
For SECAM color kill,  
threshold is set at 8%.  
See CKILLTHR[2:0].  
Reserved  
1
Set to default.  
0x2C  
AGC Mode CAGC[1:0]. Chroma automatic gain  
0
0
0
1
Manual fixed gain.  
Use CMG[11:0].  
Control  
control selects the basic mode of  
operation for the AGC in the chroma  
path.  
Use luma gain for  
chroma.  
1
1
0
1
Automatic gain.  
Freeze chroma gain.  
Set to 1.  
Based on color burst.  
Reserved  
1
1
LAGC[2:0]. Luma automatic gain  
control selects the mode of  
operation for the gain control in the  
luma path.  
0
0
0
0
0
1
Manual fixed gain.  
Use LMG[11:0].  
AGC Peak white  
algorithm off.  
Blank level to sync tip.  
0
1
0
AGC Peak white  
algorithm on.  
Blank level to sync tip.  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Reserved  
Reserved.  
Reserved  
Reserved.  
Freeze gain.  
Set to 1.  
Reserved  
1
Rev. B | Page 77 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x2D  
Chroma  
Gain  
Control 1  
CMG[11:8]. Chroma manual gain can  
be used to program a desired  
manual chroma gain. Reading back  
from this register in AGC mode gives  
the current gain.  
0
1
0
0
CAGC[1:0] settings  
decide in which mode  
CMG[11:0] operates.  
Reserved  
1
0
1
0
Set to 1.  
CAGT[1:0]. Chroma automatic gain  
timing allows adjustment of the  
chroma AGC tracking speed.  
0
0
1
1
0
0
1
0
1
0
Slow (TC = 2 sec).  
Medium (TC = 1 sec).  
Fast (TC = 0.2 sec).  
Adaptive.  
Has an effect only if  
CAGC[1:0] is set to  
auto gain (10).  
0x2E  
0x2F  
Chroma  
Gain  
Control 2  
CMG[7:0]. Chroma manual gain  
lower 8 bits. See CMG[11:8] for  
description.  
0
x
0
x
0
x
0
x
CMG[11:0] = 750d; gain is  
1 in NTSC;  
CMG[11:0] = 741d; gain is  
1 in PAL.  
Min value is 0d  
(G = –60 dB)  
Max value is 3750  
(G = 5).  
Luma Gain LMG[11:8]. Luma manual gain can  
LAGC[1:0] settings decide  
in which mode LMG[11:0]  
operates.  
Control 1  
be used to program a desired  
manual chroma gain or to read back  
the actual gain value used.  
Reserved  
1
x
1
x
Set to 1.  
LAGT[1:0]. Luma automatic gain  
timing allows adjustment of the  
luma AGC tracking speed.  
0
0
1
1
x
0
1
0
1
x
Slow (TC = 2 sec).  
Medium (TC = 1 sec).  
Fast (TC = 0.2 sec).  
Adaptive.  
Has an effect only if  
LAGC[1:0] is set to  
auto gain (001, 010,  
011,or 100).  
0x30  
0x31  
Luma Gain LMG[7:0]. Luma manual gain can be  
x
x
x
x
LMG[11:0] = 1234 dec;  
gain is 1 in NTSC.  
LMG[11:0] = 1266d; gain  
is 1 in PAL.  
Min value:  
NTSC 1024 (G = 0.85),  
PAL (G = 0.81).  
Control 2  
used to program a desired manual  
chroma gain or read back the actual  
used gain value.  
Max value:  
NTSC 2468 (G = 2),  
PAL = 2532 (G = 2).  
VS and  
FIELD  
Control 1  
Reserved  
0
1
0
Set to default.  
Start of line relative to HSE.  
Start of line relative to HSB.  
HVSTIM. Selects where within a line  
of video the VS signal is asserted.  
0
1
HSE = Hsync end.  
HSB = Hsync begin.  
NEWAVMODE. Sets the EAV/SAV  
mode.  
0
1
EAV/SAV codes  
generated to suit ADI  
encoders.  
Manual VS/field position  
controlled by Registers  
0x32, 0x33, and 0xE5 to  
0xEA.  
Reserved  
Reserved  
0
0
0
0
Set to default.  
0x32  
Vsync  
Field  
Control 2  
NEWAVMODE bit  
must be set high.  
0
0
0
0
1
Set to default.  
VS goes high in the middle  
of the line (even field).  
VSBHE  
0
1
VS changes state at the  
start of the line (even field).  
VS goes high in the middle  
of the line (odd field).  
VSBHO  
0
1
VS changes state at the  
start of the line (odd field).  
Set to default.  
0x33  
Vsync  
Field  
Control 3  
Reserved  
VSEHE  
0
0
0
1
0
0
VS goes low in the middle  
of the line (even field).  
0
1
NEWAVMODE bit  
must be set high.  
VS changes state at the  
start of the line (even field).  
VS goes low in the middle  
of the line (odd field).  
VSEHO  
0
1
VS changes state at the  
start of the line odd field.  
Rev. B | Page 78 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
HS Position  
Control 1  
0x34  
HSE[10:8]. HS end allows the  
positioning of the HS output within  
the video line.  
0
0
0
HS output ends HSE[10:0]  
pixels after the falling  
edge of Hsync.  
Using HSB and HSE  
the user can program  
the position and  
length of the output  
Hsync.  
Reserved  
0
Set to 0.  
HSB[10:8]. HS begin allows the  
positioning of the HS output within  
the video line.  
0
0
0
HS output starts  
HSB[10:0] pixels after the  
falling edge of Hsync.  
Reserved  
0
0
Set to 0.  
0x35  
HS Position HSB[7:0] Using HSB[10:0] and  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
Control 2  
HSE[10:0], the user can program the  
position and length of HS output  
signal.  
HS Position  
Control 3  
0x36  
0x37  
HSE[7:0] See above.  
0
Polarity  
PCLK. Sets the polarity of LLC1.  
0
1
Invert polarity.  
Normal polarity as per the  
timing diagrams.  
Reserved.  
0
0
Set to 0.  
PF. Sets the FIELD polarity.  
0
1
Active high.  
Active low.  
Reserved.  
0
Set to 0.  
PVS. Sets the VS polarity.  
0
1
Active high.  
Active low.  
Reserved  
0
Set to 0.  
PHS. Sets HS polarity.  
0
1
Active high.  
Active low.  
Adaptive 3-line, 3-tap luma .  
Use low-pass notch.  
Fixed luma comb (2-line).  
0x38  
NTSC  
Comb  
Control  
YCMN[2:0]. Luma  
comb mode, NTSC.  
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
Top lines of memory.  
Fixed luma comb (3-Line). All lines of memory.  
Bottom lines of memory.  
Fixed luma comb (2-line).  
CCMN[2:0]. Chroma  
comb mode, NTSC.  
0
0
0
3-line adaptive for  
CTAPSN = 01;  
4-line adaptive for  
CTAPSN = 10;  
5-line adaptive for  
CTAPSN = 11.  
1
1
0
0
0
1
Disable chroma comb.  
Fixed 2-line for  
CTAPSN = 01;  
Fixed 3-line for  
CTAPSN = 10;  
Fixed 4-line for  
CTAPSN = 11.  
Top lines of memory.  
All lines of memory.  
1
1
1
1
0
1
Fixed 3-line for  
CTAPSN = 01;  
Fixed 4-line for  
CTAPSN = 10;  
Fixed 5-line for  
CTAPSN = 11.  
Fixed 2-line for  
CTAPSN = 01;  
Bottom lines of  
memory.  
Fixed 3-line for  
CTAPSN = 10;  
Fixed 4-line for  
CTAPSN = 11.  
CTAPSN[1:0]. Chroma  
comb taps, NTSC.  
0
0
1
1
0
1
0
1
Adapts 3 lines – 2 lines.  
Not used.  
Adapts 5 lines – 3 lines.  
Adapts 5 lines – 4 lines.  
Rev. B | Page 79 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x39  
PAL Comb  
Control  
YCMP[2:0]. Luma Comb mode, PAL.  
0
0
0
Adaptive 5-line, 3-tap  
luma comb.  
1
1
1
1
0
1
1
1
0
0
0
1
Use low-pass notch.  
Fixed luma comb.  
Top lines of memory.  
All lines of memory.  
Fixed luma comb (5-line).  
Fixed luma comb (3-line).  
Bottom lines of  
memory.  
CCMP[2:0]. Chroma Comb mode,  
PAL.  
0
0
0
3-line adaptive for  
CTAPSN = 01;  
4-line adaptive for  
CTAPSN = 10;  
5-line adaptive for  
CTAPSN = 11.  
1
1
0
0
0
1
Disable chroma comb  
Fixed 2-line for  
CTAPSN = 01.  
Top lines of memory.  
All lines of memory.  
Fixed 3-line for  
CTAPSN = 10.  
Fixed 4-line for  
CTAPSN = 11.  
1
1
1
1
0
1
Fixed 3-line for  
CTAPSN = 01.  
Fixed 4-line for  
CTAPSN = 10.  
Fixed 5-line for  
CTAPSN = 11.  
Fixed 2-line for  
CTAPSN = 01.  
Bottom lines of  
memory.  
Fixed 3-line for  
CTAPSN = 10.  
Fixed 4-line for  
CTAPSN = 11.  
CTAPSP[1:0]. Chroma comb taps,  
PAL.  
0
0
0
1
Not used.  
Adapts 5 lines – 3 lines (2  
taps).  
1
1
0
1
Adapts 5 lines – 3 lines (3  
taps).  
Adapts 5 lines – 4 lines (4  
taps).  
0x3A  
Reserved  
0
Set as default.  
ADC2 normal operation.  
Power down ADC2.  
ADC1 normal operation.  
Power down ADC1.  
ADC0 normal operation.  
Power down ADC0.  
Set as default.  
Set to default.  
Kill at 0.5%.  
PWRDN_ADC_2. Enables power-  
down of ADC2.  
0
1
PWRDN_ADC_1. Enables power-  
down of ADC1.  
0
1
PWRDN_ADC_0. Enables power-  
down of ADC0.  
0
1
Reserved  
0
0
0
1
0x3D  
Manual  
Window  
Control  
Reserved  
0
0
1
1
CKILLTHR[2:0].  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
CKE = 1 enables the  
color kill function and  
must be enabled for  
CKILLTHR[2:0] to take  
effect.  
Kill at 1.5%.  
Kill at 2.5%.  
Kill at 4%.  
Kill at 8.5%.  
Kill at 16%.  
Kill at 32%.  
Reserved.  
Reserved  
0
Set to default.  
Rev. B | Page 80 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x41  
Resample  
Control  
Reserved  
0
1
0
0
0
0
Set to default.  
SFL_INV. Controls the behavior of  
the PAL switch bit.  
0
SFL compatible with  
ADV7190/ADV7191/  
ADV7194 encoders.  
1
SFL compatible with  
ADV717x/ADV7173x  
encoders.  
Reserved  
0
0
Set to default.  
0x48  
0x49  
Gemstar  
Control 1  
GDECEL[15:8]. See the Comments  
column.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GDECEL[15:0]. 16  
individual enable bits that MSB = Line 25.  
LSB = Line 10;  
select the lines of video  
(even field Lines 10 to 25)  
that the decoder checks  
for Gemstar-compatible  
data.  
Default = Do not  
check for Gemstar-  
compatible data on  
any lines[10 to 25] in  
even fields.  
Gemstar  
Control 2  
GDECEL[7:0]. See Comments  
column.  
0
0x4A  
0x4B  
Gemstar  
Control 3  
GDECOL[15:8]. See the Comments  
column.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GDECOL[15:0]. 16  
individual enable bits that MSB = Line 25.  
LSB = Line 10;  
select the lines of video  
(odd field lines 10 to 25)  
that the decoder checks  
for Gemstar-compatible  
data.  
Default = Do not  
check for Gemstar-  
compatible data on  
any lines[10 to 25] in  
odd fields.  
Gemstar  
Control 4  
GDECOL[7:0]. See Comments  
column.  
0x4C  
Gemstar  
Control 5  
GDECAD. Controls the manner in  
which decoded Gemstar data is  
inserted into the horizontal blanking  
period.  
0
1
Split data into half byte.  
To avoid 00/FF code.  
Output in straight 8-bit  
format.  
Reserved  
x
x
x
x
x
x
x
Undefined.  
0x4D  
CTI DNR  
Control 1  
CTI_EN. CTI enable.  
0
1
Disable CTI.  
Enable CTI.  
CTI_AB_EN. Enables the mixing of  
the transient improved chroma with  
the original signal.  
0
1
Disable CTI alpha blender.  
Enable CTI alpha blender.  
CTI_AB[1:0]. Controls the behavior  
of the alpha-blend circuitry.  
0
0
1
1
0
1
0
1
Sharpest mixing.  
Sharp mixing.  
Smooth.  
Smoothest.  
Reserved  
0
Set to default.  
Bypass the DNR block.  
Enable the DNR block.  
Set to default.  
DNR_EN. Enable or bypass the DNR  
block.  
0
1
Reserved  
1
0
1
0
0x4E  
0x50  
CTI DNR  
Control 2  
CTI_CTH[7:0]. Specifies how big the  
amplitude step must be to be  
steepened by the CTI block.  
0
0
0
0
1
1
0
0
0
0
0
0
Set to 0x04 for A/V input;  
set to 0x0A for tuner  
input.  
CTI DNR  
Control 4  
DNR_TH[7:0]. Specifies the  
maximum edge that is interpreted  
as noise and is therefore blanked.  
0
0
Rev. B | Page 81 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
Comments  
Notes  
0x51  
Lock  
Count  
CIL[2:0]. Count-into-lock determines  
the number of lines the system must  
remain in lock before showing a  
locked status.  
1 line of video.  
2 lines of video.  
5 lines of video.  
10 lines of video.  
100 lines of video.  
500 lines of video.  
1000 lines of video.  
100000 lines of video.  
1 line of video.  
COL[2:0]. Count-out-of-lock  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
determines the number of lines the  
system must remain out-of-lock  
before showing a lost-locked status.  
2 lines of video.  
5 lines of video.  
10 lines of video.  
100 lines of video.  
500 lines of video.  
1000 lines of video.  
100000 lines of video.  
SRLS. Select raw lock signal. Selects  
the determination of the lock status.  
0
1
Over field with vertical  
info.  
Line-to-line evaluation.  
FSCLE. Fsc lock enable.  
0
1
Lock status set only by  
horizontal lock.  
Lock status set by  
horizontal lock and  
subcarrier lock.  
0x8F  
0x90  
Free Run  
Line  
Length 1  
Reserved  
0
0
0
0
Set to default.  
LLC_PAD_SEL[2:0]. Enables manual  
selection of clock for LLC1 pin.  
0
1
0
0
0
1
LLC1 (nominal 27 MHz)  
selected out on LLC1 pin.  
LLC2 (nominally  
13.5 MHz) selected out on OF_SEL[3:0] = 0010.  
LLC1 pin.  
For 16-bit 4:2:2 out,  
Reserved  
0
Set to default.  
VBI Info  
(Read Only)  
WSSD. Screen signaling detected.  
0
1
No WSS detected.  
WSS detected.  
Read only status bits.  
CCAPD. Closed caption data.  
EDTVD. EDTV sequence.  
CGMSD. CGMS sequence.  
0
1
No CCAP signals  
detected.  
CCAP sequence detected.  
0
1
No EDTV sequence  
detected.  
EDTV sequence detected.  
0
1
No CGMS transition  
detected.  
CGMS sequence  
decoded.  
Reserved.  
x
x
x
x
x
x
x
x
0x91  
WSS1  
(Read Only)  
x
x
x
x
WSS1[7:0]  
Wide screen signaling data.  
0x92  
0x93  
0x94  
0x95  
0x96  
WSS2  
WSS2[7:0]  
Wide screen signaling data.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
WSS2[7:6] are  
undetermined.  
(Read Only)  
WSS2  
(Read Only)  
WSS2[7:0]  
Wide screen signaling data.  
EDTV2  
(Read Only)  
EDTV2[7:0]  
EDTV data register.  
EDTV3  
(Read Only)  
EDTV3[7:6] are  
undetermined.  
EDTV3[5] is reserved  
for future use.  
EDTV3[7:0]  
EDTV data register.  
CGMS1  
(Read Only)  
CGMS1[7:0]  
CGMS data register.  
Rev. B | Page 82 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x97  
CGMS2  
x
x
x
x
x
x
x
x
x
x
x
x
CGMS2[7:0]  
CGMS data register.  
(Read Only)  
0x98  
0x99  
0x9A  
0x9B  
CGMS3  
(Read Only)  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
CGMS3[7:4] are  
undetermined.  
CGMS3[7:0]  
CGMS data register.  
CCAP1  
(Read Only)  
CCAP1[7] contains parity  
bit for byte 0.  
CCAP1[7:0]  
Closed caption data register.  
CCAP2  
(Read Only)  
CCAP2[7] contains parity  
bit for byte 0.  
CCAP2[7:0]  
Closed caption data register.  
Letterbox 1  
(Read Only)  
Reports the number of  
black lines detected at  
the top of active video.  
This feature examines  
the active video at the  
start and at the end of  
each field. It enables  
format detection even  
if the video is not  
accompanied by a  
CGMS or WSS  
LB_LCT[7:0]  
Letterbox data register.  
Letterbox 2  
(Read Only)  
0x9C  
LB_LCM[7:0]  
Letterbox data register.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Reports the number of  
black lines detected in  
the bottom half of  
active video if subtitles  
are detected.  
sequence.  
Letterbox 3  
(Read Only)  
0x9D  
0xB2  
LB_LCB[7:0]  
Letterbox data register.  
x
0
x
0
Reports the number of  
black lines detected at  
the bottom of active  
video.  
CRC  
Reserved.  
Set as default.  
Enable  
Write  
Register  
CRC_ENABLE. Enable CRC checksum  
decoded from CGMS packet to  
validate CGMSD.  
0
1
Turn off CRC check.  
CGMSD goes high with  
valid checksum.  
Reserved  
0
0
0
1
1
Set as default.  
Rev. B | Page 83 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Comments  
No connection.  
AIN1.  
Notes  
0xC3  
ADC  
SWITCH 1  
ADC0_SW[3:0]. Manual muxing  
control for ADC0.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
SETADC_sw_man_  
en = 1.  
AIN2.  
AIN3.  
AIN4.  
AIN5.  
AIN6.  
No connection.  
No connection.  
AIN7.  
AIN8.  
AIN9.  
AIN10.  
AIN11.  
AIN12.  
No connection.  
No connection.  
No connection.  
No connection.  
AIN3.  
ADC1_SW[3:0]. Manual muxing  
control for ADC1.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SETADC_sw_man_  
en = 1.  
AIN4.  
AIN5.  
AIN6.  
No connection.  
No connection.  
No connection.  
No connection.  
AIN9.  
AIN10.  
AIN11.  
AIN12.  
No connection.  
No connection.  
No connection.  
AIN2.  
0xC4  
ADC  
SWITCH 2  
ADC2_SW[3:0]. Manual muxing  
control for ADC2.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SETADC_sw_man_  
en = 1.  
No connection.  
No connection.  
AIN5.  
AIN6.  
No connection.  
No connection.  
No connection.  
AIN8.  
No connection.  
No connection.  
AIN11.  
AIN12.  
No connection.  
Reserved  
x
x
x
ADC_SW_MAN_EN. Enable  
manual setting of the input signal  
muxing.  
0
1
Disable.  
Enable.  
Rev. B | Page 84 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0xDC  
Letterbox  
Control 1  
LB_TH[4:0]. Sets the threshold  
value that determines if a line is  
black.  
0
1
1
0
0
Default threshold for  
the detection of black  
lines.  
Reserved  
1
0
1
Set as default.  
0xDD  
Letterbox  
Control 2  
LB_EL[3:0]. Programs the end line  
of the activity window for LB  
detection (end of field).  
1
1
0
0
LB detection ends with  
the last line of active  
video on a field,  
1100b: 262/525.  
LB_SL[3:0]. Program the start line  
of the activity window for LB  
detection (start of field).  
0
1
0
0
Letterbox detection  
aligned with the start of  
active video,  
0100b: 23/286 NTSC.  
0xDE  
0xDF  
0xE0  
0xE1  
Reserved  
Reserved  
Reserved  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
SD Offset  
Cb  
SD_OFF_CB[7:0]. Adjusts the hue  
by selecting the offset for the Cb  
channel.  
0xE2  
0xE3  
0xE4  
0xE5  
SD Offset  
Cr  
SD_OFF_CR[7:0]. Adjusts the hue  
by selecting the offset for the Cr  
channel.  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
SD Satura  
tion Cb  
SD_SAT_CB[7:0]. Adjusts the  
saturation of the picture by  
affecting gain on the Cb channel.  
Chroma gain = 0 dB.  
Chroma gain = 0 dB.  
NTSC default (BT.656).  
SD  
SD_SAT_CR[7:0]. Adjusts the  
Saturation saturation of the picture by  
Cr  
affecting gain on the Cr channel.  
NTSC V  
Bit Begin  
NVBEG[4:0]. Number of lines after  
lCOUNT rollover to set V high.  
NVBEGSIGN  
0
1
Set to low when manual  
programming.  
Not suitable for user  
programming.  
NVBEGDELE. Delay V bit going  
high by one line relative to NVBEG  
(even field).  
0
1
No delay.  
Additional delay by 1  
line.  
NVBEGDELO. Delay V bit going  
high by one line relative to NVBEG  
(odd field).  
0
1
No delay.  
Additional delay by 1  
line.  
0xE6  
NTSC V  
Bit End  
NVEND[4:0]. Number of lines after  
lCOUNT rollover to set V low.  
0
0
1
0
0
NTSC default (BT.656).  
NVENDSIGN  
0
1
Set to low when manual  
programming.  
Not suitable for user  
programming.  
NVENDDELE. Delay V bit going  
low by one line relative to NVEND  
(even field).  
0
1
No delay.  
Additional delay by 1  
line.  
NVENDDELO. Delay V bit going  
low by one line relative to NVEND  
(odd field).  
0
1
No delay.  
Additional delay by 1  
line.  
Rev. B | Page 85 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0xE7  
NTSC F Bit NFTOG[4:0]. Number of lines after  
0
0
1
0
0
0
1
1
NTSC default.  
Toggle  
lCOUNT rollover to toggle F signal.  
NFTOGSIGN  
0
1
Set to low when manual  
programming.  
Not suitable for user  
programming.  
NFTOGDELE. Delay F transition by  
one line relative to NFTOG (even  
field).  
0
1
No delay.  
Additional delay by 1  
line.  
NFTOGDELO. Delay F transition by  
one line relative to NFTOG (odd  
field).  
0
1
No delay.  
Additional delay by 1  
line.  
0xE8  
0xE9  
0xEA  
PAL V Bit  
Begin  
PVBEG[4:0]. Number of lines after  
lCOUNT rollover to set V high.  
0
0
0
1
1
0
0
0
1
1
0
1
PAL default (BT.656).  
PVBEGSIGN  
0
1
Set to low when manual  
programming.  
Not suitable for user  
programming.  
PVBEGDELE. Delay V bit going  
high by one line relative to PVBEG  
(even field).  
0
1
No delay.  
Additional delay by 1  
line.  
PVBEGDELO. Delay V bit going  
high by one line relative to PVBEG  
(odd field).  
0
1
No delay.  
Additional delay by 1  
line.  
PAL V Bit  
End  
PVEND[4:0]. Number of lines after  
lCOUNT rollover to set V low.  
PAL default (BT.656).  
PVENDSIGN  
0
1
Set to low when manual  
programming.  
Not suitable for user  
programming.  
PVENDDELE. Delay V bit going low  
by one line relative to PVEND  
(even field).  
0
1
No delay.  
Additional delay by 1  
line.  
PVENDDELO. Delay V bit going  
low by one line relative to PVEND  
(odd field).  
0
1
No delay.  
Additional delay by 1  
line.  
PAL F Bit  
Toggle  
PFTOG[4:0]. Number of lines after  
lCOUNT rollover to toggle F signal.  
PAL default (BT.656).  
PFTOGSIGN  
0
1
Set to low when manual  
programming.  
Not suitable for user  
programming.  
PFTOGDELE. Delay F transition by  
one line relative to PFTOG (even  
field).  
0
1
No delay.  
Additional delay by 1  
line.  
PFTOGDELO. Delay F transition by  
one line relative to PFTOG (odd  
field).  
0
1
No delay.  
Additional delay by 1  
line.  
Rev. B | Page 86 of 100  
ADV7183B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
0
0
1
Comments  
Notes  
0xF4  
Drive  
Strength  
DR_STR_S[1:0]. Select the drive  
strength for the sync output  
signals.  
Low drive strength (1×).  
Medium-low drive  
strength (2×).  
1
1
0
1
Medium-high drive  
strength (3×).  
High drive strength (4×).  
Low drive strength (1×).  
DR_STR_C[1:0]. Select the drive  
strength for the clock output  
signal.  
0
0
0
1
Medium-low drive  
strength (2×).  
1
1
0
1
Medium-high drive  
strength (3×).  
High drive strength (4×).  
Low drive strength (1×).  
DR_STR[1:0]. Select the drive  
strength for the data output  
signals. Can be increased or  
decreased for EMC or crosstalk  
reasons.  
0
0
0
1
Medium-low drive  
strength (2×).  
1
1
0
1
Medium-high drive  
strength (3×).  
High drive strength (4×).  
No delay.  
Reserved  
x
x
0xF8  
IF Comp  
Control  
IFFILTSEL[2:0] IF filter selection for  
PAL and NTSC  
0
0
0
0
0
1
Bypass mode.  
0 dB.  
2 MHz  
−3 dB  
5 MHz  
NTSC filters.  
−2 dB  
0
0
1
1
1
0
0
1
0
−6 dB  
+3.5 dB  
+5 dB  
−10 dB  
Reserved.  
3 MHz  
−2 dB  
6 MHz  
+2 dB  
+3 dB  
+5 dB  
PAL filters.  
1
1
1
0
1
1
1
0
1
−5 dB  
−7 dB  
Reserved  
0
0
0
0
0
0xF9  
VS Mode  
Control  
EXTEND_VS_MAX_FREQ  
0
1
Limit maximum Vsync  
frequency to 66.25 Hz  
(475 lines/frame).  
Limit maximum Vsync  
frequency to 70.09 Hz  
(449 lines/frame).  
EXTEND_VS_MIN_FREQ  
0
1
Limit minimum Vsync  
frequency to 42.75 Hz  
(731 lines/frame).  
Limit minimum Vsync  
frequency to 39.51 Hz  
(791 lines/frame).  
VS_COAST_MODE[1:0]  
Reserved  
0
0
1
1
0
1
0
1
Auto coast mode.  
50 Hz coast mode.  
60 Hz coast mode.  
Reserved.  
This value sets up the  
output coast  
frequency.  
0
0
0
0
Rev. B | Page 87 of 100  
ADV7183B  
I2C PROGRAMMING EXAMPLES  
EXAMPLES IN THIS SECTION USE A 28 MHz CLOCK.  
Mode 1 CVBS Input (Composite Video on AIN5)  
All standards are supported through autodetect, 8-bit, 4:2:2, ITU-R BT.656 output on P15 to P8.  
Table 87. Mode 1 CVBS Input  
Register Address  
Register Value  
Notes  
0x00  
0x15  
0x17  
0x04  
0x00  
0x41  
CVBS input on AIN5.  
Slow down digital clamps.  
Set CSFM to SH1.  
0x1D  
0x0F  
0x40  
0x40  
Enable 28 MHz crystal.  
TRAQ.  
0x3A  
0x3D  
0x3F  
0x16  
0xC3  
0xE4  
Power down ADC 1 and ADC 2.  
MWE enable manual window.  
BGB to 36.  
0x50  
0x04  
Set DNR threshold to 4 for flat response.  
0x0E  
0x80  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x50  
0x52  
0x58  
0x77  
0x7C  
0x7D  
0x90  
0x91  
0x92  
0x93  
0x94  
0xCF  
0xD0  
0xD6  
0xE5  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0x20  
0x18  
0xED  
0xC5  
0x93  
0x00  
0xC9  
0x40  
0x3C  
0xCA  
0xdD  
0x50  
0x4E  
0xDD  
0x51  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 88 of 100  
 
ADV7183B  
Mode 2 S-Video Input (Y on AIN1 and C on AIN4)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15 to P8.  
Table 88. Mode 2 S-Video Input  
Register Address  
Register Value  
Notes  
0x00  
0x15  
0x3A  
0x1D  
0x06  
0x00  
0x12  
0x40  
Y1 = AIN1, C1 = AIN4.  
Slow down digital clamps.  
Power down ADC 2.  
Enable 28 MHz crystal.  
TRAQ.  
0x0F  
0x40  
0x3D  
0x3F  
0xC3  
0xE4  
MWE enable manual window.  
BGB to 36.  
0x50  
0x04  
Set DNR threshold to 4 for flat response.  
0x0E  
0x80  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x50  
0x52  
0x58  
0x77  
0x7C  
0x7D  
0x90  
0x91  
0x92  
0x93  
0x 94  
0xCF  
0xD0  
0xD6  
0xE5  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0x20  
0x18  
0xED  
0xC5  
0x93  
0x00  
0xC9  
0x40  
0x3C  
0xCA  
0xdD  
0x50  
0x4E  
0xDD  
0x51  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 89 of 100  
ADV7183B  
Mode 3 525i/625i YPrPb Input (Y on AIN2, PB on AIN3, and PR on AIN6)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15 to P8.  
Table 89. Mode 3 YPrPb Input 525i/625i  
Register Address  
Register Value  
Notes  
0x00  
0x1D  
0x0F  
0x3D  
0x3F  
0x50  
0x0E  
0x0A  
0x40  
0x40  
0xC3  
0xE4  
0x04  
0x80  
Y2 = AIN2, PB2 = AIN3, PR2 = AIN6.  
Enable 28 MHz crystal.  
TRAQ.  
MWE enable manual window.  
BGB to 36.  
Set DNR threshold to 4 for flat response.  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x52  
0x58  
0x77  
0x7C  
0x90  
0x91  
0x92  
0x93  
0x94  
0xCF  
0xD0  
0xD6  
0xE5  
0xE9  
0x0E  
0x18  
0xED  
0xC5  
0x93  
0xC9  
0x40  
0x3C  
0xCA  
0xdD  
0x50  
0x4E  
0xDD  
0x51  
0x3E  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 90 of 100  
ADV7183B  
Mode 4 CVBS Tuner Input PAL Only on AIN4  
8-bit, ITU-R BT.656 output on P15 to P8.  
Table 90. Mode 4 Tuner Input CVBS PAL Only  
Register Address  
Register Value  
Notes  
0x00  
0x07  
0x15  
0x17  
0x83  
0x01  
0x00  
0x41  
CVBS AIN4 Force PAL only mode.  
Enable PAL autodetection only.  
Slow down digital clamps.  
Set CSFM to SH1.  
0x1D  
0x0F  
0x40  
0x40  
Enable 28 MHz crystal  
TRAQ  
0x3D  
0x3F  
0xC3  
0xE4  
MWE enable manual window  
BGB to 36  
0x19  
0x3A  
0x50  
0xFA  
0x16  
0x0A  
Stronger dot crawl reduction.  
Power down ADC 1 and ADC 2.  
Set higher DNR threshold.  
0x0E  
0x80  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x50  
0x52  
0x58  
0x77  
0x7C  
0x7D  
0x90  
0x91  
0x92  
0x93  
0x94  
0xCF  
0xD0  
0xD6  
0xE5  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0x20  
0x18  
0xED  
0xC5  
0x93  
0x00  
0xC9  
0x40  
0x3C  
0xCA  
0xdD  
0x50  
0x4E  
0xDD  
0x51  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 91 of 100  
ADV7183B  
EXAMPLES USING 27 MHz CLOCK  
Mode 1 CVBS Input (Composite Video on AIN5)  
All standards are supported through autodetect, 8-bit, 4:2:2, ITU-R BT.656 output on P15 to P8.  
Table 91. Mode 1 CVBS Input  
Register Address  
Register Value  
Notes  
0x00  
0x15  
0x17  
0x3A  
0x50  
0x0E  
0x04  
0x00  
0x41  
0x16  
0x04  
0x80  
CVBS input on AIN5.  
Slow down digital clamps.  
Set CSFM to SH1.  
Power down ADC 1 and ADC 2.  
Set DNR threshold to 4 for flat response.  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x50  
0x52  
0x58  
0x77  
0x7C  
0x7D  
0xD0  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0x20  
0x18  
0xED  
0xC5  
0x93  
0x00  
0x48  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting  
Recommended setting.  
Recommended setting.  
Mode 2 S-Video Input (Y on AIN1 and C on AIN4)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15 to P8.  
Table 92. Mode 2 S-Video Input  
Register Address  
Register Value  
Notes  
0x00  
0x15  
0x3A  
0x50  
0x0E  
0x06  
0x00  
0x12  
0x04  
Y1 = AIN1, C1 = AIN4.  
Slow down digital clamps.  
Power down ADC 2.  
Set DNR threshold to 4 for flat response.  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x80  
0x50  
0x52  
0x58  
0x77  
0x7C  
0x7D  
0xD0  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0x20  
0x18  
0xED  
0xC5  
0x93  
0x00  
0x48  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting  
Recommended setting.  
Recommended setting.  
Rev. B | Page 92 of 100  
 
ADV7183B  
Mode 3 525i/625i YPrPb Input (Y on AIN2, PB on AIN3, and PR on AIN6)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15 to P8.  
Table 93. Mode 3 YPrPb Input 525i/625i  
Register Address  
Register Value  
Notes  
0x00  
0x50  
0x0E  
0x0A  
0x04  
0x80  
Y2 = AIN2, PB2 = AIN3, PR2 = AIN6.  
Set DNR threshold to 4 for flat response.  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x52  
0x58  
0x77  
0x7C  
0x7D  
0xD0  
0xD5  
0xE4  
0xE9  
0x0E  
0x18  
0xED  
0xC5  
0x93  
0x00  
0x48  
0xA0  
0x3E  
0x3E  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting  
Recommended setting.  
Mode 4 CVBS Tuner Input PAL Only on AIN4  
8-bit, ITU-R BT.656 output on P15 to P8.  
Table 94. Mode 4 Tuner Input CVBS PAL Only  
Register Address  
Register Value  
Notes  
0x00  
0x07  
0x15  
0x17  
0x19  
0x3A  
0x50  
0x0E  
0x83  
0x01  
0x00  
0x41  
0xFA  
0x16  
0x0A  
0x80  
CVBS AIN4 Force PAL only mode.  
Enable PAL autodetection only.  
Slow down digital clamps.  
Set CSFM to SH1.  
Stronger dot crawl reduction.  
Power down ADC 1 and ADC 2.  
Set higher DNR threshold.  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x50  
0x52  
0x58  
0x77  
0x7C  
0x7D  
0xD0  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0x20  
0x18  
0xED  
0xC5  
0x93  
0x00  
0x48  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting  
Recommended setting.  
Recommended setting.  
Rev. B | Page 93 of 100  
ADV7183B  
PCB LAYOUT RECOMMENDATIONS  
The ADV7183B is a high precision, high speed, mixed-signal  
device. To achieve the maximum performance from the part, it  
is important to have a PCB board with a good layout. This  
section provides guidelines for designing a board using the  
ADV7183B.  
ADV7183B  
ANALOG  
SECTION  
DIGITAL  
SECTION  
Figure 42. PCB Ground Layout  
Experience shows that the noise performance is the same or  
better with a single ground plane. Using multiple ground planes  
can be detrimental because each separate ground plane is  
smaller, and long ground loops can result.  
ANALOG INTERFACE INPUTS  
Care should be taken when routing the inputs on the PCB.  
Track lengths should be kept to a minimum, and 75 Ω trace  
impedances should be used when possible. Trace impedances  
other than 75 Ω also increase the chance of reflections.  
In some cases, using separate ground planes is unavoidable. For  
those cases, it is recommended to place a single ground plane  
under the ADV7183B. The location of the split should be under  
the ADV7183B. For this case, it is even more important to place  
components wisely because the current loops will be much  
longer (current takes the path of least resistance). An example  
of a current loop: power plane to ADV7183B to digital output  
trace to digital data receiver to digital ground plane to analog  
ground plane.  
POWER SUPPLY DECOUPLING  
It is recommended to decouple each power supply pin with  
0.1 ꢀF and 10 nF capacitors. The fundamental idea is to have a  
decoupling capacitor within about 0.5 cm of each power pin.  
Also, avoid placing the capacitor on the opposite side of the PC  
board from the ADV7183B, as doing so interposes resistive vias  
in the path. The decoupling capacitors should be located  
between the power plane and the power pin. Current should  
flow from the power plane to the capacitor to the power pin. Do  
not make the power connection between the capacitor and the  
power pin. Placing a via underneath the 100 nF capacitor pads,  
down to the power plane, is generally the best approach (see  
Figure 41).  
PLL  
Place the PLL loop filter components as close as possible to the  
ELPF pin. Do not place any digital or other high frequency  
traces near these components. Use the values suggested in  
Figure 46 with tolerances of 10% or less.  
DIGITAL OUTPUTS (BOTH DATA AND CLOCKS)  
VDD  
GND  
VIA TO SUPPLY  
VIA TO GND  
10nF  
100nF  
Try to minimize the trace length the digital outputs have to  
drive. Longer traces have higher capacitance, which requires  
more current, which causes more internal digital noise. Shorter  
traces reduce the possibility of reflections.  
Figure 41. Recommended Power Supply Decoupling  
Adding a 30 Ω to 50 Ω series resistor can suppress reflections,  
reduce EMI, and reduce the current spikes inside the ADV7183B.  
If series resistors are used, place them as close as possible to the  
ADV7183B pins. However, try not to add vias or extra length to  
the output trace to make the resistors closer.  
It is very important to maintain low noise and good stability of  
PVDD. Careful attention must be paid to regulation, filtering,  
and decoupling. It is highly desirable to provide separate  
regulated supplies for each of the analog circuitry groups  
(AVDD, DVDD, DVDDIO, and PVDD).  
If possible, limit the capacitance that each of the digital outputs  
drive to less than 15 pF. This can easily be accomplished by  
keeping traces short and by connecting the outputs to only one  
device. Loading the outputs with excessive capacitance increases  
the current transients inside the ADV7183B, creating more  
digital noise on its power supplies.  
Some graphic controllers use substantially different levels of  
power when active (during active picture time) and when idle  
(during horizontal and vertical sync periods). This can result in  
a measurable change in the voltage supplied to the analog  
supply regulator, which can, in turn, produce changes in the  
regulated analog supply voltage. This can be mitigated by  
regulating the analog supply, or at least PVDD, from a different,  
cleaner power source, such as a 12 V supply.  
DIGITAL INPUTS  
The digital inputs on the ADV7183B are designed to work with  
3.3 V signals, and are not tolerant of 5 V signals. Extra compo-  
nents are needed if 5 V logic signals are required to be applied  
to the decoder.  
It is also recommended to use a single ground plane for the  
entire board. This ground plane should have a space between  
the analog and digital sections of the PCB (see Figure 42).  
Rev. B | Page 94 of 100  
 
ADV7183B  
ANTIALIASING FILTERS  
CRYSTAL LOAD CAPACITOR VALUE SELECTION  
For inputs from some video sources that are not bandwidth  
limited, signals outside the video band can alias back into the  
video band during A/D conversion and appear as noise on the  
output video. The ADV7183B oversamples the analog inputs by  
a factor of 4. This 54 MHz sampling frequency reduces the  
requirement for an input filter; for optimal performance, it is  
recommended that an antialiasing filter be used. The  
Figure 44 shows an example of a reference clock circuit for the  
ADV7183B. Special care must be taken when using a crystal  
circuit to generate the reference clock for the ADV7183B. Small  
variations in reference clock frequency can cause autodetection  
issues and impair the ADV7183B performance.  
Load capacitor values are dependant on crystal attributes.  
recommended low cost circuit for implementing this buffer and  
filter circuit for all analog input signals is shown in Figure 45.  
The load capacitance given in a crystal data sheet specifies the  
parallel resonance frequency within the tolerance at 25°C.  
Therefore, it is important to design a circuit that matches the  
load capacitance to achieve the frequency stipulated by the  
manufacturer. For accurate crystal circuit design and  
optimization, an applications note on crystal design  
considerations is available for more information.  
The buffer is a simple emitter-follower using a single npn  
transistor. The antialiasing filter is implemented using passive  
components. The passive filter is a third-order Butterworth  
filter with a −3 dB point of 9 MHz. The frequency response of  
the passive filter is shown in Figure 43. The flat pass band up to  
6 MHz is essential. The attenuation of the signal at the output of  
the filter due to the voltage divider of R24 and R63 is  
XTAL  
XTAL1  
R = 1MΩ  
compensated for in the ADV7183B part by using the automatic  
gain control. The ac-coupling capacitor at the input to the  
buffer creates a high-pass filter with the biasing resistors for the  
transistor. This filter has a cutoff of  
C1  
47pF  
C2  
47pF  
XTAL  
28.63636MHz  
Figure 44. Crystal Circuit  
Follow these guidelines to ensure correct operation:  
{2 × π × (R39||R89) × C93}–1 = 0.62 Hz  
Use the correct frequency crystal, which is 28.63636 MHz.  
Tolerance is 50 ppm or higher.  
It is essential that the cutoff of this filter be less than 1 Hz to  
ensure correct operation of the internal clamps within the part.  
These clamps ensure the video stays within the 5 V range of the  
op amp used.  
Use a parallel-resonant crystal.  
Place a 1 MΩ shunt resistor across pins XTAL and  
XTAL1, as is shown in Figure 44.  
0
Know the CLOAD for the crystal part number selected. The  
value of Capacitor C1 and Capacitor C2 must match CLOAD  
for the specific crystal part number in the users system.  
–20  
–40  
Use the following guideline to find CLOAD  
C1 = C2 = C  
:
–60  
C = 2(CLOAD CS) Cpg  
–80  
where:  
Cpg is the pin-to-ground capacitance, approximately 4 pF  
to 10 pF.  
–100  
CS is the PCB stray capacitance, approximately 2 pF to  
3 pF.  
–120  
100k  
300k  
1M  
3M  
10M  
30M  
100M 300M  
1G  
FREQUENCY (Hz)  
Figure 43. Third-Order Butterworth Filter Response  
For Example,  
CLOAD = 30 pF  
C = 2(30 − 3) − 4  
= 50 pF  
Therefore, two 47 pF capacitors may be selected for C1  
and C2.  
Rev. B | Page 95 of 100  
 
 
 
 
ADV7183B  
TYPICAL CIRCUIT CONNECTION  
Figure 45 and Figure 46 show examples of how to connect the ADV7183B video decoder. For a detailed schematic diagram for the  
ADV7183B, refer to the ADV7183B evaluation note.  
AVDD_5V  
R43  
0Ω  
BUFFER  
R39  
4.7kΩ  
C93  
100μF  
C
B
FILTER  
Q6  
R53  
56Ω  
L10  
12μH  
E
R38  
75Ω  
R89  
5.6kΩ  
R24  
470Ω  
R63  
820Ω  
C95  
22pF  
C102  
10pF  
AGND  
Figure 45. ADI Recommended Antialiasing Circuit for All Input Channels  
Rev. B | Page 96 of 100  
 
ADV7183B  
FERRITE BEAD  
DVDDIO  
(3.3V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
DGND  
DGND  
DGND  
DGND  
FERRITE BEAD  
PVDD  
(1.8V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
AGND  
AGND  
AGND  
AGND  
FERRITE BEAD  
AVDD  
(3.3V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
AGND  
AGND  
AGND  
AGND  
FERRITE BEAD  
DVDD  
(1.8V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
AGND DGND  
ANTI-ALIAS  
DGND  
DGND  
DGND  
DGND  
S-VIDEO  
FILTER CIRCUIT  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
P0  
P1  
AIN1  
ANTI-ALIAS  
FILTER CIRCUIT  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
AIN7  
AIN2  
AIN8  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
ANTI-ALIAS  
FILTER CIRCUIT  
Y
MULTI-  
FORMAT  
PIXEL  
PORT  
ANTI-ALIAS  
FILTER CIRCUIT  
Pr  
ADV7183B  
ANTI-ALIAS  
FILTER CIRCUIT  
Pb  
P15–P8 8-BIT ITU-R BT.656PIXEL DATA@ 27MHz  
P7–P0 Cb AND Cr 16-BIT ITU-R BT.656PIXEL DATA@ 13.5MHz  
P15–P8 Y 16-BIT ITU-R BT.656 PIXEL DATA@ 13.5MHz  
ANTI-ALIAS  
FILTER CIRCUIT  
CBVS  
RECOMMENDED ANTI-ALIAS FILTER  
CIRCUIT IS SHOWN IN FIGURE 45 ON THE  
PREVIOUS PAGE. THIS CIRCUIT INCLUDES  
A 75Ω TERMINATION RESISTOR, INPUT  
BUFFER AND ANTI-ALIASING FILTER.  
AGND  
AGND  
CAPY1  
CAPY2  
+
0.1μF  
0.1μF  
10μF  
0.1μF  
0.1μF  
1nF  
1nF  
LLC1  
LLC2  
27MHz OUTPUT CLOCK  
13.5MHz OUTPUT CLOCK  
AGND  
CAPC1  
CAPC2  
+
10μF  
AGND  
OE  
OUTPUT ENABLE I/P  
CML  
+
10μF  
0.1μF  
10μF  
REFOUT  
+
0.1μF  
INTERRUPT O/P  
SFL O/P  
INTRQ  
SFL  
CAPACITOR VALUES  
ARE DEPENDANT ON  
XTAL ATTRIBUTES.  
AGND  
47pF  
1MΩ  
XTAL  
HS  
VS  
HS O/P  
28.63636MHz  
VS O/P  
XTAL1  
FIELD  
FIELD O/P  
DGND  
DVDDIO  
47pF  
DGND  
2
SELECT I C  
ADDRESS  
ALSB  
DVDDIO DVDDIO  
ELPF  
DVSS  
1.69kΩ  
10nF  
2kΩ  
2kΩ  
100Ω  
100Ω  
SCLK  
SDA  
82nF  
MPU INTERFACE  
CONTROL LINES  
PVDD  
DVDDIO  
4.7kΩ  
RESET  
RESET  
AGND  
AGND  
DGND  
100nF  
DGND  
DGND  
Figure 46. Typical Connection Diagram  
Rev. B | Page 97 of 100  
ADV7183B  
OUTLINE DIMENSIONS  
16.20  
16.00 SQ  
15.80  
0.75  
0.60  
0.45  
1.60  
MAX  
80  
61  
60  
1
PIN 1  
14.20  
14.00 SQ  
13.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.10 MAX  
COPLANARITY  
20  
41  
0.15  
0.05  
40  
21  
SEATING  
PLANE  
VIEW A  
0.65  
0.38  
0.32  
0.22  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BEC  
Figure 47. 80-Lead Low Profile Quad Flat Package [LQFP]  
(ST-80-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
F
Temperature Range  
Package Description  
Package Option  
ST-80-2  
ST-80-2  
ADV7183BKSTZ2  
F
0°C to +70°C  
–40°C to +85°C  
80-lead Low Profile Quad Flat Package (LQFP)  
80-lead Low Profile Quad Flat Package (LQFP)  
Evaluation Board  
ADV7183BBSTZ2  
EVAL-ADV7183BEB  
1 The ADV7183B is a Pb-free, environmentally friendly product. It is manufactured using the most up-to-date materials and processes. The coating on the leads of each  
device is 100% pure Sn electroplate. The device is suitable for Pb-free applications and can withstand surface-mount soldering at up to 255°C ( 5°C). In addition, the  
ADV71893B is backward-compatible with conventional SnPb soldering processes. This means the electroplated Sn coating can be soldered with Sn/Pb solder pastes at  
conventional reflow temperatures of 220°C to 235°C.  
2 Z = Pb-free part.  
Rev. B | Page 98 of 100  
 
 
ADV7183B  
NOTES  
Rev. B | Page 99 of 100  
ADV7183B  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04997–0–9/05(B)  
Rev. B | Page 100 of 100  

相关型号:

ADV7183KST

Advanced Video Decoder with 10-Bit ADC and Component Input Support
ADI

ADV7184

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
ADI

ADV7184BSTZ

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
ADI

ADV7185

Professional NTSC/PAL Video Decoder with 10-Bit CCIR656 Output
ADI

ADV7185KST

Professional NTSC/PAL Video Decoder with 10-Bit CCIR656 Output
ADI

ADV7186

Video Decoder and Display Processor
ADI

ADV7188

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
ADI

ADV7188BSTZ

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
ADI

ADV7189

Multiformat SDTV Video Decoder
ADI

ADV7189B

Multiformat SDTV Video Decoder
ADI

ADV7189BBSTZ

High Performance 12-bit Video Decoder with Noise Shaped Video&reg; ADCs
ADI

ADV7189BBSTZ268H

Multiformat SDTV Video Decoder
ADI