ADV7342BSTZ [ADI]

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs; 多格式视频编码器六, 11位, 297 MHz的DAC的
ADV7342BSTZ
型号: ADV7342BSTZ
厂家: ADI    ADI
描述:

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
多格式视频编码器六, 11位, 297 MHz的DAC的

编码器
文件: 总88页 (文件大小:1069K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiformat Video Encoder  
Six, 11-Bit, 297 MHz DACs  
ADV7342/ADV7343  
EIA/CEA-861B compliance support  
FEATURES  
Programmable features  
Luma and chroma filter responses  
Vertical blanking interval (VBI)  
Subcarrier frequency (FSC) and phase  
Luma delay  
Copy generation management system (CGMS)  
Closed captioning and wide screen signaling (WSS)  
Integrated subcarrier locking to external video source  
Complete on-chip video timing generator  
On-chip test pattern generation  
On-board voltage reference (optional external input)  
Serial MPU interface with dual I2C® and SPI® compatibility  
3.3 V analog operation  
74.25 MHz 20-/30-bit high definition input support  
Compliant with SMPTE 274M (1080i), 296M (720p),  
and 240M (1035i)  
6, 11-bit, 297 MHz video DACs  
16× (216 MHz) DAC oversampling for SD  
8× (216 MHz) DAC oversampling for ED  
4× (297 MHz) DAC oversampling for HD  
37 mA maximum DAC output current  
NTSC M, PAL B/D/G/H/I/M/N, PAL 60 support  
NTSC and PAL square pixel operation (24.54 MHz/29.5 MHz)  
Multiformat video input support  
4:2:2 YCrCb (SD, ED, and HD)  
4:4:4 YCrCb (ED and HD)  
4:4:4 RGB (SD, ED, and HD)  
Multiformat video output support  
Composite (CVBS) and S-Video (Y/C)  
Component YPrPb (SD, ED, and HD)  
Component RGB (SD, ED, and HD)  
Macrovision® Rev 7.1.L1 (SD) and Rev 1.2 (ED) compliant  
Simultaneous SD and ED/HD operation  
1.8 V digital operation  
3.3 V I/O operation  
Temperature range: −40°C to +85°C  
APPLICATIONS  
DVD recorders and players  
High definition Blu-ray DVD players  
HD-DVD players  
FUNCTIONAL BLOCK DIAGRAM  
ALSB/  
SPI_SS  
SCL/ SDA/  
MOSI SCLK  
SFL/  
MISO  
V
DGND (2)  
V
(2)  
AGND  
AA  
DD  
ADV7342/ADV7343  
GND_IO  
VDD_IO  
VBI DATA SERVICE  
INSERTION  
SUBCARRIER FREQUENCY  
LOCK (SFL)  
MPU PORT  
11-BIT  
DAC 1  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
YUV  
16×  
PROGRAMMABLE  
LUMINANCE  
FILTER  
TO  
ADD  
FILTER  
11-BIT  
DAC 2  
10-BIT  
SD  
YCrCb/  
RGB  
SYNC  
RGB/YCrCb  
TO  
4:2:2 TO 4:4:4  
YUV  
HD DDR  
DEINTERLEAVE  
MATRIX  
PROGRAMMABLE  
CHROMINANCE  
FILTER  
11-BIT  
DAC 3  
16×  
FILTER  
VIDEO  
DATA  
ADD  
BURST  
SIN/COS DDS  
BLOCK  
R
11-BIT  
DAC 4  
RGB  
ASYNC  
BYPASS  
RGB  
G/B  
11-BIT  
DAC 5  
YCbCr  
YCbCr  
TO  
20-BIT  
ED/HD  
PROGRAMMABLE  
HDTV FILTERS  
RGB MATRIX  
4×  
FILTER  
ED/HD INPUT  
HDTV  
TEST  
PATTERN  
GENERATOR  
11-BIT  
DAC 6  
SHARPNESS AND  
ADAPTIVE FILTER  
CONTROL  
DEINTERLEAVE  
VIDEO  
DATA  
POWER  
MANAGEMENT  
CONTROL  
REFERENCE  
AND CABLE  
DETECT  
16x/4x OVERSAMPLING  
DAC PLL  
VIDEO TIMING GENERATOR  
R
(2)  
SET  
P_HSYNC P_VSYNC P_BLANK S_HSYNC S_VSYNC CLKIN (2) PV  
PGND EXT_LF (2)  
V
COMP (2)  
DD  
REF  
Figure 1.  
Protected by U.S. Patent Numbers 5,343,196 and 5,442,355 and other intellectual property rights.  
Protected by U.S. Patent Numbers 4,631,603, 4,577,216, 4,819,098 and other intellectual property rights.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADV7342/ADV7343  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SD Subcarrier Frequency Lock, Subcarrier Phase Reset, and  
Timing Reset............................................................................... 49  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Detailed Features .............................................................................. 4  
General Description......................................................................... 4  
Specifications..................................................................................... 5  
Power Supply and Voltage Specifications.................................. 5  
Voltage Reference Specifications................................................ 5  
Input Clock Specifications .......................................................... 5  
Analog Output Specifications..................................................... 6  
Digital Input/Output Specifications........................................... 6  
Digital Timing Specifications ..................................................... 7  
MPU Port Timing Specifications ............................................... 8  
Power Specifications .................................................................... 8  
Video Performance Specifications ............................................. 9  
Timing Diagrams............................................................................ 10  
Absolute Maximum Ratings.......................................................... 17  
Thermal Resistance .................................................................... 17  
ESD Caution................................................................................ 17  
Pin Configuration and Function Descriptions........................... 18  
Typical Performance Characteristics ........................................... 20  
MPU Port Description................................................................... 25  
I2C Operation.............................................................................. 25  
SPI Operation.............................................................................. 26  
Register Map Access....................................................................... 27  
Register Programming............................................................... 27  
Subaddress Register (SR7 to SR0) ............................................ 27  
Input Configuration ....................................................................... 44  
Standard Definition Only.......................................................... 44  
Enhanced Definition/High Definition Only .......................... 45  
SD VCR FF/RW Sync ................................................................ 50  
Vertical Blanking Interval ......................................................... 50  
SD Subcarrier Frequency Registers.......................................... 50  
SD Noninterlaced Mode............................................................ 51  
SD Square Pixel Mode ............................................................... 51  
Filters............................................................................................ 52  
ED/HD Test Pattern Color Controls ....................................... 53  
Color Space Conversion Matrix ............................................... 53  
SD Luma and Color Control..................................................... 54  
SD Hue Adjust Control.............................................................. 55  
SD Brightness Detect ................................................................. 55  
SD Brightness Control............................................................... 55  
SD Input Standard Auto Detection.......................................... 55  
Double Buffering........................................................................ 56  
Programmable DAC Gain Control.......................................... 56  
Gamma Correction.................................................................... 56  
ED/HD Sharpness Filter and Adaptive Filter Controls......... 58  
ED/HD Sharpness Filter and Adaptive Filter Application  
Examples...................................................................................... 59  
SD Digital Noise Reduction...................................................... 60  
SD Active Video Edge Control................................................. 61  
External Horizontal and Vertical  
Synchronization Control........................................................... 63  
Low Power Mode........................................................................ 64  
Cable Detection .......................................................................... 64  
DAC Auto Power-Down............................................................ 64  
Pixel and Control Port Readback............................................. 64  
Reset Mechanism........................................................................ 64  
Printed Circuit Board Layout and Design .................................. 65  
DAC Configurations.................................................................. 65  
Voltage Reference ....................................................................... 65  
Video Output Buffer and Optional Output Filter.................. 65  
Printed Circuit Board (PCB) Layout ....................................... 66  
Typical Application Circuit....................................................... 68  
Appendix 1—Copy Generation Management System .............. 69  
SD CGMS .................................................................................... 69  
ED CGMS.................................................................................... 69  
HD CGMS................................................................................... 69  
CGMS CRC Functionality ........................................................ 69  
Simultaneous Standard Definition and Enhanced  
Definition/High Definition....................................................... 45  
Enhanced Definition Only (at 54 MHz) ................................. 46  
Output Configuration.................................................................... 47  
Features ............................................................................................ 48  
Output Oversampling................................................................ 48  
ED/HD Nonstandard Timing Mode........................................ 48  
ED/HD Timing Reset ................................................................ 49  
Rev. 0 | Page 2 of 88  
ADV7342/ADV7343  
Appendix 2—SD Wide Screen Signaling .....................................72  
Appendix 3—SD Closed Captioning............................................73  
Appendix 4—Internal Test Pattern Generation ..........................74  
SD Test Patterns...........................................................................74  
ED/HD Test Patterns ..................................................................74  
Appendix 5—SD Timing................................................................75  
Appendix 6—HD Timing ..............................................................80  
Appendix 7—Video Output Levels...............................................81  
SD YPrPb Output Levels—SMPTE/EBU N10........................81  
ED/HD YPrPb Output Levels ...................................................82  
SD/ED/HD RGB Output Levels................................................83  
SD Output Plots ..........................................................................84  
Appendix 8—Video Standards......................................................85  
Outline Dimensions........................................................................87  
Ordering Guide ...........................................................................87  
REVISION HISTORY  
10/06—Revision 0: Initial Version  
Rev. 0 | Page 3 of 88  
 
ADV7342/ADV7343  
either standard definition (SD), enhanced definition (ED), or  
high definition (HD) video formats.  
DETAILED FEATURES  
High definition (HD) programmable features  
(720p/1080i/1035i)  
4× oversampling (297 MHz)  
Internal test pattern generator  
Fully programmable YCrCb to RGB matrix  
Gamma correction  
The ADV7342/ADV7343 each have a 24-bit pixel input port  
that can be configured in a variety of ways. SD video formats  
are supported over a SDR interface and ED/HD video formats  
are supported over SDR and DDR interfaces. Pixel data can be  
supplied in either the YCrCb or RGB color spaces.  
Programmable adaptive filter control  
Programmable sharpness filter control  
CGMS (720p/1080i) and CGMS Type B (720p/1080i)  
Undershoot limiter  
Dual data rate (DDR) input support  
EIA/CEA-861B compliance support  
Enhanced definition(ED) programmable features  
(525p/625p)  
8× oversampling (216 MHz output)  
Internal test pattern generator  
Color and black bar, hatch, flat field/frame  
Individual Y and PrPb output delay  
Gamma correction  
Programmable adaptive filter control  
Fully programmable YCrCb to RGB matrix  
Undershoot limiter  
The parts also support embedded EAV/SAV timing codes,  
external video synchronization signals, and I2C and SPI  
communication protocols.  
In addition, simultaneous SD and ED/HD input and output are  
supported. 216 MHz (SD and ED) and 297 MHz (HD)  
oversampling ensures that external output filtering is not  
required, while full-drive DACs ensure that external output  
buffering is not required.  
Cable detection and DAC auto power-down features keep  
power consumption to a minimum.  
Table 1 lists the video standards directly supported by the  
ADV7342/ADV7343.  
Table 1. Standards Directly Supported by the  
ADV7342/ADV73431  
Macrovision Rev 1.2 (525p/625p)  
CGMS (525p/625p) and CGMS Type B (525p)  
Dual data rate (DDR) input support  
EIA/CEA-861B compliance support  
Standard definition (SD) programmable features  
16× oversampling (216 MHz)  
Frame  
Clock Input  
(MHz)  
Resolution  
720 × 240  
720 × 288  
720 × 480  
I/P2 Rate (Hz)  
Standard  
P
P
I
59.94  
50  
29.97  
27  
27  
27  
ITU-R  
BT.601/656  
Internal test pattern generator  
Color and black bar  
Controlled edge rates for start and end of active video  
Individual Y and PrPb output delay  
Undershoot limiter  
720 × 576  
720 × 480  
720 × 576  
I
I
I
25  
27  
ITU-R  
BT.601/656  
NTSC Square  
Pixel  
PAL Square  
Pixel  
29.97  
25  
24.54  
29.5  
Gamma correction  
Digital noise reduction (DNR)  
720 × 483  
720 × 483  
720 × 483  
720 × 576  
720 × 483  
720 × 576  
1920 × 1035  
1920 × 1035  
1280 × 720  
P
P
P
P
P
P
I
59.94  
59.94  
59.94  
50  
59.94  
50  
30  
29.97  
60, 50, 30,  
25, 24  
23.97,  
59.94, 29.97  
30, 25  
29.97  
30, 25, 24  
23.98, 29.97 74.1758  
24 74.25  
27  
27  
27  
27  
27  
27  
74.25  
74.1758  
74.25  
SMPTE 293M  
BTA T-1004  
Multiple chroma and luma filters  
Luma-SSAF™ filter with programmable gain/attenuation  
PrPb SSAF™  
Separate pedestal control on component and  
composite/S-Video output  
VCR FF/RW sync mode  
Macrovision Rev 7.1.L1  
Copy generation management system (CGMS)  
Wide screen signaling  
Closed captioning  
ITU-R BT.1358  
ITU-R BT.1358  
ITU-R BT.1362  
ITU-R BT.1362  
SMPTE 240M  
SMPTE 240M  
SMPTE 296M  
I
P
1280 × 720  
P
74.1758  
SMPTE 296M  
EIA/CEA-861B compliance support  
1920 × 1080  
1920 × 1080  
1920 × 1080  
1920 × 1080  
1920 × 1080  
I
I
P
P
P
74.25  
74.1758  
74.25  
SMPTE 274M  
SMPTE 274M  
SMPTE 274M  
SMPTE 274M  
ITU-R BT.709-5  
GENERAL DESCRIPTION  
The ADV7342/ADV7343 are high speed, digital-to-analog  
video encoders in a 64-lead LQFP package. Six high speed, 3.3  
V, 11-bit video DACs provide support for composite (CVBS), S-  
Video (Y/C), and component (YPrPb/RGB) analog outputs in  
1 Other standards are supported in the ED/HD nonstandard timing mode.  
2 I = interlaced, P = progressive.  
Rev. 0 | Page 4 of 88  
 
ADV7342/ADV7343  
SPECIFICATIONS  
POWER SUPPLY AND VOLTAGE SPECIFICATIONS  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY VOLTAGES  
VDD  
VDD_IO  
PVDD  
VAA  
1.71  
2.97  
1.71  
2.6  
1.8  
3.3  
1.8  
3.3  
1.89  
3.63  
1.89  
3.465  
V
V
V
V
POWER SUPPLY REJECTION RATIO  
0.002  
%/%  
VOLTAGE REFERENCE SPECIFICATIONS  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
1.31  
1.31  
Unit  
V
V
Internal Reference Range, VREF  
External Reference Range, VREF  
External VREF Current1  
1.186  
1.15  
1.248  
1.235  
10  
μA  
1 External current required to overdrive internal VREF  
.
INPUT CLOCK SPECIFICATIONS  
VDD = 1.71 V to 1.89 V. PVDD = 1.71 V to 1.89 V. VAA = 2.6 V to 3.465 V. VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 4.  
Parameter  
Conditions1  
Min  
Typ  
27  
54  
74.25  
27  
74.25  
Max  
Unit  
fCLKIN_A  
SD/ED  
MHz  
MHz  
MHz  
MHz  
MHz  
fCLKIN_A  
ED (at 54 MHz)  
fCLKIN_A  
fCLKIN_B  
fCLKIN_B  
HD  
ED  
HD  
CLKIN_A High Time, t9  
CLKIN_A Low Time, t10  
CLKIN_B High Time, t9  
CLKIN_B Low Time, t10  
CLKIN_A Peak-to-Peak Jitter Tolerance  
CLKIN_B Peak-to-Peak Jitter Tolerance  
40  
40  
40  
40  
% of one clock cycle  
% of one clock cycle  
% of one clock cycle  
% of one clock cycle  
ns  
2
2
ns  
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition.  
Rev. 0 | Page 5 of 88  
 
ADV7342/ADV7343  
ANALOG OUTPUT SPECIFICATIONS  
VDD = 1.71 V to 1.89 V. PVDD = 1.71 V to 1.89 V. VAA = 2.6 V to 3.465 V. VDD_IO = 2.97 V to 3.63 V. VREF = 1.235 V (driven externally).  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 5.  
Parameter  
Conditions  
Min  
33  
4.1  
Typ  
34.6  
4.3  
Max  
37  
4.5  
Unit  
mA  
mA  
%
Full-Drive Output Current (Full-Scale)1  
Low Drive Output Current (Full-Scale)2  
DAC-to-DAC Matching  
RSET = 510 Ω, RL = 37.5 Ω  
RSET = 4.12 kΩ, RL = 300 Ω  
DAC 1 to DAC 6  
1.0  
Output Compliance, VOC  
0
1.4  
V
Output Capacitance, COUT  
DAC 1, DAC 2, DAC 3  
DAC 4, DAC 5, DAC 6  
DAC 1, DAC 2, DAC 3  
DAC 4, DAC 5, DAC 6  
DAC 1, DAC 2, DAC 3  
DAC 4, DAC 5, DAC 6  
10  
6
8
6
2
pF  
pF  
ns  
ns  
ns  
Analog Output Delay3  
DAC Analog Output Skew  
1
ns  
1 Applicable to full-drive capable DACs only, that is, DAC 1, DAC 2, DAC 3.  
2 Applicable to all DACs.  
3 Output delay measured from the 50% point of the rising edge of the input clock to the 50% point of the DAC output full-scale transition.  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
VDD = 1.71 V to 1.89 V. PVDD = 1.71 V to 1.89 V. VAA = 2.6 V to 3.465 V. VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 6.  
Parameter  
Conditions  
Min  
Typ  
4
Max  
Unit  
V
V
μA  
pF  
V
V
μA  
pF  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Leakage Current, IIN  
Input Capacitance, CIN  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
2.0  
0.8  
10  
VIN = VDD_IO  
ISOURCE = 400 μA  
ISINK = 3.2 mA  
VIN = 0.4 V, 2.4 V  
2.4  
0.4  
1.0  
4
Rev. 0 | Page 6 of 88  
 
ADV7342/ADV7343  
DIGITAL TIMING SPECIFICATIONS  
VDD = 1.71 V to 1.89 V. PVDD = 1.71 V to 1.89 V. VAA = 2.6 V to 3.465 V. VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 7.  
Parameter  
VIDEO DATA AND VIDEO CONTROL PORT2, 3  
Data Setup Time, t11  
Conditions1  
Min  
Typ  
Max  
Unit  
4
SD  
2.1  
2.3  
2.3  
1.7  
1.0  
1.1  
1.1  
1.0  
2.1  
2.3  
1.7  
1.0  
1.1  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ED/HD-SDR  
ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR  
ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR or ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR or ED/HD-DDR  
ED (at 54 MHz)  
SD  
4
Data Hold Time, t12  
4
Control Setup Time, t11  
4
Control Hold Time, t12  
4
Digital Output Access Time, t13  
12  
10  
ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz)  
SD  
4
Digital Output Hold Time, t14  
4.0  
ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz) 3.5  
PIPELINE DELAY5  
SD1  
CVBS/YC Outputs (2×)  
CVBS/YC Outputs (16×)  
Component Outputs (2×)  
Component Outputs (16×)  
ED1  
SD oversampling disabled  
SD oversampling enabled  
SD oversampling disabled  
SD oversampling enabled  
68  
67  
78  
84  
clock cycles  
clock cycles  
clock cycles  
clock cycles  
Component Outputs (1×)  
Component Outputs (8×)  
HD1  
ED oversampling disabled  
ED oversampling enabled  
41  
46  
clock cycles  
clock cycles  
Component Outputs (1×)  
Component Outputs (4×)  
HD oversampling disabled  
HD oversampling enabled  
40  
44  
clock cycles  
clock cycles  
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.  
2 Video data: C[7:0], Y[7:0], and S[7:0].  
3 Video control:  
,
,
,
, and  
.
P_HSYNC P_VSYNC P_BLANK S_HSYNC  
S_VSYNC  
4 Guaranteed by characterization.  
5 Guaranteed by design.  
Rev. 0 | Page 7 of 88  
 
ADV7342/ADV7343  
MPU PORT TIMING SPECIFICATIONS  
VDD = 1.71 V to 1.89 V. PVDD = 1.71 V to 1.89 V. VAA = 2.6 V to 3.465 V. VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 8.  
Parameter  
MPU PORT, I2C MODE1  
Conditions  
Min  
Typ  
Max  
Unit  
See Figure 19  
SCL Frequency  
SCL High Pulse Width, t1  
SCL Low Pulse Width, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDA, SCL Rise Time, t6  
SDA, SCL Fall Time, t7  
0
400  
kHz  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
0.6  
1.3  
0.6  
0.6  
100  
300  
300  
Setup Time (Stop Condition), t8  
MPU PORT, SPI MODE1  
0.6  
See Figure 20  
SCLK Frequency  
0
10  
35  
40  
MHz  
ns  
SPI_SS to SCLK Setup Time, t1  
SCLK High Pulse Width, t2  
SCLK Low Pulse Width, t3  
Data Access Time after SCLK Falling Edge, t4  
Data Setup Time prior to SCLK Rising Edge, t5  
Data Hold Time after SCLK Rising Edge, t6  
SPI_SS to SCLK Hold Time, t7  
SPI_SS to MISO High Impedance, t8  
20  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
20  
0
0
ns  
1 Guaranteed by characterization.  
POWER SPECIFICATIONS  
VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = +25°C.  
Table 9.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NORMAL POWER MODE1, 2  
3
IDD  
SD only (16× oversampling)  
90  
65  
91  
95  
122  
1
124  
140  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ED only (8× oversampling)4  
HD only (4× oversampling)4  
SD (16× oversampling) and ED (8× oversampling)  
SD (16× oversampling) and HD (4× oversampling)  
IDD_IO  
IAA  
3 DACs enabled (ED/HD only)  
6 DACs enabled (SD only and simultaneous modes )  
SD only, ED only or HD only modes  
Simultaneous modes  
IPLL  
10  
SLEEP MODE  
IDD  
IAA  
IDD_IO  
IPLL  
5
μA  
μA  
μA  
μA  
0.3  
0.2  
0.1  
1 RSET1 = 510 Ω (DAC 1, DAC 2, and DAC 3 operating in full-drive mode). RSET2 = 4.12 kΩ (DAC 4, DAC 5, and DAC 6 operating in low drive mode).  
2 75% color bar test pattern applied to pixel data pins.  
3 IDD is the continuous current required to drive the digital core.  
4 Applicable to both single data rate (SDR) and dual data rate (DDR) input modes.  
Rev. 0 | Page 8 of 88  
 
ADV7342/ADV7343  
VIDEO PERFORMANCE SPECIFICATIONS  
VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = 25°C, VREF driven externally.  
Table 10.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE  
Resolution  
11  
Bits  
Integral Nonlinearity  
RSET1 = 510 kΩ, RL1 = 37.5 Ω  
RSET2 = 4.12 kΩ, RL2 = 300 Ω  
RSET1 = 510 kΩ, RL1 = 37.5 Ω  
RSET2 = 4.12 kΩ, RL2 = 300 Ω  
RSET1 = 510 kΩ, RL1 = 37.5 Ω  
RSET2 = 4.12 kΩ, RL2 = 300 Ω  
0.4  
0.5  
0.15  
0.5  
0.25  
0.2  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
Differential Nonlinearity1 +ve  
Differential Nonlinearity1 −ve  
STANDARD DEFINTION (SD) MODE  
Luminance Nonlinearity  
Differential Gain  
Differential Phase  
Signal-to-Noise Ratio (SNR)  
0.5  
0.5  
0.6  
58  
%
%
Degrees  
dB  
NTSC  
NTSC  
Luma ramp  
Flat field full bandwidth  
75  
dB  
ENHANCED DEFINITION (ED) MODE  
Luma Bandwidth  
Chroma Bandwidth  
12.5  
5.8  
MHz  
MHz  
HIGH DEFINITION (HD) MODE  
Luma Bandwidth  
Chroma Bandwidth  
30  
13.75  
MHz  
MHz  
1 Differential nonlinearity (DNL) measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal  
step value. For −ve DNL, the actual step value lies below the ideal step value.  
Rev. 0 | Page 9 of 88  
 
ADV7342/ADV7343  
TIMING DIAGRAMS  
The following abbreviations are used in Figure 2 to Figure 13:  
t
t
13 = Control output access time  
14 = Control output hold time  
t9 = Clock high time  
t10 = Clock low time  
t11 = Data setup time  
t12 = Data hold time  
In addition, refer to Table 31 for the ADV7342/ADV7343 input  
configuration.  
CLKIN_A  
t12  
t9 t10  
S_HSYNC,  
S_VSYNC  
CONTROL  
INPUTS  
IN SLAVE MODE  
S7 TO S0/  
Y7 TO Y0*  
Y0  
t11  
Y1  
Y2  
Cb0  
Cr0  
Cb2  
t13  
Cr2  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
*SELECTED BY SUBADDRESS 0x01, BIT 7.  
Figure 2. SD Only, 8-Bit, 4:2:2 YCrCb Pixel Input Mode (Input Mode 000)  
CLKIN_A  
t9  
t10  
t12  
S_HSYNC,  
S_VSYNC  
CONTROL  
INPUTS  
IN SLAVE MODE  
S7 TO S0/  
Y7 TO Y0*  
Y2  
Y0  
Y1  
Y3  
Y7 TO Y0/  
C7 TO C0*  
Cb2  
Cb0  
Cr0  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
*SELECTED BY SUBADDRESS 0x01, BIT 7.  
Figure 3. SD Only, 16-Bit, 4:2:2 YCrCb Pixel Input Mode (Input Mode 000)  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC  
CONTROL  
INPUTS  
Y7 TO Y0  
C7 TO C0  
G0  
B0  
G1  
B1  
G2  
B2  
t11  
S7 TO S0  
R0  
R1  
R2  
CONTROL  
OUTPUTS  
t14  
t13  
Figure 4. SD Only, 24-Bit, 4:4:4 RGB Pixel Input Mode (Input Mode 000)  
Rev. 0 | Page 10 of 88  
 
ADV7342/ADV7343  
CLKIN_A  
t12  
t9 t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y7 TO Y0  
C7 TO C0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cb0  
Cr0  
Cb2  
Cr2  
Cb4  
Cr4  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
Figure 5. ED/HD-SDR Only, 16-Bit, 4:2:2 YCrCb Pixel Input Mode (Input Mode 001)  
CLKIN_A  
t12  
t9 t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y7 TO Y0  
C7 TO C0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cb1  
t11  
Cb2  
Cr2  
Cb3  
Cb4  
Cb5  
Cb0  
Cr0  
S7 TO S0  
Cr1  
Cr3  
Cr4  
Cr5  
CONTROL  
OUTPUTS  
t14  
t13  
Figure 6. ED/HD-SDR Only, 24-Bit, 4:4:4 YCrCb Pixel Input Mode (Input Mode 001)  
CLKIN_A  
t12  
t9 t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y7 TO Y0  
C7 TO C0  
G0  
G1  
G2  
G3  
B3  
G4  
B4  
G5  
B5  
B0  
R0  
B1  
t11  
B2  
R2  
S7 TO S0  
R1  
R3  
R4  
R5  
CONTROL  
OUTPUTS  
t14  
t13  
Figure 7. ED/HD-SDR Only, 24-Bit, 4:4:4 RGB Pixel Input Mode (Input Mode 001)  
Rev. 0 | Page 11 of 88  
ADV7342/ADV7343  
CLKIN_A*  
t9  
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Cb2  
Y2  
Cr2  
Cb0  
Y0  
Cr0  
Y1  
Y7 TO Y0  
t12  
t12  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
*LUMA/CHROMA CLOCK RELATIONSHIP CAN BE INVERTED  
USING SUBADDRESS 0x01, BITS 1 AND 2.  
HSYNC VSYNC  
) Pixel Input Mode (Input Mode 010)  
Figure 8. ED/HD-DDR Only, 8-Bit, 4:2:2 YCrCb (  
/
CLKIN_A*  
t9  
t10  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
Y7 TO Y0  
t12  
t12  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
*LUMA/CHROMA CLOCK RELATIONSHIP CAN BE INVERTED  
USING SUBADDRESS 0x01, BITS 1 AND 2.  
Figure 9. ED/HD-DDR Only, 8-Bit, 4:2:2 YCrCb (EAV/SAV) Pixel Input Mode (Input Mode 010)  
CLKIN_B  
t12  
t9 t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
ED/HD INPUT  
Y7 TO Y0  
C7 TO C0  
Y0  
Y1  
Y2  
Y3  
Y5  
Y4  
Y6  
Cb0  
Cr0  
t11  
Cb2  
Cr2  
Cb4  
Cr4  
Cb6  
CLKIN_A  
t9 t10  
t12  
S_HSYNC,  
S_VSYNC  
CONTROL  
INPUTS  
SD INPUT  
S7 TO S0  
Cb0  
Y0  
Cr0  
t11  
Y1  
Cb2  
Y2  
Cr2  
Figure 10. SD and ED/HD-SDR, 16-Bit, 4:2:2 ED/HD and 8-Bit, SD Pixel Input Mode (Input Mode 011)  
Rev. 0 | Page 12 of 88  
ADV7342/ADV7343  
CLKIN_B  
t9  
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
EH/HD INPUT  
Y0  
Cr0  
Y1  
t12  
Cb2  
Y2  
Cr2  
Y7 TO Y0  
Cb0  
t12  
t11  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC  
CONTROL  
INPUTS  
SD INPUT  
S7 TO S0  
Cb0  
Y0  
Cr0  
t11  
Y1  
Cb2  
Y2  
Cr2  
Figure 11. SD and ED/HD-DDR, 8-Bit, 4:2:2 ED/HD and 8-Bit, SD Pixel Input Mode (Input Mode 100)  
CLKIN_A  
t9 t10  
P_HSYNC,  
CONTROL  
INPUTS  
P_VSYNC,  
P_BLANK  
Cb0  
t12  
Y0  
Cr0  
Y1  
Cb2  
Cr2  
Y7 TO Y0  
Y2  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
HSYNC VSYNC  
) Pixel Input Mode (Input Mode 111)  
Figure 12. ED Only (at 54 MHz), 8-Bit, 4:2:2 YCrCb (  
/
CLKIN_A  
t9  
t10  
Y7 TO Y0  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
Figure 13. ED Only (at 54 MHz), 8-Bit, 4:2:2 YCrCb (EAV/SAV) Pixel Input Mode (Input Mode 111)  
Rev. 0 | Page 13 of 88  
ADV7342/ADV7343  
Y OUTPUT  
c
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Y7 TO Y0  
Y2  
Y3  
Y0  
Y1  
Cb0 Cr0 Cb2 Cr2  
C7 TO C0  
b
a AND b AS PER RELEVANT STANDARD.  
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME  
EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
/
Figure 14. ED-SDR, 16-Bit, 4:2:2 YCrCb (  
) Input Timing Diagram  
Y OUTPUT  
c
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Y7 TO Y0  
Cr0 Y1  
Cb0  
Y0  
b
a = 32 CLOCK CYCLES FOR 525p  
a = 24 CLOCK CYCLES FOR 625p  
AS RECOMMENDED BY STANDARD  
b(MIN) = 244 CLOCK CYCLES FOR 525p  
b(MIN) = 264 CLOCK CYCLES FOR 625p  
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME  
EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
) Input Timing Diagram  
Figure 15. ED-DDR, 8-Bit, 4:2:2 YCrCb (  
/
Rev. 0 | Page 14 of 88  
ADV7342/ADV7343  
Y OUTPUT  
c
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Y7 TO Y0  
Y2  
Y3  
Y0  
Y1  
C7 TO C0  
Cb0 Cr0 Cb2 Cr2  
b
a AND b AS PER RELEVANT STANDARD.  
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT  
AFTER A TIME EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
/
Figure 16. HD-SDR, 16-Bit, 4:2:2 YCrCb (  
) Input Timing Diagram  
Y OUTPUT  
c
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Y7 TO Y0  
Cr0 Y1  
Cb0  
Y0  
b
a AND b AS PER RELEVANT STANDARD.  
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT  
AFTER A TIME EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
) Input Timing Diagram  
Figure 17. HD-DDR, 8-Bit, 4:2:2 YCrCb (  
/
Rev. 0 | Page 15 of 88  
ADV7342/ADV7343  
S_HSYNC  
S_VSYNC  
Y7 TO Y0*  
Cr  
Y
Cb  
Y
PAL = 264 CLOCK CYCLES  
NTSC = 244 CLOCK CYCLES  
*SELECTED BY SUBADDRESS 0x01, BIT 7.  
Figure 18. SD Input Timing Diagram (Timing Mode 1)  
t5  
t3  
t3  
SDA  
t6  
t1  
SCL  
t2  
t7  
t4  
t8  
Figure 19. MPU Port Timing Diagram (I2C Mode)  
SPI_SS  
SCLK  
t2  
t7  
t1  
t3  
t5  
D4  
t6  
D3  
MOSI  
MISO  
D6  
D5  
X
D2  
X
D1  
X
D0  
X
X
X
X
X
X
X
X
X
X
X
D7  
X
t4  
D7  
t8  
X
X
X
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 20. MPU Port Timing Diagram (SPI Mode)  
Rev. 0 | Page 16 of 88  
ADV7342/ADV7343  
ABSOLUTE MAXIMUM RATINGS  
The ADV7342/ADV7343 are high performance integrated  
circuits with an ESD rating of <1 kV, and it is ESD sensitive.  
Proper precautions should be taken for handling and assembly.  
Table 11.  
Parameter1  
Rating  
VAA to AGND  
VDD to DGND  
PVDD to PGND  
VDD_IO to GND_IO  
VAA to VDD  
VDD to PVDD  
VDD_IO to VDD  
AGND to DGND  
AGND to PGND  
AGND to GND_IO  
DGND to PGND  
DGND to GND_IO  
PGND to GND_IO  
Digital Input Voltage to GND_IO  
Analog Outputs to AGND  
Storage Temperature Range (TS)  
Junction Temperature (TJ)  
Lead Temperature (Soldering, 10 sec)  
−0.3 V to +3.9 V  
−0.3 V to +2.3 V  
−0.3 V to +2.3 V  
−0.3 V to +3.9 V  
−0.3 V to +2.2 V  
−0.3 V to +0.3 V  
−0.3 V to +2.2 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to VDD_IO + 0.3 V  
−0.3 V to VAA  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 12. Thermal Resistance1  
Package Type  
θJA  
θJC  
Unit  
64-Lead LQFP  
47  
11  
°C/W  
1 Values are based on a JEDEC 4 layer test board.  
The ADV7342/ADV7343 are Pb-free products. The lead finish is  
100% pure Sn electroplate. The devices are RoHS compliant,  
suitable for Pb-free applications up to 255°C ( 5°C) IR reflow  
(JEDEC STD-20).  
They are backward-compatible with conventional SnPb  
soldering processes. The electroplated Sn coating can be  
soldered with Sn/Pb solder paste at conventional reflow  
temperatures of 220°C to 235°C.  
−65°C to +150°C  
150°C  
260°C  
1 Analog output short circuit to any power supply or common can be of an  
indefinite duration.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 17 of 88  
 
ADV7342/ADV7343  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
SFL/MISO  
DD_IO  
PIN 1  
2
3
TEST0  
TEST1  
Y0  
R
SET1  
V
REF  
4
COMP1  
DAC 1  
DAC 2  
DAC 3  
5
Y1  
6
Y2  
ADV7342/ADV7343  
7
Y3  
TOP VIEW  
(Not to Scale)  
8
Y4  
V
AA  
9
Y5  
AGND  
DAC 4  
DAC 5  
DAC 6  
10  
11  
12  
13  
14  
15  
16  
V
DD  
DGND  
Y6  
Y7  
R
SET2  
COMP2  
PV  
TEST2  
TEST3  
C0  
DD  
EXT_LF1  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 21. Pin Configuration  
Table 13. Pin Function Descriptions  
Input/  
Output  
Pin No.  
Mnemonic  
Description  
13, 12,  
9 to 4  
29 to 25,  
18 to 16  
62 to 58,  
55 to 53  
Y7 to Y0  
I
I
I
I
8-Bit Pixel Port. Y0 is the LSB. Refer to Table 31 for input modes.  
8-Bit Pixel Port. C0 is the LSB. Refer to Table 31 for input modes.  
8-Bit Pixel Port. S0 is the LSB. Refer to Table 31 for input modes.  
Unused. These pins should be connected to DGND.  
C7 to C0  
S7 to S0  
52, 51, 15, TEST5 to  
14, 3, 2  
30  
63  
TEST0  
CLKIN_A  
CLKIN_B  
I
I
Pixel Clock Input for HD Only (74.25 MHz), ED1 Only (27 MHz or 54 MHz) or SD Only (27 MHz).  
Pixel Clock Input for Dual Modes Only. Requires a 27 MHz reference clock for ED operation or a  
74.25 MHz reference clock for HD operation.  
50  
49  
S_HSYNC  
S_VSYNC  
I/O  
I/O  
SD Horizontal Synchronization Signal. This pin can also be configured to output an SD, ED, or HD  
horizontal synchronization signal. See the External Horizontal and Vertical Synchronization  
Control section.  
SD Vertical Synchronization Signal. This pin can also be configured to output an SD, ED, or HD  
vertical synchronization signal. See the External Horizontal and Vertical Synchronization Control  
section.  
22  
23  
P_HSYNC  
P_VSYNC  
I
I
ED/HD Horizontal Synchronization Signal. See the External Horizontal and Vertical  
Synchronization Control section.  
ED/HD Vertical Synchronization Signal. See the External Horizontal and Vertical Synchronization  
Control section.  
24  
48  
P_BLANK  
SFL/MISO  
I
ED/HD Blanking Signal. See the External Horizontal and Vertical Synchronization Control section.  
I/O  
Multifunctional Pin: Subcarrier Frequency Lock (SFL) Input/SPI Data Output. The SFL input is  
used to drive the color subcarrier DDS system, timing reset, or subcarrier reset.  
47  
RSET1  
I
This pin is used to control the amplitudes of the DAC 1, DAC 2, and DAC 3 outputs. For full-drive  
operation (for example, into a 37.5 Ω load), a 510 Ω resistor must be connected from RSET1 to  
AGND. For low drive operation (for example, into a 300 Ω load), a 4.12 kΩ resistor must be  
connected from RSET1 to AGND.  
Rev. 0 | Page 18 of 88  
 
ADV7342/ADV7343  
Input/  
Output  
Pin No.  
Mnemonic  
Description  
36  
RSET2  
I
This pin is used to control the amplitudes of the DAC 4, DAC 5, and DAC 6 outputs. A 4.12 kΩ  
resistor must be connected from RSET2 to AGND.  
45, 35  
COMP1,  
COMP2  
DAC 1, DAC 2,  
DAC 3  
DAC 4, DAC 5,  
DAC 6  
SCL/MOSI  
SDA/SCLK  
ALSB/SPI_SS  
VREF  
O
O
O
Compensation Pins. Connect a 2.2 nF capacitor from both COMP pins to VAA.  
44, 43, 42  
39, 38, 37  
DAC Outputs. Full and low drive capable DACs.  
DAC Outputs. Low drive only capable DACs.  
21  
20  
19  
I
Multifunctional Pin: I2C Clock Input/SPI Data Input.  
I/O  
I
Multifunctional Pin: I2C Data Input/Output. Also, SPI clock input.  
Multifunctional Pin: This signal sets up the LSB2 of the MPU I2C address. Also, SPI slave select.  
Optional External Voltage Reference Input for DACs or Voltage Reference Output.  
Analog Power Supply (3.3 V).  
46  
41  
10, 56  
VAA  
VDD  
P
P
Digital Power Supply (1.8 V). For dual-supply configurations, VDD can be connected to other 1.8 V  
supplies through a ferrite bead or suitable filtering.  
1
34  
VDD_IO  
PVDD  
P
P
Input/Output Digital Power Supply (3.3 V).  
PLL Power Supply (1.8 V). For dual-supply configurations, PVDD can be connected to other 1.8 V  
supplies through a ferrite bead or suitable filtering.  
33  
31  
32  
40  
11, 57  
64  
EXT_LF1  
EXT_LF2  
PGND  
AGND  
DGND  
I
I
G
G
G
G
External Loop Filter for On-Chip PLL 1.  
External Loop Filter for On-Chip PLL 2.  
PLL Ground Pin.  
Analog Ground Pin.  
Digital Ground Pin.  
GND_IO  
Input/Output Supply Ground Pin.  
1 ED = enhanced definition = 525p and 625p.  
2 LSB = least significant bit. In the ADV7342, setting the LSB to 0 sets the I2C address to 0xD4. Setting it to 1 sets the I2C address to 0xD6. In the ADV7343, setting the  
LSB to 0 sets the I2C address to 0x54. Setting it to 1 sets the I2C address to 0x56.  
Rev. 0 | Page 19 of 88  
ADV7342/ADV7343  
TYPICAL PERFORMANCE CHARACTERISTICS  
Y RESPONSE IN ED 8× OVERSAMPLING MODE  
EDPr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4  
0
1.0  
0.5  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 22. ED 8× Oversampling, PrPb Filter (Linear) Response  
Figure 25. ED 8× Oversampling, Y Filter Response (Focus on Pass Band)  
HD Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
10  
EDPr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
18.5  
37.0  
55.5  
74.0  
92.5  
111.0 129.5 148.0  
FREQUENCY (MHz)  
Figure 23. ED 8× Oversampling, PrPb Filter (SSAF) Response  
Figure 26. HD 4× Oversampling, PrPb (SSAF) Filter Response (4:2:2 Input)  
HD Pr/Pb RESPONSE. 4:4:4 INPUT MODE  
Y RESPONSE IN ED 8× OVERSAMPLING MODE  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–100  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
FREQUENCY (MHz)  
Figure 24. ED 8× Oversampling, Y Filter Response  
Figure 27. HD 4× Oversampling, PrPb (SSAF) Filter Response (4:4:4 Input)  
Rev. 0 | Page 20 of 88  
 
ADV7342/ADV7343  
Y RESPONSE IN HD 4× OVERSAMPLING MODE  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
18.5  
37.0  
55.5  
74.0  
92.5  
111.0 129.5 148.0  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 28. HD 4× Oversampling, Y Filter Response  
Figure 31. SD PAL, Luma Low-Pass Filter Response  
Y PASS BAND IN HD 4x OVERSAMPLING MODE  
3.0  
1.5  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–1.5  
–3.0  
–4.5  
–6.0  
–7.5  
–9.0  
–10.5  
–12.0  
27.750  
46.250  
30.063 32.375 34.688 37.000 39.312 41.625 43.937  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 29. HD 4× Oversampling, Y Filter Response (Focus on Pass Band)  
Figure 32. SD NTSC, Luma Notch Filter Response  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 30. SD NTSC, Luma Low-Pass Filter Response  
Figure 33. SD PAL, Luma Notch Filter Response  
Rev. 0 | Page 21 of 88  
ADV7342/ADV7343  
Y RESPONSE IN SD OVERSAMPLING MODE  
5
4
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
3
2
1
0
–1  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
2
3
4
5
6
7
1
FREQUENCY (MHz)  
Figure 34. SD, 16× Oversampling, Y Filter Response  
Figure 37. SD Luma SSAF Filter, Programmable Gain  
1
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 38. SD Luma SSAF Filter, Programmable Attenuation  
Figure 35. SD Luma SSAF Filter Response up to 12 MHz  
0
4
2
–10  
0
–20  
–30  
–40  
–50  
–60  
–70  
–2  
–4  
–6  
–8  
–10  
–12  
0
2
4
6
8
10  
12  
0
1
2
3
4
6
7
5
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 39. SD Luma CIF Low-Pass Filter Response  
Figure 36. SD Luma SSAF Filter, Programmable Responses  
Rev. 0 | Page 22 of 88  
ADV7342/ADV7343  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. SD Luma QCIF Low-Pass Filter Response  
Figure 43. SD Chroma 1.3 MHz Low-Pass Filter Response  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
10  
12  
0
2
4
6
8
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 44. SD Chroma 1.0 MHz Low-Pass Filter Response  
Figure 41. SD Chroma 3.0 MHz Low-Pass Filter Response  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
12  
0
2
4
6
8
10  
12  
0
2
4
6
8
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 45. SD Chroma 0.65 MHz Low-Pass Filter Response  
Figure 42. SD Chroma 2.0 MHz Low-Pass Filter Response  
Rev. 0 | Page 23 of 88  
ADV7342/ADV7343  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 46. SD Chroma CIF Low-Pass Filter Response  
Figure 47. SD Chroma QCIF Low-Pass Filter Response  
Rev. 0 | Page 24 of 88  
ADV7342/ADV7343  
MPU PORT DESCRIPTION  
Devices such as a microprocessor can communicate with the  
ADV7342/ADV7343 through one of the following protocols:  
line low during the ninth clock pulse. This is known as an  
acknowledge bit. All other devices withdraw from the bus at  
this point and maintain an idle condition. The idle condition  
occurs when the device monitors the SDA and SCL lines  
waiting for the start condition and the correct transmitted  
2-wire serial (I2C-compatible) bus  
4-wire serial (SPI-compatible) bus  
After power-up or reset, the MPU port is configured for I2C  
operation. SPI operation can be invoked at any time by  
following the procedure outlined in the SPI Operation section.  
I2C OPERATION  
W
address. The R/ bit determines the direction of the data.  
Logic 0 on the LSB of the first byte means that the master writes  
information to the peripheral. Logic 1 on the LSB of the first byte  
means that the master reads information from the peripheral.  
The ADV7342/ADV7343 support a 2-wire serial (I2C-compatible)  
microprocessor bus driving multiple peripherals. This port  
operates in an open-drain configuration. Two inputs, serial data  
(SDA) and serial clock (SCL), carry information between any  
device connected to the bus and the ADV7342/ADV7343. Each  
slave device is recognized by a unique address. The ADV7342/  
ADV7343 have four possible slave addresses for both read and  
write operations. These are unique addresses for each device  
and are illustrated in Figure 48. The LSB either sets a read or  
write operation. Logic 1 corresponds to a read operation, while  
Logic 0 corresponds to a write operation. A1 is controlled by  
The ADV7342/ADV7343 act as a standard slave device on the  
bus. The data on the SDA pin is eight bits long, supporting the  
W
7-bit addresses plus the R/ bit. It interprets the first byte as  
the device address and the second byte as the starting  
subaddress. There is a subaddress auto-increment facility. This  
allows data to be written to or read from registers in ascending  
subaddress sequence starting at any valid subaddress. A data  
transfer is always terminated by a stop condition. The user can  
also access any unique subaddress register on a one-by-one  
basis without updating all the registers.  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCL high period, the  
user should issue only a start condition, a stop condition, or a  
stop condition followed by a start condition. If an invalid  
subaddress is issued by the user, the ADV7342/ADV7343 do  
not issue an acknowledge and do return to the idle condition. If  
the user utilizes the auto-increment method of addressing the  
encoder and exceeds the highest subaddress, the following  
actions are taken:  
SPI_SS  
setting the ALSB/  
pin of the ADV7342/ADV7343 to  
Logic 0 or Logic 1.  
1
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB/SPI_SS  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 48. ADV7342 Slave Address = 0xD4 or 0xD6  
In read mode, the highest subaddress register contents are  
output until the master device issues a no acknowledge.  
This indicates the end of a read. A no acknowledge  
condition occurs when the SDA line is not pulled low on  
the ninth pulse.  
In write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no acknowledge is issued by  
the ADV7342/ADV7343, and the parts return to the idle  
condition.  
To control the various devices on the bus, use the following  
protocol. The master initiates a data transfer by establishing  
a start condition, defined by a high-to-low transition on SDA  
while SCL remains high. This indicates that an address/data  
stream follows. All peripherals respond to the start condition  
W
and shift the next eight bits (7-bit address + R/ bit). The bits  
are transferred from MSB down to LSB. The peripheral that  
recognizes the transmitted address responds by pulling the data  
Rev. 0 | Page 25 of 88  
 
ADV7342/ADV7343  
Figure 49 shows an example of data transfer for a write sequence and the start and stop conditions. Figure 50 shows bus write and read  
sequences.  
SDA  
SCL  
S
P
9
1–7  
9
9
1–7  
8
8
1–7  
8
START ADDR R/W ACK SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 49. I2C Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S)  
LSB = 0  
SUBADDR  
SUBADDR  
A(S)  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A (S) = NO-ACKNOWLEDGE BY SLAVE  
A (M) = NO-ACKNOWLEDGE BY MASTER  
Figure 50. I2C Read and Write Sequence  
There is a subaddress auto-increment facility. This allows data  
to be written to or read from registers in ascending subaddress  
sequence starting at any valid subaddress. The user can also  
access any unique subaddress register on a one-by-one basis.  
SPI OPERATION  
The ADV7342/ADV7343 support a 4-wire serial (SPI-compatible)  
bus connecting multiple peripherals. Two inputs, master out  
slave in (MOSI) and serial clock (SCLK), and one output,  
master in slave out (MISO), carry information between a  
master SPI peripheral on the bus and the ADV7342/ADV7343.  
Each slave device on the bus has a slave select pin that is  
connected to the master SPI peripheral by a unique slave select  
line. As such, slave device addressing is not required.  
In a write data transfer, 8-bit data bytes are written to the  
ADV7342/ADV7343, MSB first, on the MOSI line immediately  
after the starting subaddress. The data bytes are clocked into the  
ADV7342/ADV7343 on the rising edge of SCLK. When all data  
bytes have been written, the master completes the transfer by  
SPI_SS  
driving and holding the ALSB/  
In a read data transfer, after the subaddress has been clocked in  
SPI_SS  
pin high.  
To invoke SPI operation, a master SPI peripheral (for example,  
a microprocessor) should issue three low pulses on the ADV7342/  
SPI_SS  
ADV7343 ALSB/  
pin. When the encoder detects the  
SPI_SS  
on the MOSI line, the ALSB/  
for at least one clock cycle. Then, the ALSB/  
and held low again. On the first SCLK rising edge after  
SPI_SS  
pin is driven and held high  
third rising edge on the ALSB/  
pin, it automatically  
SPI_SS  
pin is driven  
switches to SPI communication mode. The ADV7342/ADV7343  
remain in SPI communication mode until a reset or power-  
down occurs.  
ALSB/  
has been driven low, the read command, defined  
as 0xD5, is written, MSB first, to the ADV7342/ADV7343 over  
the MOSI line. Subsequently, 8-bit data bytes are read from the  
ADV7342/ADV7343, MSB first, on the MISO line. The data  
bytes are clocked out of the ADV7342/ADV7343 on the falling  
edge of SCLK. When all data bytes have been read, the master  
completes the transfer by driving and holding the ALSB/  
pin high.  
To control the ADV7342/ADV7343, use the following protocol  
for both read and write transactions. First, the master initiates a  
data transfer by driving and holding the ADV7342/ADV7343  
SPI_SS  
SPI_SS  
ALSB/  
ALSB/  
pin low. On the first SCLK rising edge after  
has been driven low, the write command, defined  
SPI_SS  
as 0xD4, is written to the ADV7342/ADV7343 over the MOSI  
line. The second byte written to the MOSI line is interpreted as  
the starting subaddress. Data on the MOSI line is written MSB  
first and clocked on the rising edge of SCLK.  
Rev. 0 | Page 26 of 88  
 
ADV7342/ADV7343  
REGISTER MAP ACCESS  
A microprocessor can read from or write to all registers of the  
ADV7342/ADV7343 via the MPU port, except for registers that  
are specified as read-only or write-only registers.  
REGISTER PROGRAMMING  
Table 14 to Table 28 describe the functionality of each register.  
All registers can be read from as well as written to, unless  
otherwise stated.  
The subaddress register determines which register the next  
read or write operation accesses. All communication through  
the MPU port starts with an access to the subaddress register.  
A read/write operation is then performed from/to the target  
address, which increments to the next address until the  
transaction is complete.  
SUBADDRESS REGISTER (SR7 TO SR0)  
The subaddress register is an 8-bit write-only register. After the  
MPU port is accessed and a read/write operation is selected, the  
subaddress is set up. The subaddress register determines to or  
from which register the operation takes place.  
Table 14. Register 0x00  
SR7 to  
Bit Number  
Register  
Setting  
Reset  
Value  
0x12  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0x00  
Power  
Mode  
Register  
Sleep Mode. With this control enabled, the current consumption is  
reduced to μA level. All DACs and the internal PLL circuit are  
disabled. I2C registers can be read from and written to in sleep mode.  
0
Sleep  
mode off.  
Sleep  
1
mode on.  
PLL and Oversampling Control. This control allows the internal PLL  
circuit to be powered down and the oversampling to be switched off.  
0
1
PLL on.  
PLL off.  
DAC 3: Power on/off.  
DAC 2: Power on/off.  
DAC 1: Power on/off.  
DAC 6: Power on/off.  
DAC 5: Power on/off.  
DAC 4: Power on/off.  
0
1
DAC 3 off.  
DAC 3 on.  
DAC 2 off.  
DAC 2 on.  
DAC 1 off.  
DAC 1 on.  
DAC 6 off.  
DAC 6 on.  
DAC 5 off.  
DAC 5 on.  
DAC 4 off.  
DAC 4 on.  
0
1
0
1
0
1
0
1
0
1
Rev. 0 | Page 27 of 88  
 
ADV7342/ADV7343  
Table 15. Register 0x01 to Register 0x09  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
0x01  
Mode Select  
Register  
Reserved.  
0
DDR Clock Edge Alignment.  
Note: Only used for ED1 and  
HD DDR modes.  
0
0
Chroma clocked in on rising clock edge;  
luma clocked in on falling clock edge.  
Reserved.  
Reserved.  
Luma clocked in on rising clock edge;  
chroma clocked in on falling clock edge.  
0
1
1
1
0
1
Reserved.  
0
Input Mode.  
Note: See Reg. 0x30, Bits[7:3]  
for ED/HD format selection.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SD input only.  
ED/HD-SDR input only.  
ED/HD-DDR input only.  
SD and ED/HD-SDR.  
SD and ED/HD-DDR.  
Reserved.  
Reserved.  
ED only (at 54 MHz).  
Y/C/S Bus Swap.  
0
1
Allows data to be applied to data ports in  
various configurations (SD feature only).  
0x02  
Mode  
Register 0  
Reserved.  
Test Pattern Black Bar.2  
0
0
0 must be written to these bits.  
Disabled.  
Enabled.  
0x20  
0
1
Manual CSC Matrix Adjust.  
Sync on RGB.  
0
1
Disable manual CSC matrix adjust.  
Enable manual CSC matrix adjust.  
No sync.  
Sync on all RGB outputs.  
RGB component outputs.  
YPrPb component outputs.  
No sync output.  
0
1
RGB/YPrPb Output Select.  
SD Sync Output Enable.  
0
1
0
1
S_HSYNC  
Output SD syncs on  
S_VSYNC  
and  
pins.  
ED/HD Sync Output Enable.  
0
1
No sync output.  
S_HSYNC  
Output ED/HD syncs on  
and  
S_VSYNC  
pins.  
0x03  
0x04  
ED/HD CSC  
Matrix 0  
x
x
x
x
LSBs for GY.  
0x03  
0xF0  
ED/HD CSC  
Matrix 1  
LSBs for RV.  
LSBs for BU.  
LSBs for GV.  
LSBs for GU.  
Bits[9:2 ] for GY.  
x
x
x
x
x
x
x
x
0x05  
0x06  
0x07  
0x08  
0x09  
ED/HD CSC  
Matrix 2  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x4E  
0x0E  
0x24  
0x92  
0x7C  
ED/HD CSC  
Matrix 3  
x
x
x
x
x
x
x
x
Bits[9:2] for GU.  
Bits[9:2] for GV.  
Bits[9:2] for BU.  
Bits[9:2] for RV.  
ED/HD CSC  
Matrix 4  
ED/HD CSC  
Matrix 5  
ED/HD CSC  
Matrix 6  
1 ED = enhanced definition = 525p and 625p.  
2 Subaddress 0x31, Bit 2 must also be enabled (ED/HD). Subaddress 0x84, Bit 6 must also be enabled (SD).  
Rev. 0 | Page 28 of 88  
ADV7342/ADV7343  
Table 16. Register 0x0A to Register 0x10  
SR7 to  
Bit Number  
Reset  
SR0  
Register  
Bit Description  
7
0
0
0
0
6
0
0
0
0
5
0
0
0
1
4
0
0
0
1
3
0
0
0
1
2
0
0
0
1
1
0
0
1
1
0
0
1
0
1
Register Setting  
0%  
+0.018%  
+0.036%  
Value  
0x0A  
DAC 4, DAC 5, DAC 6 Positive Gain to DAC Output Voltage.  
Output Levels  
0x00  
+7.382%  
+7.5%  
0
1
0
0
0
0
0
0
Negative Gain to DAC Output Voltage.  
1
1
0
0
0
0
0
0
−7.5%  
1
1
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
1
0
1
−7.382%  
−7.364%  
−0.018%  
0%  
0x0B  
DAC 1, DAC 2, DAC 3 Positive Gain to DAC Output Voltage.  
Output Levels  
0
0
0
0
0
0
0
0
0x00  
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
1
0
1
0
+0.018%  
+0.036%  
+7.382%  
+7.5%  
Negative Gain to DAC Output Voltage.  
1
1
0
0
0
0
0
0
−7.5%  
1
1
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
1
0
1
−7.382%  
−7.364%  
−0.018%  
0x0D  
DAC Power Mode  
DAC 1 Low Power Enable.  
DAC 2 Low Power Enable.  
DAC 3 Low Power Enable.  
Reserved.  
0
DAC 1 low power  
disabled  
DAC 1 low power  
enabled  
0x00  
1
0
1
DAC 2 low power  
disabled  
DAC 2 low power  
enabled  
0
1
DAC 3 low power  
disabled  
DAC 3 low power  
enabled  
0
0
0
0
0
0
0x10  
Cable Detection  
DAC 1 Cable Detect  
(Read Only).  
0
1
Cable detected on  
DAC 1  
DAC 1 unconnected  
0x00  
DAC 2 Cable Detect  
(Read Only).  
0
1
Cable detected on  
DAC 2  
DAC 2 unconnected  
Reserved.  
0
Unconnected DAC  
Auto Power-Down.  
0
1
DAC auto power-  
down disable  
DAC auto power-  
down enable  
Reserved.  
0
0
0
Rev. 0 | Page 29 of 88  
ADV7342/ADV7343  
Table 17. Register 0x12 to Register 0x17  
SR7 to  
Bit Number  
Reset  
Value  
0xXX  
0xXX  
0xXX  
0xXX  
SR0  
Register  
Bit Description  
S[7:0] Readback.  
Y[7:0] Readback.  
C[7:0] Readback.  
7
x
x
x
6
x
x
x
5
x
x
x
4
x
x
x
3
x
x
x
2
x
x
x
1
x
x
x
0
x
x
x
x
Register Setting  
Read only  
0x12  
0x13  
0x14  
0x16  
Pixel Port Readback (S Bus)  
Pixel Port Readback (Y Bus)  
Pixel Port Readback (C Bus)  
Control Port Readback  
Read only  
Read only  
P_BLANK  
Read only  
.
.
P_VSYNC  
x
P_HSYNC  
x
.
S_VSYNC  
x
.
S_HSYNC  
x
.
SFL/MISO.  
x
Reserved.  
0
0
0
0
0x17  
Software Reset  
Reserved.  
0
0x00  
Software Reset.  
0
1
Writing a 1 resets the device;  
this is a self-clearing bit  
Reserved.  
0
0
0
0
Rev. 0 | Page 30 of 88  
ADV7342/ADV7343  
Table 18. Register 0x30  
SR7 to  
Bit Number  
Reset  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
Note  
Value  
0x30  
ED/HD Mode  
Register 1  
ED/HD Output Standard.  
0
0
EIA770.2 output.  
EIA770.3 output.  
ED  
HD  
0x00  
0
1
1
0
EIA770.1 output  
Output levels for full  
input range.  
1
1
Reserved.  
ED/HD Input  
Synchronization  
Format.  
0
1
External  
,
HSYNC VSYNC  
and field inputs.1  
Embedded EAV/SAV  
codes.  
ED/HD Input Mode.  
0
0
0
0
0
SMPTE 293M,  
ITU-BT.1358.  
525p @ 59.94 Hz  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
Nonstandard timing mode.  
BTA-1004, ITU-BT.1362.  
ITU-BT.1358.  
ITU-BT.1362.  
SMPTE 296M-1,  
SMPTE 274M-2.  
525p @ 59.94 Hz  
625p @ 50 Hz  
625p @ 50 Hz  
720p @ 60/59.94 Hz  
0
0
0
0
1
1
1
1
0
1
SMPTE 296M-3.  
SMPTE 296M-4,  
SMPTE 274M-5.  
720p @ 50 Hz  
720p @ 30/29.97 Hz  
0
0
1
1
0
0
0
0
0
1
SMPTE 296M-6.  
SMPTE 296M-7,  
SMPTE 296M-8.  
720p @ 25 Hz  
720p @ 24/23.98 Hz  
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
SMPTE 240M.  
Reserved.  
Reserved.  
SMPTE 274M-4,  
SMPTE 274M-5.  
1035i @ 60/59.94 Hz  
1080i @ 30/29.97 Hz  
0
0
1
1
1
1
1
1
0
1
SMPTE 274M-6.  
SMPTE 274M-7,  
SMPTE 274M-8.  
1080i @ 25 Hz  
1080p @ 0/29.97 Hz  
1
1
0
0
0
0
0
0
0
1
SMPTE 274M-9.  
SMPTE 274M-10,  
SMPTE 274M-11.  
1080p @ 25 Hz  
1080p @ 4/23.98 Hz  
1
0
0
1
0
ITU-R BT.709-5.  
Reserved.  
1080Psf @ 24 Hz  
10011–11111  
1 Synchronization can be controlled with a combination of either  
and  
inputs or  
and field inputs, depending on Subaddress 0x34, Bit 6.  
HSYNC  
HSYNC  
VSYNC  
Rev. 0 | Page 31 of 88  
ADV7342/ADV7343  
Table 19. Register 0x31 to Register 0x33  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
Pixel data valid off.  
Pixel data valid on.  
0x31  
ED/HD Mode  
Register 2  
ED/HD Pixel Data Valid.  
Reserved.  
0
ED/HD Test Pattern Enable.  
0
1
ED/HD test pattern off.  
ED/HD test pattern on.  
Hatch.  
ED/HD Test Pattern Hatch/Field.  
ED/HD VBI Open.  
0
1
Field/frame.  
Disabled.  
0
1
Enabled.  
ED/HD Undershoot Limiter.  
0
0
1
1
0
1
0
1
Disabled.  
−11 IRE  
−6 IRE  
−1.5 IRE  
ED/HD Sharpness Filter.  
0
1
Disabled.  
Enabled.  
0x32  
ED/HD Mode  
Register 3  
ED/HD Y Delay with Respect to Falling  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0 clock cycles.  
1 clock cycle.  
2 clock cycles.  
3 clock cycles.  
4 clock cycles.  
0 clock cycles.  
1 clock cycle.  
2 clock cycles.  
3 clock cycles.  
4 clock cycles.  
Disabled.  
0x00  
HSYNC  
Edge of  
.
ED/HD Color Delay with Respect to  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
HSYNC  
Falling Edge of  
.
ED/HD CGMS.  
0
1
Enabled.  
ED/HD CGMS CRC.  
0
1
Disabled.  
Enabled.  
0x33  
ED/HD Mode  
Register 4  
ED/HD Cr/Cb Sequence.  
0
1
HSYNC  
0x68  
Cb after falling edge of  
Cr after falling edge of  
.
HSYNC  
.
Reserved.  
0
0
0 must be written to these bits.  
Sinc Compensation Filter on DAC 1,  
DAC 2, DAC 3.  
0
1
Disabled.  
Enabled.  
Reserved.  
0
0 must be written to this bit.  
ED/HD Chroma SSAF.  
0
1
Disabled.  
Enabled.  
4:4:4  
ED/HD Chroma Input.  
0
1
4:2:2  
ED/HD Double Buffering.  
0
1
Disabled.  
Enabled.  
Rev. 0 | Page 32 of 88  
ADV7342/ADV7343  
Table 20. Register 0x34 to Register 0x35  
SR7 to  
Bit Number  
Reset  
Value  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
0x34  
ED/HD Mode  
Register 5  
ED/HD Timing Reset.  
Internal ED/HD timing counters enabled.  
Resets the internal ED/HD timing counters.  
0x48  
1
HSYNC  
VSYNC  
0
1
ED/HD  
ED/HD  
Control.  
HSYNC  
output control (refer to Table 51).  
1
0
1
Control.  
VSYNC  
output control (refer to Table 52).  
ED/HD Blank Polarity.  
0
1
P_BLANK  
P_BLANK  
active high.  
active low.  
ED Macrovision Enable.  
Reserved.  
0
1
Macrovision disabled.  
Macrovision enabled.  
0
0 must be written to this bit.  
VSYNC  
/Field Input.  
0
1
0 = field input.  
ED/HD  
VSYNC  
1 =  
input.  
Horizontal/Vertical  
Counters.2  
0
1
Update field/line counter.  
Field/line counter free running.  
0x35  
ED/HD Mode  
Register 6  
Reserved.  
0
0x00  
ED/HD RGB Input Enable.  
0
1
Disabled.  
Enabled.  
ED/HD Sync on PrPb.  
0
1
Disabled.  
Enabled.  
ED/HD Color DAC Swap.  
0
1
DAC 2 = Pb, DAC 3 = Pr.  
DAC 2 = Pr, DAC 3 = Pb.  
Gamma Correction Curve A.  
Gamma Correction Curve B.  
Disabled.  
ED/HD Gamma  
Correction Curve Select.  
0
1
ED/HD Gamma  
Correction Enable.  
0
1
Enabled.  
ED/HD Adaptive  
Filter Mode.  
0
1
Mode A.  
Mode B.  
ED/HD Adaptive  
Filter Enable  
0
1
Disabled.  
Enabled.  
1 Used in conjunction with ED/HD sync in Subaddress 0x02, Bit 7, set to 1.  
2 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the  
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.  
Rev. 0 | Page 33 of 88  
ADV7342/ADV7343  
Table 21. Register 0x36 to Register 0x43  
SR7 to  
Bit Number  
Reset  
SR0  
Register  
Bit Description  
7
x
x
x
6
x
x
x
5
x
x
x
4
x
x
x
0
3
x
x
x
0
2
x
x
x
0
1
x
x
x
0
0
x
x
x
0
Register Setting Value  
0x36  
0x37  
0x38  
0x39  
ED/HD Y Level1  
ED/HD Cr Level1  
ED/HD Cb Level1  
ED/HD Test Pattern Y Level.  
ED/HD Test Pattern Cr Level.  
ED/HD Test Pattern Cb Level.  
Reserved.  
Y level value  
Cr level value  
Cb level value  
0xA0  
0x80  
0x80  
ED/HD Mode  
Register 7  
ED/HD EIA/CEA-861B  
Synchronization Compliance.  
0
1
Disabled  
Enabled  
Reserved.  
0
0
0x40  
ED/HD Sharpness  
Filter Gain  
ED/HD Sharpness Filter Gain,  
Value A.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
0x00  
1
1
1
1
ED/HD Sharpness Filter Gain,  
Value B.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
Gain B = −1  
0x41  
0x42  
0x43  
ED/HD CGMS  
Data 0  
ED/HD CGMS Data Bits.  
ED/HD CGMS Data Bits.  
ED/HD CGMS Data Bits.  
0
0
0
0
C19 C18 C17 C16 CGMS C19 to C16 0x00  
ED/HD CGMS  
Data 1  
C15 C14 C13 C12 C11 C10 C9  
C8  
C0  
CGMS C15 to C8  
CGMS C7 to C0  
0x00  
0x00  
ED/HD CGMS  
Data 2  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
1 For use with ED/HD internal test patterns only (Subaddress 0x31, Bit 2 = 1).  
Table 22. Register 0x44 to Register 0x57  
SR7 to  
Bit Number  
Register  
Reset  
Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
SR0  
Register  
Bit Description  
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
6
5
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
Setting  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
ED/HD Gamma A0  
ED/HD Gamma A1  
ED/HD Gamma A2  
ED/HD Gamma A3  
ED/HD Gamma A4  
ED/HD Gamma A5  
ED/HD Gamma A6  
ED/HD Gamma A7  
ED/HD Gamma A8  
ED/HD Gamma A9  
ED/HD Gamma B0  
ED/HD Gamma B1  
ED/HD Gamma B2  
ED/HD Gamma B3  
ED/HD Gamma B4  
ED/HD Gamma B5  
ED/HD Gamma B6  
ED/HD Gamma B7  
ED/HD Gamma B8  
ED/HD Gamma B9  
ED/HD Gamma Curve A (Point 24).  
ED/HD Gamma Curve A (Point 32).  
ED/HD Gamma Curve A (Point 48).  
ED/HD Gamma Curve A (Point 64).  
ED/HD Gamma Curve A (Point 80).  
ED/HD Gamma Curve A (Point 96).  
ED/HD Gamma Curve A (Point 128).  
ED/HD Gamma Curve A (Point 160).  
ED/HD Gamma Curve A (Point 192).  
ED/HD Gamma Curve A (Point 224).  
ED/HD Gamma Curve B (Point 24).  
ED/HD Gamma Curve B (Point 32).  
ED/HD Gamma Curve B (Point 48).  
ED/HD Gamma Curve B (Point 64).  
ED/HD Gamma Curve B (Point 80).  
ED/HD Gamma Curve B (Point 96).  
ED/HD Gamma Curve B (Point 128).  
ED/HD Gamma Curve B (Point 160).  
ED/HD Gamma Curve B (Point 192).  
ED/HD Gamma Curve B (Point 224).  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
Rev. 0 | Page 34 of 88  
ADV7342/ADV7343  
Table 23. Register 0x58 to Register 0x5D  
SR7 to  
Bit Number  
Register  
Setting  
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
Gain B = −1  
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
Gain B = −1  
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0x58  
ED/HD Adaptive Filter Gain 1  
ED/HD Adaptive Filter Gain 1,  
Value A.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
ED/HD Adaptive Filter Gain 1,  
Value B.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
0x59  
ED/HD Adaptive Filter Gain 2  
ED/HD Adaptive Filter Gain 2,  
Value A.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
0x00  
1
1
1
1
ED/HD Adaptive Filter Gain 2,  
Value B.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
0x5A  
ED/HD Adaptive Filter Gain 3  
ED/HD Adaptive Filter Gain 3,  
Value A.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
0x00  
1
1
1
1
ED/HD Adaptive Filter Gain 3,  
Value B.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
Gain B = −1  
0x5B  
0x5C  
0x5D  
ED/HD Adaptive Filter  
Threshold A  
ED/HD Adaptive Filter Threshold A.  
ED/HD Adaptive Filter Threshold B.  
ED/HD Adaptive Filter Threshold C.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Threshold A 0x00  
Threshold B 0x00  
Threshold C 0x00  
ED/HD Adaptive Filter  
Threshold B  
x
x
x
x
x
x
x
x
ED/HD Adaptive Filter  
Threshold C  
Rev. 0 | Page 35 of 88  
ADV7342/ADV7343  
Table 24. Register 0x5E to Register 0x6E  
SR7 to  
Bit Number  
Register  
Setting  
Disabled  
Enabled  
Disabled  
Enabled  
H5 to H0  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
0x5E  
ED/HD CGMS Type B  
Register 0  
ED/HD CGMS Type B  
Enable.  
ED/HD CGMS Type B  
CRC Enable.  
0
1
ED/HD CGMS Type B  
Header Bits.  
H5  
H4  
H3  
H2  
H1  
H0  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
ED/HD CGMS Type B  
Register 1  
ED/HD CGMS Type B  
Data Bits.  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
P7 to P0  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ED/HD CGMS Type B  
Register 2  
ED/HD CGMS Type B  
Data Bits.  
P15  
P23  
P31  
P39  
P47  
P55  
P63  
P71  
P79  
P87  
P95  
P14  
P22  
P30  
P38  
P46  
P54  
P62  
P70  
P78  
P86  
P94  
P13  
P21  
P29  
P37  
P45  
P53  
P61  
P69  
P77  
P85  
P93  
P12  
P20  
P28  
P36  
P44  
P52  
P60  
P68  
P76  
P84  
P92  
P11  
P19  
P27  
P35  
P43  
P51  
P59  
P67  
P75  
P83  
P91  
P10  
P18  
P26  
P34  
P42  
P50  
P58  
P66  
P74  
P82  
P90  
P98  
P9  
P8  
P15 to P8  
ED/HD CGMS Type B  
Register 3  
ED/HD CGMS Type B  
Data Bits.  
P17  
P25  
P33  
P41  
P49  
P57  
P65  
P73  
P81  
P89  
P97  
P16  
P24  
P32  
P40  
P48  
P56  
P64  
P72  
P80  
P88  
P96  
P23 to P16  
P31 to P24  
P39 to P32  
P47 to P40  
P55 to P48  
P63 to P56  
P71 to P64  
P79 to P72  
P87 to P80  
P95 to P88  
P103 to P96  
ED/HD CGMS Type B  
Register 4  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 5  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 6  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 7  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 8  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 9  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 10  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 11  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 12  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 13  
ED/HD CGMS Type B  
Data Bits.  
P103 P102 P101 P100 P99  
ED/HD CGMS Type B  
Register 14  
ED/HD CGMS Type B  
Data Bits.  
P111 P110 P109 P108 P107 P106 P105 P104 P111 to P104 0x00  
P119 P118 P117 P116 P115 P114 P113 P112 P119 to P112 0x00  
P127 P126 P125 P124 P123 P122 P121 P120 P127 to P120 0x00  
ED/HD CGMS Type B  
Register 15  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 16  
ED/HD CGMS Type B  
Data Bits.  
Rev. 0 | Page 36 of 88  
ADV7342/ADV7343  
Table 25. Register 0x80 to Register 0x83  
SR7 to  
Bit Number  
Reset  
Value  
0x10  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
Register Setting  
NTSC.  
PAL B/D/G/H/I.  
PAL M.  
0x80  
SD Mode  
Register 1  
SD Standard.  
PAL N.  
SD Luma Filter.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LPF NTSC.  
LPF PAL.  
Notch NTSC.  
Notch PAL.  
SSAF luma.  
Luma CIF.  
Luma QCIF.  
Reserved.  
1.3 MHz.  
0.65 MHz.  
1.0 MHz.  
2.0 MHz.  
SD Chroma Filter.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved.  
Chroma CIF.  
Chroma QCIF.  
3.0 MHz.  
0x82  
SD Mode  
Register 2  
SD PrPb SSAF.  
0
1
Disabled.  
Enabled.  
0x0B  
SD DAC Output 1.  
SD DAC Output 2.  
SD Pedestal.  
0
1
Refer to Table 32 in the Output  
Configuration section.  
0
1
Refer to Table 32 in the Output  
Configuration section.  
0
1
Disabled.  
Enabled.  
SD Square Pixel Mode.  
SD VCR FF/RW Sync.  
SD Pixel Data Valid.  
SD Active Video Edge Control.  
0
1
Disabled.  
Enabled.  
0
1
Disabled.  
Enabled.  
0
1
Disabled.  
Enabled.  
0
1
Disabled.  
Enabled.  
0x83  
SD Mode  
Register 3  
SD Pedestal on YPrPb  
Output.  
0
1
No pedestal on YPrPb.  
7.5 IRE pedestal on YPrPb.  
Y = 700 mV/300 mV.  
Y = 714 mV/286 mV.  
700 mV p-p (PAL), 1000 mV p-p (NTSC).  
700 mV p-p.  
0x04  
SD Output Levels Y.  
0
1
SD Output Levels PrPb.  
0
0
1
1
0
1
0
1
1000 mV p-p.  
648 mV p-p.  
SD VBI Open.  
0
1
Disabled.  
Enabled.  
SD Closed Captioning  
Field Control.  
0
0
1
1
0
1
0
1
Closed captioning disabled.  
Closed captioning on odd field only.  
Closed captioning on even field only.  
Closed captioning on both fields.  
Reserved.  
Reserved.  
0
Rev. 0 | Page 37 of 88  
ADV7342/ADV7343  
Table 26. Register 0x84 to Register 0x89  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
VSYNC  
7
6
5
4
3
2
1
0
0
1
Register Setting  
0x84  
SD Mode  
Register 4  
Disabled.  
SD  
-3H.  
VSYNC  
VSYNC  
= 2.5 lines (PAL),  
= 3 lines (NTSC).  
SD SFL/SCR/TR Mode Select.  
0
0
1
1
0
1
0
1
Disabled.  
Subcarrier phase reset mode enabled.  
Timing reset mode enabled.  
SFL mode enabled.  
720 pixels.  
710 (NTSC), 702 (PAL).  
Chroma enabled.  
Chroma disabled.  
Enabled.  
SD Active Video Length.  
SD Chroma.  
0
1
0
1
SD Burst.  
0
1
Disabled.  
SD Color Bars.  
0
1
Disabled.  
Enabled.  
SD Luma/Chroma Swap.  
0
1
DAC 2 = luma, DAC 3 = chroma.  
DAC 2 = chroma, DAC 3 = luma.  
5.17 ꢀs.  
0x86  
SD Mode  
Register 5  
NTSC Color Subcarrier Adjust (Delay  
from the falling edge of output  
HSYNC pulse to start of color burst).  
0
0
1
0
1
0
0x02  
5.31 ꢀs.  
5.59 ꢀs (must be set for Macrovision  
compliance).  
1
1
Reserved.  
Reserved.  
0
SD EIA/CEA-861B Synchronization  
Compliance.  
0
1
Disabled.  
Enabled.  
Reserved.  
0
0
SD Horizontal/Vertical Counter  
Mode.1  
0
1
Update field/line counter.  
Field/line counter free running.  
Normal.  
Color reversal enabled.  
Disabled.  
SD RGB Color Swap.  
0
1
0x87  
SD Mode  
Register 6  
SD PrPb Scale.  
0
1
0x00  
Enabled.  
SD Y Scale.  
0
1
Disabled.  
Enabled.  
SD Hue Adjust.  
0
1
Disabled.  
Enabled.  
SD Brightness.  
0
1
Disabled.  
Enabled.  
SD Luma SSAF Gain.  
SD Input Standard Auto Detect.  
0
1
Disabled.  
Enabled.  
0
1
Disabled.  
Enabled.  
Reserved.  
0
0 must be written to this bit.  
SD YCrCb input.  
SD RGB input.  
SD RGB Input Enable.  
0
1
Rev. 0 | Page 38 of 88  
ADV7342/ADV7343  
SR7 to  
SR0  
Bit Number  
Reset  
Register  
Bit Description  
Reserved.  
7
6
5
4
3
2
1
0
Register Setting  
Value  
0x88  
SD Mode  
Register 7  
0
0x00  
SD Noninterlaced Mode.  
0
1
Disabled.  
Enabled.  
SD Double Buffering.  
SD Input Format.  
0
1
Disabled.  
Enabled.  
0
0
1
1
0
1
0
1
8-bit input.  
16-bit input.  
Reserved.  
Reserved.  
SD Digital Noise Reduction.  
SD Gamma Correction Enable.  
SD Gamma Correction Curve Select.  
SD Undershoot Limiter.  
0
1
Disabled.  
Enabled.  
0
1
Disabled.  
Enabled.  
0
1
Gamma Correction Curve A.  
Gamma Correction Curve B.  
Disabled.  
−11 IRE.  
−6 IRE.  
0x89  
SD Mode  
Register 8  
0
0
1
1
0
1
0
1
0x00  
−1.5 IRE.  
Reserved.  
0
0 must be written to this bit.  
Disabled.  
Enabled.  
SD Black Burst Output on DAC  
Luma.  
0
1
SD Chroma Delay.  
0
0
1
1
0
1
0
1
Disabled.  
4 clock cycles.  
8 clock cycles.  
Reserved.  
Reserved.  
0
0
0 must be written to these bits.  
1 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the  
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.  
Rev. 0 | Page 39 of 88  
ADV7342/ADV7343  
Table 27. Register 0x8A to Register 0x98  
SR7 to  
Bit Number  
Reset  
Value  
0x08  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
Slave mode.  
Master mode.  
Mode 0.  
Mode 1.  
Mode 2.  
0x8A  
SD Timing Register 0  
SD Slave/Master Mode.  
SD Timing Mode.  
0
0
1
1
0
1
0
1
Mode 3.  
Reserved.  
1
SD Luma Delay.  
0
0
1
1
0
1
0
1
No delay.  
2 clock cycles.  
4 clock cycles.  
6 clock cycles.  
−40 IRE.  
SD Minimum Luma Value.  
SD Timing Reset.  
0
1
−7.5 IRE.  
x
A low-high-low transition  
resets the internal SD  
timing counters.  
0x8B  
SD Timing Register 1  
(Note: Applicable in  
master modes only,  
that is, Subaddress  
0x8A, Bit 0 = 1)  
HSYNC  
0
0
1
1
0
1
0
1
ta = 1 clock cycle.  
ta = 4 clock cycles.  
ta = 16 clock cycles.  
ta = 128 clock cycles.  
tb = 0 clock cycles.  
tb = 4 clock cycles.  
tb = 8 clock cycles.  
tb = 18 clock cycles.  
tc = tb.  
0x00  
SD  
SD  
SD  
Width.  
HSYNC VSYNC  
to  
0
0
1
1
0
1
0
1
Delay.  
Rising  
HSYNC VSYNC  
to  
Edge Delay (Mode 1 Only).  
x
x
0
0
1
1
0
1
0
1
0
1
tc = tb + 32 μs.  
VSYNC  
1 clock cycle.  
4 clock cycles.  
16 clock cycles.  
128 clock cycles.  
0 clock cycles.  
1 clock cycle.  
2 clock cycles.  
3 clock cycles.  
SD  
Width (Mode 2 Only).  
HSYNC  
0
0
1
1
x
0
1
0
1
x
SD  
to Pixel Data Adjust.  
0x8C  
0x8D  
0x8E  
0x8F  
SD FSC Register 01  
SD FSC Register 11  
SD FSC Register 21  
SD FSC Register 31  
SD FSC Phase  
Subcarrier Frequency Bits[7:0].  
Subcarrier Frequency Bits[15:8].  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Frequency  
Bits[7:0].  
0x1F  
0x7C  
0xF0  
0x21  
x
x
x
x
x
x
Subcarrier Frequency  
Bits[15:8].  
Subcarrier Frequency  
Bits[23:16].  
Subcarrier Frequency  
Bits[23:16].  
Subcarrier Frequency  
Bits[31:24].  
Subcarrier Frequency  
Bits[31:24].  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
Subcarrier Phase Bits[9:2].  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Phase Bits[9:2]. 0x00  
Extended Data Bits[7:0]. 0x00  
Extended Data Bits[15:8]. 0x00  
SD Closed Captioning Extended Data on Even Fields.  
SD Closed Captioning Extended Data on Even Fields.  
SD Closed Captioning Data on Odd Fields.  
Data Bits[7:0].  
Data Bits[15:8].  
0x00  
0x00  
SD Closed Captioning Data on Odd Fields.  
SD Pedestal Register 0  
SD Pedestal Register 1  
SD Pedestal Register 2  
SD Pedestal Register 3  
Pedestal on Odd Fields.  
Pedestal on Odd Fields.  
Pedestal on Even Fields.  
Pedestal on Even Fields.  
17 16 15 14 13 12 11 10 Setting any of these bits 0x00  
to 1 disables pedestal  
25 24 23 22 21 20 19 18  
17 16 15 14 13 12 11 10  
25 24 23 22 21 20 19 18  
0x00  
0x00  
0x00  
on the line number  
indicated by the bit  
settings.  
1 SD subcarrier frequency registers default to NTSC subcarrier frequency values.  
Rev. 0 | Page 40 of 88  
ADV7342/ADV7343  
Table 28. Register 0x99 to Register 0xA5  
SR7 to  
Bit Number  
Reset  
SR0  
Register  
Bit Description  
SD CGMS Data.  
SD CGMS CRC.  
7
6
5
4
3
2
1
0
Register Setting  
Value  
0x99  
SD CGMS/WSS 0  
x
x
x
x
CGMS Data Bits[C19:C16]  
Disabled  
0x00  
0
1
Enabled  
SD CGMS on Odd Fields.  
SD CGMS on Even Fields.  
SD WSS.  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0x9A  
SD CGMS/WSS 1  
SD CGMS/WSS 2  
SD CGMS/WSS Data.  
x
x
x
x
x
x
x
x
CGMS Data Bits[C13:C8] or  
WSS Data Bits[W13:W8]  
0x00  
SD CGMS Data.  
x
x
x
x
CGMS Data Bits[C15:C14]  
0x9B  
0x9C  
SD CGMS/WSS Data.  
x
x
x
x
x
x
x
x
CGMS Data Bits[C7:C0] or  
WSS Data Bits[W7:W0]  
0x00  
0x00  
SD Scale LSB  
Register  
LSBs for SD Y Scale Value.  
LSBs for SD Cb Scale Value.  
LSBs for SD Cr Scale Value.  
LSBs for SD FSC Phase.  
SD Y Scale Bits[1:0]  
SD Cb Scale Bits[1:0]  
SD Cr Scale Bits[1:0].  
Subcarrier Phase Bits[1:0]  
SD Y Scale Bits[9:2]  
SD Cb Scale Bits[9:2]  
x
x
x
x
x
x
x
x
0x9D  
0x9E  
SD Y Scale Register SD Y Scale Value.  
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
SD Cb Scale  
Register  
SD Cb Scale Value.  
0x9F  
0xA0  
0xA1  
SD Cr Scale Register SD Cr Scale Value.  
SD Hue Register SD Hue Adjust Value.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SD Cr Scale Bits[9:2]  
0x00  
0x00  
0x00  
SD Hue Adjust Bits[7:0]  
SD Brightness/WSS SD Brightness Value.  
SD Blank WSS Data.  
SD Brightness Bits[6:0]  
0
1
Disabled  
Enabled  
−4 dB  
0xA2  
SD Luma SSAF  
SD Luma SSAF Gain/Attenuation.  
Note: Only applicable if  
Register 0x87, Bit 4 = 1.  
0
0
0
1
0
1
0
0
0x00  
0 dB  
1
1
0
0
+4 dB  
Reserved.  
0
0
0
0
0xA3  
SD DNR 0  
Coring Gain Border.  
Note: In DNR mode, the values  
in brackets apply.  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No gain  
0x00  
+1/16 [−1/8]  
+2/16 [−2/8]  
+3/16 [−3/8]  
+4/16 [−4/8]  
+5/16 [−5/8]  
+6/16 [−6/8]  
+7/16 [−7/8]  
+8/16 [−1]  
Coring Gain Data.  
Note: In DNR mode, the values  
in brackets apply.  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No gain  
+1/16 [−1/8]  
+2/16 [−2/8]  
+3/16 [−3/8]  
+4/16 [−4/8]  
+5/16 [−5/8]  
+6/16 [−6/8]  
+7/16 [−7/8]  
+8/16 [−1]  
Rev. 0 | Page 41 of 88  
ADV7342/ADV7343  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
Register Setting  
0
0xA4  
SD DNR 1  
DNR Threshold.  
0
0
0
0
0
1
1
1
1
1
1
1
0
62  
1
1
1
1
1
1
63  
Border Area.  
0
1
2 pixels  
4 pixels  
Block Size Control.  
DNR Input Select.  
0
1
8 pixels  
16 pixels  
Filter A  
Filter B  
Filter C  
0xA5  
SD DNR 2  
0
0
0
1
0
1
1
0
1
0
1
0
0x00  
Filter D  
DNR Mode.  
0
1
DNR mode  
DNR sharpness mode  
0 pixel offset  
1 pixel offset  
DNR Block Offset.  
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
14 pixel offset  
15 pixel offset  
Table 29. Register 0xA6 to Register 0xBB  
SR7 to  
Bit Number  
Register  
Reset  
SR0  
Register  
Bit Description  
7
6
5
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Setting  
Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x0X  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
SD Gamma A 0  
SD Gamma A 1  
SD Gamma A 2  
SD Gamma A 3  
SD Gamma A 4  
SD Gamma A 5  
SD Gamma A 6  
SD Gamma A 7  
SD Gamma A 8  
SD Gamma A 9  
SD Gamma B 0  
SD Gamma B 1  
SD Gamma B 2  
SD Gamma B 3  
SD Gamma B 4  
SD Gamma B 5  
SD Gamma B 6  
SD Gamma B 7  
SD Gamma B 8  
SD Gamma B 9  
SD Brightness Detect  
Field Count Register  
SD Gamma Curve A (Point 24).  
SD Gamma Curve A (Point 32).  
SD Gamma Curve A (Point 48).  
SD Gamma Curve A (Point 64).  
SD Gamma Curve A (Point 80).  
SD Gamma Curve A (Point 96).  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
A0  
A1  
A2  
A3  
A4  
A5  
SD Gamma Curve A (Point 128).  
SD Gamma Curve A (Point 160).  
SD Gamma Curve A (Point 192).  
SD Gamma Curve A (Point 224).  
SD Gamma Curve B (Point 24).  
SD Gamma Curve B (Point 32).  
SD Gamma Curve B (Point 48).  
SD Gamma Curve B (Point 64).  
SD Gamma Curve B (Point 80).  
SD Gamma Curve B (Point 96).  
SD Gamma Curve B (Point 128).  
SD Gamma Curve B (Point 160).  
SD Gamma Curve B (Point 192).  
SD Gamma Curve B (Point 224).  
SD Brightness Value.  
A6  
A7  
A8  
A9  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
Read only.  
Read only.  
Reserved.  
Read only.  
Field Count.  
Reserved.  
Revision Code.  
0
0
0
0
0
Rev. 0 | Page 42 of 88  
ADV7342/ADV7343  
Table 30. Register 0xE0 to Register 0xF1  
SR7 to  
Bit Number  
Reset  
SR0  
Register1  
Bit Description  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bit.  
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
6
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
5
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Register Setting  
Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Bits[7:1] must be 0.  
1 Macrovision registers are available on the ADV7342 only.  
Rev. 0 | Page 43 of 88  
ADV7342/ADV7343  
INPUT CONFIGURATION  
Subaddress 0x01, Bit 7), with S0/Y0 being the LSB. The ITU-R  
BT.601/656 input standard is supported.  
The ADV7342/ADV7343 support a number of different input  
modes. The desired input mode is selected using Subaddress  
0x01, Bits[6:4]. The ADV7342/ADV7343 default to standard  
definition only (SD only) upon power-up. Table 31 provides an  
overview of all possible input configurations. Each input mode  
is described in detail in the following sections.  
16-Bit 4:2:2 YCrCb Mode  
Subaddress 0x87, Bit 7 = 0; Subaddress 0x88, Bit 3 = 1  
In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is input on  
Pin S7 to Pin S0 (or Pin Y7 to Pin Y0, depending on Subaddress  
0x01, Bit 7), with S0/Y0 being the LSB.  
STANDARD DEFINITION ONLY  
Subaddress 0x01, Bits[6:4] = 000  
The CrCb pixel data is input on Pin Y7 to Pin Y0 (or Pin C7 to  
Pin C0, depending on Subaddress 0x01, Bit 7), with Y0/C0  
being the LSB.  
Standard definition (SD) YCrCb data can be input in 4:2:2 format.  
Standard definition (SD) RGB data can be input in 4:4:4 format.  
A 27 MHz clock signal must be provided on the CLKIN_A pin.  
24-Bit 4:4:4 RGB Mode  
S_HSYNC  
Input synchronization signals are provided on the  
S_VSYNC  
Subaddress 0x87, Bit 7 = 1  
and  
pins.  
In 24-bit 4:4:4 RGB input mode, the red pixel data is input on  
Pin S7 to Pin S0, the green pixel data is input on Pin Y7 to  
Pin Y0, and the blue pixel data is input on Pin C7 to Pin C0.  
S0, Y0, and C0 are the respective bus LSBs.  
8-Bit 4:2:2 YCrCb Mode  
Subaddress 0x87, Bit 7 = 0; Subaddress 0x88, Bit 3 = 0  
In 8-bit 4:2:2 YCrCb input mode, the interleaved pixel data is  
input on Pin S7 to Pin S0 (or Pin Y7 to Pin Y0, depending on  
Table 31. Input Configuration  
S
Y
C
1
Input Mode  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
000 SD Only  
Y/C/S Bus Swap (0x01[7]) = 0  
8-Bit YCrCb2  
16-Bit YCrCb2, 3  
YCrCb  
Y
CrCb  
Y/C/S Bus Swap (0x01[7]) = 1  
8-Bit YCrCb2  
16-Bit YCrCb2, 3  
YCrCb  
Y
CrCb  
B
SD RGB Input Enable (0x87[7]) = 1  
24-Bit RGB3  
001 ED/HD-SDR Only4, 5  
16-Bit YCrCb  
R
G
ED/HD RGB Input Enable (0x35[1]) = 0  
Y
CrCb  
Cb  
24-Bit YCrCb  
Cr  
R
Y
ED/HD RGB Input Enable (0x35[1]) = 1  
24-Bit RGB3  
G
B
010 ED/HD-DDR Only (8-Bit)5  
011 SD and ED/HD-SDR (24-Bit)5  
100 SD and ED/HD-DDR (16-Bit)5  
111 ED Only (54 MHz) (8-Bit)5  
YCrCb  
YCrCb (SD)  
YCrCb (SD)  
Y (ED/HD)  
YCrCb (ED/HD)  
YCrCb  
CrCb (ED/HD)  
1 The input mode is determined by Subaddress 0x01, Bits[6:4].  
2 In SD only (YCrCb) mode, the format of the input data is determined by Subaddress 0x88, Bits[4:3]. See Table 26 for more information.  
3 External synchronization signals must be used in this input mode. Embedded EAV/SAV timing codes are not supported.  
4 In ED/HD-SDR only (YCrCb) mode, the format of the input data is determined by Subaddress 0x33, Bit 6. See Table 19 for more information.  
5 ED = enhanced definition = 525p and 625p.  
Rev. 0 | Page 44 of 88  
 
 
ADV7342/ADV7343  
24-Bit 4:4:4 YCrCb Mode  
ADV7342/  
ADV7343  
Subaddress 0x35, Bit 1 = 0; Subaddress 0x33, Bit 6 = 0  
2
S_VSYNC,  
S_HSYNC  
MPEG2  
DECODER  
In 24-bit 4:4:4 YCrCb input mode, the Y pixel data is input on  
Pin Y7 to Pin Y0, with Y0 being the LSB.  
27MHz  
CLKIN_A  
The Cr pixel data is input on Pin S7 to Pin S0, with S0 being  
the LSB.  
10  
YCrCb  
S[7:0] OR Y[7:0]*  
The Cb pixel data is input on Pin C7 to Pin C0, with C0 being  
the LSB.  
*SELECTED BY SUBADDRESS 0x01, BIT 7.  
Figure 51. SD Only Example Application  
24-Bit 4:4:4 RGB Mode  
ENHANCED DEFINITION/HIGH DEFINITION ONLY  
Subaddress 0x35, Bit 1 = 1  
Subaddress 0x01, Bits[6:4] = 001 or 010  
In 24-bit 4:4:4 RGB input mode, the red pixel data is input on  
Pin S7 to Pin S0, the green pixel data is input on Pin Y7 to Pin  
Y0, and the blue pixel data is input on Pin C7 to Pin C0. S0, Y0,  
and C0 are the respective bus LSBs.  
Enhanced definition (ED) or high definition (HD) YCrCb data  
can be input in either 4:2:2 or 4:4:4 formats. If desired, dual data  
rate (DDR) pixel data inputs can be employed (4:2:2 format only).  
Enhanced definition (ED) or high definition (HD) RGB data  
can be input in 4:4:4 format (single data rate only).  
MPEG2  
DECODER  
ADV7342/  
ADV7343  
CLKIN_  
A
The clock signal must be provided on the CLKIN_A pin. Input  
YCrCb  
10  
10  
10  
P_HSYNC  
synchronization signals are provided on the  
P_VSYNC P_BLANK  
,
Cb  
Cr  
Y
C[7:0]  
S[7:0]  
Y[7:0]  
, and  
pins.  
INTERLACED TO  
PROGRESSIVE  
16-Bit 4:2:2 YCrCb Mode (SDR)  
Subaddress 0x35, Bit 1 = 0; Subaddress 0x33, Bit 6 = 1  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is  
input on Pin Y7 to Pin Y0, with Y0 being the LSB.  
Figure 54. ED/HD Only Example Application  
The CrCb pixel data is input on Pin C7 to Pin C0, with C0  
being the LSB.  
SIMULTANEOUS STANDARD DEFINITION AND  
ENHANCED DEFINITION/HIGH DEFINITION  
Subaddress 0x01, Bits[6:4] = 011 or 100  
8-Bit 4:2:2 YCrCb Mode (DDR)  
Subaddress 0x35, Bit 1 = 0; Subaddress 0x33, Bit 6 = 1  
The ADV7342/ADV7343 are able to simultaneously process SD  
4:2:2 YCrCb data and ED/HD 4:2:2 YCrCb data. The 27 MHz  
SD clock signal must be provided on the CLKIN_A pin. The  
ED/HD clock signal must be provided on the CLKIN_B pin. SD  
In 8-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is input  
on Pin Y7 to Pin Y0 upon either the rising or falling edge of  
CLKIN_A. Y0 is the LSB.  
S_HSYNC  
input synchronization signals are provided on the  
The CrCb pixel data is also input on Pin Y7 to Pin Y0  
upon the opposite edge of CLKIN_A. Y0 is the LSB.  
S_VSYNC  
and  
pins. ED/HD input synchronization signals are  
P_HSYNC P_VSYNC  
P_BLANK  
pins.  
provided on the  
,
and  
Whether the Y data is clocked in upon the rising or falling edge  
of CLKIN_A is determined by Subaddress 0x01, Bits[2:1] (see  
Figure 52 and Figure 53).  
SD 8-Bit 4:2:2 YCrCb and ED/HD-SDR 16-Bit 4:2:2 YCrCb  
The SD 8-bit 4:2:2 YCrCb pixel data is input on Pin S7 to Pin  
S0, with S0 being the LSB.  
CLKIN_A  
The ED/HD 16-bit 4:2:2 Y pixel data is input on Pin Y7 to Pin  
Y0, with Y0 being the LSB.  
Y[7:0]  
3FF  
00  
00  
X
Y
Cb0  
Y0  
Cr0  
Y1  
The ED/HD 16-bit 4:2:2 CrCb pixel data is input on Pin C7 to  
Pin C0, with C0 being the LSB.  
NOTES  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 00 IN THIS CASE.  
Figure 52. ED/HD-DDR Input Sequence (EAV/SAV)—Option A  
SD 8-Bit 4:2:2 YCrCb and ED/HD-DDR 8-Bit 4:2:2 YCrCb  
The SD 8-bit 4:2:2 YCrCb pixel data is input on Pin S7 to Pin  
S0, with S0 being the LSB.  
CLKIN_  
A
The ED/HD-DDR 8-bit 4:2:2 Y pixel data is input on Pin Y7 to  
Pin Y0 upon the rising or falling edge of CLKIN_B. Y0 is the LSB.  
Y[7:0]  
3FF  
00  
00  
XY  
Y0  
Cb0  
Y1  
Cr0  
NOTES  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO11 IN THIS CASE.  
The ED/HD-DDR 8-bit 4:2:2 CrCb pixel data is also input on Pin  
Y7 to Pin Y0 upon the opposite edge of CLKIN_B. Y0 is the LSB.  
Figure 53. ED/HD-DDR Input Sequence (EAV/SAV)—Option B  
Rev. 0 | Page 45 of 88  
 
ADV7342/ADV7343  
Whether the ED/HD Y data is clocked in upon the rising  
or falling edge of CLKIN_B is determined by Subaddress 0x01,  
Bits[2:1] (See the input sequence shown in Figure 52 and  
Figure 53).  
ENHANCED DEFINITION ONLY (AT 54 MHz)  
Subaddress 0x01, Bits[6:4] = 111  
Enhanced definition (ED) YCrCb data can be input in an  
interleaved 4:2:2 format on an 8-bit bus at a rate of 54 MHz.  
A 54 MHz clock signal must be provided on the CLKIN_A pin.  
S_VSYNC,  
S_HSYNC  
2
CrCb  
P_HSYNC  
Input synchronization signals are provided on the  
P_VSYNC P_BLANK  
,
SDTV  
DECODER  
27MHz  
CLKIN_A  
S[7:0]  
, and  
pins.  
10  
YCrCb  
The interleaved pixel data is input on Pin Y7 to Pin Y0, with Y0  
being the LSB.  
ADV7342/  
ADV7343  
HDTV  
DECODER  
10  
CrCb  
Y
1080i  
OR  
C[7:0]  
CLKIN_A  
10  
Y[7:0]  
720p  
OR  
1035i  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
Y[7:0]  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
Figure 57. ED Only (at 54 MHz) Input Sequence (EAV/SAV)  
74.25MHz  
CLKIN_B  
MPEG2  
DECODER  
Figure 55. Simultaneous SD and ED Example Application  
54MHz  
CLKIN_A  
YCrCb  
S_VSYNC,  
S_HSYNC  
2
SDTV  
DECODER  
ADV7342/  
ADV7343  
27MHz  
YCrCb  
CLKIN_A  
S[7:0]  
10  
YCrCb  
10  
Y[7:0]  
INTERLACED TO  
PROGRESSIVE  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
ADV7342/  
ADV7343  
HDTV  
DECODER  
10  
CrCb  
Y
1080i  
OR  
C[7:0]  
10  
Figure 58. ED Only (at 54 MHz) Example Application  
Y[7:0]  
720p  
OR  
1035i  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
74.25MHz  
CLKIN_B  
Figure 56. Simultaneous SD and HD Example Application  
Rev. 0 | Page 46 of 88  
 
ADV7342/ADV7343  
OUTPUT CONFIGURATION  
The ADV7342/ADV7343 support a number of different output configurations. Table 32 to Table 35 lists all possible output configurations.  
Table 32. SD Only Output Configurations  
RGB/YPrPb  
SD DAC  
Output 2  
(0x82, Bit 2)  
SD DAC  
Output 1  
(0x82, Bit 1)  
Output Select1  
(0x02, Bit 5)  
SD Luma/Chroma  
Swap (0x84, Bit 7)  
DAC 1 DAC 2  
DAC 3  
DAC 4 DAC 5  
DAC 6  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
G
G
B
B
R
R
CVBS  
CVBS  
G
G
G
Luma  
Chroma Luma  
B
B
Luma  
Chroma Luma  
B
B
Luma  
Chroma Luma  
Pb  
Pb  
Luma  
Chroma Luma  
Pb  
Pb  
Chroma  
CVBS  
CVBS  
CVBS  
CVBS  
G
G
Y
Y
CVBS  
CVBS  
CVBS  
CVBS  
Y
Luma  
Chroma Luma  
B
B
Luma  
Chroma Luma  
Pb  
Pb  
Luma  
Chroma Luma  
Pb  
Pb  
Chroma  
R
R
R
R
Chroma  
G
Chroma CVBS  
R
R
CVBS  
CVBS  
CVBS  
Y
Y
Y
Y
Pr  
Pr  
Chroma  
Chroma  
Pr  
Pr  
Chroma  
Pr  
Pr  
Luma  
Chroma CVBS  
Pr  
Pr  
Y
Chroma Luma CVBS  
1 If SD RGB output is selected, a color reversal is possible using Subaddress 0x86, Bit 7.  
Table 33. ED/HD Only Output Configurations  
RGB/YPrPb Output Select (0x02, Bit 5)  
ED/HD Color DAC Swap (0x35, Bit 3)  
DAC 1 DAC 2 DAC 3 DAC 4 DAC 5 DAC 6  
0
0
1
1
0
1
0
1
G
G
Y
Y
B
R
Pb  
Pr  
R
B
Pr  
Pb  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Table 34. Simultaneous SD and ED/HD Output Configurations  
ED/HD Color  
RGB/YPrPb Output DAC Swap  
SD Luma/Chroma  
Swap (0x84, Bit 7)  
DAC 1  
(ED/HD)  
DAC 2  
(ED/HD)  
DAC 3  
(ED/HD)  
DAC 4  
(SD)  
DAC 5  
(SD)  
DAC 6  
(SD)  
Select (0x02, Bit 5)  
(0x35, Bit 3)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
G
G
G
G
Y
Y
Y
Y
B
B
R
R
Pb  
Pb  
Pr  
Pr  
R
R
B
B
Pr  
Pr  
Pb  
Pb  
CVBS  
CVBS  
CVBS  
CVBS  
CVBS  
CVBS  
CVBS  
CVBS  
Luma  
Chroma  
Luma  
Chroma  
Luma  
Chroma  
Luma  
Chroma  
Luma  
Chroma  
Luma  
Chroma  
Luma  
Chroma  
Luma  
Chroma  
Table 35. ED Only (at 54 MHz) Output Configurations  
RGB/YPrPb Output Select (0x02, Bit 5)  
ED/HD Color DAC Swap (0x35, Bit 3)  
DAC 1 DAC 2 DAC 3 DAC 4 DAC 5 DAC 6  
0
0
1
1
0
1
0
1
G
G
Y
Y
B
R
Pb  
Pr  
R
B
Pr  
Pb  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Rev. 0 | Page 47 of 88  
 
ADV7342/ADV7343  
FEATURES  
ED/HD nonstandard timing mode can be enabled by setting  
Subaddress 0x30, Bits[7:3] to 00001.  
OUTPUT OVERSAMPLING  
The ADV7342/ADV7343 include two on-chip phase locked  
loops (PLLs) that allow for oversampling of SD, ED, and HD  
video data. Table 36 shows the various oversampling rates  
supported in the ADV7342/ADV7343.  
A clock signal must be provided on the CLKIN_A pin.  
P_HSYNC  
P_VSYNC  
and  
must be toggled by the user to  
generate the appropriate horizontal and vertical synchronization  
pulses on the analog output from the encoder. Figure 59 illustrates  
the various output levels that can be generated .Table 37 lists the  
transitions required to generate these output levels.  
SD Only, ED Only, and HD Only Modes  
PLL 1 is used in SD only, ED only, and HD only modes. PLL 2 is  
unused in these modes. PLL 1 is disabled by default and can be  
enabled using Subaddress 0x00, Bit 1 = 0.  
Embedded EAV/SAV timing codes are not supported in  
ED/HD nonstandard timing mode.  
SD and ED/HD Simultaneous Modes  
The user must ensure that appropriate pixel data is applied to  
the encoder where the blanking level is expected at the output.  
Both PLL 1 and PLL 2 are used in simultaneous modes. The use  
of two PLLs allows for independent oversampling of SD and  
ED/HD video. PLL 1 is used to oversample SD video data, and  
PLL 2 is used to oversample ED/HD video data. In simultaneous  
modes, PLL 2 is always enabled. PLL 1 is disabled by default and  
can be enabled using Subaddress 0x00, Bit 1 = 0.  
Macrovision (ADV7342 only) and output oversampling are not  
available in ED/HD nonstandard timing mode.  
ANALOG  
OUTPUT  
b
ACTIVE VIDEO  
a
ED/HD NONSTANDARD TIMING MODE  
b
b
Subaddress 0x30, Bits[7:3] = 00001  
BLANKING LEVEL  
c
For any ED/HD input data that does not conform to the  
standards available in the ED/HD input mode table  
(Subaddress 0x30, Bits[7:3]), the ED/HD nonstandard timing  
mode can be used to interface to the ADV7342/ADV7343.  
a = TRI-LEVEL SYNCHRONIZATION PULSE LEVEL.  
b = BLANKING LEVEL/ACTIVE VIDEO LEVEL.  
c = SYNCHRONIZATION PULSE LEVEL.  
Figure 59. ED/HD Nonstandard Timing Mode Output Levels  
Table 36. Output Oversampling Modes and Rates  
Input Mode  
Subaddress 0x01 [6:4]  
PLL and Oversampling Control  
Subaddress 0x00, Bit 1  
Oversampling Mode and Rate  
SD (2×)  
SD (16×)  
ED (1×)  
ED (8×)  
000  
000  
SD only  
SD only  
ED only  
ED only  
HD only  
HD only  
SD and ED  
SD and ED  
SD and HD  
SD and HD  
ED only (at 54 MHz)  
ED only (at 54 MHz)  
1
0
1
0
1
0
1
0
1
0
1
0
001/010  
001/010  
001/010  
001/010  
011/100  
011/100  
011/100  
011/100  
111  
HD (1×)  
HD (4×)  
SD (2×) and ED (8×)  
SD (16×) and ED (8×)  
SD (2×) and HD (4×)  
SD (16×) and HD (4×)  
ED only (at 54 MHz) (1×)  
ED only (at 54 MHz) (8×)  
111  
Table 37. ED/HD Nonstandard Timing Mode Synchronization Signal Generation  
Output Level Transition1  
P_HSYNC  
P_VSYNC  
b c  
c a  
a b  
c b  
1 0  
0
1 0 or 02  
0 1  
1
0
0 1  
0 1  
1 a = tri-level synchronization pulse level; b = blanking level/active video level; c = synchronization pulse level.  
2
P_VSYNC  
P_VSYNC  
P_VSYNC  
If  
= 1, it should transition to 0. If  
= 0, it should remain at 0. If tri-level synchronization pulse generation is not required, should always be 0.  
Rev. 0 | Page 48 of 88  
 
ADV7342/ADV7343  
Subcarrier Phase Reset (SCR) Mode  
ED/HD TIMING RESET  
Subaddress 0x34, Bit 0  
In this mode (Subaddress 0x84, Bits[2:1] = 01), a low-to-high  
transition on the SFL/MISO pin (Pin 48) resets the subcarrier  
phase to 0 on the field following the subcarrier phase reset. This  
reset signal must be held high for a minimum of one clock cycle.  
An ED/HD timing reset is achieved by toggling the ED/HD  
timing reset control bit (Subaddress 0x34, Bit 0) from 0 to 1.  
In this state, the horizontal and vertical counters remain reset.  
When this bit is set back to 0, the internal counters resume  
counting. This timing reset applies to the ED/HD timing  
counters only.  
Because the field counter is not reset, it is recommended that  
the reset signal be applied in Field 7 (PAL) or Field 3 (NTSC).  
The reset of the phase then occurs on the next field, that is,  
Field 1, lined up correctly with the internal counters. The field  
count register at Subaddress 0xBB can be used to identify the  
number of the active field.  
SD SUBCARRIER FREQUENCY LOCK, SUBCARRIER  
PHASE RESET, AND TIMING RESET  
Subaddress 0x84, Bits[2:1]  
Subcarrier Frequency Lock (SFL) Mode  
Together with the SFL/MISO pin and SD Mode Register 4  
(Subaddress 0x84, Bits[2:1]), the ADV7342/ADV7343 can be used  
in timing reset mode, subcarrier phase reset mode, or SFL mode.  
In this mode (Subaddress 0x84, Bits[2:1] = 11), the ADV7342  
/ADV7343 can be used to lock to an external video source. The  
SFL mode allows the ADV7342/ADV7343 to automatically alter  
the subcarrier frequency to compensate for line length  
variations. When the part is connected to a device such as an  
ADV7403 video decoder (see Figure 62) that outputs a digital  
data stream in the SFL format, the part automatically changes to  
the compensated subcarrier frequency on a line-by-line basis.  
This digital data stream is 67 bits wide, and the subcarrier is  
contained in Bit 0 to Bit 21. Each bit is two clock cycles long.  
Timing Reset (TR) Mode  
In this mode (Subaddress 0x84, Bits[2:1] = 10), a timing reset is  
achieved in a low-to-high transition on the SFL/MISO pin (Pin 48).  
In this state, the horizontal and vertical counters remain reset.  
Upon releasing this pin (set to low), the internal counters resume  
counting, starting with Field 1, and the subcarrier phase is reset.  
The minimum time the pin must be held high is one clock  
cycle; otherwise, this reset signal might not be recognized. This  
timing reset applies to the SD timing counters only.  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
310  
313  
320  
NO TIMING RESET APPLIED  
DISPLAY  
START OF FIELD 1  
F
PHASE = FIELD 1  
SC  
307  
1
2
3
4
5
6
7
21  
TIMING RESET PULSE  
TIMING RESET APPLIED  
Figure 60. SD Timing Reset Timing Diagram (Subaddress 0x84, Bits [2:1] = 10)  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
310  
313  
320  
NO F RESET APPLIED  
SC  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 1  
SC  
307  
310  
313  
320  
F
RESET PULSE  
SC  
F
RESET APPLIED  
SC  
Figure 61. SD Subcarrier Phase Reset Timing Diagram (Subaddress 0x84, Bits [2:1] = 01)  
Rev. 0 | Page 49 of 88  
 
ADV7342/ADV7343  
ADV7342/ADV7343  
CLKIN_A  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
LCC1  
SFL  
SFL/MISO  
COMPOSITE  
ADV7403  
VIDEO  
DECODER  
1
VIDEO  
P[19:12]  
5
Y[7:0]/S[7:0]  
4 BITS  
RESERVED  
14 BITS  
SEQUENCE  
4
H/L TRANSITION  
COUNT START  
RESET BIT  
SUBCARRIER  
PHASE  
3
BIT  
LOW  
13  
RESERVED  
2
PLL INCREMENT  
F
128  
SC  
21  
0
0
RTC  
6768  
14  
19  
TIME SLOT 01  
VALID INVALID  
SAMPLE SAMPLE  
8/LINE  
LOCKED  
CLOCK  
5 BITS  
RESERVED  
1
2
FOR EXAMPLE, VCR OR CABLE.  
F
PLL INCREMENT IS 22 BITS LONG. VALUE LOADED INTO ADV7342/ADV7343 F DDS REGISTER IS  
SC  
SC  
F
PLL INCREMENTS BITS 21:0 PLUS BITS 0:9 OF SUBCARRIER FREQUENCY REGISTERS.  
SC  
3
SEQUENCE BIT  
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED  
NTSC: 0 = NO CHANGE  
RESET ADV7342/ADV7343 DDS.  
SELECTED BY SUBADDRESS 0x01, BIT 7.  
4
5
Figure 62. SD Subcarrier Frequency Lock Timing and Connections Diagram (Subaddress 0x84, Bits [2:1] = 11)  
For the SMPTE 293M (525p) standard, VBI data can be  
inserted on Line 13 to Line 42 of each frame, or on Line 6 to  
Line 43 for the ITU-R BT.1358 (625p) standard.  
SD VCR FF/RW SYNC  
Subaddress 0x82, Bit 5  
In DVD record applications where the encoder is used with a  
decoder, the VCR FF/RW sync control bit can be used for non-  
standard input video, that is, in fast forward or rewind modes.  
VBI data can be present on Line 10 to Line 20 for NTSC and on  
Line 7 to Line 22 for PAL.  
In SD Timing Mode 0 (slave option), if VBI is enabled, the  
blanking bit in the EAV/SAV code is overwritten. It is possible  
to use VBI in this timing mode as well.  
In fast forward mode, the sync information at the start of a new  
field in the incoming video usually occurs before the correct  
number of lines/fields is reached. In rewind mode, this sync  
signal usually occurs after the total number of lines/fields is  
reached. Conventionally, this means that the output video has  
corrupted field signals because one signal is generated by the  
incoming video and another is generated when the internal  
line/field counters reach the end of a field.  
If CGMS is enabled and VBI is disabled, the CGMS data is  
nevertheless available at the output.  
SD SUBCARRIER FREQUENCY REGISTERS  
Subaddress 0x8C to Subaddress 0x8F  
Four 8-bit registers are used to set up the subcarrier frequency.  
The value of these registers is calculated using:  
When the VCR FF/RW sync control is enabled (Subaddress 0x82,  
Bit 5), the line/field counters are updated according to the  
VSYNC  
incoming  
the incoming  
signal and when the analog output matches  
VSYNC  
Subcarrier Frequency Register =  
signal.  
Number of subcarrier periods in one video line  
× 232  
This control is available in all slave-timing modes except  
Slave Mode 0.  
Number of 27 MHz clk cycles in one video line  
where the sum is rounded to the nearest integer.  
For example, in NTSC mode:  
VERTICAL BLANKING INTERVAL  
Subaddress 0x31, Bit 4; Subaddress 0x83, Bit 4  
227.5  
1716  
Subcarrier Register Value =  
×
32 = 569408543  
2
The ADV7342/ADV7343 are able to accept input data that  
contains VBI data (such as CGMS, WSS, and VITS) in SD, ED,  
and HD modes.  
where:  
Subcarrier Register Value = 569408543d = 0×21F07C1F  
SD FSC Register 0: 0x1F  
SD FSC Register 1: 0x7C  
SD FSC Register 2: 0xF0  
SD FSC Register 3: 0x21  
If VBI is disabled (Subaddress 0x31, Bit 4 for ED/HD;  
Subaddress 0x83, Bit 4 for SD), VBI data is not present at the  
output and the entire VBI is blanked. These control bits are  
valid in all master and slave timing modes.  
Rev. 0 | Page 50 of 88  
 
ADV7342/ADV7343  
Programming the FSC  
A 27 MHz clock signal must be provided on the CLKIN_A pin.  
Embedded EAV/SAV timing codes or external horizontal and  
The subcarrier frequency register value is divided into four FSC  
registers as shown in the previous example. The four subcarrier  
frequency registers must be updated sequentially, starting with  
Subcarrier Frequency Register 0 and ending with Subcarrier  
Frequency Register 3. The subcarrier frequency updates only  
after the last subcarrier frequency register byte has been  
received by the ADV7342/ADV7343.  
S_HSYNC  
vertical synchronization signals provided on the  
S_VSYNC  
and  
pins can be used to synchronize the input pixel data.  
All input configurations, output configurations and features  
available in NTSC and PAL modes are available in SD non-  
interlaced mode.  
For 240p/59.94 Hz input, the ADV7342/ADV7343 should be  
configured for NTSC operation and Subaddress 0x88, Bit 1  
should be set to 1.  
Typical FSC Values  
Table 38 outlines the values that should be written to the  
subcarrier frequency registers for NTSC and PAL B/D/G/H/I.  
For 288p/50 Hz input, the ADV7342/ADV7343 should be  
configured for PAL operation and Subaddress 0x88, Bit 1  
should be set to 1.  
Table 38. Typical FSC Values  
Subaddress  
Description  
NTSC  
0x1F  
0x7C  
0xF0  
0x21  
PAL B/D/G/H/I  
0xCB  
0x8A  
0x09  
0x2A  
SD SQUARE PIXEL MODE  
Subaddress 0x82, Bit 4  
0x8C  
FSC0  
0x8D  
FSC1  
0x8E  
FSC2  
The ADV7342/ADV7343 can be used to operate in square pixel  
mode (Subaddress 0x82, Bit 4). For NTSC operation, an input  
clock of 24.5454 MHz is required. Alternatively, for PAL  
operation, an input clock of 29.5 MHz is required.  
0x8F  
FSC3  
SD NONINTERLACED MODE  
Subaddress 0x88, Bit 1  
The internal timing logic adjusts accordingly for square pixel  
mode operation. In square pixel mode, the timing diagrams  
shown in Figure 63 and Figure 64 apply.  
The ADV7342/ADV7343 support a SD noninterlaced mode.  
Using this mode, progressive inputs at twice the frame rate of  
NTSC and PAL (240p/59.94 Hz and 288p/50 Hz, respectively)  
can be input into the ADV7342/ADV7343. The SD noninterlaced  
mode can be enabled using Subaddress 0x88, Bit 1.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
r
C
b
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
272 CLOCK  
1280 CLOCK  
1536 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
344 CLOCK  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 63. Square Pixel Mode EAV/SAV Embedded Timing  
HSYNC  
FIELD  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 308 CLOCK CYCLES  
NTSC = 236 CLOCK CYCLES  
Figure 64. Square Pixel Mode Active Pixel Timing  
Rev. 0 | Page 51 of 88  
 
ADV7342/ADV7343  
EXTENDED (SSAF) PrPb FILTER MODE  
FILTERS  
0
–10  
–20  
–30  
–40  
–50  
–60  
Table 39 shows an overview of the programmable filters  
available on the ADV7342/ADV7343.  
Table 39. Selectable Filters  
Filter  
Subaddress  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x82  
0x33  
0x33  
0x33  
SD Luma LPF NTSC  
SD Luma LPF PAL  
SD Luma Notch NTSC  
SD Luma Notch PAL  
SD Luma SSAF  
SD Luma CIF  
SD Luma QCIF  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
SD Chroma 0.65 MHz  
SD Chroma 1.0 MHz  
SD Chroma 1.3 MHz  
SD Chroma 2.0 MHz  
SD Chroma 3.0 MHz  
SD Chroma CIF  
SD Chroma QCIF  
SD PrPb SSAF  
ED/HD Chroma Input  
ED/HD Sinc Compensation Filter  
ED/HD Chroma SSAF  
Figure 65. PrPb SSAF Filter  
If this filter is disabled, one of the chroma filters shown in  
Table 40 can be selected and used for the CVBS or luma/  
chroma signal.  
Table 40. Internal Filter Specifications  
Pass-Band  
Filter  
Ripple (dB)1  
0.16  
3 dB Bandwidth (MHz)2  
Luma LPF NTSC  
Luma LPF PAL  
Luma Notch NTSC  
Luma Notch PAL  
Luma SSAF  
4.24  
4.81  
0.1  
0.09  
0.1  
0.04  
2.3/4.9/6.6  
3.1/5.6/6.4  
6.45  
SD Internal Filter Response  
Subaddress 0x80, Bits[7:2]; Subaddress 0x82, Bit 0  
Luma CIF  
0.127  
3.02  
The Y filter supports several different frequency responses,  
including two low-pass responses, two notch responses, an  
extended (SSAF) response with or without gain boost  
attenuation, a CIF response, and a QCIF response. The PrPb  
filter supports several different frequency responses, including  
six low-pass responses, a CIF response, and a QCIF response, as  
shown in Figure 39 and Figure 40.  
Luma QCIF  
Monotonic  
Monotonic  
Monotonic  
0.09  
1.5  
0.65  
1
1.395  
2.2  
3.2  
0.65  
0.5  
Chroma 0.65 MHz  
Chroma 1.0 MHz  
Chroma 1.3 MHz  
Chroma 2.0 MHz  
Chroma 3.0 MHz  
Chroma CIF  
0.048  
Monotonic  
Monotonic  
Monotonic  
Chroma QCIF  
If SD SSAF gain is enabled (Subaddress 0x87, Bit 4), there are 13  
response options in the −4 dB to +4 dB range. The desired response  
can be programmed using Subaddress 0xA2. The variation of  
frequency responses is shown in Figure 36 to Figure 38.  
1 Pass-band ripple is the maximum fluctuation from the 0 dB response in the  
pass band, measured in dB. The pass band is defined to have 0 Hz to fc (Hz)  
frequency limits for a low-pass filter, and 0 Hz to f1 (Hz) and f2 (Hz) to infinity  
for a notch filter, where fc, f1, and f2 are the −3 dB points.  
2 3 dB bandwidth refers to the −3 dB cutoff frequency.  
In addition to the chroma filters listed in Table 39, the ADV7342/  
ADV7343 contain an SSAF filter specifically designed for the color  
difference component outputs, Pr and Pb. This filter has a cutoff  
frequency of ~2.7 MHz and a gain of –40 dB at 3.8 MHz (see  
Figure 65). This filter can be controlled with Subaddress 0x82,  
Bit 0.  
Rev. 0 | Page 52 of 88  
 
ADV7342/ADV7343  
Table 41. Sample Color Values for EIA 770.2/EIA 770.3  
ED/HD Output Standard Selection  
ED/HD Sinc Compensation Filter Response  
Subaddress 0x33, Bit 3  
Sample Color  
Y Value  
Cr Value  
Cb Value  
The ADV7342/ADV7343 include a filter designed to counter  
the effect of sinc roll-off in DAC 1, DAC 2, and DAC 3 while  
operating in ED/HD mode. This filter is enabled by default. It  
can be disabled using Subaddress 0x33, Bit 3. The benefit of the  
filter is illustrated in Figure 66 and Figure 67.  
0.5  
White  
Black  
Red  
Green  
Blue  
Yellow  
Cyan  
235 (0xEB)  
128 (0x80) 128 (0x80)  
128 (0x80) 128 (0x80)  
16  
81  
(0x10)  
(0x51)  
240 (0xF0)  
90  
(0x5A)  
(0x36)  
145 (0x91)  
41 (0x29)  
34  
(0x22) 54  
110 (0x6E)  
240 (0xF0)  
(0x10)  
(0x10) 166 (0xA6)  
106 (0x6A) 222 (0xDE) 202 (0xCA)  
210 (0xD2) 146 (0x92) 16  
170 (0xAA) 16  
0.4  
0.3  
Magenta  
0.2  
COLOR SPACE CONVERSION MATRIX  
0.1  
Subaddress 0x03 to Subaddress 0x09  
0
The internal color space conversion (CSC) matrix automatically  
performs all color space conversions based on the input mode  
programmed in the mode select register (Subaddress 0x01,  
Bits[6:4]). Table 42 and Table 43 show the options available in  
this matrix.  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
An SD color space conversion from RGB-in to YPrPb-out is  
possible. An ED/HD color space conversion from RGB-in to  
YPrPb-out is not possible.  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 66. ED/HD Sinc Compensation Filter Enabled  
0.5  
0.4  
Table 42. SD Color Space Conversion Options  
YPrPb/RGB Out  
RGB In/YCrCb In  
(Reg. 0x87, Bit 7)  
Input Output1 (Reg. 0x02, Bit 5)  
0.3  
YCrCb YPrPb  
YCrCb RGB  
1
0
1
0
0
0
1
1
0.2  
0.1  
RGB  
RGB  
YPrPb  
RGB  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1 CVBS/YC outputs are available for all CSC combinations.  
Table 43. ED/HD Color Space Conversion Options  
YPrPb/RGB Out  
Input Output (Reg. 0x02, Bit 5)  
RGB In/YCrCb In  
(Reg. 0x35, Bit 1)  
YCrCb YPrPb  
YCrCb RGB  
1
0
0
0
0
1
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 67. ED/HD Sinc Compensation Filter Disabled  
RGB  
RGB  
ED/HD TEST PATTERN COLOR CONTROLS  
Subaddress 0x36 to Subaddress 0x38  
ED/HD Manual CSC Matrix Adjust Feature  
The ED/HD manual CSC matrix adjust feature provides custom  
coefficient manipulation for color space conversions and is used  
in ED and HD modes only. The ED/HD manual CSC matrix  
adjust feature can be enabled using Subaddress 0x02, Bit 3.  
Three 8-bit registers at Subaddress 0x36 to Subaddress 0x38  
are used to program the output color of the internal ED/HD  
test pattern generator (Subaddress 0x31, Bit 2 = 1), whether it  
be the lines of the cross hatch pattern or the uniform field test  
pattern. They are not functional as color controls for external  
pixel data input.  
Normally, there is no need to enable this feature because the CSC  
matrix automatically performs the color space conversion based  
on the input mode chosen (ED or HD) and the input and output  
color spaces selected (see Table 43). For this reason, the ED/HD  
manual CSC matrix adjust feature is disabled by default.  
The values for the luma (Y) and the color difference (Cr and  
Cb) signals used to obtain white, black, and saturated primary  
and complementary colors conform to the ITU-R BT.601-4  
standard.  
Table 41 shows sample color values that can be programmed  
into the color registers when the output standard selection is set  
to EIA 770.2/EIA 770.3 (Subaddress 0x30, Bits[1:0] = 00).  
Rev. 0 | Page 53 of 88  
 
ADV7342/ADV7343  
If RGB output is selected, the ED/HD CSC matrix scalar uses  
the following equations:  
input standard color space. The user should consider that the  
color component conversion could use different scale values.  
R = GY × Y + RV × Pr  
For example, SMPTE 293M uses the following conversion:  
R = Y + 1.402Pr  
G = GY × Y − (GU × Pb) − (GV × Pr)  
B = GY × Y + BU × Pb  
G = Y – 0.714Pr – 0.344Pb  
Note that subtractions are implemented in hardware.  
B = Y + 1.773Pb  
If YPrPb output is selected, the following equations are used:  
The programmable CSC matrix is used for external ED/HD  
pixel data and is not functional when internal test patterns are  
enabled.  
Y = GY × Y  
Pr = RV × Pr  
Pb = BU × Pb  
where:  
Programming the CSC Matrix  
If custom manipulation of the ED/HD CSC matrix coefficients  
is required for a YCrCb-to-RGB color space conversion, use the  
following procedure:  
GY = Subaddress 0x05, Bits[7:0] and Subaddress 0x03, Bits[1:0].  
GU = Subaddress 0x06, Bits[7:0] and Subaddress 0x04, Bits[7:6].  
GV = Subaddress 0x07, Bits[7:0] and Subaddress 0x04, Bits[5:4].  
BU = Subaddress 0x08, Bits[7:0] and Subaddress 0x04, Bits[3:2].  
RV = Subaddress 0x09, Bits[7:0] and Subaddress 0x04, Bits[1:0].  
1. Enable the ED/HD manual CSC matrix adjust feature  
(Subaddress 0x02, Bit 3).  
2. Set the output to RGB (Subaddress 0x02, Bit 5).  
3. Disable sync on PrPb (Subaddress 0x35, Bit 2).  
4. Enable sync on RGB (optional) (Subaddress 0x02, Bit 4).  
Upon power-up, the CSC matrix is programmed with the  
default values shown in Table 44.  
The GY value controls the green signal output level, the BU  
value controls the blue signal output level, and the RV value  
controls the red signal output level.  
Table 44. ED/HD Manual CSC Matrix Default Values  
Subaddress  
Default  
0x03  
0xF0  
0x4E  
0x0E  
0x24  
0x92  
0x7C  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
SD LUMA AND COLOR CONTROL  
Subaddress 0x9C to Subaddress 0x9F  
SD Y Scale, SD Cb Scale, and SD Cr Scale are three 10-bit  
control registers that scale the SD Y, Cb, and Cr output levels.  
Each of these registers represents the value required to scale the  
Cb or Cr level from 0.0 to 2.0 times its initial value and the Y  
level from 0.0 to 1.5 times its initial level. The value of these 10  
bits is calculated using the following equation:  
When the ED/HD manual CSC matrix adjust feature is enabled,  
the default coefficient values in Subaddress 0x03 to  
Subaddress 0x09 are correct for the HD color space only. The  
color components are converted according to the following  
1080i and 720p standards (SMPTE 274M, SMPTE 296M):  
Y, Cb, or Cr Scale Value = Scale Factor × 512  
For example, if Scale Factor = 1.3  
Y, Cb, or Cr Scale Value = 1.3 × 512 = 665.6  
Y, Cb, or Cr Scale Value = 666 (rounded to the nearest integer)  
Y, Cb, or Cr Scale Value = 1010 0110 10b  
R = Y + 1.575Pr  
G = Y − 0.468Pr − 0.187Pb  
B = Y + 1.855Pb  
Subaddress 0x9C, SD Scale LSB Register = 0x2A  
Subaddress 0x9D, SD Y Scale Register = 0xA6  
Subaddress 0x9E, SD Cb Scale Register = 0xA6  
Subaddress 0x9F, SD Cr Scale Register = 0xA6  
The conversion coefficients should be multiplied by 315 before  
being written to the ED/HD CSC matrix registers This is  
reflected in the default values for GY = 0x13B, GU = 0x03B,  
GV = 0x093, BU = 0x248, and RV = 0x1F0.  
Note that this feature affects all interlaced output signals, that is,  
CVBS, Y/C, YPrPb, and RGB.  
If the ED/HD manual CSC matrix adjust feature is enabled and  
another input standard (such as ED) is used, the scale values for  
GY, GU, GV, BU, and RV must be adjusted according to this  
Rev. 0 | Page 54 of 88  
 
ADV7342/ADV7343  
For NTSC with pedestal, the setup can vary from 0 IRE to 22.5 IRE.  
For NTSC without pedestal and for PAL, the setup can vary  
from −7.5 IRE to +15 IRE.  
SD HUE ADJUST CONTROL  
Subaddress 0xA0  
When enabled, the SD hue adjust control register (Subaddress  
0xA0) is used to adjust the hue on the SD composite and chroma  
outputs. This feature can be enabled using Subaddress 0x87, Bit 2.  
The SD brightness control register is an 8-bit register. The seven  
LSBs of this 8-bit register are used to control the brightness  
level, which can be a positive or negative value.  
Subaddress 0xA0 contains the bits required to vary the hue of  
the video data, that is, the variance in phase of the subcarrier  
during active video with respect to the phase of the subcarrier  
during the color burst. The ADV7342/ADV7343 provide a  
range of 22.5° in increments of 0.17578125°. For normal  
operation (zero adjustment), this register is set to 0x80. Values  
0xFF and 0x00 represent the upper and lower limits, respectively,  
of the attainable adjustment in NTSC mode. Values 0xFF and  
0x01 represent the upper and lower limits, respectively, of the  
attainable adjustment in PAL mode.  
For example, to add +20 IRE brightness level to an NTSC signal  
with pedestal, write 0x28 to Subaddress 0xA1.  
0 × (SD Brightness Value) =  
0 × (IRE Value × 2.015631) =  
0 × (20 × 2.015631) = 0 × (40.31262) ≈ 0x28  
To add –7 IRE brightness level to a PAL signal, write 0x72 to  
Subaddress 0xA1.  
0 × (SD Brightness Value) =  
The hue adjust value is calculated using the following equation:  
Hue Adjust (°) = 0.17578125° (HCRd − 128)  
0 × (IRE Value × 2.075631) =  
0 × (7 × 2.015631) = 0x(14.109417) ≈ 0001110b  
0001110b into twos complement = 1110010b = 0x72  
where HCRd is the hue adjust control register (decimal)  
For example, to adjust the hue by +4°, write 0x97 to the hue  
adjust control register.  
Table 45. Sample Brightness Control Values1  
Setup Level  
(NTSC) with  
Pedestal  
Setup Level  
(NTSC)  
Without  
Setup  
Level  
(PAL)  
4
Brightness  
Control  
Value  
+ 128 151d = 0x97  
0.17578125  
Pedestal  
where the sum is rounded to the nearest integer.  
22.5 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
0x1E  
0x0F  
0x00  
0x71  
To adjust the hue by −4°, write 0x69 to the hue adjust control  
register.  
−7.5 IRE  
−7.5 IRE  
4  
+ 128 105d = 0x69  
1 Values in the range of 0x3F to 0x44 could result in an invalid output signal.  
SD INPUT STANDARD AUTO DETECTION  
Subaddress 0x87, Bit 5  
0.17578125  
where the sum is rounded to the nearest integer.  
SD BRIGHTNESS DETECT  
The ADV7342/ADV7343 include an SD input standard auto-  
detect feature. This SD feature can be enabled by setting  
Subaddress 0x87, Bit 5 to 1.  
Subaddress 0xBA  
The ADV7342/ADV7343 allow monitoring of the brightness  
level of the incoming video data. The SD brightness detect  
register (Subaddress 0xBA) is a read-only register.  
When enabled, the ADV7342/ADV7343 can automatically  
identify an NTSC or PAL B/D/G/H/I input stream. The  
ADV7342/ADV7343 automatically update the subcarrier  
frequency registers with the appropriate value for the identified  
standard. The ADV7342/ADV7343 are also configured to  
correctly encode the identified standard.  
SD BRIGHTNESS CONTROL  
Subaddress 0xA1, Bits[6:0]  
When this feature is enabled, the SD brightness/WSS control  
register (Subaddress 0xA1) is used to control brightness by  
adding a programmable setup level onto the scaled Y data. This  
feature can be enabled using Subaddress 0x87, Bit 3.  
The SD standard bits (Subaddress 0x80, Bits[1:0]) and the  
subcarrier frequency registers are not updated to reflect the  
identified standard. All registers retain their default or user-  
defined values.  
NTSC WITHOUT PEDESTAL  
100 IRE  
+7.5 IRE  
0 IRE  
–7.5 IRE  
POSITIVE SETUP  
VALUE ADDED  
NEGATIVE SETUP  
VALUE ADDED  
NO SETUP  
VALUE ADDED  
Figure 68. Examples of Brightness Control Values  
Rev. 0 | Page 55 of 88  
 
ADV7342/ADV7343  
with respect to the reference video output signal. The overall  
gain of the signal is reduced from the reference signal.  
DOUBLE BUFFERING  
Subaddress 0x33, Bit 7 for ED/HD,  
Subaddress 0x88, Bit 2 for SD  
The range of this feature is specified for 7.5% of the nominal  
output from the DACs. For example, if the output current of the  
DAC is 4.33 mA, the DAC gain control feature can change this  
output current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%).  
Double-buffered registers are updated once per field. Double  
buffering improves overall performance, because modifications  
to register settings are not made during active video, but take  
effect prior to the start of the active video on the next field.  
The reset value of the control registers is 0x00, that is, nominal  
DAC current is output. Table 46 is an example of how the  
output current of the DACs varies for a nominal 4.33 mA  
output current.  
Double buffering can be activated on the following ED/HD  
registers using Subaddress 0x33, Bit 7: ED/HD Gamma A and  
Gamma B curves, and ED/HD CGMS registers.  
Double buffering can be activated on the following SD registers  
using Subaddress 0x88, Bit 2: SD Gamma A and Gamma B  
curves, SD Y scale, SD Cr scale, SD Cb scale, SD brightness, SD  
closed captioning, and SD Macrovision Bits[5:0] (Subaddress  
0xE0, Bits[5:0]).  
Table 46. DAC Gain Control  
Reg. 0x0A or  
Reg.0x0B  
DAC  
Current (mA) % Gain  
Note  
0100 0000 (0x40) 4.658  
0011 1111 (0x3F) 4.653  
0011 1110 (0x3E) 4.648  
7.5000%  
7.3820%  
7.3640%  
...  
PROGRAMMABLE DAC GAIN CONTROL  
Subaddress 0x0A to Subaddress 0x0B  
...  
...  
...  
...  
...  
It is possible to adjust the DAC output signal gain up or down  
from its absolute level. This is illustrated in Figure 69.  
0000 0010 (0x02) 4.43  
0000 0001 (0x01) 4.38  
0000 0000 (0x00) 4.33  
0.0360%  
0.0180%  
0.0000%  
DAC 4 to DAC 6 are controlled by Register 0x0A.  
Reset value,  
nominal  
DAC 1 to DAC 3 are controlled by Register 0x0B.  
CASE A  
1111 1111 (0xFF) 4.25  
1111 1110 (0xFE) 4.23  
−0.0180%  
−0.0360%  
...  
GAIN PROGRAMMED IN DAC OUTPUT LEVEL  
REGISTERS, SUBADDRESS 0x0A, 0x0B  
700mV  
...  
...  
...  
...  
...  
1100 0010 (0xC2) 4.018  
1100 0001 (0xC1) 4.013  
1100 0000 (0xC0) 4.008  
−7.3640%  
−7.3820%  
−7.5000%  
GAMMA CORRECTION  
Subaddress 0x44 to Subaddress 0x57 for ED/HD,  
Subaddress 0xA6 to Subaddress 0xB9 for SD  
300mV  
Generally, gamma correction is applied to compensate for the  
nonlinear relationship between signal input and output  
brightness level (as perceived on a CRT). It can also be applied  
wherever nonlinear processing is used.  
NEGATIVE GAIN PROGRAMMED IN  
CASE B  
DAC OUTPUT LEVEL REGISTERS,  
SUBADDRESS 0x0A, 0x0B  
700mV  
Gamma correction uses the function  
SignalOUT = (SignalIN)γ  
where γ = is the gamma correction factor.  
300mV  
Gamma correction is available for SD and ED/HD video. For  
both variations, there are 20, 8-bit registers. They are used to  
program the Gamma Correction Curve A and Gamma  
Correction Curve B.  
Figure 69. Programmable DAC Gain—Positive and Negative Gain  
ED/HD gamma correction is enabled using Subaddress 0x35,  
Bit 5. ED/HD Gamma Correction Curve A is programmed at  
Subaddress 0x44 to Subaddress 0x4D, and ED/HD Gamma  
Correction Curve B is programmed at Subaddress 0x4E to  
Subaddress 0x57.  
In Case A of Figure 69, the video output signal is gained. The  
absolute level of the sync tip and blanking level both increase  
with respect to the reference video output signal. The overall  
gain of the signal is increased from the reference signal.  
In Case B of Figure 69, the video output signal is reduced. The  
absolute level of the sync tip and blanking level both decrease  
Rev. 0 | Page 56 of 88  
 
ADV7342/ADV7343  
SD gamma correction is enabled using Subaddress 0x88, Bit 6.  
SD Gamma Correction Curve A is programmed at Subaddress  
0xA6 to Subaddress 0xAF, and SD Gamma Correction Curve B  
is programmed at Subaddress 0xB0 to Subaddress 0xB9.  
To program the gamma correction registers, calculate the  
10 programmable curve values using the following formula:  
γ
n 16  
240 16  
γn =  
×(240 16) + 16  
Gamma correction is performed on the luma data only. The  
user can choose one of two correction curves, Curve A or  
Curve B. Only one of these curves can be used at a time. For  
ED/HD gamma correction, curve selection is controlled using  
Subaddress 0x35, Bit 4. For SD gamma correction, curve  
selection is controlled using Subaddress 0x88, Bit 7.  
where:  
γn is the value to be written into the gamma correction register  
for point n on the gamma correction curve.  
n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224.  
γ is the gamma correction factor.  
For example, setting γ = 0.5 for all programmable curve data  
points results in the following yn values:  
The shape of the gamma correction curve is controlled by  
defining the curve response at 10 different locations along the  
curve. By altering the response at these locations, the shape of  
the gamma correction curve can be modified. Between these  
points, linear interpolation is used to generate intermediate  
values. Considering the curve has a total length of 256 points,  
the 10 programmable locations are at points 24, 32, 48, 64, 80,  
96, 128, 160, 192, and 224. Locations 0, 16, 240, and 255 are  
fixed and cannot be changed.  
y24 = [(8/224)0.5 × 224] + 16 = 58  
y32 = [(16/224)0.5 × 224] + 16 = 76  
y48 = [(32/224)0.5 × 224] + 16 = 101  
y64 = [(48/224)0.5 × 224] + 16 = 120  
y80 = [(64/224)0.5 × 224] + 16 = 136  
y96 = [(80/224)0.5 × 224] + 16 = 150  
y128 = [(112/224)0.5 × 224] + 16 = 174  
y160 = [(144/224)0.5 × 224] + 16 = 195  
y192 = [(176/224)0.5 × 224] + 16 = 214  
y224 = [(208/224)0.5 × 224] + 16 = 232  
where the sum of each equation is rounded to the nearest integer.  
From curve locations 16 to 240, the values at the programmable  
locations and, therefore, the response of the gamma correction  
curve should be calculated to produce the following result:  
γ
xDESIRED = (xINPUT  
)
where:  
xDESIRED is the desired gamma corrected output.  
xINPUT is the linear input signal.  
γ is the gamma correction factor.  
The gamma curves in Figure 70 and Figure 71 are examples only;  
any user-defined curve in the range from 16 to 240 is acceptable.  
GAMMA CORRECTION BLOCK OUTPUT TO A RAMP INPUT  
300  
GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR  
VARIOUS GAMMA VALUES  
300  
250  
250  
SIGNAL OUTPUT  
200  
0.3  
0.5  
200  
0.5  
150  
100  
150  
1.5  
100  
SIGNAL INPUT  
50  
1.8  
50  
0
0
50  
100  
150  
LOCATION  
200  
250  
0
0
50  
100  
150  
LOCATION  
200  
250  
Figure 70. Signal Input (Ramp) and Signal Output for Gamma 0.5  
Figure 71. Signal Input (Ramp) and Selectable Output Curves  
Rev. 0 | Page 57 of 88  
ADV7342/ADV7343  
The derivative of the incoming signal is compared to the three  
programmable threshold values: ED/HD Adaptive Filter  
Threshold A, B, and C (Subaddress 0x5B, Subaddress 0x5C,  
and Subaddress 0x5D, respectively). The recommended  
threshold range is 16 to 235, although any value in the range of  
0 to 255 can be used.  
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER  
CONTROLS  
Subaddress 0x40, Subaddress 0x58 to Subaddress 0x5D  
There are three filter modes available on the ADV7342/ADV7343:  
a sharpness filter mode and two adaptive filter modes.  
ED/HD Sharpness Filter Mode  
The edges can then be attenuated with the settings in the  
ED/HD Adaptive Filter Gain 1, 2, and 3 registers (Subaddress  
0x58, Subaddress 0x59, and Subaddress 0x5A, respectively), and  
the ED/HD sharpness filter gain register (Subaddress 0x40).  
To enhance or attenuate the Y signal in the frequency ranges  
shown in Figure 72, the ED/HD sharpness filter must be  
enabled (Subaddress 0x31, Bit 7) and the ED/HD adaptive filter  
must be disabled (Subaddress 0x35, Bit 7).  
There are two adaptive filter modes available. The mode  
is selected using the ED/HD adaptive filter mode control  
(Subaddress 0x35, Bit 6):  
To select one of the 256 individual responses, the corresponding  
gain values, which range from –8 to +7 for each filter, must be  
programmed into the ED/HD sharpness filter gain register at  
Subaddress 0x40.  
Mode A is used when the ED/HD adaptive filter mode  
control is set to 0. In this case, Filter B (LPF) is used in the  
adaptive filter block. In addition, only the programmed  
values for Gain B in the ED/HD sharpness filter gain  
register and ED/HD Adaptive Filter Gain 1, 2, and 3  
registers are applied when needed. The Gain A values are  
fixed and cannot be changed.  
ED/HD Adaptive Filter Mode  
The ED/HD Adaptive Filter Threshold A, B, and C registers, the  
ED/HD Adaptive Filter Gain 1, 2, and 3 registers, and the  
ED/HD sharpness filter gain register are used in adaptive filter  
mode. To activate the adaptive filter control, the ED/HD  
sharpness filter and the ED/HD adaptive filter must be enabled  
(Subaddress 0x31, Bit 7, and Subaddress 0x35, Bit 7, respectively).  
Mode B is used when ED/HD adaptive filter mode control  
is set to 1. In this mode, a cascade of Filter A and Filter B is  
used. Both settings for Gain A and Gain B in the ED/HD  
sharpness filter gain register and ED/HD Adaptive Filter  
Gain 1, 2, and 3 registers become active when needed.  
SHARPNESS AND ADAPTIVE FILTER CONTROL BLOCK  
1.5  
1.5  
1.4  
1.6  
1.5  
1.4  
1.4  
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
1.1  
1.0  
INPUT  
SIGNAL:  
STEP  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FILTER A RESPONSE (Gain Ka)  
FREQUENCY (MHz)  
FILTER B RESPONSE (Gain Kb)  
FREQUENCY (MHz)  
FREQUENCY RESPONSE IN SHARPNESS  
FILTER MODE WITH Ka = 3 AND Kb = 7  
Figure 72. ED/HD Sharpness and Adaptive Filter Control Block  
Rev. 0 | Page 58 of 88  
 
ADV7342/ADV7343  
d
a
b
R2  
R4  
1
e
R1  
c
f
1
R2  
CH1 500mV  
REF A  
M 4.00µs  
1 9.99978ms  
CH1  
ALL FIELDS  
CH1 500mV  
REF A  
M 4.00µs  
1 9.99978ms  
CH1  
ALL FIELDS  
500mV 4.00µs  
500mV 4.00µs  
Figure 73. ED/ HD Sharpness Filter Control with Different Gain Settings for ED/HD Sharpness Filter Gain Values  
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER  
APPLICATION EXAMPLES  
Sharpness Filter Application  
Adaptive Filter Control Application  
The register settings in Table 48 are used to obtain the results  
shown in Figure 75, that is, to remove the ringing on the input  
Y signal, as shown in Figure 74. Input data is generated by an  
external signal source.  
The ED/HD sharpness filter can be used to enhance or  
attenuate the Y video output signal. The register settings in  
Table 47 were used to achieve the results shown in Figure 73.  
Input data was generated by an external signal source.  
Table 48. Register Settings for Figure 75  
Subaddress  
Register Setting  
Table 47. ED/HD Sharpness Control  
0x00  
0x01  
0xFC  
0x38  
Subaddress  
Register Setting  
Reference1  
0x02  
0x20  
0x00  
0xFC  
0x30  
0x00  
0x01  
0x10  
0x31  
0x81  
0x02  
0x20  
0x35  
0x80  
0x30  
0x00  
0x40  
0x00  
0x31  
0x81  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0xAC  
0x9A  
0x88  
0x28  
0x3F  
0x64  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x00  
0x08  
0x04  
0x40  
0x80  
0x22  
a
b
c
d
e
f
1 See Figure 73.  
Figure 75. Output Signal from ED/HD Adaptive Filter (Mode A)  
Figure 74. Input Signal to ED/HD Adaptive Filter  
Rev. 0 | Page 59 of 88  
 
ADV7342/ADV7343  
When changing the adaptive filter mode to Mode B  
(Subaddress 0x35, Bit 6), the output shown in Figure 76  
can be obtained.  
DNR MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
NOISE  
SIGNAL PATH  
INPUT FILTER  
BLOCK  
FILTER  
SUBTRACT  
OUTPUT  
SIGNAL IN  
Y DATA  
INPUT  
< THRESHOLD?  
THRESHOLD  
RANGE FROM  
ORIGINAL SIGNAL  
FILTER OUTPUT  
> THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
DNR  
SHARPNESS  
MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
Figure 76. Output Signal from ED/HD Adaptive Filter (Mode B)  
BLOCK OFFSET  
SD DIGITAL NOISE REDUCTION  
GAIN  
Subaddress 0xA3 to Subaddress 0xA5  
CORING GAIN DATA  
CORING GAIN BORDER  
NOISE  
SIGNAL PATH  
Digital noise reduction (DNR) is applied to the Y data only.  
A filter block selects the high frequency, low amplitude compo-  
nents of the incoming signal (DNR input select). The absolute  
value of the filter output is compared to a programmable  
threshold value (DNR threshold control). There are two DNR  
modes available, DNR mode and DNR sharpness mode.  
INPUT FILTER  
BLOCK  
FILTER  
ADD SIGNAL  
ABOVE  
THRESHOLD  
RANGE FROM  
ORIGINAL SIGNAL  
OUTPUT  
Y DATA  
INPUT  
> THRESHOLD?  
+
FILTER OUTPUT  
< THRESHOLD  
+
In DNR mode, if the absolute value of the filter output is smaller  
than the threshold, it is assumed to be noise. A programmable  
amount (coring gain border, coring gain data) of this noise  
signal is subtracted from the original signal. In DNR sharpness  
mode, if the absolute value of the filter output is less than the  
programmed threshold, it is assumed to be noise. Otherwise, if  
the level exceeds the threshold, now identified as a valid signal,  
a fraction of the signal (coring gain border, coring gain data) is  
added to the original signal to boost high frequency components  
and sharpen the video image.  
DNR OUT  
MAIN SIGNAL PATH  
Figure 77. SD DNR Block Diagram  
Coring Gain Border—Subaddress 0xA3, Bits[3:0]  
These four bits are assigned to the gain factor applied to border  
areas. In DNR mode, the range of gain values is 0 to 1 in  
increments of 1/8. This factor is applied to the DNR filter  
output that lies below the set threshold range. The result is then  
subtracted from the original signal.  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output that lies above the threshold range. The result is added to  
the original signal.  
In MPEG systems, it is common to process the video information  
in blocks of 8 pixels × 8 pixels for MPEG2 systems, or 16 pixels ×  
16 pixels for MPEG1 systems (block size control). DNR can be  
applied to the resulting block transition areas that are known to  
contain noise. Generally, the block transition area contains two  
pixels. It is possible to define this area to contain four pixels  
(border area).  
Coring Gain Data—Subaddress 0xA3, Bits[7:4]  
These four bits are assigned to the gain factor applied to the luma  
data inside the MPEG pixel block. In DNR mode, the range of  
gain values is 0 to 1 in increments of 1/8. This factor is applied  
to the DNR filter output that lies below the set threshold range.  
The result is then subtracted from the original signal.  
It is also possible to compensate for variable block positioning  
or differences in YCrCb pixel timing with the use of the DNR  
block offset.  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output that lies above the threshold range. The result is added to  
the original signal.  
The digital noise reduction registers are three 8-bit registers.  
They are used to control the DNR processing.  
Rev. 0 | Page 60 of 88  
 
ADV7342/ADV7343  
APPLY DATA  
APPLY BORDER  
DNR Mode Control—Subaddress 0xA5, Bit 4  
CORING GAIN CORING GAIN  
This bit controls the DNR mode selected. Logic 0 selects DNR  
mode; Logic 1 selects DNR sharpness mode.  
O X X X X X X O O X X X X X X O  
OFFSET CAUSED  
BY VARIATIONS IN  
INPUT TIMING  
DNR works on the principle of defining low amplitude, high  
frequency signals as probable noise and subtracting this noise  
from the original signal.  
O X X X X X X O O X X X X X X O  
DNR27 TO DNR24 = 0x01 O X X X X X X O O X X X X X X O  
In DNR mode, it is possible to subtract a fraction of the signal  
that lies below the set threshold, assumed to be noise, from the  
original signal. The threshold is set in DNR Register 1.  
Figure 78. SD DNR Offset Control  
DNR Threshold—Subaddress 0xA4, Bits[5:0]  
These six bits are used to define the threshold value in the range  
of 0 to 63. The range is an absolute value.  
When DNR sharpness mode is enabled, it is possible to add a  
fraction of the signal that lies above the set threshold to the  
original signal, because this data is assumed to be valid data and  
not noise. The overall effect is that the signal is boosted (similar  
to using the extended SSAF filter).  
Border Area—Subaddress 0xA4, Bit 6  
When this bit is set to Logic 1, the block transition area can be  
defined to consist of four pixels. If this bit is set to Logic 0, the  
border transition area consists of two pixels, where one pixel  
refers to two clock cycles at 27 MHz.  
DNR Block Offset Control—Subaddress 0xA5, Bits[7:4]  
Four bits are assigned to this control, which allows a shift of the  
data block of 15 pixels maximum. Consider the coring gain  
positions fixed. The block offset shifts the data in steps of one  
pixel such that the border coring gain factors can be applied at the  
same position regardless of variations in input timing of the data.  
720 × 485 PIXELS  
2-PIXEL  
BORDER  
(NTSC)  
DATA  
SD ACTIVE VIDEO EDGE CONTROL  
Subaddress 0x82, Bit 7  
The ADV7342/ADV7343 are able to control fast rising and  
falling signals at the start and end of active video in order to  
minimize ringing.  
8 × 8 PIXEL BLOCK  
8 × 8 PIXEL BLOCK  
Figure 79. SD DNR Border Area  
When the active video edge control feature is enabled  
Block Size Control—Subaddress 0xA4, Bit 7  
(Subaddress 0x82, Bit 7 = 1), the first three pixels and the last  
three pixels of the active video on the luma channel are scaled  
so that maximum transitions on these pixels are not possible.  
This bit is used to select the size of the data blocks to be  
processed. Setting the block size control function to Logic 1  
defines a 16 pixel × 16 pixel data block, and Logic 0 defines an  
8 pixel × 8 pixel data block, where one pixel refers to two clock  
cycles at 27 MHz.  
At the start of active video, the first three pixels are multiplied  
by 1/8, 1/2, and 7/8, respectively. Approaching the end of active  
video, the last three pixels are multiplied by 7/8, 1/2, and 1/8,  
respectively. All other active video pixels pass through  
unprocessed.  
DNR Input Select Control—Subaddress 0xA5, Bits[2:0]  
Three bits are assigned to select the filter, which is applied to the  
incoming Y data. The signal that lies in the pass band of the  
selected filter is the signal that is DNR processed. Figure 80  
shows the filter responses selectable with this control.  
1.0  
FILTER D  
0.8  
FILTER C  
0.6  
0.4  
0.2  
0
FILTER B  
FILTER A  
1
2
3
4
5
6
0
FREQUENCY (MHz)  
Figure 80. SD DNR Input Select  
Rev. 0 | Page 61 of 88  
 
ADV7342/ADV7343  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
DISABLED  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
ENABLED  
100 IRE  
100 IRE  
87.5 IRE  
50 IRE  
12.5 IRE  
0 IRE  
0 IRE  
Figure 81. Example of Active Video Edge Functionality  
VOLTS  
0.5  
IRE:FLT  
100  
50  
0
0
F2  
L135  
–50  
2
0
4
6
8
10  
12  
Figure 82. Example of Video Output with Subaddress 0x82, Bit 7 = 0  
VOLTS  
IRE:FLT  
100  
50  
0
0.5  
0
F2  
L135  
–50  
–2  
0
2
4
6
8
10  
12  
Figure 83. Example of Video Output with Subaddress 0x82, Bit 7 = 1  
Rev. 0 | Page 62 of 88  
ADV7342/ADV7343  
EXTERNAL HORIZONTAL AND VERTICAL SYNCHRONIZATION CONTROL  
For timing synchronization purposes, the ADV7342/ADV7343 are able to accept either EAV/SAV time codes embedded in the input  
S_HSYNC S_VSYNC P_HSYNC P_VSYNC  
P_BLANK  
pixel data or external synchronization signals provided on the  
,
,
,
, and  
pins (see  
S_HSYNC  
S_VSYNC  
and  
Table 49). It is also possible to output synchronization signals on the  
pins (see Table 50 to Table 52).  
Table 49. Timing Synchronization Signal Input Options  
Signal  
Pin  
Condition  
HSYNC  
S_HSYNC  
S_VSYNC  
P_HSYNC  
P_VSYNC  
P_BLANK  
SD Slave Timing Mode 1, 2, or 3 Selected (Subaddress 0x8A[2:0]).1  
SD Slave Timing Mode 1, 2, or 3 Selected (Subaddress 0x8A[2:0]).1  
ED/HD Timing Synchronization Inputs Enabled (Subaddress 0x30, Bit 2 = 0).  
ED/HD Timing Synchronization Inputs Enabled (Subaddress 0x30, Bit 2 = 0).  
SD  
SD  
In  
VSYNC  
/FIELD In  
HSYNC  
ED/HD  
ED/HD  
ED/HD  
In  
VSYNC  
/FIELD In  
In  
BLANK  
1 SD and ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02[7:6] = 00).  
Table 50. Timing Synchronization Signal Output Options  
Signal  
Pin  
Condition  
HSYNC  
S_HSYNC  
S_VSYNC  
S_HSYNC  
S_VSYNC  
SD Timing Synchronization Outputs Enabled (Subaddress 0x02, Bit 6 = 1).1  
SD Timing Synchronization Outputs Enabled (Subaddress 0x02, Bit 6 = 1).1  
ED/HD Timing Synchronization Outputs Enabled (Subaddress 0x02, Bit 7 = 1).  
ED/HD Timing Synchronization Outputs Enabled (Subaddress 0x02, Bit 7 = 1).  
SD  
SD  
Out  
VSYNC  
/FIELD Out  
HSYNC  
ED/HD  
ED/HD  
Out  
VSYNC  
/FIELD Out  
1 ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02, Bit 7 = 0).  
1
S_HSYNC  
Table 51.  
Output Control  
ED/HD HSYNC  
Control  
(0x34, Bit 1)  
ED/HD Sync  
Output Enable  
(0x02, Bit 7)  
SD Sync  
Output Enable  
(0x02, Bit 6)  
ED/HD Input Sync  
Format (0x30, Bit 2)  
Signal on S_HSYNC Pin  
Duration  
x
x
x
x
0
0
0
1
Tristate.  
HSYNC  
Pipelined SD  
.
See Appendix 5—  
SD Timing.  
0
1
0
0
1
1
x
x
HSYNC  
HSYNC  
HSYNC  
As per timing.  
Pipelined ED/HD  
.
Same as line blanking  
interval.  
Pipelined ED/HD  
AV Code H bit.  
based on  
based on  
x
1
1
x
HSYNC  
Same as embedded  
Pipelined ED/HD  
HSYNC  
.
horizontal counter.  
1
HSYNC  
HSYNC  
HSYNC  
pulse is aligned with the falling edge of the embedded in the output video.  
In all ED/HD standards where there is an  
output, the start of the  
1
S_VSYNC  
Table 52.  
Output Control  
ED/HD VSYNC  
Control  
(0x34, Bit 2)  
ED/HD Input  
Sync Format  
(0x30, Bit 2)  
ED/HD Sync  
Output Enable  
(0x02, Bit 7)  
SD Sync  
Output Enable  
(0x02, Bit 6)  
Signal on S_VSYNC Pin  
Video Standard  
Duration  
x
x
X
X
0
0
0
1
x
Tristate.  
Interlaced  
VSYNC  
Pipelined SD  
/Field.  
See Appendix  
5—SD Timing.  
0
1
1
0
0
0
1
1
1
x
x
x
x
VSYNC  
VSYNC  
As per or  
field signal timing.  
Field.  
Pipelined ED/HD  
or field signal.  
All HD interlaced  
standards  
All ED/HD  
progressive  
standards  
Pipelined field signal  
based on AV Code F bit.  
VSYNC  
Vertical blanking  
interval.  
Pipelined  
based  
on AV Code V bit.  
x
1
1
1
1
x
x
All ED/HD  
standards  
except 525p  
VSYNC  
based on vertical counter.  
Aligned with  
serration lines.  
Pipelined ED/HD  
x
525p  
VSYNC  
based on vertical counter.  
Vertical blanking  
interval.  
Pipelined ED/HD  
1
VSYNC  
VSYNC  
VSYNC  
pulse is aligned with the falling edge of the embedded in the output video.  
In all ED/HD standards where there is a  
output, the start of the  
Rev. 0 | Page 63 of 88  
 
ADV7342/ADV7343  
With this feature enabled, the cable detection circuitry monitors  
DAC 1 and/or DAC 2 once per frame. If they are unconnected,  
some or all of the DACs automatically power down. Which  
DAC or DACs are powered down depends on the selected  
output configuration.  
LOW POWER MODE  
Subaddress 0x0D, Bits[2:0]  
For power sensitive applications, the ADV7342/ADV7343  
support an Analog Devices, Inc. proprietary low power mode of  
operation on DAC 1, DAC 2, and DAC 3. To utilize this low  
power mode, these DACs must be operating in full-drive mode  
(RSET = 510 Ω, RL = 37.5 Ω). Low power mode is not available in  
low drive mode (RSET = 4.12 kΩ, RL = 300 Ω). Low power mode  
can be independently enabled or disabled on DAC 1, DAC 2, and  
DAC 3 using Subaddress 0x0D, Bits[2:0]. Low power mode is  
disabled by default on each DAC.  
For CVBS/YC output configurations, if DAC 1 is unconnected,  
only DAC 1 powers down. If DAC 2 is unconnected, DAC 2 and  
DAC 3 power down.  
For YPrPb and RGB output configurations, if DAC 1 is  
unconnected, all three DACs power down. DAC 2 is not  
monitored for YPrPb and RGB output configurations.  
In low power mode, DAC current consumption is content  
dependent. On a typical video stream, it can be reduced by as  
much as 40%. For applications requiring the highest possible video  
performance, low power mode should be disabled.  
Once per frame, DAC 1 and/or DAC 2 are monitored. If a cable  
is detected, the appropriate DAC or DACs remain powered up  
for the duration of the frame. If no cable is detected, the appropriate  
DAC or DACs power down until the next frame, when the process  
is repeated.  
CABLE DETECTION  
PIXEL AND CONTROL PORT READBACK  
Subaddress 0x10  
Subaddress 0x12 to Subaddress 0x14, Subaddress 0x16  
The ADV7342/ADV7343 include an Analog Devices, Inc.  
proprietary cable detection feature.  
The ADV7342/ADV7343 support the readback of most digital  
inputs via the I2C/SPI MPU port. This feature is useful for  
board level connectivity testing with upstream devices.  
The cable detection feature is available on DAC 1 and DAC 2,  
while operating in full-drive mode (RSET1 = 510 Ω, RL1 = 37.5 Ω,  
assuming a connected cable). The feature is not available in low  
drive mode (RSET = 4.12 kΩ, RL = 300 Ω). For a DAC to be  
monitored, the DAC must be powered up in Subaddress 0x00.  
The pixel port (S[7:0], Y[7:0], and C[7:0]), the control port  
(
,
,
,
and  
),  
S_HSYNC S_VSYNC P_HSYNC P_VSYNC  
P_BLANK  
and the SFL/MISO pin are available for readback via the MPU  
port. The readback registers are located at Subaddress 0x12 to  
Subaddress 0x14 and Subaddress 0x16.  
The cable detection feature can be used with all SD, ED, and  
HD video standards. It is available for all output configurations,  
that is, CVBS, YC, YPrPb, and RGB output configurations.  
When using this feature, a clock signal should be applied to the  
CLKIN_A pin to register the levels applied to the input pins.  
For CVBS/YC output configurations, both DAC 1 and DAC 2  
are monitored, that is, the CVBS and YC luma outputs are  
monitored. For YPrPb and RGB output configurations, only  
DAC 1 is monitored, that is, the luma or green output is  
monitored.  
RESET MECHANISM  
Subaddress 0x17, Bit 1  
The ADV7342/ADV7343 have a software reset accessible via  
the I2C/SPI MPU port. A software reset is activated by writing  
a 1 to Subaddress 0x17, Bit 1. This resets all registers to their  
default values. This bit is self-clearing, that is, after a 1 has been  
written to the bit, the bit automatically returns to 0.  
Once per frame, the ADV7342/ADV7343 monitor DAC 1  
and/or DAC 2, updating Subaddress 0x10, Bit 0 and Bit 1,  
respectively. If a cable is detected on one of the DACs, the  
relevant bit is set to 0. If not, the bit is set to 1.  
When operating in SPI mode, a software reset does not cause  
the device to revert to I2C mode. For this to occur, the  
ADV7342/ADV7343 need to be powered down.  
DAC AUTO POWER-DOWN  
Subaddress 0x10, Bit 4  
For power sensitive applications, a DAC auto power-down  
feature can be enabled using Subaddress 0x10, Bit 4. This feature  
is only available when the cable detection feature is enabled.  
The ADV7342/ADV7343 include a power-on reset (POR)  
circuit to ensure correct operation after power-up.  
Rev. 0 | Page 64 of 88  
 
ADV7342/ADV7343  
PRINTED CIRCUIT BOARD LAYOUT AND DESIGN  
For applications requiring an output buffer and reconstruction  
filter, the ADA4430-1, ADA4411-3, and ADA4410-6 integrated  
video filter buffers should be considered.  
DAC CONFIGURATIONS  
The ADV7342/ADV7343 contain six DACs. All six DACs can  
be configured to operate in low drive mode. Low drive mode is  
defined as 4.33 mA full-scale current into a 300 Ω load, RL.  
Table 53. ADV7342/ADV7343 Output Rates  
Input Mode  
(0x01, Bits[6:4]) (0x00, Bit 1)  
PLL Control  
DAC 1, DAC 2, and DAC 3 can also be configured to operate in  
full-drive mode. Full-drive mode is defined as 34.7 mA full-  
scale current into a 37.5 Ω load, RL. Full-drive is the recommended  
mode of operation for DAC 1, DAC 2, and DAC 3.  
Output Rate (MHz)  
SD Only  
ED Only  
HD Only  
Off  
On  
Off  
On  
Off  
On  
27  
216  
27  
216  
74.25  
297  
(2x)  
(16x)  
(1x)  
(8x)  
(1x)  
(4x)  
The ADV7342/ADV7343 contain two RSET pins. A resistor  
connected between the RSET1 pin and AGND is used to control  
the full-scale output current and, therefore, the DAC output  
voltage levels of DAC 1, DAC 2, and DAC 3. For low drive  
operation, RSET1 must have a value of 4.12 kΩ, and RL must have a  
value of 300 Ω. For full-drive operation, RSET1 must have a value  
of 510 Ω, and RL must have a value of 37.5 Ω.  
Table 54. Output Filter Requirements  
Cutoff  
Attenuation  
–50 dB @  
(MHz)  
Frequency  
Application Oversampling (MHz)  
A resistor connected between the RSET2 pin and AGND is used  
to control the full-scale output current and, therefore, the DAC  
output voltage levels of DAC 4, DAC 5, and DAC 6. RSET2 must  
have a value of 4.12 kΩ, and RL must have a value of 300 Ω (that  
is, low drive operation only).  
SD  
SD  
ED  
ED  
HD  
HD  
2×  
16×  
1×  
8×  
1×  
4×  
>6.5  
>6.5  
>12.5  
>12.5  
>30  
20.5  
209.5  
14.5  
203.5  
44.25  
267  
The resistors connected to the RSET1 and RSET2 pins should have a  
1% tolerance.  
>30  
The ADV7342/ADV7343 contain two compensation pins,  
COMP1 and COMP2. A 2.2 nF compensation capacitor should  
be connected from each of these pins to VAA.  
10µH  
22pF  
DAC  
OUTPUT  
3
4
75  
BNC  
OUTPUT  
600Ω  
600Ω  
1
VOLTAGE REFERENCE  
The ADV7342/ADV7343 contain an on-chip voltage reference  
that can be used as a board-level voltage reference via the VREF  
pin. Alternatively, the ADV7342/ADV7343 can be used with an  
external voltage reference by connecting the reference source to  
the VREF pin. For optimal performance, an external voltage  
reference such as the AD1580 should be used with the ADV7342/  
ADV7343. If an external voltage reference is not used, a 0.1 μF  
capacitor should be connected from the VREF pin to VAA.  
560Ω  
560Ω  
Figure 84. Example of Output Filter for SD, 16× Oversampling  
4.7µH  
DAC  
OUTPUT  
3
75Ω  
BNC  
OUTPUT  
6.8pF  
6.8pF  
600Ω  
1
600Ω  
4
VIDEO OUTPUT BUFFER AND OPTIONAL  
OUTPUT FILTER  
560Ω  
560Ω  
An output buffer is necessary on any DAC that operates in low  
drive mode (RSET = 4.12 kΩ, RL = 300 Ω). Analog Devices, Inc.  
produces a range of op amps suitable for this application, for  
example, the AD8061. For more information about line driver  
buffering circuits, see the relevant op amp data sheet.  
Figure 85. Example of Output Filter for ED, 8× Oversampling  
DAC  
OUTPUT  
3
390nH  
75  
BNC  
OUTPUT  
300Ω  
3
1
33pF  
33pF  
75Ω  
1
An optional reconstruction (anti-imaging) low-pass filter (LPF)  
may be required on the ADV7342/ADV7343 DAC outputs if  
the ADV7342/ADV7343 are connected to a device that requires  
this filtering.  
4
4
500Ω  
500Ω  
The filter specifications vary with the application. The use of  
16× (SD), 8× (ED), or 4× (HD) oversampling can remove the  
requirement for a reconstruction filter altogether.  
Figure 86. Example of Output Filter for HD, 4× Oversampling  
Rev. 0 | Page 65 of 88  
 
ADV7342/ADV7343  
CIRCUIT FREQUENCY RESPONSE  
0
PRINTED CIRCUIT BOARD (PCB) LAYOUT  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
24n  
21n  
18n  
15n  
12n  
9n  
–30  
The ADV7342/ADV7343 are highly integrated circuits  
containing both precision analog and high speed digital  
circuitry. They have been designed to minimize interference  
effects on the integrity of the analog circuitry by the high speed  
digital circuitry. It is imperative that these same design and  
layout techniques be applied to the system-level design so that  
optimal performance is achieved.  
MAGNITUDE (dB)  
PHASE (Degrees)  
–60  
–90  
–120  
–150  
–180  
–210  
–240  
GROUP DELAY (Seconds)  
The layout should be optimized for lowest noise on the  
ADV7342/ADV7343 power and ground planes by shielding the  
digital inputs and providing good power supply decoupling.  
6n  
3n  
0
It is recommended to use a 4-layer printed circuit board with  
ground and power planes separating the signal trace layer and  
the solder side layer.  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 87. Output Filter Plot for SD, 16× Oversampling  
Component Placement  
CIRCUIT FREQUENCY RESPONSE  
Component placement should be carefully considered to  
separate noisy circuits, such as clock signals and high speed  
digital circuitry from analog circuitry.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
480  
18n  
16n  
400  
320  
240  
160  
80  
MAGNITUDE (dB)  
The external loop filter components and components connected  
to the COMP, VREF, and RSET pins should be placed as close as  
possible to and on the same side of the PCB as the ADV7342/  
ADV7343. Adding vias to the PCB to get the components closer  
to the ADV7342/ADV7343 are not recommended.  
14n  
PHASE  
(Degrees)  
12n  
10n  
8n  
GROUP DELAY (Seconds)  
0
It is recommended that the ADV7342/ADV7343 be placed as  
close as possible to the output connector, with the DAC output  
traces as short as possible.  
6n  
–80  
–160  
–240  
4n  
2n  
0
The termination resistors on the DAC output traces should be  
placed as close as possible to and on the same side of the PCB as  
the ADV7342/ADV7343. The termination resistors should  
overlay the PCB ground plane.  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 88. Output Filter Plot for ED, 8× Oversampling  
External filter and buffer components connected to the DAC  
outputs should be placed as close as possible to the ADV7342/  
ADV7343 to minimize the possibility of noise pickup from  
neighboring circuitry, and to minimize the effect of trace  
capacitance on output bandwidth. This is particularly important  
when operating in low drive mode (RSET = 4.12 kΩ, RL = 300 Ω).  
CIRCUIT FREQUENCY RESPONSE  
0
200  
120  
40  
PHASE  
(Degrees)  
MAGNITUDE (dB)  
–10  
–20  
–30  
–40  
–50  
GROUP DELAY (Seconds)  
Power Supplies  
It is recommended that a separate regulated supply be provided  
for each power domain (VAA, VDD, VDD_IO, and PVDD). For  
optimal performance, linear regulators rather than switch mode  
regulators should be used. If switch mode regulators must be  
used, care must be taken with regard to the quality of the output  
voltage in terms of ripple and noise. This is particularly true for  
the VAA and PVDD power domains. Each power supply should be  
individually connected to the system power supply at a single  
point through a suitable filtering device, such as a ferrite bead.  
–40  
–120  
–200  
1
10  
100  
FREQUENCY (MHz)  
Figure 89. Output Filter Plot for HD, 4× Oversampling  
Rev. 0 | Page 66 of 88  
 
ADV7342/ADV7343  
Power Supply Decoupling  
Due to the high clock rates used, avoid long clock traces to the  
ADV7342/ADV7343 to minimize noise pickup.  
It is recommended that each power supply pin be decoupled  
with 10 nF and 0.1 μF ceramic capacitors. The VAA, PVDD,  
Any pull-up termination resistors for the digital inputs should  
be connected to the VDD power supply.  
VDD_IO, and both VDD pins should be individually decoupled to  
ground. The decoupling capacitors should be placed as close as  
possible to the ADV7342/ADV7343 with the capacitor leads  
kept as short as possible to minimize lead inductance.  
Any unused digital inputs should be tied to ground.  
Analog Signal Interconnect  
DAC output traces should be treated as transmission lines with  
appropriate measures taken to ensure optimal performance (for  
example, impedance matched traces). The DAC output traces  
should be kept as short as possible. The termination resistors on  
the DAC output traces should be placed as close as possible to  
and on the same side of the PCB as the ADV7342/ADV7343.  
A 1 μF tantalum capacitor is recommended across the VAA  
supply in addition to the 10 nF and 0.1 μF ceramic capacitors.  
Power Supply Sequencing  
The ADV7342/ADV7343 are robust to all power supply  
sequencing combinations. Any particular sequence can be used.  
Digital Signal Interconnect  
To avoid crosstalk between the DAC outputs, it is recom-  
mended that as much space as possible be left between the  
traces connected to the DAC output pins. Adding ground traces  
between the DAC output traces is also recommended.  
The digital signal traces should be isolated as much as possible  
from the analog outputs and other analog circuitry. Digital  
signal traces should not overlay the VAA or PVDD power planes.  
Rev. 0 | Page 67 of 88  
ADV7342/ADV7343  
TYPICAL APPLICATION CIRCUIT  
FERRITE BEAD  
V
DD_IO  
NOTES  
V
POWER  
1. FOR OPTIMUM PERFORMANCE, EXTERNAL COMPONENTS CONNECTED  
DD_IO  
33µF  
10µF  
0.1µF  
0.01µF  
SUPPLY  
DECOUPLING  
TO THE COMP, R , V  
AND DAC OUTPUT PINS SHOULD BE LOCATED  
CLOSE TO AND ON THE SAME SIDE OF THE PCB AS THE ADV7342/ADV7343.  
SET REF  
GND_IO  
GND_IO  
GND_IO  
GND_IO  
FERRITE BEAD  
2
2
2. WHEN OPERATING IN I C MODE, THE I C DEVICE ADDRESS IS  
CONFIGURABLE USING THE ALSB/SPI_SS PIN:  
PV  
DD  
(1.8V)  
PV POWER  
DD  
SUPPLY  
DECOUPLING  
33µF  
10µF  
0.1µF  
0.01µF  
PGND  
2
ALSB/SPI_SS = 0, I C DEVICE ADDRESS = 0xD4 OR 0x54  
ALSB/SPI_SS = 1, I C DEVICE ADDRESS = 0xD6 OR 0x56  
PGND  
PGND  
PGND  
2
FERRITE BEAD  
V
AA  
3. THE RESISTORS CONNECTED TO THE R  
SET  
PINS SHOULD HAVE A 1%  
V
POWER  
AA  
0.01µF  
AGND  
1µF  
33µF  
10µF  
0.1µF  
TOLERANCE.  
SUPPLY  
DECOUPLING  
AGND  
AGND  
AGND  
AGND  
FERRITE BEAD  
V
DD  
(1.8V)  
V
POWER SUPPLY  
DD  
33µF  
10µF  
0.1µF  
0.01µF  
DGND  
DECOUPLING FOR  
EACH POWER PIN  
DGND  
DGND  
DGND  
V
V
AA  
AA  
OPTIONAL. IF THE INTERNAL VOLTAGE  
REFERENCE IS USED, A 0.1µF CAPACITOR  
2.2nF  
2.2nF  
SHOULD BE CONNECTED FROM V  
TO V .  
REF  
AA  
V
COMP1  
COMP2  
AA  
1.1k  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
1.235V  
V
REF  
0.1µF  
AD1580  
R
R
SET1  
SET2  
ADV7342/ADV7343  
AGND  
510Ω  
4.12kΩ  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
AGND  
AGND  
OPTIONAL LPF  
OPTIONAL LPF  
DAC 1  
DAC 2  
DAC 3  
DAC 1  
DAC 2  
DAC 3  
DACs 1-3 FULL DRIVE OPTION  
PIXEL PORT INPUTS  
OPTIONAL LPF  
75Ω  
AGND  
75Ω  
75Ω  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
DACs 1-3 LOW DRIVE OPTION  
AGND  
AGND  
OPTIONAL LPF  
AD8061  
DAC 4  
DAC 5  
DAC 6  
+
75Ω  
75Ω  
75Ω  
R
SET1  
+V  
–V  
DAC 4  
4.12kΩ  
AGND  
300Ω  
510Ω  
TEST0  
TEST1  
TEST2  
TEST3  
TEST4  
TEST5  
OPTIONAL LPF  
AGND  
AD8061  
UNUSED  
CONNECT TO DGND  
+
DAC 1  
DAC 2  
DAC 3  
75Ω  
510Ω  
+V  
–V  
DAC 1  
AGND  
300Ω  
OPTIONAL LPF  
510Ω  
S_HSYNC  
S_VSYNC  
AGND  
AD8061  
+
CONTROL  
INPUTS/OUTPUTS  
+V  
–V  
510Ω  
DAC 5  
P_HSYNC  
P_VSYNC  
P_BLANK  
300Ω  
AGND  
OPTIONAL LPF  
510Ω  
CLKIN_A  
CLKIN_B  
AGND  
CLOCK INPUTS  
AD8061  
+
75Ω  
+V  
–V  
510Ω  
SDA/SCLK  
SCL/MOSI  
SFL/MISO  
DAC 2  
MPU PORT  
INPUTS/OUTPUTS  
AGND  
300Ω  
ALSB/SPI_SS  
OPTIONAL LPF  
510Ω  
EXTERNAL LOOP FILTERS  
AGND  
AD8061  
+
PV  
DD  
+V  
–V  
12nF  
150nF  
12nF  
150nF  
510Ω  
AGND  
DAC 6  
EXT_LF1  
EXT_LF2  
300Ω  
170Ω  
510Ω  
OPTIONAL LPF  
AGND  
AD8061  
+
AGND PGND DGND DGND GND_IO  
75Ω  
+V  
–V  
510Ω  
DAC 3  
170Ω  
AGND  
LOOP FILTER COMPONENTS  
SHOULD BE LOCATED  
CLOSE TO THE EXT_LF  
PINS AND ON THE SAME  
SIDE OF THE PCB AS THE  
ADV7342/ADV7343.  
300Ω  
AGND PGND DGND DGND GND_IO  
510Ω  
AGND  
510Ω  
AGND  
Figure 90. ADV7342/ADV7343 Typical Application Circuit  
Rev. 0 | Page 68 of 88  
 
ADV7342/ADV7343  
APPENDIX 1—COPY GENERATION MANAGEMENT SYSTEM  
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 720p  
CGMS data is applied to Line 24 of the luminance vertical  
blanking interval.  
SD CGMS  
Subaddress 0x99 to Subaddress 0x9B  
The ADV7342/ADV7343 support copy generation management  
system (CGMS) conforming to the EIAJ CPR-1204 and ARIB  
TR-B15 standards. CGMS data is transmitted on Line 20 of the  
odd fields and Line 283 of even fields. Subaddress 0x99,  
Bits[6:5] control whether CGMS data is output on odd or even  
fields or both.  
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 1080i  
CGMS data is applied to Line 19 and Line 582 of the luminance  
vertical blanking interval.  
The HD CGMS data registers are at Subaddress 0x41,  
Subaddress 0x42, and Subaddress 0x43.  
SD CGMS data can only be transmitted when the ADV7342/  
ADV7343 are configured in NTSC mode. The CGMS data is 20  
bits long. The CGMS data is preceded by a reference pulse of  
the same amplitude and duration as a CGMS bit (see Figure 91).  
The ADV7342/ADV7343 also support CGMS Type B packets in  
HD mode (720p and 1080i) in accordance with CEA-805-A.  
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 =  
1), 720p CGMS data is applied to Line 23 of the luminance  
vertical blanking interval.  
ED CGMS  
Subaddress 0x41 to Subaddress 0x43  
Subaddress 0x5E to Subaddress 0x6E  
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 =  
1), 1080i CGMS data is applied to Line 18 and Line 581 of the  
luminance vertical blanking interval.  
525p  
The HD CGMS Type B data registers are at Subaddress 0x5E to  
Subaddress 0x6E.  
The ADV7342/ADV7343 support copy generation management  
system (CGMS) in 525p mode in accordance with EIAJ CPR-  
1204-1.  
CGMS CRC FUNCTIONALITY  
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 525p  
CGMS data is inserted on Line 41. The 525p CGMS data  
registers are at Subaddress 0x41, Subaddress 0x42, and  
Subaddress 0x43.  
If SD CGMS CRC (Subaddress 0x99, Bit 4) or ED/HD CGMS  
CRC (Subaddress 0x32, Bit 7) is enabled, the upper six CGMS  
data bits, C19 to C14, which comprise the 6-bit CRC check  
sequence, are automatically calculated on the ADV7342/ADV7343.  
This calculation is based on the lower 14 bits (C13 to C0) of the  
data in the CGMS data registers and the result is output with  
the remaining 14 bits to form the complete 20 bits of the CGMS  
data. The calculation of the CRC sequence is based on the  
polynomial x6 + x + 1 with a preset value of 111111.  
The ADV7342/ADV7343 also support CGMS Type B packets in  
525p mode in accordance with CEA-805-A.  
When ED CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),  
525p CGMS Type B data is inserted on Line 40. The 525p CGMS  
Type B data registers are at Subaddress 0x5E to Subaddress 0x6E.  
If SD CGMS CRC or ED/HD CGMS CRC are disabled, all  
20 bits (C19 to C0) are output directly from the CGMS registers  
(CRC must be calculated by the user manually).  
625p  
The ADV7342/ADV7343 support copy generation management  
system (CGMS) in 625p mode in accordance with IEC62375  
(2004).  
If ED/HD CGMS Type B CRC (Subaddress 0x5E, Bit 1) is  
enabled, the upper six CGMS Type B data bits (P122 to P127)  
that comprise the 6-bit CRC check sequence are automatically  
calculated on the ADV7342/ADV7343. This calculation is  
based on the lower 128 bits (H0 to H5 and P0 to P121) of the  
data in the CGMS Type B data registers. The result is output  
with the remaining 128 bits to form the complete 134 bits of the  
CGMS Type B data. The calculation of the CRC sequence is  
based on the polynomial x6 + x + 1 with a preset value of  
111111.  
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 625p  
CGMS data is inserted on Line 43. The 625p CGMS data  
registers are at Subaddress 0x42 and Subaddress 0x43.  
HD CGMS  
Subaddress 0x41 to Subaddress 0x43  
Subaddress 0x5E to Subaddress 0x6E  
The ADV7342/ADV7343 support copy generation management  
system (CGMS) in HD mode (720p and 1080i) in accordance  
with EIAJ CPR-1204-2.  
If ED/HD CGMS Type B CRC is disabled, all 134 bits (H0 to H5  
and P0 to P127) are output directly from the CGMS Type B  
registers (CRC must be calculated by the user manually).  
Rev. 0 | Page 69 of 88  
 
ADV7342/ADV7343  
+100 IRE  
CRC SEQUENCE  
REF  
+70 IRE  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0 IRE  
–40 IRE  
49.1µs ± 0.5µs  
11.2µs  
2.235µs ± 20ns  
Figure 91. Standard Definition CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
BIT 1 BIT 2  
BIT 20  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
–300mV  
21.2µs ± 0.22µs  
22T  
5.8µs ± 0.15µs  
6T  
T = 1/(fH × 33) = 963ns  
fH = HORIZONTAL SCAN FREQUENCY  
T ± 30ns  
Figure 92. Enhanced Definition (525p) CGMS Waveform  
R = RUN-IN  
PEAK WHITE  
500mV ± 25mV  
S = START CODE  
C0  
C13  
C9 C10 C11 C12  
R
S
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
LSB  
MSB  
SYNC LEVEL  
13.7µs  
5.5µs ± 0.125µs  
Figure 93. Enhanced Definition (625p) CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
BIT 1 BIT 2  
BIT 20  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T ± 30ns  
–300mV  
17.2µs ± 160ns  
4T  
22T  
3.128µs ± 90ns  
T = 1/(fH × 1650/58) = 781.93ns  
fH = HORIZONTAL SCAN FREQUENCY  
1H  
Figure 94. High Definition (720p) CGMS Waveform  
Rev. 0 | Page 70 of 88  
ADV7342/ADV7343  
CRC SEQUENCE  
+700mV  
REF  
BIT 1 BIT 2  
BIT 20  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T ± 30ns  
–300mV  
22.84µs ± 210ns  
22T  
4T  
4.15µs ± 60ns  
T = 1/(f × 2200/77) = 1.038µs  
H
f
= HORIZONTAL SCAN FREQUENCY  
H
1H  
Figure 95. High Definition (1080i) CGMS Waveform  
CRC SEQUENCE  
+700mV  
START  
BIT 1 BIT 2  
BIT 134  
70% ± 10%  
H0  
H1  
H2  
H3  
H4  
H5 P0  
P1  
P2  
P3  
P4  
.
.
.
P122 P123 P124 P125 P126 P127  
0mV  
–300mV  
NOTES  
1. PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION.  
Figure 96. Enhanced Definition (525p) CGMS Type B Waveform  
CRC SEQUENCE  
BIT 134  
+700mV  
START  
BIT 1 BIT 2  
70% ± 10%  
H0  
H1  
H2  
H3  
H4  
H5 P0  
P1  
P2  
P3  
P4  
.
.
.
P122 P123 P124 P125 P126 P127  
0mV  
–300mV  
NOTES  
1. PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION.  
Figure 97. High Definition (720p and 1080i) CGMS Type B Waveform  
Rev. 0 | Page 71 of 88  
ADV7342/ADV7343  
APPENDIX 2—SD WIDE SCREEN SIGNALING  
(see Figure 98). The latter portion of Line 23 (after 42.5 μs from  
HSYNC  
video. WSS data transmission on Line 23 can be enabled using  
Subaddress 0x99, Bit 7. It is possible to blank the WSS portion  
of Line 23 with Subaddress 0xA1, Bit 7.  
Subaddress 0x99, Subaddress 0x9A, Subaddress 0x9B  
the falling edge of  
) is available for the insertion of  
The ADV7342/ADV7343 support wide screen signaling (WSS)  
conforming to the ETSI 300 294 standard. WSS data is  
transmitted on Line 23. WSS data can be transmitted only when  
the device is configured in PAL mode. The WSS data is 14 bits  
long. The function of each of these bits is shown in Table 55.  
The WSS data is preceded by a run-in sequence and a start code  
Table 55. Function of WSS  
Bit Number  
Bit Description  
13 12 11 10  
9
8
7
6
5
4
3
1
0
0
1
0
1
1
0
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
Setting  
Aspect Ratio, Format, Position  
4:3, full format, N/A  
14:9, letterbox, center  
14:9, letterbox, top  
16:9, letterbox, center  
16:9, letterbox, top  
>16:9, letterbox, center  
14:9, full format, center  
16:0, N/A, N/A  
Mode  
0
1
Camera mode  
Film mode  
Color Encoding  
Helper Signals  
0
1
Normal PAL  
Motion Adaptive ColorPlus  
Not present  
0
1
Present  
Reserved  
0
Teletext Subtitles  
0
1
No  
Yes  
Open Subtitles  
0
0
1
1
0
1
0
1
No  
Subtitles in active image area  
Subtitles out of active image area  
Reserved  
Surround Sound  
Copyright  
0
1
No  
Yes  
0
1
No copyright asserted or unknown  
Copyright asserted  
Copying not restricted  
Copying restricted  
Copy Protection  
0
1
500mV  
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13  
11.0µs  
38.4µs  
42.5µs  
Figure 98. WSS Waveform Diagram  
Rev. 0 | Page 72 of 88  
 
ADV7342/ADV7343  
APPENDIX 3—SD CLOSED CAPTIONING  
and Line 284. All pixels inputs are ignored on Line 21 and Line  
284 if closed captioning is enabled.  
Subaddress 0x91 to Subaddress 0x94  
The ADV7342/ADV7343 support closed captioning conforming  
to the standard television synchronizing waveform for color  
transmission. Closed captioning is transmitted during the  
blanked active line time of Line 21 of the odd fields and  
Line 284 of the even fields.  
The FCC Code of Federal Regulations (CFR) 47 Section 15.119  
and EIA608 describe the closed captioning information for  
Line 21 and Line 284.  
The ADV7342/ADV7343 use a single buffering method. This  
means that the closed captioning buffer is only 1-byte deep.  
Therefore, there is no frame delay in outputting the closed  
captioning data, unlike other 2-byte deep buffering systems.  
The data must be loaded one line before it is output on Line 21  
and Line 284. A typical implementation of this method is to use  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency- and phase-locked to the caption data. After the clock  
run-in signal, the blanking level is held for two data bits and is  
followed by the Logic 1 start bit. Sixteen bits of data follow the  
start bit. These consist of two 8-bit bytes, seven data bits, and one  
odd parity bit. The data for these bytes is stored in the SD closed  
captioning registers (Subaddress 0x93 to Subaddress 0x94).  
VSYNC  
to interrupt a microprocessor, which in turn loads the  
new data (2 bytes) in every field. If no new data is required for  
transmission, 0s must be inserted in both data registers; this is  
called nulling. It is also important to load control codes, all of  
which are double bytes, on Line 21. Otherwise, a TV does not  
recognize them. If there is a message such as “Hello World”  
that has an odd number of characters, it is important to add a  
blank character at the end to make sure that the end-of-caption,  
2-byte control code lands in the same field.  
The ADV7342/ADV7343 also support the extended closed  
captioning operation, which is active during even fields and  
encoded on Scan Line 284. The data for this operation is stored  
in the SD closed captioning registers (Subaddress 0x91 to  
Subaddress 0x92).  
The ADV7342/ADV7343 automatically generate all clock run-  
in signals and timing that support closed captioning on Line 21  
10.5 ± 0.25µs  
12.91µs  
7 CYCLES OF  
0.5035MHz  
CLOCK RUN-IN  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
P
A
R
I
T
Y
S
T
A
R
T
D0 TO D6  
D0 TO D6  
BYTE 1  
50 IRE  
40 IRE  
BYTE 0  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
27.382µs  
33.764µs  
Figure 99. SD Closed Captioning Waveform, NTSC  
Rev. 0 | Page 73 of 88  
 
ADV7342/ADV7343  
APPENDIX 4—INTERNAL TEST PATTERN GENERATION  
Note that when programming the FSC registers, the user must  
SD TEST PATTERNS  
write the values in the sequence FSC0, FSC1, FSC2, FSC3. The full  
FSC value to be written is accepted only after the FSC3 write is  
complete.  
The ADV7342/ADV7343 are able to generate SD color bar and  
black bar test patterns.  
The register settings in Table 56 are used to generate an SD  
NTSC 75% color bar test pattern. CVBS output is available on  
DAC 4, S-Video (Y/C) output is on DAC 5 and DAC 6, and  
YPrPb output is on DAC 1 to DAC 3. Upon power-up, the  
subcarrier frequency registers default to the appropriate values  
for NTSC. All other registers are set as normal/default.  
ED/HD TEST PATTERNS  
The ADV7342/ADV7343 are able to generate ED/HD color bar,  
black bar, and hatch test patterns.  
The register settings in Table 58 are used to generate an ED  
525p hatch test pattern. YPrPb output is available on DAC 1 to  
DAC 3. All other registers are set as normal/default.  
Table 56. SD NTSC Color Bar Test Pattern Register Writes  
Subaddress  
Setting  
Table 58. ED 525p Hatch Test Pattern Register Writes  
0x00  
0xFC  
Subaddress  
Setting  
0x82  
0xC9  
0x00  
0x1C  
0x84  
0x40  
0x01  
0x10  
0x31  
0x05  
To generate an SD NTSC black bar test pattern, the same  
settings shown in Table 56 should be used with an additional  
write of 0x24 to Subaddress 0x02.  
To generate an ED 525p black bar test pattern, the same settings  
as shown in Table 58 should be used with an additional write of  
0x24 to Subaddress 0x02.  
For PAL output of either test pattern, the same settings are used,  
except that Subaddress 0x80 is programmed to 0x11 and the  
subcarrier frequency registers are programmed as shown in  
Table 57.  
To generate an ED 525p flat field test pattern, the same settings  
shown in Table 58 should be used, except that 0x0D should be  
written to Subaddress 0x31.  
The Y, Cr, and Cb levels for the hatch and flat field test patterns  
can be controlled using Subaddress 0x36, Subaddress 0x37, and  
Subaddress 0x38, respectively.  
Table 57. PAL FSC Register Writes  
Subaddress  
Description  
Setting  
0xCB  
0x8C  
FSC0  
For ED/HD standards other than 525p, the same settings as  
shown in Table 58 (and subsequent comments) are used except  
that Subaddress 0x30, Bits[7:3] are updated as appropriate.  
0x8D  
FSC1  
0x8A  
0x09  
0x8E  
FSC2  
0x8F  
FSC3  
0x2A  
Rev. 0 | Page 74 of 88  
 
ADV7342/ADV7343  
APPENDIX 5—SD TIMING  
Mode 0 (CCIR-656)—Slave Option (Subaddress 0x8A = X X X X X 0 0 0)  
The ADV7342/ADV7343 are controlled by the SAV (start of active video) and EAV (end of active video) time codes embedded in the  
pixel data. All timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately  
S_VSYNC  
S_HSYNC  
before and after each line during active picture and retrace. If the  
during this mode.  
and  
pins are not used, they should be tied high  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
C
b
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
1440 CLOCK  
1440 CLOCK  
268 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
280 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 100. SD Slave Mode 0  
Mode 0 (CCIR-656)—Master Option (Subaddress 0x8A = X X X X X 0 0 1)  
The ADV7342/ADV7343 generate H and F signals required for the SAV and EAV time codes in the CCIR656 standard. The H bit is  
S_HSYNC  
S_VSYNC  
output on  
and the F bit is output on  
.
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
522  
523  
524  
525  
1
2
3
5
6
7
8
10  
11  
20  
21  
22  
9
H
F
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
F
ODD FIELD  
EVEN FIELD  
Figure 101. SD Master Mode 0, NTSC  
Rev. 0 | Page 75 of 88  
 
ADV7342/ADV7343  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
4
22  
23  
1
2
3
5
6
7
21  
H
F
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
335  
336  
318  
334  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
F
ODD FIELD  
EVEN FIELD  
Figure 102. SD Master Mode 0, PAL  
ANALOG  
VIDEO  
H
F
Figure 103. SD Master Mode 0, Data Transitions  
Mode 1—Slave Option (Subaddress 0x8A = X X X X X 0 1 0)  
In this mode, the ADV7342/ADV7343 accept horizontal sync and odd/even field signals. When  
HSYNC  
is low, a transition of the field  
input indicates a new frame, that is, vertical retrace. The ADV7342/ADV7343 automatically blank all normally blank lines as per CCIR-  
HSYNC  
S_HSYNC  
S_VSYNC  
and pins, respectively.  
624.  
and FIELD are input on the  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
3
2
4
5
7
9
10  
11  
1
6
8
HSYNC  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
FIELD  
ODD FIELD EVEN FIELD  
Figure 104. SD Slave Mode 1, NTSC  
Rev. 0 | Page 76 of 88  
ADV7342/ADV7343  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
3
4
5
7
622  
623  
624  
625  
1
2
6
21  
22  
23  
HSYNC  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 105. SD Slave Mode 1, PAL  
Mode 1—Master Option (Subaddress 0x8A = X X X X X 0 1 1)  
In this mode, the ADV7342/ADV7343 can generate horizontal sync and odd/even field signals. When  
field input indicates a new frame, that is, vertical retrace. The ADV7342/ADV7343 automatically blank all normally blank lines as per  
HSYNC  
is low, a transition of the  
HSYNC  
CCIR-624. Pixel data is latched on the rising clock edge following the timing signal transitions.  
and FIELD are output on the  
S_HSYNC  
S_VSYNC  
and  
pins, respectively.  
HSYNC  
FIELD  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 106. SD Timing Mode 1, Odd/Even Field Transitions (Master/Slave)  
Mode 2— Slave Option (Subaddress 0x8A = X X X X X 1 0 0)  
In this mode, the ADV7342/ADV7343 accept horizontal and vertical sync signals. A coincident low transition of both  
HSYNC  
VSYNC  
and  
VSYNC  
HSYNC  
is high indicates the start of an even field. The  
inputs indicates the start of an odd field. A  
low transition when  
HSYNC  
VSYNC  
S_HSYNC  
are input on the and  
ADV7342/ADV7343 automatically blank all normally blank lines as per CCIR-624.  
S_VSYNC  
and  
pins, respectively.  
Rev. 0 | Page 77 of 88  
ADV7342/ADV7343  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
3
4
5
7
8
20  
21  
22  
2
6
10  
11  
9
HSYNC  
VSYNC  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 107. SD Slave Mode 2, NTSC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
622  
623  
624  
625  
1
2
3
5
6
7
21  
22  
23  
HSYNC  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 108. SD Slave Mode 2, PAL  
Mode 2—Master Option (Subaddress 0x8A = X X X X X 1 0 1)  
In this mode, the ADV7342/ADV7343 can generate horizontal and vertical sync signals. A coincident low transition of both  
VSYNC  
HSYNC  
and  
inputs indicates the start of an odd field.  
VSYNC  
HSYNC  
is high indicates the start of an even field. The ADV7342/ADV7343 automatically blank all  
A
low transition when  
HSYNC  
VSYNC  
S_HSYNC  
S_VSYNC  
pins, respectively.  
normally blank lines as per CCIR-624.  
and  
are output on the  
and  
HSYNC  
VSYNC  
PIXEL  
DATA  
Cb  
Cr  
Y
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 109. SD Timing Mode 2, Even-to-Odd Field Transition (Master/Slave)  
Rev. 0 | Page 78 of 88  
ADV7342/ADV7343  
HSYNC  
VSYNC  
PAL = 864 × CLOCK/2  
NTSC = 858 × CLOCK/2  
PIXEL  
DATA  
Cb  
Cr  
Y
Cb  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 110. SD Timing Mode 2 Odd-to-Even Field Transition (Master/Slave)  
Mode 3—Master/Slave Option (Subaddress 0x8A = X X X X X 1 1 0 or X X X X X 1 1 1)  
HSYNC  
In this mode, the ADV7342/ADV7343 accept or generate horizontal sync and odd/even field signals. When  
is high, a transition  
of the field input indicates a new frame, that is, vertical retrace. The ADV7342/ADV7343 automatically blank all normally blank lines as  
HSYNC  
VSYNC  
S_VSYNC  
S_VSYNC  
and pins,  
per CCIR-624.  
respectively.  
and  
are output in master mode and input in slave mode on the  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
4
20  
21  
22  
10  
11  
1
2
3
5
6
7
8
9
HSYNC  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
FIELD  
ODD FIELD EVEN FIELD  
Figure 111. SD Timing Mode 3, NTSC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
5
7
21  
22  
23  
1
2
3
4
6
HSYNC  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
FIELD  
EVEN FIELD ODD FIELD  
Figure 112. SD Timing Mode 3, PAL  
Rev. 0 | Page 79 of 88  
ADV7342/ADV7343  
APPENDIX 6—HD TIMING  
DISPLAY  
FIELD 1  
VERTICAL BLANKING INTERVAL  
1124  
1125  
1
2
3
4
5
6
7
8
20  
21  
22  
560  
P_VSYNC  
P_HSYNC  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
P_VSYNC  
P_HSYNC  
HSYNC  
VSYNC  
Input Timing  
Figure 113. 1080i  
and  
Rev. 0 | Page 80 of 88  
 
ADV7342/ADV7343  
APPENDIX 7—VIDEO OUTPUT LEVELS  
SD YPrPb OUTPUT LEVELS—SMPTE/EBU N10  
Pattern: 100% Color Bars  
700mV  
700mV  
300mV  
300mV  
Figure 117. Y Levels—PAL  
Figure 114. Y Levels—NTSC  
700mV  
700mV  
Figure 118. Pr Levels—PAL  
Figure 115. Pr Levels—NTSC  
700mV  
700mV  
Figure 119. Pb Levels—PAL  
Figure 116. Pb Levels—NTSC  
Rev. 0 | Page 81 of 88  
 
ADV7342/ADV7343  
ED/HD YPrPb OUTPUT LEVELS  
EIA-770.3, STANDARD FOR Y  
EIA-770.2, STANDARD FOR Y  
INPUT CODE  
INPUT CODE  
940  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
940  
700mV  
700mV  
64  
64  
300mV  
300mV  
EIA-770.3, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
EIA-770.2, STANDARD FOR Pr/Pb  
960  
OUTPUT VOLTAGE  
960  
512  
64  
600mV  
700mV  
700mV  
512  
64  
Figure 122. EIA-770.3 Standard Output Signals (1080i/720p)  
Figure 120. EIA-770.2 Standard Output Signals (525p/625p)  
Y–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
INPUT CODE  
1023  
OUTPUT VOLTAGE  
EIA-770.1, STANDARD FOR Y  
INPUT CODE  
OUTPUT VOLTAGE  
782mV  
940  
700mV  
714mV  
64  
300mV  
64  
286mV  
Pr/Pb–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
OUTPUT VOLTAGE  
INPUT CODE  
1023  
EIA-770.1, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
700mV  
700mV  
512  
64  
64  
300mV  
Figure 123. Output Levels for Full Input Selection  
Figure 121. EIA-770.1 Standard Output Signals (525p/625p)  
Rev. 0 | Page 82 of 88  
 
ADV7342/ADV7343  
SD/ED/HD RGB OUTPUT LEVELS  
Pattern: 100%/75% Color Bars  
R
R
700mV/525mV  
700mV/525mV  
300mV  
300mV  
G
G
700mV/525mV  
700mV/525mV  
300mV  
300mV  
B
B
700mV/525mV  
700mV/525mV  
300mV  
300mV  
Figure 126. HD RGB Output Levels—RGB Sync Disabled  
Figure 124. SD/ED RGB Output Levels—RGB Sync Disabled  
R
R
700mV/525mV  
600mV  
300mV  
700mV/525mV  
300mV  
0mV  
0mV  
G
G
700mV/525mV  
600mV  
700mV/525mV  
300mV  
0mV  
300mV  
0mV  
B
B
700mV/525mV  
600mV  
700mV/525mV  
300mV  
0mV  
300mV  
0mV  
Figure 127. HD RGB Output Levels—RGB Sync Enabled  
Figure 125. SD/ED RGB Output Levels—RGB Sync Enabled  
Rev. 0 | Page 83 of 88  
 
ADV7342/ADV7343  
SD OUTPUT PLOTS  
VOLTS  
0.6  
VOLTS IRE:FLT  
100  
0.4  
0.2  
0
0.5  
50  
0
0
–0.2  
0
F1  
–50  
L608  
10  
L76  
20  
30  
40  
50  
60  
0
10  
20  
30  
MICROSECONDS  
PRECISION MODE OFF  
40  
50  
60  
MICROSECONDS  
NOISE REDUCTION: 0.00dB  
APL = 39.1%  
625 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
APL = 44.5%  
525 LINE NTSC  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1, 2, 3, 4  
SYNCHRONOUS SYNC = A  
FRAMES SELECTED 1, 2  
SLOW CLAMP TO 0.00V AT 6.72µμs  
Figure 128. NTSC Color Bars (75%)  
Figure 131. PAL Color Bars (75%)  
VOLTS  
0.5  
VOLTS IRE:FLT  
0.6  
0.4  
50  
0.2  
0
00  
0
–0.2  
F2  
L238  
L575  
20  
0
10  
20  
30  
40  
50  
60  
0
10  
30  
40  
50  
60  
70  
MICROSECONDS  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL = 44.3%  
APL NEEDS SYNC SOURCE.  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
NO BUNCH SIGNAL  
PRECISION MODE OFF  
PRECISION MODE OFF  
525 LINE NTSC NO FILTERING  
SYNCHRONOUS SYNC = SOURCE  
FRAMES SELECTED 1, 2  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
SLOW CLAMP TO 0.00V AT 6.72µμs  
Figure 129. NTSC Luma  
Figure 132. PAL Luma  
VOLTS IRE:FLT  
VOLTS  
0.5  
0.4  
50  
0.2  
0
0
0
–0.2  
–0.4  
–50  
–0.5  
F1  
L76  
L575  
20  
0
10  
20  
30  
40  
50  
60  
0
10  
30  
40  
50  
60  
MICROSECONDS  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC SOURCE.  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
APL NEEDS SYNC SOURCE.  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
NO BUNCH SIGNAL  
PRECISION MODE OFF  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
SYNCHRONOUS SYNC = B  
FRAMES SELECTED 1, 2  
Figure 130. NTSC Chroma  
Figure 133. PAL Chroma  
Rev. 0 | Page 84 of 88  
 
ADV7342/ADV7343  
APPENDIX 8—VIDEO STANDARDS  
0
DATUM  
H
SMPTE 274M  
ANALOG WAVEFORM  
DIGITAL HORIZONTAL BLANKING  
272T  
*1  
4T  
4T  
1920T  
DIGITAL  
ACTIVE LINE  
ANCILLARY DATA  
(OPTIONAL) OR BLANKING CODE  
EAV CODE  
SAV CODE  
F
F
F
F
0
0
0
0
F
F
0
0
0
0
C
C
r
C
INPUT PIXELS  
Y
V
V
Y
b
r
H*  
H*  
4 CLOCK  
4 CLOCK  
192  
0
2199  
SAMPLE NUMBER  
2112  
2116 2156  
44  
188  
2111  
FVH* = FVH AND PARITY BITS  
SAV/EAV: LINE 1–562: F = 0  
SAV/EAV: LINE 563–1125: F = 1  
SAV/EAV: LINE 1–20; 561–583; 1124–1125: V = 1  
SAV/EAV: LINE 21–560; 5841123: V = 0  
FOR A FRAME RATE OF 30Hz: 40 SAMPLES  
FOR A FRAME RATE OF 25Hz: 480 SAMPLES  
Figure 134. EAV/SAV Input Data Timing Diagram (SMPTE 274M)  
SMPTE 293M  
ANALOG WAVEFORM  
ANCILLARY DATA  
(OPTIONAL)  
DIGITAL  
SAV CODE  
F
EAV CODE  
F
ACTIVE LINE  
F
F
0
0
0
0
F
F
0
0
0
0
C
b
C
r
C
r
INPUT PIXELS  
V
Y
V
Y
Y
H*  
H*  
4 CLOCK  
4 CLOCK  
853 857  
SAMPLE NUMBER  
719  
723 736  
DATUM  
799  
0
719  
0
H
DIGITAL HORIZONTAL BLANKING  
FVH* = FVH AND PARITY BITS  
SAV: LINE 43–525 = 200H  
SAV: LINE 1–42 = 2AC  
EAV: LINE 43–525 = 274H  
EAV: LINE 1–42 = 2D8  
Figure 135. EAV/SAV Input Data Timing Diagram (SMPTE293M)  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
522 523 524 525  
1
2
5
6
7
8
9
12  
13  
14  
15  
16  
42  
43  
44  
Figure 136. SMPTE 293M (525p)  
Rev. 0 | Page 85 of 88  
 
ADV7342/ADV7343  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
12  
13  
1
2
5
6
7
8
9
43  
44  
45  
622 623  
624  
625  
4
10  
11  
Figure 137. ITU-R BT.1358 (625p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
7
1
2
3
4
5
6
747  
748  
749  
750  
26  
27  
744  
745  
8
25  
Figure 138. SMPTE 296M (720p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 1  
560  
1
2
5
6
7
8
21  
22  
1124  
1125  
3
4
20  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
Figure 139. SMPTE 274M (1080i)  
Rev. 0 | Page 86 of 88  
ADV7342/ADV7343  
OUTLINE DIMENSIONS  
12.20  
12.00 SQ  
11.80  
0.75  
0.60  
0.45  
1.60  
MAX  
64  
49  
1
48  
PIN 1  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08  
COPLANARITY  
16  
33  
0.15  
0.05  
SEATING  
17  
32  
PLANE  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCD  
Figure 140. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Macrovision1  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Antitaping  
Package Description  
Package Option  
ST-64-2  
ST-64-2  
ADV7342BSTZ2  
ADV7343BSTZ2  
EVAL-ADV7342EBZ2  
EVAL-ADV7343EBZ2  
Yes  
No  
Yes  
No  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
ADV7342 Evaluation Platform  
ADV7343 Evaluation Platform  
1 Macrovision-enabled ICs require the buyer to be an approved licensee (authorized buyer) of ICs that are able to output Macrovision Rev 7.1.L1-compliant video.  
2 Z = Pb-free part.  
Rev. 0 | Page 87 of 88  
 
 
ADV7342/ADV7343  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06399-0-10/06(0)  
Rev. 0 | Page 88 of 88  
 

相关型号:

ADV7342BSTZ2

IC SERIAL INPUT LOADING, 11-BIT DAC, PQFP64, ROHS COMPLIANT, MS-026BCD, LQFP-64, Digital to Analog Converter
ADI

ADV7342_15

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI

ADV7343

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI

ADV7343BSTZ

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI

ADV7343BSTZ2

IC SERIAL INPUT LOADING, 11-BIT DAC, PQFP64, ROHS COMPLIANT, MS-026BCD, LQFP-64, Digital to Analog Converter
ADI

ADV7343_15

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI

ADV7344

Multiformat Video Encoder Six 14-Bit Noise Shaped Video DACs
ADI

ADV7344BSTZ

Multiformat Video Encoder Six 14-Bit Noise Shaped Video DACs
ADI

ADV7390

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7390BCPZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7390BCPZ-REEL

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

ADV7390EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI