ADV7393 [ADI]

Low Power, Chip Scale 10-Bit SD/HD Video Encoder; 低功耗,芯片级,10位标清/高清视频编码器
ADV7393
型号: ADV7393
厂家: ADI    ADI
描述:

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
低功耗,芯片级,10位标清/高清视频编码器

编码器
文件: 总96页 (文件大小:2253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Chip Scale  
10-Bit SD/HD Video Encoder  
ADV7390/ADV7391/ADV7392/ADV7393  
NTSC and PAL square pixel operation (24.54 MHz/29.5 MHz)  
Macrovision® Rev 7.1.L1 (SD) and Rev 1.2 (ED) compliant  
Programmable features  
Luma and chroma filter responses  
Vertical blanking interval (VBI)  
FEATURES  
3 high quality, 10-bit video DACs  
16× (216 MHz) DAC oversampling for SD  
8× (216 MHz) DAC oversampling for ED  
4× (297 MHz) DAC oversampling for HD  
37 mA maximum DAC output current  
Multiformat video input support  
4:2:2 YCrCb (SD, ED, and HD)  
Subcarrier frequency (FSC) and phase  
Luma delay  
Copy generation management system (CGMS)  
Closed captioning and wide screen signaling (WSS)  
Integrated subcarrier locking to external video source  
Complete on-chip video timing generator  
On-chip test pattern generation  
Serial MPU interface with dual I2C® and SPI® compatibility  
2.7 V or 3.3 V analog operation  
1.8 V digital operation  
3.3 V I/O operation  
Temperature range: −40°C to +85°C  
4:4:4 RGB (SD)  
Multiformat video output support  
Composite (CVBS) and S-Video (Y/C)  
Component YPrPb (SD, ED, and HD)  
Component RGB (SD, ED, and HD)  
Lead frame chip scale package (LFCSP) options  
32-lead, 5 mm × 5 mm LFCSP  
40-lead, 6 mm × 6 mm LFCSP  
Advanced power management  
Patented content-dependent low power DAC operation  
Automatic cable detection and DAC power-down  
Individual DAC on/off control  
Sleep mode with minimal power consumption  
74.25 MHz 8-/10-/16-bit high definition input support  
Compliant with SMPTE 274M (1080i), 296M (720p),  
and 240M (1035i)  
APPLICATIONS  
Mobile handsets  
Digital still cameras  
Portable media and DVD players  
Portable game consoles  
Digital camcorders  
Set-top box (STB)  
Automotive infotainment (ADV7393 only)  
EIA/CEA-861B compliance support  
NTSC M, PAL B/D/G/H/I/M/N, PAL 60 support  
FUNCTIONAL BLOCK DIAGRAM  
ALSB/  
SPI_SS  
SCL/ SDA/  
MOSI SCLK  
SFL/  
MISO  
VAA  
DGND (2)  
VDD (2)  
AGND  
ADV739x  
GND_IO  
VDD_IO  
VBI DATA SERVICE  
INSERTION  
MPU PORT  
SUBCARRIER FREQUENCY  
LOCK (SFL)  
10-BIT  
DAC 1  
DAC 2  
DAC 3  
DAC 1  
YUV  
16×  
FILTER  
PROGRAMMABLE  
LUMINANCE  
FILTER  
TO  
ADD  
10-BIT  
DAC 2  
YCrCb/  
RGB  
SYNC  
RGB/YCrCb  
4:2:2 TO 4:4:4  
TO  
YUV  
P15 TO P0/  
P7 TO P0  
INPUT  
DEINTERLEAVE  
MATRIX  
PROGRAMMABLE  
CHROMINANCE  
FILTER  
10-BIT  
DAC 3  
16×  
FILTER  
ADD  
BURST  
SIN/COS DDS  
BLOCK  
ASYNC  
BYPASS  
YCrCb  
YCbCr  
PROGRAMMABLE  
TO  
ED/HD FILTERS  
RGB MATRIX  
4×  
FILTER  
HDTV  
TEST  
PATTERN  
GENERATOR  
SHARPNESS AND  
ADAPTIVE FILTER  
CONTROL  
POWER  
MANAGEMENT  
CONTROL  
REFERENCE  
AND CABLE  
DETECT  
VIDEO TIMING GENERATOR  
16x/4x OVERSAMPLING PLL  
RSET  
RESET  
HSYNC  
VSYNC  
CLKIN PVDD PGND EXT_LF  
COMP  
Figure 1.  
Protected by U.S. Patent Numbers 5,343,196 and 5,442,355 and other intellectual property rights.  
Protected by U.S. Patent Numbers 4,631,603, 4,577,216, 4,819,098, and other intellectual property rights.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
ADV7390/ADV7391/ADV7392/ADV7393  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SD Subcarrier Frequency Lock, Subcarrier Reset, and Timing  
Reset............................................................................................. 46  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Detailed Features .............................................................................. 4  
General Description......................................................................... 4  
Specifications..................................................................................... 5  
Power Supply Specifications........................................................ 5  
Input Clock Specifications .......................................................... 5  
Analog Output Specifications..................................................... 5  
Digital Input/Output Specifications........................................... 6  
MPU Port Timing Specifications ............................................... 6  
Digital Timing Specifications ..................................................... 7  
Video Performance Specifications ............................................. 8  
Power Specifications .................................................................... 8  
Timing Diagrams.............................................................................. 9  
Absolute Maximum Ratings.......................................................... 15  
Thermal Resistance .................................................................... 15  
ESD Caution................................................................................ 15  
Pin Configurations and Function Descriptions ......................... 16  
Typical Performance Characteristics ........................................... 18  
MPU Port Description................................................................... 23  
I2C Operation.............................................................................. 23  
SPI Operation.............................................................................. 24  
Register Map.................................................................................... 25  
Register Programming............................................................... 25  
Subaddress Register (SR7 to SR0) ............................................ 25  
ADV7390/ADV7391 Input Configuration ................................. 41  
Standard Definition.................................................................... 41  
Enhanced Definition/High Definition .................................... 41  
Enhanced Definition (At 54 MHz) .......................................... 41  
ADV7392/ADV7393 Input Configuration ................................. 42  
Standard Definition.................................................................... 42  
Enhanced Definition/High Definition .................................... 43  
Enhanced Definition (At 54 MHz) .......................................... 43  
Output Configuration.................................................................... 44  
Features ............................................................................................ 45  
Output Oversampling................................................................ 45  
ED/HD Nonstandard Timing Mode........................................ 45  
ED/HD Timing Reset ................................................................ 46  
SD VCR FF/RW Sync ................................................................ 47  
Vertical Blanking Interval ......................................................... 47  
SD Subcarrier Frequency Registers.......................................... 47  
SD NonInterlaced Mode............................................................ 48  
SD Square Pixel Mode ............................................................... 48  
Filters............................................................................................ 49  
ED/HD Test Pattern Color Controls ....................................... 50  
Color Space Conversion Matrix ............................................... 50  
SD Luma and Color Control..................................................... 51  
SD Hue Adjust Control.............................................................. 52  
SD Brightness Detect ................................................................. 52  
SD Brightness Control............................................................... 52  
SD Input Standard Auto Detection.......................................... 52  
Double Buffering........................................................................ 53  
Programmable DAC Gain Control.......................................... 53  
Gamma Correction.................................................................... 53  
ED/HD Sharpness Filter and Adaptive Filter Controls......... 55  
ED/HD Sharpness Filter and Adaptive Filter Application  
Examples...................................................................................... 56  
SD Digital Noise Reduction...................................................... 57  
SD Active Video Edge Control................................................. 59  
External Horizontal and Vertical  
Synchronization Control........................................................... 60  
Low Power Mode........................................................................ 61  
Cable Detection .......................................................................... 61  
DAC Auto Power-Down............................................................ 61  
Pixel and Control Port Readback............................................. 61  
Reset Mechanisms...................................................................... 61  
Printed Circuit Board Layout and Design .................................. 62  
DAC Configurations.................................................................. 62  
Video Output Buffer and Optional Output Filter.................. 62  
Printed Circuit Board (PCB) Layout ....................................... 63  
Typical Application Circuit....................................................... 65  
Appendix 1–Copy Generation Management System ................ 66  
SD CGMS .................................................................................... 66  
ED CGMS.................................................................................... 66  
HD CGMS................................................................................... 66  
CGMS CRC Functionality ........................................................ 66  
Appendix 2–SD Wide Screen Signaling ...................................... 69  
Rev. 0 | Page 2 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Appendix 3–SD Closed Captioning..............................................70  
Appendix 4–Internal Test Pattern Generation............................71  
SD Test Patterns...........................................................................71  
ED/HD Test Patterns ..................................................................71  
Appendix 5–SD Timing..................................................................72  
Appendix 6–HD Timing ................................................................77  
Appendix 7–Video Output Levels.................................................78  
SD YPrPb Output Levels—SMPTE/EBU N10........................78  
ED/HD YPrPb Output Levels ...................................................79  
SD/ED/HD RGB Output Levels................................................80  
SD Output Plots ..........................................................................81  
Appendix 8–Video Standards........................................................82  
Appendix 9–Configuration Scripts...............................................84  
Standard Definition....................................................................84  
Enhanced Definition ..................................................................90  
High Definition...........................................................................92  
Outline Dimensions........................................................................95  
Ordering Guide ...........................................................................96  
REVISION HISTORY  
10/06—Revision 0: Initial Version  
Rev. 0 | Page 3 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
(YPrPb/RGB) analog outputs in either standard-definition (SD)  
or high-definition (HD) video formats.  
DETAILED FEATURES  
High definition (HD) programmable features  
(720p/1080i/1035i)  
4× oversampling (297 MHz)  
Internal test pattern generator  
Color and black bar, hatch, flat field/frame  
Fully programmable YCrCb to RGB matrix  
Gamma correction  
Optimized for low power operation, occupying a minimal  
footprint and requiring few external components, these  
encoders are ideally suited to portable and power sensitive  
applications requiring TV-Out functionality. Cable detection  
and DAC auto power-down features ensure that power  
consumption is kept to a minimum.  
Programmable adaptive filter control  
Programmable sharpness filter control  
CGMS (720p/1080i) and CGMS Type B (720p/1080i)  
Dual data rate (DDR) input support  
EIA/CEA-861B compliance support  
Enhanced definition (ED) programmable features  
(525p/625p)  
The ADV7390/ADV7391 have an 8-bit video input port that  
supports SD video formats over a SDR interface and HD video  
formats over a DDR interface.  
The ADV7392/ADV7393 have a 16-bit video input port that  
can be configured in a variety of ways. SD RGB input is  
supported.  
8× oversampling (216 MHz output)  
Internal test pattern generator  
Color and black bar, hatch, flat field/frame  
Individual Y and PrPb output delay  
Gamma correction  
Programmable adaptive filter control  
Fully programmable YCrCb to RGB matrix  
Undershoot limiter  
Macrovision Rev 1.2 (525p/625p)  
CGMS (525p/625p) and CGMS Type B (525p)  
Dual data rate (DDR) input support  
EIA/CEA-861B compliance support  
Standard definition (SD) programmable features  
16× oversampling (216 MHz)  
All members of the family support embedded EAV/SAV timing  
codes, external video synchronization signals and the I2C and  
SPI communication protocols.  
Table 1 lists the video standards directly supported by the  
ADV739x family.  
Table 1. Standards Directly Supported by the ADV739x1  
Frame  
Clock Input  
(MHz)  
Resolution  
720 × 240  
720 × 288  
720 × 480  
I/P2 Rate (Hz)  
Standard  
P
P
I
59.94  
50  
29.97  
27  
27  
27  
ITU-R  
BT.601/656  
720 × 576  
720 × 480  
720 × 576  
I
I
I
25  
27  
ITU-R  
BT.601/656  
NTSC Square  
Pixel  
PAL Square  
Pixel  
Internal test pattern generator  
Color and black bar  
Controlled edge rates for start and end of active video  
Individual Y and PrPb output delay  
Undershoot limiter  
29.97  
25  
24.54  
29.5  
720 × 483  
720 × 483  
720 × 483  
720 × 576  
720 × 483  
720 × 576  
1920 × 1035  
1920 × 1035  
1280 × 720  
P
P
P
P
P
P
I
59.94  
59.94  
59.94  
50  
59.94  
50  
30  
29.97  
60, 50, 30,  
25, 24  
27  
27  
27  
27  
27  
27  
74.25  
74.1758  
74.25  
SMPTE 293M  
BTA T-1004  
Gamma correction  
Digital noise reduction (DNR)  
ITU-R BT.1358  
ITU-R BT.1358  
ITU-R BT.1362  
ITU-R BT.1362  
SMPTE 240M  
SMPTE 240M  
SMPTE 296M  
Multiple chroma and luma filters  
Luma-SSAF™ filter with programmable gain/attenuation  
PrPb SSAF™  
Separate pedestal control on component and  
composite/S-Video output  
VCR FF/RW sync mode  
Macrovision Rev 7.1.L1  
Copy generation management system (CGMS)  
Wide screen signaling (WSS)  
Closed captioning  
I
P
1280 × 720  
P
23.97,  
74.1758  
SMPTE 296M  
59.94, 29.97  
1920 × 1080  
1920 × 1080  
1920 × 1080  
1920 × 1080  
1920 × 1080  
I
I
P
P
P
30, 25  
29.97  
30, 25, 24  
23.98, 29.97 74.1758  
24 74.25  
74.25  
74.1758  
74.25  
SMPTE 274M  
SMPTE 274M  
SMPTE 274M  
SMPTE 274M  
ITU-R BT.709-  
5
EIA/CEA-861B compliance support  
GENERAL DESCRIPTION  
The ADV7390/ADV7391/ADV7392/ADV7393 are a family of  
high speed, digital-to-analog video encoders on single  
monolithic chips. Three 2.7 V/3.3 V 10-bit video DACs provide  
1 Other standards are supported in the ED/HD nonstandard timing mode.  
2 I = interlaced, P = progressive.  
support for composite (CVBS), S-Video (YC), or component  
Rev. 0 | Page 4 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
SPECIFICATIONS  
POWER SUPPLY SPECIFICATIONS  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY VOLTAGES  
VDD  
VDD_IO  
PVDD  
VAA  
1.71  
2.97  
1.71  
2.6  
1.8  
3.3  
1.8  
3.3  
1.89  
3.63  
1.89  
3.465  
V
V
V
V
POWER SUPPLY REJECTION RATIO  
0.002  
%/%  
INPUT CLOCK SPECIFICATIONS  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 3.  
Parameter  
fCLKIN  
Conditions1  
SD/ED  
Min  
Typ  
27  
54  
Max  
Unit  
MHz  
MHz  
MHz  
ED (at 54 MHz)  
HD  
74.25  
CLKIN High Time, t9  
CLKIN Low Time, t10  
CLKIN Peak-to-Peak Jitter Tolerance  
40  
40  
% of one clock cycle  
% of one clock cycle  
ns  
2
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition.  
ANALOG OUTPUT SPECIFICATIONS  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 4.  
Parameter  
Conditions  
Min  
Typ  
34.6  
4.3  
Max  
Unit  
mA  
mA  
%
V
pF  
ns  
Full-Drive Output Current  
Low Drive Output Current  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Capacitance, COUT  
Analog Output Delay1  
DAC Analog Output Skew  
RSET = 510 Ω, RL = 37.5 Ω  
RSET = 4.12 kΩ, RL = 300 Ω  
DAC 1, DAC 2, DAC 3  
33  
37  
2.0  
0
1.4  
10  
6
1
DAC 1, DAC 2, DAC 3  
ns  
1 Output delay measured from the 50% point of the rising edge of the input clock to the 50% point of the DAC output full-scale transition.  
Rev. 0 | Page 5 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 5.  
Parameter  
Conditions  
Min  
Typ  
4
Max  
Unit  
V
V
μA  
pF  
V
V
μA  
pF  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Leakage Current, IIN  
Input Capacitance, CIN  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
2.0  
0.8  
10  
VIN = VDD_IO  
ISOURCE = 400 μA  
ISINK = 3.2 mA  
VIN = 0.4 V, 2.4 V  
2.4  
0.4  
1
4
MPU PORT TIMING SPECIFICATIONS  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 6.  
Parameter  
MPU PORT, I2C MODE1  
Conditions  
Min  
Typ  
Max  
Unit  
See Figure 15  
SCL Frequency  
SCL High Pulse Width, t1  
SCL Low Pulse Width, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDA, SCL Rise Time, t6  
SDA, SCL Fall Time, t7  
0
400  
kHz  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
0.6  
1.3  
0.6  
0.6  
100  
300  
300  
Setup Time (Stop Condition), t8  
MPU PORT, SPI MODE1  
0.6  
See Figure 16  
SCLK Frequency  
0
10  
35  
40  
MHz  
ns  
SPI_SS to SCLK Setup Time, t1  
SCLK High Pulse Width, t2  
SCLK Low Pulse Width, t3  
Data Access Time after SCLK Falling Edge, t4  
Data Setup Time prior to SCLK Rising Edge, t5  
Data Hold Time after SCLK Rising Edge, t6  
SPI_SS to SCLK Hold Time, t7  
SPI_SS to MISO High Impedance, t8  
20  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
20  
0
0
ns  
1 Guaranteed by characterization.  
Rev. 0 | Page 6 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
DIGITAL TIMING SPECIFICATIONS  
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V.  
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.  
Table 7.  
Parameter  
VIDEO DATA AND VIDEO CONTROL PORT2, 3  
Data Input Setup Time, t11  
Conditions1  
Min  
Typ  
Max  
Unit  
4
SD  
2.1  
2.3  
2.3  
1.7  
1.0  
1.1  
1.1  
1.0  
2.1  
2.3  
1.7  
1.0  
1.1  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ED/HD-SDR  
ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR  
ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR or ED/HD-DDR  
ED (at 54 MHz)  
SD  
ED/HD-SDR or ED/HD-DDR  
ED (at 54 MHz)  
SD  
4
Data Input Hold Time, t12  
4
Control Input Setup Time, t11  
4
Control Input Hold Time, t12  
4
Control Output Access Time, t13  
12  
10  
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz)  
SD  
4
Control Output Hold Time, t14  
4.0  
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 3.5  
PIPELINE DELAY5  
SD1  
CVBS/YC Outputs (2×)  
CVBS/YC Outputs (8×)  
CVBS/YC Outputs (16×)  
Component Outputs (2×)  
Component Outputs (8×)  
Component Outputs (16×)  
ED1  
SD oversampling disabled  
SD oversampling disabled  
SD oversampling enabled  
SD oversampling disabled  
SD oversampling disabled  
SD oversampling enabled  
68  
79  
67  
78  
69  
84  
clock cycles  
clock cycles  
clock cycles  
clock cycles  
clock cycles  
clock cycles  
Component Outputs (1×)  
Component Outputs (4×)  
Component Outputs (8×)  
HD1  
ED oversampling disabled  
ED oversampling disabled  
ED oversampling enabled  
41  
49  
46  
clock cycles  
clock cycles  
clock cycles  
Component Outputs (1×)  
Component Outputs (2×)  
Component Outputs (4×)  
RESET CONTROL  
HD oversampling disabled  
HD oversampling disabled  
HD oversampling enabled  
40  
42  
44  
clock cycles  
clock cycles  
clock cycles  
RESET Low Time  
100  
ns  
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.  
2 Video Data: P[15:0] for ADV7392/ADV7393 or P[7:0] for ADV7390/ADV7391.  
3 Video Control:  
and  
.
HSYNC  
VSYNC  
4 Guaranteed by characterization.  
5 Guaranteed by design.  
Rev. 0 | Page 7 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
VIDEO PERFORMANCE SPECIFICATIONS  
Table 8.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE  
Resolution  
10  
Bits  
Integral Nonlinearity (INL)1  
Differential Nonlinearity (DNL)1, 2  
STANDARD DEFINTION (SD) MODE  
Luminance Nonlinearity  
Differential Gain  
RSET = 510 Ω, RL = 37.5 Ω  
RSET = 510 Ω, RL = 37.5 Ω  
0.5  
0.5  
LSBs  
LSBs  
0.5  
0.5  
0.6  
58  
%
%
Degrees  
dB  
NTSC  
NTSC  
Luma ramp  
Differential Phase  
Signal-to-Noise Ratio (SNR)3  
Flat field full bandwidth  
75  
dB  
ENHANCED DEFINITION (ED) MODE  
Luma Bandwidth  
Chroma Bandwidth  
12.5  
5.8  
MHz  
MHz  
HIGH DEFINITION (HD) MODE  
Luma Bandwidth  
Chroma Bandwidth  
30.0  
13.75  
MHz  
MHz  
1 Measured on DAC 1, DAC 2, and DAC 3.  
2 Differential nonlinearity (DNL) measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal  
step value. For −ve DNL, the actual step value lies below the ideal step value.  
3 Measured on the ADV7392/ADV7393 operating in 10-bit input mode.  
POWER SPECIFICATIONS  
Table 9.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NORMAL POWER MODE1, 2  
3
IDD  
SD (16× oversampling enabled), CVBS  
SD (16× oversampling enabled), YPrPb  
ED (8× oversampling enabled)4  
33  
68  
59  
81  
1
50  
122  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
HD (4× oversampling enabled)4  
IDD_IO  
5
IAA  
1 DAC enabled  
All DACs enabled  
IPLL  
SLEEP MODE  
IDD  
IAA  
IDD_IO  
IPLL  
5
μA  
μA  
μA  
μA  
0.3  
0.2  
0.1  
1 RSET = 510 Ω (all DACs operating in full-drive mode).  
2 75% color bar test pattern applied to pixel data pins.  
3 IDD is the continuous current required to drive the digital core.  
4 Applicable to both single data rate (SDR) and dual data rate (DDR) input modes.  
5 IAA is the total current required to supply all DACs.  
Rev. 0 | Page 8 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
TIMING DIAGRAMS  
The following abbreviations are used in Figure 2 to Figure 9.  
In addition, refer to Table 30 for the ADV7390/ADV7391 input  
configuration and Table 31 for the ADV7392/ADV7393 input  
configuration.  
t9 = Clock high time  
t10 = Clock low time  
t11 = Data setup time  
t12 = Data hold time  
t13 = Control output access time  
t14 = Control output hold time  
CLKIN  
t12  
t9  
t10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
IN SLAVE MODE  
Y0  
t11  
Y1  
Y2  
PIXEL PORT  
Cb0  
Cr0  
Cb2  
t13  
Cr2  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
Figure 2. SD Input, 8-/10-Bit 4:2:2 YCrCb (Input Mode 000)  
CLKIN  
t9  
t
t12  
10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
IN SLAVE MODE  
Y2  
Y0  
Y1  
Y3  
PIXEL PORT  
PIXEL PORT  
Cb2  
Cb0  
Cr0  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
Figure 3. SD Input, 16-Bit 4:2:2 YCrCb (Input Mode 000)  
Rev. 0 | Page 9 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
CLKIN  
t9  
t
t12  
10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
IN SLAVE MODE  
Y2  
Y0  
Y1  
Y3  
PIXEL PORT  
PIXEL PORT  
Cb2  
Cb0  
Cr0  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
Figure 4. SD Input, 16-Bit 4:4:4 RGB (Input Mode 000)  
CLKIN  
t12  
t9  
t10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
PIXEL PORT  
PIXEL PORT  
G0  
B0  
G1  
B1  
G2  
B2  
t11  
PIXEL PORT  
R0  
R1  
R2  
CONTROL  
OUTPUTS  
t14  
t13  
Figure 5. ED/HD-SDR Input, 16-Bit 4:2:2 YCrCb (Input Mode 001)  
CLKIN*  
t9  
t10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
PIXEL PORT  
Cb0  
t12  
Y0  
Cr0  
Y1  
t12  
Cb2  
Y2  
Cr2  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
*LUMA/CHROMA CLOCK RELATIONSHIP CAN BE INVERTED USING SUBADDRESS 0x01, BITS 1 AND 2.  
HSYNC VSYNC  
), Input Mode 010  
Figure 6. ED/HD-DDR Input, 8-/10-Bit 4:2:2 YCrCb (  
/
Rev. 0 | Page 10 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
CLKIN*  
t9  
t10  
PIXEL PORT  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
t12  
t12  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
*LUMA/CHROMA CLOCK RELATIONSHIP CAN BE INVERTED USING SUBADDRESS 0x01, BITS 1 AND 2.  
Figure 7. ED/HD-DDR Input, 8-/10-Bit 4:2:2 YCrCb (EAV/SAV), Input Mode 010  
CLKIN  
t9  
t10  
CONTROL  
INPUTS  
HSYNC  
VSYNC  
Cb0  
Y0  
Cr0  
Y1  
Cb2  
Cr2  
PIXEL PORT  
Y2  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
HSYNC VSYNC  
Figure 8. ED (at 54 MHz) Input, 8-/10-Bit 4:2:2 YCrCb (  
/
), Input Mode 111  
CLKIN  
t9  
t10  
PIXEL PORT  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
Figure 9. ED (at 54 MHz) Input, 8-/10-Bit 4:2:2 YCrCb (EAV/SAV), Input Mode 111  
Rev. 0 | Page 11 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Y OUTPUT  
b
HSYNC  
VSYNC  
PIXEL PORT  
PIXEL PORT*  
Y2  
Y3  
Y0  
Y1  
Cb0 Cr0 Cb2  
Cr2  
a
a = AS PER RELEVANT STANDARD.  
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME  
EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
/
Figure 10. ED-SDR, 16-Bit 4:2:2 YCrCb (  
) Input Timing Diagram  
Y OUTPUT  
b
HSYNC  
VSYNC  
Cr0  
Y1  
Cb0  
Y0  
PIXEL PORT  
a
a(MIN) = 244 CLOCK CYCLES FOR 525p.  
a(MIN) = 264 CLOCK CYCLES FOR 625p.  
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME  
EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
) Input Timing Diagram  
Figure 11. ED-DDR, 8-/10-Bit 4:2:2 YCrCb (  
/
Rev. 0 | Page 12 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Y OUTPUT  
b
HSYNC  
VSYNC  
Y2  
Y3  
Y0  
Y1  
PIXEL PORT  
PIXEL PORT  
Cb0 Cr0 Cb2  
Cr2  
a
a = AS PER RELEVANT STANDARD.  
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT  
AFTER A TIME EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
/
Figure 12. HD-SDR, 16-Bit 4:2:2 YCrCb (  
) Input Timing Diagram  
Y OUTPUT  
b
HSYNC  
VSYNC  
PIXEL PORT  
Cr0  
Y1  
Cb0  
Y0  
a
a = AS PER RELEVANT STANDARD.  
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING  
SPECIFICATION SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT  
AFTER A TIME EQUAL TO THE PIPELINE DELAY.  
HSYNC VSYNC  
) Input Timing Diagram  
Figure 13. HD-DDR, 8-/10-Bit 4:2:2 YCrCb (  
/
Rev. 0 | Page 13 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
HSYNC  
VSYNC  
Cr  
Y
PIXEL PORT  
Cb  
Y
PAL = 264 CLOCK CYCLES  
NTSC = 244 CLOCK CYCLES  
Figure 14. SD Input Timing Diagram (Timing Mode 1)  
t5  
t3  
t3  
SDA  
t6  
t1  
SCL  
t2  
t7  
t4  
t8  
Figure 15. MPU Port Timing Diagram (I2C Mode)  
SPI_SS  
SCLK  
t2 t3  
t1  
t7  
t5  
t6  
D3  
MOSI  
MISO  
D6  
D5  
X
D4  
D2  
X
D1  
X
D0  
X
X
X
X
X
X
X
X
X
X
X
D7  
X
t4  
t8  
X
X
X
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 16. MPU Port Timing Diagram (SPI Mode)  
Rev. 0 | Page 14 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 10.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter1  
Rating  
VAA to AGND  
VDD to DGND  
PVDD to PGND  
VDD_IO to GND_IO  
VAA to VDD  
VDD to PVDD  
VDD_IO to VDD  
AGND to DGND  
AGND to PGND  
AGND to GND_IO  
DGND to PGND  
DGND to GND_IO  
PGND to GND_IO  
Digital Input Voltage to GND_IO  
Analog Outputs to AGND  
Storage Temperature Range (tS)  
Junction Temperature (tJ)  
Lead Temperature (Soldering, 10 sec)  
−0.3 V to +3.9 V  
−0.3 V to +2.3 V  
−0.3 V to +2.3 V  
−0.3 V to +3.9 V  
−0.3 V to +2.2 V  
−0.3 V to +0.3 V  
−0.3 V to +2.2 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to VDD_IO + 0.3 V  
−0.3 V to VAA  
Table 11. Thermal Resistance1  
Package Type  
32-Lead LFCP  
40-Lead LFCSP  
2
θJA  
27  
26  
θJC  
32  
32  
Unit  
°C/W  
°C/W  
1 Values are based on a JEDEC 4 layer test board.  
2 With the exposed metal paddle on the underside of the LFCSP soldered to  
the PCB ground.  
The ADV739x is a Pb-free product. The lead finish is 100% pure  
Sn electroplate. The device is RoHS compliant, suitable for Pb-  
free applications up to 255°C ( 5°C) IR reflow (JEDEC STD-20).  
The ADV739x is backward-compatible with conventional SnPb  
soldering processes. The electroplated Sn coating can be  
soldered with SnPb solder pastes at conventional reflow  
temperatures of 220°C to 235°C.  
−60°C to +100°C  
150°C  
260°C  
ESD CAUTION  
1 Analog output short circuit to any power supply or common can be of an  
indefinite duration.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 15 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
R
1
2
3
4
5
6
7
8
24  
V
DD_IO  
P2  
P3  
SET  
R
SET  
PIN 1  
DD_IO  
P4  
1
2
30  
PIN 1  
INDICATOR  
INDICATOR  
23 COMP  
22 DAC 1  
21 DAC 2  
20 DAC 3  
29 COMP  
28 DAC 1  
27 DAC 2  
26 DAC 3  
P5  
3
P6  
4
ADV7392/  
ADV7393  
TOP VIEW  
(Not to Scale)  
P4  
ADV7390/  
ADV7391  
TOP VIEW  
(Not to Scale)  
P7  
DD  
5
V
DD  
V
6
25 V  
AA  
DGND  
P5  
19  
18 AGND  
17 PV  
V
7
24  
23  
22  
21  
AGND  
DGND  
AA  
8
P8  
PV  
DD  
9
P9  
EXT_LF  
PGND  
P6  
DD  
10  
P10  
Figure 17. ADV7390/ADV7391 Pin Configuration  
Figure 18. ADV7392/ADV7393 Pin Configuration  
Table 12. Pin Function Descriptions  
Pin Number  
ADV7390/91 ADV7392/93  
Input/  
Output Description  
Mnemonic  
9 to 7, 4 to 2,  
31, 30  
P7 to P0  
I
8-Bit Pixel Port (P7 to P0). P0 is the LSB. Refer to Table 30 for input  
modes (ADV7390/ADV7391).  
18 to 15, 11 to 8, 5 P15 to P0  
to 2, 39 to 37, 34  
I
16-Bit Pixel Port (P15 to P0). P0 is the LSB. Refer to Table 31 for input  
modes (ADV7392/ADV7393).  
13  
27  
19  
CLKIN  
I
Pixel Clock Input for HD (74.25 MHz), ED1 (27 MHz or 54 MHz), or  
SD (27 MHz).  
Horizontal Synchronization Signal. This pin can also be configured to  
output an SD, ED, or HD horizontal synchronization signal. See the  
External Horizontal and Vertical Synchronization Control section.  
33  
HSYNC  
I/O  
26  
25  
24  
32  
31  
30  
VSYNC  
SFL/MISO  
RSET  
I/O  
I/O  
I
Vertical Synchronization Signal. This pin can also be configured to  
output an SD, ED, or HD vertical synchronization signal. See the  
External Horizontal and Vertical Synchronization Control section.  
Multifunctional Pin: Subcarrier Frequency Lock (SFL) Input/SPI Data  
Output (MISO). The SFL input is used to drive the color subcarrier  
DDS system, timing reset, or subcarrier reset.  
Controls the amplitudes of the DAC 1, DAC 2, and DAC 3 outputs. For  
full-drive operation (for example, into a 37.5 Ω load), a 510 Ω resistor  
must be connected from RSET to AGND. For low drive operation (for  
example, into a 300 Ω load), a 4.12 kΩ resistor must be connected  
from RSET to AGND.  
23  
22, 21, 20  
12  
11  
10  
29  
28, 27, 26  
14  
13  
12  
COMP  
DAC 1, DAC 2, DAC 3  
SCL/MOSI  
SDA/SCLK  
ALSB/SPI_SS  
O
O
I
I/O  
I
Compensation Pin. Connect a 2.2 nF capacitor from COMP to VAA.  
DAC Outputs. Full-drive and low-drive capable DACs.  
Multifunctional Pin: I2C Clock Input/SPI Data Input.  
Multifunctional Pin: I2C Data Input/Output. Also, SPI clock input.  
Multifunctional Pin: ALSB sets up the LSB2 of the MPU I2C  
address/SPI slave select (SPI_SS).  
14  
20  
RESET  
I
Resets the on-chip timing generator and sets the ADV739x into its  
default mode.  
19  
5, 28  
25  
6, 35  
VAA  
VDD  
P
P
Analog Power Supply (3.3 V).  
Digital Power Supply (1.8 V). For dual-supply configurations, VDD can  
be connected to other 1.8 V supplies through a ferrite bead or  
suitable filtering.  
1
17  
1
23  
VDD_IO  
PVDD  
P
P
Input/Output Digital Power Supply (3.3 V).  
PLL Power Supply (1.8 V). For dual-supply configurations, PVDD can  
be connected to other 1.8 V supplies through a ferrite bead or  
suitable filtering.  
Rev. 0 | Page 16 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Pin Number  
ADV7390/91 ADV7392/93  
Input/  
Output Description  
Mnemonic  
EXT_LF  
PGND  
AGND  
DGND  
16  
22  
I
External Loop Filter for the Internal PLL.  
15  
21  
G
G
G
G
PLL Ground Pin.  
Analog Ground Pin.  
Digital Ground Pin.  
Input/Output Supply Ground Pin.  
18  
24  
6, 29  
32  
7, 36  
40  
GND_IO  
1 ED = enhanced definition = 525p and 625p.  
2 LSB = least significant bit. In the ADV7390, setting the LSB to 0 sets the I2C address to 0xD4. Setting it to 1 sets the I2C address to 0xD6.  
In the ADV7391, setting the LSB to 0 sets the I2C address to 0x54. Setting it to 1 sets the I2C address to 0x56.  
Rev. 0 | Page 17 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
TYPICAL PERFORMANCE CHARACTERISTICS  
Y RESPONSE IN ED 8× OVERSAMPLING MODE  
EDPr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4  
0
1.0  
0.5  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 19. ED 8× Oversampling, PrPb Filter (Linear) Response  
Figure 22. ED 8× Oversampling, Y Filter Response (Focus on Pass Band)  
HD Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
10  
EDPr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
18.5  
37.0  
55.5  
74.0  
92.5  
111.0 129.5 148.0  
FREQUENCY (MHz)  
Figure 20. ED 8× Oversampling, PrPb Filter (SSAF) Response  
Figure 23. HD 4× Oversampling, PrPb (SSAF) Filter Response (4:2:2 Input)  
HD Pr/Pb RESPONSE. 4:4:4 INPUT MODE  
Y RESPONSE IN ED 8× OVERSAMPLING MODE  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–100  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
FREQUENCY (MHz)  
Figure 21. ED 8× Oversampling, Y Filter Response  
Figure 24. HD 4× Oversampling, PrPb (SSAF) Filter Response (4:4:4 Input)  
Rev. 0 | Page 18 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Y RESPONSE IN HD 4× OVERSAMPLING MODE  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0
0
2
4
6
8
10  
12  
12  
12  
0
18.5  
37.0  
55.5  
74.0  
92.5  
111.0 129.5 148.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 25. HD 4× Oversampling, Y Filter Response  
Figure 28. SD PAL, Luma Low-Pass Filter Response  
Y PASS BAND IN HD 4x OVERSAMPLING MODE  
3.0  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
1.5  
0
–1.5  
–3.0  
–4.5  
–6.0  
–7.5  
–9.0  
–10.5  
–12.0  
2
4
6
8
10  
27.750  
46.250  
30.063 32.375 34.688 37.000 39.312 41.625 43.937  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. SD NTSC, Luma Notch Filter Response  
Figure 26. HD 4× Oversampling, Y Filter Response (Focus on Pass Band)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 30. SD PAL, Luma Notch Filter Response  
Figure 27. SD NTSC, Luma Low-Pass Filter Response  
Rev. 0 | Page 19 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Y RESPONSE IN SD OVERSAMPLING MODE  
5
4
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
3
2
1
0
–1  
5
6
7
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
1
2
3
4
FREQUENCY (MHz)  
Figure 31. SD 16× Oversampling, Y Filter Response  
Figure 34. SD Luma SSAF Filter, Programmable Gain  
1
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 35. SD Luma SSAF Filter, Programmable Attenuation  
Figure 32. SD Luma SSAF Filter Response up to 12 MHz  
0
4
2
–10  
0
–20  
–30  
–40  
–50  
–60  
–70  
–2  
–4  
–6  
–8  
–10  
–12  
0
2
4
6
8
10  
12  
0
1
2
3
4
5
6
7
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 36. SD Luma CIF Low-Pass Filter Response  
Figure 33. SD Luma SSAF Filter, Programmable Responses  
Rev. 0 | Page 20 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 37. SD Luma QCIF Low-Pass Filter Response  
Figure 40. SD Chroma 1.3 MHz Low-Pass Filter Response  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
10  
12  
0
2
4
6
8
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 41. SD Chroma 1.0 MHz Low-Pass Filter Response  
Figure 38. SD Chroma 3.0 MHz Low-Pass Filter Response  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
12  
0
2
4
6
8
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 42. SD Chroma 0.65 MHz Low-Pass Filter Response  
Figure 39. SD Chroma 2.0 MHz Low-Pass Filter Response  
Rev. 0 | Page 21 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 43. SD Chroma CIF Low-Pass Filter Response  
Figure 44. SD Chroma QCIF Low-Pass Filter Response  
Rev. 0 | Page 22 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
MPU PORT DESCRIPTION  
Devices such as a microprocessor can communicate with the  
ADV739x through one of the following protocols:  
The bits are transferred from MSB down to LSB. The peripheral  
that recognizes the transmitted address responds by pulling the  
data line low during the ninth clock pulse. This is known as an  
acknowledge bit. All other devices withdraw from the bus at  
this point and maintain an idle condition. The idle condition is  
when the device monitors the SDA and SCL lines waiting for  
the start condition and the correct transmitted address. The  
2-wire serial (I2C-compatible) bus  
4-wire serial (SPI-compatible) bus  
After power-up or reset, the MPU port is configured for I2C  
operation. SPI operation can be invoked at any time by  
following the procedure outlined in the SPI Operation section.  
W
R/ bit determines the direction of the data.  
I2C OPERATION  
Logic 0 on the LSB of the first byte means that the master writes  
information to the peripheral. Logic 1 on the LSB of the first byte  
means that the master reads information from the peripheral.  
The ADV739x supports a 2-wire serial (I2C-compatible)  
microprocessor bus driving multiple peripherals. This port  
operates in an open-drain configuration. Two inputs, serial data  
(SDA) and serial clock (SCL), carry information between any  
device connected to the bus and the ADV739x. Each slave  
device is recognized by a unique address. The ADV739x has  
four possible slave addresses for both read and write operations.  
These are unique addresses for each device and are illustrated in  
Figure 45 and Figure 46. The LSB either sets a read or write  
operation. Logic 1 corresponds to a read operation, while Logic  
0 corresponds to a write operation. A1 is controlled by setting  
The ADV739x acts as a standard slave device on the bus. The  
data on the SDA pin is eight bits long, supporting the 7-bit  
W
addresses plus the R/ bit. It interprets the first byte as the  
device address and the second byte as the starting subaddress.  
There is a subaddress auto-increment facility. This allows data  
to be written to or read from registers in ascending subaddress  
sequence starting at any valid subaddress. A data transfer is  
always terminated by a stop condition. The user can also access  
any unique subaddress register on a one-by-one basis without  
updating all the registers.  
SPI_SS  
the ALSB/  
pin of the ADV739x to Logic 0 or Logic 1.  
1
1
0
1
0
1
A1  
X
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of  
sequence with normal read and write operations, they cause an  
immediate jump to the idle condition. During a given SCL high  
period, the user should only issue a start condition, a stop  
condition, or a stop condition followed by a start condition. If  
an invalid subaddress is issued by the user, the ADV739x does  
not issue an acknowledge and does return to the idle condition.  
If the user utilizes the auto-increment method of addressing the  
encoder and exceeds the highest subaddress, the following  
actions are taken:  
ADDRESS  
CONTROL  
SET UP BY  
ALSB/SPI_SS  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 45. ADV7390/ADV7392 Slave Address = 0xD4 or 0xD6  
0
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
In read mode, the highest subaddress register contents are  
output until the master device issues a no acknowledge.  
This indicates the end of a read. A no acknowledge condition  
occurs when the SDA line is not pulled low on the ninth pulse.  
In write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no acknowledge is issued by  
the ADV739x, and the part returns to the idle condition.  
SET UP BY  
ALSB/SPI_SS  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 46. ADV7391/ADV7393 Slave Address = 0x54 or 0x56  
To control the various devices on the bus, use the following  
protocol. The master initiates a data transfer by establishing a  
start condition, defined by a high-to-low transition on SDA  
while SCL remains high. This indicates that an address/data  
stream follows. All peripherals respond to the start condition  
Figure 47 shows an example of data transfer for a write sequence  
and the start and stop conditions. Figure 48 shows bus write  
and read sequences.  
W
and shift the next eight bits (7-bit address + R/ bit).  
Rev. 0 | Page 23 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
SDA  
SCL  
S
P
9
1–7  
9
9
1–7  
8
8
1–7  
8
START ADDR R/W ACK SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 47. I2C Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S)  
LSB = 0  
SUBADDR  
SUBADDR  
A(S)  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A (S) = NO-ACKNOWLEDGE BY SLAVE  
A (M) = NO-ACKNOWLEDGE BY MASTER  
Figure 48. I2C Read and Write Sequence  
SPI OPERATION  
The ADV739x supports a 4-wire serial (SPI-compatible) bus  
connecting multiple peripherals. Two inputs, master out slave in  
(MOSI) and serial clock (SCLK), and one output, master in  
slave out (MISO), carry information between a master SPI  
peripheral on the bus and the ADV739x. Each slave device on  
the bus has a slave select pin that is connected to the master SPI  
peripheral by a unique slave select line. As such, slave device  
addressing is not required.  
There is a subaddress auto-increment facility. This allows data  
to be written to or read from registers in ascending subaddress  
sequence starting at any valid subaddress. The user can also  
access any unique subaddress register on a one-by-one basis.  
In a write data transfer, 8-bit data bytes are written to the  
ADV739x, MSB first, on the MOSI line immediately after the  
starting subaddress. The data bytes are clocked into the  
ADV739x on the rising edge of SCLK. When all data bytes have  
To invoke SPI operation, a master SPI peripheral (for example, a  
microprocessor) should issue three low pulses on the ADV739x  
been written, the master completes the transfer by driving and  
SPI_SS  
holding the ADV739x ALSB/  
In a read data transfer, after the subaddress has been clocked in  
SPI_SS  
pin high.  
SPI_SS  
edge on the ALSB/  
ALSB/  
pin. When the encoder detects the third rising  
SPI_SS  
pin, it automatically switches to SPI  
on the MOSI line, the ALSB/  
for at least one clock cycle. Then, the ALSB/  
and held low again. On the first SCLK rising edge after  
SPI_SS  
pin is driven and held high  
communication mode. The ADV739x remains in SPI commu-  
nication mode until a hardware reset or power-down occurs.  
SPI_SS  
pin is driven  
To control the ADV739x, use the following protocol for both read  
and write transactions. First, the master initiates a data transfer by  
ALSB/  
has been driven low, the read command, defined  
as 0xD5, is written, MSB first, to the ADV739x over the MOSI  
line. Subsequently, 8-bit data bytes are read from the ADV739x,  
MSB first, on the MISO line. The data bytes are clocked out of  
the part on the falling edge of SCLK. When all data bytes have  
been read, the master completes the transfer by driving and  
SPI_SS  
driving and holding the ADV739x ALSB/  
pin low. On the  
SPI_SS  
first SCLK rising edge after ALSB/  
has been driven low,  
the write command, defined as 0xD4, is written to the ADV739x  
over the MOSI line. The second byte written to the MOSI line is  
interpreted as the starting subaddress. Data on the MOSI line is  
written MSB first and clocked on the rising edge of SCLK.  
SPI_SS  
holding the ADV739x ALSB/  
pin high.  
Rev. 0 | Page 24 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
REGISTER MAP  
A microprocessor can read from or write to all registers of the  
ADV739x via the MPU port, except for registers that are  
specified as read-only or write-only registers.  
REGISTER PROGRAMMING  
Table 13 to Table 27 describe the functionality of each register.  
All registers can be read from as well as written to, unless  
otherwise stated.  
The subaddress register determines the register accessed by the  
next read or write operation. All communication through the  
MPU port starts with an access to the subaddress register. A  
read/write operation is then performed from/to the target  
address, incrementing to the next address until the transaction  
is complete.  
SUBADDRESS REGISTER (SR7 TO SR0)  
The subaddress register is an 8-bit write-only register. After the  
MPU port is accessed and a read/write operation is selected, the  
subaddress is set up. The subaddress register determines which  
register performs the next operation.  
Table 13. Register 0x00  
SR7 to  
Bit Number  
Register  
Setting  
Reset  
Value  
0x12  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0x00  
Power  
Mode  
Register  
Sleep Mode. With this control enabled, the current consumption is  
reduced to μA level. All DACs and the internal PLL circuit are  
disabled. Registers can be read from and written to in sleep mode.  
0
Sleep  
mode off.  
Sleep  
1
mode on.  
PLL and Oversampling Control. This control allows the internal PLL  
circuit to be powered down and the oversampling to be switched off.  
0
1
PLL on.  
PLL off.  
DAC 3: Power on/off.  
DAC 2: Power on/off.  
DAC 1: Power on/off.  
Reserved.  
0
1
DAC 3 off.  
DAC 3 on.  
DAC 2 off.  
DAC 2 on.  
DAC 1 off.  
DAC 1 on.  
0
1
0
1
0
0
0
Rev. 0 | Page 25 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 14. Register 0x01 to Register 0x09  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
0x01  
Mode Select  
Register  
Reserved.  
0
DDR Clock Edge Alignment.  
Note: Only used for ED1 and  
HD DDR modes.  
0
0
Chroma clocked in on rising clock edge and  
luma clocked in on falling clock edge.  
Reserved.  
Reserved.  
Luma clocked in on rising clock edge and  
chroma clocked in on falling clock edge.  
0
1
1
1
0
1
Reserved.  
0
Input Mode.  
Note: See Reg. 0x30, Bits[7:3]  
for ED/HD format selection.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SD input.  
ED/HD-SDR input2  
ED/HD-DDR input.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
ED (at 54 MHz) input.  
Reserved.  
0
0x02  
Mode  
Register 0  
Reserved.  
Test Pattern Black Bar.3  
0
0
Zero must be written to these bits.  
Disabled.  
Enabled.  
0x20  
0
1
Manual RGB Matrix Adjust.  
Sync on RGB.  
0
1
Disable manual RGB matrix adjust.  
Enable manual RGB matrix adjust.  
No sync.  
Sync on all RGB outputs.  
RGB component outputs.  
YPrPb component outputs.  
No sync output.  
0
1
RGB/YPrPb Output Select.  
SD Sync Output Enable.  
ED/HD Sync Output Enable.  
0
1
0
1
HSYNC  
VSYNC  
Output SD syncs on  
No sync output.  
and  
pins.  
0
1
HSYNC  
VSYNC  
Output ED/HD syncs on  
pins.  
and  
0x03  
0x04  
ED/HD CSC  
Matrix 0  
x
x
x
x
LSBs for GY.  
0x03  
0xF0  
ED/HD CSC  
Matrix 1  
LSBs for RV.  
LSBs for BU.  
LSBs for GV.  
LSBs for GU.  
Bits[9:2] for GY.  
x
x
x
x
x
x
x
x
0x05  
0x06  
0x07  
0x08  
0x09  
ED/HD CSC  
Matrix 2  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x4E  
0x0E  
0x24  
0x92  
0x7C  
ED/HD CSC  
Matrix 3  
x
x
x
x
x
x
x
x
Bits[9:2] for GU.  
Bits[9:2] for GV.  
Bits[9:2] for BU.  
Bits[9:2] for RV.  
ED/HD CSC  
Matrix 4  
ED/HD CSC  
Matrix 5  
ED/HD CSC  
Matrix 6  
1 ED = enhanced definition = 525p and 625p.  
2 Available on the ADV7392/ADV7393 (40-pin devices) only.  
3 Subaddress 0x31, Bit 2 must also be enabled (ED/HD). Subaddress 0x84, Bit 6 must also be enabled (SD).  
Rev. 0 | Page 26 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 15. Register 0x0B to Register 0x17  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
0
0
0
0
6
0
0
0
0
5
0
0
0
1
4
0
3
0
2
0
0
0
1
1
0
0
1
1
0
0
1
0
1
Register Setting  
0%  
+0.018%  
+0.036%  
0x0B  
DAC 1, DAC 2,  
DAC 3 Output  
Level  
Positive Gain to DAC Output Voltage.  
0
0
0
0
1
1
+7.382%  
+7.5%  
0
1
0
0
0
0
0
0
Negative Gain to DAC Output  
Voltage.  
1
1
1
1
1
1
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
1
0
1
−7.5%  
−7.382%  
−7.364%  
−0.018%  
0x0D  
DAC Power  
Mode  
DAC 1 Low Power Mode.  
DAC 2 Low Power Mode.  
DAC 3 Low Power Mode.  
SD/ED Oversample Rate Select.  
Reserved.  
0
1
DAC 1 low power disabled 0x00  
DAC 1 low power enabled  
DAC 2 low power disabled  
DAC 2 low power enabled  
DAC 3 low power disabled  
DAC 3 low power enabled  
SD = 16×, ED = 8×  
0
1
0
1
0
1
SD = 8×, ED = 4×  
0
0
0
0
0x10  
Cable Detection DAC 1 Cable Detect.  
Read Only.  
0
1
Cable detected on DAC 1 0x00  
DAC 1 unconnected  
DAC 2 Cable Detect.  
Read Only.  
0
1
Cable detected on DAC 2  
DAC 2 unconnected  
Reserved.  
0
0
x
Unconnected DAC auto power-down.  
0
1
DAC auto power-down  
disable  
DAC auto power-down  
enable  
Reserved.  
0
x
0
x
0
x
0x13  
Pixel Port  
P[7:0] Readback (ADV7390/ADV7391).  
x
x
x
x
x
x
Read only  
0xXX  
Readback A1  
P[15:8] Readback (ADV7392/ADV7393).  
P[7:0] Readback (ADV7392/ADV7393).  
0x14  
0x16  
Pixel Port  
x
x
x
x
x
x
x
x
x
Read only  
Read only  
0xXX  
0xXX  
Readback B1  
Control Port  
Readback1  
Reserved.  
VSYNC  
HSYNC  
x
Readback.  
Readback.  
x
SFL/MISO Readback.  
Reserved.  
x
x
x
0x17  
Software Reset  
Reserved.  
0
0x00  
Software Reset.  
0
1
Writing a 1 resets the  
device; this is a self-  
clearing bit  
Reserved.  
0
0
0
0
0
0
1 For correct operation, Subaddress 0x01[6:4] must equal the default value of 000.  
Rev. 0 | Page 27 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 16. Register 0x30  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
Note  
0x30  
ED/HD Mode  
Register 1  
ED/HD Output Standard.  
0
0
EIA-770.2 output  
EIA-770.3 output  
ED  
HD  
0
1
1
0
EIA-770.1 output  
Output levels for full  
input range  
1
1
Reserved  
ED/HD Input  
Synchronization Format.  
0
1
External  
,
HSYNC VSYNC  
and field inputs1  
Embedded EAV/SAV  
codes  
ED/HD Input Mode.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
SMPTE 293M, ITU-BT.1358 525p @ 59.94 Hz  
Nonstandard timing mode  
BTA-1004, ITU-BT.1362  
ITU-BT.1358  
ITU-BT.1362  
525p @ 59.94 Hz  
625p @ 50 Hz  
625p @ 50 Hz  
SMPTE 296M-1,  
SMPTE 274M-2  
720p @  
60 Hz/59.94 Hz  
0
0
0
0
1
1
1
1
0
1
SMPTE 296M-3  
SMPTE 296M-4,  
SMPTE 274M-5  
720p @ 50 Hz  
720p @  
30 Hz/29.97 Hz  
0
0
1
1
0
0
0
0
0
1
SMPTE 296M-6  
SMPTE 296M-7,  
SMPTE 296M-8  
720p @ 25 Hz  
720p @  
24 Hz/23.98 Hz  
0
1
0
1
0
SMPTE 240M  
1035i @  
60 Hz/59.94 Hz  
0
0
0
1
1
1
0
1
1
1
0
0
1
0
1
Reserved  
Reserved  
SMPTE 274M-4,  
SMPTE 274M-5  
1080i @  
30 Hz/29.97 Hz  
0
0
1
1
1
1
1
1
0
1
SMPTE 274M-6  
SMPTE 274M-7,  
SMPTE 274M-8  
1080i @ 25 Hz  
1080p @  
30 Hz/29.97 Hz  
1
1
0
0
0
0
0
0
0
1
SMPTE 274M-9  
SMPTE 274M-10,  
SMPTE 274M-11  
1080p @ 25 Hz  
1080p @  
24 Hz/23.98 Hz  
1
0
0
1
0
ITU-R BT.709-5  
Reserved  
1080Psf @ 24 Hz  
10011 to 11111  
1 Synchronization can be controlled with a combination of either  
and  
inputs or  
and field inputs, depending on Subaddress 0x34, Bit 6.  
HSYNC  
HSYNC  
VSYNC  
Rev. 0 | Page 28 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 17. Register 0x31 to Register 0x33  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
Pixel data valid off  
Pixel data valid on  
4×  
0x31  
ED/HD Mode  
Register 2  
ED/HD Pixel Data Valid.  
HD Oversample Rate Select.  
ED/HD Test Pattern Enable.  
ED/HD Test Pattern Hatch/Field.  
0
1
2×  
0
1
HD test pattern off  
HD test pattern on  
Hatch  
0
1
Field/frame  
Disabled  
ED/HD Vertical Blanking Interval (VBI)  
Open.  
0
1
Enabled  
ED/HD Undershoot Limiter.  
0
0
1
1
0
1
0
1
Disabled  
−11 IRE  
−6 IRE  
−1.5 IRE  
ED/HD Sharpness Filter.  
0
1
Disabled  
Enabled  
0x32  
ED/HD Mode  
Register 3  
ED/HD Y Delay with Respect to Falling  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0 clock cycles  
1 clock cycle  
2 clock cycles  
3 clock cycles  
4 clock cycles  
0 clock cycles  
1 clock cycle  
2 clock cycles  
3 clock cycles  
4 clock cycles  
Disabled  
0x00  
HSYNC  
Edge of  
.
ED/HD Color Delay with Respect to  
HSYNC  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
Falling Edge of  
.
ED/HD CGMS Enable.  
0
1
Enabled  
ED/HD CGMS CRC Enable.  
ED/HD Cr/Cb Sequence.  
0
1
Disabled  
Enabled  
0x33  
ED/HD Mode  
Register 4  
0
1
HSYNC  
HSYNC  
0x68  
Cb after falling edge of  
Cr after falling edge of  
Reserved.  
0
0 must be written to this bit  
8-bit input  
10-bit input1  
ED/HD Input Format.  
0
1
Sinc Compensation Filter on DAC 1,  
DAC 2, DAC 3.  
0
1
Disabled  
Enabled  
Reserved.  
0
0 must be written to this bit  
Disabled  
Enabled  
ED/HD Chroma SSAF Filter.  
0
1
Reserved.  
1
1 must be written to this bit  
Disable  
Enabled  
ED/HD Double Buffering.  
0
1
1 Available on the ADV7392/ADV7393 (40-pin devices) only.  
Rev. 0 | Page 29 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 18. Register 0x34 to Register 0x38  
SR7 to  
Bit Number  
Reset  
Value  
0x48  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
0x34  
ED/HD Mode  
Register 5  
ED/HD Timing Reset.  
Internal ED/HD timing counters enabled  
Resets the internal ED/HD timing counters  
1
HSYNC  
VSYNC  
0
1
HSYNC  
ED/HD  
ED/HD  
Control.  
output control (refer to Table 50)  
1
0
1
VSYNC  
Control.  
output control (refer to Table 51)  
Reserved.  
1
ED Macrovision Enable.2  
0
1
ED Macrovision disabled  
ED Macrovision enabled  
0 must be written to this bit  
Reserved.  
0
VSYNC  
0
1
0 = Field input  
ED/HD  
Input.  
Input/Field  
VSYNC  
1 =  
input  
ED/HD Horizontal/Vertical  
Counter Mode.3  
0
1
Update field/line counter  
Field/line counter free running  
0x35  
ED/HD Mode  
Register 6  
Reserved.  
0
0x00  
Reserved.  
0
ED/HD Sync on PrPb.  
0
1
Disabled  
Enabled  
ED/HD Color DAC Swap.  
0
1
DAC 2 = Pb, DAC 3 = Pr  
DAC 2 = Pr, DAC 3 = Pb  
Gamma Correction Curve A  
Gamma Correction Curve B  
Disabled  
ED/HD Gamma Correction  
Curve Select.  
0
1
ED/HD Gamma  
Correction Enable.  
0
1
Enabled  
ED/HD Adaptive  
Filter Mode.  
0
1
Mode A  
Mode B  
ED/HD Adaptive  
Filter Enable.  
0
1
x
x
x
Disabled  
Enabled  
0x36  
0x37  
0x38  
ED/HD Y Level4  
ED/HD Cr Level4  
ED/HD Test Pattern Y Level.  
ED/HD Test Pattern Cr Level.  
ED/HD Cb Level4 ED/HD Test Pattern Cb Level.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Y level value  
0xA0  
0x80  
0x80  
Cr level value  
Cb level value  
1 Used in conjunction with ED/HD sync output enable in Subaddress 0x02, Bit 7 = 1.  
2 Applies to the ADV7390 and ADV7392 only.  
3 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the  
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.  
4 For use with ED/HD internal test patterns only (Subaddress 0x31, Bit 2 = 1).  
Rev. 0 | Page 30 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 19. Register 0x39 to Register 0x43  
SR7 to  
Bit Number  
Reset  
Register Setting Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0x39  
ED/HD Mode  
Register 7  
Reserved.  
0
0
0
0
0
ED/HD EIA/CEA-861B  
Synchronization Compliance.  
0
1
Disabled  
Enabled  
Reserved.  
0
0
0x40  
ED/HD Sharpness  
Filter Gain  
ED/HD Sharpness Filter Gain  
Value A.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
0x00  
1
1
1
1
ED/HD Sharpness Filter Gain  
Value B.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
Gain B = −1  
0x41  
0x42  
0x43  
ED/HD CGMS  
Data 0  
ED/HD CGMS Data Bits.  
ED/HD CGMS Data Bits.  
ED/HD CGMS Data Bits.  
0
0
0
0
C19 C18 C17 C16 CGMS C19 to C16 0x00  
ED/HD CGMS  
Data 1  
C15 C14 C13 C12 C11 C10 C9  
C8  
C0  
CGMS C15 to C8  
CGMS C7 to C0  
0x00  
0x00  
ED/HD CGMS  
Data 2  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
Table 20. Register 0x44 to Register 0x57  
SR7 to  
Bit Number  
Register  
Reset  
Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
SR0  
Register  
Bit Description  
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
6
5
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
Setting  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
ED/HD Gamma A0  
ED/HD Gamma A1  
ED/HD Gamma A2  
ED/HD Gamma A3  
ED/HD Gamma A4  
ED/HD Gamma A5  
ED/HD Gamma A6  
ED/HD Gamma A7  
ED/HD Gamma A8  
ED/HD Gamma A9  
ED/HD Gamma B0  
ED/HD Gamma B1  
ED/HD Gamma B2  
ED/HD Gamma B3  
ED/HD Gamma B4  
ED/HD Gamma B5  
ED/HD Gamma B6  
ED/HD Gamma B7  
ED/HD Gamma B8  
ED/HD Gamma B9  
ED/HD Gamma Curve A (Point 24).  
ED/HD Gamma Curve A (Point 32).  
ED/HD Gamma Curve A (Point 48).  
ED/HD Gamma Curve A (Point 64).  
ED/HD Gamma Curve A (Point 80).  
ED/HD Gamma Curve A (Point 96).  
ED/HD Gamma Curve A (Point 128).  
ED/HD Gamma Curve A (Point 160).  
ED/HD Gamma Curve A (Point 192).  
ED/HD Gamma Curve A (Point 224).  
ED/HD Gamma Curve B (Point 24).  
ED/HD Gamma Curve B (Point 32).  
ED/HD Gamma Curve B (Point 48).  
ED/HD Gamma Curve B (Point 64).  
ED/HD Gamma Curve B (Point 80).  
ED/HD Gamma Curve B (Point 96).  
ED/HD Gamma Curve B (Point 128).  
ED/HD Gamma Curve B (Point 160).  
ED/HD Gamma Curve B (Point 192).  
ED/HD Gamma Curve B (Point 224).  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
Rev. 0 | Page 31 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 21. Register 0x58 to Register 0x5D  
SR7 to  
Bit Number  
Register  
Setting  
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
Gain B = −1  
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
Gain B = −1  
Gain A = 0  
Gain A = +1  
Gain A = +7  
Gain A = −8  
Gain A = −1  
Gain B = 0  
Gain B = +1  
Gain B = +7  
Gain B = −8  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0x58  
ED/HD Adaptive Filter Gain 1  
ED/HD Adaptive Filter Gain 1,  
Value A.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
ED/HD Adaptive Filter Gain 1,  
Value B.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
0x59  
ED/HD Adaptive Filter Gain 2  
ED/HD Adaptive Filter Gain 2,  
Value A.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
0x00  
1
1
1
1
ED/HD Adaptive Filter Gain 2,  
Value B.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
0x5A  
ED/HD Adaptive Filter Gain 3  
ED/HD Adaptive Filter Gain 3,  
Value A.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
0x00  
1
1
1
1
ED/HD Adaptive Filter Gain 3,  
Value B.  
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
1
Gain B = −1  
0x5B  
0x5C  
0x5D  
ED/HD Adaptive Filter  
Threshold A  
ED/HD Adaptive Filter Threshold A.  
ED/HD Adaptive Filter Threshold B.  
ED/HD Adaptive Filter Threshold C.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Threshold A 0x00  
Threshold B 0x00  
Threshold C 0x00  
ED/HD Adaptive Filter  
Threshold B  
x
x
x
x
x
x
x
x
ED/HD Adaptive Filter  
Threshold C  
Rev. 0 | Page 32 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 22. Register 0x5E to Register 0x6E  
SR7 to  
Bit Number  
Register  
Setting  
Disabled  
Enabled  
Disabled  
Enabled  
H5 to H0  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
0x5E  
ED/HD CGMS Type B  
Register 0  
ED/HD CGMS Type B  
Enable.  
ED/HD CGMS Type B  
CRC Enable.  
0
1
ED/HD CGMS Type B  
Header Bits.  
H5  
H4  
H3  
H2  
H1  
H0  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
ED/HD CGMS Type B  
Register 1  
ED/HD CGMS Type B  
Data Bits.  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
P7 to P0  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ED/HD CGMS Type B  
Register 2  
ED/HD CGMS Type B  
Data Bits.  
P15  
P23  
P31  
P39  
P47  
P55  
P63  
P71  
P79  
P87  
P95  
P14  
P22  
P30  
P38  
P46  
P54  
P62  
P70  
P78  
P86  
P94  
P13  
P21  
P29  
P37  
P45  
P53  
P61  
P69  
P77  
P85  
P93  
P12  
P20  
P28  
P36  
P44  
P52  
P60  
P68  
P76  
P84  
P92  
P11  
P19  
P27  
P35  
P43  
P51  
P59  
P67  
P75  
P83  
P91  
P10  
P18  
P26  
P34  
P42  
P50  
P58  
P66  
P74  
P82  
P90  
P98  
P9  
P8  
P15 to P8  
ED/HD CGMS Type B  
Register 3  
ED/HD CGMS Type B  
Data Bits.  
P17  
P25  
P33  
P41  
P49  
P57  
P65  
P73  
P81  
P89  
P97  
P16  
P24  
P32  
P40  
P48  
P56  
P64  
P72  
P80  
P88  
P96  
P23 to P16  
P31 to P24  
P39 to P32  
P47 to P40  
P55 to P48  
P63 to P56  
P71 to P64  
P79 to P72  
P87 to P80  
P95 to P88  
P103 to P96  
ED/HD CGMS Type B  
Register 4  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 5  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 6  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 7  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 8  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 9  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 10  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 11  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 12  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 13  
ED/HD CGMS Type B  
Data Bits.  
P103 P102 P101 P100 P99  
ED/HD CGMS Type B  
Register 14  
ED/HD CGMS Type B  
Data Bits.  
P111 P110 P109 P108 P107 P106 P105 P104 P111 to P104 0x00  
P119 P118 P117 P116 P115 P114 P113 P112 P119 to P112 0x00  
P127 P126 P125 P124 P123 P122 P121 P120 P127 to P120 0x00  
ED/HD CGMS Type B  
Register 15  
ED/HD CGMS Type B  
Data Bits.  
ED/HD CGMS Type B  
Register 16  
ED/HD CGMS Type B  
Data Bits.  
Rev. 0 | Page 33 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 23. Register 0x80 to Register 0x83  
SR7 to  
Bit Number  
Reset  
Value  
0x10  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
Register Setting  
NTSC  
PAL B, PAL D, PAL G, PAL H, PAL I  
PAL M  
0x80  
SD Mode  
Register 1  
SD Standard.  
PAL N  
SD Luma Filter.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LPF NTSC  
LPF PAL  
Notch NTSC  
Notch PAL  
Luma SSAF  
Luma CIF  
Luma QCIF  
Reserved  
SD Chroma Filter.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.3 MHz  
0.65 MHz  
1.0 MHz  
2.0 MHz  
Reserved  
Chroma CIF  
Chroma QCIF  
3.0 MHz  
0x82  
SD Mode  
Register 2  
SD PrPb SSAF Filter.  
SD DAC Output 1.  
0
1
Disabled  
Enabled  
0x0B  
0
1
Refer to Table 32 in the Output  
Configuration section  
Reserved.  
0
SD Pedestal.  
0
1
Disabled  
Enabled  
SD Square Pixel Mode.  
SD VCR FF/RW Sync.  
SD Pixel Data Valid.  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
SD Active Video Edge  
Control.  
0
1
Disabled  
Enabled  
0x83  
SD Mode  
Register 3  
SD Pedestal YPrPb Output.  
0
1
No pedestal on YPrPb  
7.5 IRE pedestal on YPrPb  
Y = 700 mV/300 mV  
Y = 714 mV/286 mV  
700 mV p-p (PAL), 1000 mV p-p (NTSC)  
700 mV p-p  
0x04  
SD Output Levels Y.  
0
1
SD Output Levels PrPb.  
0
0
1
1
0
1
0
1
1000 mV p-p  
648 mV p-p  
SD Vertical Blanking  
Interval (VBI) Open.  
0
1
Disabled  
Enabled  
SD Closed Captioning  
Field Control.  
0
0
1
1
0
1
0
1
Closed captioning disabled  
Closed captioning on odd field only  
Closed captioning on even field only  
Closed captioning on both fields  
Reserved  
Reserved.  
0
Rev. 0 | Page 34 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 24. Register 0x84 to Register 0x87  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
VSYNC  
7
6
5
4
3
2
1
0
0
1
Register Setting  
0x84  
SD Mode  
Register 4  
Disabled  
SD  
-3H.  
VSYNC  
VSYNC  
= 2.5 lines (PAL),  
= 3 lines (NTSC)  
SD SFL/SCR/TR Mode Select.  
0
0
1
1
0
1
0
1
Disabled  
Subcarrier reset mode enabled  
Timing reset mode enabled  
SFL mode enabled  
720 pixels  
710 (NTSC), 702 (PAL)  
Chroma enabled  
Chroma disabled  
Enabled  
SD Active Video Length.  
SD Chroma.  
0
1
0
1
SD Burst.  
0
1
Disabled  
SD Color Bars.  
0
1
Disabled  
Enabled  
SD Luma/Chroma Swap.  
0
1
DAC 2 = luma, DAC 3 = chroma  
DAC 2 = chroma, DAC 3 = luma  
5.17 ꢀs  
5.31 ꢀs  
5.59 ꢀs (must be set for  
Macrovision compliance)  
0x86  
SD Mode  
Register 5  
NTSC Color Subcarrier Adjust (Delay from  
the falling edge of output HSYNC pulse to  
start of color burst).  
0
0
1
0
1
0
0x02  
1
1
Reserved  
Reserved.  
0
SD EIA/CEA-861B Synchronization  
Compliance.  
0
1
Disabled  
Enabled  
Reserved.  
0
0
SD Horizontal/Vertical Counter Mode.1  
0
1
Update field/line counter  
Field/line counter free running  
Normal  
Color reversal enabled  
Disabled  
SD RGB Color Swap.2  
SD PrPb Scale.  
0
1
0x87  
SD Mode  
Register 6  
0
1
0x00  
Enabled  
SD Y Scale.  
0
1
Disabled  
Enabled  
SD Hue Adjust.  
0
1
Disabled  
Enabled  
SD Brightness.  
0
1
Disabled  
Enabled  
SD Luma SSAF Gain.  
SD Input Standard Auto Detection.  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
Reserved.  
SD RGB Input Enable.2  
0
0 must be written to this bit  
SD YCrCb input  
SD RGB input  
0
1
1 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the  
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.  
2 Available on the ADV7392/ADV7393 (40-pin devices) only.  
Rev. 0 | Page 35 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 25. Register 0x88 to Register 0x89  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
Reserved.  
7
6
5
4
3
2
1
0
Register Setting  
0x88  
SD Mode  
Register 7  
0
SD Noninterlaced Mode.  
0
1
Disabled  
Enabled  
SD Double Buffering.  
SD Input Format.  
0
1
Disabled  
Enabled  
0
0
1
1
0
1
0
1
8-bit input  
16-bit input1  
10-bit input1  
Reserved  
SD Digital Noise Reduction.  
SD Gamma Correction Enable.  
SD Gamma Correction Curve Select.  
SD Undershoot Limiter.  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0
1
Gamma Correction Curve A  
Gamma Correction Curve B  
Disabled  
−11 IRE  
−6 IRE  
0x89  
SD Mode  
Register 8  
0
0
1
1
0
1
0
1
0x00  
−1.5 IRE  
Reserved.  
0
0 must be written to this bit  
Disabled  
Enabled  
SD Black Burst Output on DAC Luma.  
0
1
SD Chroma Delay.  
0
0
1
1
0
1
0
1
Disabled  
4 clock cycles  
8 clock cycles  
Reserved  
Reserved.  
0
0
0 must be written to these bits  
1 Available on the ADV7392/ADV7393 (40-pin devices) only.  
Rev. 0 | Page 36 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 26. Register 0x8A to Register 0x98  
SR7 to  
Bit Number  
Reset  
Value  
0x08  
SR0  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Register Setting  
Slave mode  
Master mode  
Mode 0  
Mode 1  
Mode 2  
0x8A  
SD Timing Register 0  
SD Slave/Master Mode.  
SD Timing Mode.  
0
0
1
1
0
1
0
1
Mode 3  
Reserved.  
1
SD Luma Delay.  
0
0
1
1
0
1
0
1
No delay  
2 clock cycles  
4 clock cycles  
6 clock cycles  
−40 IRE  
SD Minimum Luma Value.  
SD Timing Reset.  
0
1
−7.5 IRE  
x
A low-high-low transition  
resets the internal SD  
timing counters  
0x8B  
SD Timing Register 1  
Note: Applicable in  
master modes only,  
that is, Subaddress  
0x8A, Bit 0 = 1.  
HSYNC  
0
0
1
1
0
1
0
1
ta = 1 clock cycle  
ta = 4 clock cycles  
ta = 16 clock cycles  
ta = 128 clock cycles  
tb = 0 clock cycles  
tb = 4 clock cycles  
tb = 8 clock cycles  
tb = 18 clock cycles  
tc = tb  
0x00  
SD  
SD  
SD  
Width.  
HSYNC VSYNC  
to  
0
0
1
1
0
1
0
1
Delay.  
Rising  
HSYNC VSYNC  
to  
Edge Delay (Mode 1 Only).  
x
x
0
0
1
1
0
1
0
1
0
1
tc = tb + 32 μs  
VSYNC  
1 clock cycle  
4 clock cycles  
16 clock cycles  
128 clock cycles  
0 clock cycles  
1 clock cycle  
2 clock cycles  
3 clock cycles  
Width (Mode 2 Only).  
HSYNC  
0
0
1
1
x
0
1
0
1
x
to Pixel Data Adjust.  
0x8C  
0x8D  
0x8E  
0x8F  
SD FSC Register 01  
SD FSC Register 11  
SD FSC Register 21  
SD FSC Register 31  
SD FSC Phase  
Subcarrier Frequency Bits[7:0]  
Subcarrier Frequency Bits[15:8]  
Subcarrier Frequency Bits[23:16]  
Subcarrier Frequency Bits[31:24]  
Subcarrier Phase Bits[9:2]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Frequency  
Bits[7:0]  
0x1F  
0x7C  
0xF0  
0x21  
x
x
x
x
x
x
Subcarrier Frequency  
Bits[15:8]  
Subcarrier Frequency  
Bits[23:16]  
Subcarrier Frequency  
Bits[31:24]  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Phase Bits[9:2]  
Extended Data Bits[7:0]  
0x00  
0x00  
SD Closed Captioning Extended Data on Even Fields.  
SD Closed Captioning Extended Data on Even Fields.  
SD Closed Captioning Data on Odd Fields.  
Extended Data Bits[15:8]. 0x00  
Data Bits[7:0]  
Data Bits[15:8]  
0x00  
0x00  
SD Closed Captioning Data on Odd Fields.  
SD Pedestal Register 0  
SD Pedestal Register 1  
SD Pedestal Register 2  
SD Pedestal Register 3  
Pedestal on Odd Fields.  
Pedestal on Odd Fields.  
Pedestal on Even Fields.  
Pedestal on Even Fields.  
17 16 15 14 13 12 11 10 Setting any of these bits 0x00  
to 1 disables pedestal  
25 24 23 22 21 20 19 18  
17 16 15 14 13 12 11 10  
25 24 23 22 21 20 19 18  
0x00  
0x00  
0x00  
on the line number  
indicated by the bit  
settings  
1 SD subcarrier frequency registers default to NTSC subcarrier frequency values.  
Rev. 0 | Page 37 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 27. Register 0x99 to Register 0xA5  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
SD CGMS Data.  
SD CGMS CRC.  
7
6
5
4
3
2
1
0
Register Setting  
CGMS Data Bits[C19:C16]  
Disabled  
0x99  
SD CGMS/WSS 0  
x
x
x
x
0
1
Enabled  
SD CGMS on Odd Fields.  
SD CGMS on Even Fields.  
SD WSS.  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0
1
Disabled  
Enabled  
0x9A  
SD CGMS/WSS 1  
SD CGMS/WSS 2  
SD CGMS/WSS Data.  
x
x
x
x
x
x
x
x
CGMS Data Bits[C13:C8] or  
WSS Data Bits[W13:W8]  
0x00  
SD CGMS Data.  
x
x
x
x
CGMS Data Bits[C15:C14]  
0x9B  
0x9C  
SD CGMS/WSS Data.  
x
x
x
x
x
x
x
x
CGMS Data Bits[C7:C0] or  
WSS Data Bits[W7:W0]  
0x00  
0x00  
SD Scale LSB  
Register  
LSBs for SD Y Scale Value.  
LSBs for SD Cb Scale Value.  
LSBs for SD Cr Scale Value.  
LSBs for SD FSC Phase.  
SD Y Scale Bits[1:0]  
SD Cb Scale Bits[1:0]  
SD Cr Scale Bits[1:0]  
Subcarrier Phase Bits[1:0]  
SD Y Scale Bits[7:2]  
SD Cb Scale Bits[7:2]  
x
x
x
x
x
x
x
x
0x9D  
0x9E  
SD Y Scale Register SD Y Scale Value.  
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
SD Cb Scale  
Register  
SD Cb Scale Value.  
0x9F  
0xA0  
0xA1  
SD Cr Scale Register SD Cr Scale Value.  
SD Hue Register SD Hue Adjust Value.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SD Cr Scale Bits[7:2]  
0x00  
0x00  
0x00  
SD Hue Adjust Bits[7:0]  
SD Brightness/WSS SD Brightness Value.  
SD Blank WSS Data.  
SD Brightness Bits[6:0]  
0
1
Disabled  
Enabled  
−4 dB  
0xA2  
SD Luma SSAF  
SD Luma SSAF Gain/Attenuation.  
0
0
0
1
0
1
0
0
0x00  
Note: Only applicable if  
Subaddress 0x87, Bit 4 = 1.  
0 dB  
1
1
0
0
+4 dB  
Reserved.  
0
0
0
0
0xA3  
SD DNR 0  
Coring Gain Border.  
Note: In DNR mode, the values  
in brackets apply.  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No gain  
0x00  
+1/16 [−1/8]  
+2/16 [−2/8]  
+3/16 [−3/8]  
+4/16 [−4/8]  
+5/16 [−5/8]  
+6/16 [−6/8]  
+7/16 [−7/8]  
+8/16 [−1]  
Coring Gain Data.  
Note: In DNR mode, the values  
in brackets apply.  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No gain  
+1/16 [−1/8]  
+2/16 [−2/8]  
+3/16 [−3/8]  
+4/16 [−4/8]  
+5/16 [−5/8]  
+6/16 [−6/8]  
+7/16 [−7/8]  
+8/16 [−1]  
Rev. 0 | Page 38 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
SR7 to  
SR0  
Bit Number  
Reset  
Value  
0x00  
Register  
Bit Description  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
Register Setting  
0
0xA4  
SD DNR 1  
DNR Threshold.  
0
0
0
0
0
1
1
1
1
1
1
1
0
62  
1
1
1
1
1
1
63  
Border Area.  
Block Size.  
0
1
2 pixels  
4 pixels  
0
1
8 pixels  
16 pixels  
Filter A  
Filter B  
Filter C  
0xA5  
SD DNR 2  
DNR Input Select.  
0
0
0
1
0
1
1
0
1
0
1
0
0x00  
Filter D  
DNR Mode.  
0
1
DNR mode  
DNR sharpness mode  
0 pixel offset  
1 pixel offset  
DNR Block Offset.  
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
14 pixel offset  
15 pixel offset  
Table 28. Register 0xA6 to Register 0xBB  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x0X  
SR0  
Register  
Bit Description  
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
6
5
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Register Setting  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
SD Gamma A0  
SD Gamma A1  
SD Gamma A2  
SD Gamma A3  
SD Gamma A4  
SD Gamma A5  
SD Gamma A6  
SD Gamma A7  
SD Gamma A8  
SD Gamma A9  
SD Gamma B0  
SD Gamma B1  
SD Gamma B2  
SD Gamma B3  
SD Gamma B4  
SD Gamma B5  
SD Gamma B6  
SD Gamma B7  
SD Gamma B8  
SD Gamma B9  
SD Brightness Detect  
Field Count Register  
SD Gamma Curve A (Point 24).  
SD Gamma Curve A (Point 32).  
SD Gamma Curve A (Point 48).  
SD Gamma Curve A (Point 64).  
SD Gamma Curve A (Point 80).  
SD Gamma Curve A (Point 96).  
x
x
x
x
x
x
x
x
x
x
x
x
X
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
A0  
A1  
A2  
A3  
A4  
A5  
SD Gamma Curve A (Point 128).  
SD Gamma Curve A (Point 160).  
SD Gamma Curve A (Point 192).  
SD Gamma Curve A (Point 224).  
SD Gamma Curve B (Point 24).  
SD Gamma Curve B (Point 32).  
SD Gamma Curve B (Point 48).  
SD Gamma Curve B (Point 64).  
SD Gamma Curve B (Point 80).  
SD Gamma Curve B (Point 96).  
SD Gamma Curve B (Point 128).  
SD Gamma Curve B (Point 160).  
SD Gamma Curve B (Point 192).  
SD Gamma Curve B (Point 224).  
SD Brightness Value.  
A6  
A7  
A8  
A9  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
Read only  
Read only  
Reserved  
Read only  
Field Count.  
Reserved.  
0
0
0
Revision Code.  
0
0
Rev. 0 | Page 39 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 29. Register 0xE0 to Register 0xF1  
SR7 to  
Bit Number  
Reset  
Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
SR0  
Register1  
Bit Description  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bits.  
MV Control Bit.  
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
6
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
5
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Register Setting  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Bits[7:1] must be 0  
1 Macrovision registers are only available on the ADV7390 and the ADV7392.  
Rev. 0 | Page 40 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ADV7390/ADV7391 INPUT CONFIGURATION  
The ADV7390/ADV7391 supports a number of different input  
modes. The desired input mode is selected using Subaddress 0x01,  
Bits[6:4]. The ADV7390/ADV7391 defaults to standard  
definition (SD) mode upon power-up. Table 30 provides an  
overview of all possible input configurations. Each input mode  
is described in detail in this section.  
The CrCb pixel data is also input on Pin P7 to Pin P0  
upon the opposite edge of CLKIN. P0 is the LSB.  
Whether the Y data is clocked in upon the rising or falling edge  
of CLKIN is determined by Subaddress 0x01, Bits[2:1] (see  
Figure 50 and Figure 51).  
CLKIN  
Table 30. ADV7390/ADV7391 Input Configuration  
Input Mode  
P7 P6 P5 P4 P2 P2 P1 P0  
P[7:0]  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
000 SD  
010 ED/HD-DDR  
111 ED (at 54 MHz)  
YCrCb  
YCrCb  
YCrCb  
NOTES  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 00 IN THIS CASE.  
Figure 50. ED/HD-DDR Input Sequence (EAV/SAV)—Option A  
STANDARD DEFINITION  
Subaddress 0x01, Bits[6:4] = 000  
CLKIN  
SD YCrCb data can be input in an interleaved 4:2:2 format over  
an 8-bit bus rate of 27 MHz.  
P[7:0]  
3FF  
00  
00  
XY  
Y0  
Cb0  
Y1  
Cr0  
A 27 MHz clock signal must be provided on the CLKIN pin. If  
required, external synchronization signals can be provided on  
NOTES  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 11 IN THIS CASE.  
Figure 51. ED/HD-DDR Input Sequence (EAV/SAV)—Option B  
HSYNC  
VSYNC  
the  
and  
pins. Embedded EAV/SAV timing  
codes are also supported. The ITU-R BT.601/656 input standard  
is supported.  
MPEG2  
DECODER  
ADV7390/  
ADV7391  
CLKIN  
YCrCb  
The interleaved pixel data is input on Pin P7 to Pin P0, with P0  
being the LSB.  
8
YCrCb  
P[7:0]  
ADV7390/  
ADV7391  
INTERLACED TO  
PROGRESSIVE  
2
VSYNC,  
MPEG2  
HSYNC  
2
DECODER  
VSYNC,  
HSYNC  
27MHz  
CLKIN  
Figure 52. ED/HD-DDR Example Application  
8
YCrCb  
ENHANCED DEFINITION (AT 54 MHz)  
P[7:0]  
Subaddress 0x01, Bits[6:4] = 111  
Figure 49. SD Example Application  
ED YCrCb data can be input in an interleaved 4:2:2 format over  
an 8-bit bus rate of 54 MHz.  
ENHANCED DEFINITION/HIGH DEFINITION  
Subaddress 0x01, Bits[6:4] = 010  
A 54 MHz clock signal must be provided on the CLKIN pin.  
Embedded EAV/SAV timing codes are supported. External  
synchronization signals are not supported in this mode.  
ED or HD YCrCb data can be input in an interleaved 4:2:2  
format over an 8-bit DDR bus.  
The clock signal must be provided on the CLKIN pin. If  
required, external synchronization signals can be provided on  
The interleaved pixel data is input on Pin P7 to Pin P0, with P0  
being the LSB.  
HSYNC  
VSYNC  
the  
and  
pins. Embedded EAV/SAV timing  
CLKIN  
codes are also supported.  
8-Bit 4:2:2 ED/HD YCrCb Mode (DDR)  
P[7:0]  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
In 8-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is input  
on Pin P7 to Pin P0 upon either the rising or falling edge of  
CLKIN. P0 is the LSB.  
Figure 53. ED (At 54 MHz) Input Sequence (EAV/SAV)  
Rev. 0 | Page 41 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ADV7392/ADV7393 INPUT CONFIGURATION  
16-Bit 4:2:2 YCrCb Mode  
The ADV7392/ADV7393 supports a number of different input  
modes. The desired input mode is selected using Subaddress 0x01,  
Bits[6:4]. The ADV7392/ADV7393 defaults to standard  
definition (SD) mode upon power-up. Table 31 provides an  
overview of all possible input configurations. Each input mode  
is described in detail in this section.  
Subaddress 0x87, Bit 7 = 0  
Subaddress 0x88, Bits[4:3] = 01  
In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is input on  
Pin P15 to Pin P8, with P8 being the LSB.  
The CrCb pixel data is input on Pin P7 to Pin P0, with P0 being  
the LSB.  
STANDARD DEFINITION  
Subaddress 0x01, Bits[6:4] = 000  
The pixel data is updated at half the rate of the clock, that is, at a  
rate of 13.5 MHz (see Figure 3).  
SD YCrCb data can be input in 4:2:2 format over an 8-, 10-, or 16-  
bit bus. SD RGB data can be input in 4:4:4 format over a 16-bit bus.  
16-Bit 4:4:4 RGB Mode  
A 27 MHz clock signal must be provided on the CLKIN pin. If  
required, external synchronization signals can be provided on  
Subaddress 0x87, Bit 7 = 1  
In 16-bit 4:4:4 RGB input mode, the red pixel data is input on  
Pin P4 to Pin P0, the green pixel data is input on Pin P10 to  
Pin P5, and the blue pixel data is input on Pin P15 to Pin P11.  
P0, P5, and P11 are the respective bus LSBs.  
HSYNC  
VSYNC  
the  
and  
pins. Embedded EAV/SAV timing  
codes are also supported in 8-bit and 10-bit modes.  
8-Bit 4:2:2 YCrCb Mode  
Subaddress 0x87, Bit 7 = 0  
Subaddress 0x88, Bits[4:3] = 00  
The pixel data is updated at half the rate of the clock, that is, at a  
rate of 13.5 MHz (see Figure 4).  
In 8-bit 4:2:2 YCrCb input mode, the interleaved pixel data is  
input on Pin P15 to Pin P8, with P8 being the LSB. The ITU-R  
BT.601/656 input standard is supported.  
ADV7392/  
ADV7393  
2
VSYNC,  
MPEG2  
HSYNC  
DECODER  
10-Bit 4:2:2 YCrCb Mode  
27MHz  
CLKIN  
Subaddress 0x87, Bit 7 = 0  
Subaddress 0x88, Bits[4:3] = 10  
8/10  
YCrCb  
P[15:8]/P[15:6]  
In 10-bit 4:2:2 YCrCb input mode, the interleaved pixel data is  
input on Pin P15 to Pin P6, with P6 being the LSB. The ITU-R  
BT.601/656 input standard is supported.  
Figure 54. SD Example Application  
Table 31. ADV7392/ADV7393 Input Configuration  
1
Input Mode  
P15  
P14  
P13  
P12  
P11  
P10  
P9 P8 P7 P6 P5 P4 P3 P2 P1 P0  
2
000  
SD  
SD RGB Input Enable (0x87[7]) = 0  
YCrCb  
SD RGB Input Enable (0x87[7]) = 1  
8-Bit  
YCrCb  
10-Bit  
16-Bit  
3
Y
CrCb  
16-Bit3  
B
G
R
001  
010  
ED/HD-SDR (16-Bit)  
Y
CrCb  
4
ED/HD-DDR  
ED/HD Input Format (0x33[2]) = 0  
ED/HD Input Format (0x33[2]) = 1  
8-Bit  
YCrCb  
10-Bit  
ED (At 54 MHz)  
8-Bit  
YCrCb  
111  
ED/HD Input Format (0x33[2]) = 0  
YCrCb  
ED/HD Input Format (0x33[2]) = 1  
10-Bit  
YCrCb  
1 The input mode is determined by Subaddress 0x01, Bits[6:4].  
2 In SD mode, the width of the input data is determined by Subaddress 0x88, Bits[4:3].  
3 External synchronization signals must be used in this input mode. Embedded EAV/SAV timing codes are not supported.  
4 ED = enhanced definition = 525p and 625p.  
Rev. 0 | Page 42 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ENHANCED DEFINITION/HIGH DEFINITION  
Subaddress 0x01, Bits[6:4] = 001 or 010  
M
PEG2  
ADV7392/  
ADV7393  
DECODER  
CLKIN  
YCrCb  
ED or HD YCrCb data can be input in a 4:2:2 format over an  
8-/10-bit DDR bus or a 16-bit SDR bus.  
8
8
CrCb  
Y
P[7:0]  
The clock signal must be provided on the CLKIN pin. If  
required, external synchronization signals can be provided on  
INTERLACED TO  
PROGRESSIVE  
P[15:8]  
HSYNC  
codes are also supported.  
VSYNC  
the  
and  
pins. Embedded EAV/SAV timing  
2
VSYNC  
HSYNC  
16-Bit 4:2:2 YCrCb Mode (SDR)  
Figure 57. ED/HD-SDR Example Application  
In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is input on  
Pin P15 to Pin P8, with P8 being the LSB.  
MPEG2  
ADV7392/  
DECODER  
The CrCb pixel data is input on Pin P7 to Pin P0, with P0  
being the LSB.  
ADV7393  
CLKIN  
YCrCb  
8-/10-Bit 4:2:2 YCrCb Mode (DDR)  
8/10  
2
YCrCb  
In 8-/10-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is  
input on Pin P15 to Pin P8/P6 upon either the rising or falling  
edge of CLKIN. P8/P6 is the LSB.  
P[15:8]/P[15:6]  
INTERLACED TO  
PROGRESSIVE  
VSYNC  
HSYNC  
The CrCb pixel data is also input on Pin P15 to Pin P8/P6  
upon the opposite edge of CLKIN. P8/P6 is the LSB.  
Figure 58. ED/HD-DDR Example Application  
10-bit mode is enabled using Subaddress 0x33, Bit 2. Whether  
the Y data is clocked in upon the rising or falling edge of CLKIN  
is determined by Subaddress 0x01, Bits[2:1] (see Figure 55 and  
Figure 56).  
ENHANCED DEFINITION (AT 54 MHz)  
Subaddress 0x01, Bits[6:4] = 111  
ED YCrCb data can be input in an interleaved 4:2:2 format on  
an 8-/10-bit bus at a rate of 54 MHz.  
A 54 MHz clock signal must be provided on the CLKIN pin.  
Embedded EAV/SAV timing codes are supported. External  
synchronization signals are not supported in this mode.  
CLKIN  
P[15:8]/  
P]15:6]  
3FF  
00  
00  
X
Y
Cb0  
Y0  
Cr0  
Y1  
The interleaved pixel data is input on Pin P15 to Pin P8/P6,  
with P8/P6 being the LSB.  
NOTES  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 00 IN THIS CASE.  
2. 10-BIT MODE IS ENABLED USING SUBADDRESS 0x33, BIT 2.  
10-bit mode is enabled using Subaddress 0x33, Bit 2.  
Figure 55. ED/HD-DDR Input Sequence (EAV/SAV)—Option A  
CLKIN  
CLKIN  
P[15:8]/P[15:6]  
NOTES  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
P[15:8]/  
P[15:P6]  
3FF  
00  
00  
XY  
Y0  
Cb0  
Y1  
Cr0  
1. 10-BIT MODE IS ENABLED USING SUBADDRESS 0x33, BIT 2.  
NOTES  
Figure 59. ED (At 54 MHz) Input Sequence (EAV/SAV)  
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 11 IN THIS CASE.  
2. 10-BIT MODE IS ENABLED USING SUBADDRESS 0x33, BIT 2.  
Figure 56. ED/HD-DDR Input Sequence (EAV/SAV)—Option B  
MPEG2  
DECODER  
ADV7392/  
ADV7393  
54MHz  
CLKIN  
YCrCb  
8/10  
2
YCrCb  
P[15:8]/P[15:6]  
INTERLACED TO  
PROGRESSIVE  
VSYNC,  
HSYNC  
Figure 60. ED (At 54 MHz) Example Application  
Rev. 0 | Page 43 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
OUTPUT CONFIGURATION  
The ADV739x supports a number of different output configurations. Table 32 to Table 34 lists all possible output configurations.  
Table 32. SD Output Configurations  
RGB/YPrPb Output Select1  
(0x02, Bit 5)  
SD DAC Output 1  
(0x82, Bit 1)  
SD Luma/Chroma Swap  
(0x84, Bit 7)  
DAC 1  
G
Y
CVBS  
CVBS  
DAC 2  
B
Pb  
Luma  
Chroma  
DAC 3  
R
Pr  
Chroma  
Luma  
0
1
1
1
0
0
1
1
0
0
0
1
1 If SD RGB output is selected, a color reversal is possible using Subaddress 0x86, Bit 7.  
Table 33. ED/HD Output Configurations  
RGB/YPrPb Output Select (0x02, Bit 5)  
ED/HD Color DAC Swap (0x35, Bit 3)  
DAC 1  
DAC 2  
DAC 3  
0
0
1
1
0
1
0
1
G
G
Y
Y
B
R
Pb  
Pr  
R
B
Pr  
Pb  
Table 34. ED (at 54 MHz) Output Configurations  
RGB/YPrPb Output Select (0x02, Bit 5)  
ED/HD Color DAC Swap (0x35, Bit 3)  
DAC 1  
DAC 2  
DAC 3  
0
0
1
1
0
1
0
1
G
G
Y
Y
B
R
Pb  
Pr  
R
B
Pr  
Pb  
Rev. 0 | Page 44 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
FEATURES  
various output levels that can be generated. Table 36 lists the  
transitions required to generate the various output levels.  
OUTPUT OVERSAMPLING  
The ADV739x include an on-chip phase-locked loop (PLL) that  
allows for oversampling of SD, ED, and HD video data. By  
default, the PLL is disabled. The PLL can be enabled using  
Subaddress 0x00, Bit 1 = 0.  
Embedded EAV/SAV timing codes are not supported in  
ED/HD nonstandard timing mode.  
The user must ensure that appropriate pixel data is applied to  
the encoder where the blanking level is expected at the output.  
Table 35 shows the various oversampling rates supported in the  
ADV739x.  
Macrovision (ADV7390/ADV7392 only) and output  
oversampling are not available in ED/HD nonstandard timing  
mode. The PLL must be disabled (Subaddress 0x00, Bit 1 = 1) in  
ED/HD nonstandard timing mode.  
ED/HD NONSTANDARD TIMING MODE  
Subaddress 0x30, Bits[7:3] = 00001  
For any ED/HD input data that does not conform to  
the standards listed in the ED/HD input mode table  
(Subaddress 0x30, Bits[7:3]), the ED/HD nonstandard  
timing mode can be used to interface to the ADV739x.  
ED/HD nonstandard timing mode can be enabled by  
setting Subaddress 0x30, Bits[7:3] to 00001.  
ANALOG  
OUTPUT  
b
ACTIVE VIDEO  
a
b
b
BLANKING LEVEL  
c
HSYNC  
a = TRI-LEVEL SYNCHRONIZATION PULSE LEVEL.  
b = BLANKING LEVEL/ACTIVE VIDEO LEVEL.  
c = SYNCHRONIZATION PULSE LEVEL.  
A clock signal must be provided on the CLKIN pin.  
VSYNC  
and  
must be toggled by the user to generate the  
appropriate horizontal and vertical synchronization pulses on  
the analog output from the encoder. Figure 61 illustrates the  
Figure 61. ED/HD Nonstandard Timing Mode Output Levels  
Table 35. Output Oversampling Modes and Rates  
Input Mode  
(0x01, Bits[6:4])  
PLL and Oversampling  
Control (0x00, Bit 1)  
SD/ED Oversample Rate  
Select (0x0D, Bit 3)  
HD Oversample Rate  
Select (0x31, Bit 1)  
Oversampling Mode  
and Rate  
000  
000  
000  
001/010 ED  
001/010 ED  
001/010 ED  
001/010 HD  
001/010 HD  
001/010 HD  
SD  
SD  
SD  
1
0
0
1
0
0
1
0
0
1
0
0
x
1
0
x
1
0
x
x
x
x
1
0
x
x
x
x
x
x
x
1
0
x
x
x
SD (2×)  
SD (8×)  
SD (16×)  
ED (1×)  
ED (4×)  
ED (8×)  
HD (1×)  
HD (2×)  
HD (4×)  
111  
111  
111  
ED (at 54 MHz)  
ED (at 54 MHz)  
ED (at 54 MHz)  
ED (@ 54 MHz) (1×)  
ED (@ 54 MHz) (4×)  
ED (@ 54 MHz) (8×)  
Table 36. ED/HD Nonstandard Timing Mode Synchronization Signal Generation  
Output Level Transition1  
HSYNC  
VSYNC  
b c  
c a  
a b  
c b  
1 0  
0
1 0 or 02  
0 1  
1
0
0 1  
0 1  
1 a = Tri-level synchronization pulse level; b = blanking level/active video level; c = synchronization pulse level. See Figure 61.  
2 If  
= 1, it should transition to 0. If = 0, it should remain at 0. If tri-level synchronization pulse generation is not required, should always be 0.  
VSYNC  
VSYNC  
VSYNC  
Rev. 0 | Page 45 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
In subcarrier reset (SCR) mode (Subaddress 0x84, Bits[2:1]  
= 01), a low-to-high transition on the SFL/MISO pin resets  
the subcarrier phase to 0 on the field following the  
subcarrier phase reset.  
ED/HD TIMING RESET  
Subaddress 0x34, Bit 0  
An ED/HD timing reset is achieved by setting the ED/HD  
timing reset control bit (Subaddress 0x34, Bit 0) to 1. In this  
state, the horizontal and vertical counters remain reset. When  
this bit is set back to 0, the internal counters resume counting.  
This timing reset applies to the ED/HD timing counters only.  
This reset signal must be held high for a minimum of one  
clock cycle.  
Because the field counter is not reset, it is recommended to  
apply the reset signal in Field 7 (PAL) or Field 3 (NTSC).  
The reset of the phase then occurs on the next field, that is,  
Field 1, which is lined up correctly with the internal  
counters. The field count register at Subaddress 0xBB can  
be used to identify the number of the active field.  
SD SUBCARRIER FREQUENCY LOCK, SUBCARRIER  
RESET, AND TIMING RESET  
Subaddress 0x84, Bits[2:1]  
Together with the SFL/MISO pin and SD Mode Register 4  
(Subaddress 0x84, Bits[2:1]), the ADV739x can be used in  
timing reset mode, subcarrier phase reset mode, or SFL mode.  
In subcarrier frequency lock (SFL) mode (Subaddress 0x84,  
Bits[2:1] = 11), the ADV739x can be used to lock to an  
external video source. The SFL mode allows the ADV739x  
to automatically alter the subcarrier frequency to compensate  
for line length variations. When the part is connected to a  
device such as an ADV7403 video decoder that outputs a  
digital data stream in the SFL format, the part automatically  
changes to the compensated subcarrier frequency on a  
line-by-line basis (see Figure 64). This digital data stream is  
67 bits wide and the subcarrier is contained in Bit 0 to Bit  
21. Each bit is two clock cycles long.  
In timing reset (TR) mode (Subaddress 0x84, Bits[2:1] = 10),  
a timing reset is achieved in a low-to-high transition on the  
SFL/MISO pin. In this state, the horizontal and vertical  
counters remain reset. Upon releasing this pin (set to low),  
the internal counters resume counting, starting with Field 1,  
and the subcarrier phase is reset.  
The minimum time the pin must be held high is one clock  
cycle; otherwise, this reset signal may not be recognized.  
This timing reset applies to the SD timing counters only.  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
310  
313  
320  
NO TIMING RESET APPLIED  
DISPLAY  
START OF FIELD 1  
F
PHASE = FIELD 1  
SC  
307  
1
2
3
4
5
6
7
21  
TIMING RESET PULSE  
TIMING RESET APPLIED  
Figure 62. SD Timing Reset Timing Diagram (Subaddress 0x84, Bits [2:1] = 10)  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
310  
313  
320  
NO F RESET APPLIED  
SC  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 1  
SC  
307  
310  
313  
320  
F
RESET PULSE  
SC  
F
RESET APPLIED  
SC  
Figure 63. SD Subcarrier Phase Reset Timing Diagram (Subaddress 0x84, Bits [2:1] = 01)  
Rev. 0 | Page 46 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ADV739x  
CLKIN  
DAC 1  
DAC 2  
DAC 3  
LCC1  
SFL  
SFL/MISO  
COMPOSITE  
P19 TO  
P10  
ADV7403  
VIDEO  
DECODER  
1
VIDEO  
5
PIXEL PORT  
4 BITS  
RESERVED  
21  
0
14 BITS  
SEQUENCE  
4
H/L TRANSITION  
COUNT START  
RESET BIT  
SUBCARRIER  
PHASE  
3
BIT  
LOW  
RESERVED  
2
PLL INCREMENT  
F
128  
SC  
13  
0
RTC  
6768  
14  
19  
TIME SLOT 01  
VALID  
SAMPLE  
INVALID  
SAMPLE  
8/LINE  
LOCKED  
CLOCK  
5 BITS  
RESERVED  
1
2
FOR EXAMPLE, VCR OR CABLE.  
F
PLL INCREMENT IS 22 BITS LONG. VALUE LOADED INTO ADV73xx F DDS REGISTER IS  
SC  
SC  
F
PLL INCREMENTS BITS 21:0 PLUS BITS 0:9 OF SUBCARRIER FREQUENCY REGISTERS.  
SC  
3
SEQUENCE BIT  
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED  
NTSC: 0 = NO CHANGE  
RESET ADV739x DDS.  
4
5
REFER TO THE ADV7390/ADV7391 AND ADV7392/ADV7393 “INPUT CONFIGURATION” TABLES FOR PIXEL DATA PIN ASSIGNMENTS.  
Figure 64. SD Subcarrier Frequency Lock Timing and Connections Diagram (Subaddress 0x84, Bits [2:1] = 11)  
VBI data can be present on Line 10 to Line 20 for NTSC and on  
Line 7 to Line 22 for PAL.  
SD VCR FF/RW SYNC  
Subaddress 0x82, Bit 5  
In SD Timing Mode 0 (slave option), if VBI is enabled, the  
blanking bit in the EAV/SAV code is overwritten. It is possible  
to use VBI in this timing mode as well.  
In DVD record applications where the encoder is used with a  
decoder, the VCR FF/RW sync control bit can be used for non-  
standard input video, that is, in fast forward or rewind modes.  
If CGMS is enabled and VBI is disabled, the CGMS data is  
nevertheless available at the output.  
In fast forward mode, the sync information at the start of a new  
field in the incoming video usually occurs before the correct  
number of lines/fields is reached. In rewind mode, this sync  
signal usually occurs after the total number of lines/fields is  
reached. Conventionally, this means that the output video has  
corrupted field signals because one signal is generated by the  
incoming video and another is generated when the internal  
line/field counters reach the end of a field.  
SD SUBCARRIER FREQUENCY REGISTERS  
Subaddress 0x8C to Subaddress 0x8F  
Four 8-bit registers are used to set up the subcarrier frequency.  
The value of these registers is calculated using the following  
equation:  
Subcarrier Frequency Register =  
When the VCR FF/RW sync control is enabled (Subaddress 0x82,  
Bit 5), the line/field counters are updated according to the  
Number of subcarrier periods in one video line  
× 232  
VSYNC  
incoming  
the incoming  
signal and when the analog output matches  
VSYNC  
Number of 27 MHz clock cycles in one video line  
signal.  
where the sum is rounded to the nearest integer.  
For example, in NTSC mode:  
This control is available in all slave-timing modes except  
Slave Mode 0.  
227.5  
1716  
Subcarrier Register Value =  
×
32 = 569408543  
2
VERTICAL BLANKING INTERVAL  
Subaddress 0x31, Bit 4; Subaddress 0x83, Bit 4  
where:  
The ADV739x is able to accept input data that contains vertical  
blanking interval (VBI) data (such as CGMS, WSS, VITS) in  
SD, ED, and HD modes.  
Subcarrier Register Value = 569408543d = 0×21F07C1F  
SD FSC Register 0: 0x1F  
SD FSC Register 1: 0x7C  
SD FSC Register 2: 0xF0  
SD FSC Register 3: 0x21  
If VBI is disabled (Subaddress 0x31, Bit 4 for ED/HD;  
Subaddress 0x83, Bit 4 for SD), VBI data is not present at the  
output and the entire VBI is blanked. These control bits are  
valid in all master and slave timing modes.  
For the SMPTE 293M (525p) standard, VBI data can be  
inserted on Line 13 to Line 42 of each frame, or on Line 6 to  
Lind 43 for the ITU-R BT.1358 (625p) standard.  
Rev. 0 | Page 47 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Programming the FSC  
A 27 MHz clock signal must be provided on the CLKIN pin.  
Embedded EAV/SAV timing codes or external horizontal and  
The subcarrier frequency register value is divided into four FSC  
registers as shown in the previous example. The four subcarrier  
frequency registers must be updated sequentially, starting with  
Subcarrier Frequency Register 0 and ending with Subcarrier  
Frequency Register 3. The subcarrier frequency updates only  
after the last subcarrier frequency register byte has been  
received by the ADV739x.  
HSYNC  
vertical synchronization signals provided on the  
VSYNC  
and  
pins can be used to synchronize the input pixel data.  
All input configurations, output configurations, and features  
available in NTSC and PAL modes are available in SD noninter-  
laced mode.  
For 240p/59.94 Hz input, the ADV739x should be configured for  
NTSC operation and Subaddress 0x88, Bit 1 should be set to 1.  
Typical FSC Values  
Table 37 outlines the values that should be written to the  
subcarrier frequency registers for NTSC and PAL B/D/G/H/I.  
For 288p/50 Hz input, the ADV739x should be configured for  
PAL operation and Subaddress 0x88, Bit 1 should be set to 1.  
Table 37. Typical FSC Values  
SD SQUARE PIXEL MODE  
Subaddress  
Description  
NTSC  
0x1F  
0x7C  
0xF0  
0x21  
PAL B/D/G/H/I  
0xCB  
0x8A  
0x09  
0x2A  
Subaddress 0x82, Bit 4  
0x8C  
0x8D  
0x8E  
0x8F  
FSC0  
FSC1  
FSC2  
FSC3  
The ADV739x can be used to operate in square pixel mode  
(Subaddress 0x82, Bit 4). For NTSC operation, an input clock of  
24.5454 MHz is required. Alternatively, for PAL operation, an  
input clock of 29.5 MHz is required. The internal timing logic  
adjusts accordingly for square pixel mode operation.  
SD NONINTERLACED MODE  
Subaddress 0x88, Bit 1  
In square pixel mode, the timing diagrams shown in Figure 65  
and Figure 66 apply.  
The ADV739x supports a SD noninterlaced mode. Using this  
mode, progressive inputs at twice the frame rate of NTSC and  
PAL (240p/59.94 Hz and 288p/50 Hz, respectively) can be input  
into the ADV739x. The SD noninterlaced mode can be enabled  
using Subaddress 0x88, Bit 1.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
C
b
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
272 CLOCK  
1280 CLOCK  
1536 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
344 CLOCK  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 65. Square Pixel Mode EAV/SAV Embedded Timing  
HSYNC  
FIELD  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 308 CLOCK CYCLES  
NTSC = 236 CLOCK CYCLES  
Figure 66. Square Pixel Mode Active Pixel Timing  
Rev. 0 | Page 48 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
EXTENDED (SSAF) PrPb FILTER MODE  
FILTERS  
0
Table 38 shows an overview of the programmable filters  
available on the ADV739x.  
–10  
–20  
–30  
–40  
–50  
–60  
Table 38. Selectable Filters  
Filter  
Subaddress  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x82  
0x33  
0x33  
SD Luma LPF NTSC  
SD Luma LPF PAL  
SD Luma Notch NTSC  
SD Luma Notch PAL  
SD Luma SSAF  
SD Luma CIF  
SD Luma QCIF  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
SD Chroma 0.65 MHz  
SD Chroma 1.0 MHz  
SD Chroma 1.3 MHz  
SD Chroma 2.0 MHz  
SD Chroma 3.0 MHz  
SD Chroma CIF  
SD Chroma QCIF  
SD PrPb SSAF  
ED/HD Sinc Compensation Filter  
ED/HD Chroma SSAF  
Figure 67. PrPb SSAF Filter  
If this filter is disabled, one of the chroma filters shown in  
Table 39 can be selected and used for the CVBS or luma/  
chroma signal.  
Table 39. Internal Filter Specifications  
Pass-Band  
Filter  
Ripple (dB)1  
0.16  
3 dB Bandwidth (MHz)2  
Luma LPF NTSC  
Luma LPF PAL  
Luma Notch NTSC  
Luma Notch PAL  
Luma SSAF  
4.24  
4.81  
0.1  
0.09  
0.1  
0.04  
2.3/4.9/6.6  
3.1/5.6/6.4  
6.45  
SD Internal Filter Response  
Subaddress 0x80, Bits[7:2]; Subaddress 0x82, Bit 0  
The Y filter supports several different frequency responses,  
including two low-pass responses, two notch responses, an  
extended (SSAF) response with or without gain boost  
attenuation, a CIF response, and a QCIF response. The PrPb  
filter supports several different frequency responses, including  
six low-pass responses, a CIF response, and a QCIF response, as  
shown in Figure 36 and Figure 37.  
Luma CIF  
Luma QCIF  
0.127  
3.02  
1.5  
0.65  
1
1.395  
2.2  
3.2  
0.65  
0.5  
Monotonic  
Monotonic  
Monotonic  
0.09  
Chroma 0.65 MHz  
Chroma 1.0 MHz  
Chroma 1.3 MHz  
Chroma 2.0 MHz  
Chroma 3.0 MHz  
Chroma CIF  
0.048  
Monotonic  
Monotonic  
Monotonic  
If SD Luma SSAF gain is enabled (Subaddress 0x87, Bit 4), there  
are 13 response options in the range −4 dB to +4 dB. The desired  
response can be programmed using Subaddress 0xA2. The  
variation of frequency responses are shown in Figure 33 to  
Figure 35.  
Chroma QCIF  
1 Pass-band ripple is the maximum fluctuation from the 0 dB response in the  
pass band, measured in dB. The pass band is defined to have 0 Hz to fc (Hz)  
frequency limits for a low-pass filter, and 0 Hz to f1 (Hz) and f2 (Hz) to infinity  
for a notch filter, where fc, f1, and f2 are the −3 dB points.  
2 3 dB bandwidth refers to the −3 dB cutoff frequency.  
In addition to the chroma filters listed in Table 38, the ADV739x  
contains an SSAF filter specifically designed for the color difference  
component outputs, Pr and Pb. This filter has a cutoff frequency  
of ~2.7 MHz and a gain of –40 dB at 3.8 MHz (see Figure 67).  
This filter can be controlled with Subaddress 0x82, Bit 0.  
Rev. 0 | Page 49 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ED/HD Sinc Compensation Filter Response  
Table 40 shows sample color values that can be programmed  
into the color registers when the output standard selection is set  
to EIA770.2/EIA770.3 (Subaddress 0x30, Bits[1:0] = 00).  
Subaddress 0x33, Bit 3  
The ADV739x includes a filter designed to counter the effect of  
sinc roll-off in DAC 1, DAC 2, and DAC 3 while operating in  
ED/HD mode. This filter is enabled by default. It can be  
disabled using Subaddress 0x33, Bit 3. The benefit of the filter is  
illustrated in Figure 68 and Figure 69.  
Table 40. Sample Color Values for EIA770.2/EIA770.3  
ED/HD Output Standard Selection  
Sample Color  
Y Value  
Cr Value  
Cb Value  
White  
Black  
Red  
Green  
Blue  
Yellow  
Cyan  
235 (0xEB)  
128 (0x80) 128 (0x80)  
128 (0x80) 128 (0x80)  
0.5  
16  
81  
(0x10)  
(0x51)  
240 (0xF0)  
90  
(0x5A)  
(0x36)  
0.4  
0.3  
145 (0x91)  
41 (0x29)  
34  
(0x22) 54  
110 (0x6E)  
240 (0xF0)  
(0x10)  
(0x10) 166 (0xA6)  
106 (0x6A) 222 (0xDE) 202 (0xCA)  
0.2  
210 (0xD2) 146 (0x92) 16  
170 (0xAA) 16  
0.1  
0
Magenta  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
COLOR SPACE CONVERSION MATRIX  
Subaddress 0x03 to Subaddress 0x09  
The internal color space conversion (CSC) matrix automatically  
performs all color space conversions based on the input mode  
programmed in the mode select register (Subaddress 0x01,  
Bits[6:4]). Table 41 and Table 42 show the options available in  
this matrix.  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 68. ED/HD Sinc Compensation Filter Enabled  
0.5  
0.4  
An SD color space conversion from RGB-in to YPrPb-out is  
possible on the ADV7392/ADV7393. An ED/HD color space  
conversion from RGB-in to YPrPb-out is not possible.  
0.3  
0.2  
Table 41. SD Color Space Conversion Options  
0.1  
YPrPb/RGB Out  
RGB In/YCrCb In  
(Reg. 0x87, Bit 7)  
0
Input Output1 (Reg. 0x02, Bit 5)  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
YCrCb YPrPb  
YCrCb RGB  
1
0
1
0
0
0
1
1
RGB2  
RGB2  
YPrPb  
RGB  
1 CVBS/YC outputs are available for all CSC combinations.  
2 Available on the ADV7392/ADV7393 (40-pin devices) only.  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 69. ED/HD Sinc Compensation Filter Disabled  
Table 42. ED/HD Color Space Conversion Options  
Input  
YCrCb  
YCrCb  
Output  
YPrPb  
RGB  
YPrPb/RGB Out (Reg. 0x02, Bit 5)  
ED/HD TEST PATTERN COLOR CONTROLS  
Subaddress 0x36 to Subaddress 0x38  
1
0
Three 8-bit registers at Subaddress 0x36 to Subaddress 0x38  
are used to program the output color of the internal ED/HD  
test pattern generator (Subaddress 0x31, Bit 2 = 1), whether it  
be the lines of the cross hatch pattern or the uniform field test  
pattern. They are not functional as color controls for external  
pixel data input.  
ED/HD Manual CSC Matrix Adjust Feature  
The ED/HD manual CSC matrix adjust feature provides custom  
coefficient manipulation for color space conversions and is used  
in ED and HD modes only. The ED/HD manual CSC matrix  
adjust feature can be enabled using Subaddress 0x02, Bit 3.  
The values for the luma (Y) and color difference (Cr and Cb)  
signals used to obtain white, black, and saturated primary and  
complementary colors conform to the ITU-R BT.601-4  
standard.  
Normally, there is no need to enable this feature because the CSC  
matrix automatically performs the color space conversion based  
on the input mode chosen (ED or HD) and the output color  
space selected (see Table 42). For this reason, the ED/HD  
manual CSC matrix adjust feature is disabled by default.  
Rev. 0 | Page 50 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
If RGB output is selected, the ED/HD CSC matrix scalar uses  
the following equations:  
For example, SMPTE 293M uses the following conversion:  
R = Y + 1.402Pr  
R = GY × Y + RV × Pr  
G = Y − 0.714Pr − 0.344Pb  
B = Y + 1.773Pb  
G = GY × Y − (GU × Pb) − (GV × Pr)  
B = GY × Y + BU × Pb  
The programmable CSC matrix is used for external ED/HD  
pixel data and is not functional when internal test patterns are  
enabled.  
Note that subtractions are implemented in hardware.  
If YPrPb output is selected, the following equations are used:  
Programming the CSC Matrix  
Y = GY × Y  
Pr = RV × Pr  
Pb = BU × Pb  
where:  
If custom manipulation of the ED/HD CSC matrix coefficients  
is required for a YCrCb-to-RGB color space conversion, follow  
the following procedure:  
1. Enable the ED/HD manual CSC matrix adjust feature  
(Subaddress 0x02, Bit 3).  
GY = Subaddress 0x05, Bits[7:0] and Subaddress 0x03, Bits[1:0].  
GU = Subaddress 0x06, Bits[7:0] and Subaddress 0x04, Bits[7:6].  
GV = Subaddress 0x07, Bits[7:0] and Subaddress 0x04, Bits[5:4].  
BU = Subaddress 0x08, Bits[7:0] and Subaddress 0x04, Bits[3:2].  
RV = Subaddress 0x09, Bits[7:0] and Subaddress 0x04, Bits[1:0].  
2. Set the output to RGB (Subaddress 0x02, Bit 5).  
3. Disable sync on PrPb (Subaddress 0x35, Bit 2).  
4. Enable sync on RGB (optional) (Subaddress 0x02, Bit 4).  
The GY value controls the green signal output level, the BU  
value controls the blue signal output level, and the RV value  
controls the red signal output level.  
Upon power-up, the CSC matrix is programmed with the  
default values shown in Table 43.  
Table 43. ED/HD Manual CSC Matrix Default Values  
SD LUMA AND COLOR CONTROL  
Subaddress 0x9C to Subaddress 0x9F  
Subaddress  
Default  
0x03  
0xF0  
0x4E  
0x0E  
0x24  
0x92  
0x7C  
0x03  
0x04  
SD Y Scale, SD Cb Scale, and SD Cr Scale are three 10-bit  
control registers that scale the SD Y, Cb, and Cr output levels.  
0x05  
0x06  
Each of these registers represent the value required to scale the  
Cb or Cr level from 0.0 to 2.0 and the Y level from 0.0 to 1.5  
times its initial level. The value of these 10 bits is calculated  
using the following equation:  
0x07  
0x08  
0x09  
Y, Cb, or Cr Scale Value = Scale Factor × 512  
For example, if Scale Factor = 1.3  
When the ED/HD manual CSC matrix adjust feature is  
enabled, the default coefficient values in Subaddress 0x03  
to Subaddress 0x09 are correct for the HD color space only.  
The color components are converted according to the following  
1080i and 720p standards (SMPTE 274M, SMPTE 296M):  
Y, Cb, or Cr Scale Value = 1.3 × 512 = 665.6  
Y, Cb, or Cr Scale Value = 666 (rounded to the nearest integer)  
Y, Cb, or Cr Scale Value = 1010 0110 10b  
R = Y + 1.575Pr  
Subaddress 0x9C, SD Scale LSB Register = 0x2A  
Subaddress 0x9D, SD Y Scale Register = 0xA6  
Subaddress 0x9E, SD Cb Scale Register = 0xA6  
Subaddress 0x9F, SD Cr Scale Register = 0xA6  
G = Y − 0.468Pr − 0.187Pb  
B = Y + 1.855Pb  
The conversion coefficients should be multiplied by 315 before  
being written to the ED/HD CSC matrix registers. This is  
reflected in the default values for GY = 0x13B, GU = 0x03B,  
GV = 0x093, BU = 0x248, and RV = 0x1F0.  
Note that this feature affects all interlaced output signals, that is,  
CVBS, Y-C, YPrPb, and RGB.  
If the ED/HD manual CSC matrix adjust feature is enabled and  
another input standard (such as ED) is used, the scale values for  
GY, GU, GV, BU, and RV must be adjusted according to this  
input standard color space. The user should consider that the  
color component conversion might use different scale values.  
Rev. 0 | Page 51 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
For NTSC with pedestal, the setup can vary from 0 IRE to 22.5 IRE.  
For NTSC without pedestal (see Figure 70) and for PAL, the  
setup can vary from −7.5 IRE to +15 IRE.  
SD HUE ADJUST CONTROL  
Subaddress 0xA0  
When enabled, the SD hue adjust control register  
(Subaddress 0xA0) is used to adjust the hue on the SD  
composite and chroma outputs. This feature can be  
enabled using Subaddress 0x87, Bit 2.  
The SD brightness control register is an 8-bit register. The seven  
LSBs of this 8-bit register are used to control the brightness  
level, which can be a positive or negative value.  
For example,  
Subaddress 0xA0 contains the bits required to vary the hue of  
the video data, that is, the variance in phase of the subcarrier  
during active video with respect to the phase of the subcarrier  
during the color burst. The ADV739x provides a range of  
22.5° in increments of 0.17578125°. For normal operation  
(zero adjustment), this register is set to 0x80. Values 0xFF and  
0x00 represent the upper and lower limits, respectively, of the  
attainable adjustment in NTSC mode. Values 0xFF and 0x01  
represent the upper and lower limits, respectively, of the  
attainable adjustment in PAL mode.  
To add +20 IRE brightness level to an NTSC signal with  
pedestal, write 0x28 to Subaddress 0xA1.  
0 × (SD Brightness Value) =  
0 × (IRE Value × 2.015631) =  
0 × (20 × 2.015631) = 0 × (40.31262) ≈ 0x28  
To add –7 IRE brightness level to a PAL signal, write 0x72 to  
Subaddress 0xA1.  
0 × (SD Brightness Value) =  
The hue adjust value is calculated using the following equation:  
Hue Adjust (°) = 0.17578125° (HCRd − 128)  
0 × (IRE Value × 2.075631) =  
0 × (7 × 2.015631) = 0x(14.109417) ≈ 0001110b  
0001110b into two’s complement = 1110010b = 0x72  
where = HCRd hue adjust control register (decimal)  
For example, to adjust the hue by +4°, write 0x97 to the hue  
adjust control register:  
Table 44. Sample Brightness Control Values1  
Setup Level  
(NTSC) with  
Pedestal  
Setup Level  
(NTSC) Without Level  
Pedestal  
15 IRE  
7.5 IRE  
0 IRE  
Setup  
4
+ 128 151d = 0x97  
Brightness  
Control Value  
0.17578125  
(PAL)  
where the sum is rounded to the nearest integer.  
22.5 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
0x1E  
0x0F  
0x00  
0x71  
To adjust the hue by −4°, write 0x69 to the hue adjust control  
register:  
−7.5 IRE  
−7.5 IRE  
4  
1 Values in the range of 0x3F to 0x44 can result in an invalid output signal.  
SD INPUT STANDARD AUTO DETECTION  
Subaddress 0x87, Bit 5  
+ 128 105d = 0x69  
0.17578125  
where the sum is rounded to the nearest integer.  
SD BRIGHTNESS DETECT  
Subaddress 0xBA  
The ADV739x include an SD input standard auto detect feature  
that can be enabled by setting Subaddress 0x87, Bit 5 to Bit 1.  
The ADV739x allows monitoring of the brightness level of the  
incoming video data. The SD brightness detect register  
(Subaddress 0xBA) is a read-only register.  
When enabled, the ADV739x can automatically identify an  
NTSC or PAL B/D/G/H/I input stream. The ADV739x  
automatically updates the subcarrier frequency registers with  
the appropriate value for the identified standard. The ADV739x  
is also configured to correctly encode the identified standard.  
SD BRIGHTNESS CONTROL  
Subaddress 0xA1, Bits[6:0]  
The SD standard bits (Subaddress 0x80, Bits[1:0]) and the  
subcarrier frequency registers are not updated to reflect the  
identified standard. All registers retain their default or user-  
defined values.  
When this feature is enabled, the SD brightness/WSS control  
register (Subaddress 0xA1) is used to control brightness by  
adding a programmable setup level onto the scaled Y data. This  
feature can be enabled using Subaddress 0x87, Bit 3.  
NTSC WITHOUT PEDESTAL  
100 IRE  
+7.5 IRE  
–7.5 IRE  
0 IRE  
POSITIVE SETUP  
VALUE ADDED  
NEGATIVE SETUP  
VALUE ADDED  
NO SETUP  
VALUE ADDED  
Figure 70. Examples of Brightness Control Values  
Rev. 0 | Page 52 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
In Case B of Figure 71, the video output signal is reduced. The  
absolute level of the sync tip and blanking level both decrease  
with respect to the reference video output signal. The overall  
gain of the signal is reduced from the reference signal.  
DOUBLE BUFFERING  
Subaddress 0x33, Bit 7 for ED/HD,  
Subaddress 0x88, Bit 2 for SD  
Double-buffered registers are updated once per field. Double  
buffering improves overall performance because modifications  
to register settings are not be made during active video, but take  
effect prior to the start of the active video on the next field.  
The range of this feature is specified for 7.5% of the nominal  
output from the DACs. For example, if the output current of the  
DAC is 4.33 mA, the DAC gain control feature can change this  
output current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%).  
Using Subaddress 0x33, Bit 7, double buffering can be activated  
on the following ED/HD registers: ED/HD Gamma A and  
Gamma B curves, and ED/HD CGMS registers.  
The reset value of the control registers is 0x00, that is, nominal  
DAC current is output. Table 45 is an example of how the  
output current of the DACs varies for a nominal 4.33 mA  
output current.  
Using Subaddress 0x88, Bit 2, double buffering can be activated  
on the following SD registers: SD Gamma A and Gamma B curves,  
SD Y scale, SD Cr scale, SD Cb scale, SD brightness, SD closed  
captioning, and SD Macrovision Bits[5:0] (Subaddress 0xE0,  
Bits[5:0]).  
Table 45. DAC Gain Control  
DAC Current  
Subaddress 0x0B (mA)  
% Gain  
7.5000%  
7.3820%  
7.3640%  
...  
Note  
0100 0000 (0x40)  
0011 1111 (0x3F)  
0011 1110 (0x3E)  
...  
4.658  
4.653  
4.648  
...  
PROGRAMMABLE DAC GAIN CONTROL  
Subaddress 0x0B  
It is possible to adjust the DAC output signal gain up or down  
from its absolute level. This is illustrated in Figure 71.  
...  
...  
...  
DAC 1 to DAC 3 are controlled by Register 0x0B.  
CASE A  
0000 0010 (0x02)  
0000 0001 (0x01)  
0000 0000 (0x00)  
4.43  
4.38  
4.33  
0.0360%  
0.0180%  
0.0000%  
Reset value,  
nominal  
GAIN PROGRAMMED IN DAC OUTPUT LEVEL  
REGISTERS, SUBADDRESS 0x0B  
700mV  
1111 1111 (0xFF)  
1111 1110 (0xFE)  
...  
4.25  
4.23  
...  
−0.0180%  
−0.0360%  
...  
...  
...  
...  
1100 0010 (0xC2)  
1100 0001 (0xC1)  
1100 0000 (0xC0)  
4.018  
4.013  
4.008  
−7.3640%  
−7.3820%  
−7.5000%  
300mV  
GAMMA CORRECTION  
NEGATIVE GAIN PROGRAMMED IN  
Subaddress 0x44 to Subaddress 0x57 for ED/HD,  
Subaddress 0xA6 to Subaddress 0xB9 for SD  
CASE B  
DAC OUTPUT LEVEL REGISTERS,  
SUBADDRESS 0x0B  
700mV  
Generally, gamma correction is applied to compensate for the  
nonlinear relationship between signal input and output  
brightness level (as perceived on a CRT). It can also be applied  
wherever nonlinear processing is used.  
Gamma correction uses the function  
SignalOUT = (SignalIN)γ  
300mV  
where γ = gamma correction factor.  
Gamma correction is available for SD and ED/HD video. For  
both variations, there are 20, 8-bit registers. They are used to  
program Gamma Correction Curve A and Curve B.  
Figure 71. Programmable DAC Gain—Positive and Negative Gain  
In Case A of Figure 71, the video output signal is gained. The  
absolute level of the sync tip and blanking level both increase  
with respect to the reference video output signal. The overall  
gain of the signal is increased from the reference signal.  
ED/HD gamma correction is enabled using Subaddress 0x35,  
Bit 5. ED/HD Gamma Correction Curve A is programmed at  
Subaddress 0x44 to Subaddress 0x4D, and ED/HD Gamma  
Correction Curve B is programmed at Subaddress 0x4E to  
Subaddress 0x57.  
Rev. 0 | Page 53 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
SD gamma correction is enabled using Subaddress 0x88, Bit 6.  
SD Gamma Correction Curve A is programmed at Subaddress  
0xA6 to Subaddress 0xAF, and SD Gamma Correction Curve B  
is programmed at Subaddress 0xB0 to Subaddress 0xB9.  
To program the gamma correction registers, calculate the  
10 programmable curve values using the following formula:  
γ
n 16  
240 16  
γn  
=
×(240 16) + 16  
Gamma correction is performed on the luma data only. The  
user can choose one of two correction curves, Curve A or  
Curve B. Only one of these curves can be used at a time. For  
ED/HD gamma correction, curve selection is controlled using  
Subaddress 0x35, Bit 4. For SD gamma correction, curve  
selection is controlled using Subaddress 0x88, Bit 7.  
where:  
γn = value to be written into the gamma correction register for  
point n on the gamma correction curve  
n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224  
γ = gamma correction factor  
For example, setting γ = 0.5 for all programmable curve data  
points results in the following yn values:  
The shape of the gamma correction curve is controlled by  
defining the curve response at 10 different locations along the  
curve. By altering the response at these locations, the shape of  
the gamma correction curve can be modified. Between these  
points, linear interpolation is used to generate intermediate  
values. Considering the curve to have a total length of 256  
points, the 10 programmable locations are at points 24, 32, 48,  
64, 80, 96, 128, 160, 192, and 224. Locations 0, 16, 240, and 255  
are fixed and cannot be changed.  
y
y
y
y
y
y
y
y
y
y
24 = [(8/224)0.5 × 224] + 16 = 58  
32 = [(16/224)0.5 × 224] + 16 = 76  
48 = [(32/224)0.5 × 224] + 16 = 101  
64 = [(48/224)0.5 × 224] + 16 = 120  
80 = [(64/224)0.5 × 224] + 16 = 136  
96 = [(80/224)0.5 × 224] + 16 = 150  
128 = [(112/224)0.5 × 224] + 16 = 174  
160 = [(144/224)0.5 × 224] + 16 = 195  
192 = [(176/224)0.5 × 224] + 16 = 214  
224 = [(208/224)0.5 × 224] + 16 = 232  
From curve locations 16 to 240, the values at the programmable  
locations and, therefore, the response of the gamma correction  
curve, should be calculated to produce the following result:  
γ
x
DESIRED = (xINPUT  
)
where:  
x
x
DESIRED = desired gamma corrected output  
INPUT = linear input signal  
where the sum of each equation is rounded to the nearest integer.  
The gamma curves in Figure 72 and Figure 73 are examples only;  
any user-defined curve in the range from 16 to 240 is acceptable.  
γ = gamma correction factor  
GAMMA CORRECTION BLOCK OUTPUT TO A RAMP INPUT  
GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR  
300  
250  
200  
150  
100  
50  
VARIOUS GAMMA VALUES  
300  
250  
SIGNAL OUTPUT  
0.3  
0.5  
200  
0.5  
150  
1.5  
100  
SIGNAL INPUT  
1.8  
50  
0
0
50  
100  
150  
LOCATION  
200  
250  
0
0
50  
100  
150  
LOCATION  
200  
250  
Figure 72. Signal Input (Ramp) and Signal Output for Gamma 0.5  
Figure 73. Signal Input (Ramp) and Selectable Output Curves  
Rev. 0 | Page 54 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
The derivative of the incoming signal is compared to the three  
programmable threshold values: ED/HD Adaptive Filter  
Threshold A, Threshold B, and Threshold C (Subaddress 0x5B,  
Subaddress 0x5C, and Subaddress 0x5D). The recommended  
threshold range is 16 to 235, although any value in the range of  
0 to 255 can be used.  
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER  
CONTROLS  
Subaddress 0x40, Subaddress 0x58 to Subaddress 0x5D  
There are three filter modes available on the ADV739x:  
sharpness filter mode and two adaptive filter modes.  
ED/HD Sharpness Filter Mode  
The edges can then be attenuated with the settings in the  
ED/HD Adaptive Filter Gain 1, Gain 2, and Gain 3 registers  
(Subaddress 0x58, Subaddress 0x59 and Subaddress 0x5A), and  
the ED/HD sharpness filter gain register (Subaddress 0x40).  
To enhance or attenuate the Y signal in the frequency ranges  
shown in Figure 74, the ED/HD sharpness filter must be  
enabled (Subaddress 0x31, Bit 7 = 1) and the ED/HD adaptive  
filter must be disabled (Subaddress 0x35, Bit 7 = 0).  
There are two adaptive filter modes available. The mode is  
selected using the ED/HD adaptive filter mode control  
(Subaddress 0x35, Bit 6):  
To select one of the 256 individual responses, the corresponding  
gain values, ranging from −8 to +7 for each filter, must be  
programmed into the ED/HD sharpness filter gain register at  
Subaddress 0x40.  
Mode A is used when the ED/HD adaptive filter mode  
control is set to 0. In this case, Filter B (LPF) is used in the  
adaptive filter block. In addition, only the programmed  
values for Gain B in the ED/HD sharpness filter gain  
register and ED/HD Adaptive Filter Gain 1, Gain 2, and  
Gain 3 registers are applied when needed. The Gain A  
values are fixed and cannot be changed.  
ED/HD Adaptive Filter Mode  
In ED/HD adaptive filter mode, the following registers are used:  
ED/HD Adaptive Filter Threshold A  
ED/HD Adaptive Filter Threshold B  
ED/HD Adaptive Filter Threshold C  
ED/HD Adaptive Filter Gain 1  
ED/HD Adaptive Filter Gain 2  
ED/HD Adaptive Filter Gain 3  
Mode B is used when ED/HD adaptive filter mode control is  
set to 1. In this mode, a cascade of Filter A and Filter B is used.  
Both settings for Gain A and Gain B in the ED/HD sharpness  
filter gain register and ED/HD Adaptive Filter Gain 1, Gain 2,  
and Gain 3 registers become active when needed.  
ED/HD sharpness filter gain register  
To activate the adaptive filter control, the ED/HD sharpness  
filter and the ED/HD adaptive filter must be enabled  
(Subaddress 0x31, Bit 7 = 1, and Subaddress 0x35, Bit 7 = 1,  
respectively).  
SHARPNESS AND ADAPTIVE FILTER CONTROL BLOCK  
1.5  
1.5  
1.4  
1.6  
1.5  
1.4  
1.4  
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
1.1  
1.0  
INPUT  
SIGNAL:  
STEP  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FILTER A RESPONSE (Gain Ka)  
FREQUENCY (MHz)  
FILTER B RESPONSE (Gain Kb)  
FREQUENCY (MHz)  
FREQUENCY RESPONSE IN SHARPNESS  
FILTER MODE WITH Ka = 3 AND Kb = 7  
Figure 74. ED/HD Sharpness and Adaptive Filter Control Block  
Rev. 0 | Page 55 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
d
e
a
b
R2  
R4  
1
R1  
c
f
1
R2  
CH1 500mV  
REF A  
M 4.00µs  
1 9.99978ms  
CH1  
ALL FIELDS  
CH1 500mV  
REF A  
M 4.00µs  
1 9.99978ms  
CH1  
ALL FIELDS  
500mV 4.00µs  
500mV 4.00µs  
Figure 75. ED/ HD Sharpness Filter Control with Different Gain Settings for ED/HD Sharpness Filter Gain Values  
Adaptive Filter Control Application  
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER  
APPLICATION EXAMPLES  
Sharpness Filter Application  
The register settings in Table 47 are used to obtain the results  
shown in Figure 77, that is, to remove the ringing on the input  
Y signal, as shown in Figure 76. Input data is generated by an  
external signal source.  
The ED/HD sharpness filter can be used to enhance or  
attenuate the Y video output signal. The register settings in  
Table 46 were used to achieve the results shown in Figure 75.  
Input data was generated by an external signal source.  
Table 47. Register Settings for Figure 77  
Subaddress  
Register Setting  
0x00  
0xFC  
Table 46. ED/HD Sharpness Control  
Subaddress  
Register Setting  
Reference1  
0x01  
0x38  
0x02  
0x20  
0x00  
0xFC  
0x30  
0x00  
0x01  
0x10  
0x31  
0x81  
0x02  
0x20  
0x35  
0x80  
0x30  
0x00  
0x40  
0x00  
0x31  
0x81  
0x58  
0xAC  
0x40  
0x00  
a
b
c
d
e
f
0x59  
0x9A  
0x40  
0x08  
0x5A  
0x5B  
0x88  
0x40  
0x04  
0x28  
0x40  
0x40  
0x5C  
0x5D  
0x3F  
0x40  
0x80  
0x64  
0x40  
0x22  
1 See Figure 75.  
Rev. 0 | Page 56 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
In DNR mode, if the absolute value of the filter output is  
smaller than the threshold, it is assumed to be noise. A  
programmable amount (coring gain border, coring gain data) of  
this noise signal is subtracted from the original signal. In DNR  
sharpness mode, if the absolute value of the filter output is less  
than the programmed threshold, it is assumed to be noise as  
before. However, if the level exceeds the threshold, now being  
identified as a valid signal, a fraction of the signal (coring gain  
border, coring gain data) is added to the original signal to boost  
high frequency components and sharpen the video image.  
In MPEG systems, it is common to process the video information  
in blocks of 8 pixels × 8 pixels for MPEG2 systems, or 16 pixels  
× 16 pixels for MPEG1 systems (block size control). DNR can  
be applied to the resulting block transition areas known to  
contain noise. Generally, the block transition area contains two  
pixels. It is possible to define this area to contain four pixels  
(border area).  
Figure 76. Input Signal to ED/HD Adaptive Filter  
It is also possible to compensate for variable block positioning  
or differences in YCrCb pixel timing with the use of the DNR  
block offset.  
The digital noise reduction registers are three 8-bit registers.  
They are used to control the DNR processing.  
DNR MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
Figure 77. Output Signal from ED/HD Adaptive Filter (Mode A)  
GAIN  
CORING GAIN DATA  
When changing the adaptive filter mode to Mode B  
(Subaddress 0x35, Bit 6), the output shown in Figure 78  
can be obtained.  
CORING GAIN BORDER  
NOISE  
SIGNAL PATH  
INPUT FILTER  
BLOCK  
FILTER  
SUBTRACT  
OUTPUT  
SIGNAL IN  
Y DATA  
INPUT  
< THRESHOLD?  
THRESHOLD  
RANGE FROM  
ORIGINAL SIGNAL  
FILTER OUTPUT  
> THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
DNR  
SHARPNESS  
MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
NOISE  
SIGNAL PATH  
Figure 78. Output Signal from ED/HD Adaptive Filter (Mode B)  
INPUT FILTER  
BLOCK  
FILTER  
ADD SIGNAL  
ABOVE  
THRESHOLD  
RANGE FROM  
ORIGINAL SIGNAL  
SD DIGITAL NOISE REDUCTION  
Subaddress 0xA3 to Subaddress 0xA5  
OUTPUT  
Y DATA  
INPUT  
> THRESHOLD?  
Digital noise reduction (DNR) is applied to the Y data only.  
A filter block selects the high frequency, low amplitude compo-  
nents of the incoming signal (DNR input select). The absolute  
value of the filter output is compared to a programmable  
threshold value (DNR threshold control). There are two DNR  
modes available: DNR mode and DNR sharpness mode.  
+
FILTER OUTPUT  
< THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
Figure 79. SD DNR Block Diagram  
Rev. 0 | Page 57 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Coring Gain Border—Subaddress 0xA3, Bits[3:0]  
Block Size—Subaddress 0xA4, Bit 7  
These four bits are assigned to the gain factor applied to border  
areas. In DNR mode, the range of gain values is 0 to 1 in  
increments of 1/8. This factor is applied to the DNR filter  
output that lies below the set threshold range. The result is then  
subtracted from the original signal.  
This bit is used to select the size of the data blocks to be  
processed. Setting the block size control function to Logic 1  
defines a 16 pixel × 16 pixel data block, and Logic 0 defines an  
8 pixel × 8 pixel data block, where one pixel refers to two clock  
cycles at 27 MHz.  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output that lies above the threshold range. The result is added to  
the original signal.  
DNR Input Select—Subaddress 0xA5, Bits[2:0]  
These three bits are assigned to select the filter that is applied to  
the incoming Y data. The signal that lies in the pass band of the  
selected filter is the signal processed by DNR. Figure 82 shows  
the filter responses selectable with this control.  
Coring Gain Data—Subaddress 0xA3, Bits[7:4]  
These four bits are assigned to the gain factor applied to the luma  
data inside the MPEG pixel block. In DNR mode, the range of  
gain values is 0 to 1 in increments of 1/8. This factor is applied  
to the DNR filter output that lies below the set threshold range.  
The result is then subtracted from the original signal.  
1.0  
FILTER D  
0.8  
FILTER C  
0.6  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output that lies above the threshold range. The result is added to  
the original signal.  
0.4  
0.2  
0
FILTER B  
APPLY DATA  
APPLY BORDER  
FILTER A  
CORING GAIN CORING GAIN  
O X X X X X X O O X X X X X X O  
1
2
3
0
4
5
6
FREQUENCY (MHz)  
OFFSET CAUSED  
BY VARIATIONS IN  
INPUT TIMING  
O X X X X X X O O X X X X X X O  
Figure 82. SD DNR Input Select  
DNR Mode—Subaddress 0xA5, Bit 4  
DNR27 TO DNR24 = 0x01 O X X X X X X O O X X X X X X O  
This bit controls the DNR mode selected. Logic 0 selects DNR  
mode; Logic 1 selects DNR sharpness mode.  
Figure 80. SD DNR Offset Control  
DNR Threshold—Subaddress 0xA4, Bits[5:0]  
DNR works on the principle of defining low amplitude, high  
frequency signals as probable noise and subtracting this noise  
from the original signal.  
These six bits are used to define the threshold value in the range  
of 0 to 63. The range is an absolute value.  
In DNR mode, it is possible to subtract a fraction of the signal  
that lies below the set threshold, assumed to be noise, from the  
original signal. The threshold is set in DNR Register 1.  
Border Area—Subaddress 0xA4, Bit 6  
When this bit is set to Logic 1, the block transition area can be  
defined to consist of four pixels. If this bit is set to Logic 0, the  
border transition area consists of two pixels, where one pixel  
refers to two clock cycles at 27 MHz.  
When DNR sharpness mode is enabled, it is possible to add a  
fraction of the signal that lies above the set threshold to the  
original signal because this data is assumed to be valid data and  
not noise. The overall effect is that the signal is boosted (similar  
to using the extended SSAF filter).  
720 × 485 PIXELS  
2-PIXEL  
(NTSC)  
BORDER  
DATA  
Block Offset Control—Subaddress 0xA5, Bits[7:4]  
Four bits are assigned to this control that allows a shift in the  
data block of 15 pixels maximum. The coring gain positions are  
fixed. The block offset shifts the data in steps of one pixel such  
that the border coring gain factors can be applied at the same  
position regardless of variations in input timing of the data.  
8 × 8 PIXEL BLOCK 8 × 8 PIXEL BLOCK  
Figure 81. SD DNR Border Area  
Rev. 0 | Page 58 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
SD ACTIVE VIDEO EDGE CONTROL  
Subaddress 0x82, Bit 7  
At the start of active video, the first three pixels are multiplied  
by ⅛, ½, and ⅞, respectively. Approaching the end of active  
video, the last three pixels are multiplied by ⅞, ½, and ⅛,  
respectively. All other active video pixels pass through  
unprocessed.  
The ADV739x is able to control fast rising and falling signals at  
the start and end of active video to minimize ringing.  
When the active video edge control feature is enabled  
(Subaddress 0x82, Bit 7 = 1), the first three pixels and the last  
three pixels of the active video on the luma channel are scaled  
so that maximum transitions on these pixels are not possible.  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
DISABLED  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
ENABLED  
100 IRE  
0 IRE  
100 IRE  
87.5 IRE  
50 IRE  
12.5 IRE  
0 IRE  
Figure 83. Example of Active Video Edge Functionality  
VOLTS  
0.5  
IRE:FLT  
100  
50  
0
0
F2  
L135  
–50  
2
0
4
6
8
10  
12  
Figure 84. Example of Video Output with Subaddress 0x82, Bit 7 = 0  
VOLTS  
IRE:FLT  
100  
50  
0
0.5  
0
F2  
L135  
–50  
–2  
0
2
4
6
8
10  
12  
Figure 85. Example of Video Output with Subaddress 0x82, Bit 7 = 1  
Rev. 0 | Page 59 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
EXTERNAL HORIZONTAL AND VERTICAL SYNCHRONIZATION CONTROL  
For timing synchronization purposes, the ADV739x is able to accept either EAV/SAV time codes embedded in the input pixel data or  
HSYNC  
VSYNC  
external synchronization signals provided on the  
and  
pins (see Table 49 to Table 51).  
pins (see Table 48). It is also possible to output synchronization  
HSYNC VSYNC  
signals on the  
and  
Table 48. Timing Synchronization Signal Input Options  
Signal  
Pin  
Condition  
HSYNC  
HSYNC  
VSYNC  
HSYNC  
VSYNC  
SD Slave Timing Mode 1, Mode 2, or Mode 3 Selected (Subaddress 0x8A[2:0]).1  
SD Slave Timing Mode 1, Mode 2, or Mode 3 Selected (Subaddress 0x8A[2:0]).1  
ED/HD Timing Synchronization Inputs Enabled (Subaddress 0x30, Bit 2 = 0).  
ED/HD Timing Synchronization Inputs Enabled (Subaddress 0x30, Bit 2 = 0).  
SD  
SD  
In  
VSYNC  
/FIELD In  
HSYNC  
ED/HD  
ED/HD  
In  
VSYNC  
/FIELD In  
1 SD and ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02[7:6] = 00).  
Table 49. Timing Synchronization Signal Output Options  
Signal  
Pin  
Condition  
HSYNC  
HSYNC  
VSYNC  
HSYNC  
VSYNC  
SD Timing Synchronization Outputs enabled (Subaddress 0x02, Bit 6 = 1).1  
SD Timing Synchronization Outputs enabled (Subaddress 0x02, Bit 6 = 1).1  
ED/HD Timing Synchronization Outputs enabled (Subaddress 0x02, Bit 7 = 1).2  
ED/HD Timing Synchronization Outputs enabled (Subaddress 0x02, Bit 7 = 1).2  
SD  
SD  
Out  
VSYNC  
/FIELD Out  
HSYNC  
ED/HD  
ED/HD  
Out  
VSYNC  
/FIELD Out  
1 ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02, Bit 7 = 0).  
2 ED/HD timing synchronization inputs must also be disabled, that is, embedded EAV/SAV timing codes must be enabled (Subaddress 0x30, Bit 2 = 1).  
1
HSYNC  
Table 50.  
Output Control  
ED/HD HSYNC  
Control  
Format (0x30, Bit 2) (0x34, Bit 1)  
ED/HD Sync  
Output Enable  
(0x02, Bit 7)  
SD Sync  
Output Enable  
(0x02, Bit 6)  
ED/HD Input Sync  
Signal on HSYNC Pin  
Duration  
x
x
x
x
0
0
0
1
Tristate.  
HSYNC  
See Error! Reference  
source not found..  
Pipelined SD  
.
0
1
0
0
1
1
x
x
HSYNC  
HSYNC  
HSYNC  
As per timing.  
Pipelined ED/HD  
.
Same as line blanking  
interval.  
Pipelined ED/HD  
AV Code H bit.  
based on  
based on  
x
1
1
x
HSYNC  
Same as embedded  
Pipelined ED/HD  
HSYNC  
.
horizontal counter.  
1
HSYNC  
HSYNC  
HSYNC  
pulse is aligned with the falling edge of the embedded in the output video.  
In all ED/HD standards where there is a  
output, the start of the  
1
VSYNC  
Table 51.  
Output Control  
ED/HD VSYNC  
Control  
(0x34, Bit 2)  
ED/HD Input  
Sync Format  
(0x30, Bit 2)  
ED/HD Sync  
Output Enable Output Enable  
(0x02, Bit 7)  
SD Sync  
Signal on VSYNC Pin  
(0x02, Bit 6)  
Video Standard  
Duration  
x
x
x
x
0
0
0
1
x
Tristate.  
Interlaced  
VSYNC  
/Field. See Error!  
Pipelined SD  
Reference source  
not found..  
0
1
1
x
x
0
0
0
1
1
1
1
1
1
1
x
x
x
x
x
x
VSYNC  
VSYNC  
As per or  
Field signal timing.  
Field.  
Pipelined ED/HD  
or field signal.  
All HD interlaced  
standards  
All ED/HD progressive  
standards  
Pipelined Field signal  
based on AV Code F bit.  
VSYNC  
Vertical blanking  
interval.  
Pipelined  
based on  
AV Code V bit.  
All ED/HD standards  
except 525p  
VSYNC  
based on vertical counter.  
VSYNC  
Pipelined ED/HD  
based on vertical counter.  
Aligned with  
serration lines.  
Pipelined ED/HD  
525p  
Vertical blanking  
interval.  
1
VSYNC  
VSYNC  
VSYNC  
pulse is aligned with the falling edge of the embedded in the output video.  
In all ED/HD standards where there is a  
output, the start of the  
Rev. 0 | Page 61 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
For CVBS/YC output configurations, if DAC 1 is unconnected,  
only DAC 1 powers down. If DAC 2 is unconnected, DAC 2 and  
DAC 3 power down.  
LOW POWER MODE  
Subaddress 0x0D, Bits[2:0]  
For power sensitive applications, the ADV739x supports an  
Analog Devices, Inc. proprietary low power mode of operation.  
To utilize this low power mode, the DACs must be operating in  
full-drive mode (RSET = 510 Ω, RL = 37.5 Ω). Low power mode is  
not available in low drive mode (RSET = 4.12 kΩ, RL = 300 Ω).  
Low power mode can be independently enabled or disabled on  
each DAC using Subaddress 0x0D, Bits[2:0]. Low power mode  
is disabled by default on all DACs.  
For YPrPb and RGB output configurations, if DAC 1 is  
unconnected, all three DACs are powered down. DAC 2 is not  
monitored for YPrPb and RGB output configurations.  
Once per frame, DAC 1 and/or DAC 2 are monitored. If a cable  
is detected, the appropriate DAC or DACs remain powered up  
for the duration of the frame. If no cable is detected, the  
appropriate DAC or DACs power down until the next frame,  
when the process is repeated.  
In low power mode, DAC current consumption is content  
dependent, and on a typical video stream, it can be reduced by  
as much as 40%. For applications requiring the highest possible  
video performance, low power mode should be disabled.  
PIXEL AND CONTROL PORT READBACK  
Subaddress 0x13, Subaddress 0x14, Subaddress 0x16  
The ADV739x supports the readback of most digital inputs via  
the I2C/SPI MPU port. This feature is useful for board-level  
connectivity testing with upstream devices.  
CABLE DETECTION  
Subaddress 0x10, Bits[1:0]  
The ADV739x includes an Analog Devices, Inc. proprietary  
cable detection feature.  
HSYNC VSYNC  
, and  
The pixel port (P[15:0] or P[7:0]),  
,
SFL/MISO are available for readback via the MPU port.  
The readback registers are located at Subaddress 0x13,  
Subaddress 0x14, and Subaddress 0x16.  
The cable detection feature is available on DAC 1 and DAC 2  
when operating in full-drive mode (RSET = 510 Ω, RL = 37.5 Ω,  
assuming a connected cable). The feature is not available in low-  
drive mode (RSET = 4.12 kΩ, RL = 300 Ω). For a DAC to be  
monitored, the DAC must be powered up in Subaddress 0x00.  
When using this feature, a clock signal should be applied to the  
CLKIN pin to register the levels applied to the input pins.  
The SD input mode (Subaddress 0x01, Bits[6:4] = 000) must be  
selected when using this feature.  
The cable detection feature can be used with all SD, ED, and  
HD video standards. It is available for all output configurations,  
that is, CVBS, YC, YPrPb, and RGB output configurations.  
RESET MECHANISMS  
Subaddress 0x17, Bit 1  
For CVBS/YC output configurations, both DAC 1 and DAC 2  
are monitored, that is, the CVBS and YC luma outputs are  
monitored. For YPrPb and RGB output configurations, only  
DAC 1 is monitored, that is, the luma or green output is  
monitored.  
A hardware reset is activated with a high-to-low transition on  
RESET  
the  
pin in accordance with the timing specifications.  
This resets all registers to their default values. After a hardware  
reset, the MPU port is configured for I2C operation. For correct  
device operation, a hardware reset is necessary after power-up.  
Once per frame, the ADV739x monitors DAC 1 and/or DAC 2,  
updating Subaddress 0x10, Bit 0 and/or Bit 1, respectively. If a  
cable is detected on one of the DACs, the relevant bit is set to 0.  
If not, the bit is set to 1.  
The ADV739x also has a software reset accessible via the  
I2C/SPI MPU port. A software reset is activated by writing a 1  
to Subaddress 0x17, Bit 1. This resets all registers to their  
default values. This bit is self-clearing, that is, after a 1 has been  
written to the bit, the bit automatically returns to 0.  
DAC AUTO POWER-DOWN  
Subaddress 0x10, Bit 4  
When operating in SPI mode, a software reset does not cause  
the device to revert to I2C mode. For this to occur, a hardware  
For power sensitive applications, a DAC auto power-down  
feature can be enabled using Subaddress 0x10, Bit 4. This  
feature is only available when the cable detection feature is  
enabled.  
RESET  
reset via the  
pin or a power-down needs to occur.  
A hardware reset is necessary after power-up for correct device  
operation. If no hardware reset functionality is required by the  
pin can be connected to a RC network  
to provide the hardware reset necessary after power-up. After  
power-up, the time constant of the RC network holds the  
pin low for long enough to cause a reset to take place.  
All subsequent resets can be done via software.  
With this feature enabled, the cable detection circuitry monitors  
DAC 1 and/or DAC 2 once per frame, and if they are  
unconnected, automatically powers down some or all of the  
DACs. Which DAC or DACs are powered down depends on the  
selected output configuration.  
RESET  
application, the  
RESET  
Rev. 0 | Page 61 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
PRINTED CIRCUIT BOARD LAYOUT AND DESIGN  
DAC CONFIGURATIONS  
Table 52. ADV739x Output Rates  
Input Mode  
(0x01, Bits[6:4])  
The ADV739x contains three DACs. All three DACs can be  
configured to operate in full-drive mode. Full-drive mode is  
defined as 34.7 mA full-scale current into a 37.5 Ω load, RL.  
Full-drive is the recommended mode of operation for the DACs.  
Oversampling  
Output Rate (MHz)  
SD  
Off  
On  
On  
Off  
On  
On  
Off  
On  
On  
27  
(2×)  
(8×)  
(16×)  
(1×)  
(4×)  
(8×)  
(1×)  
(2×)  
(4×)  
108  
216  
27  
108  
216  
74.25  
148.5  
297  
Alternatively, all three DACs can be configured to operate in low  
drive mode. Low drive mode is defined as 4.33 mA full-scale  
current into a 300 Ω load, RL.  
ED  
The ADV739x contains a RSET pin. A resistor connected between  
the RSET pin and AGND is used to control the full-scale output  
current and, therefore, the output voltage levels of DAC 1, DAC 2,  
and DAC 3. For full-drive operation, RSET must have a value  
of 510 Ω and RL must have a value of 37.5 Ω. For low drive  
operation, RSET must have a value of 4.12 kΩ, and RL must have  
a value of 300 Ω.  
HD  
Table 53. Output Filter Requirements  
Cutoff  
Attenuation  
–50 dB @  
(MHz)  
Frequency  
Application Oversampling (MHz)  
The resistor connected to the RSET pin should have a 1%  
tolerance.  
SD  
ED  
HD  
2×  
8×  
16×  
1×  
4×  
8×  
1×  
2×  
4×  
> 6.5  
> 6.5  
> 6.5  
> 12.5  
> 12.5  
> 12.5  
> 30  
20.5  
101.5  
209.5  
14.5  
The ADV739x contains a compensation pin, COMP. A 2.2 nF  
compensation capacitor should be connected from the COMP  
pin to VAA  
.
95.5  
VIDEO OUTPUT BUFFER AND OPTIONAL  
OUTPUT FILTER  
203.5  
44.25  
118.5  
267  
> 30  
> 30  
An output buffer is necessary on any DAC that operates in low  
drive mode (RSET = 4.12 kΩ, RL = 300 Ω). Analog Devices Inc.  
produces a range of op amps suitable for this application, for  
example, the AD8061. For more information about line driver  
buffering circuits, see the relevant op amp data sheet.  
10µH  
DAC  
OUTPUT  
3
4
75  
BNC  
OUTPUT  
600Ω  
22pF  
600Ω  
1
An optional reconstruction (anti-imaging) low-pass filter (LPF)  
may be required on the ADV739x DAC outputs. The filter  
specifications vary with the application. The use of 16× (SD),  
8× (ED), or 4× (HD) oversampling can remove the requirement  
for a reconstruction filter altogether.  
560Ω  
560Ω  
Figure 86. Example of Output Filter for SD, 16× Oversampling  
For applications requiring an output buffer and reconstruction  
filter, the ADA4430-1 and ADA4411-3 integrated video filter  
buffers should be considered.  
4.7µH  
DAC  
OUTPUT  
3
75Ω  
BNC  
OUTPUT  
6.8pF  
6.8pF  
600Ω  
1
600Ω  
4
560Ω  
560Ω  
Figure 87. Example of Output Filter for ED, 8× Oversampling  
DAC  
OUTPUT  
3
390nH  
75  
BNC  
OUTPUT  
300Ω  
3
1
33pF  
33pF  
75Ω  
1
4
4
500Ω  
500Ω  
Figure 88. Example of Output Filter for HD, 4× Oversampling  
Rev. 0 | Page 62 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
CIRCUIT FREQUENCY RESPONSE  
0
PRINTED CIRCUIT BOARD (PCB) LAYOUT  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
24n  
21n  
18n  
15n  
12n  
9n  
–30  
The ADV739x is a highly integrated circuit containing both  
precision analog and high speed digital circuitry. It has been  
designed to minimize interference effects on the integrity of the  
analog circuitry by the high speed digital circuitry. It is imperative  
that these same design and layout techniques be applied to the  
system-level design so that optimal performance is achieved.  
MAGNITUDE (dB)  
–60  
–90  
PHASE (Degrees)  
–120  
–150  
–180  
–210  
–240  
The layout should be optimized for lowest noise on the  
ADV739x power and ground planes by shielding the digital  
inputs and providing good power supply decoupling.  
GROUP DELAY (Seconds)  
6n  
3n  
0
It is recommended to use a 4-layer printed circuit board with  
ground and power planes separating the signal trace layer and  
the solder side layer.  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 89. Output Filter Plot for SD, 16× Oversampling  
Component Placement  
Component placement should be carefully considered to  
separate noisy circuits, such as clock signals and high speed  
digital circuitry from analog circuitry.  
CIRCUIT FREQUENCY RESPONSE  
0
480  
18n  
16n  
–10  
400  
320  
240  
160  
80  
MAGNITUDE (dB)  
The external loop filter components and components connected  
to the COMP and RSET pins should be placed as close as possible  
to and on the same side of the PCB as the ADV739x. Adding  
vias to the PCB to get the components closer to the ADV739x is  
not recommended.  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
14n  
PHASE  
(Degrees)  
12n  
10n  
8n  
GROUP DELAY (Seconds)  
It is recommended that the ADV739x be placed as close as  
possible to the output connector, with the DAC output traces as  
short as possible.  
0
6n  
–80  
–160  
–240  
4n  
The termination resistors on the DAC output traces should be  
placed as close as possible to and on the same side of the PCB as  
the ADV739x. The termination resistors should overlay the  
PCB ground plane.  
2n  
0
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 90. Output Filter Plot for ED, 8× Oversampling  
External filter and buffer components connected to the DAC  
outputs should be placed as close as possible to the ADV739x to  
minimize the possibility of noise pickup from neighboring  
circuitry, and to minimize the effect of trace capacitance on  
output bandwidth. This is particularly important when  
operating in low drive mode (RSET = 4.12 kΩ, RL = 300 Ω).  
CIRCUIT FREQUENCY RESPONSE  
0
200  
120  
40  
PHASE  
(Degrees)  
MAGNITUDE (dB)  
–10  
–20  
–30  
–40  
–50  
GROUP DELAY (Seconds)  
Power Supplies  
It is recommended that a separate regulated supply be provided  
for each power domain (VAA, VDD, VDD_IO, and PVDD). For  
optimal performance, linear regulators rather than switch mode  
regulators should be used. If switch mode regulators must be  
used, care must be taken with regard to the quality of the output  
voltage in terms of ripple and noise. This is particularly true for  
the VAA and PVDD power domains. Each power supply should be  
individually connected to the system power supply at a single  
point through a suitable filtering device, such as a ferrite bead.  
–40  
–120  
–200  
1
10  
100  
FREQUENCY (MHz)  
Figure 91. Output Filter Plot for HD, 4× Oversampling  
Rev. 0 | Page 63 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Power Supply Decoupling  
Due to the high clock rates used, avoid long clock traces to the  
ADV739x to minimize noise pickup.  
It is recommended that each power supply pin be decoupled  
with 10 nF and 0.1 μF ceramic capacitors. The VAA, PVDD  
,
Any pull-up termination resistors for the digital inputs should  
be connected to the VDD power supply.  
VDD_IO, and both VDD pins should be individually decoupled to  
ground. The decoupling capacitors should be placed as close as  
possible to the ADV739x with the capacitor leads kept as short  
as possible to minimize lead inductance.  
Any unused digital inputs should be tied to ground.  
Analog Signal Interconnect  
DAC output traces should be treated as transmission lines with  
appropriate measures taken to ensure optimal performance (for  
example, impedance matched traces). The DAC output traces  
should be kept as short as possible. The termination resistors on  
the DAC output traces should be placed as close as possible to  
and on the same side of the PCB as the ADV739x.  
A 1 μF tantalum capacitor is recommended across the VAA  
supply in addition to the 10 nF and 0.1 μF ceramic capacitors.  
Power Supply Sequencing  
The ADV739x is robust to all power supply sequencing  
combinations. Any particular sequence can be used.  
Digital Signal Interconnect  
To avoid crosstalk between the DAC outputs, it is  
recommended that as much space as possible be left between  
the traces connected to the DAC output pins. Adding ground  
traces between the DAC output traces is also recommended.  
The digital signal traces should be isolated as much as possible  
from the analog outputs and other analog circuitry. Digital  
signal traces should not overlay the VAA or PVDD power planes.  
Rev. 0 | Page 64 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
TYPICAL APPLICATION CIRCUIT  
FERRITE BEAD  
NOTES  
V
DD_IO  
V
POWER  
DD_IO  
1. FOR OPTIMUM PERFORMANCE, EXTERNAL COMPONENTS CONNECTED  
TO THE COMP, R  
CLOSE TO, AND ON THE SAME SIDE OF THE PCB AS THE ADV739x.  
33µF  
10µF  
0.1µF  
0.01µF  
SUPPLY  
DECOUPLING  
AND DAC OUTPUT PINS SHOULD BE LOCATED  
SET  
GND_IO  
GND_IO  
GND_IO GND_IO  
FERRITE BEAD  
PV  
DD  
2. WHEN OPERATING IN I2C MODE, THE I2C DEVICE ADDRESS IS  
CONFIGURABLE USING THE ALSB/SPI_SS PIN:  
PV  
SUPPLY  
DECOUPLING  
POWER  
DD  
33µF  
10µF  
0.1µF  
0.01µF  
PGND  
PGND  
FERRITE BEAD  
PGND  
PGND  
2
ALSB/SPI_SS = 0, I C DEVICE ADDRESS = 0xD4 OR 0x54  
2
ALSB/SPI_SS = 1, I C DEVICE ADDRESS = 0xD6 OR 0x56  
V
V
AA  
DD  
V
POWER  
AA  
33µF  
10µF  
0.1µF  
0.01µF  
AGND  
1µF  
3. THE RESISTOR CONNECTED TO THE R  
SET  
TOLERANCE.  
PIN SHOULD HAVE A 1%  
SUPPLY  
DECOUPLING  
AGND  
FERRITE BEAD  
AGND  
AGND  
AGND  
4. THE RECOMMENDED MODE OF OPERATION FOR THE DACs IS FULL-  
DRIVE (R  
= 510, R = 37.5).  
L
SET  
V
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
DD  
33µF  
10µF  
0.1µF  
0.01µF  
DGND  
DGND  
DGND  
DGND  
V
AA  
2.2nF  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
COMP  
R
SET  
ADV739x  
510Ω  
AGND  
PIXEL PORT INPUTS  
DACs 1 TO 3 FULL DRIVE OPTION  
(RECOMMENDED)  
P8  
P9  
DACs 1 TO 3 LOW DRIVE OPTION  
OPTIONAL LPF  
OPTIONAL LPF  
P10  
P11  
P12  
P13  
P14  
P15  
DAC 1  
DAC 2  
DAC 3  
DAC 1  
DAC 2  
DAC 3  
ADV7392/  
ADV7393  
ONLY  
R
SET  
4.12kΩ  
OPTIONAL LPF  
75Ω  
75Ω  
75Ω  
AGND  
ADA4411-3  
AGND AGND AGND  
75Ω  
DAC 1  
DAC 2  
DAC 3  
DAC 1  
DAC 2  
DAC 3  
HSYNC  
VSYNC  
CONTROL  
INPUTS/OUTPUTS  
LPF  
300Ω  
CLKIN  
CLOCK INPUT  
AGND  
ADA4411-3  
SDA/SCLK  
SCL/MOSI  
SFL/MISO  
MPU PORT  
INPUTS/OUTPUTS  
75Ω  
ALSB/SPI_SS  
LPF  
300Ω  
RESET  
AGND  
EXTERNAL LOOP FILTER  
ADA4411-3  
PV  
DD  
12nF  
75Ω  
EXT_LF  
LPF  
150nF  
170Ω  
300Ω  
LOOP FILTER COMPONENTS  
SHOULD BE LOCATED  
CLOSE TO THE EXT_LF  
PIN AND ON THE  
SAME SIDE OF THE PCB  
AS THE ADV739x.  
AGND  
AGND PGND DGND DGND GND_IO  
AGND PGND DGND DGND GND_IO  
Figure 92. ADV739x Typical Application Circuit  
Rev. 0 | Page 65 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
APPENDIX 1–COPY GENERATION MANAGEMENT SYSTEM  
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 1080i  
CGMS data is applied to Line 19 and Line 582 of the luminance  
vertical blanking interval.  
SD CGMS  
Subaddress 0x99 to Subaddress 0x9B  
The ADV739x supports copy generation management system  
(CGMS) that conforms to the EIAJ CPR-1204 and ARIB TR-B15  
standards. CGMS data is transmitted on Line 20 of the odd fields  
and Line 283 of even fields. Subaddress 0x99, Bits[6:5] control  
whether CGMS data is output on odd or even fields or both.  
The HD CGMS data registers are at Subaddress 0x41,  
Subaddress 0x42, and Subaddress 0x43.  
The ADV739x also supports CGMS Type B packets in HD  
mode (720p and 1080i) in accordance with CEA-805-A.  
SD CGMS data can only be transmitted when the ADV739x is  
configured in NTSC mode. The CGMS data is 20 bits long. The  
CGMS data is preceded by a reference pulse of the same  
amplitude and duration as a CGMS bit (see Figure 93).  
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),  
720p CGMS data is applied to Line 23 of the luminance vertical  
blanking interval.  
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),  
1080i CGMS data is applied to Line 18 and Line 581 of the  
luminance vertical blanking interval.  
ED CGMS  
Subaddress 0x41 to Subaddress 0x43  
Subaddress 0x5E to Subaddress 0x6E  
The HD CGMS Type B data registers are at Subaddress 0x5E to  
Subaddress 0x6E.  
525p  
The ADV739x supports copy generation management system  
(CGMS) in 525p mode in accordance with EIAJ CPR-1204-1.  
CGMS CRC FUNCTIONALITY  
If SD CGMS CRC (Subaddress 0x99, Bit 4) or ED/HD CGMS  
CRC (Subaddress 0x32, Bit 7) is enabled, the upper six CGMS  
data bits (C19 to C14) that comprise the 6-bit CRC check  
sequence are automatically calculated on the ADV739x. This  
calculation is based on the lower 14 bits (C13 to C0) of the data  
in the CGMS data registers, and the result is output with the  
remaining 14 bits to form the complete 20 bits of the CGMS  
data. The calculation of the CRC sequence is based on the  
polynomial x6 + x + 1 with a preset value of 111111.  
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 525p  
CGMS data is inserted on Line 41. The 525p CGMS data  
registers are at Subaddress 0x41, Subaddress 0x42, and  
Subaddress 0x43.  
The ADV739x also supports CGMS Type B packets in 525p  
mode in accordance with CEA-805-A.  
When ED CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),  
525p CGMS Type B data is inserted on Line 40. The 525p CGMS  
Type B data registers are at Subaddress 0x5E to Subaddress 0x6E.  
If SD CGMS CRC or ED/HD CGMS CRC is disabled, all 20 bits  
(C19 to C0) are output directly from the CGMS registers (CRC  
must be calculated by the user manually).  
625p  
The ADV739x supports copy generation management system  
(CGMS) in 625p mode in accordance with IEC 62375 (2004).  
If ED/HD CGMS Type B CRC (Subaddress 0x5E, Bit 1) is  
enabled, the upper six CGMS Type B data bits (P122 to P127)  
that comprise the 6-bit CRC check sequence are automatically  
calculated on the ADV739x. This calculation is based on the  
lower 128 bits (H0 to H5 and P0 to P121) of the data in the  
CGMS Type B data registers. The result is output with the  
remaining 128 bits to form the complete 134 bits of the CGMS  
Type B data. The calculation of the CRC sequence is based on  
the polynomial x6 + x + 1 with a preset value of 111111.  
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 625p  
CGMS data is inserted on Line 43. The 625p CGMS data  
registers are at Subaddress 0x42 and Subaddress 0x43.  
HD CGMS  
Subaddress 0x41 to Subaddress 0x43  
Subaddress 0x5E to Subaddress 0x6E  
The ADV739x supports copy generation management system  
(CGMS) in HD mode (720p and 1080i) in accordance with  
EIAJ CPR-1204-2.  
If ED/HD CGMS Type B CRC is disabled, all 134 bits (H0 to H5  
and P0 to P127) are output directly from the CGMS Type B  
registers (CRC must be calculated by the user manually).  
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 720p  
CGMS data is applied to Line 24 of the luminance vertical  
blanking interval.  
Rev. 0 | Page 66 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
+100 IRE  
+70 IRE  
CRC SEQUENCE  
REF  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0 IRE  
–40 IRE  
49.1µs ± 0.5µs  
11.2µs  
2.235µs ± 20ns  
Figure 93. Standard Definition CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
70% ± 10%  
0mV  
–300mV  
21.2µs ± 0.22µs  
22T  
5.8µs ± 0.15µs  
6T  
T = 1/(fH × 33) = 963ns  
fH = HORIZONTAL SCAN FREQUENCY  
T ± 30ns  
Figure 94. Enhanced Definition (525p) CGMS Waveform  
R = RUN-IN  
S = START CODE  
PEAK WHITE  
C0  
LSB  
C13  
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12  
R
S
500mV ± 25mV  
SYNC LEVEL  
MSB  
13.7µs  
5.5µs ± 0.125µs  
Figure 95. Enhanced Definition (625p) CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T ± 30ns  
–300mV  
17.2µs ± 160ns  
4T  
22T  
3.128µs ± 90ns  
T = 1/(fH × 1650/58) = 781.93ns  
fH = HORIZONTAL SCAN FREQUENCY  
1H  
Figure 96. High Definition (720p) CGMS Waveform  
Rev. 0 | Page 67 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
CRC SEQUENCE  
+700mV  
REF  
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T ± 30ns  
–300mV  
22.84µs ± 210ns  
22T  
4T  
4.15µs ± 60ns  
T = 1/(f × 2200/77) = 1.038µs  
H
f
= HORIZONTAL SCAN FREQUENCY  
H
1H  
Figure 97. High Definition (1080i) CGMS Waveform  
CRC SEQUENCE  
BIT 134  
+700mV  
START  
BIT 1 BIT 2  
70% ± 10%  
.
.
.
0mV  
–300mV  
NOTES  
1. PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION.  
Figure 98. Enhanced Definition (525p) CGMS Type B Waveform  
CRC SEQUENCE  
BIT 134  
+700mV  
START  
BIT 1 BIT 2  
70% ±10%  
.
.
.
0mV  
–300mV  
NOTES  
1. PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION.  
Figure 99. High Definition (720p and 1080i) CGMS Type B Waveform  
Rev. 0 | Page 68 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
APPENDIX 2–SD WIDE SCREEN SIGNALING  
(see Figure 100). The latter portion of Line 23 (after 42.5 μs  
Subaddress 0x99, Subaddress 0x9A, Subaddress 0x9B  
HSYNC  
from the falling edge of  
) is available for the insertion of  
The ADV739x supports wide screen signaling (WSS)  
video. WSS data transmission on Line 23 can be enabled using  
Subaddress 0x99, Bit 7. It is possible to blank the WSS portion  
of Line 23 with Subaddress 0xA1, Bit 7.  
conforming to the ETSI 300 294 standard. WSS data is  
transmitted on Line 23. WSS data can only be transmitted when  
the device is configured in PAL mode. The WSS data is 14 bits  
long. The function of each of these bits is shown in Table 54.  
The WSS data is preceded by a run-in sequence and a start code  
Table 54. Function of WSS Bits  
Bit Number  
Bit Description  
13 12 11 10  
9
8
7
6
5
4
3
1
0
0
1
0
1
1
0
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
Setting  
Aspect Ratio, Format, Position  
4:3, full format, N/A  
14:9, letterbox, center  
14:9, letterbox, top  
16:9, letterbox, center  
16:9, letterbox, top  
>16:9, letterbox, center  
14:9, full format, center  
16:0, N/A, N/A  
Mode  
0
1
Camera mode  
Film mode  
Color Encoding  
Helper Signals  
0
1
Normal PAL  
Motion Adaptive ColorPlus  
Not present  
0
1
Present  
Reserved  
0
Teletext Subtitles  
0
1
No  
Yes  
Open Subtitles  
0
0
1
1
0
1
0
1
No  
Subtitles in active image area  
Subtitles out of active image area  
Reserved  
Surround Sound  
Copyright  
0
1
No  
Yes  
0
1
No copyright asserted or unknown  
Copyright asserted  
Copying not restricted  
Copying restricted  
Copy Protection  
0
1
500mV  
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13  
11.0µs  
38.4µs  
42.5µs  
Figure 100. WSS Waveform Diagram  
Rev. 0 | Page 69 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
APPENDIX 3–SD CLOSED CAPTIONING  
All pixels inputs are ignored on Line 21 and Line 284 if closed  
captioning is enabled.  
Subaddress 0x91 to Subaddress 0x94  
The ADV739x supports closed captioning conforming to the  
standard television synchronizing waveform for color  
transmission. When enabled, closed captioning is transmitted  
during the blanked active line time of Line 21 of the odd fields  
and Line 284 of the even fields. Closed captioning can be  
enabled using Subaddress 0x83, Bits[6:5].  
The FCC Code of Federal Regulations (CFR) Title 47 Section  
15.119 and EIA-608 describe the closed captioning information  
for Line 21 and Line 284.  
The ADV739x uses a single buffering method. This means that  
the closed captioning buffer is only 1-byte deep. Therefore,  
there is no frame delay in outputting the closed captioning data  
unlike other 2-byte deep buffering systems. The data must be  
loaded one line before it is output on Line 21 and Line 284. A  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency and phase-locked to the caption data. After the clock  
run-in signal, the blanking level is held for two data bits and is  
followed by a Logic 1 start bit. Sixteen bits of data follow the start  
bit. The data consists of two 8-bit bytes (seven data bits, and one  
odd parity bit per byte). The data for these bytes is stored in SD  
closed captioning registers (Subaddress 0x93 to Subaddress 0x94).  
VSYNC  
typical implementation of this method is to use  
to  
interrupt a microprocessor, which in turn loads the new data  
(2 bytes) in every field. If no new data is required for transmis-  
sion, 0s must be inserted in both data registers; this is called  
nulling. It is also important to load control codes, all of which  
are double bytes, on Line 21. Otherwise, a TV does not recognize  
them. If there is a message such as “Hello World” that has an  
odd number of characters, it is important to add a blank  
character at the end to make sure that the end-of-caption,  
2-byte control code lands in the same field.  
The ADV739x also supports the extended closed captioning  
operation, which is active during even fields and encoded on  
Line 284. The data for this operation is stored in SD closed  
captioning registers (Subaddress 0x91 to Subaddress 0x92).  
The ADV739x automatically generates all clock run-in signals  
and timing that support closed captioning on Line 21 and Line 284.  
10.5 ± 0.25µs  
12.91µs  
7 CYCLES OF  
0.5035MHz  
CLOCK RUN-IN  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
P
A
R
I
T
Y
S
T
A
R
T
D0 TO D6  
D0 TO D6  
BYTE 1  
50 IRE  
40 IRE  
BYTE 0  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
27.382µs  
33.764µs  
Figure 101. SD Closed Captioning Waveform, NTSC  
Rev. 0 | Page 70 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
APPENDIX 4–INTERNAL TEST PATTERN GENERATION  
ED/HD TEST PATTERNS  
SD TEST PATTERNS  
The ADV739x is able to generate ED/HD color bar, black bar,  
and hatch test patterns.  
The ADV739x is able to generate SD color bar and black bar  
test patterns.  
The register settings in Table 57 are used to generate an ED  
525p hatch test pattern. All other registers are set as normal/  
default. Component YPrPb output is available on DAC 1 to  
DAC 3. For component RGB output rather than YPrPb output,  
0 should be written to Subaddress 0x02, Bit 5.  
The register settings in Table 55 are used to generate an SD NTSC  
75% color bar test pattern. All other registers are set as normal/  
default. Component YPrPb output is available on DAC 1 to  
DAC 3. Upon power-up, the subcarrier frequency registers  
default to the appropriate values for NTSC.  
Table 57. ED 525p Hatch Test Pattern Register Writes  
Table 55. SD NTSC Color Bar Test Pattern Register Writes  
Subaddress  
Setting  
Subaddress  
Setting  
0x00  
0x1C  
0x00  
0x1C  
0x01  
0x10  
0x82  
0xC9  
0x31  
0x05  
0x84  
0x40  
To generate an ED 525p black bar test pattern, the same settings  
as shown in Table 57 should be used with an additional write of  
0x24 to Subaddress 0x02.  
For CVBS and S-Video (Y/C) output, 0xCB instead of 0xC9  
should be written to Subaddress 0x82.  
For component RGB output rather than YPrPb output, 0 should  
be written to Subaddress 0x02, Bit 5.  
To generate an ED 525p flat field test pattern, the same settings  
shown in Table 57 should be used, except that 0x0D should be  
written to Subaddress 0x31.  
To generate an SD NTSC black bar test pattern, the same  
settings shown in Table 55 should be used with an additional  
write of 0x24 to Subaddress 0x02.  
The Y, Cr, and Cb levels for the hatch and flat field test patterns  
can be controlled using Subaddress 0x36, Subaddress 0x37, and  
Subaddress 0x38, respectively.  
For PAL output of either test pattern, the same settings are used,  
except that Subaddress 0x80 is programmed to 0x11 and the  
subcarrier frequency (FSC) registers are programmed as shown  
in Table 56.  
For ED/HD standards other than 525p, the same settings as  
shown in Table 57 (and subsequent comments) are used except  
that Subaddress 0x30, Bits[7:3] are updated as appropriate.  
Table 56. PAL FSC Register Writes  
Subaddress  
Description  
Setting  
0xCB  
0x8C  
FSC0  
0x8D  
FSC1  
0x8A  
0x09  
0x8E  
FSC2  
0x8F  
FSC3  
0x2A  
Note that when programming the FSC registers, the user must  
write the values in the sequence FSC0, FSC1, FSC2, FSC3. The full  
F
SC value to be written is only accepted after the FSC3 write is  
complete.  
Rev. 0 | Page 71 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
APPENDIX 5–SD TIMING  
Mode 0 (CCIR-656)—Slave Option (Subaddress 0x8A = X X X X X 0 0 0)  
The ADV739x is controlled by the SAV (start of active video) and EAV (end of active video) time codes embedded in the pixel data. All  
timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately before and after  
VSYNC  
HSYNC  
each line during active picture and retrace. If the  
and  
pins are not used, they should be tied high when using this mode.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
1440 CLOCK  
1440 CLOCK  
268 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
280 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 102. SD Timing Mode 0, Slave Option  
Mode 0 (CCIR-656)—Master Option (Subaddress 0x8A = X X X X X 0 0 1)  
The ADV739x generates H and F signals required for the SAV and EAV time codes in the CCIR-656 standard. The H bit is output on  
HSYNC  
VSYNC  
and the F bit is output on  
.
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
522  
523  
524  
525  
1
2
3
5
6
7
8
10  
11  
20  
21  
22  
9
H
F
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
F
ODD FIELD  
EVEN FIELD  
Figure 103. SD Timing Mode 0, Master Option, NTSC  
Rev. 0 | Page 72 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
4
22  
23  
1
2
3
5
6
7
21  
H
F
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
335  
336  
318  
334  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
F
ODD FIELD  
EVEN FIELD  
Figure 104. SD Timing Mode 0, Master Option, PAL  
ANALOG  
VIDEO  
H
F
Figure 105. SD Timing Mode 0, Master Option, Data Transitions  
Mode 1—Slave Option (Subaddress 0x8A = X X X X X 0 1 0)  
HSYNC  
In this mode, the ADV739x accepts horizontal synchronization and odd/even field signals. When  
is low, a transition of the field  
input indicates a new frame, that is, vertical retrace. The ADV739x automatically blanks all normally blank lines as per CCIR-624.  
HSYNC  
HSYNC  
VSYNC  
and pins, respectively.  
and FIELD are input on the  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
3
4
5
7
9
10  
11  
1
2
6
8
HSYNC  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
FIELD  
ODD FIELD EVEN FIELD  
Figure 106. SD Timing Mode 1,Slave Option, NTSC  
Rev. 0 | Page 73 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
3
4
5
7
622  
623  
624  
625  
1
2
6
21  
22  
23  
HSYNC  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 107. SD Timing Mode 1, Slave Option, PAL  
Mode 1—Master Option (Subaddress 0x8A = X X X X X 0 1 1)  
In this mode, the ADV739x can generate horizontal synchronization and odd/even field signals. When  
HSYNC  
is low, a transition of the  
field input indicates a new frame, that is, vertical retrace. The ADV739x automatically blanks all normally blank lines as per CCIR-624.  
HSYNC HSYNC  
Pixel data is latched on the rising clock edge following the timing signal transitions.  
and FIELD are output on the  
and  
VSYNC  
pins, respectively.  
HSYNC  
FIELD  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 108. SD Timing Mode 1, Odd/Even Field Transitions (Master/Slave)  
Mode 2— Slave Option (Subaddress 0x8A = X X X X X 1 0 0)  
In this mode, the ADV739x accepts horizontal and vertical synchronization signals. A coincident low transition of both  
VSYNC VSYNC HSYNC  
HSYNC  
and  
is high indicates the start of an even field. The  
VSYNC HSYNC VSYNC  
inputs indicates the start of an odd field. A  
low transition when  
HSYNC  
ADV739x automatically blanks all normally blank lines as per CCIR-624.  
pins, respectively.  
and  
are input on the  
and  
Rev. 0 | Page 74 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
3
4
5
7
8
20  
21  
22  
2
6
10  
11  
9
HSYNC  
VSYNC  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 109. SD Timing Mode 2, Slave Option, NTSC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
622  
623  
624  
625  
1
2
3
5
6
7
21  
22  
23  
HSYNC  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 110. SD Timing Mode 2, Slave Option, PAL  
Mode 2—Master Option (Subaddress 0x8A = X X X X X 1 0 1)  
In this mode, the ADV739x can generate horizontal and vertical synchronization signals. A coincident low transition of both  
VSYNC  
HSYNC  
and  
inputs indicates the start of an odd field.  
VSYNC HSYNC  
A
low transition when  
is high indicates the start of an even field. The ADV739x automatically blanks all normally blank  
VSYNC HSYNC VSYNC  
HSYNC  
lines as per CCIR-624.  
and  
are output on the  
and  
pins, respectively.  
HSYNC  
VSYNC  
PIXEL  
DATA  
Cb  
Cr  
Y
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 111. SD Timing Mode 2, Even-to-Odd Field Transition (Master/Slave)  
Rev. 0 | Page 75 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
HSYNC  
VSYNC  
PAL = 864 × CLOCK/2  
NTSC = 858 × CLOCK/2  
PIXEL  
DATA  
Cb  
Cr  
Y
Cb  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 112. SD Timing Mode 2, Odd-to-Even Field Transition (Master/Slave)  
Mode 3—Master/Slave Option (Subaddress 0x8A = X X X X X 1 1 0 or X X X X X 1 1 1)  
HSYNC  
In this mode, the ADV739x accepts or generates horizontal synchronization and odd/even field signals. When  
is high, a  
transition of the field input indicates a new frame, that is, vertical retrace. The ADV739x automatically blanks all normally blank lines as  
HSYNC  
VSYNC  
HSYNC  
VSYNC  
and pins, respectively.  
per CCIR-624.  
and  
are output in master mode and input in slave mode on the  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
4
20  
21  
22  
10  
11  
1
2
3
5
6
7
8
9
HSYNC  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
FIELD  
ODD FIELD EVEN FIELD  
Figure 113. SD Timing Mode 3, NTSC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
5
6
7
21  
22  
23  
HSYNC  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
FIELD  
EVEN FIELD ODD FIELD  
Figure 114. SD Timing Mode 3, PAL  
Rev. 0 | Page 76 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
APPENDIX 6–HD TIMING  
DISPLAY  
FIELD 1  
VERTICAL BLANKING INTERVAL  
1124  
1125  
1
2
3
4
5
6
7
8
20  
21  
22  
560  
VSYNC  
HSYNC  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
VSYNC  
HSYNC  
HSYNC  
VSYNC  
Input Timing  
Figure 115. 1080i  
and  
Rev. 0 | Page 77 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
APPENDIX 7–VIDEO OUTPUT LEVELS  
SD YPrPb OUTPUT LEVELS—SMPTE/EBU N10  
Pattern: 100% Color Bars  
700mV  
700mV  
300mV  
300mV  
Figure 119. Y Levels—PAL  
Figure 116. Y Levels—NTSC  
700mV  
700mV  
Figure 120. Pr Levels—PAL  
Figure 117. Pr Levels—NTSC  
700mV  
700mV  
Figure 121. Pb Levels—PAL  
Figure 118. Pb Levels—NTSC  
Rev. 0 | Page 78 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ED/HD YPrPb OUTPUT LEVELS  
EIA-770.3, STANDARD FOR Y  
EIA-770.2, STANDARD FOR Y  
INPUT CODE  
INPUT CODE  
940  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
940  
700mV  
700mV  
64  
64  
300mV  
300mV  
EIA-770.3, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
EIA-770.2, STANDARD FOR Pr/Pb  
960  
OUTPUT VOLTAGE  
960  
512  
64  
600mV  
700mV  
700mV  
512  
64  
Figure 124. EIA-770.3 Standard Output Signals (1080i/720p)  
Figure 122. EIA-770.2 Standard Output Signals (525p/625p)  
Y–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
EIA-770.1, STANDARD FOR Y  
INPUT CODE  
1023  
OUTPUT VOLTAGE  
INPUT CODE  
OUTPUT VOLTAGE  
782mV  
940  
700mV  
714mV  
64  
64  
300mV  
286mV  
Pr/Pb–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
OUTPUT VOLTAGE  
INPUT CODE  
1023  
EIA-770.1, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
700mV  
700mV  
512  
64  
64  
300mV  
Figure 125. Output Levels for Full Input Selection  
Figure 123. EIA-770.1 Standard Output Signals (525p/625p)  
Rev. 0 | Page 79 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
SD/ED/HD RGB OUTPUT LEVELS  
Pattern: 100%/75% Color Bars  
R
R
700mV/525mV  
700mV/525mV  
300mV  
300mV  
G
G
700mV/525mV  
700mV/525mV  
300mV  
300mV  
B
B
700mV/525mV  
700mV/525mV  
300mV  
300mV  
Figure 128. HD RGB Output Levels—RGB Sync Disabled  
Figure 126. SD/ED RGB Output Levels—RGB Sync Disabled  
R
R
700mV/525mV  
600mV  
700mV/525mV  
300mV  
0mV  
300mV  
0mV  
G
G
700mV/525mV  
600mV  
700mV/525mV  
300mV  
0mV  
300mV  
0mV  
B
B
700mV/525mV  
600mV  
700mV/525mV  
300mV  
0mV  
300mV  
0mV  
Figure 129. HD RGB Output Levels—RGB Sync Enabled  
Figure 127. SD/ED RGB Output Levels—RGB Sync Enabled  
Rev. 0 | Page 80 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
SD OUTPUT PLOTS  
VOLTS  
0.6  
VOLTS IRE:FLT  
100  
0.4  
0.2  
0
0.5  
50  
0
0
–0.2  
F1  
L76  
–50  
L608  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
MICROSECONDS  
PRECISION MODE OFF  
40  
50  
60  
MICROSECONDS  
NOISE REDUCTION: 0.00dB  
APL = 39.1%  
625 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
APL = 44.5%  
525 LINE NTSC  
SLOW CLAMP TO 0.00V AT 6.72μµs  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1, 2, 3, 4  
SYNCHRONOUS SYNC =A  
FRAMES SELECTED 1, 2  
Figure 133. PAL Color Bars (75%)  
Figure 130. NTSC Color Bars (75%)  
VOLTS  
0.5  
VOLTS IRE:FLT  
0.6  
0.4  
50  
0.2  
0
00  
0
–0.2  
F2  
L238  
L575  
20  
0
10  
20  
30  
40  
50  
60  
0
10  
30  
40  
50  
60  
70  
MICROSECONDS  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL = 44.3%  
APL NEEDS SYNC SOURCE.  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
NO BUNCH SIGNAL  
PRECISION MODE OFF  
PRECISION MODE OFF  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00V AT 6.72μµs  
SYNCHRONOUS SYNC = SOURCE  
FRAMES SELECTED 1, 2  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
Figure 131. NTSC Luma  
Figure 134. PAL Luma  
VOLTS IRE:FLT  
VOLTS  
0.5  
0.4  
50  
0.2  
0
0
0
–0.2  
–0.4  
–50  
–0.5  
F1  
L76  
L575  
20  
0
10  
20  
30  
40  
50  
60  
0
10  
30  
40  
50  
60  
MICROSECONDS  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC SOURCE.  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
APL NEEDS SYNC SOURCE.  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
NO BUNCH SIGNAL  
PRECISION MODE OFF  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
SYNCHRONOUS SYNC = B  
FRAMES SELECTED 1, 2  
Figure 132. NTSC Chroma  
Figure 135. PAL Chroma  
Rev. 0 | Page 81 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
APPENDIX 8–VIDEO STANDARDS  
0
DATUM  
H
SMPTE 274M  
ANALOG WAVEFORM  
DIGITAL HORIZONTAL BLANKING  
272T  
*1  
4T  
4T  
1920T  
DIGITAL  
ACTIVE LINE  
ANCILLARY DATA  
(OPTIONAL) OR BLANKING CODE  
EAV CODE  
SAV CODE  
F
F
F
F
0
0
0
0
F
F
0
0
0
0
C
C
r
C
INPUT PIXELS  
Y
V
V
Y
b
r
H*  
H*  
4 CLOCK  
4 CLOCK  
192  
0
2199  
SAMPLE NUMBER  
2112  
2116 2156  
44  
188  
2111  
FVH* = FVH AND PARITY BITS  
SAV/EAV: LINE 1–562: F = 0  
SAV/EAV: LINE 563–1125: F = 1  
SAV/EAV: LINE 1–20; 561–583; 1124–1125: V = 1  
SAV/EAV: LINE 21–560; 5841123: V = 0  
FOR A FRAME RATE OF 30Hz: 40 SAMPLES  
FOR A FRAME RATE OF 25Hz: 480 SAMPLES  
Figure 136. EAV/SAV Input Data Timing Diagram (SMPTE 274M)  
SMPTE 293M  
ANALOG WAVEFORM  
ANCILLARY DATA  
(OPTIONAL)  
DIGITAL  
SAV CODE  
F
EAV CODE  
F
ACTIVE LINE  
F
F
0
0
0
0
F
F
0
0
0
0
C
b
C
r
C
INPUT PIXELS  
V
Y
V
Y
r
Y
H*  
H*  
4 CLOCK  
4 CLOCK  
853 857  
SAMPLE NUMBER  
719  
723 736  
DATUM  
799  
0
719  
0
H
DIGITAL HORIZONTAL BLANKING  
FVH* = FVH AND PARITY BITS  
SAV: LINE 43–525 = 200H  
SAV: LINE 1–42 = 2AC  
EAV: LINE 43–525 = 274H  
EAV: LINE 1–42 = 2D8  
Figure 137. EAV/SAV Input Data Timing Diagram (SMPTE 293M)  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
522 523 524 525  
1
2
5
6
7
8
9
12  
13  
14  
15  
16  
42  
43  
44  
Figure 138. SMPTE 293M (525p)  
Rev. 0 | Page 82 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
12  
13  
1
2
5
6
7
8
9
43  
44  
45  
622 623  
624  
625  
4
10  
11  
Figure 139. ITU-R BT.1358 (625p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
1
2
3
4
5
6
7
747  
748  
749  
750  
26  
27  
744  
745  
8
25  
Figure 140. SMPTE 296M (720p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 1  
560  
1
2
5
6
7
8
21  
22  
1124  
1125  
3
4
20  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
Figure 141. SMPTE 274M (1080i)  
Rev. 0 | Page 83 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
APPENDIX 9–CONFIGURATION SCRIPTS  
The scripts listed in the following pages can be used to configure the ADV739x for basic operation. Certain features are enabled by  
default. If required for a specific application, further features can be enabled. Table 58 lists the scripts available for SD modes of operation.  
Similarly, Table 89 and Table 106 list the scripts available for ED and HD modes of operation, respectively.  
STANDARD DEFINITION  
Table 58. SD Configuration Scripts  
Input Format  
525i (NTSC)  
525i (NTSC)  
Input Data Width  
Synchronization Format  
EAV/SAV  
EAV/SAV  
Input Color Space  
YCrCb  
YCrCb  
Output Color Space  
YPrPb  
CVBS/Y-C (S-Video)  
Table Number  
8-Bit SDR  
8-Bit SDR  
Table 59  
Table 60  
Table 61  
Table 62  
Table 63  
Table 64  
Table 65  
Table 66  
Table 67  
Table 68  
Table 69  
Table 70  
Table 71  
Table 72  
Table 73  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
525i (NTSC)  
8-Bit SDR  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
/
EAV/SAV  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
RGB  
YPrPb  
8-Bit SDR  
8-Bit SDR  
RGB  
RGB  
10-Bit SDR  
10-Bit SDR  
10-Bit SDR  
10-Bit SDR  
10-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
YPrPb  
YPrPb  
HSYNC VSYNC  
/
HSYNC VSYNC  
/
EAV/SAV  
CVBS/ Y-C (S-Video)  
RGB  
RGB  
HSYNC VSYNC  
/
HSYNC VSYNC  
YPrPb  
/
HSYNC VSYNC  
RGB  
/
HSYNC VSYNC  
YPrPb  
/
HSYNC VSYNC  
RGB  
CVBS/ Y-C (S-Video)  
RGB  
/
HSYNC VSYNC  
/
RGB  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
625i (PAL)  
8-Bit SDR  
8-Bit SDR  
8-Bit SDR  
8-Bit SDR  
8-Bit SDR  
10-Bit SDR  
10-Bit SDR  
10-Bit SDR  
10-Bit SDR  
10-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
EAV/SAV  
EAV/SAV  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
/
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
RGB  
YPrPb  
CVBS/Y-C (S-Video)  
YPrPb  
Table 74  
Table 75  
Table 76  
Table 77  
Table 78  
Table 79  
Table 80  
Table 81  
Table 82  
Table 83  
Table 84  
Table 85  
Table 86  
Table 87  
Table 88  
RGB  
RGB  
EAV/SAV  
YPrPb  
YPrPb  
HSYNC VSYNC  
/
HSYNC VSYNC  
/
EAV/SAV  
CVBS/Y-C (S-Video)  
RGB  
RGB  
HSYNC VSYNC  
/
HSYNC VSYNC  
YPrPb  
/
HSYNC VSYNC  
RGB  
/
HSYNC VSYNC  
YPrPb  
/
HSYNC VSYNC  
RGB  
CVBS/Y-C (S-Video)  
RGB  
/
HSYNC VSYNC  
RGB  
/
Table 59. 8-Bit 525i YCrCb In (EAV/SAV), YPrPb Out  
Table 60. 8-Bit 525i YCrCb In (EAV/SAV), CVBS/Y-C Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
NTSC standard. SSAF luma filter  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0xC9  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x82  
0xCB  
Pixel data valid. CVBS/S-Video out.  
SSAF PrPb filter enabled. Active video  
edge control enabled. Pedestal enabled.  
Rev. 0 | Page 84 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 61. 8-Bit 525i YCrCb In, YPrPb Out  
Subaddress Setting Description  
Table 64. 10-Bit 525i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
NTSC standard. SSAF luma filter  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0x8A  
0xC9  
0x0C  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x82  
0x88  
0xC9  
0x10  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
10-bit input enabled.  
Table 65. 10-Bit 525i YCrCb In, YPrPb Out  
Subaddress Setting Description  
Table 62. 8-Bit 525i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
NTSC standard. SSAF luma filter  
RGB output enabled. RGB output sync  
enabled.  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0xC9  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Table 63. 8-Bit 525i YCrCb In, RGB Out  
Subaddress Setting Description  
Table 66. 10-Bit 525i YCrCb In, CVBS/Y-C Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0xCB  
Pixel data valid. CVBS/S-Video out. SSAF  
PrPb filter enabled. Active video edge  
control enabled. Pedestal enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
0x8A  
0x0C  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Rev. 0 | Page 85 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 67. 10-Bit 525i YCrCb In (EAV/SAV), RGB Out  
Table 70. 16-Bit 525i YCrCb In, RGB Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
RGB output enabled. RGB output sync  
enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x88  
0x10  
10-bit input enabled.  
0x88  
0x8A  
0x08  
0x0C  
16-bit input enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Table 68. 10-Bit 525i YCrCb In, RGB Out  
Subaddress Setting Description  
Table 71. 16-Bit 525i RGB In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x82  
0xC9  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
0x87  
0x88  
0x8A  
0x80  
0x08  
0x0C  
RGB input enabled.  
16-bit input enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Table 69. 16-Bit 525i YCrCb In, YPrPb Out  
Subaddress Setting Description  
Table 72. 16-Bit 525i RGB In, CVBS/Y-C Out  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
Subaddress Setting Description  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
NTSC standard. SSAF luma filter  
0x82  
0xC9  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. pedestal enabled.  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0xCB  
Pixel data valid. CVBS/S-Video out. SSAF  
PrPb filter enabled. Active video edge  
control enabled. Pedestal enabled.  
0x88  
0x8A  
0x08  
0x0C  
16-bit input enabled.  
HSYNC VSYNC  
Timing Mode 2 (Slave).  
synchronization.  
/
0x87  
0x88  
0x8A  
0x80  
0x08  
0x0C  
RGB input enabled.  
16-bit input enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Rev. 0 | Page 86 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 73. 16-Bit 525i RGB In, RGB Out  
Table 76. 8-Bit 625i YCrCb In, YPrPb Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x80  
0x82  
0x10  
0xC9  
NTSC standard. SSAF luma filter  
enabled. 1.3 MHz chroma filter enabled.  
0x82  
0x8A  
0xC1  
0x0C  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled. Pedestal enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
0x87  
0x88  
0x8A  
0x80  
0x08  
0x0C  
RGB input enabled.  
16-bit input enabled.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Table 74. 8-Bit 625i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
Table 77. 8-Bit 625i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
RGB output enabled. RGB output sync  
enabled.  
0x82  
0xC1  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
Table 75. 8-Bit 625i YCrCb In (EAV/SAV), CVBS/Y-C Out  
Subaddress Setting Description  
Table 78. 8-Bit 625i YCrCb In, RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x82  
0xC3  
Pixel data valid. CVBS/S-Video out.  
SSAF PrPb filter enabled. Active video  
edge control enabled.  
RGB output enabled. RGB output sync  
enabled.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x8A  
0x0C  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
Rev. 0 | Page 87 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 79. 10-Bit 625i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
Table 82. 10-Bit 625i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
RGB output enabled. RGB output sync  
enabled.  
0x82  
0x88  
0xC1  
0x10  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
10-bit input enabled.  
0x88  
0x8C  
0x8D  
0x8E  
0x8F  
0x10  
0xCB  
0x8A  
0x09  
0x2A  
10-bit input enabled.  
PAL FSC value.  
Table 80. 10-Bit 625i YCrCb In, YPrPb Out  
Subaddress Setting Description  
PAL FSC value.  
PAL FSC value.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
PAL FSC value.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
Table 83. 10-Bit 625i YCrCb In, RGB Out  
Subaddress Setting Description  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x82  
0xC1  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
RGB output enabled. RGB output sync  
enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Table 81. 10-Bit 625i YCrCb In, CVBS/Y-C Out  
Subaddress Setting Description  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
Table 84. 16-Bit 625i YCrCb In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x80  
0x82  
0xC3  
Pixel Data Valid. CVBS/S-Video Out.  
SSAF PrPb Filter Enabled. Active Video  
Edge Control Enabled.  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
0x88  
0x8A  
0x10  
0x0C  
10-bit input enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
0x82  
0xC1  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
0x88  
0x8A  
0x08  
0x0C  
16-bit input enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
Rev. 0 | Page 88 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 85. 16-Bit 625i YCrCb In, RGB Out  
Table 87. 16-Bit 625i RGB In, CVBS/Y-C Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x82  
0xC3  
Pixel data valid. CVBS/S-Video out.  
SSAF PrPb filter enabled. Active video  
edge control enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x87  
0x88  
0x8A  
0x80  
0x08  
0x0C  
RGB input enabled.  
16-bit input enabled.  
0x88  
0x8A  
0x08  
0x0C  
16-bit input enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
Table 88. 16-Bit 625i RGB In, RGB Out  
Subaddress Setting Description  
Table 86. 16-Bit 625i RGB In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x00  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x80  
0x02  
0x1C  
0x00  
0x11  
Software reset.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
All DACs enabled. PLL enabled (16×).  
SD input mode.  
RGB output enabled. RGB output sync  
enabled.  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x80  
0x82  
0x11  
0xC1  
PAL standard. SSAF luma filter enabled.  
1.3 MHz chroma filter enabled.  
0x82  
0xC1  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
Pixel data valid. YPrPb out. SSAF PrPb  
filter enabled. Active video edge  
control enabled.  
0x87  
0x88  
0x8A  
0x80  
0x08  
0x0C  
RGB input enabled.  
16-bit input enabled.  
0x87  
0x88  
0x8A  
0x80  
0x08  
0x0C  
RGB input enabled.  
16-bit input enabled.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
Timing Mode 2 (Slave). HSYNC/VSYNC  
synchronization.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
0x8C  
0x8D  
0x8E  
0x8F  
0xCB  
0x8A  
0x09  
0x2A  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
PAL FSC value.  
Rev. 0 | Page 89 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ENHANCED DEFINITION  
Table 89. ED Configuration Scripts  
Input Format  
Input Data Width  
Synchronization Format  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
/
Input Color Space  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
Output Color Space  
Table Number  
Table 98  
Table 100  
Table 99  
Table 101  
Table 90  
Table 91  
525p  
525p  
525p  
525p  
525p  
525p  
8-Bit DDR  
8-Bit DDR  
YPrPb  
RGB  
YPrPb  
RGB  
YPrPb  
YPrPb  
RGB  
10-Bit DDR  
10-Bit DDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
YCrCb  
YCrCb  
525p  
525p  
YCrCb  
YCrCb  
Table 92  
Table 93  
RGB  
625p  
625p  
625p  
625p  
625p  
625p  
625p  
625p  
8-Bit DDR  
8-Bit DDR  
10-Bit DDR  
10-Bit DDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YPrPb  
RGB  
YPrPb  
RGB  
YPrPb  
YPrPb  
RGB  
Table 102  
Table 104  
Table 103  
Table 105  
Table 94  
Table 95  
Table 96  
Table 97  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
RGB  
/
Table 90. 16-Bit 525p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
Table 93. 16-Bit 525p YCrCb In, RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x04  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
525p @ 59.94 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
RGB output enabled. RGB output sync  
enabled.  
0x31  
0x01  
Pixel data valid.  
0x30  
0x31  
0x00  
0x01  
525p @ 59.94 Hz. HSYNC/VSYNC synch-  
ronization. EIA-770.2 output levels.  
Pixel data valid.  
Table 91. 16-Bit 525p YCrCb In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x00  
Software reset.  
Table 94. 16-Bit 625p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x1C  
Software reset.  
525p @ 59.94 Hz. HSYNC/VSYNC synch-  
ronization. EIA-770.2 output levels.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
0x31  
0x01  
Pixel data valid.  
625p @ 50 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
0x31  
0x01  
Pixel data valid.  
Table 92. 16-Bit 525p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
Table 95. 16-Bit 625p YCrCb In, YPrPb Out  
Subaddress Setting Description  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x18  
Software reset.  
RGB output enabled. RGB output sync  
enabled.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
0x30  
0x31  
0x04  
0x01  
525p @ 59.94 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
625p @ 50 Hz. HSYNC/VSYNC synch-  
ronization. EIA-770.2 output levels.  
Pixel data valid.  
0x31  
0x01  
Pixel data valid.  
Rev. 0 | Page 90 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 96. 16-Bit 625p YCrCb In (EAV/SAV), RGB Out  
Table 100. 8-Bit 525p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
RGB output enabled. RGB output sync  
enabled.  
0x02  
0x30  
0x31  
0x10  
0x04  
0x01  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x1C  
0x01  
625p @ 50 Hz. EAV/SAV synchroniza-  
tion. EIA-770.2 output levels.  
525p @ 59.94 Hz. EAV/SAV synchro-  
nization. EIA-770.2 output levels.  
Pixel data valid.  
Pixel data valid.  
Table 97. 16-Bit 625p YCrCb In, RGB Out  
Subaddress Setting Description  
Table 101. 10-Bit 525p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-SDR input mode.  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
RGB output enabled. RGB output sync  
enabled.  
0x02  
0x30  
0x10  
0x04  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x18  
0x01  
625p @ 50 Hz. HSYNC/VSYNC synch-  
ronization. EIA-770.2 output levels.  
525p @ 59.94 Hz. EAV/SAV synchro-  
nization. EIA-770.2 output levels.  
Pixel data valid.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid.  
10-bit input enabled.  
Table 98. 8-Bit 525p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
Table 102. 8-Bit 625p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
0x30  
0x31  
0x04  
0x01  
525p @ 59.94 Hz. EAV/SAV synchro-  
nization. EIA-770.2 output levels.  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
Pixel data valid.  
0x30  
0x31  
0x1C  
0x01  
625p @ 50 Hz. EAV/SAV synchroniza-  
tion. EIA-770.2 output levels.  
Pixel data valid.  
Table 99. 10-Bit 525p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
Table 103. 10-Bit 625p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
0x30  
0x04  
525p @ 59.94 Hz. EAV/SAV synchro-  
nization. EIA-770.2 output levels.  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid.  
0x30  
0x1C  
625p @ 50 Hz. EAV/SAV synchroniza-  
tion. EIA-770.2 output levels.  
10-bit input enabled.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid.  
10-bit input enabled.  
Rev. 0 | Page 91 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 105. 10-Bit 625p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 104. 8-Bit 625p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (8×).  
ED-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x02  
0x30  
0x10  
0x1C  
RGB output enabled. RGB output sync  
enabled.  
625p @ 50 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
0x02  
0x30  
0x31  
0x10  
0x1C  
0x01  
RGB output enabled. RGB output sync  
enabled.  
625p @ 50 Hz. EAV/SAV synchroni-  
zation. EIA-770.2 output levels.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid.  
10-bit input enabled.  
Pixel data valid.  
HIGH DEFINITION  
Table 106. HD Configuration Scripts  
Input Format  
Input Data Width  
Synchronization Format  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
/
Input Color Space  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
Output Color Space  
Table Number  
Table 115  
Table 117  
Table 116  
Table 118  
Table 107  
Table 108  
Table 109  
Table 110  
720p  
720p  
720p  
720p  
720p  
720p  
8-Bit DDR  
8-Bit DDR  
YPrPb  
RGB  
YPrPb  
RGB  
YPrPb  
YPrPb  
RGB  
10-Bit DDR  
10-Bit DDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
YCrCb  
YCrCb  
720p  
720p  
YCrCb  
YCrCb  
RGB  
1080i  
1080i  
1080i  
1080i  
1080i  
1080i  
1080i  
1080i  
8-Bit DDR  
8-Bit DDR  
10-Bit DDR  
10-Bit DDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
16-Bit SDR  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
EAV/SAV  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YPrPb  
RGB  
YPrPb  
RGB  
YPrPb  
YPrPb  
RGB  
Table 119  
Table 121  
Table 120  
Table 122  
Table 111  
Table 112  
Table 113  
Table 114  
HSYNC VSYNC  
/
EAV/SAV  
HSYNC VSYNC  
RGB  
/
Rev. 0 | Page 92 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 112. 16-Bit 1080i YCrCb In, YPrPb Out  
Subaddress Setting Description  
Table 107. 16-Bit 720p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x18  
Software reset.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x2C  
Software reset.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
1080i @ 30 Hz/29.97 Hz. HSYNC/VSYNC  
synchronization. EIA-770.3 output levels.  
720p @ 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x31  
0x01  
Pixel data valid. 4× oversampling.  
0x31  
0x01  
Pixel data valid. 4× oversampling.  
Table 113. 16-Bit 1080i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 108. 16-Bit 720p YCrCb In, YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x28  
Software reset.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
RGB output enabled. RGB output sync  
enabled.  
720p @ 60 Hz/59.94 Hz. HSYNC/VSYNC  
synchronization. EIA-770.3 output levels.  
0x30  
0x31  
0x6C  
0x01  
1080i @ 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x31  
0x01  
Pixel data valid. 4× oversampling.  
Pixel data valid. 4× oversampling.  
Table 109. 16-Bit 720p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 114. 16-Bit 1080i YCrCb In, RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
RGB output enabled. RGB output sync  
enabled.  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x2C  
0x01  
720p @ 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x30  
0x31  
0x18  
0x01  
1080i @ 30 Hz/29.97 Hz. HSYNC/VSYNC  
synchronization. EIA-770.3 output levels.  
Pixel data valid. 4× oversampling.  
Pixel data valid. 4× oversampling.  
Table 110. 16-Bit 720p YCrCb In, RGB Out  
Subaddress Setting Description  
Table 115. 8-Bit 720p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x02  
0x1C  
0x10  
0x10  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
All DACs enabled. PLL enabled (4×).  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x2C  
0x01  
720p @ 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x30  
0x31  
0x28  
0x01  
720p @ 60 Hz/59.94 Hz. HSYNC/VSYNC  
synchronization. EIA-770.3 output levels.  
Pixel data valid. 4× oversampling.  
Pixel data valid. 4× oversampling.  
Table 116. 10-Bit 720p YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
Table 111. 16-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
0x17  
0x00  
0x01  
0x30  
0x02  
0x1C  
0x10  
0x6C  
Software reset.  
All DACs enabled. PLL enabled (4×).  
All DACs enabled. PLL enabled (4×).  
HD-SDR input mode.  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
1080i @ 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x30  
0x2C  
720p @ 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x31  
0x01  
Pixel data valid. 4× oversampling.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid. 4× oversampling.  
10-bit input enabled.  
Rev. 0 | Page 93 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
Table 117. 8-Bit 720p YCrCb In (EAV/SAV), RGB Out  
Table 120. 10-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (4×).  
All DACs enabled. PLL enabled (4×).  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x02  
0x30  
0x31  
0x10  
0x2C  
0x01  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x6C  
1080i @ 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
720p @ 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid. 4× oversampling.  
10-bit input enabled.  
Pixel data valid. 4× oversampling.  
Table 121. 8-Bit 1080i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 118. 10-Bit 720p YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (4×).  
All DACs enabled. PLL enabled (4×).  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x02  
0x30  
0x31  
0x10  
0x6C  
0x01  
RGB output enabled. RGB output sync  
enabled.  
0x02  
0x30  
0x10  
0x2C  
RGB output enabled. RGB output sync  
enabled.  
1080i @ 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
720p @ 60 Hz/59.94 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
Pixel data valid. 4× oversampling.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid. 4× oversampling.  
10-bit input enabled.  
Table 122. 10-Bit 1080i YCrCb In (EAV/SAV), RGB Out  
Subaddress Setting Description  
Table 119. 8-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out  
Subaddress Setting Description  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
All DACs enabled. PLL enabled (4×).  
0x17  
0x00  
0x01  
0x02  
0x1C  
0x20  
Software reset.  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
All DACs enabled. PLL enabled (4×).  
HD-DDR input mode. Luma data  
clocked on falling edge of CLKIN.  
0x02  
0x30  
0x10  
0x6C  
RGB output enabled. RGB output sync  
enabled.  
0x30  
0x31  
0x6C  
0x01  
1080i @ 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
1080i @ 30 Hz/29.97 Hz. EAV/SAV syn-  
chronization. EIA-770.3 output levels.  
Pixel data valid. 4× oversampling.  
0x31  
0x33  
0x01  
0x6C  
Pixel data valid. 4× oversampling.  
10-bit input enabled.  
Rev. 0 | Page 94 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
0.80 MAX  
0.65 TYP  
3.50 REF  
12° MAX  
EXPOSED PADDLE MUST BE SOLDERED  
TO PCB GROUND FOR PROPER  
HEAT DISSIPATION, NOISE IMMUNITY AND  
MECHANICAL STRENGTH BENEFITS.  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 142. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
4.25  
4.10 SQ  
3.95  
5.75  
BCS SQ  
EXPOSED  
PAD  
(BOT TOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
20  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
EXPOSED PADDLE MUST BE SOLDERED  
TO PCB GROUND FOR PROPER  
HEAT DISSIPATION, NOISE IMMUNITY AND  
MECHANICAL STRENGTH BENEFITS.  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 143. 40-Lead Frame Chip Scale Package [LFCSP]  
(CP-40)  
Dimensions shown in millimeters  
Rev. 0 | Page 95 of 96  
ADV7390/ADV7391/ADV7392/ADV7393  
ORDERING GUIDE  
Macrovision1  
Model  
Temperature Range Anti-Taping  
Package Description  
Package Option  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-40  
CP-40  
CP-40  
CP-40  
ADV7390BCPZ2  
−40°C to +85°C  
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
No  
N/A  
Yes  
No  
Yes  
No  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ADV739x Evaluation Platform Front-End Board.  
ADV7390 Evaluation Board  
ADV7390BCPZ-REEL2 −40°C to +85°C  
ADV7391BCPZ2  
ADV7391BCPZ-REEL2 −40°C to +85°C  
ADV7392BCPZ2  
−40°C to +85°C  
ADV7392BCPZ-REEL2 −40°C to +85°C  
ADV7393BCPZ2  
−40°C to +85°C  
−40°C to +85°C  
ADV7393BCPZ-REEL2 −40°C to +85°C  
EVAL-ADV739xFEZ2, 3  
EVAL-ADV7390EBZ2  
EVAL-ADV7391EBZ2  
ADV7391 Evaluation Board  
ADV7392 Evaluation Board  
ADV7393 Evaluation Board  
EVAL-ADV7392EBZ2  
EVAL-ADV7393EBZ2  
1 Macrovision-enabled ICs require the buyer to be an approved licensee (authorized buyer) of ICs that are able to output Macrovision Rev 7.1.L1-compliant video.  
2 Z = Pb-free.  
3 To be used in conjunction with any one of the ADV793x evaluation boards; this front-end board contains an Analog Devices decoder and Xilinx Spartan-3 FPGA.  
2
2
Purchase of licensed I C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I C  
2
2
Patent Rights to use these components in an I C system, provided that the system conforms to the I C Standard Specification as defined by Philips.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06234-0-10/06(0)  
Rev. 0 | Page 96 of 96  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY