ADV7330 [ADI]

Multiformat 11-Bit Triple DAC Video Encoder; 多格式11位三重DAC视频编码器
ADV7330
型号: ADV7330
厂家: ADI    ADI
描述:

Multiformat 11-Bit Triple DAC Video Encoder
多格式11位三重DAC视频编码器

编码器
文件: 总76页 (文件大小:1314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiformat 11-Bit  
Triple DAC Video Encoder  
ADV7330  
FEATURES  
APPLICATIONS  
High Definition Input Formats  
8-Bit or 16-Bit (4:2:2) Parallel YCrCb Compliant with:  
SMPTE 293M (525p)  
SD/PS DVD Recorders/Players  
SD/Prog Scan/HDTV Display Devices  
SD/HDTV Set Top Boxes  
BTA T-1004 EDTV2 525p  
ITU-R BT.1358 (525p/625p)  
ITU-R BT.1362 (525p/625p)  
SMPTE 274M (1080i) at 30 Hz and 25 Hz  
SMPTE 296M (720p)  
Other High Definition Formats Using Async  
Timing Mode  
High Definition Output Formats  
YPrPb Progressive Scan (EIA-770.1, EIA-770.2)  
YPrPb HDTV (EIA 770.3)  
SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM  
STANDARD DEFINITION  
CONTROL BLOCK  
ADV7330  
COLOR CONTROL  
BRIGHTNESS  
DNR  
GAMMA  
PROGRAMMABLE FILTERS  
11-BIT  
DAC  
O
V
E
R
S
A
M
P
L
SD TEST PATTERN  
RGB, RGBHV  
D
E
M
U
X
Y7–Y0  
C7–C0  
PROGRAMMABLE  
RGB MATRIX  
11-BIT  
DAC  
CGMS-A (720p/1080i)  
Macrovision® Rev 1.1 (525p/625p)  
CGMS-A (525p)  
I
11-BIT  
DAC  
N
G
HIGH DEFINITION  
CONTROL BLOCK  
Standard Definition Input Formats  
CCIR-656 4:2:2 8-Bit or 16-Bit Parallel Input  
Standard Definition Output Formats  
Composite NTSC M/N  
Composite PAL M/N/B/D/G/H/I, PAL-60  
SMPTE 170M NTSC Compatible Composite Video  
ITU-R BT.470 PAL Compatible Composite Video  
S-Video (Y/C)  
HD TEST PATTERN  
COLOR CONTROL  
ADAPTIVE FILTER CTRL  
SHARPNESS FILTER  
HSYNC_I/P  
VSYNC_I/P  
BLANK_I/P  
TIMING  
GENERATOR  
2
I C  
INTERFACE  
PLL  
CLKIN  
EuroScart RGB  
Component YPrPb (Betacam, MII, SMPTE/EBU N10)  
Macrovision Rev 7.1.L1  
CGMS/WSS  
GENERAL DESCRIPTION  
The ADV®7330 is a high speed, digital-to-analog encoder on a  
single monolithic chip. It includes three high speed video D/A  
converters with TTL compatible inputs.  
Closed Captioning  
GENERAL FEATURES  
Programmable DAC Gain Control  
Sync Outputs in All Modes  
The ADV7330 has separate 8-bit or 16-bit input ports that  
accept data in high definition or standard definition video  
format. For all standards, external horizontal, vertical, and  
blanking signals or EAV/SAV timing codes control the inser-  
tion of appropriate synchronization signals into the digital  
data stream and therefore the output signal.  
On-Board Voltage Reference  
Three 11-Bit Precision Video DACs  
2-Wire Serial I2C® Interface, Open Drain Configuration  
Dual I/O Supply 2.5 V/3.3 V Operation  
Analog and Digital Supply 2.5 V  
On-Board PLL  
64-Lead LQFP Package  
Lead (Pb) Free Product  
Purchase of licensed I2C components of Analog Devices or one of its  
sublicensed Associated Companies conveys a license for the purchaser under  
the Philips I2C Patent Rights to use these components in an I2C system,  
provided that the system conforms to the I2C Standard Specification as  
defined by Philips.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADV7330  
DETAILED FEATURES  
Standard Definition Programmable Features  
16Oversampling  
Internal Test Pattern Generator  
(Colorbars, Black Bar)  
Controlled Edge Rates for Sync, Active Video  
Individual Y and PrPb Output Delay  
Gamma Correction  
High Definition Programmable Features (720p/1080i)  
2Oversampling (148.5 MHz)  
Internal Test Pattern Generator  
(Color Hatch, Black Bar, Flat Field/Frame)  
Fully Programmable YCrCb to RGB Matrix  
Gamma Correction  
Programmable Adaptive Filter Control  
Programmable Sharpness Filter Control  
CGMS-A (720p/1080i)  
Programmable Features (525p/625p)  
8Oversampling  
Digital Noise Reduction (DNR)  
Multiple Chroma and Luma Filters  
Luma-SSAF™ Filter with Programmable  
Gain/Attenuation  
PrPb SSAF™  
Internal Test Pattern Generator  
(Color Hatch, Black Bar, Flat Frame)  
Individual Y and PrPb Output Delay  
Gamma Correction  
Separate Pedestal Control on Component and  
Composite/S-Video Outputs  
VCR FF/RW Sync Mode  
Macrovision Rev 7.1.L1  
Programmable Adaptive Filter Control  
Fully Programmable YCrCb to RGB/Matrix  
Undershoot Limiter  
Macrovision Rev 1.1 (525p/625p)  
CGMS-A (525p)  
CGMS/WSS  
Closed Captioning  
Standards Directly Supported  
Frame  
Clk  
Resolution  
Rate (Hz) Input (MHz) Standard  
720 480  
720 576  
720 483  
720 480  
720 576  
1280 720  
29.97  
25  
59.94  
59.94  
50  
27  
27  
27  
27  
ITU-R BT.656  
ITU-R BT.656  
SMPTE 293M  
BTA T-1004  
ITU-R BT.1362  
SMPTE 296M  
SMPTE 274M  
SMPTE 274M*  
27  
60  
74.25  
74.25  
74.25  
1920 1080 30  
1920 1080 25  
Other standards are supported in Async Timing Mode.  
*SMPTE 274M-1998: System No. 6  
DETAILED FUNCTIONAL BLOCK DIAGRAM  
Y
CR  
CB  
SHARPNESS  
AND  
ADAPTIVE  
FILTER  
CONTROL  
Y COLOR  
CR COLOR  
CB COLOR  
DEINTER-  
LEAVE  
TEST  
PATTERN  
PS 8ꢀ  
HDTV 2ꢀ  
4:2:2  
TO  
4:4:4  
DAC  
DAC  
HSYNC  
VSYNC  
BLANK  
TIMING  
GENERATOR  
CLOCK  
CONTROL  
AND PLL  
U
DAC  
UV SSAF  
RGB  
MATRIX  
V
SD 16ꢀ  
CB  
CR  
Y
CLKIN  
LUMA  
DEINTER-  
LEAVE  
TEST  
PATTERN  
DNR  
GAMMA  
COLOR  
CONTROL  
SYNC  
INSERTION  
2OVER-  
SAMPLING  
F
CGMS  
WSS  
AND  
SC  
MODULATION  
CHROMA  
FILTERS  
SD/PS/HD  
PIXEL INPUT  
–2–  
REV. B  
ADV7330  
TABLE OF CONTENTS  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
GENERAL FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM . . . . . . 1  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . 1  
DETAILED FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
DETAILED FUNCTIONAL BLOCK DIAGRAM . . . . . . . 2  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DYNAMIC SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . 5  
TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 6  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . 11  
THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . 11  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . 12  
MPU PORT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . 13  
REGISTER ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Subaddress Register (SR7–SR0) . . . . . . . . . . . . . . . . . . . 14  
INPUT CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . 27  
Standard Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Progressive Scan or HDTV Mode . . . . . . . . . . . . . . . . . . 27  
Progressive Scan at 27 MHz (Dual Edge) or 54 MHz . . . 27  
OUTPUT CONFIGURATION . . . . . . . . . . . . . . . . . . . . . 28  
TIMING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
HD Async Timing Mode . . . . . . . . . . . . . . . . . . . . . . . . . 29  
HD Timing Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SD Real-Time Control, Subcarrier Reset, Timing Reset . 31  
Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
SD VCR FF/RW Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Vertical Blanking Interval . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SD Subcarrier Frequency Registers . . . . . . . . . . . . . . . . . 33  
Square Pixel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FILTER SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
HD Sinc Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SD Internal Filter Response . . . . . . . . . . . . . . . . . . . . . . . 35  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . 36  
COLOR CONTROLS AND RGB MATRIX . . . . . . . . . . . 40  
HD Y Level, Cr Level, Cb Level . . . . . . . . . . . . . . . . . . . 40  
HD RGB Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
SD Luma and Color Control . . . . . . . . . . . . . . . . . . . . . . 40  
SD Hue Adjust Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
SD Brightness Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
SD Brightness Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Double Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
PROGRAMMABLE DAC GAIN CONTROL . . . . . . . . . . 42  
Gamma Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
HD SHARPNESS FILTER CONTROL AND  
ADAPTIVE FILTER CONTROL . . . . . . . . . . . . . . . . . . . 44  
HD Sharpness Filter Mode . . . . . . . . . . . . . . . . . . . . . . . 44  
HD Adaptive Filter Mode . . . . . . . . . . . . . . . . . . . . . . . . 44  
HD Sharpness Filter and Adaptive Filter Application  
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADAPTIVE FILTER CONTROL APPLICATION . . . . . . 46  
SD Digital Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . 47  
Coring Gain Border . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Coring Gain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
DNR Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Border Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Block Size Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
DNR Input Select Control . . . . . . . . . . . . . . . . . . . . . . . . 48  
DNR Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Block Offset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
SD ACTIVE VIDEO EDGE . . . . . . . . . . . . . . . . . . . . . . . . 48  
SAV/EAV STEP EDGE CONTROL . . . . . . . . . . . . . . . . . 48  
BOARD DESIGN AND LAYOUT CONSIDERATIONS . 50  
DAC Termination and Layout Considerations . . . . . . . . 50  
VIDEO OUTPUT BUFFER AND OPTIONAL  
OUTPUT FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
PC BOARD LAYOUT CONSIDERATIONS . . . . . . . . . . 51  
Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Digital Signal Interconnect . . . . . . . . . . . . . . . . . . . . . . . 52  
Analog Signal Interconnect . . . . . . . . . . . . . . . . . . . . . . . 52  
APPENDIX 1—COPY GENERATION  
MANAGEMENT SYSTEM . . . . . . . . . . . . . . . . . . . . . . 53  
HD CGMS Data Registers 2–0 . . . . . . . . . . . . . . . . . . . . 53  
SD CGMS Data Registers 2–0 . . . . . . . . . . . . . . . . . . . . . 53  
HD CGMS Data Registers . . . . . . . . . . . . . . . . . . . . . . . 53  
Function of CGMS Bits . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
APPENDIX 2—SD WIDE SCREEN SIGNALING . . . . . . 55  
APPENDIX 3—SD CLOSED CAPTIONING . . . . . . . . . . 56  
APPENDIX 4—TEST PATTERNS . . . . . . . . . . . . . . . . . . 57  
APPENDIX 5—SD TIMING MODES . . . . . . . . . . . . . . . 60  
Mode 0 (CCIR-656)—Slave Option . . . . . . . . . . . . . . . . 60  
Mode 0 (CCIR-656)—Master Option . . . . . . . . . . . . . . . 61  
Mode 1—Slave Option . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Mode 1—Master Option . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Mode 2—Slave Option . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Mode 2—Master Option . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Mode 3—Master/Slave Option . . . . . . . . . . . . . . . . . . . . . 66  
APPENDIX 6—HD TIMING . . . . . . . . . . . . . . . . . . . . . . 67  
APPENDIX 7—VIDEO OUTPUT LEVELS . . . . . . . . . . . 68  
HD YPrPb Output Levels . . . . . . . . . . . . . . . . . . . . . . . . 68  
RGB Output Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
YPrPb Output Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
APPENDIX 8—VIDEO STANDARDS . . . . . . . . . . . . . . . 74  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 76  
REV. B  
–3–  
(VAA = 2.375 V to 2.625 V, VDD = 2.375 V to 2.625 V; VDD_IO = 2.375 V to 3.6 V,  
ADV7330–SPECIFICATIONS VREF = 1.235 V, RSET = 3040 , RLOAD = 300 . All specifications TMIN to TMAX  
(0C to 70C), unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
STATIC PERFORMANCE1  
(With No Oversampling Ratio)  
Resolution  
11  
Bits  
Integral Nonlinearity  
1.5  
0.5  
1.0  
LSB  
LSB  
LSB  
Differential Nonlinearity2, +ve  
Differential Nonlinearity2, –ve  
DIGITAL OUTPUTS  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Three-State Leakage Current  
Three-State Output Capacitance  
0.4 [0.4]3  
V
V
µA  
pF  
ISINK = 3.2 mA  
ISOURCE = 400 µA  
VIN = 0.4 V, 2.4 V  
2.4 [2.0]3  
1.0  
2
DIGITAL AND CONTROL INPUTS  
Input High Voltage, VIH  
2
V
Input Low Voltage, VIL  
Input Leakage Current  
Input Capacitance, CIN  
0.8  
V
µA  
pF  
3
2
VIN = 2.4 V  
ANALOG OUTPUTS  
Full-scale Output Current  
Output Current Range  
DAC to DAC Matching  
Output Compliance Range, VOC  
Output Capacitance, COUT  
4.1  
4.1  
4.33  
4.33  
1.0  
1.0  
7
4.6  
4.6  
mA  
mA  
%
V
pF  
0
1.4  
VOLTAGE REFERENCE  
Internal Reference Range, VREF  
External Reference Range, VREF  
VREF Current4  
1.15  
1.15  
1.235  
1.235  
10  
1.3  
1.3  
V
V
µA  
POWER REQUIREMENTS  
Normal Power Mode  
IDD  
5
170  
110  
95  
1.0  
24  
1906  
28  
mA  
mA  
mA  
mA  
mA  
SD (16×)  
PS (8×)  
HDTV (2×)  
IDD_IO  
7, 8  
IAA  
Sleep Mode  
IDD  
IAA  
200  
10  
250  
µA  
µA  
µA  
IDD_IO  
Power Supply Rejection Ratio  
0.01  
%/%  
NOTES  
1Oversampling disabled. Static DAC performance will be improved with increased oversampling ratios.  
2DNL measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal step value; for –ve DNL,  
the actual step value lies below the ideal step value.  
3Value in brackets for VDD_IO = 2.375 V to 2.75 V.  
4External current required to overdrive internal VREF  
.
5IDD, the circuit current, is the continuous current required to drive the digital core.  
6Guaranteed maximum by characterization.  
7IAA is the total current required to supply all DACs including the VREF circuitry and the PLL circuitry.  
8All DACs on.  
Specifications subject to change without notice.  
–4–  
REV. B  
ADV7330  
(VAA = 2.375 V to 2.625 V, VDD = 2.375 V to 2.625 V; VDD_IO = 2.375 V to 3.6 V, VREF = 1.235 V,  
DYNAMIC SPECIFICATIONS  
RSET = 3040 , RLOAD = 300 . All specifications TMIN to TMAX (0C to 70C), unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
PROGRESSIVE SCAN MODE  
Luma Bandwidth  
Chroma Bandwidth  
SNR  
12.5  
5.8  
65.6  
72  
MHz  
MHz  
dB  
Luma ramp unweighted  
Flat field full bandwidth  
dB  
HDTV MODE  
Luma Bandwidth  
Chroma Bandwidth  
30  
13.75  
MHz  
MHz  
STANDARD DEFINITION MODE  
Hue Accuracy  
0.4  
0.4  
1.2  
–0.2  
0
97.0  
–1.1  
0.5  
Degrees  
%
%
Degrees  
%
%
ns  
%
dB  
Color Saturation Accuracy  
Chroma Nonlinear Gain  
Chroma Nonlinear Phase  
Chroma/Luma Intermodulation  
Chroma/Luma Gain Inequality  
Chroma/Luma Delay Inequality  
Luminance Nonlinearity  
Chroma AM Noise  
Referenced to 40 IRE  
84  
Chroma PM Noise  
Differential Gain  
Differential Phase  
SNR  
75.2  
0.20  
0.15  
59.1  
77.7  
dB  
%
Degrees  
dB  
dB  
NTSC  
NTSC  
Luma ramp  
Flat field full bandwidth  
Specifications subject to change without notice.  
REV. B  
–5–  
ADV7330  
TIMING SPECIFICATIONS (V = 2.375 V to 2.625 V, V = 2.375 V to 2.625 V; V  
DD_IO = 2.375 V to 3.6 V, VREF = 1.235 V,  
RSET = 3040 , RLOAD = 300 . All specifications TMIN to TMAX (0C to 70C), unless otherwise noted.)  
AA  
DD  
Parameter  
Min  
Typ Max  
Unit  
Conditions  
MPU PORT1  
SCLOCK Frequency  
0
400  
kHz  
µs  
SCLOCK High Pulsewidth, t1  
SCLOCK Low Pulsewidth, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
RESET Low Time  
0.6  
1.3  
0.6  
0.6  
100  
µs  
µs  
µs  
After this period, the first clock is generated  
Relevant for repeated start condition  
ns  
ns  
ns  
µs  
300  
300  
0.6  
100  
ns  
ANALOG OUTPUTS  
Analog Output Delay2  
Output Skew  
7
1
ns  
ns  
CLOCK CONTROL AND PIXEL PORT3  
fCLK  
fCLK  
27  
81  
MHz  
MHz  
Progressive scan mode  
HDTV mode/async mode  
Clock High Time, t9  
Clock Low Time, t10  
40  
40  
2.0  
2.0  
% of one clk cycle  
% of one clk cycle  
1
Data Setup Time, t111  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold Time, t12  
SD Output Access Time, t13  
SD Output Hold Time, t14  
HD Output Access Time, t13  
HD Output Hold Time, t14  
15  
14  
5.0  
5.0  
PIPELINE DELAY4  
63  
76  
35  
41  
36  
clk cycles  
clk cycles  
clk cycles  
clk cycles  
clk cycles  
SD (2×, 16×)  
SD component mode (16×)  
PS (1×)  
PS (8×)  
HD (2×, 1×)  
NOTES  
1Guaranteed by characterization.  
2Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of the DAC output full-scale transition.  
3Data: C [9:0]; Y [9:0], S[9:0].  
Control: HSYNC_I/P, VSYNC_I/P, BLANK_I/P, HSYNC_O/P, VSYNC_O/P, BLANK_O/P.  
4SD, PS = 27 MHz, HD = 74.25 MHz.  
Specifications subject to change without notice.  
–6–  
REV. B  
ADV7330  
CLKIN  
t9  
t10  
t12  
HSYNC_I/P  
VSYNC_I/P  
BLANK_I/P  
CONTROL  
INPUTS  
Y7–Y0  
C7–C0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cb0  
Cr0  
Cb2  
Cr2  
Cb4  
Cr4  
t11  
t13  
HSYNC_O/P  
VSYNC_O/P  
BLANK_O/P  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 1. HD/PS 4:2:2 Input Mode (HD: Input Mode 010) (PS: Input Mode 001)  
CLKIN  
t9  
t10  
HSYNC_I/P  
VSYNC_I/P  
BLANK_I/P  
CONTROL  
INPUTS  
Cb0  
Y0  
Cr0  
Y1  
Crxxx  
Yxxx  
Y7–Y0  
t12  
t12  
t11  
t11  
t13  
HSYNC_O/P  
VSYNC_O/P  
BLANK_O/P  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 2. PS 4:2:2 1× 8-Bit Interleaved at 27 MHz Hsync/Vsync Input Mode (Input Mode 100)  
REV. B  
–7–  
ADV7330  
CLKIN  
Y7–Y0  
t9  
t10  
3FF  
00  
00  
XY  
Cb0*  
Y0  
Cr0  
Y1  
t12  
t12  
t11  
t11  
t13  
HSYNC_O/P  
VSYNC_O/P  
BLANK_O/P  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
*Y0, Cb, SEQUENCE AS PER SUBADDRESS 01h BIT 1  
Figure 3. PS 4:2:2 1× 8-Bit Interleaved at 27 MHz EAV/SAV Input Mode (Input Mode 100)  
CLKIN  
t9  
t10  
HSYNC_I/P  
VSYNC_I/P  
BLANK_I/P  
CONTROL  
INPUTS  
Cb0  
Y0  
Cr2  
Y1  
Cbxxx  
Cbxxx  
Y7–Y0  
t12  
t13  
t14  
t11  
HSYNC_O/P  
VSYNC_O/P  
BLANK_O/P  
CONTROL  
OUTPUTS  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 4. PS 4:2:2 1× 8-Bit Interleaved at 54 MHz Hsync/Vsync I/P Mode (Input Mode 011)  
CLKIN  
t9  
t10  
Y7–Y0  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
t13  
t14  
t12  
t11  
CONTROL  
OUTPUTS  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 5. PS 4:2:2 1× 8-Bit Interleaved at 54 MHz EAV/SAV Input Mode (Input Mode 011)  
–8–  
REV. B  
ADV7330  
CLKIN  
t12  
t10  
t9  
HSYNC_I/P  
VSYNC_I/P  
BLANK_I/P  
CONTROL  
INPUTS  
IN SLAVE MODE  
Cb  
Y
Y
Cb  
t13  
Y
Y7–Y0  
Cr  
t11  
HSYNC_O/P  
VSYNC_O/P  
BLANK_O/P  
IN MASTER/SLAVE  
MODE  
CONTROL  
OUTPUTS  
t14  
Figure 6. 8-Bit SD Pixel Input Mode (Input Mode 000)  
CLKIN  
t12  
t10  
t9  
HSYNC_I/P  
VSYNC_I/P  
BLANK_I/P  
CONTROL  
INPUTS  
IN SLAVE MODE  
Y7–Y0  
Y0  
Y1  
Y2  
Y3  
C7–C0  
Cb0  
Cr0  
Cb2  
Cr2  
t13  
t11  
HSYNC_O/P  
VSYNC_O/P  
BLANK_O/P  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE  
MODE  
t14  
Figure 7. 16-Bit SD Pixel Input Mode (Input Mode 000)  
HSYNC_I/P  
VSYNC_I/P  
A
BLANK_I/P  
Y7–Y0  
C7–C0  
Y2  
Y3  
Y0  
Y1  
Cr1 Cb1  
Cb0 Cr0  
B
A = 16 CLK CYCLES FOR 525p  
A = 12 CLK CYCLES FOR 626p  
B (MIN) = 122 CLK CYCLES FOR 525p  
B (MIN) = 132 CLK CYCLES FOR 625p  
A = 44 CLK CYCLES FOR 1080i @ 30Hz, 25Hz B (MIN) = 236 CLK CYCLES FOR 1080i @ 30Hz, 25Hz  
A = 70 CLK CYCLES FOR 720p  
B (MIN) = 300 CLK CYCLES FOR 720p  
AS RECOMMENDED BY STANDARD  
Figure 8. HD 4:2:2 Input Timing Diagram  
REV. B  
–9–  
ADV7330  
HSYNC_I/P  
VSYNC_I/P  
A
BLANK_I/P  
Y7–Y0  
Cr  
Y
Cb  
Y
B
A = 32 CLK CYCLES FOR 525p  
A = 24 CLK CYCLES FOR 626p  
AS RECOMMENDED BY STANDARD  
B (MIN) = 244 CLK CYCLES FOR 525p  
B (MIN) = 264 CLK CYCLES FOR 625p  
Figure 9. PS 4:2:2, 1 × 8-Bit Interleaved Input Timing Diagram  
HSYNC_I/P  
VSYNC_I/P  
PAL = 24 CLK CYCLES  
NTSC = 32 CLK CYCLES  
BLANK_I/P  
Y7–Y0  
Cr  
Y
Cb  
Y
*SELECTED BY ADDRESS 44h BIT 7  
PAL = 264 CLK CYCLES  
NTSC = 244 CLK CYCLES  
Figure 10. SD Timing Input for Timing Mode 1  
t3  
t5  
t3  
SDA  
t1  
t6  
SCLK  
t4  
t2  
t7  
t8  
Figure 11. MPU Port Timing Diagram  
–10–  
REV. B  
ADV7330  
ABSOLUTE MAXIMUM RATINGS1, 2  
THERMAL CHARACTERISTICS  
VAA to AGND . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +3.0 V  
VDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +3.0 V  
VDD_IO to GND_IO . . . . . . . . . . . . . . . . . . . . –0.3 V to +4.6 V  
Digital Input Voltage to DGND . . . . –0.3 V to VDD_IO + 0.3 V  
VAA to VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
DGND to GND_IO . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
AGND to GND_IO . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
Ambient Operating Temperature (TA) . . . . . . . . 0°C to 70°C  
Storage Temperature (TS) . . . . . . . . . . . . . . –65°C to +150°C  
Infrared Reflow Soldering (20 secs) . . . . . . . . . . . . . . . . 260°C  
JC = 11°C/W  
JA = 47°C/W  
The ADV7330 is a Pb-free, environmentally friendly product. It is  
manufactured using the most up-to-date materials and processes.  
The coating on the leads of each device is 100% pure Sn electro-  
plate. The device is suitable for Pb-free applications, and is able  
to withstand surface-mount soldering at up to 255°C ( 5°C).  
In addition, it is backward compatible with conventional SnPb  
soldering processes. This means that the electroplated Sn coating  
can be soldered with Sn/Pb solder pastes at conventional reflow  
temperatures of 220°C to 235°C.  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational section  
of this specification is not implied. Exposure to absolute maximum ratings for  
extended periods may affect device reliability.  
2 Analog output short circuit to any power supply or common can be of an indefinite  
duration.  
ORDERING GUIDE  
Temperature Range Package Description  
Model  
Package Option  
ADV7330KST 0°C to 70°C  
Low Profile Quad Flat Package  
ST-64-2  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADV7330 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. B  
–11–  
ADV7330  
PIN CONFIGURATION  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48 BLANK_O/P  
V
DD_IO  
PIN 1  
IDENTIFIER  
47 TEST16  
TEST0  
TEST1  
Y0  
3
46  
V
REF  
4
45 TEST15  
44 NC  
5
Y1  
6
43 NC  
Y2  
Y3  
7
42 NC  
ADV7330  
Y4  
8
41  
V
AA  
TOP VIEW  
(Not to Scale)  
Y5  
9
40 AGND  
39 DAC A  
38 DAC B  
37 DAC C  
36 COMP  
V
10  
DD  
DGND 11  
Y6 12  
Y7 13  
TEST2 14  
TEST3 15  
C0 16  
35  
34  
33  
R
SET  
EXT_LF  
RESET  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS  
Pin Number  
Mnemonic  
DGND  
I/O  
G
Function  
11, 57  
Digital Ground.  
Not used, tie to DGND.  
2, 3, 14, 15,  
TEST0–TEST14  
I
51–55, 58–63  
40  
32  
36  
39  
38  
37  
25  
AGND  
G
I
Analog Ground.  
CLKIN  
COMP  
Pixel Clock Input for HD (74.25 MHz Only, PS (27 MHz), SD (27 MHz)).  
O
O
O
O
I
Compensation Pin for DACs. Connect 0.1 µF capacitor from COMP pin to VAA  
.
DAC A  
DAC B  
CVBS/GREEN/Y Analog Output.  
Chroma/BLUE/Pb Analog Output.  
DAC C  
BLANK_I/P  
Luma/RED/Pr Analog Output.  
Video Blanking Control Signal. For HD and PS, this input is active high. For SD  
input, this input is active low.  
23  
HSYNC_I/P  
VSYNC_I/P  
Y7–Y0  
I
I
I
Video Horizontal Sync Control Signal.  
Video Vertical Sync Control Signal.  
24  
4–9, 12, 13  
SD or Progressive Scan/HDTV Input Port for Y Data. Input port for interleaved  
progressive scan data. The LSB is set up on Pin Y0.  
16–18, 26–30  
33  
C7–C0  
I
I
8-Bit SD/Progressive Scan/HDTV Input Port. The LSB is set up on Pin C0.  
RESET  
This input resets the on-chip timing generator and sets the ADV7330 into the default  
register setting. Reset is an active low signal.  
35  
RSET  
I
A 3040 resistor must be connected from this pin to AGND and is used to control  
the amplitudes of the DAC outputs.  
22  
21  
20  
SCLK  
SDA  
I
I2C Port Serial Interface Clock Input.  
I2C Port Serial Data Input/Output.  
I/O  
I
ALSB  
TTL Address Input. This signal sets up the LSB of the I2C address. When this pin is  
tied low, the I2C filter is activated, which reduces noise on the I2C interface.  
1
VDD_IO  
P
Power Supply for Digital Inputs and Outputs.  
–12–  
REV. B  
ADV7330  
PIN FUNCTION DESCRIPTIONS (continued)  
Pin Number  
Mnemonic  
I/O  
Function  
10, 56  
41  
VDD  
P
P
O
I
Digital Power Supply.  
VAA  
Analog Power Supply.  
45, 47  
34  
TEST15, TEST16  
EXT_LF  
Not used, do not connect.  
External Loop Filter for the Internal PLL.  
31  
RTC_SCR_TR  
I
Multifunctional Input: Real-Time Control (RTC) Input, Timing Reset Input,  
Subcarrier Reset Input.  
48  
BLANK_O/P  
O
Video Blanking Control Signal. For HD and PS, this input is active high. For SD input,  
this output is active low.  
50  
HSYNC_O/P  
VSYNC_O/P  
I2C  
O
O
I
Video Horizontal Sync Control Signal.  
Video Vertical Sync Control Signal.  
This input pin must be tied high (VDD_IO) for the ADV7330 to interface over the I2C port.  
49  
19  
64  
GND_IO  
NC  
Digital Input/Output Ground.  
4244  
46  
No Connect.  
VREF  
I/O  
Optional External Voltage Reference Input for DACs or Voltage Reference Output  
(1.235 V).  
TERMINOLOGY  
SD  
Standard definition video, conforming to ITU-R  
BT.601/656.  
HDTV High definition television video, conforming to SMPTE  
274M or SMPTE 296M.  
HD  
PS  
High definition video, such as progressive scan or HDTV.  
Progressive scan video, conforming to SMPTE 293M,  
ITU-R BT.1358, BTA T-1004EDTC2, BTA1362  
YCrCb SD, PS, or HD component digital video.  
YPrPb SD, PS, or HD component analog video.  
MPU PORT DESCRIPTION  
To control the various devices on the bus, the following proto-  
col must be followed. First the master initiates a data transfer by  
establishing a start condition, defined by a high-to-low transition  
on SDA, while SCL remains high. This indicates that an address/  
data stream will follow. All peripherals respond to the start  
condition and shift the next eight bits (7-bit address + R/W bit).  
The bits are transferred from MSB down to LSB. The periph-  
eral that recognizes the transmitted address responds by pulling  
the data line low during the ninth clock pulse. This is known as  
an acknowledge bit. All other devices withdraw from the bus at  
this point and maintain an idle condition. The idle condition is  
when the device monitors the SDA and SCL lines waiting for the  
start condition and the correct transmitted address. The R/W  
bit determines the direction of the data.  
The ADV7330 supports a 2-wire serial (I2C compatible) micro-  
processor bus driving multiple peripherals. This bus operates  
in an Open Drain configuration. Two inputs, serial data  
(SDA) and serial clock (SCL), carry information between any  
devices connected to the bus. Each slave device is recognized by a  
unique address. The ADV7330 has four possible slave ad-  
dresses for both read and write operations. These are unique  
addresses for each device and are illustrated in Figure 12. The  
LSB sets either a read or write operation. Logic 1 corresponds to  
a read operation, while Logic 0 corresponds to a write operation.  
A1 is set by setting the ALSB pin of the ADV7330 to Logic 0  
or Logic 1. When ALSB is set to 1, there is greater input band-  
width on the I2C lines, which allows high speed data transfers  
on this bus. When ALSB is set to 0, there is reduced input  
bandwidth on the I2C lines, which means that pulses of less  
than 50 ns will not pass into the I2C internal controller. This  
mode is recommended for noisy systems.  
A Logic 0 on the LSB of the first byte means that the master  
will write information to the peripheral. A Logic 1 on the LSB  
of the first byte means that the master will read information  
from the peripheral.  
The ADV7330 acts as a standard slave device on the bus. The  
data on the SDA pin is eight bits long, supporting the 7-bit  
addresses plus the R/W bit. It interprets the first byte as the device  
address and the second byte as the starting subaddress. There  
is a subaddress auto-increment facility. This allows data to be  
written to or read from registers in ascending subaddress  
sequence, starting at any valid subaddress. A data transfer is  
always terminated by a stop condition. The user can also access  
any unique subaddress register on a one-by-one basis without  
having to update all the registers.  
1
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 12. ADV7330 Slave Address = D4h  
REV. B  
–13–  
ADV7330  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of sequence  
with normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCL high period, the  
user should issue only one start condition, one stop condition,  
or a single stop condition followed by a single start condition.  
If an invalid subaddress is issued by the user, the ADV7330 will  
not issue an acknowledge and will return to the idle condition.  
If in auto-increment mode the user exceeds the highest subaddress,  
the following action will be taken:  
last subcarrier frequency register byte has been received by  
the ADV7330.  
Figure 13 illustrates an example of data transfer for a write  
sequence and the start and stop conditions. Figure 14 shows  
bus write and read sequences.  
REGISTER ACCESS  
The MPU can write to or read from all of the registers of the  
ADV7330 except the subaddress registers that are write-only  
registers. The subaddress register determines which register the  
next read or write operation accesses. All communications with  
the part go through the bus start with an access to the subaddress  
register. Then a read/write operation is performed from/to the  
target address, which then increments to the next address until  
a stop command on the bus is performed.  
1. In read mode, the highest subaddress register contents will  
continue to be output until the master device issues a no  
acknowledge. This indicates the end of a read. A no acknowl-  
edge condition is when the SDA line is not pulled low on the  
ninth pulse.  
2. In write mode, the data for the invalid byte will not be loaded  
into any subaddress register, a no acknowledge will be issued  
by the ADV7330, and the part will return to the idle condition.  
Register Programming  
The following tables describe the functionality of each register.  
All registers can be read from as well as written to, unless other-  
wise stated.  
Before writing to the subcarrier frequency registers, it is a require-  
ment that the ADV7330 reset at least once after power-up.  
Subaddress Register (SR7–SR0)  
The communications register is an 8-bit write-only register. After  
the part has been accessed over the bus and a read/write operation  
is selected, the subaddress is set up. The subaddress register  
determines to/from which register the operation takes place.  
The four subcarrier frequency registers must be updated starting  
with subcarrier frequency register 0 through subcarrier frequency  
register 3. The subcarrier frequency will not update until the  
SDATA  
SCLOCK  
S
P
9
1–7  
8
9
8
9
1–7  
8
1–7  
START ADRR R/W ACK SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 13. Bus Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S)  
LSB = 0  
SUBADDR  
A(S)  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
SUBADDR  
A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M)  
P
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 14. Write and Read Sequence  
–14–  
REV. B  
ADV7330  
SR7–  
SR0  
00h  
Bit Bit Bit Bit Bit Bit Bit Bit  
Register Reset  
Values (Shaded)  
FCh  
Register  
Bit Description  
Register Setting  
7
6
5
4
3
2
1
0
0
1
Power Mode  
Sleep Mode. With this control  
enabled, the current consumption is  
reduced to µA level. All DACs and the  
internal PLL cct are disabled. I2C  
registers can be read from and written  
to in sleep mode.  
Sleep Mode Off  
Sleep Mode On  
PLL On  
PLL and Oversampling Control. This  
control allows the internal PLL cct to  
be powered down and the over-  
sampling to be switched off.  
0
1
PLL Off  
DAC C. Power On/Off.  
DAC B. Power On/Off.  
DAC A. Power On/Off.  
0
1
DAC C Off  
DAC C On  
DAC B Off  
DAC B On  
DAC A Off  
DAC A On  
0
1
0
1
Reserved  
x
x
x
BTA T-1004 or BT 1362  
Compatibility.  
01h  
Input Mode  
0
1
Disabled  
Enabled  
Only for PS dual-  
edge clk mode  
Cb Clocked on Rising  
Edge  
Only for PS  
interleaved input at  
27 MHz  
Clock Edge  
0
1
Y Clocked on Rising Edge  
Reserved  
Reserved  
0
0
Input Mode  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
SD Input  
PS Input  
HDTV Input  
PS 54 MHz Input  
PS 27 MHz Input  
Reserved  
38h  
Reserved  
1
1
1
Reserved  
Reserved  
0
REV. B  
–15–  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit Bit Bit Bit Bit Bit Bit Bit Register Setting  
Reset Values  
7
6
5
4
3
2
1
0
02h  
Mode Register 0  
Reserved  
0
0
Zero must be written  
to these bits  
20h  
Test Pattern Black Bar  
RGB Matrix  
0
1
11h, Bit 2 must  
also be enabled  
Disabled  
Enabled  
Disable  
Programmable RGB  
Matrix  
Enable Programmable  
RGB Martix  
0
1
Sync on RGB1  
0
1
No Sync  
Sync on all RGB  
Outputs  
RGB/YUV Output  
0
1
RGB component  
Outputs  
YUV component  
Outputs  
SD Sync  
HD Sync  
0
1
No Sync Output  
Output SD Syncs on  
HSYNC_O/P,  
VSYNC_O/P,  
BLANK_O/P  
0
1
No Sync Output  
Output HD Syncs on  
HSYNC_O/P,  
VSYNC_O/P,  
BLANK_O/P  
x
x
x
x
03h  
F0h  
03h  
04h  
RGB Matrix 0  
RGB Matrix 1  
LSB for GY  
LSB for RV  
LSB for BU  
LSB for GV  
LSB for GU  
Bit 9–2 for GY  
Bit 9–2 for GU  
Bit 9–2 for GV  
Bit 9–2 for BU  
Bit 9–2 for RV  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
05h  
RGB Matrix 2  
x
x
4Eh  
0Eh  
24h  
92h  
7Ch  
06h  
07h  
08h  
09h  
RGB Matrix 3  
RGB Matrix 4  
RGB Matrix 5  
RGB Matrix 6  
x
x
x
x
x
x
x
x
0Ah  
0Bh  
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
1
x
0
1
0
1
0
0
1
Reserved  
0%  
0.018%  
0.036%  
……  
7.382%  
7.5%  
–7.5%  
–7.382%  
–7.364%  
…….  
DAC A,B,C Output Level2  
Positive Gain to DAC Output Voltage  
Negative Gain to DAC Output Voltage  
00h  
0
0
1
1
1
0
1
1
1
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
1
0
1
1
1
1
1
1
1
1
–0.018%  
0Ch  
0Dh  
0Eh  
0Fh  
Reserved  
Reserved  
Reserved  
Reserved  
00h  
00h  
00h  
00h  
NOTES  
1For more detail, refer to Appendix 7.  
2For more detail on the programmable output levels, refer to the Programmable DAC Gain Control section.  
–16–  
REV. B  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
Reset  
Values  
10h  
HD Mode  
Register 1  
HD Output Standard  
0
0
EIA770.2 Output  
00h  
0
1
1
0
EIA770.1 Output  
Output levels for Full Input  
Range  
1
1
Reserved  
HD Input Control Signals  
0
0
HSYNC, VSYNC, BLANK  
0
1
1
1
0
1
EAV/SAV codes  
Async Timing Mode  
Reserved  
HD 625p  
0
1
525p  
625p  
HD 720p  
0
1
1080i  
720p  
HD BLANK Polarity  
HD Macrovision for 525p/625p  
0
1
BLANK Active High  
BLANK Active Low  
Macrovision Off  
0
1
Macrovision On  
11h  
HD Mode  
Register 2  
HD Pixel Data Valid  
0
1
Pixel Data Valid Off  
00h  
Pixel Data Valid On  
Reserved  
0
HD Test Pattern Enable  
HD Test Pattern Hatch/Field  
HD VBI Open  
0
1
HD Test Pattern Off  
HD Test Pattern On  
Hatch  
Field/Frame  
Disabled  
0
1
0
1
Enabled  
HD Undershoot Limiter  
0
0
1
1
0
1
0
1
Disabled  
–11 IRE  
–6 IRE  
–1.5 IRE  
Disabled  
Enabled  
HD Sharpness Filter  
0
1
REV. B  
–17–  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit Bit Bit Bit Bit Bit Bit Bit Register Setting  
Reset  
Values  
00h  
7
6
5
4
3
2
1
0
12h  
HD Mode Register 3  
0
0
0
0 Clk Cycle  
HD Y Delay with respect to falling  
edge of HSYNC  
0
0
0
1
0
1
1
0
1
0
1
0
1 Clk Cycle  
2 Clk Cycles  
3 Clk Cycles  
4 Clk Cycles  
0
0
0
0 Clk Cycle  
HD Color Delay with respect to  
falling edge of HSYNC  
0
0
0
1
0
1
1
0
1
0
1
0
1 Clk Cycle  
2 Clk Cycles  
3 Clk Cycles  
4 Clk Cycles  
Disabled  
HD CGMS  
0
1
Enabled  
0
1
HD CGMS CRC  
HD Cr/Cb Sequence  
Disabled  
Enabled  
Cb after Falling Edge of HSYNC  
13h  
HD Mode Register 4  
0
1
4Ch  
Cr after Falling Edge of HSYNC  
0 must be written to this bit.  
0 must be written to this bit.  
Disabled  
Reserved  
Reserved  
Sinc Filter on DAC A, B, C  
0
0
0
1
Enabled  
Reserved  
HD Chroma SSAF  
0
0 must be written to this bit.  
Disabled  
Enabled  
0
1
1
Reserved  
0
1
HD Double Buffering  
Disabled  
Enabled  
14h  
HD Mode Register 5  
x
A low-high-low transition resets the  
internal HD timing counters.  
00h  
HD Timing Reset  
1080i Frame Rate  
0
0
0
1
30 Hz/2200 Total Samples/Line  
25 Hz/2640 Total Samples/Line  
0
0
0
Reserved  
0 must be written to these bits.  
Field Input  
0
1
HD Vsync/Field Input  
Vsync Input  
Lines/Frame1  
Update Field/Line Counter  
Field/Line Counter Free Running  
0 must be written to this bit.  
0
1
15h  
HD Mode Register 6  
0
00h  
Reserved  
0
1
HD RGB Input  
Disabled  
Enabled  
Disabled  
Enabled  
HD Sync on PrPb  
0
1
HD Color DAC Swap  
HD Gamma Curve A/B  
HD Gamma Curve Enable  
HD Adaptive Filter Mode  
HD Adaptive Filter Enable  
0
1
DAC E = Pr; DAC F = Pb  
DAC E = Pb; DAC F = Pr  
Gamma Curve A  
Gamma Curve B  
Disabled  
Enabled  
Mode A  
Mode B  
Disabled  
Enabled  
0
1
0
1
0
1
0
1
NOTES  
1When set to 0, the line and field counters automatically wrap around at the end of the field/frame of the standard selected. When set to 1, the field/line counters are  
free running and wrap around when external sync signals indicate so.  
–18–  
REV. B  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register  
Reset  
Setting  
Values  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
HD Y Level1  
HD Cr Level1  
HD Cb Level1  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Y Color Value  
Cr Color Value  
Cb Color Value  
x
x
x
x
x
x
x
x
x
A0h  
80h  
80h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
HD Sharpness Filter Gain Value A  
1Fh  
20h  
HD Sharpness Filter  
Gain  
0
0
..  
0
1
..  
1
0
0
..  
1
0
..  
1
0
0
..  
1
0
..  
1
0
1
..  
1
0
..  
1
Gain A = 0  
Gain A = +1  
……  
Gain A = +7  
Gain A = –8  
……  
Gain A = –1  
HD Sharpness Filter Gain Value B  
0
0
..  
0
1
..  
1
0
C15  
C7  
x
0
0
..  
1
0
..  
1
0
C14  
C6  
x
0
0
..  
1
0
..  
1
0
C13  
C5  
x
0
1
..  
1
0
..  
1
0
C12  
C4  
x
Gain B = 0  
Gain B = +1  
…….  
Gain B = +7  
Gain B = –8  
……..  
Gain B = –1  
CGMS 19–16  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
HD CGMS Data 0  
HD CGMS Data 1  
HD CGMS Data 2  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD CGMS Data Bits  
HD CGMS Data Bits  
HD CGMS Data Bits  
C19  
C11  
C3  
x
C18  
C10  
C2  
x
C17  
C9  
C1  
x
C16  
C8  
C0  
x
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
CGMS 15–8  
CGMS 7–0  
A0  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
B7  
B8  
B9  
NOTES  
1For the internal test pattern only.  
REV. B  
–19–  
ADV7330  
SR7-  
SR0  
Register  
Bit Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register  
Setting  
Reset  
Values  
38h  
39h  
3Ah  
HD Adaptive Filter  
Gain 1  
HD Adaptive Filter Gain 1  
Value A  
00h  
00h  
00h  
0
0
..  
0
1
..  
1
0
0
..  
1
0
..  
1
0
0
..  
1
0
..  
1
0
1
..  
1
0
..  
1
Gain A = 0  
Gain A = +1  
……  
Gain A = +7  
Gain A = –8  
……  
Gain A = –1  
Gain B = 0  
Gain B = +1  
…….  
Gain B = +7  
Gain B = –8  
……..  
Gain B = –1  
Gain A = 0  
Gain A = +1  
……  
Gain A = +7  
Gain A = –8  
……  
Gain A = –1  
Gain B = 0  
Gain B = +1  
…….  
Gain B = +7  
Gain B = –8  
……..  
Gain B = –1  
Gain A = 0  
Gain A = +1  
……  
Gain A = +7  
Gain A = –8  
……  
Gain A = –1  
Gain B = 0  
Gain B = +1  
…….  
Gain B = +7  
Gain B = –8  
……..  
HD Adaptive Filter Gain 1  
Value B  
0
0
..  
0
1
..  
1
0
0
..  
1
0
..  
1
0
0
..  
1
0
..  
1
0
1
..  
1
0
..  
1
HD Adaptive Filter  
Gain 2  
HD Adaptive Filter Gain 2  
Value A  
0
0
..  
0
1
..  
1
0
0
..  
1
0
..  
1
0
0
..  
1
0
..  
1
0
1
..  
1
0
..  
1
HD Adaptive Filter Gain 2  
Value B  
0
0
..  
0
1
..  
1
0
0
..  
1
0
..  
1
0
0
..  
1
0
..  
1
0
1
..  
1
0
..  
1
HD Adaptive Filter  
Gain 3  
HD Adaptive Filter Gain 3  
Value A  
0
0
..  
0
1
..  
1
0
0
..  
1
0
..  
1
0
0
..  
1
0
..  
1
0
1
..  
1
0
..  
1
HD Adaptive Filter Gain 3  
Value B  
0
0
..  
0
1
..  
1
x
0
0
..  
1
0
..  
1
x
0
0
..  
1
0
..  
1
x
0
1
..  
1
0
..  
1
x
Gain B = –1  
Threshold A  
3Bh  
3Ch  
3Dh  
HD Adaptive Filter  
Threshold A  
HD Adaptive Filter  
Threshold B  
HD Adaptive Filter  
Threshold C  
HD Adaptive Filter Threshold A  
Value  
HD Adaptive Filter Threshold B  
Value  
HD Adaptive Filter Threshold C  
Value  
00h  
00h  
00h  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Threshold B  
Threshold C  
–20–  
REV. B  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
Reset  
Values  
3Eh  
Reserved  
00h  
00h  
00h  
3Fh  
Reserved  
40h  
SD Mode Register 0  
SD Standard  
0
0
1
1
0
1
0
1
NTSC  
PAL B, D, G, H, I  
PAL M  
PAL N  
SD Luma Filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LPF NTSC  
LPF PAL  
Notch NTSC  
Notch PAL  
SSAF Luma  
Luma CIF  
Luma QCIF  
Reserved  
SD Chroma Filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.3 MHz  
0.65 MHz  
1.0 MHz  
2.0 MHz  
Reserved  
Chroma CIF  
Chroma QCIF  
3.0 MHz  
41h  
42h  
Reserved  
00h  
08h  
SD Mode Register 1  
SD PrPb SSAF  
0
1
Disabled  
Enabled  
SD DAC Output 1  
0
1
Refer to the Output Configuration  
section  
SD DAC Output 2  
0
1
Refer to the Output Configuration  
section  
SD Pedestal  
0
1
Disabled  
Enabled  
SD Square Pixel  
0
1
Disabled  
Enabled  
SD VCR FF/RW Sync  
SD Pixel Data Valid  
SD SAV/EAV Step Edge Control  
SD Pedestal YPrPb Output  
SD Output Levels Y  
SD Output Levels PrPb  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
43h  
SD Mode Register 2  
0
1
00h  
No Pedestal on YPrPb  
7.5 IRE Pedestal on YPrPb  
Y = 700 mV/300 mV  
Y = 714 mV/286 mV  
0
1
0
0
1
1
0
1
0
1
700 mV p-p (PAL); 1000 mV p-p (NTSC)  
700 mV p-p  
1000 mV p-p  
648 mV p-p  
SD VBI Open  
0
1
Disabled  
Enabled  
SD CC Field Control  
0
0
1
1
0
1
0
1
CC Disabled  
CC on Odd Field Only  
CC on Even Field Only  
CC on Both Fields  
Reserved  
Reserved  
0
REV. B  
–21–  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
Reset  
Values  
44h  
SD Mode Register 3  
0
1
00h  
SD VSYNC-3H  
Disabled  
VSYNC = 2.5 Lines (PAL)  
VSYNC = 3 Lines (NTSC)  
SD RTC/TR/SCR*  
0
0
1
1
0
1
0
1
Genlock Disabled  
Subcarrier Reset  
Timing Reset  
RTC Enabled  
SD Active Video Length  
SD Chroma  
0
1
720 Pixels  
710 (NTSC)/702 (PAL)  
Chroma Enabled  
Chroma Disabled  
0
1
SD Burst  
0
1
Enabled  
Disabled  
SD Color Bars  
SD DAC Swap  
0
1
Disabled  
Enabled  
DAC B = Luma  
DAC C = Chroma  
DAC B = Chroma  
DAC C = Luma  
0
1
45h  
46h  
47h  
Reserved  
Reserved  
SD Mode Register 4  
00h  
00h  
00h  
SD PrPb Scale  
SD Y Scale  
0
1
Disabled  
Enabled  
Disabled  
Enabled  
0
1
SD Hue Adjust  
SD Brightness  
SD Luma SSAF Gain  
0
1
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
0
0 must be written to this bit.  
0 must be written to this bit.  
0 must be written to this bit.  
0 must be written to this bit.  
0
0
48h  
SD Mode Register 5  
0
Reserved  
SD Double Buffering  
0
0 must be written to this bit.  
Disabled  
Enabled  
0
1
SD Input Format  
0
1
8-Bit Input  
16-Bit Input  
0 must be written to this bit.  
Disabled  
Reserved  
SD Digital Noise Reduction  
0
0
1
Enabled  
SD Gamma Control  
SD Gamma Curve  
0
1
Disabled  
Enabled  
Gamma Curve A  
Gamma Curve B  
Disabled  
–11 IRE  
–6 IRE  
–1.5 IRE  
0
1
49h  
SD Mode Register 6  
00h  
SD Undershoot Limiter  
0
0
1
1
0
1
0
1
Reserved  
0
0 must be written to this bit.  
Disabled  
Enabled  
SD Black Burst Output on DAC Luma  
0
1
SD Chroma Delay  
0
0
1
1
0
1
0
1
Disabled  
4 Clk Cycles  
8 Clk Cycles  
Reserved  
Reserved  
Reserved  
0
0 must be written to this bit.  
0 must be written to this bit.  
0
*See Figure 23, RTC Timing and Connections.  
–22–  
REV. B  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
Reset Values  
4Ah  
SD Timing Register 0  
SD Slave/Master Mode  
08h  
0
1
Slave Mode  
Master Mode  
Mode 0  
SD Timing Mode  
0
0
1
1
0
1
0
1
Mode 1  
Mode 2  
Mode 3  
SD BLANK Input  
0
1
Enabled  
Disabled  
SD Luma Delay  
0
0
1
1
0
1
0
1
No Delay  
2 Clk Cycles  
4 Clk Cycles  
6 Clk Cycles  
– 40 IRE  
SD Min. Luma Value  
SD Timing Reset  
0
1
0
– 7.5 IRE  
x
0
0
0
0
0
0
A low-high-low transition will reset the  
internal SD timing counters.  
4Bh  
SD Timing Register 1  
00h  
SD HSYNC Width  
0
0
1
1
0
1
0
1
TA = 1 Clk Cycle  
T
T
T
T
T
T
T
T
T
A = 4 Clk Cycles  
A = 16 Clk Cycles  
A = 128 Clk Cycles  
B = 0 Clk Cycle  
B = 4 Clk Cycles  
B = 8 Clk Cycles  
B = 18 Clk Cycles  
C = TB  
SD HSYNC to VSYNC Delay  
0
0
1
1
0
1
0
1
SD HSYNC to VSYNC Rising  
Edge Delay (Mode 1 Only)  
x
x
0
0
1
1
0
1
0
1
0
1
C = TB + 32 µs  
VSYNC Width (Mode 2 Only)  
1 Clk Cycle  
4 Clk Cycles  
16 Clk Cycles  
128 Clk Cycles  
HSYNC to Pixel Data Adjust  
0
0
0
1
0 Clk Cycles  
1 Clk Cycle  
1
0
2 Clk Cycles  
1
1
3 Clk Cycles  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
16h  
7Ch  
F0h  
21h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
SD FSC Register 0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Frequency Bit 7–0  
Subcarrier Frequency Bit 15–8  
Subcarrier Frequency Bit 23–16  
Subcarrier Frequency Bit 31–24  
Subcarrier Phase Bit 9–2  
Extended Data Bit 7–0  
Extended Data Bit 15–8  
Data Bit 7–0  
SD FSC Register 1  
x
x
SD FSC Register 2  
x
x
x
x
x
x
x
x
SD FSC Register 3  
x
x
x
x
x
x
x
x
SD FSC Phase  
x
x
x
x
x
x
x
x
SD Closed Captioning  
SD Closed Captioning  
SD Closed Captioning  
SD Closed Captioning  
SD Pedestal Register 0  
SD Pedestal Register 1  
SD Pedestal Register 2  
SD Pedestal Register 3  
Extended Data on Even Fields  
Extended Data on Even Fields  
Data on Odd Fields  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Data on Odd Fields  
x
x
x
x
x
x
x
x
Data Bit 15–8  
Setting any of these bits to 1  
Pedestal on Odd Fields  
Pedestal on Odd Fields  
Pedestal on Even Fields  
Pedestal on Even Fields  
17  
25  
17  
25  
16  
24  
16  
24  
15  
23  
15  
23  
14  
22  
14  
22  
13  
21  
13  
21  
12  
20  
12  
20  
11  
19  
11  
19  
10  
18  
10  
18  
will disable pedestal on the  
line number indicated by the  
bit settings.  
LINE 1  
LINE 313  
LINE 314  
HSYNC  
VSYNC  
tA  
tC  
tB  
Figure 15. Timing Register 1 in PAL Mode  
REV. B  
–23–  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register Setting  
Reset Values  
59h  
SD CGMS/WSS 0 SD CGMS Data  
SD CGMS CRC  
00h  
19  
18  
17  
16 CGMS data bits C19-C16  
0
1
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
SD CGMS on Odd Fields  
0
1
SD CGMS on Even Fields  
SD WSS  
0
1
0
1
5Ah  
SD CGMS/WSS 1 SD CGMS/WSS Data  
CGMS Data Bits C13–C8 or  
00h  
13  
5
12  
4
11  
10  
9
8
WSS Data Bits C13–C8  
00h  
00h  
15  
7
14  
6
CGMS Data Bits C15–C14  
5Bh  
5Ch  
SD CGMS/WSS 2  
SD LSB Register  
2
x
1
x
0
x
SD CGMS/WSS Data  
SD LSB for Y Scale Value  
SD LSB for U Scale Value  
SD LSB for V Scale Value  
SD LSB for FSC Phase  
SD Y Scale Value  
3
x
CGMS/WSS Data Bits C7–C0  
SD Y Scale Bit 1–0  
SD U Scale Bit 1–0  
SD V Scale Bit 1–0  
Subcarrier Phase Bits 1–0  
SD Y Scale Bit 7–2  
SD V Scale Bit 7–2  
SD U Scale Bit 7–2  
SD Hue Adjust Bit 7–0  
SD Brightness Bit 6–0  
Disabled  
Enabled  
–4 dB  
0 dB  
4 dB  
No Gain  
+1/16 (–1/8)  
+2/16 (–2/8)  
+3/16 (–3/8)  
x
x
x
x
x
x
x
x
x
x
x
x
x
5Dh  
5Eh  
5Fh  
60h  
61h  
SD Y Scale  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
00h  
00h  
00h  
00h  
00h  
Line 23  
SD V Scale  
SD V Scale Value  
SD U Scale  
SD U Scale Value  
SD Hue Register  
SD Brightness/  
WSS  
SD Hue Adjust Value  
SD Brightness Value  
SD Blank WSS Data  
0
1
0
0
0
62h  
63h  
SD Luma SSAF  
SD DNR 0  
SD Luma SSAF Gain/Attenuation  
00h  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
0
0
1
1
0
0
0
0
0
1
0
1
0
1
0
1
0
Coring Gain Border  
00h  
In DNR  
modes the  
values in the  
parentheses apply.  
+4/16 (–4/8)  
+5/16 (–5/8)  
+6/16 (–6/8)  
+7/16 (–7/8)  
+8/16 (–1)  
Coring Gain Data  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No Gain  
+1/16 (–1/8)  
+2/16 (–2/8)  
+3/16 (–3/8)  
+4/16 (–4/8)  
+5/16 (–5/8)  
+6/16 (–6/8)  
+7/16 (–7/8)  
+8/16 (–1)  
64h  
SD DNR 1  
DNR Threshold  
00h  
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
0
62  
1
1
1
1
1
1
63  
Border Area  
0
1
2 Pixels  
4 Pixels  
8 Pixels  
16 Pixels  
Block Size Control  
0
1
–24–  
REV. B  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit Bit Bit Bit Bit Bit Bit Bit Register Setting  
Reset  
7
6
5
4
3
2
0
0
0
1
1
0
1
1
0
0
1
0
1
0
Values  
65h  
SD DNR 2  
DNR Input Select  
00h  
Filter A  
Filter B  
Filter C  
Filter D  
DNR Mode  
0
1
0
1
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DNR Mode  
DNR Sharpness Mode  
0 Pixel Offset  
1 Pixel Offset  
DNR Block Offset  
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
14 Pixel Offset  
15 Pixel Offset  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
Read-Only  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Brightness Detect  
Field Count Register  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Brightness Value  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
Field Count  
x
x
x
Read-Only  
Reserved  
Reserved  
Reserved  
Revision Code  
0
0 must be written to this bit.  
0 must be written to this bit.  
0 must be written to this bit.  
Read-Only  
0
0
x
x
7C  
Reserved  
00h  
REV. B  
–25–  
ADV7330  
SR7– Register  
SR0  
Bit Description  
Bit Bit Bit Bit Bit Bit Bit Bit Register Setting  
Reset  
Values  
7
6
5
4
3
2
1
0
7Dh  
7Eh  
7Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
Reserved  
Reserved  
Reserved  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
0
0
0
0
0
0
0
0 must be written to these bits.  
–26–  
REV. B  
ADV7330  
INPUT CONFIGURATION  
Progressive Scan at 27 MHz (Dual Edge) or 54 MHz  
Note that the ADV7330 defaults to progressive scan 54 MHz  
mode on power-up. Address(01h): Input Mode = 011  
Address(01h): Input Mode 100 or 111, Respectively  
YCrCb progressive scan data can be input at 27 MHz or 54 MHz.  
The input data is interleaved onto a single 8-bit bus and is input  
on Pins Y7–Y0. When a 27 MHz clock is supplied, the data is  
clocked in on the rising and falling edge of the input clock and  
CLOCK EDGE [Address 01h, Bit 1] must be set accordingly.  
Standard Definition  
Address(01h): Input Mode = 000  
The 8-bit multiplexed input data is input on Pins Y7–Y0, with Y0  
being the LSB. Input standards supported are ITU-R BT.601/656.  
The following figures show the possible conditions.  
In 16-bit input mode the Y pixel data is input on Pins Y7–Y0  
and CrCb data on Pins C7–C0.  
CLKIN  
Input sync signals are optional and are input on the VSYNC_I/P,  
HSYNC_I/P, and BLANK_I/P pins.  
Y7–Y0  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
ADV7330  
VSYNC_I/P  
HSYNC_I/P  
BLANK_I/P  
Figure 18a. Cb Data on Rising Edge—Clock Edge  
Address 01h Bit 1 Should be Set to 0  
3
MPEG2  
DECODER  
27MHz  
8
CLKIN  
Y[7:0]  
CLKIN  
YCrCb  
Y7–Y0  
3FF  
00  
00  
XY  
Y0  
Cb0  
Y1  
Cr0  
Figure 16. SD Input Mode  
Progressive Scan or HDTV Mode  
Address(01h): Input Mode 001 or 010, Respectively  
YCrCb progressive scan, HDTV, or any other HD YCrCb data  
can be input in 4:2:2. In 4:2:2 input mode, the Y data is input  
on Pins Y7–Y0 and the CrCb data on Pins C7–C0.  
Figure 18b. Y Data on Rising Edge—Clock Edge  
Address 01h Bit 1 Should be Set to 1  
With a 54 MHz clock, the data is latched on every rising edge.  
CLKIN  
If the YCrCb data does not conform to SMPTE 293M (525p),  
ITU-R BT.1358M (625p), SMPTE 274M (1080i), SMPTE  
296M (720p), or BTA T-1004/1362, the async timing mode  
must be used.  
PIXEL INPUT  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
DATA  
Figure 18c. Input Sequence in PS Bit Interleaved  
Mode (EAV/SAV)  
MPEG2  
DECODER  
MPEG2  
DECODER  
ADV7330  
CLKIN  
27MHz  
YCrCb  
ADV7330  
CLKIN  
27MHz OR 54MHz  
YCrCb  
8
8
CbCr  
Y
C[7:0]  
Y[7:0]  
INTERLACED  
TO  
PROGRESSIVE  
8
3
YCrCb  
Y[7:0]  
INTERLACED  
TO  
PROGRESSIVE  
VSYNC_I/P  
HSYNC_I/P  
BLANK_I/P  
VSYNC_I/P  
HSYNC_I/P  
BLANK_I/P  
3
Figure 17. Progressive Scan Input Mode  
Figure 19. 18-Bit PS at 27 MHz or 54 MHz  
REV. B  
–27–  
ADV7330  
Table I provides an overview of possible input configurations.  
Table I. Input Configurations  
Input  
Format  
Input  
Video  
Input  
Pins  
Register  
Subaddress Setting  
Total Bits  
ITU-R  
BT.656  
8
4:2:2  
4:2:2  
YCrCb  
Y7–Y0  
01h  
48h  
01h  
48h  
00h  
00h  
00h  
08h  
16  
Y
Y7–Y0  
C7–C0  
YCrCb  
PS  
8 (27 MHz clock)  
8 (54 MHz clock)  
16  
4:2:2  
4:2:2  
4:2:2  
YCrCb  
Y7–Y0  
10h  
13h  
10h  
13h  
01h  
13h  
40h  
40h  
30h  
40h  
10h  
40h  
YCrCb  
Y7–Y0  
Y
CrCb  
Y7–Y0  
C7–C0  
HDTV  
16  
4:2:2  
Y
CrCb  
Y7–Y0  
C7–C0  
01h  
13h  
20h  
40h  
OUTPUT CONFIGURATION  
Tables II and III show which output signals are assigned to the DACs when according control bits are set.  
Table II. Output Configuration in SD Mode  
RGB/YPrPb Output SD DAC Output 1 SD DAC Output 1 SD DAC Swap  
02h, Bit 5  
42h, Bit 2  
42h, Bit 1  
44h, Bit 7  
DAC A DAC B  
DAC C  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
G
G
CVBS  
CVBS  
CVBS  
CVBS  
G
G
Y
Y
CVBS  
CVBS  
CVBS  
CVBS  
Y
B
B
R
R
Luma  
Chroma  
B
Chroma  
Luma  
R
B
R
Luma  
Chroma  
Pb  
Chroma  
Luma  
Pr  
Pb  
Pr  
Luma  
Chroma  
Pb  
Pb  
Luma  
Chroma  
Chroma  
Luma  
Pr  
Pr  
Chroma  
Luma  
Y
Table III. Output Configuration in HD/PS Mode  
RGB/YPrPb Output HD Color Swap  
HD Input  
Format  
02h, Bit 5  
15h, Bit 3  
DAC A DAC B DAC C  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:2:2  
1
1
0
0
0
1
0
1
Y
Y
G
G
Pb  
Pr  
B
Pr  
Pb  
R
R
B
–28–  
REV. B  
ADV7330  
TIMING MODES  
HD Async Timing Mode  
[Subaddress 10h, Bit 3,2]  
For any input data that does not conform to the standards select-  
able in input mode, Subaddress 10h, asynchronous timing mode  
can be used to interface to the ADV7330. Timing control signals  
for Hsync, Vsync, and Blank have to be programmed by the user.  
Macrovision and programmable oversampling rates are not avail-  
able in async timing mode. In async mode, the PLL must be  
turned off [Subaddress 01h, Bit 1 = 1].  
Figures 20a and 20b show an example of how to program  
the ADV7330 to accept a different high definition standard  
other than SMPTE 293M, SMPTE 274M, SMPTE 296M, or  
ITU-R BT.1358.  
The following truth table must be followed when programming  
the control signals in async timing mode.  
For standards that do not require a tri-sync level, BLANK_I/P  
must be tied low at all times.  
CLK  
HSYNC_I/P  
VSYNC_I/P  
PROGRAMMABLE  
INPUT TIMING  
BLANK_I/P  
SET ADDRESS 10h,  
BIT 6 TO 1  
ACTIVE VIDEO  
HORIZONTAL SYNC  
ANALOG  
OUTPUT  
81  
66  
66  
243  
1920  
a
b
e
c
d
Figure 20a. Async Timing Mode—Programming Input Control Signals for SMPTE 295M Compatibility  
CLK  
HSYNC_I/P  
VSYNC_I/P  
0
1
BLANK_I/P  
SET ADDRESS 10h,  
BIT 6 TO 1  
ACTIVE VIDEO  
HORIZONTAL SYNC  
ANALOG OUTPUT  
a
b
c
d
e
Figure 20b. Async Timing Mode—Programming Input Control Signals for Bilevel Sync Signals  
REV. B  
–29–  
ADV7330  
Table IV. Async Timing Mode Truth Table  
Reference in  
Figures 20a and 20b  
HSYNC_I/P VSYNC_I/P BLANK_I/P*  
1 0  
0
0 or 1  
0 or 1  
0
0 1  
1 0  
50% point of falling edge of tri-level horizontal sync signal  
25% point of rising edge of tri-level horizontal sync signal  
50% point of falling edge of tri-level horizontal sync signal  
50% start of active video  
a
b
c
d
e
0
0 1  
0 or 1  
0 or 1  
0 or 1  
0 1  
1
1
50% end of active video  
*When async timing mode is enabled, BLANK_I/P (Pin 25) becomes an active high input.  
BLANK_I/P is set to active low at Address 10h, Bit 6.  
HD Timing Reset  
[Address 14h, Bit 0]  
A timing reset is achieved in setting the HD timing reset control  
bit at Address 14h from 0 to 1. In this state, the horizontal and  
vertical counters will remain reset. When this bit is set back to  
0, the internal counters will commence counting again. PLL must  
be powered off by this mode.  
The minimum time the pin has to be held high is one clock cycle,  
otherwise this reset signal might not be recognized. This timing  
reset applies to the HD timing counters only.  
–30–  
REV. B  
ADV7330  
SD Real-Time Control, Subcarrier Reset, Timing Reset  
[Subaddress 44h, Bit 2,1]  
This reset signal will have to be held high for a minimum of one  
clock cycle.  
Together with the RTC_SCR_TR pin and SD Mode Register 3  
[Address 44h, Bit 1,2], the ADV7330 can be used in timing  
reset mode, subcarrier phase reset mode, or RTC mode.  
Since the field counter is not reset, it is recommended that the  
reset signal be applied in Field 7 [PAL] or Field 3 [NTSC]. The  
reset of the phase will then occur on the next field, i.e., Field 1  
being lined up correctly with the internal counters. The field count  
register at Address 7Bh can be used to identify the number of  
the active field.  
A timing reset is achieved in a low-to-high transition on the  
RTC_SCR_TR pin (Pin 31). In this state, the horizontal and  
vertical counters will remain reset. On releasing this pin (set  
to low), the internal counters will commence counting again,  
the field count will start on Field 1, and the subcarrier phase  
will also be reset.  
In RTC mode, the ADV7330 can be used to lock to an external  
video source. The real-time control mode allows the ADV7330  
to automatically alter the subcarrier frequency to compensate for  
line length variations. When the part is connected to a device that  
outputs a digital data stream in the RTC format (such as an  
ADV7183A video decoder, see Figure 23), the part will auto-  
matically change to the compensated subcarrier frequency on a  
line by line basis. This digital data stream is 67 bits wide and the  
subcarrier is contained in Bits 0 to 21. Each bit is two clock cycles  
long. 00h should be written into all four subcarrier frequency  
registers when this mode is used.  
The minimum time the pin has to be held high is one clock cycle;  
otherwise, this reset signal might not be recognized. This timing  
reset applies to the SD timing counters only.  
In subcarrier phase reset, a low-to-high transition on the  
RTC_SCR_TR pin (Pin 31) will reset the subcarrier phase to  
zero on the field following the subcarrier phase reset when the  
SD RTC/TR/SCR control bits at Address 44h are set to 01.  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
310  
313  
320  
NO TIMING RESET APPLIED  
DISPLAY  
START OF FIELD 1  
F
PHASE = FIELD 1  
SC  
307  
1
2
3
4
5
6
7
21  
TIMING RESET PULSE  
TIMING RESET APPLIED  
Figure 21. Timing Reset Timing Diagram  
DISPLAY  
310  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
313  
320  
NO F RESET APPLIED  
SC  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 1  
SC  
307  
310  
313  
320  
F
RESET PULSE  
SC  
F
RESET APPLIED  
SC  
Figure 22. Subcarrier Reset Timing Diagram  
REV. B  
–31–  
ADV7330  
number of lines/fields are reached. In rewind mode, this sync  
signal usually occurs after the total number of lines/fields are  
reached. Conventionally this means that the output video will  
have corrupted field signals, one generated by the incoming video  
and one generated when the internal lines/field counters reach  
the end of a field.  
Reset Sequence  
A reset is activated with a high-to-low transition on the RESET pin  
(Pin 33) according to the Timing Specifications. The ADV7330  
will revert to the default output configuration.  
Figure 24 illustrates the RESET sequence timing.  
SD VCR FF/RW Sync  
[Subaddress 42h, Bit 5]  
In DVD record applications where the encoder is used with a  
decoder, the VCR FF/RW sync control bit can be used for  
nonstandard input video, i.e., in fast forward or rewind modes.  
When the VCR FF/RW sync control is enabled [Subaddress 42h,  
Bit 5], the lines/field counters are updated according to the  
incoming vsync signal, and the analog output matches the incoming  
vsync signal.  
This control is available in all slave timing modes except  
Slave Mode 0.  
In fast forward mode, the sync information at the start of a new  
field in the incoming video usually occurs before the correct  
ADV7330  
CLKIN  
DAC A  
DAC B  
DAC C  
LCC1  
GLL  
RTC_SCR_TR  
Y7–Y0  
COMPOSITE VIDEO  
e.g., VCR OR CABLE  
ADV7183A  
VIDEO  
P17–P10  
DECODER  
14 BITS  
SUBCARRIER  
PHASE  
4 BITS  
RESERVED  
H/L TRANSITION  
COUNT START  
LOW  
SEQUENCE  
RESET  
2
3
BIT  
BIT  
RESERVED  
1
PLL INCREMENT  
128  
F
SC  
13  
0
21  
19  
0
RTC  
6768  
TIME SLOT: 01  
14  
8/LINE  
LOCKED  
CLOCK  
VALID INVALID  
SAMPLE SAMPLE  
5 BITS  
RESERVED  
NOTES  
1
F
PLL INCREMENT IS 22 BITS LONG, VALUE LOADED INTO ADV7330, F DSS REGISTER IS F PLL INCREMENTS BITS 21:0 PLUS  
SC SC  
SC  
BITS 0:9 OF SUBCARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD BE WRITTEN TO THE SUBCARRIER FREQUENCY  
REGISTERS OF THE ADV7330.  
SEQUENCE BIT.  
2
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED.  
NTSC: 0 = NO CHANGE.  
RESET BIT. RESET ADV7330 DSS.  
3
Figure 23. RTC Timing and Connections  
RESET  
DACs  
A, B, C  
XXXXXX  
XXXXXX  
OFF  
VALID VIDEO  
DIGITAL TIMING SIGNALS SUPPRESSED  
TIMING ACTIVE  
DIGITAL TIMING  
PIXEL DATA  
VALID  
Figure 24. RESET Timing Sequence  
–32–  
REV. B  
ADV7330  
Vertical Blanking Interval  
The ADV7330 accepts input data that contains VBI data (such  
as CGMS, WSS, VITS) in SD and HD modes.  
SD Subcarrier Frequency Registers  
[Subaddress 4Ch–4Fh]  
Four 8-bit wide registers are used to set up the subcarrier  
frequency. The value of these registers is calculated using the  
following equation:  
For SMPTE 293M (525p) standards, VBI data can be inserted  
on Lines 13 to 42 of each frame, or Lines 6 to 43 for the  
ITU-R BT.1358 [625p] standard.  
#Subcarrier FrequencyValueinonevideoline  
Subcarrier Frequency Register =  
×232  
#27MHz clkcyclesinonevideoline  
For SD NTSC, this data can be present on Lines 10 to 20; in PAL,  
on Lines 7 to 22.  
For example, NTSC mode,  
If VBI is disabled [Address 11h, Bit 4 for HD; Address 43h,  
Bit 4 for SD], VBI data is not present at the output and the entire  
VBI is blanked. These control bits are valid in all master and  
slave modes.  
227.5  
Subcarrier FrequencyValue =  
× 232 = 569408542  
1716  
Subcarrier Register Value = 21F07C1Eh  
In Slave Mode 0, if VBI is enabled, the blanking bit in the  
EAV/SAV code is overwritten; it is possible to use VBI in this  
timing mode as well.  
SD FSC Register 0: 1Eh  
SD FSC Register 1: 7Ch  
SD FSC Register 2: F0h  
SD FSC Register 3: 21h  
In Slave Mode 1 or 2, the BLANK control bit must be set to  
enabled [Address 4Ah, Bit 3] to allow VBI data to pass through  
the ADV7330; otherwise, the ADV7330 automatically blanks  
the VBI to standard.  
Refer to the MPU Port Description section for details on how to  
access the subcarrier frequency registers.  
Square Pixel Timing  
[Register 42h, Bit 4]  
If CGMS is enabled and VBI disabled, the CGMS data will  
nevertheless be available at the output.  
In square pixel mode, the timing diagrams in Figures 25 and  
26 apply.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
8
0
0
0
F
F
F A A  
F B B  
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
272 CLOCK  
1280 CLOCK  
1536 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
344 CLOCK  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 25. EAV/SAV Embedded Timing  
HSYNC  
FIELD  
PAL = 44 CLOCK CYCLES  
NTSC = 44 CLOCK CYCLES  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 136 CLOCK CYCLES  
NTSC = 208 CLOCK CYCLES  
Figure 26. Active Pixel Timing  
REV. B  
–33–  
ADV7330  
FILTER SECTION  
HD Sinc Filter  
Table V shows an overview of the programmable filters available  
on the ADV7330.  
0.5  
0.4  
Table V. Selectable Filters of the ADV7330  
0.3  
Filter  
Subaddress  
0.2  
0.1  
SD Luma LPF NTSC  
SD Luma LPF PAL  
SD Luma Notch NTSC  
SD Luma Notch PAL  
SD Luma SSAF  
SD Luma CIF  
SD Luma QCIF  
SD Chroma 0.65 MHz  
SD Chroma 1.0 MHz  
SD Chroma 1.3 MHz  
SD Chroma 2.0 MHz  
SD Chroma 3.0 MHz  
SD Chroma CIF  
SD Chroma QCIF  
SD UV SSAF  
HD Chroma Input  
HD Sinc Filter  
40h  
40h  
40h  
40h  
40h  
40h  
40h  
40h  
40h  
40h  
40h  
40h  
40h  
40h  
42h  
13h  
13h  
13h  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Filter 27. HD Sinc Filter Enabled  
0.5  
0.4  
0.3  
0.2  
HD Chroma SSAF  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 28. HD Sinc Filter Disabled  
–34–  
REV. B  
ADV7330  
SD Internal Filter Response  
Table VI. Internal Filter Specifications  
[Subaddress 40h; Subaddress 42, Bit 0]  
Pass-Band Ripple 3 dB Bandwidth  
The Y filter supports several different frequency responses includ-  
ing two low-pass responses, two notch responses, an extended  
(SSAF) response with or without gain boost/attenuation, a CIF  
response, and a QCIF response. The UV filter supports several  
different frequency responses including six low-pass responses,  
a CIF response, and a QCIF response, as can be seen in the  
typical performance characteristics graphs on the following pages.  
Filter  
(dB)1  
(MHz)2  
Luma LPF NTSC  
Luma LPF PAL  
Luma Notch NTSC  
Luma Notch PAL  
Luma SSAF  
0.16  
0.1  
0.09  
0.1  
0.04  
0.127  
Monotonic  
Monotonic  
Monotonic  
0.09  
4.24  
4.81  
2.3/4.9/6.6  
3.1/5.6/6.4  
6.45  
3.02  
1.5  
0.65  
1
1.395  
2.2  
Luma CIF  
Luma QCIF  
If SD SSAF gain is enabled, there is the option of 12 responses in  
the range of –4 dB to +4 dB [Subaddress 47, Bit 4]. The desired  
response can be chosen by the user by programming the correct  
value via the I2C [Subaddress 62h]. The variation of frequency  
responses can be seen in the typical performance characteristics  
graphs on the following pages.  
Chroma 0.65 MHz  
Chroma 1.0 MHz  
Chroma 1.3 MHz  
Chroma 2.0 MHz  
Chroma 3.0 MHz  
Chroma CIF  
0.048  
Monotonic  
Monotonic  
Monotonic  
3.2  
0.65  
0.5  
In addition to the chroma filters listed in Table VI, the ADV7330  
contains an SSAF filter specifically designed for and applicable  
to the color difference component outputs, U and V.  
Chroma QCIF  
NOTES  
This filter has a cutoff frequency of about 2.7 MHz and –40 dB  
at 3.8 MHz, as can be seen in Figure 29. This filter can be  
controlled with Address 42h, Bit 0.  
1Pass-band ripple refers to the maximum fluctuations from the 0 dB response in  
the pass band, measured in (dB). The pass band is defined to have 0 (Hz) to  
fc (Hz) frequency limits for a low-pass filter, 0 (Hz) to f1 (Hz) and f2 (Hz) to  
infinity for a notch filter, where fc, f1, f2 are the –3 dB points.  
23 dB bandwidth refers to the –3 dB cutoff frequency.  
If this filter is disabled, the selectable chroma filters shown in  
Table VI can be used for the CVBS or chroma signal.  
EXTENDED UV FILTER MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
Figure 29. UV SSAF Filter  
REV. B  
–35–  
ADV7330–Typical Performance Characteristics  
PROG SCAN Pr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4  
Y PASS BAND IN PS OVERSAMPLING MODE  
1.0  
0.5  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
TPC 1. PS—UV (8× Oversampling Filter (Linear))  
TPC 4. PS—Y (8× Oversampling Filter (Pass Band))  
PROG SCAN Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
0
Pr/Pb RESPONSE IN HDTV OVERSAMPLING MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (MHz)  
TPC 2. PS—UV (8× Oversampling Filter (SSAF))  
TPC 5. HDTV—UV (2× Oversampling Filter)  
Y RESPONSE IN PS OVERSAMPLING MODE  
0
Y RESPONSE IN HDTV OVERSAMPLING MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (MHz)  
TPC 3. PS—Y (8× Oversampling Filter)  
TPC 6. HDTV—Y (2× Oversampling Filter)  
–36–  
REV. B  
ADV7330  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 7. Luma NTSC Low-Pass Filter  
TPC 10. Luma PAL Notch Filter  
Y RESPONSE IN SD OVERSAMPLING MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
2
4
6
8
10  
12  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 8. Luma PAL Low-Pass Filter  
TPC 11. Y-16× Oversampling Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 9. Luma NTSC Notch Filter  
TPC 12. Luma SSAF Filter up to 12 MHz  
REV. B  
–37–  
ADV7330  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
4
2
0
–2  
–4  
–6  
–8  
–10  
–12  
0
0
0
0
2
4
6
8
10  
10  
10  
12  
1
2
3
4
5
6
7
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 13. Luma SSAF Filter—Programmable Responses  
TPC 16. Luma CIF LP Filter  
5
4
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
3
2
1
0
–1  
2
4
6
8
12  
0
1
2
3
4
5
6
7
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 14. Luma SSAF Filter—Programmable Gain  
TPC 17. Luma QCIF LP Filter  
1
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–1  
–2  
–3  
–4  
–5  
2
4
6
8
12  
0
1
2
3
4
5
6
7
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 15. Luma SSAF Filter—Programmable Attenuation  
TPC 18. Chroma 3.0 MHz LP Filter  
–38–  
REV. B  
ADV7330  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
0
0
2
4
6
8
10  
12  
12  
12  
0
0
0
2
4
6
8
10  
12  
12  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 19. Chroma 2.0 MHz LP Filter  
TPC 22. Chroma 0.65 MHz LP Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 20. Chroma 1.3 MHz LP Filter  
TPC 23. Chroma CIF LP Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 21. Chroma 1.0 MHz LP Filter  
TPC 24. Chroma QCIF LP Filter  
REV. B  
–39–  
ADV7330  
COLOR CONTROLS AND RGB MATRIX  
Programming the RGB Matrix  
The RGB matrix should be enabled [Address 02h, Bit 3], the  
output should be set to RGB [Address 02h, Bit 5], Sync on PrPb  
should be disabled [Address 15h, Bit 2], and Sync on RGB is  
optional [Address 02h, Bit 4].  
HD Y Level, Cr Level, Cb Level  
[Subaddress 16h–18h]  
Three 8-bit wide registers at Addresses 16h, 17h, 18h are used to  
program the output color of the internal HD test pattern genera-  
tor, whether it is the lines of the cross hatch pattern or the uniform  
field test pattern. They are not functional as color controls on  
external pixel data input. For this purpose, the RGB matrix is used.  
GY at addresses 03h and 05h controls the output levels on the  
green signal, BU at 04h and 08h the blue signal output levels, and  
RV at 04h and 09h the red output levels. To control YPrPb output  
levels, YPrPb output should be enabled [Address 02h, Bit 5].  
In this case, GY [Address 05h; Address 03, Bit 0–1] is used for  
the Y output, RV [Address 09h; Address 04, Bit 0–1] is used for  
the Pr output, and BU [Address 08h; Address 04h, Bit 2–3] is  
used for the Pb output.  
The standard used for the values for Y and the color difference  
signals to obtain white, black, and the saturated primary and  
complementary colors conforms to the ITU-R BT.601-4 standard.  
Table VII shows sample color values to be programmed into the  
color registers when output standard selection is set to EIA 770.2.  
If RGB output is selected, the RGB matrix scaler uses the  
following equations:  
Table VII. Sample Color Values for EIA770.2 Output  
Standard Selection  
G = GY ×Y + GU × Pb + GV × Pr  
B = GY ×Y + BU × Pb  
Sample  
Color  
Y Value  
CR Value  
CB Value  
R = GY ×Y + RV × Pr  
If YPrPb output is selected, the following equations are used:  
White  
Black  
Red  
Green  
Blue  
Yellow  
Cyan  
Magenta  
235 (EB)  
16 (10)  
81 (51)  
145 (91)  
41 (29)  
210 (D2)  
170 (AA)  
106 (6A)  
128 (80)  
128(80)  
240 (F0)  
34 (22)  
110 (6E)  
146 (92)  
16 (10)  
128 (80)  
128 (80)  
90 (5A)  
54 (36)  
240 (F0)  
16 (10)  
Y = GY ×Y  
U = BU × Pb  
V = RV × Pr  
On power-up, the RGB matrix is programmed with default values.  
166 (A6)  
202 (CA)  
222 (DE)  
Table VIII. RGB Matrix Default Values  
Address  
Default  
HD RGB Matrix  
[Subaddress 03h–09h]  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
03h  
F0h  
4Eh  
0Eh  
24h  
92h  
7Ch  
When the programmable RGB matrix is disabled [Address 02h,  
Bit 3], the internal RGB matrix takes care of all YCrCb to YPrPb  
or RGB scaling according to the input standard programmed  
into the device.  
When the programmable RGB matrix is enabled, the color  
components are converted according to the 1080i standard  
[SMPTE 274M]:  
When the programmable RGB matrix is not enabled, the  
ADV7330 automatically scales YCrCb inputs to all standards  
supported by this part.  
Y' = 0.2126R' + 0.7152G' +0.0722B'  
CB' = [0.5 / (10.0722)] (B' Y' )  
CR' = [0.5 / (10.2126)] (R' Y' )  
SD Luma and Color Control  
[Subaddresses 5Ch, 5Dh, 5Eh, 5Fh]  
This is reflected in the preprogrammed values for GY = 138Bh,  
GU = 93h, GV = 3B, BU = 248h, RV = 1F0.  
SD Y SCALE, SD Cr SCALE, and SD Cb SCALE are 10-bit  
wide control registers to scale the Y, U, and V output levels.  
If another input standard is used, the scale values for GY, GU,  
GV, BU, and RV have to be adjusted according to this input  
standard. The user must consider that the color component con-  
version might use different scale values. For example, SMPTE  
293M uses the following conversion:  
Each of these registers represents the value required to scale the  
U or V level from 0.0 to 2.0, and the Y level from 0.0 to 1.5 of  
its initial level. The value of these 10 bits is calculated using the  
following equation:  
Y, U, or V Scalar Value = Scale Factor × 512  
For example:  
Y' = 0.299R' +0.587G' +0.114 B'  
CB' = [0.5 / (10.114)] (B' Y' )  
CR' = [0.5 / (10.299)] (R' Y' )  
Scale factor = 1.18  
Y, U, or V Scalar Value = 1.18 × 512 = 665.6  
Y, U, or V Scalar Value = 665 (rounded to the nearest integer)  
Y, U, or V Scalar Value = 1010 0110 01b  
The programmable RGB matrix can be used to control the HD  
output levels in cases where the video output does not confirm  
to standards due to altering the DAC output stages such as  
termination resistors. The programmable RGB matrix is used  
for external HD data and is not functional when the HD test  
pattern is enabled.  
Address 5Ch, SD LSB Register = 15h  
Address 5Dh, SD Y Scale Register = A6h  
Address 5Eh, SD V Scale Register = A6h  
Address 5Fh, SD U Scale Register = A6h  
–40–  
REV. B  
ADV7330  
SD Hue Adjust Value  
Standard: PAL.  
[Subaddress 60h]  
The hue adjust value is used to adjust the hue on the composite  
and chroma outputs.  
To add –7 IRE brightness level, write 72h to Address 61h,  
SD brightness.  
IREValue × 2.015631 =  
[
[
[
]
These eight bits represent the value required to vary the hue of  
the video data, i.e., the variance in phase of the subcarrier during  
active video with respect to the phase of the subcarrier during  
the colorburst. The ADV7330 provides a range of 22.5° incre-  
ments of 0.17578125°. For normal operation (zero adjustment),  
this register is set to 80h. FFh and 00h represent the upper and  
lower limits (respectively) of adjustment attainable.  
7 × 2.015631 = 14.109417 = 0001110b  
]
[
]
0001110 into twoscomplement = 1110010 B = 72h  
]
[
]
Table IX. Brightness Control Values*  
Setup  
Setup  
Level in  
NTSC with  
Pedestal  
Level in  
NTSC No  
Pedestal  
Setup  
Level in  
PAL  
(Hue Adjust) [°] = 0.17578125° × (HCRd–128), for positive  
SD  
Brightness  
hue adjust value.  
For example, to adjust the hue by +4°, write 97h to the hue  
adjust value register:  
22.5 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
1Eh  
0Fh  
00h  
71h  
4
+128 = 105d* = 97h  
–7.5 IRE  
–7.5 IRE  
0.17578125  
*rounded to the nearest integer  
*Values in the range of 3Fh to 44h might result in an invalid output signal.  
To adjust the hue by –4°, write 69h to the hue adjust value  
register:  
SD Brightness Detect  
[Subaddress 7Ah]  
The ADV7330 allows monitoring of the brightness level of the  
incoming video data. Brightness detect is a read-only register.  
4  
+128 = 105d* = 69h  
0.17578125  
*rounded to the nearest integer  
Double Buffering  
[Subaddress 13h, Bit 7; Subaddress 48h, Bit 2]  
Double-buffered registers are updated once per field on the  
falling edge of the VSYNC signal. Double buffering improves  
the overall performance since modifications to register settings  
will not be made during active video, but take effect on the start  
of the active video.  
SD Brightness Control  
[Subaddress 61h]  
The brightness is controlled by adding a programmable setup  
level onto the scaled Y data. This brightness level may be added  
onto the scaled Y data. For NTSC with pedestal, the setup can  
vary from 0 IRE to 22.5 IRE. For NTSC without pedestal and  
PAL, the setup can vary from –7.5 IRE to +15 IRE.  
Double buffering can be activated on the following HD registers:  
HD Gamma A and Gamma B curves, and HD CGMS registers.  
Double buffering can be activated on the following SD registers:  
SD Gamma A and Gamma B curves, SD Y scale, SD U scale,  
SD V scale, SD brightness, SD closed captioning, and  
SD Macrovision Bits 5–0.  
The brightness control register is an 8-bit wide register. Seven  
bits of this 8-bit register are used to control the brightness level.  
This brightness level can be a positive or negative value.  
For example:  
Standard: NTSC with pedestal.  
To add +20 IRE brightness level, write 28h to Address 61h, SD  
brightness.  
[SDBrightnessValue]H =  
[IREValue × 2.015631  
]H =  
[20 × 2.015631 H = [40.31262]H = 28H  
]
NTSC WITHOUT PEDESTAL  
+7.5 IRE  
–7.5 IRE  
100 IRE  
0 IRE  
POSITIVE SETUP  
VALUE ADDED  
NEGATIVE SETUP  
VALUE ADDED  
NO SETUP  
VALUE ADDED  
Figure 30. Examples of Brightness Control Values  
REV. B  
–41–  
ADV7330  
In Case B, the video output signal is reduced. The absolute level  
of the sync tip and blanking level both decrease with respect to  
the reference video output signal. The overall gain of the signal is  
reduced from the reference signal.  
PROGRAMMABLE DAC GAIN CONTROL  
DACs A, B, and C are controlled by Reg 0B. The I2C control  
registers will adjust the output signal gain up or down from its  
absolute level.  
The range of this feature is specified for 7.5% of the nominal  
output from the DACs. For example, if the output current of  
the DAC is 4.33 mA, the DAC tune feature can change this  
output current from 4.008 mA (–7.5%) to 4.658 mA (+7.5%).  
CASE A  
GAIN PROGRAMMED IN DAC OUTPUT LEVEL  
REGISTERS, SUBADDRESS 0Ah, 0Bh  
700mV  
The reset value of the vid_out_ctrl registers is 00h nominal  
DAC output current. Table X is an example of how the output  
current of the DACs varies for a nominal 4.33 mA output current.  
Table X.  
300mV  
DAC  
Current  
Register 0Ah or 0Bh (mA)  
% Gain  
0100 0000 (40h)  
0011 1111 (3Fh)  
0011 1110 (3Eh)  
...  
4.658  
4.653  
4.648  
...  
7.5000  
7.3820  
7.3640  
...  
NEGATIVE GAIN PROGRAMMED IN  
CASE B  
DAC OUTPUT LEVEL REGISTERS,  
SUBADDRESS 0Ah, 0Bh  
700mV  
...  
...  
...  
0000 0010 (02h)  
0000 0001 (01h)  
0000 0000 (00h)  
4.43  
4.38  
4.33  
0.0360  
0.0180  
0.0000 (I2C Reset Value,  
Nominal)  
–0.0180  
–0.0360  
...  
1111 1111 (FFh)  
1111 1110 (FEh)  
...  
4.25  
4.23  
...  
300mV  
...  
...  
...  
1100 0010 (C2h)  
1100 0001 (C1h)  
1100 0000 (C0h)  
4.018  
4.013  
4.008  
–7.3640  
–7.3820  
–7.5000  
Figure 31. Programmable DAC Gain—Positive  
and Negative Gain  
In Case A, the video output signal is gained. The absolute level  
of the sync tip and blanking level both increase with respect to  
the reference video output signal. The overall gain of the signal  
is increased from the reference signal.  
–42–  
REV. B  
ADV7330  
Gamma Correction  
For the length of 16 to 240, the gamma correction curve has to  
be calculated as follows:  
[Subaddress 24h–37h for HD, Subaddress 66h–79h for SD]  
Gamma correction is available for SD and HD video. For each  
standard there are 20 8-bit wide registers. They are used to  
program the gamma correction curves A and B. HD gamma  
curve A is programmed at Addresses 24h–2Dh, HD gamma  
curve B at 2Eh–37h. SD gamma curve A is programmed at  
Addresses 66h–6Fh, SD gamma curve B at Addresses 70h–79h.  
y = x ꢁ  
where:  
y = gamma corrected output  
x = linear input signal  
= gamma power factor  
Generally, gamma correction is applied to compensate for the  
nonlinear relationship between signal input and brightness level  
output (as perceived on the CRT). It can also be applied  
wherever nonlinear processing is used.  
To program the gamma correction registers, the seven values for  
y have to be calculated using the following formula:  
x(n16)  
y =  
× 240 16 + 16  
(
)
n
Gamma correction uses the function  
240 16  
(
)
SignalOUT = Signal  
where:  
(
)
IN  
x
(n–16) = Value for x along x-axis at points  
where = gamma power factor.  
n = 24, 32, 48, 64, 80, 96, 128, 160, 192 or 224  
Gamma correction is performed on the luma data only. The user  
has the choice to use two different curves, curve A or curve B.  
At any one time, only one of these curves can be used. The  
response of the curve is programmed at 10 predefined locations.  
In changing the values at these locations, the gamma curve can  
be modified. Between these points, linear interpolation is used  
to generate intermediate values. Considering the curve to have a  
total length of 256 points, the 10 locations are at 24, 32, 48, 64,  
80, 96, 128, 160, 192, 224. Locations 0, 16, 240, and 255 are  
fixed and cannot be changed.  
yn = Value for y along the y-axis, which has to be written into  
the gamma correction register  
For example:  
y
y
24 = [(8 / 224)0.5 × 224] + 16 = 58*  
32 = [16 / 224)0.5 × 224] + 16 = 76*  
y48 = [(32 / 224)0.5 × 224] + 16 = 101*  
y64 = [(48 / 224)0.5 × 224] + 16 =120*  
y
80 = [(64 / 224)0.5 × 224] + 16 =136*  
y96 = [(80 / 224)0.5 × 224] + 16 = 150*  
y128 = [(112 / 224)0.5 × 224] + 16 = 174*  
y160 = [(144 / 224)0.5 × 224] + 16 = 195*  
GAMMA CORRECTION BLOCK OUTPUT TO A RAMP INPUT  
300  
y
192 = [(176 / 224)0.5 × 224] + 16 = 214*  
250  
y224 = [(208 / 224)0.5 × 224] + 16 = 232*  
SIGNAL OUTPUT  
*rounded to the nearest integer  
The gamma curves in Figure 32 and 33 are examples only; any  
user defined curve is acceptable in the range of 16–240.  
200  
0.5  
150  
100  
GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR  
VARIOUS GAMMA VALUES  
300  
SIGNAL INPUT  
50  
250  
0.3  
200  
0
0
50  
100  
150  
LOCATION  
200  
250  
0.5  
150  
Figure 32. Signal Input (Ramp) and Signal Output  
for Gamma 0.5  
1.5  
100  
1.8  
50  
0
0
50  
100  
150  
LOCATION  
200  
250  
Figure 33. Signal Input (Ramp) and Selectable  
Gamma Output Curves  
REV. B  
–43–  
ADV7330  
HD SHARPNESS FILTER CONTROL AND ADAPTIVE  
FILTER CONTROL  
[Subaddress 20h, 38h–3Dh]  
There are three filter modes available on the ADV7330: sharp-  
ness filter mode and two adaptive filter modes.  
The derivative of the incoming signal is compared to the three  
programmable threshold values: HD adaptive filter threshold  
A, B, C. The recommended threshold range is from 16–235,  
although any value in the range of 0–255 can be used.  
The edges can then be attenuated with the settings in HD adaptive  
filter gain 1, 2, 3 registers and HD sharpness filter gain register.  
According to the settings of the HD adaptive filter mode con-  
trol, there are two Adaptive Filter modes available:  
HD Sharpness Filter Mode  
To enhance or attenuate the Y signal in the frequency ranges  
shown in the figures below, the following register settings must  
be used: HD sharpness filter must be enabled and HD adaptive  
filter enable must be set to disabled.  
1. Mode A is used when adaptive filter mode is set to 0. In this  
case, Filter B (LPF) will be used in the adaptive filter block.  
Also, only the programmed values for Gain B in the HD  
sharpness filter gain, HD adaptive filter gain 1, 2, 3 are  
applied when needed. The Gain A values are fixed and cannot  
be changed.  
To select one of the 256 individual responses, the according gain  
values for each filter, which range from –8 to +7 , must be pro-  
grammed into the HD sharpness filter gain register at Address 20h.  
HD Adaptive Filter Mode  
The HD adaptive filter threshold A, B, C registers, the HD  
adaptive filter gain 1, 2, 3 registers, and the HD sharpness filter  
gain register are used in Adaptive Filter mode. To activate the  
adaptive filter control, HD sharpness filter must be enabled and  
HD adaptive filter gain must be enabled.  
2. Mode B is used when adaptive filter gain is set to 1. In this  
mode a cascade of Filter A and Filter B is used. Both settings  
for Gain A and Gain B in the HD sharpness filter gain,  
HD adaptive filter gain 1, 2, 3 become active when needed.  
SHARPNESS AND ADAPTIVE FILTER CONTROL BLOCK  
1.5  
1.4  
1.5  
1.6  
1.5  
1.4  
1.4  
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
1.1  
1.0  
INPUT  
SIGNAL:  
STEP  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FILTER A RESPONSE (Gain Ka)  
FILTER B RESPONSE (Gain Kb)  
FREQUENCY RESPONSE IN SHARPNESS  
FILTER MODE WITH Ka = 3 AND Kb = 7  
Figure 34. Sharpness and Adaptive Filter Control Block  
–44–  
REV. B  
ADV7330  
HD Sharpness Filter and Adaptive Filter Application Examples  
HD Sharpness Filter Application  
The effect of the sharpness filter can also be seen when using  
the internally generated cross hatch pattern.  
The HD sharpness filter can be used to enhance or attenuate  
the Y video output signal. The following register settings were  
used to achieve the results shown in the figures below. Input  
data was generated by an external signal source.  
Table XII.  
Address  
Register Setting  
00h  
01h  
02h  
10h  
11h  
20h  
FCh  
10h  
20h  
00h  
85h  
99h  
Table XI.  
Register Reference in  
Setting  
Address  
Figure 35  
00h  
01h  
02h  
10h  
11h  
20h  
20h  
20h  
20h  
20h  
20h  
FCh  
10h  
20h  
00h  
81h  
00h  
08h  
04h  
40h  
80h  
22h  
In toggling the sharpness filter enable bit [Address 11h, Bit 8],  
it can be seen that the line contours of the crosshatch pattern  
change their sharpness.  
a
b
c
d
e
f
d
a
b
R2  
R4  
1
e
R1  
c
f
1
R2  
CH1 500mV  
REF A  
M 4.00s  
1 9.99978ms  
CH1  
ALL FIELDS  
CH1 500mV  
REF A  
M 4.00s  
9.99978ms  
CH1  
ALL FIELDS  
500mV 4.00s  
500mV 4.00s  
1
Figure 35. HD Sharpness Filter Control with Different Gain Settings for HS Sharpness Filter Gain Value  
REV. B  
–45–  
ADV7330  
ADAPTIVE FILTER CONTROL APPLICATION  
Figures 36 and 37 show a typical signal to be processed by the  
adaptive filter control block.  
When changing the adaptive filter mode to Mode B [Address 15h,  
Bit 6], the following output can be obtained:  
: 674mV  
@: 446mV  
: 332ns  
@: 12.8ms  
: 692mV  
@: 446mV  
: 332ns  
@: 12.8ms  
Figure 38. Output Signal from Adaptive Filter Control  
Figure 36. Input Signal to Adaptive Filter Control  
The adaptive filter control can also be demonstrated using the  
internally generated crosshatch test pattern and toggling the  
adaptive filter control bit [Address 15h, Bit 7].  
: 692mV  
@: 446mV  
: 332ns  
@: 12.8ms  
Table XIV.  
Address  
Register Setting  
00h  
01h  
02h  
10h  
11h  
15h  
20h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
FCh  
10h  
20h  
00h  
85h  
80h  
00h  
ACh  
9Ah  
88h  
28h  
3Fh  
64h  
Figure 37. Output Signal After Adaptive Filter Control  
The following register settings were used to obtain the results  
shown in Figure 37, i.e., to remove the ringing on the Y signal.  
Input data was generated by an external signal source.  
Table XIII.  
Address  
Register Setting  
00h  
01h  
02h  
10h  
11h  
15h  
20h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
FCh  
10h  
20h  
00h  
81h  
80h  
00h  
ACh  
9Ah  
88h  
28h  
3Fh  
64h  
All other registers are set as normal.  
–46–  
REV. B  
ADV7330  
SD Digital Noise Reduction  
[Subaddress 63h, 64h, 65h]  
It is also possible to compensate for variable block positioning or  
differences in YCrCb pixel timing with the use of the DNR  
block offset.  
DNR is applied to the Y data only. A filter block selects the high  
frequency, low amplitude components of the incoming signal  
[DNR input select]. The absolute value of the filter output is  
compared to a programmable threshold value ['DNR threshold  
control]. There are two DNR modes available: DNR mode and  
DNR sharpness mode.  
The digital noise reduction registers are three 8-bit wide registers.  
They are used to control the DNR processing.  
Coring Gain Border [Address 63h, Bits 3–0]  
These four bits are assigned to the gain factor applied to  
border areas.  
In DNR mode, if the absolute value of the filter output is smaller  
than the threshold, it is assumed to be noise. A programmable  
amount [coring gain border, coring gain data] of this noise  
signal will be subtracted from the original signal.  
In DNR mode, the range of gain values is 0 to 1 in increments  
of 1/8. This factor is applied to the DNR filter output, which  
lies below the set threshold range. The result is then subtracted  
from the original signal.  
In DNR sharpness mode, if the absolute value of the filter output  
is less than the programmed threshold, it is assumed to be noise,  
as before. Otherwise, if the level exceeds the threshold now being  
identified as a valid signal, a fraction of the signal [coring gain  
border, coring gain data] will be added to the original signal in  
order to boost high frequency components and to sharpen the  
video image.  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output, which lies above the threshold range. The result is added  
to the original signal.  
Coring Gain Data [Address 63h, Bits 7–4]  
These four bits are assigned to the gain factor applied to the  
luma data inside the MPEG pixel block.  
In MPEG systems, it is common to process the video information  
in blocks of 8 pixels × 8 pixels for MPEG2 systems, or 16 pixels  
× 16 pixels for MPEG1 systems [block size control]. DNR can be  
applied to the resulting block transition areas, which are known  
to contain noise. Generally, the block transition area contains  
two pixels. It is possible to define this area to contain four pixels  
[border area].  
In DNR mode, the range of gain values is 0 to 1 in increments  
of 1/8. This factor is applied to the DNR filter output, which  
lies below the set threshold range. The result is then subtracted  
from the original signal.  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output, which lies above the threshold range. The result is  
added to the original signal.  
DNR MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
APPLY DATA  
APPLY BORDER  
BLOCK OFFSET  
CORING GAIN CORING GAIN  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
O X X X X X X O O X X X X X X O  
NOISE  
SIGNAL PATH  
OFFSET CAUSED  
BY VARIATIONS IN  
INPUT TIMING  
O X X X X X X O O X X X X X X O  
O X X X X X X O O X X X X X X O  
INPUT FILTER  
BLOCK  
FILTER  
SUBTRACT SIGNAL  
DNR27 – DNR24 = 01H  
OUTPUT  
IN THRESHOLD  
RANGE FROM  
Y DATA  
INPUT  
< THRESHOLD?  
ORIGINAL SIGNAL  
Figure 40. DNR Block Offset Control  
DNR Threshold [Address 64h, Bits 5–0]  
These six bits are used to define the threshold value in the range  
of 0 to 63. The range is an absolute value.  
FILTER OUTPUT  
> THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
DNR  
SHARPNESS  
MODE  
DNR CONTROL  
Border Area [Address 64h, Bit 6]  
BLOCK SIZE CONTROL  
BORDER AREA  
In setting this bit to a Logic 1, the block transition area can be  
defined to consist of four pixels. If this bit is set to a Logic 0,  
the border transition area consists of two pixels, where one pixel  
refers to two clock cycles at 27 MHz.  
BLOCK OFFSET  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
NOISE  
SIGNAL PATH  
720485 PIXELS  
INPUT FILTER  
BLOCK  
2 PIXEL  
BORDER  
(NTSC)  
DATA  
FILTER  
ADD SIGNAL  
OUTPUT  
Y DATA  
INPUT  
ABOVE THRESHOLD  
RANGE FROM  
> THRESHOLD?  
ORIGINAL SIGNAL  
+
FILTER OUTPUT  
< THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
88 PIXEL BLOCK 88 PIXEL BLOCK  
Figure 39. DNR Block Diagram  
Figure 41. DNR Border Area  
REV. B  
–47–  
ADV7330  
Block Size Control [Address 64h, Bit 7]  
In DNR mode, it is possible to subtract a fraction of the signal  
that lies below the set threshold, assumed to be noise, from the  
original signal. The threshold is set in DNR Register 1.  
This bit is used to select the size of the data blocks to be processed.  
Setting the block size control function to a Logic 1 defines a  
16 pixel × 16 pixel data block and a Logic 0 defines an 8 pixel ×  
8 pixel data block, where one pixel refers to two clock cycles at  
27 MHz.  
When DNR sharpness mode is enabled, it is possible to add a  
fraction of the signal that lies above the set threshold to the  
original signal, since this data is assumed to be valid data and  
not noise. The overall effect is that the signal will be boosted  
(similar to using Extended SSAF filter).  
DNR Input Select Control [Address 65h, Bit 2–0]  
Three bits are assigned to select the filter that is applied to the  
incoming Y data. The signal that lies in the pass band of the  
selected filter is the signal that will be DNR processed. Figure 42  
shows the filter responses selectable with this control.  
Block Offset Control [Address 65h, Bits 7–4]  
Four bits are assigned to this control, which allows a shift of the  
data block of 15 pixels maximum. Consider the coring gain  
positions fixed. The block offset shifts the data in steps of one  
pixel such that the border coring gain factors can be applied at the  
same position regardless of variations in input timing of the data.  
1.0  
FILTER D  
0.8  
SD ACTIVE VIDEO EDGE  
[Subaddress 42h, Bit 7]  
FILTER C  
0.6  
When the active video edge is enabled, the first three pixels and  
the last three pixels of the active video on the luma channel are  
scaled in such a way that maximum transitions on these pixels  
are not possible. The scaling factors are ×1/8, ×1/2, and ×7/8.  
All other active video passes through unprocessed.  
0.4  
0.2  
0
FILTER B  
FILTER A  
SAV/EAV STEP EDGE CONTROL  
The ADV7330 has the capability of controlling fast rising and  
falling signals at the start and end of active video to minimize  
ringing.  
0
1
2
3
4
5
6
FREQUENCY (Hz)  
Figure 42. DNR Input Select  
DNR Mode Control [Address 65h, Bit 4]  
This bit controls the DNR mode selected. A Logic 0 selects  
DNR mode, a Logic 1 selects DNR sharpness mode.  
An algorithm monitors SAV and EAV and governs when the  
edges are too fast. The result will be reduced ringing at the start  
and end of active video for fast transitions.  
Subaddress 42h, Bit 7 = 1 enables this feature.  
DNR works on the principle of defining low amplitude, high  
frequency signals as probable noise and subtracting this noise  
from the original signal.  
LUMA CHANNELWITH  
ACTIVEVIDEO EDGE  
DISABLED  
LUMA CHANNELWITH  
ACTIVEVIDEO EDGE  
ENABLED  
100 IRE  
0 IRE  
100 IRE  
87.5 IRE  
50 IRE  
12.5 IRE  
0 IRE  
Figure 43. Example for Active Video Edge Functionality  
–48–  
REV. B  
ADV7330  
VOLTS  
IRE:FLT  
100  
0.5  
50  
0
0
F2  
L135  
–50  
2
0
4
6
8
10  
12  
Figure 44. Address 42h, Bit 7 = 0  
VOLTS  
IRE:FLT  
100  
0.5  
50  
0
0
F2  
L135  
–50  
0
–2  
2
4
6
8
10  
12  
Figure 45. Address 42h, Bit 7 = 1  
REV. B  
–49–  
ADV7330  
BOARD DESIGN AND LAYOUT CONSIDERATIONS  
DAC Termination and Layout Considerations  
The ADV7330 contains an on-board voltage reference. The VREF  
pin is normally terminated to VAA through a 0.1 µF capacitor  
when the internal VREF is used. Alternatively, the ADV7330 can  
be used with an external VREF (AD1580).  
Table XVI shows possible output rates from the ADV7330.  
Table XVI.  
Input Mode  
PLL  
Output  
Address 01h, Bit 6–4 Address 00h, Bit 1 Rate  
SD  
Off  
On  
27 MHz (2×)  
216 MHz (16×)  
The RSET resistors connected between the RSET pin and AGND  
are used to control the full-scale output current and therefore  
the DAC voltage output levels. For full-scale output, RSET must  
have a value of 3040 . The RSET values should not be changed.  
RLOAD has a value of 300 for full-scale output.  
PS  
Off  
On  
27 MHz (1×)  
216 MHz (8×)  
HDTV  
Off  
On  
74.25 MHz (1×)  
148.5 MHz (2×)  
VIDEO OUTPUT BUFFER AND OPTIONAL  
OUTPUT FILTER  
Output buffering on all three DACs is necessary in order to  
drive output devices, such as SD or HD monitors.  
10H  
DAC  
OUTPUT  
3
Analog Devices produces a range of suitable op amps for this  
application, such as the AD8061. More information on line  
driver buffering circuits is given in the relevant op amp data sheets.  
75ꢁ  
BNC  
OUTPUT  
60022pF  
600ꢁ  
1
4
An optional analog reconstruction low-pass filter (LPF) may be  
required as an anti-imaging filter if the ADV7330 is connected  
to a device that requires this filtering.  
560ꢁ  
560ꢁ  
Figure 46. Example for Output Filter for SD,  
16 × Oversampling  
The filter specifications vary with the application.  
Table XV. External Filter Requirements  
CIRCUIT FREQUENCY RESPONSE  
0
0
24n  
21n  
18n  
15n  
12n  
9n  
Cutoff  
Frequency Attenuation  
–30  
–10  
MAGNITUDE (dB)  
Application Oversampling (MHz)  
–50 dB @ (MHz)  
–60  
–20  
SD  
SD  
PS  
PS  
HDTV  
HDTV  
2×  
16×  
1×  
8×  
1×  
2×  
>6.5  
>6.5  
>12.5  
>12.5  
>30  
20.5  
209.5  
14.5  
203.5  
44.25  
118.5  
–90  
–30  
–120  
–150  
–180  
–210  
–240  
–40  
PHASE (Deg)  
–50  
GROUP DELAY (sec)  
–60  
>30  
6n  
–70  
–80  
3n  
0
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 47. Filter Plot for Output Filter for SD,  
16× Oversampling  
–50–  
REV. B  
ADV7330  
4.7H  
PC BOARD LAYOUT CONSIDERATIONS  
DAC  
OUTPUT  
3
4
The ADV7330 is optimally designed for low noise performance,  
both radiated and conducted noise. To complement the excellent  
noise performance of the ADV7330, it is imperative that great  
care be given to the PC board layout.  
75ꢁ  
BNC  
OUTPUT  
6.8pF  
6.8pF  
600ꢁ  
1
600ꢁ  
560ꢁ  
The layout should be optimized for lowest noise on the ADV7330  
power and ground lines. This can be achieved by shielding the  
digital inputs and providing good decoupling. The lead length  
between groups of VAA and AGND, VDD and DGND, and  
VDD_IO and GND_IO pins should be kept as short as possible to  
minimized inductive ringing.  
560ꢁ  
Figure 48. Example Output Filter for PS,  
8× Oversampling  
DAC OUTPUT  
3
4
470nH 220nH  
It is recommended that a 4-layer printed circuit board is used  
with power and ground planes separating the layer of the signal  
carrying traces of the components and solder-side layer. Com-  
ponent placement should be carefully considered in order to  
separate noisy circuits, such as crystal clocks, high speed logic  
circuitry, and analog circuitry.  
75ꢁ  
1
3
4
300ꢁ  
BNC OUTPUT  
75ꢁ  
1
33pF  
82pF  
500ꢁ  
500ꢁ  
There should be a separate analog ground plane and a separate  
digital ground plane.  
Figure 49. Example Output Filter for HDTV,  
2× Oversampling  
Power planes should encompass a digital power plane and an  
analog power plane. The analog power plane should contain the  
DACs and all associated circuitry, VREF circuitry. The digital  
power plane should contain all logic circuitry.  
CIRCUIT FREQUENCY RESPONSE  
0
480  
18n  
400  
–10  
MAGNITUDE (dB)  
PHASE (Deg)  
16n  
320  
The analog and digital power planes should be individually con-  
nected to the common power plane at one single point through a  
suitable filtering device, such as a ferrite bead.  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
14n  
240  
12n  
160  
GROUP DELAY (Sec)  
DAC output traces on a PCB should be treated as transmission  
lines. It is recommended that the DACs be placed as close as  
possible to the output connector, with the analog output traces  
being as short as possible (less than 3 inches). The DAC termi-  
nation resistors should be placed as close as possible to the  
DAC outputs and should overlay the PCB’s ground plane. As  
well as minimizing reflections, short analog output traces will  
reduce noise pickup due to neighboring digital circuitry.  
10n  
80  
8n  
0
6n  
–80  
4n  
–160  
2n  
–240  
0
1M  
10M  
100M  
1G  
To avoid crosstalk between the DAC outputs, it is recommended  
to leave as much space as possible between the tracks of the  
individual DAC output pins. The addition of ground tracks  
between outputs is also recommended.  
FREQUENCY (Hz)  
Figure 50. Filter Plot for Output Filter for PS,  
8× Oversampling  
Supply Decoupling  
Noise on the analog power plane can be further reduced by the  
use of decoupling capacitors.  
CIRCUIT FREQUENCY RESPONSE  
0
–10  
–20  
–30  
–40  
–50  
–60  
480  
18n  
15n  
12n  
9n  
MAGNITUDE (dB)  
360  
240  
120  
Optimum performance is achieved by the use of 10 nF and 0.1 µF  
ceramic capacitors. Each group of VAA, VDD, or VDD_IO pins  
should be individually decoupled to ground. This should be  
done by placing the capacitors as close as possible to the device  
with the capacitor leads as short as possible, thus minimizing  
lead inductance.  
GROUP DELAY (Sec)  
PHASE (Deg)  
0
A 1 µF tantalum capacitor is recommended across the VAA supply  
in addition to 10 nF ceramic capacitor. See Figure 52.  
6n  
–120  
3n  
0
–240  
1G  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 51. Example for Output Filter HDTV,  
2× Oversampling  
REV. B  
–51–  
ADV7330  
Digital Signal Interconnect  
Analog Signal Interconnect  
The digital signal lines should be isolated as much as possible  
from the analog outputs and other analog circuitry. Digital  
signal lines should not overlay the analog power plane.  
The ADV7330 should be located as close as possible to the  
output connectors, thus minimizing noise pickup and reflections  
due to impedance mismatch.  
Due to the high clock rates used, long clock lines to the ADV7330  
should be avoided to minimize noise pickup.  
For optimum performance, the analog outputs should each be  
source and load terminated, as shown in Figure 52. The  
termination resistors should be as close as possible to the  
ADV7330 to minimize reflections.  
Any active pull-up termination resistors for the digital inputs  
should be connected to the digital power plane and not the analog  
power plane.  
For optimum performance, it is recommended that all decoupling  
and external components relating to ADV7330 be located on the  
same side of the PCB and as close as possible to the ADV7330.  
Any unused inputs should be tied to ground.  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
V
V
V
AA  
+
10nF  
10nF  
1F  
V
V
AA  
DD_IO  
DD  
0.1F  
0.1F  
0.1F  
10, 56  
V
DD_IO  
5kꢁ  
36  
41  
1
10nF  
COMP  
V
V
DD  
AA  
DD_IO  
V
AA  
2
19  
I C  
ADV7330  
1.1kꢁ  
50  
49  
48  
HSYNC_O/P  
VSYNC_O/P  
BLANK_O/P  
46  
V
REF  
RECOMMENDED EXTERNAL  
AD1580 FOR OPTIMUM  
PERFORMANCE  
100nF  
C0–C7  
Y0–Y7  
UNUSED  
INPUTS  
39  
38  
37  
CVBS/GREEN/Y  
LUMA/BLUE/Pb  
CHROMA/RED/Pr  
DAC A  
DAC B  
DAC C  
SHOULD BE  
300ꢁ  
GROUNDED  
300ꢁ  
300ꢁ  
23  
24  
25  
HSYNC_I/P  
VSYNC_I/P  
BLANK_I/P  
V
AA  
4.7kꢁ  
V
V
DD_IO  
DD_IO  
33  
32  
RESET  
5kꢁ  
5kꢁ  
100ꢁ  
+
2
I C BUS  
22  
21  
SCLK  
SDA  
4.7F  
CLKIN  
100ꢁ  
V
AA  
820pF  
34  
EXT_LF  
V
DD_IO  
20  
35  
ALSB  
680ꢁ  
3.9nF  
5kꢁ  
R
SET  
SELECTION HERE  
DETERMINES  
DEVICE ADDRESS  
GND_ IO AGND DGND  
3040ꢁ  
64  
40  
2, 11, 14, 15,  
51–55, 57–63  
Figure 52. ADV7330 Circuit Layout  
–52–  
REV. B  
ADV7330  
APPENDIX 1—COPY GENERATION  
CGMS CRC Functionality  
MANAGEMENT SYSTEM  
HD CGMS Data Registers 2–0  
[Subaddress 21h, 22h, 23h]  
HD CGMS is available in 525p mode only, conforming to  
‘CGMS-A EIA-J CPR1204-1, Transfer Method of Video ID  
Information Using Vertical Blanking Interval (525p system),  
March 1998’, and IEC61880, 1998, Video systems (525/60) —  
video and accompanied data using the vertical blanking interval-  
analog interface.  
If SD CGMS CRC [Address 59h, Bit 4] or PS/HD CGMS CRC  
[Subaddress 12h, Bit 7] is set to Logic 1, the last six bits,  
C19–C14, which comprise the 6-bit CRC check sequence, are  
calculated automatically on the ADV7330 based on the lower  
14 bits (C0–C13) of the data in the data registers and output  
with the remaining 14 bits to form the complete 20 bits of the  
CGMS data. The calculation of the CRC sequence is based on  
the polynomial x6 + x + 1 with a preset value of 111111. If SD  
CGMS CRC [Address 59h, Bit 4] or PS/HD CGMS CRC  
[Subaddress 12h, Bit 7] is set to Logic 0, all 20 bits (C0–C19)  
are output directly from the CGMS registers (no CRC calcu-  
lated, must be calculated by the user).  
When HD CGMS is enabled [Subaddress 12h, Bit 6 = 1], CGMS  
data is inserted on Line 41. The HD CGMS data registers are  
to be found at address 21h, 22h, 23h.  
Function of CGMS Bits  
SD CGMS Data Registers 2–0  
[Subaddress 59h, 5Ah, 5Bh]  
Word 0–6 bits; Word 1–4 bits; Word 2–6 bits; CRC 6 bits;  
CRC polynomial = x6 + x + 1 (preset to 111111).  
The ADV7330 supports copy generation management system  
(CGMS) conforming to the standard. CGMS data is transmitted  
on Line 20 of the odd fields and Line 283 of even fields. Bits  
C/W05 and C/W06 control whether or not CGMS data is output  
on odd and even fields. CGMS data can be transmitted only  
when the ADV7330 is configured in NTSC mode. The CGMS  
data is 20 bits long; the function of each of these bits is as shown  
below. The CGMS data is preceded by a reference pulse of the  
same amplitude and duration as a CGMS bit; see Figure 54.  
Table XVII.  
Bit  
Function  
WORD0  
B1  
B2  
1
16:9  
Letterbox  
0
4:3  
Normal  
Aspect ratio  
Display format  
Undefined  
B3  
WORD0  
B4, B5, B6  
HD CGMS Data Registers  
[Subaddress 12h, Bit 6]  
The ADV7330 supports copy generation management system  
(CGMS) in HDTV mode (720p and 1080i) in accordance to  
EIAJ CPR-1204-2. The HD CGMS data registers are to be found  
at Addresses 21h, 22h, and 23h.  
Identification information about video and  
other signals (e.g., audio)  
WORD1  
B7, B8, B9, B10  
Identification signal incidental to Word 0  
WORD2  
720p System  
B11, B12, B13, B14 Identification signal and information  
incidental to Word 0  
CGMS data is applied to Line 24 of the luminance vertical  
blanking interval.  
1080i System  
CGMS data is applied to Line 19 and also on Line 582 of the  
luminance vertical blanking interval.  
REV. B  
–53–  
ADV7330  
CRC SEQUENCE  
+700mV  
REF  
BIT1 BIT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BIT20  
70% 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
–300mV  
21.2s 0.22s  
22T  
5.8s 0.15s  
6T  
T = 1/(f 33) = 963ns  
H
f
= HORIZONTAL SCAN FREQUENCY  
H
T 30ns  
Figure 53. PS CGMS Waveform  
+100 IRE  
+70 IRE  
CRC SEQUENCE  
REF  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0 IRE  
–40 IRE  
49.1s 0.5s  
11.2s  
2.235s 20ns  
Figure 54. SD CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
BIT1 BIT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BIT20  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
70% 10%  
0mV  
T 30ns  
–300mV  
17.2s 160ns  
4T  
22 T  
3.128s 90ns  
T = 1/(f 1650/58) = 781.93ns  
H
f
= HORIZONTAL SCAN FREQUENCY  
H
1H  
Figure 55. HDTV 720p CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
BIT1 BIT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BIT20  
70% 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T 30ns  
–300mV  
22.84s 210ns  
4T  
22 T  
4.15s 60ns  
T = 1/(f 2200/77) = 1.038s  
H
f
= HORIZONTAL SCAN FREQUENCY  
H
1H  
Figure 56. HDTV 1080i CGMS Waveform  
–54–  
REV. B  
ADV7330  
APPENDIX 2—SD WIDE SCREEN SIGNALING  
[Subaddress 59h, 5Ah, 5Bh]  
preceded by a run-in sequence and a start code (see Figure 57).  
If SD WSS [Address 59h, Bit 7] is set to Logic 1, it enables the  
WSS data to be transmitted on Line 23. The latter portion of  
Line 23 (42.5 µs from the falling edge of HSYNC) is available  
for the insertion of video.  
The ADV7330 supports wide screen signaling (WSS) conform-  
ing to the standard. WSS data is transmitted on Line 23. WSS  
data can be transmitted only when the ADV7330 is configured  
in PAL mode. The WSS data is 14 bits long, and the function  
of each of these bits is shown in Table XVII. The WSS data is  
It is possible to blank the WSS portion of Line 23 with  
Subaddress 61h, Bit 7.  
Table XVIII. Function of WSS Bits  
Bit  
Bit  
Description  
Description  
Bit 0–Bit 2  
Bit 3  
Aspect Ratio/Format/Position  
B6  
0
1
No Helper  
Modulated Helper  
Odd Parity Check of Bit 0 to Bit 2  
B0, B1, B2 B3 Aspect Ratio Format  
Position  
N/A  
Center  
Top  
B7  
Reserved  
0
1
0
0
0
1
0
0
0
1
0
0
4:3  
14:9  
14:9  
Full Format  
Letterbox  
Letterbox  
B9 B10  
0
1
0
1
0
0
1
1
No Open Subtitles  
Subtitles in Active Image Area  
Subtitles out of Active Image Area  
Reserved  
1
0
1
0
1
1
0
0
1
1
0
1
1
1
1
1
0
1
1
0
16:9  
16:9  
>16:9  
14:9  
16:9  
Letterbox  
Letterbox  
Letterbox  
Full Format  
N/A  
Center  
Top  
Center  
Center  
N/A  
B11  
0
1
No Surround Sound Information  
Surround Sound Mode  
B4  
0
1
B12  
B13  
Reserved  
Reserved  
Camera Mode  
Film Mode  
B5  
0
1
Standard Coding  
Motion Adaptive Color Plus  
500mV  
ACTIVE  
VIDEO  
RUN-IN  
SEQUENCE  
START  
CODE  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11W12 W13  
11.0s  
38.4s  
42.5s  
Figure 57. WSS Waveform Diagram  
REV. B  
–55–  
ADV7330  
APPENDIX 3—SD CLOSED CAPTIONING  
[Subaddress 51h–54h]  
The ADV7330 supports closed captioning conforming to the  
standard television synchronizing waveform for color transmis-  
sion. Closed captioning is transmitted during the blanked active  
line time of Line 21 of the odd fields and Line 284 of even fields.  
FCC Code of Federal Regulations (CFR) 47 section 15.119  
and EIA608 describe the closed captioning information for  
Lines 21 and 284.  
The ADV7330 uses a single buffering method. This means that  
the closed captioning buffer is only one byte deep; therefore  
there will be no frame delay in outputting the closed captioning  
data unlike other 2-byte deep buffering systems. The data must  
be loaded one line before (Line 20 or Line 283) it is output on  
Lines 21 and 284. A typical implementation of this method is to  
use VSYNC to interrupt a microprocessor, which in turn will load  
the new data (two bytes) every field. If no new data is required  
for transmission, 0s must be inserted in both data registers; this  
is called nulling. It is also important to load control codes, all of  
which are double bytes on Line 21 or a TV will not recognize  
them. If there is a message like “Hello World” that has an odd  
number of characters, it is important to pad it out to even in  
order to get “end of caption” 2-byte control code to land in the  
same field.  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency and phase locked to the caption data. After the clock  
run-in signal, the blanking level is held for two data bits and is  
followed by a Logic 1 start bit. Sixteen bits of data follow the  
start bit. These consist of two 8-bit bytes, seven data bits and  
one odd parity bit. The data for these bytes is stored in the SD  
closed captioning registers (Address 53h–54h).  
The ADV7330 also supports the extended closed captioning  
operation, which is active during even fields and is encoded on  
Scan Line 284. The data for this operation is stored in the SD  
closed captioning registers (Address 51h–52h).  
All clock run-in signals and timing to support closed captioning  
on Lines 21 and 284 are generated automatically by the ADV7330.  
All pixel inputs are ignored during Lines 21 and 284 if closed  
captioning is enabled.  
10.5s 0.25s  
12.91s  
7 CYCLES OF  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
0.5035MHz  
CLOCK RUN-IN  
P
A
R
P
A
R
I
S
T
A
R
T
D0–D6  
D0–D6  
50 IRE  
40 IRE  
I
T
Y
T
Y
BYTE 0  
BYTE 1  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003s  
27.382s  
33.764s  
Figure 58. Closed Captioning Waveform, NTSC  
–56–  
REV. B  
ADV7330  
APPENDIX 4—TEST PATTERNS  
The ADV7330 can generate SD and HD test patterns.  
T
T
2
2
CH2 100mV  
M 10.0s  
CH2  
EVEN  
CH2 200mV  
M 10.0s  
A CH2 1.20V  
T
1.82600ms  
T
30.6000s  
Figure 62. PAL Black Bar (–21 mV, 0 mV, +3.5 mV,  
+7 mV, +10.5 mV, +14 mV, +18 mV, +23 mV)  
Figure 59. NTSC Color Bars  
T
T
2
2
CH2 200mV  
M 10.0s  
A CH2 1.21V  
CH2 200mV  
M 4.0s  
CH2  
EVEN  
T
30.6000s  
T
1.82944ms  
Figure 60. PA0L Color Bars  
Figure 63. 525p Hatch Pattern  
T
T
2
2
CH2 100mV  
M 10.0s  
CH2  
EVEN  
CH2 200mV  
M 4.0s  
CH2  
EVEN  
T
1.82380ms  
T
1.84208ms  
Figure 61. NTSC Black Bar (–21 mV, 0 mV, +3.5 mV,  
+7 mV, +10.5 mV, +14 mV, +18 mV, +23 mV)  
Figure 64. 625p Hatch Pattern  
REV. B  
–57–  
ADV7330  
T
T
2
2
CH2 200mV  
M 4.0s  
CH2  
EVEN  
CH2 100mV  
M 4.0s  
CH2  
EVEN  
T
1.82872ms  
T
1.82936ms  
Figure 65. 525p Field Pattern  
Figure 67. 525p Black Bar (–35 mV, 0 mV, +7 mV,  
+14 mV, +21 mV, +28 mV, +35 mV)  
T
T
2
2
CH2 200mV  
M 4.0s  
CH2  
EVEN  
CH2 100mV  
M 4.0s  
CH2  
EVEN  
T
1.84176ms  
T
1.84176ms  
Figure 66. 625p Field Pattern  
Figure 68. 625p Black Bar (–35 mV, 0 mV, +7 mV,  
+14 mV, +21 mV, +28 mV, +35 mV)  
–58–  
REV. B  
ADV7330  
For PAL black bar pattern output on DAC A, the same settings  
are used except that subaddress = 40h and register setting = 11h.  
The following register settings are used to generate a SD NTSC  
CVBS output on DAC A:  
The following register settings are used to generate a 525p hatch  
pattern on DAC A:  
Register  
Setting  
Subaddress  
Register  
Setting  
00h  
40h  
42h  
44h  
4Ah  
10h  
10h  
40h  
40h  
08h  
Subaddress  
00h  
01h  
10h  
11h  
16h  
17h  
18h  
10h  
10h  
40h  
05h  
A0h  
80h  
80h  
All other registers are set to normal/default.  
For PAL CVBS output on DAC A, the same settings are used  
except that subaddress = 40h and register setting = 11h.  
The following register settings are used to generate an SD NTSC  
black bar pattern output on DAC A:  
All other registers are set to normal/default.  
For 625p hatch pattern on DAC A, the same register settings  
are used except that subaddress = 10h and register setting = 50h.  
Register  
Subaddress  
Setting  
For a 525p black bar pattern output on DAC A, the same settings  
are used as above except that subaddress = 02h and register  
setting = 24h.  
00h  
02h  
40h  
42h  
44h  
4Ah  
10h  
04h  
10h  
40h  
40h  
08h  
For 625p black bar pattern output on DAC A, the same settings  
are used as above except that subaddress = 02h and register  
setting = 24h; and subaddress = 10h and register setting = 50h.  
All other registers are set to normal/default.  
REV. B  
–59–  
ADV7330  
APPENDIX 5—SD TIMING MODES  
[Subaddress 4Ah]  
Mode 0 (CCIR-656)—Slave Option  
(Timing Register 0 TR0 = X X X X X 0 0 0)  
The ADV7330 is controlled by the SAV (start active video) and  
EAV (end active video) time codes in the pixel data. All timing  
information is transmitted using a 4-byte synchronization pat-  
tern. A synchronization pattern is sent immediately before and  
after each line during active picture and retrace. VSYNC_O/P,  
HSYNC_O/P, and BLANK_O/P (if not used) pins should be  
tied high during this mode. Blank output is available.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
268 CLOCK  
1440 CLOCK  
1440 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
280 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 69. SD Slave Mode 0  
–60–  
REV. B  
ADV7330  
Mode 0 (CCIR-656)—Master Option  
(Timing Register 0 TR0 = X X X X X 0 0 1)  
The ADV7330 generates H, V, and F signals required for the SAV  
(start active video) and EAV (end active video) time codes in  
the CCIR656 standard. The H bit is output on HSYNC_O/P,  
the V bit is output on BLANK_O/P, and the F bit is output  
on VSYNC_O/P pin.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
6
7
10  
11  
20  
21  
22  
5
9
8
H
V
ODD FIELD  
EVEN FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 70. SD Master Mode 0 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
22  
23  
5
21  
H
V
ODD FIELD  
EVEN FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 71. SD Master Mode 0 (PAL)  
–61–  
REV. B  
ADV7330  
ANALOG  
VIDEO  
H
F
V
Figure 72. SD Master Mode 0, Data Transitions  
Mode 1—Slave Option  
(Timing Register 0 TR0 = X X X X X 0 1 0)  
In this mode, the ADV7330 accepts horizontal SYNC and odd/  
even field signals. A transition of the field input when HSYNC_I/P  
is low indicates a new frame i.e., vertical retrace. The BLANK_I/P  
signal is optional. When the BLANK_I/P input is disabled, the  
ADV7330 automatically blanks all normally blank lines as per  
CCIR-624. HSYNC is applied to the HSYNC_I/P pin, BLANK  
to the BLANK_I/P pin, and Field to the VSYNC_I/P pin.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC_I/P  
BLANK_I/P  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC_I/P  
BLANK_I/P  
FIELD  
ODD FIELD EVEN FIELD  
Figure 73. SD Slave Mode 1 (NTSC)  
–62–  
REV. B  
ADV7330  
Mode 1—Master Option  
(Timing Register 0 TR0 = X X X X X 0 1 1)  
In this mode, the ADV7330 can generate horizontal sync and  
odd/even field signals. A transition of the field output when  
HSYNC_O/P is low indicates a new frame i.e., vertical retrace.  
The blank signal is optional. Pixel data is latched on the rising  
clock edge following the timing signal transitions. HSYNC is  
output on the HSYNC_O/P pin, BLANK on the BLANK_O/P  
pin, and Field on the VSYNC_O/P pin.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC_O/P  
BLANK_O/P  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC_O/P  
BLANK_O/P  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 74. SD Slave Mode 1 (PAL)  
HSYNC_O/P  
FIELD  
PAL = 12 CLOCK/2  
NTSC = 16 CLOCK/2  
BLANK_O/P  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132 CLOCK/2  
NTSC = 122 CLOCK/2  
Figure 75. SD Timing Mode 1—Odd/Even Field Transitions Master/Slave  
REV. B  
–63–  
ADV7330  
Mode 2—Slave Option  
(Timing Register 0 TR0 = X X X X X 1 0 0)  
In this mode, the ADV7330 accepts horizontal and vertical  
sync signals. A coincident low transition of both HSYNC_I/P  
and VSYNC_I/P inputs indicates the start of an odd field. A  
VSYNC_I/P low transition when HSYNC_I/P is high indicates  
the start of an even field. The blank signal is optional. When the  
blank input is disabled, the ADV7330 automatically blanks all  
normally blank lines as per CCIR-624. HSYNC is input on the  
HSYNC_I/P pin, BLANK on the BLANK_I/P pin, and VSYNC  
on the VSYNC_I/P pin.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC_I/P  
BLANK_I/P  
VSYNC_I/P  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC_I/P  
BLANK_I/P  
VSYNC_I/P  
EVEN FIELD  
ODD FIELD  
Figure 76. SD Slave Mode 2 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC_I/P  
BLANK_I/P  
VSYNC_I/P  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC_I/P  
BLANK_I/P  
VSYNC_I/P  
EVEN FIELD  
ODD FIELD  
Figure 77. SD Slave Mode 2 (PAL)  
–64–  
REV. B  
ADV7330  
Mode 2—Master Option  
(Timing Register 0 TR0 = X X X X X 1 0 1)  
In this mode, the ADV7330 can generate horizontal and vertical  
sync signals. A coincident low transition of both HSYNC_O/P  
and VSYNC_O/P outputs indicates the start of an odd field.  
A VSYNC_O/P low transition when HSYNC_O/P is high  
indicates the start of an even field. HSYNC is output on the  
HSYNC_O/P pin, BLANK on the BLANK_O/P pin, and VSYNC  
on the VSYNC_O/P pin.  
HSYNC_O/P  
VSYNC_O/P  
PAL = 12 CLOCK/2  
NTSC = 16 CLOCK/2  
BLANK_O/P  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
PAL = 132 CLOCK/2  
NTSC = 122 CLOCK/2  
Figure 78. SD Timing Mode 2—Even to Odd Field Transition Master/Slave  
HSYNC_O/P  
VSYNC_O/P  
PAL = 864 CLOCK/2  
NTSC = 858 CLOCK/2  
PAL = 12 CLOCK/2  
NTSC = 16 CLOCK/2  
BLANK_O/P  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 CLOCK/2  
NTSC = 122 CLOCK/2  
Figure 79. SD Timing Mode 2—Odd to Even Field Transition Master/Slave  
REV. B  
–65–  
ADV7330  
Mode 3—Master/Slave Option  
(Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1)  
In this mode, the ADV7330 accepts or generates horizontal  
sync and odd/even field signals. A transition of the field input  
when HSYNC_I/P is high indicates a new frame, i.e., vertical  
retrace. The BLANK_I/P signal is optional. When the BLANK_I/P  
input is disabled, the ADV7330 automatically blanks all  
normally blank lines as per CCIR-624. HSYNC is interfaced on  
HSYNC_I/P, BLANK on BLANK_I/P, VSYNC on VSYNC_I/P.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC_I/P  
BLANK_I/P  
FIELD  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC_I/P  
BLANK_I/P  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 80. SD Timing Mode 3 (NTSC)  
–66–  
REV. B  
ADV7330  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC_I/P  
BLANK_I/P  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC_I/P  
BLANK_I/P  
FIELD  
EVEN FIELD ODD FIELD  
Figure 81. SD Timing Mode 3 (PAL)  
APPENDIX 6—HD TIMING  
DISPLAY  
FIELD 1  
VERTICAL BLANKING INTERVAL  
1124 1125  
1
2
3
4
5
6
7
8
20  
21  
22  
560  
VSYNC_I/P  
HSYNC_I/P  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
VSYNC_I/P  
HSYNC_I/P  
Figure 82. 1080i Hsync and Vsync Input Timing  
REV. B  
–67–  
ADV7330  
APPENDIX 7—VIDEO OUTPUT LEVELS  
HD YPrPb Output Levels  
EIA-770.2, STANDARD FOR Y  
EIA-770.3, STANDARD FOR Y  
INPUT CODE  
940  
OUTPUT VOLTAGE  
INPUT CODE  
940  
OUTPUT VOLTAGE  
CTV V  
700mV  
CTV V  
700mV  
64  
64  
300mV  
300mV  
EIA-770.3, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
EIA-770.2, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
512  
64  
960  
600mV  
CTV V  
CTV V  
700mV  
512  
64  
700mV  
Figure 85. EIA 770.3 Standard Output Signals  
(1080i, 720p)  
Figure 83. EIA 770.2 Standard Output Signals  
(525p/625p)  
Y–OUTPUT LEVELS FOR  
FULL I/P SELECTION  
INPUT CODE  
1023  
OUTPUT VOLTAGE  
EIA-770.1, STANDARD FOR Y  
INPUT CODE  
940  
OUTPUT VOLTAGE  
782mV  
CTV V  
700mV  
CTV V  
714mV  
64  
300mV  
64  
286mV  
Pr/Pb–OUTPUT LEVELS FOR  
FULL I/P SELECTION  
OUTPUT VOLTAGE  
INPUT CODE  
1023  
EIA-770.1, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
CTV V  
700mV  
CTV V  
700mV  
512  
64  
64  
300mV  
Figure 84. EIA 770.1 Standard Output Signals  
(525p/625p)  
Figure 86. Output Levels for Full I/P Selection  
–68–  
REV. B  
ADV7330  
RGB Output Levels  
700mV  
550mV  
700mV  
550mV  
300mV  
300mV  
700mV  
700mV  
550mV  
550mV  
300mV  
300mV  
700mV  
700mV  
550mV  
550mV  
300mV  
300mV  
Figure 87. HD RGB Output Levels  
Figure 89. SD RGB Output Levels—RGB Sync Disabled  
700mV  
700mV  
700mV  
550mV  
700mV  
700mV  
700mV  
550mV  
300mV  
0mV  
300mV  
0mV  
550mV  
550mV  
300mV  
0mV  
300mV  
0mV  
550mV  
550mV  
300mV  
0mV  
300mV  
0mV  
Figure 88. HD RGB Output Levels—RGB Sync Enabled  
Figure 90. SD RGB Output Levels—RGB Sync Enabled  
REV. B  
–69–  
ADV7330  
YPrPb Output Levels  
332mV  
2150mV  
2000mV  
280mV  
220mV  
1260mV  
1000mV  
160mV  
900mV  
110mV  
60mV  
140mV  
Figure 91. U Levels—NTSC  
Figure 94. U Levels—PAL  
332mV  
280mV  
220mV  
160mV  
110mV  
60mV  
300mV  
Figure 92. U Levels—PAL  
Figure 95. Y Levels—NTSC  
2150mV  
2000mV  
1260mV  
1000mV  
900mV  
300mV  
140mV  
Figure 93. U Levels—NTSC  
Figure 96. Y Levels—PAL  
–70–  
REV. B  
ADV7330  
VOLTS  
IRE:FLT  
100  
0.5  
50  
0
0
F1  
L76  
–50  
10  
20  
0
30  
40  
50  
60  
APL = 44.5%  
525 LINE NTSC  
SLOW CLAMP TO 0.00V AT 6.77s  
PRECISION MODE OFF  
SYNCHRONOUS  
SYNC = A  
FRAMES SELECTED 1 2  
Figure 97. NTSC Color Bars 75%  
VOLTS  
0.4  
IRE:FLT  
50  
0.2  
0
0
–0.2  
–0.4  
–50  
F1  
L76  
0
10  
20  
30  
40  
50  
60  
s  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC-SOURCE!  
525 LINE NTSC NO FILTERING  
PRECISION MODE OFF  
SYNCHRONOUS  
FRAMES SELECTED 1 2  
SYNC = B  
SLOW CLAMP TO 0.00V AT 6.72s  
Figure 98. NTSC Chroma  
REV. B  
–71–  
ADV7330  
VOLTS  
0.6  
IRE:FLT  
0.4  
0.2  
0
50  
0
0
–0.2  
F2  
L238  
10  
20  
30  
40  
50  
60  
s  
NOISE REDUCTION: 15.05dB  
APL = 44.3%  
525 LINE NTSC NO FILTERING  
PRECISION MODE OFF  
SYNCHRONOUS  
SYNC = SOURCE  
FRAMES SELECTED 1 2  
SLOW CLAMP TO 0.00V AT 6.72s  
Figure 99. NTSC Luma  
VOLTS  
0.6  
0.4  
0.2  
0
–0.2  
L608  
0
10  
20  
30  
s  
PRECISION MODE OFF  
SYNCHRONOUS  
FRAMES SELECTED 1 2 3 4  
40  
50  
60  
NOISE REDUCTION: 0.00dB  
APL = 39.1%  
625 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00V AT 6.72s  
SOUND-IN-SYNC OFF  
Figure 100. PAL Color Bars 75%  
–72–  
REV. B  
ADV7330  
0.5  
0
–0.5  
10  
20  
30  
40  
NO BUNCH SIGNAL  
PRECISION MODE OFF  
SYNCHRONOUS  
50  
60  
s  
APL NEEDS SYNC = SOURCE  
625 LINE PAL, NO FILTERING  
SLOW CLAMP TO 0.00V AT 6.72s  
SOUND-IN-SYNC OFF  
FRAMES SELECTED  
1
Figure 101. PAL Chroma  
VOLTS  
0.5  
0
L575  
0
10  
20  
30  
40  
50  
60  
70  
s  
NO BUNCH SIGNAL  
APL NEEDS SYNC = SOURCE  
625 LINE PAL, NO FILTERING  
SLOW CLAMP TO 0.00V AT 6.72s  
PRECISION MODE OFF  
SYNCHRONOUS  
FRAMES SELECTED  
SOUND-IN-SYNC OFF  
1
Figure 102. PAL Luma  
REV. B  
–73–  
ADV7330  
APPENDIX 8—VIDEO STANDARDS  
0
DATUM  
H
SMPTE274M  
ANALOG WAVEFORM  
DIGITAL HORIZONTAL BLANKING  
272T  
*1  
4T  
4T  
1920T  
EAV CODE  
DIGITAL  
ACTIVE LINE  
SAV CODE  
ANCILLARY DATA  
(OPTIONAL) OR BLANKING CODE  
F
F
F
F
0
0
0
0
F
F
0
0
0
0
C
b
C
C
r
INPUT PIXELS  
Y
V
V
Y
r
H*  
H*  
4 CLOCK  
4 CLOCK  
0
SAMPLE NUMBER  
2112  
2116 2156  
2199  
44  
188  
192  
2111  
*FVH = FVH AND PARITY BITS  
SAV/EAV: LINE 1–562: F = 0  
SAV/EAV: LINE 563–1125: F = 1  
SAV/EAV: LINE 1–20; 561–583; 1124–1125: V = 1  
SAV/EAV: LINE 21–560; 584–1123: V = 0  
FOR A FIELD RATE OF 30Hz: 40 SAMPLES  
FOR A FIELD RATE OF 25Hz: 480 SAMPLES  
Figure 103. EAV/SAV Input Data Timing Diagram—SMPTE 274M  
SMPTE293M  
ANALOG WAVEFORM  
ANCILLARY DATA  
(OPTIONAL)  
DIGITAL  
SAV CODE  
F
EAV CODE  
F
ACTIVE LINE  
F
F
0
0
0
0
F
F
0
0
0
0
C
b
C
Y
r
C
r
INPUT PIXELS  
V
Y
V
Y
H*  
H*  
4 CLOCK  
4 CLOCK  
857  
SAMPLE NUMBER  
719  
723 736  
DATUM  
799  
853  
0
719  
0
H
DIGITAL HORIZONTAL BLANKING  
*FVH = FVH AND PARITY BITS  
SAV: LINE 43–525 = 200H  
SAV: LINE 1–42 = 2AC  
EAV: LINE 43–525 = 274H  
EAV: LINE 1–42 = 2D8  
Figure 104. EAV/SAV Input Data Timing Diagram—SMPTE 293M  
–74–  
REV. B  
ADV7330  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
522 523 524 525  
1
2
5
6
7
8
9
12  
13  
14  
15  
16  
42  
43  
44  
Figure 105. SMPTE 293M (525p)  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
622 623  
624 625  
1
2
4
5
6
7
8
9
10  
11  
12  
13  
43  
44  
45  
Figure 106. ITU-R BT.1358 (625p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
747  
748  
749  
750  
1
2
3
4
5
6
7
8
26  
27  
744  
745  
25  
Figure 107. SMPTE 296M (720p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 1  
1124 1125  
1
2
3
4
5
6
7
8
20  
21  
22  
560  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
Figure 108. SMPTE 274M (1080i)  
REV. B  
–75–  
ADV7330  
OUTLINE DIMENSIONS  
64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
0.75  
0.60  
0.45  
12.00 BSC  
1.60  
MAX  
SQ  
64  
49  
1
48  
SEATING  
PLANE  
PIN 1  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
10؇  
6؇  
2؇  
1.45  
1.40  
1.35  
0.20  
0.09  
VIEW A  
7؇  
3.5؇  
0؇  
16  
33  
0.15  
0.05  
17  
32  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
0.50  
BSC  
VIEW A  
ROTATED 90؇ CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BCD  
Revision History  
Location  
Page  
7/04—Data sheet changed from REV. A to REV. B.  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Changes to PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Changes to PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5/04—Data sheet changed from REV. 0 to REV. A.  
Changes to Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Change to Mode Register 0, SD Sync and HD Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Removed Footnote 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Change to HD Mode Register 5, Bit 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Removed Footnote 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Change to Register 43h, Bit 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Change to Figure 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Change to Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Changes to Figures 105 and 106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
–76–  
REV. B  

相关型号:

ADV7330KST

Multiformat 11-Bit Triple DAC Video Encoder
ADI

ADV7340

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7340BSTZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7340EBZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7341

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7341BSTZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7341EBZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7342

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI

ADV7342BSTZ

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI

ADV7342BSTZ2

IC SERIAL INPUT LOADING, 11-BIT DAC, PQFP64, ROHS COMPLIANT, MS-026BCD, LQFP-64, Digital to Analog Converter
ADI

ADV7342_15

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI

ADV7343

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI