ADXL001-500BEZ-R7 [ADI]

High Performance, Wide Bandwidth Accelerometer; 高性能,宽带宽加速度计
ADXL001-500BEZ-R7
型号: ADXL001-500BEZ-R7
厂家: ADI    ADI
描述:

High Performance, Wide Bandwidth Accelerometer
高性能,宽带宽加速度计

模拟IC 信号电路
文件: 总16页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance,  
Wide Bandwidth Accelerometer  
ADXL001  
Using the Analog Devices, Inc. proprietary fifth-generation  
iMEMs® process enables the ADXL001 to provide the desired  
dynamic range that extends from 70 g to 500 g in combin-  
ation with 22 kHz of bandwidth. The accelerometer output  
channel passes through a wide bandwidth differential-to-single-  
ended converter, which allows access to the full mechanical  
performance of the sensor.  
FEATURES  
High performance accelerometer  
70 g, 2ꢀ0 g, and ꢀ00 g wideband ranges available  
22 kHz resonant frequency structure  
High linearity: 0.2% of full scale  
Low noise: 4 mg/√Hz  
Sensitive axis in the plane of the chip  
Frequency response down to dc  
The part can operate on voltage supplies from 3.3 V to 5 V.  
Full differential signal processing  
High resistance to EMI/RFI  
Complete electromechanical self-test  
Output ratiometric to supply  
Velocity preservation during acceleration input overload  
Low power consumption: 2.ꢀ mA typical  
8-terminal, hermetic ceramic, LCC package  
The ADXL001 also has a self-test (ST) pin that can be asserted to  
verify the full electromechanical signal chain for the accelerometer  
channel.  
The ADXL001 is available in the industry-standard 8-terminal  
LCC and is rated to work over the extended industrial temperature  
range (−40°C to +125°C).  
15  
APPLICATIONS  
12  
9
Vibration monitoring  
Shock detection  
6
Sports diagnostic equipment  
Medical instrumentation  
Industrial monitoring  
3
0
–3  
–6  
–9  
–12  
–15  
GENERAL DESCRIPTION  
The ADXL001 is a major advance over previous generations of  
accelerometers providing high performance and wide bandwidth.  
This part is ideal for industrial, medical, and military applications  
where wide bandwidth, small size, low power, and robust  
performance are essential.  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 1. Sensor Frequency Response  
FUNCTIONAL BLOCK DIAGRAM  
V
S
V
DD  
ADXL001  
TIMING  
GENERATOR  
V
DD2  
OUTPUT  
AMPLIFIER  
DIFFERENTIAL  
SENSOR  
DEMOD  
AMP  
MOD  
X
OUT  
SELF-TEST  
ST  
COM  
Figure 2.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADXL001  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Design Principles........................................................................ 11  
Mechanical Sensor ..................................................................... 11  
Applications Information.............................................................. 12  
Application Circuit..................................................................... 12  
Self-Test ....................................................................................... 12  
Acceleration Sensitive Axis....................................................... 12  
Operating Voltages Other Than 5 V........................................ 12  
Layout, Grounding, and Bypassing Considerations .................. 13  
Clock Frequency Supply Response .......................................... 13  
Power Supply Decoupling ......................................................... 13  
Electromagnetic Interference ................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Specifications for 3.3 V Operation............................................. 3  
Specifications for 5 V Operation................................................ 4  
Recommended Soldering Profile ............................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 11  
REVISION HISTORY  
2/10—Rev. 0 to Rev. A  
Added -250 and -500 models............................................Universal  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Added Figure 9 through Figure 18................................................. 8  
Changes to Ordering Guide .......................................................... 14  
1/09—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
ADXL001  
SPECIFICATIONS  
SPECIFICATIONS FOR 3.3 V OPERATION  
TA = −40°C to +125°C, VS = 3.3 V 5ꢀ dc, acceleration = 0 g, unless otherwise noted.  
Table 1.  
ADXL001-70  
Typ Max  
ADXL001-2ꢀ0  
Typ Max  
ADXL001-ꢀ00  
Typ Max  
Parameter  
Conditions  
Min  
Min  
Min  
Unit  
SENSOR  
Nonlinearity  
Cross-Axis Sensitivity  
0.2  
2
2
0.2  
2
2
0.2  
2
2
%
%
Includes package  
alignment  
Resonant Frequency  
Quality Factor  
SENSITIVITY  
22  
2.5  
22  
2.5  
22  
2.5  
kHz  
Full-Scale Range  
Sensitivity  
IOUT ≤ 100 ꢀA  
100 Hz  
−70  
1.35  
+70  
−250  
1.35  
+250  
−500  
1.35  
+500  
g
16.0  
4.4  
2.2  
mV/g  
OFFSET  
Zero-g Output  
NOISE  
Ratiometric  
1.65 1.95  
1.65 1.95  
1.65 1.95  
V
Noise  
10 Hz to 400 Hz  
10 Hz to 400 Hz  
85  
3.3  
95  
3.65  
105  
4.25  
mg rms  
mg/√Hz  
Noise Density  
FREQUENCY RESPONSE  
−3 dB Frequency  
−3 dB Frequency Drift  
Over Temperature  
32  
2
32  
2
32  
2
kHz  
%
SELF-TEST  
Output Voltage Change  
Logic Input High  
Logic Input Low  
Input Resistance  
OUTPUT AMPLIFIER  
Output Swing  
400  
125  
62  
mV  
V
V
2.1  
30  
2.1  
30  
2.1  
30  
0.66  
50  
0.66  
50  
0.66  
50  
To ground  
kΩ  
IOUT = 100 ꢀA  
DC to 1 MHz  
0.2  
1000  
VS − 0.2  
0.2  
1000  
VS − 0.2 0.2  
VS − 0.2  
V
pF  
V/V  
Capacitive Load  
PSRR (CFSR)  
1000  
0.9  
0.9  
0.9  
POWER SUPPLY (VS)  
Functional Range  
ISUPPLY  
3.135  
6
5
3.135  
6
5
3.135  
6
5
V
mA  
ms  
2.5  
10  
2.5  
10  
2.5  
10  
Turn-On Time  
Rev. A | Page 3 of 16  
 
ADXL001  
SPECIFICATIONS FOR ꢀ V OPERATION  
TA = -40°C to +125°C, VS = 5 V 5ꢀ dc, acceleration = 0 g, unless otherwise noted.  
Table 2.  
ADXL001-70  
ADXL001-2ꢀ0  
ADXL001-ꢀ00  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SENSOR  
Nonlinearity  
Cross-Axis Sensitivity  
0.2  
2
2
0.2  
2
2
0.2  
2
2
%
%
Includes package  
alignment  
Resonant Frequency  
Quality Factor  
SENSITIVITY  
22  
2.5  
22  
2.5  
22  
2.5  
kHz  
Full-Scale Range  
Sensitivity  
IOUT ≤ 100 ꢀA  
100 Hz  
−70  
2.00  
+70  
3.00  
−250  
2.00  
+250  
3.00  
−500  
2.00  
+500  
3.00  
g
24.2  
2.5  
6.7  
2.5  
3.3  
2.5  
mV/g  
OFFSET  
Zero-g Output  
NOISE  
Ratiometric  
V
Noise  
10 Hz to 400 Hz  
10 Hz to 400 Hz  
55  
2.15  
60  
2.35  
70  
2.76  
mg rms  
mg/√Hz  
Noise Density  
FREQUENCY RESPONSE  
−3 dB Frequency  
−3 dB Frequency Drift  
Over Temperature  
32  
2
32  
2
32  
2
kHz  
%
SELF-TEST  
Output Voltage Change  
Logic Input High  
Logic Input Low  
Input Resistance  
OUTPUT AMPLIFIER  
Output Swing  
Capacitive Load  
PSRR (CFSR)  
1435  
50  
445  
50  
217  
50  
mV  
V
V
3.3  
30  
3.3  
30  
3.3  
30  
0.66  
0.66  
0.66  
To ground  
kΩ  
IOUT = 100 ꢀA  
DC to 1 MHz  
0.2  
1000  
VS − 0.2  
0.2  
1000  
VS − 0.2  
0.2  
1000  
VS − 0.2  
V
pF  
V/V  
0.9  
0.9  
0.9  
POWER SUPPLY (VS)  
Functional Range  
ISUPPLY  
3.135  
6
9
3.135  
6
9
3.135  
6
9
V
mA  
ms  
4.5  
10  
4.5  
10  
4.5  
10  
Turn-On Time  
Rev. A | Page 4 of 16  
 
ADXL001  
RECOMMENDED SOLDERING PROFILE  
Table 3. Soldering Profile Parameters  
Profile Feature  
Sn63/Pb37  
Pb-Free  
Average Ramp Rate (TL to TP)  
Preheat  
3°C/sec maximum  
3°C/sec maximum  
Minimum Temperature (TSMIN  
)
100°C  
150°C  
Maximum Temperature (TSMAX  
Time (TSMIN to TSMAX), ts  
TSMAX to TL  
)
150°C  
60 sec to 120 sec  
200°C  
60 sec to 150 sec  
Ramp-Up Rate  
3°C/sec  
3°C/sec  
Time Maintained Above Liquidous (tL)  
Liquidous Temperature (TL)  
Liquidous Time (tL)  
Peak Temperature (TP)  
Time Within 5°C of Actual Peak Temperature (tP)  
Ramp-Down Rate  
183°C  
217°C  
60 sec to 150 sec  
240°C + 0°C/−5°C  
10 sec to 30 sec  
6°C/sec maximum  
6 minute maximum  
60 sec to 150 sec  
260°C + 0°C/−5°C  
20 sec to 40 sec  
6°C/sec maximum  
8 minute maximum  
Time 25°C to Peak Temperature (tPEAK  
)
Soldering Profile Diagram  
CRITICAL ZONE  
T
TO T  
tP  
L
P
T
P
RAMP-UP  
T
L
tL  
T
SMAX  
T
SMIN  
tS  
RAMP-DOWN  
PREHEAT  
tPEAK  
TIME (t)  
Figure 3. Soldering Profile Diagram  
Rev. A | Page 5 of 16  
 
ADXL001  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
Drops onto hard surfaces can cause shocks of greater than  
4000 g and can exceed the absolute maximum rating of the  
device. Exercise care during handling to avoid damage.  
Rating  
Acceleration (Any Axis, Unpowered and  
Powered)  
4000 g  
Supply Voltage, VS  
Output Short-Circuit Duration (VOUT to GND)  
Storage Temperature Range  
Operating Temperature Range  
Soldering Temperature (Soldering, 10 sec)  
−0.3 V to +7.0 V  
Indefinite  
−65°C to +150°C  
−55°C to +125°C  
245°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 6 of 16  
 
ADXL001  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
DD2  
8
1
2
3
7
6
5
DNC  
DNC  
COM  
V
X
DD  
OUT  
DNC  
4
ST  
DNC = DO NOT CONNECT  
ADXL001  
TOP VIEW  
(Not to Scale)  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1, 2, 5  
DNC  
COM  
ST  
XOUT  
VDD  
Do Not Connect.  
Common.  
Self-Test Control (Logic Input).  
X-Axis Acceleration Output.  
3.135 V to 6 V. Connect to VDD2  
3
4
6
7
8
.
VDD2  
3.135 V to 6 V. Connect to VDD.  
Rev. A | Page 7 of 16  
 
ADXL001  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 3.3 V, TA = 25°C, unless otherwise noted.  
60  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
0
(mV/g)  
VOLTS  
Figure 8. ADXL001-70, Sensitivity Distribution (TA = 125°C)  
Figure 5. Zero-g Bias Deviation from Ideal  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
(mV/g)  
VOLTS  
Figure 6. Zero-g Bias Deviation from Ideal (TA = 125°C)  
Figure 9: ADXL001-250, Sensitivity Distribution  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
(mV/g)  
(mV/g)  
Figure 7. ADXL001-70, Sensitivity Distribution  
Figure 10: ADXL001-250, Sensitivity Distribution (TA = 125°C)  
Rev. A | Page 8 of 16  
 
ADXL001  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
(mV)  
(mV/g)  
Figure 14. ADXL001-250, Self-Test Delta  
Figure 11. ADXL001-500, Sensitivity Distribution  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
55 56 57 58 59 60 61 62 63 64 65 66 67  
(mV)  
(mV/g)  
Figure 12. ADXL001-500, Sensitivity Distribution (TA = 125°C)  
Figure 15. ADXL001-500, Self-Test Delta  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
(mV)  
(mA)  
Figure 16. ISUPPLY Distribution  
Figure 13. ADXL001-70, Self-Test Delta  
Rev. A | Page 9 of 16  
ADXL001  
40  
35  
30  
25  
20  
15  
10  
5
0
B
B
W
CH1 500mV  
CH2 500mV  
M10.0µs  
42.80%  
A
CH2  
1.38V  
W
T
(mA)  
Figure 18. Turn-On Characteristic (10 μs per DIV)  
Figure 17. ISUPPLY at 125°C  
Rev. A | Page 10 of 16  
ADXL001  
THEORY OF OPERATION  
DESIGN PRINCIPLES  
MECHANICAL SENSOR  
The ADXL001 accelerometer provides a fully differential sensor  
structure and circuit path for excellent resistance to EMI/RFI  
interference.  
The ADXL001 is built using the Analog Devices SOI MEMS  
sensor process. The sensor device is micromachined in-plane  
in the SOI device layer. Trench isolation is used to electrically  
isolate, but mechanically couple, the differential sensing elements.  
Single-crystal silicon springs suspend the structure over the  
handle wafer and provide resistance against acceleration forces.  
This latest generation SOI MEMS device takes advantage  
of mechanically coupled but electrically isolated differential  
sensing cells. This improves sensor performance and size  
because a single proof mass generates the fully differential  
signal. The sensor signal conditioning also uses electrical  
feedback with zero-force feedback for improved accuracy  
and stability. This force feedback cancels out the electrostatic  
forces contributed by the sensor circuitry.  
ANCHOR  
MOVABLE  
FRAME  
PLATE  
CAPACITORS  
UNIT  
SENSING  
CELL  
FIXED  
PLATES  
Figure 19 is a simplified view of one of the differential sensor  
cell blocks. Each sensor block includes several differential  
capacitor unit cells. Each cell is composed of fixed plates attached  
to the device layer and movable plates attached to the sensor  
frame. Displacement of the sensor frame changes the differential  
capacitance. On-chip circuitry measures the capacitive change.  
UNIT  
FORCING  
CELL  
MOVING  
PLATE  
ANCHOR  
Figure 19. Simplified View of Sensor Under Acceleration  
Rev. A | Page 11 of 16  
 
 
ADXL001  
APPLICATIONS INFORMATION  
APPLICATION CIRCUIT  
ACCELERATION SENSITIVE AXIS  
Figure 20 shows the standard application circuit for the ADXL001.  
Note that VDD and VDD2 should always be connected together.  
The output is shown connected to a 1000 pF output capacitor  
for improved EMI performance and can be connected directly  
to an ADC input. Use standard best practices for interfacing  
with an ADC and do not omit an appropriate antialiasing filter.  
The ADXL001 is an x-axis acceleration and vibration-sensing  
device. It produces a positive-going output voltage for vibration  
toward its Pin 8 marking.  
PIN 8  
V
S
C
VDD  
0.1µF  
V
DD2  
V
X
8
DD  
Figure 21. XOUT Increases with Acceleration in the Positive X-Axis Direction  
1
2
3
7
6
5
DNC  
ADXL001  
TOP VIEW  
(Not to Scale)  
OUT  
OPERATING VOLTAGES OTHER THAN ꢀ V  
DNC  
COM  
X
OUT  
C
OUT  
1nF  
The ADXL001 is specified at VS = 3.3 V and VS = 5 V. Note that  
some performance parameters change as the voltage is varied.  
DNC  
4
In particular, the XOUT output exhibits ratiometric offset and  
sensitivity with supply. The output sensitivity (or scale factor) scales  
proportionally to the supply voltage. At VS = 3.3 V, the output  
sensitivity is typically 16 mV/g. At VS = 5 V, the output sensitivity  
is nominally 24.2 mV/g. XOUT zero-g bias is nominally equal to  
VS/2 at all supply voltages.  
ST  
ST  
DNC = DO NOT CONNECT  
Figure 20. Application Circuit  
SELF-TEST  
3.5  
The fixed fingers in the forcing cells are normally kept at the  
same potential as that of the movable frame. When the digital  
self-test input is activated, the ADXL001 changes the voltage on  
the fixed fingers in these forcing cells on one side of the moving  
plate. This potential creates an attractive electrostatic force, causing  
the sensor to move toward those fixed fingers. The entire signal  
channel is active; therefore, the sensor displacement causes a  
change in XOUT. The ADXL001 self-test function verifies proper  
operation of the sensor, interface electronics, and accelerometer  
channel electronics.  
3.0  
NOMINAL ZERO-g  
HIGH LIMIT  
2.5  
2.0  
LOW LIMIT  
1.5  
Do not expose the ST pin to voltages greater than VS + 0.3 V. If  
this cannot be guaranteed due to the system design (for instance, if  
there are multiple supply voltages), then a low VF clamping  
diode between ST and VS is recommended.  
1.0  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
SUPPLY VOLTAGE (V)  
Figure 22. Typical Zero-g Bias Levels Across Varying Supply Voltages  
Self-test response in gravity is roughly proportional to the cube  
of the supply voltage. For example, the self-test response for the  
ADXL001-70 at VS = 5 V is approximately 1.4 V. At VS = 3.3 V,  
the self-test response for the ADXL001-70 is approximately  
400 mV. To calculate the self-test value at any operating voltage  
other than 3.3 V or 5 V, the following formula can be applied:  
(STΔ @ VX) = (STΔ @ VS) × (VX/VS)3  
where:  
VX is the desired supply voltage.  
VS is 3.3 V or 5 V.  
Rev. A | Page 12 of 16  
 
 
ADXL001  
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS  
The clock frequency supply response (CFSR) is the ratio of the  
response at the output to the noise on the power supply near the  
accelerometer clock frequency or its harmonics. A CFSR of 0.9 V/V  
means that the signal at the output is half the amplitude of the  
supply noise. This is analogous to the power supply rejection  
ratio (PSRR), except that the stimulus and the response are at  
different frequencies.  
CLOCK FREQUENCY SUPPLY RESPONSE  
In any clocked system, power supply noise near the clock  
frequency may have consequences at other frequencies. An  
internal clock typically controls the sensor excitation and the  
signal demodulator for micromachined accelerometers.  
If the power supply contains high frequency spikes, they may be  
demodulated and interpreted as acceleration signals. A signal  
appears at the difference between the noise frequency and the  
demodulator frequency. If the power supply noise is 100 Hz  
away from the demodulator clock, there is an output term at  
100 Hz. If the power supply clock is at exactly the same frequency  
as the accelerometer clock, the term appears as an offset. If the  
difference frequency is outside the signal bandwidth, the output  
filter attenuates it. However, both the power supply clock and  
the accelerometer clock may vary with time or temperature,  
which can cause the interference signal to appear in the output  
filter bandwidth.  
POWER SUPPLY DECOUPLING  
For most applications, a single 0.1 μF capacitor, CDC, adequately  
decouples the accelerometer from noise on the power supply.  
However, in some cases, particularly where noise is present at  
the 1 MHz internal clock frequency (or any harmonic thereof),  
noise on the supply can cause interference on the ADXL001  
output. If additional decoupling is needed, a 50 Ω (or smaller)  
resistor or ferrite bead can be inserted in the supply line.  
Additionally, a larger bulk bypass capacitor (in the 1 μF to  
4.7 μF range) can be added in parallel to CDC  
.
The ADXL001 addresses this issue in two ways. First, the high  
clock frequency, 125 kHz for the output stage, eases the task of  
choosing a power supply clock frequency such that the difference  
between it and the accelerometer clock remains well outside the  
filter bandwidth. Second, the ADXL001 has a fully differential  
signal path, including a pair of electrically isolated, mechanically  
coupled sensors. The differential sensors eliminate most of the  
power supply noise before it reaches the demodulator. Good  
high frequency supply bypassing, such as a ceramic capacitor  
close to the supply pins, also minimizes the amount of interference.  
ELECTROMAGNETIC INTERFERENCE  
The ADXL001 can be used in areas and applications with high  
amounts of EMI or with components susceptible to EMI emissions.  
The fully differential circuitry of the ADXL001 is designed to be  
robust to such interference. For improved EMI performance,  
especially in automotive applications, a 1000 pF output capacitor is  
recommended on the XOUT output.  
Rev. A | Page 13 of 16  
 
ADXL001  
OUTLINE DIMENSIONS  
0.031  
0.025  
0.019  
(PLATING OPTION 1,  
SEE DETAIL A  
FOR OPTION 2)  
0.094  
0.078  
0.062  
0.030  
0.020 DIA  
0.010  
0.208  
0.197 SQ  
0.188  
0.055  
0.050  
0.045  
0.22  
0.15  
0.08  
(R 4 PLCS)  
1
3
7
5
0.183  
0.177 SQ  
0.171  
0.108  
0.100  
0.092  
0.075 REF  
R 0.008  
(8 PLCS)  
0.010  
0.006  
0.002  
TOP VIEW  
BOTTOM VIEW  
R 0.008  
(4 PLCS)  
0.082  
0.070  
0.058  
0.019 SQ  
DETAIL A  
(OPTION 2)  
Figure 23. 8-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-8-1)  
Dimensions shown in inches  
ORDERING GUIDE  
Model1  
Temperature Range  
g Range  
70 g  
70 g  
250 g  
250 g  
500 g  
500 g  
Package Description  
8-Terminal LCC  
8-Terminal LCC  
8-Terminal LCC  
8-Terminal LCC  
8-Terminal LCC  
8-Terminal LCC  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Package Option  
E-8-1  
E-8-1  
E-8-1  
E-8-1  
ADXL001-70BEZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
ADXL001-70BEZ-R7  
ADXL001-250BEZ  
ADXL001-250BEZ-R7  
ADXL001-500BEZ  
ADXL001-500BEZ-R7  
EVAL-ADXL001-250Z  
EVAL-ADXL001-500Z  
EVAL-ADXL001-70Z  
E-8-1  
E-8-1  
1 Z = RoHS Compliant Part.  
Rev. A | Page 14 of 16  
 
ADXL001  
NOTES  
Rev. A | Page 15 of 16  
ADXL001  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07ꢀ10-0-2/10(A)  
Rev. A | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY