ADXL356CEZ [ADI]

Low Noise, Low Drift, Low Power, 3-Axis MEMS Accelerometers;
ADXL356CEZ
型号: ADXL356CEZ
厂家: ADI    ADI
描述:

Low Noise, Low Drift, Low Power, 3-Axis MEMS Accelerometers

文件: 总42页 (文件大小:1362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Low Drift, Low Power,  
3-Axis MEMS Accelerometers  
Data Sheet  
ADXL356/ADXL357  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
V
1P8DIG  
1P8ANA  
RANGE  
Hermetic package offers optimal long-term stability  
0 g offset vs. temperature (all axes): 0.75 mg/°C maximum  
Ultralow noise spectral density (all axes): 75 μg/√Hz  
Low power, VSUPPLY (LDO regulator enabled)  
ADXL356 in measurement mode: 150 μA  
ADXL357 in measurement mode: 200 μA  
ADXL356/ADXL357 in standby mode: 21 μA  
ADXL356 has user adjustable analog output bandwidth  
ADXL357 digital output features  
LDO  
POWER  
V
LDO  
SUPPLY  
MANAGEMENT  
Y
X
OUT  
X
ANALOG  
FILTER  
Z
ST1  
Y
Z
OUT  
3-AXIS  
SENSOR  
ST2  
OUT  
CONTROL  
LOGIC  
STBY  
TEMP  
SENSOR  
TEMP  
ADXL356  
V
DDIO  
Digital SPI and limited I2C interfaces supported  
20-bit ADC  
V
V
SS  
SSIO  
Figure 1. ADXL356  
Data interpolation routine for synchronous sampling  
Programmable high- and low-pass digital filters  
Integrated temperature sensor  
V
V
V
DDIO  
1P8ANA  
1P8DIG  
POWER  
MANAGEMENT  
LDO  
X
V
LDO  
ADXL357  
SUPPLY  
Voltage range options  
Y
ADC  
INT1  
INT2  
DRDY  
CONTROL  
LOGIC  
V
V
SUPPLY with internal regulators: 2.25 V to 3.6 V  
1P8ANA, V1P8DIG with internal LDO regulator bypassed: 1.8 V  
typical 10%  
DIGITAL  
ADC  
ADC  
ANALOG  
FILTER  
Z
FILTER  
3-AXIS  
SENSOR  
CS/SCL  
SCLK/V  
SSIO  
TEMP  
SENSOR  
SERIAL  
I/O  
FIFO  
ADC  
MOSI/SDA  
MISO/ASEL  
Operating temperature range: −40°C to +125°C  
14-terminal, 6 mm × 5.6 mm × 2.2 mm, LCC package  
V
V
SSIO  
SS  
Figure 2. ADXL357  
APPLICATIONS  
Inertial measurement units (IMUs)/attitude and heading  
reference systems (AHRSs)  
Platform stabilization systems  
Structural health monitoring  
Seismic imaging  
Tilt sensing  
Robotics  
Condition monitoring  
GENERAL DESCRIPTION  
The analog output ADXL356 and the digital output ADXL357  
are low noise density, low 0 g offset drift, low power, 3-axis  
accelerometers with selectable measurement ranges. The  
ADXL356B supports the ±±0 g and ±0 g ranges, the ADXL356C  
supports the ±±0 g and ±0 g ranges, and the ADXL357 supports  
the ±±0 g, ±0 g, and ±0 g ranges.  
The low drift, low noise, and low power ADXL357 enables  
accurate tilt measurement in an environment with high  
vibration. The low noise of the ADXL356 over higher  
frequencies is ideal for condition-based monitoring and other  
vibration sensing applications.  
The ADXL357 multifunction pin names may be referenced only  
by their relevant function for either the serial peripheral  
interface (SPI) or limited IC interface.  
The ADXL356/ADXL357 offer industry leading noise, minimal  
offset drift over temperature, and long-term stability, enabling  
precision applications with minimal calibration.  
1 Protected by U.S. Patents 8,472,270; 9,041,462; 8,665,627; 8,917,099; 6,892,576; 9,297,825; and 7,956,621.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADXL356/ADXL357  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. ±  
DRDY Pin.................................................................................... ꢀ9  
FIFO_FULL................................................................................. ꢀ9  
FIFO_OVR.................................................................................. ꢀ9  
Activity......................................................................................... ꢀ9  
External Synchronization and Interpolation.......................... ꢀ9  
ADXL357 Register Map................................................................. 3ꢀ  
Register Definitions........................................................................ 33  
Analog Devices ID Register...................................................... 33  
Analog Devices MEMS ID Register......................................... 33  
Device ID Register ..................................................................... 33  
Product Revision ID Register ................................................... 33  
Status Register............................................................................. 33  
FIFO Entries Register ................................................................ 3ꢁ  
Temperature Data Registers...................................................... 3ꢁ  
X-Axis Data Registers................................................................ 3ꢁ  
Y-Axis Data Registers................................................................ 35  
Z-Axis Data Registers ................................................................ 35  
FIFO Access Register................................................................. 36  
X-Axis Offset Trim Registers.................................................... 36  
Y-Axis Offset Trim Registers.................................................... 36  
Z-Axis Offset Trim Registers.................................................... 37  
Activity Enable Register ............................................................ 37  
Activity Threshold Registers..................................................... 37  
Activity Count Register ............................................................. 37  
Filter Settings Register............................................................... 38  
FIFO Samples Register .............................................................. 38  
Interrupt Pin (INTx) Function Map Register......................... 38  
Data Synchronization ................................................................ 39  
IC Speed, Interrupt Polarity, and Range Register................. 39  
Power Control Register ............................................................. 39  
Self Test Register......................................................................... ꢁ0  
Reset Register.............................................................................. ꢁ0  
PCB Footprint Pattern ................................................................... ꢁ±  
Outline Dimensions....................................................................... ꢁꢀ  
Ordering Guide .......................................................................... ꢁꢀ  
Applications....................................................................................... ±  
Functional Block Diagrams............................................................. ±  
General Description......................................................................... ±  
Revision History ............................................................................... 3  
Specifications..................................................................................... ꢁ  
Analog Output for the ADXL356............................................... ꢁ  
Digital Output for the ADXL357 ............................................... 5  
SPI Digital Interface Characteristics for the ADXL357 .......... 7  
IC Digital Interface Characteristics for the ADXL357........... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
Recommended Soldering Profile ............................................... 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... ±0  
Typical Performance Characteristics ........................................... ±ꢀ  
Root Allan Variance (RAV) ADXL357 Characteristics......... ꢀ0  
Theory of Operation ...................................................................... ꢀ±  
Applications Information .............................................................. ꢀꢀ  
Analog Output ............................................................................ ꢀꢀ  
Digital Output............................................................................. ꢀꢀ  
Axes of Acceleration Sensitivity ............................................... ꢀ3  
Power Sequencing ...................................................................... ꢀ3  
Power Supply Description......................................................... ꢀ3  
Overrange Protection................................................................. ꢀ3  
Self Test ........................................................................................ ꢀ3  
Filter ............................................................................................. ꢀꢁ  
Serial Communications ................................................................. ꢀ6  
SPI Protocol................................................................................. ꢀ6  
SPI Bus Sharing........................................................................... ꢀ6  
IC Protocol................................................................................. ꢀ7  
Reading Acceleration or Temperature Data from the Interface  
....................................................................................................... ꢀ7  
FIFO ................................................................................................. ꢀ8  
Interrupts ......................................................................................... ꢀ9  
DATA_RDY................................................................................. ꢀ9  
Rev. A | Page 2 of 42  
Data Sheet  
ADXL356/ADXL357  
REVISION HISTORY  
6/2020—Rev. 0 to Rev. A  
Changes to DRDY Pin Section, FIFO_OVR Section, Activity  
Section, NVM_BUSY Section, and External Synchronization  
and Interpolation Section ..............................................................ꢀ9  
Changed EXT_SYNC = 00—No External Sync or Interpolation  
Section to EXT_SYNC = 00, EXT_CLK = 0—No External  
Synchronization or Interpolation Section; EXT_SYNC = ±0—  
External Sync with Interpolation Section to EXT_SYNC = ±0,  
EXT_CLK = 0—External Synchronization with Interpolation  
Section; and EXT_SYNC = 0±—External Sync and External  
Clock, No Interpolation Filter Section to EXT_SYNC = 0±,  
EXT_CLK = ±—External Synchronization and External Clock,  
No Interpolation Filter Section .....................................................30  
Changes to EXT_SYNC = 00, EXT_CLK = 0—No External  
Synchronization or Interpolation Section, EXT_SYNC = ±0,  
EXT_CLK = 0—External Synchronization with Interpolation  
Section, Table ±3, and EXT_SYNC = 0±, EXT_CLK = ±—  
External Synchronization and External Clock, No Interpolation  
Filter Section....................................................................................30  
Added EXT_SYNC = ±0, EXT_CLK = ±—External  
Changes to Features Section, Applications Section, and General  
Description Section...........................................................................±  
Changes to Table ± ............................................................................ꢁ  
Changes to Table ꢀ ............................................................................5  
Changes to Input Current Parameter, Table 3...............................7  
Changes to Acceleration (Any Axis, 0.± ms) Parameter, Table 5;  
Thermal Resistance Section; and Table 6.......................................9  
Moved Recommended Soldering Profile Section, Figure 5, and  
Table 7.................................................................................................9  
Changes to Table 8 ..........................................................................±0  
Changes to Typical Performance Section and Figure 8 to  
Figure ±3...........................................................................................±ꢀ  
Changes to Figure ±ꢁ to Figure ±9 ................................................±3  
Changes to Figure ꢀ3 to Figure ꢀ5 ................................................±ꢁ  
Changes to Figure 3ꢀ to Figure 37 ................................................±6  
Changes to Figure ꢁꢁ Caption, Figure ꢁ7 Caption, and Figure ꢁ8  
Caption .............................................................................................±8  
Changes to Figure 50 Caption, Figure 5ꢀ Caption, and  
Figure 53...........................................................................................±9  
Changes to Theory of Operation Section ....................................ꢀ±  
Changes to Power Sequencing Section, V±P8ANA Section, and  
Overrange Protection Section .......................................................ꢀ3  
Changes to Self Test Section, Filter Section, Figure 6ꢀ, and  
Figure 63...........................................................................................ꢀꢁ  
Changes to Table ±± ........................................................................ꢀ5  
Changes to Serial Communications Section and Figure 6ꢁ ......ꢀ6  
Added SPI Bus Sharing Section and Figure 65; Renumbered  
Sequentially......................................................................................ꢀ6  
Changes to IC Protocol Section ...................................................ꢀ7  
Changes to FIFO Section ...............................................................ꢀ8  
Synchronization and External Clock, with Interpolation Filter  
Section ..............................................................................................30  
Changes to Table ±ꢁ ........................................................................3±  
Changes to Figure 7ꢁ, Figure 75 Caption, and Figure 76 ..........3±  
Changes to Temperature Data Registers Section, Table ꢀ3,  
Table ꢀꢁ, and Table ꢀ5.....................................................................3ꢁ  
Changes to Table ꢀ7, Table ꢀ8, Table 30 and Table 3±................35  
Change to Table ꢁꢀ Title.................................................................37  
Changes to Table ꢁꢁ ........................................................................38  
Changes to Reset Register Section................................................ꢁ0  
Changes to Figure 77 ......................................................................ꢁ±  
Changes to Ordering Guide...........................................................ꢁꢀ  
2/2017—Revision 0: Initial Version  
Rev. A | Page 3 of 42  
 
ADXL356/ADXL357  
Data Sheet  
SPECIFICATIONS  
ANALOG OUTPUT FOR THE ADXL356  
TA = ꢀ5°C, VSUPPLY = 3.3 V, x-axis acceleration and y-axis acceleration = 0 g, z-axis acceleration = ± g, and full-scale range = ±±0 g, unless  
otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Each axis  
Min  
Typ  
Max  
Unit  
SENSOR INPUT  
Output Full-Scale Range (FSR)  
ADXL356B supports two ranges  
ADXL356C supports two ranges  
10, 20  
10, 40  
5.5  
0.1  
1.3  
1
g
g
Resonant Frequency1  
Nonlinearity  
kHz  
% FSR  
% FSR  
%
10 g  
40 g  
Cross Axis Sensitivity  
SENSITIVITY  
Ratiometric to V1P8ANA  
Sensitivity at XOUT, YOUT, ZOUT  
10 g  
20 g  
40 g  
73.6  
36.8  
18.4  
80  
40  
20  
0.01  
0.1  
0.2  
86.4  
43.2  
21.6  
mV/g  
mV/g  
mV/g  
%/°C  
%
Sensitivity Change Due to Temperature TA = −40°C to +125°C  
Repeatability2  
X-axis and y-axis  
Z-axis  
%
0 g OFFSET  
0 g Output for XOUT, YOUT, ZOUT  
Each axis, 10 g  
Referred to V1P8ANA/2  
TA = −40°C to +125°C  
−375  
−0.75  
125  
0.2  
+375  
+0.75  
mg  
mg/°C  
0 g Offset vs. Temperature (X-Axis, Y-Axis,  
and Z-Axis)3  
Repeatability2  
X-axis and y-axis  
Z-axis  
Offset due to 7.5 g rms vibration, 10 g  
range, in a 1 g orientation  
4.25  
5
<0.1  
mg  
mg  
g
Vibration Rectification Error (VRE)4  
NOISE  
Spectral Density5  
X-Axis, Y-Axis, and Z-Axis  
10 g  
40 g  
10 g  
75  
110  
μg/√Hz  
μg/√Hz  
Velocity Random Walk  
X-Axis and Y-Axis  
Z-Axis  
38.2  
26.5  
2.4  
mm/sec/Hr  
mm/sec/Hr  
kHz  
BANDWIDTH  
SELF TEST  
−3 dB, overall transfer function6  
Output Change  
Z-Axis  
10 g range7  
0.5  
1.25  
2.5  
3.0  
g
POWER SUPPLY  
Voltage Range  
8
VSUPPLY  
2.25  
V1P8DIG 2.5  
1.62  
3.6  
3.6  
1.98  
V
V
V
VDDIO  
V1P8ANA, V1P8DIG  
Internal low dropout (LDO) regulator  
bypassed, VSUPPLY = 0 V  
1.8  
Current  
Measurement Mode  
VSUPPLY  
V1P8ANA  
LDO regulator enabled  
LDO regulator disabled  
LDO regulator disabled  
150  
138  
12  
μA  
μA  
μA  
V1P8DIG  
Rev. A | Page 4 of 42  
 
 
 
Data Sheet  
ADXL356/ADXL357  
Parameter  
Standby Mode  
VSUPPLY  
V1P8ANA  
V1P8DIG  
Turn On Time9  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LDO regulator enabled  
LDO regulator disabled  
LDO regulator disabled  
10 g range  
Power-off to standby  
XOUT, YOUT, ZOUT, and TEMP pins  
No load  
21  
7
10  
<10  
<10  
μA  
μA  
μA  
ms  
ms  
OUTPUT AMPLIFIER  
Swing  
Output Series Resistance  
TEMPERATURE SENSOR  
Output at 25°C  
0.03  
−40  
V1P8ANA − 0.03  
V
kΩ  
32  
967  
3.0  
mV  
mV/°C  
Scale Factor  
TEMPERATURE  
Operating Temperature Range  
+125  
°C  
1 The resonant frequency is a sensor characteristic.  
2 Repeatability is predicted for a 10 year life and includes shifts due to the high temperature operating life (HTOL) (TA = 150°C, VSUPPLY = 3.6 V, and 1000 hours),  
temperature cycling (−55°C to +125°C and 1000 cycles), velocity random walk, broadband noise, and temperature hysteresis. Repeatability in relation to time follows  
the square root law. For example, to obtain offset repeatability of the x-axis for 2.5 years, use the following equation: 4.25 mg × √(2.5 years/10 years) = 2.125 mg.  
3 The temperature change is −40°C to +25°C, or +25°C to +125°C.  
4 The VRE measurement is the shift in dc offset while the device is subject to 7.5 g rms of random vibration from 50 Hz to 2 kHz. The device under test (DUT) is  
configured for the 10 g range and an output data rate of 4 kHz. The VRE scales with the range setting.  
5 Based on characterization.  
6 Overall transfer function includes the sensor mechanical response and all other filters on the signal chain.  
7
10 g indicates a test condition. The self test result converted to the acceleration value is independent of the selected range.  
8 When V1P8ANA and V1P8DIG are generated internally, VSUPPLY is valid. To disable the LDO regulator and drive V1P8ANA and V1P8DIG externally, connect VSUPPLY to VSS  
.
9 Standby to measurement mode. This specification is valid when the output is within 5 mg of the final value.  
DIGITAL OUTPUT FOR THE ADXL357  
TA = ꢀ5°C, VSUPPLY = 3.3 V, x-axis acceleration and y-axis acceleration = 0 g, z-axis acceleration = ± g, full-scale range = ±±0 g, and output  
data rate (ODR) = 500 Hz, unless otherwise noted. Note that multifunction pin names may be referenced only by their relevant function.  
Table 2.  
Parameter  
Test Conditions/Comments  
Each axis  
Min  
Typ  
Max  
Unit  
SENSOR INPUT  
Output Full Scale Range (FSR)  
User selectable, supports three ranges  
10,  
20,  
40  
g
Nonlinearity  
10 g  
40 g  
0.1  
1.3  
1
% FSR  
% FSR  
%
Cross Axis Sensitivity  
SENSITIVITY1  
Each axis  
X-Axis, Y-Axis, and Z-Axis Sensitivity  
10 g  
20 g  
40 g  
47,104 51,200 55,296 LSB/g  
23,552 25,600 27,648 LSB/g  
11,776 12,800 13,824 LSB/g  
X-Axis, Y-Axis, and Z-Axis Scale Factor  
10 g  
20 g  
40 g  
19.5  
39  
78  
0.01  
0.1  
0.2  
μg/LSB  
μg/LSB  
μg/LSB  
%/°C  
%
Sensitivity Change due to Temperature  
Repeatability2  
TA = −40°C to +125°C  
X-axis and y-axis  
Z-axis  
%
0 g OFFSET  
Each axis, 10 g  
X-Axis, Y-Axis, and Z-Axis 0 g Output  
−375  
−0.75  
125  
0.20  
+375  
+0.75  
mg  
mg/°C  
0 g Offset vs. Temperature (X-Axis, Y-Axis, and  
TA = −40°C to +125°C  
Z-Axis)3  
Rev. A | Page 5 of 42  
 
ADXL356/ADXL357  
Data Sheet  
Parameter  
Repeatability2  
Test Conditions/Comments  
X-axis and y-axis  
Z-axis  
Offset due to 7.5 g rms vibration, 10 g  
range, in a 1 g orientation  
Min  
Typ  
4.25  
5
Max  
Unit  
mg  
mg  
g
VRE4  
<0.1  
NOISE  
Spectral Density5  
X-Axis, Y-Axis, and Z-Axis  
10 g  
40 g  
10 g  
75  
90  
μg/√Hz  
μg/√Hz  
Velocity Random Walk  
X-Axis and Y-Axis  
Z-Axis  
38.2  
26.5  
mm/sec/Hr  
mm/sec/Hr  
BANDWIDTH AND OUTPUT DATA RATE  
Analog-to-Digital Converter (ADC) Resolution  
Low-Pass Filter Passband Frequency  
High-Pass Filter Passband Frequency When  
Enabled (Disabled by Default)  
20  
Bits  
Hz  
Hz  
User programmable, Register 0x28  
User programmable, Register 0x28 for 4 kHz  
ODR  
0.977  
0.0095  
1000  
10  
SELF TEST  
Output Change  
Z-Axis  
10 g range6  
0.5  
1.25  
3.0  
g
POWER SUPPLY  
Voltage Range  
VSUPPLY Operating7  
VDDIO  
V1P8ANA and V1P8DIG  
Current  
2.25  
V1P8DIG  
1.62  
2.5  
2.5  
1.8  
3.6  
3.6  
1.98  
V
V
V
Internal LDO regulator bypassed, VSUPPLY = 0 V  
Measurement Mode  
VSUPPLY  
V1P8ANA  
LDO regulator enabled  
LDO regulator disabled  
LDO regulator disabled  
200  
160  
35.5  
μA  
μA  
μA  
V1P8DIG  
Standby Mode  
VSUPPLY  
V1P8ANA  
V1P8DIG  
Turn On Time8  
LDO regulator enabled  
LDO regulator disabled  
LDO regulator disabled  
10 g range  
21  
7
10  
<10  
<10  
μA  
μA  
μA  
ms  
ms  
Power-off to standby  
TEMPERATURE SENSOR  
Output at 25°C  
1885  
LSB  
Scale Factor  
−9.05  
LSB/°C  
TEMPERATURE  
Operating Temperature Range  
−40  
+125  
°C  
1 Characterized but not 100% tested.  
2 Repeatability is predicted for a 10 year life and includes shifts due to the HTOL (TA = 150°C, VSUPPLY = 3.6 V, and 1000 hours), temperature cycling (−55°C to +125°C and  
1000 cycles), velocity random walk, broadband noise, and temperature hysteresis. Repeatability in relation to time follows the square root law. For example, to obtain  
offset repeatability of the x-axis for 2.5 years, use the following equation: 4.25 mg × √(2.5 years/10 years) = 2.125 mg.  
3 The temperature change is −40°C to +25°C or +25°C to +125°C.  
4 The VRE measurement is the shift in dc offset while the device is subject to 7.5 g rms random vibration from 50 Hz to 2 kHz. The DUT is configured for the 10 g range  
and an output data rate of 4 kHz. The VRE scales with the range setting.  
5 Based on characterization.  
6
10 g indicates a test condition. The self test result converted to the acceleration value is independent of the selected range.  
7 When V1P8ANA and V1P8DIG are generated internally, VSUPPLY is valid. To disable the LDO regulator and drive V1P8ANA and V1P8DIG externally, connect VSUPPLY to VSS  
.
8 Standby to measurement mode. This specification is valid when the output is within 1 mg of final value.  
Rev. A | Page 6 of 42  
 
Data Sheet  
ADXL356/ADXL357  
SPI DIGITAL INTERFACE CHARACTERISTICS FOR THE ADXL357  
Note that multifunction pin names may be referenced by their relevant function only.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DC INPUT LEVELS  
Input Voltage  
Low Level  
High Level  
Input Current  
Low Level  
VIL  
VIH  
0.3 × VDDIO  
V
V
0.7 × VDDIO  
−0.2  
IIL  
IIH  
Input voltage (VIN) = 0 V  
VIN = VDDIO  
μA  
μA  
High Level  
0.2  
DC OUTPUT LEVELS  
Output Voltage  
Low Level  
High Level  
Output Current  
Low Level  
VOL  
VOH  
IOL = IOL, MIN  
IOH = IOH, MAX  
0.2 × VDDIO  
V
V
0.8 × VDDIO  
−10  
IOL  
IOH  
VOL = VOL, MAX  
VOH = VOH, MIN  
mA  
mA  
High Level  
4
AC INPUT LEVELS  
SCLK Frequency  
SCLK High Time  
SCLK Low Time  
CS Setup Time  
CS Hold Time  
0.1  
40  
40  
20  
20  
40  
20  
20  
20  
10  
MHz  
ns  
ns  
tHIGH  
tLOW  
tCSS  
ns  
tCSH  
tCSD  
tSCLKS  
tSU  
ns  
CS Disable Time  
Rising SCLK Setup Time  
MOSI Setup Time  
MOSI Hold Time  
AC OUTPUT LEVELS  
Propagation Delay  
Enable MISO Time  
Disable MISO Time  
ns  
ns  
ns  
ns  
tHD  
tP  
tEN  
tDIS  
Load capacitance (CLOAD) = 30 pF  
30  
20  
ns  
ns  
ns  
30  
tCSD  
CS  
tCSH  
tSCLKS  
tCSS  
tHIGH  
tLOW  
SCLK  
tSU  
tHD  
MOSI  
MISO  
tDIS  
tP  
tEN  
Figure 3. SPI Interface Timing Diagram  
Rev. A | Page 7 of 42  
 
ADXL356/ADXL357  
Data Sheet  
I2C DIGITAL INTERFACE CHARACTERISTICS FOR THE ADXL357  
Note that multifunction pin names may be referenced only by their relevant function.  
Table 4.  
Test Conditions/  
Symbol Comments  
I2C_HS = 0 (Fast Mode)  
Typ Max  
I2C_HS = 1 (High Speed Mode)  
Parameter  
Min  
Min  
Typ  
Max  
Unit  
DC INPUT LEVELS  
Input Voltage  
Low Level  
High Level  
Hysteresis of Schmitt  
Triggered Inputs  
VIL  
VIH  
VHYS  
0.3 × VDDIO  
0.3 × VDDIO  
V
V
V
0.7 × VDDIO  
0.05 × VDDIO  
0.7 × VDDIO  
0.1 × VDDIO  
Input Current  
IIL  
0.1 × VDDIO < VIN <  
0.9 × VDDIO  
−10  
+10  
μA  
DC OUTPUT LEVELS  
Output Voltage  
Low Level  
IOL = 3 mA  
VDDIO > 2 V  
VDDIO ≤ 2 V  
VOL1  
VOL2  
0.4  
0.2 × VDDIO  
0.4  
0.2 × VDDIO  
V
V
Output Current  
Low Level  
IOL  
VOL = 0.4 V  
VOL = 0.6 V  
20  
6
20  
6
mA  
mA  
AC INPUT LEVELS  
SCL Frequency  
SCL High Time  
0
1
0
60  
160  
160  
160  
10  
3.4  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHIGH  
tLOW  
tSUSTA  
tHDSTA  
tSUDAT  
tHDDAT  
tSUSTO  
tBUF  
tRCL  
tFCL  
tRDA  
tFDA  
260  
500  
260  
260  
50  
0
260  
500  
SCL Low Time  
Start Setup Time  
Start Hold Time  
SDA Setup Time  
SDA Hold Time  
Stop Setup Time  
Bus Free Time  
SCL Input Rise Time  
SCL Input Fall Time  
SDA Input Rise Time  
SDA Input Fall Time  
Width of Spikes to  
Suppress  
0
160  
120  
120  
120  
120  
50  
80  
80  
160  
160  
10  
tSP  
Not shown in Figure 4  
CLOAD = 500 pF  
AC OUTPUT LEVELS  
Propagation Delay  
Data  
Acknowledge  
Output Fall Time  
tVDDAT  
tVDACK  
tF  
97  
450  
450  
120  
27  
135  
ns  
ns  
ns  
Not shown in Figure 4  
20 ×  
(VDDIO/5.5)  
tFDA  
tRDA  
tBUF  
SDA  
SCL  
tSUSTA  
tHDSTA  
tVDDAT  
tVDACK  
tSUSTO  
tSUSTA  
tSUDAT  
tHDDAT  
tLOW  
tFCL  
tRCL  
tHIGH  
tVDDAT  
Figure 4. I2C Interface Timing Diagram  
Rev. A | Page 8 of 42  
 
 
 
Data Sheet  
ADXL356/ADXL357  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Rating  
RECOMMENDED SOLDERING PROFILE  
Acceleration (Any Axis, 0.1 ms)  
Unpowered  
Powered  
Figure 5 and Table 7 provide details about the recommended  
soldering profile.  
10,000 g  
10,000 g  
5.4 V  
CRITICAL ZONE  
tP  
T
TO T  
L
P
VSUPPLY, VDDIO  
T
P
RAMP-UP  
V1P8ANA, V1P8DIG Configured as Inputs  
ADXL356  
1.98 V  
T
L
tL  
T
SMAX  
Digital Inputs (RANGE, ST1, ST2, STBY)  
Analog Outputs (XOUT, YOUT, ZOUT, TEMP)  
ADXL357  
−0.3 V to VDDIO + 0.3 V  
−0.3 V to V1P8ANA + 0.3 V  
T
SMIN  
tS  
Digital Pins (CS/SCL, SCLK/VSSIO  
,
−0.3 V to VDDIO + 0.3 V  
RAMP-DOWN  
PREHEAT  
MOSI/SDA, MISO/ASEL, INT1, INT2,  
DRDY)  
Operating Temperature Range  
Storage Temperature Range  
t25°C TO PEAK  
−40°C to +125°C  
−55°C to +150°C  
TIME  
Figure 5. Recommended Soldering Profile  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 7. Recommended Soldering Profile  
Condition  
Profile Feature  
Sn63/Pb37  
Pb-Free  
Average Ramp Rate from Liquid 3°C/sec  
3°C/sec  
maximum  
Temperature (TL) to Peak  
Temperature (TP)  
maximum  
Preheat  
Minimum Temperature  
(TSMIN  
Maximum Temperature  
(TSMAX  
100°C  
150°C  
150°C  
200°C  
THERMAL RESISTANCE  
)
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
)
Time from TSMIN to TSMAX (tS)  
60 sec to  
120 sec  
60 sec to  
180 sec  
3°C/sec  
maximum  
217°C  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. ψJB is  
the junction to board thermal resistance.  
TSMAX to TL Ramp-Up Rate  
3°C/sec  
maximum  
Liquid Temperature (TL)  
183°C  
Table 6. Thermal Resistance  
Package Type  
E-14-11  
Time Maintained Above TL (tL)  
60 sec to  
150 sec  
240°C +  
0°C/−5°C  
10 sec to  
30 sec  
60 sec to  
150 sec  
260°C +  
0°C/−5°C  
20 sec to  
40 sec  
θJA  
ψJB  
Unit  
Peak Temperature (TP)  
Time of Actual TP − 5°C (tP)  
Ramp-Down Rate  
42  
17.6  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with four thermal vias. See JEDEC JESD51.  
6°C/sec  
6°C/sec  
maximum  
maximum  
Time from 25°C to Peak  
Temperature (t25°C TO PEAK  
6 minutes  
maximum  
8 minutes  
maximum  
)
ESD CAUTION  
Rev. A | Page 9 of 42  
 
 
 
 
 
 
ADXL356/ADXL357  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
Y
RANGE  
ST1  
1
2
11 V  
10 V  
SUPPLY  
1P8ANA  
ADXL356  
TOP VIEW  
ST2  
3
4
9
8
V
V
(Not to Scale)  
SS  
X
TEMP  
1P8DIG  
Z
Figure 6. ADXL356 Pin Configuration  
Table 8. ADXL356 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
RANGE  
Range Selection Pin. Set this pin to ground to select the 10 g range, or set this pin to VDDIO to select the  
20 g or 40 g range. This pin is model dependent (see the Ordering Guide section).  
2
3
ST1  
ST2  
Self Test Pin 1. This pin enables self test mode. This pin must be forced low when not in self test mode.  
Self Test Pin 2. This pin activates electromechanical self test actuation. This pin must be forced low when not  
in self test mode.  
4
5
6
7
TEMP  
VDDIO  
VSSIO  
Temperature Sensor Output.  
Digital Interface Supply Voltage.  
Digital Ground.  
Standby or Measurement Mode Selection Pin. Set this pin to ground to enter standby mode, or set this pin  
to VDDIO to enter measurement mode.  
STBY  
8
V1P8DIG  
Digital Supply. This pin requires a decoupling capacitor. If VSUPPLY connects to VSS, supply the voltage to this  
pin externally.  
9
VSS  
Analog Ground.  
10  
V1P8ANA  
Analog Supply. This pin requires a decoupling capacitor. If VSUPPLY connects to VSS, supply the voltage to this  
pin externally.  
11  
VSUPPLY  
Supply Voltage. When VSUPPLY equals 2.25 V to 3.6 V, VSUPPLY enables the internal LDO regulators to generate  
V
1P8DIG and V1P8ANA. For VSUPPLY = VSS, V1P8DIG and V1P8ANA are externally supplied.  
12  
13  
14  
XOUT  
YOUT  
ZOUT  
X-Axis Output.  
Y-Axis Output.  
Z-Axis Output.  
Rev. A | Page 10 of 42  
 
Data Sheet  
ADXL356/ADXL357  
Y
CS/SCL  
SCLK/V  
1
2
11 V  
10 V  
SUPPLY  
SSIO  
1P8ANA  
ADXL357  
TOP VIEW  
MOSI/SDA 3  
MISO/ASEL 4  
9
8
V
V
(Not to Scale)  
SS  
X
1P8DIG  
Z
Figure 7. ADXL357 Pin Configuration (SPI/I2C)  
Table 9. ADXL357 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
CS/SCL  
Chip Select for SPI (CS).  
Serial Communications Clock for I2C (SCL).  
2
3
4
SCLK/VSSIO  
MOSI/SDA  
MISO/ASEL  
Serial Communications Clock for SPI (SCLK).  
I2C Mode Enable (VSSIO). Connect this pin to Pin 6 (VSSIO) to enable I2C mode.  
Master Output, Slave Input for SPI (MOSI).  
Serial Data for I2C (SDA).  
Master Input, Slave Output for SPI (MISO).  
Alternate I2C Address Select for I2C (ASEL).  
Digital Interface Supply Voltage.  
Digital Ground.  
Reserved. This pin can be connected to ground or left open.  
5
6
7
8
VDDIO  
VSSIO  
RESERVED  
V1P8DIG  
Digital Supply. This pin requires a decoupling capacitor. If VSUPPLY connects to VSS, supply the voltage to this  
pin externally.  
9
VSS  
Analog Ground.  
10  
V1P8ANA  
Analog Supply. This pin requires a decoupling capacitor. If VSUPPLY connects to VSS, supply the voltage to this  
pin externally.  
11  
VSUPPLY  
Supply Voltage. When VSUPPLY equals 2.25 V to 3.6 V, VSUPPLY enables the internal LDO regulators to generate  
V
1P8DIG and V1P8ANA. For VSUPPLY = VSS, V1P8DIG and V1P8ANA are externally supplied.  
12  
13  
14  
INT1  
INT2  
DRDY  
Interrupt Pin 1.  
Interrupt Pin 2.  
Data Ready Pin.  
Rev. A | Page 11 of 42  
ADXL356/ADXL357  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
All figures include data for multiple devices and multiple lots, and they were taken in the ±±0 g range and TA = ꢀ5°C, unless otherwise noted. For  
Figure 5ꢀ, the ODR is derived from a master clock, with a frequency of ±.0ꢀꢁ MHz and ±±.ꢁ4 device to device variation (similar to ODR device  
to device variation). For a given device, however, clock frequency variation over the temperature range (−ꢁ0°C to +±ꢀ5°C) is no more than  
±±.ꢀ4, guaranteed by design.  
10  
1
1
0.1  
0.1  
10  
0.01  
100  
FREQUENCY (Hz)  
1k  
10k  
10k  
10k  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
Figure 8. ADXL356 Frequency Response for X-Axis  
Figure 11. ADXL357 Frequency Response for X-Axis at 4 kHz ODR  
10  
1
1
0.1  
0.1  
10  
0.01  
100  
FREQUENCY (Hz)  
1k  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
Figure 9. ADXL356 Frequency Response for Y-Axis  
Figure 12. ADXL357 Frequency Response for Y-Axis at 4 kHz ODR  
10  
1
1
0.1  
0.1  
10  
0.01  
100  
FREQUENCY (Hz)  
1k  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
Figure 10. ADXL356 Frequency Response for Z-Axis  
Figure 13. ADXL357 Frequency Response for Z-Axis at 4 kHz ODR  
Rev. A | Page 12 of 42  
 
 
 
Data Sheet  
ADXL356/ADXL357  
75  
1.0  
0.5  
50  
25  
0
0
–25  
–50  
–75  
–0.5  
–1.0  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. ADXL356 Zero g Offset Normalized Relative to 25°C vs.  
Figure 17. ADXL356 Sensitivity Normalized Relative to 25°C vs. Temperature  
X-Axis  
Temperature, X-Axis  
75  
50  
1.0  
0.5  
25  
0
0
–25  
–50  
–75  
–0.5  
–1.0  
–40 –25 –10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. ADXL356 Zero g Offset Normalized Relative to 25°C vs.  
Figure 18. ADXL356 Sensitivity Normalized Relative to 25°C vs. Temperature,  
Y-Axis  
Temperature, Y-Axis  
75  
50  
1.0  
0.5  
25  
0
0
–25  
–50  
–75  
–0.5  
–1.0  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. ADXL356 Zero g Offset Normalized Relative to 25°C vs.  
Temperature, Z-Axis  
Figure 19. ADXL356 Sensitivity Normalized Relative to 25°C vs. Temperature,  
Z-Axis  
Rev. A | Page 13 of 42  
ADXL356/ADXL357  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
X-AXIS OFFSET AT 25°C (mg)  
X-AXIS SENSITIVITY AT 25°C (LSB/g)  
Figure 23. ADXL356 Sensitivity Histogram at 25°C, X-Axis  
Figure 20. ADXL356 Zero g Offset Histogram at 25°C, X-Axis  
25  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
Y-AXIS OFFSET AT 25°C (mg)  
Y-AXIS SENSITIVITY AT 25°C (LSB/g)  
Figure 24. ADXL356 Sensitivity Histogram at 25°C, Y-Axis  
Figure 21. ADXL356 Zero g Offset Histogram at 25°C, Y-Axis  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
Z-AXIS OFFSET AT 25°C (mg)  
Z-AXIS SENSITIVITY AT 25°C (LSB/g)  
Figure 22. ADXL356 Zero g Offset Histogram at 25°C, Z-Axis  
Figure 25. ADXL356 Sensitivity Histogram at 25°C, Z-Axis  
Rev. A | Page 14 of 42  
Data Sheet  
ADXL356/ADXL357  
0.20  
0.15  
0.10  
0.05  
0
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.05  
–0.10  
–0.20  
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
INPUT VIBRATION (  
g
rms)  
INPUT VIBRATION (g rms)  
Figure 26. ADXL356 VRE, X-Axis Offset from +1 g, 10 g Range,  
X-Axis Orientation = +1 g  
Figure 29. ADXL356 VRE, X-Axis Offset from −1 g, 40 g Range,  
X-Axis Orientation = −1 g  
0.20  
0.15  
0.10  
0.05  
0
0.2  
0.1  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.1  
–0.2  
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
INPUT VIBRATION (  
g
rms)  
INPUT VIBRATION (g rms)  
Figure 27. ADXL356 VRE, Y-Axis Offset from +1 g, 10 g Range,  
Y-Axis Orientation = +1 g  
Figure 30. ADXL356 VRE, Y-Axis Offset from −1 g, 40 g Range,  
Y-Axis Orientation = −1 g  
0.20  
0.15  
0.10  
0.05  
0
0.2  
0.1  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.1  
–0.2  
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
INPUT VIBRATION (  
g
rms)  
INPUT VIBRATION (g rms)  
Figure 28. ADXL356 VRE, Z-Axis Offset from +1 g, 10 g Range,  
Z-Axis Orientation = +1 g  
Figure 31. ADXL356 VRE, Z-Axis Offset from −1 g, 40 g Range,  
Z-Axis Orientation = −1 g  
Rev. A | Page 15 of 42  
ADXL356/ADXL357  
Data Sheet  
75  
1.0  
0.8  
50  
0.6  
0.4  
25  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–25  
–50  
–75  
–45 –30 –15  
0
15 30 45 60 75 90 105 120 135  
TEMPERATURE (°C)  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 32. ADXL357 Zero g Offset Normalized Relative to 25°C vs.  
Figure 35. ADXL357 Sensitivity Normalized Relative to 25°C vs. Temperature  
X-Axis  
Temperature, X-Axis  
75  
50  
1.0  
0.8  
0.6  
0.4  
25  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–25  
–50  
–75  
–45  
–25  
–5  
15  
35  
55  
75  
95  
115  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 33. ADXL357 Zero g Offset Normalized Relative to 25°C vs.  
Figure 36. ADXL357 Sensitivity Normalized Relative to 25°C vs. Temperature  
Y-Axis  
Temperature, Y-Axis  
75  
50  
1.0  
0.8  
0.6  
0.4  
25  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–25  
–50  
–75  
–45  
–25  
–5  
15  
35  
55  
75  
95  
115  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 37. ADXL357 Sensitivity Normalized Relative to 25°C vs. Temperature  
Z-Axis  
Figure 34. ADXL357 Zero g Offset Normalized Relative to 25°C vs.  
Temperature, Z-Axis  
Rev. A | Page 16 of 42  
Data Sheet  
ADXL356/ADXL357  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
X-AXIS OFFSET AT 25°C (m  
g
)
X-AXIS SENSITIVITY AT 25°C (LSB/g)  
Figure 38. ADXL357 Zero g Offset Histogram at 25°C, X-Axis  
Figure 41. ADXL357 Sensitivity Histogram at 25°C, X-Axis  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
Y-AXIS OFFSET AT 25°C (m  
g
)
Y-AXIS SENSITIVITY AT 25°C (LSB/g)  
Figure 39. ADXL357 Zero g Offset Histogram at 25°C, Y-Axis  
Figure 42. ADXL357 Sensitivity Histogram at 25°C, Y-Axis  
25  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
Z-AXIS OFFSET AT 25°C (m  
g
)
Z-AXIS SENSITIVITY AT 25°C (LSB/g)  
Figure 43. ADXL357 Sensitivity Histogram at 25°C, Z-Axis  
Figure 40. ADXL357 Zero g Offset Histogram at 25°C, Z-Axis  
Rev. A | Page 17 of 42  
ADXL356/ADXL357  
Data Sheet  
0.5  
0.20  
0.15  
0.10  
0.05  
0
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.05  
–0.10  
–0.15  
–0.20  
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
INPUT VIBRATION (  
g
rms)  
INPUT VIBRATION (g rms)  
Figure 44. ADXL357 VRE, X-Axis Offset from +1 g, 10 g Range,  
X-Axis Orientation = +1 g  
Figure 47. ADXL357 VRE, X-Axis Offset from −1 g, 40 g Range,  
X-Axis Orientation = −1 g  
0.5  
0.20  
0.15  
0.10  
0.05  
0
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.05  
–0.10  
–0.15  
–0.20  
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
INPUT VIBRATION (  
g
rms)  
INPUT VIBRATION (g rms)  
Figure 45. ADXL357 VRE, Y-Axis Offset from +1 g, 10 g Range,  
Y-Axis Orientation = +1 g  
Figure 48. ADXL357 VRE, Y-Axis Offset from −1 g, 40 g Range,  
Y-Axis Orientation = −1 g  
0.5  
0.20  
0.15  
0.10  
0.05  
0
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.05  
–0.10  
–0.15  
–0.20  
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
INPUT VIBRATION (  
g
rms)  
INPUT VIBRATION (g rms)  
Figure 46. ADXL357 VRE, Z-Axis Offset from +1 g, 10 g Range,  
Z-Axis Orientation = +1 g  
Figure 49. ADXL357 VRE, Z-Axis Offset from +1 g, 40 g Range,  
Z-Axis Orientation = +1 g  
Rev. A | Page 18 of 42  
Data Sheet  
ADXL356/ADXL357  
1.3  
0.0035  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
2600  
2500  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
6
TEMPERATURE SENSOR OUTPUT  
LINEAR OFFSET  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
4
2
0
–2  
–4  
–0.0005  
–0.0010  
900  
700  
TEMPERATURE SENSOR OUTPUT  
LINEAR OFFSET  
–6  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 50. ADXL356 Temperature Sensor Output and Linear Offset vs.  
Temperature  
Figure 53. ADXL357 Temperature Sensor Output and Linear Offset vs.  
Temperature  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
TOTAL SUPPLY CURRENT AT 25°C (µA)  
TOTAL SUPPLY CURRENT AT 25°C (µA)  
Figure 51. ADXL356 Total Supply Current, 3.3 V  
Figure 54. ADXL357 Total Supply Current, 3.3 V  
35  
30  
25  
20  
15  
10  
5
0
ODR FREQUENCY (Hz)  
Figure 52. ADXL357 Output Data Rate (Internal Clock) Histogram  
Rev. A | Page 19 of 42  
 
ADXL356/ADXL357  
Data Sheet  
ROOT ALLAN VARIANCE (RAV) ADXL357 CHARACTERISTICS  
Figure 55 to Figure 57 include data for multiple devices and multiple lots, and they were taken in the ±±0 g range, unless otherwise noted.  
1000  
100  
10  
1000  
100  
10  
1
0.01  
1
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
INTEGRATION TIME (Seconds)  
INTEGRATION TIME (Seconds)  
Figure 55. ADXL357 RAV, X-Axis  
Figure 57. ADXL357 RAV, Z-Axis  
1000  
100  
10  
1
0.01  
0.1  
1
10  
100  
1000  
INTEGRATION TIME (Seconds)  
Figure 56. ADXL357 RAV, Y-Axis  
Rev. A | Page 20 of 42  
 
 
 
Data Sheet  
ADXL356/ADXL357  
THEORY OF OPERATION  
The ADXL356 is a complete 3-axis, ultralow noise and ultrastable  
offset microelectromechanical systems (MEMS) accelerometer  
with outputs ratiometric to the analog ±.8 V supply, V±P8ANA. The  
ADXL357 adds three high resolution ADCs that use the analog  
±.8 V supply as a reference to provide digital outputs insensitive  
to the supply voltage. The ADXL356B is pin selectable for ±±0 g  
or ±0 g full scale, the ADXL356C is pin selectable for ±±0 g or  
±0 g full scale, and the ADXL357 is programmable for ±±0 g,  
±0 g, or ±0 g full scale. The ADXL357 offers both SPI and IC  
communications ports.  
offset drift and noise. The signal path is fully differential, except  
for a differential to single-ended conversion at the analog  
outputs of the ADXL356.  
The analog accelerometer outputs of the ADXL356 are ratiometric  
to V±P8ANA. Therefore, digitize them carefully. The temperature  
sensor output is not ratiometric. The XOUT, YOUT, and ZOUT analog  
outputs are filtered internally with an antialiasing filter. These  
analog outputs also have an internal 3ꢀ kΩ series resistor that  
can be used with an external capacitor to set the bandwidth of  
the output.  
The micromachined, sensing elements are fully differential,  
comprising the lateral x-axis and y-axis sensors and the vertical,  
teeter totter z-axis sensors. The x-axis and y-axis sensors and  
the z-axis sensors go through separate signal paths that minimize  
The ADXL357 includes antialias filters before and after the high  
resolution Σ-Δ ADC. User-selectable output data rates and filter  
corners are provided. The temperature sensor is digitized with a  
±ꢀ-bit successive approximation register (SAR) ADC.  
Rev. A | Page 21 of 42  
 
ADXL356/ADXL357  
Data Sheet  
APPLICATIONS INFORMATION  
and noise reduction prior to the external ADC. The antialias  
filter cutoff frequency must be significantly higher than the  
desired signal bandwidth. If the antialias filter corner is too low,  
ratiometricity can degrade where the signal attenuation is  
different from the reference attenuation.  
ANALOG OUTPUT  
Figure 58 shows the ADXL356 application circuit. The analog  
outputs (XOUT, YOUT, and ZOUT) are ratiometric to the ±.8 V  
analog voltage from the V±P8ANA pin. V±P8ANA can be powered  
with an on-chip LDO regulator that is powered from VSUPPLY  
±P8ANA can also be supplied externally by forcing VSUPPLY to VSS,  
which disables the LDO regulator. Due to the ratiometric  
.
V
DIGITAL OUTPUT  
Figure 59 shows the ADXL357 application circuit with the  
recommended bypass capacitors. The communications interface  
is either SPI or IC (see the Serial Communications section for  
additional information).  
response, the analog output requires referencing to the V±P8ANA  
supply when digitizing to achieve the inherent noise and offset  
performance of the ADXL356. The 0 g bias output is nominally  
equal to V±P8ANA/ꢀ. The recommended option is to use the  
ADXL356 with a ratiometric ADC (for example, the Analog  
Devices, Inc., AD768ꢀ) and V±P8ANA providing the voltage  
reference. This configuration results in self cancellation of  
errors due to minor supply variations.  
The ADXL357 includes an internal configurable digital band-  
pass filter. Both the high-pass and low-pass poles of the filter  
are adjustable, as detailed in the Filter Settings Register section  
and Table ꢁꢁ. At power-up, the default conditions for the filters  
are as follows:  
The ADXL356 outputs two forms of filtering: internal anti-  
aliasing filtering with a cutoff frequency of approximately ±.5 kHz,  
and external filtering. The external filter uses a fixed, on-chip,  
3ꢀ kΩ resistance in series with each output in conjunction with  
the external capacitors to implement the low-pass filter antialiasing  
High-pass filter (HPF) = dc (off)  
Low-pass filter (LPF) = ±000 Hz  
Output data rate = ꢁ000 Hz  
2.25V TO 3.6V  
V
(±20g, ±40g)  
DDIO  
GND ( ±10g)  
0.1µF  
1µF  
V
V
11  
10  
RANGE  
1
SUPPLY  
1P8ANA  
ADC V  
REF  
ST1  
ST2  
2
3
4
0.1µF  
1µF  
ADXL356  
V
V
9
8
SS  
1P8DIG  
TEMP  
V
(MEASUREMENT)  
DDIO  
GND (STANDBY)  
1µF  
1µF  
2.25V TO 3.6V  
0.1µF  
0.1µF  
Figure 58. ADXL356 Application Circuit  
2.25V TO 3.6V  
0.1µF  
1µF  
V
V
11  
10  
CS/SCL  
1
2
3
4
SUPPLY  
1P8ANA  
SCLK/V  
SSIO  
MOSI/SDA  
MISO/ASEL  
0.1µF  
1µF  
ADXL357  
V
V
TOP VIEW  
9
8
SS  
(Not to Scale)  
1P8DIG  
1µF  
1µF  
2.25V TO 3.6V  
0.1µF  
0.1µF  
Figure 59. ADXL357 Application Circuit  
Rev. A | Page 22 of 42  
 
 
 
 
 
Data Sheet  
ADXL356/ADXL357  
V1P8ANA  
AXES OF ACCELERATION SENSITIVITY  
All sensor and analog signal processing circuitry operates in  
this domain. Offset and sensitivity of the analog output  
ADXL356 are ratiometric to this supply voltage. When using  
external ADCs, use V±P8ANA as the reference voltage. The  
Figure 60 shows the axes of acceleration sensitivity. Note that  
the output voltage increases when accelerated along the  
sensitive axis.  
Z
ADXL357 includes ADCs that are ratiometric to V±P8ANA  
,
Y
thereby rendering the offset and sensitivity of the digital output  
ADXL357 insensitive to the value of V±P8ANA. V±P8ANA can be an  
input or an output as defined by the state of the VSUPPLY voltage.  
V1P8DIG  
V±P8DIG is the supply voltage for the internal logic circuitry. A  
separate LDO regulator decouples the digital supply noise from  
the analog signal path. V±P8ANA can be an input or an output as  
defined by the state of the VSUPPLY voltage. If driven externally,  
V±P8DIG must be the same voltage as the V±P8ANA voltage.  
X
Figure 60. Axes of Acceleration Sensitivity  
VDDIO  
POWER SEQUENCING  
The VDDIO value determines the logic high levels. On the analog  
output ADXL356, VDDIO sets the logic high level for the self test  
There are two methods for applying power to the device.  
Typically, internal LDO regulators generate the ±.8 V power for  
the analog and digital supplies, V±P8ANA and V±P8DIG, respectively.  
Optionally, the internal LDO regulators can be disabled and  
V±P8ANA and V±P8DIG are driven by external ±.8 V supplies.  
STBY  
pins, ST± and STꢀ, as well as the  
pin. On the digital output  
ADXL357, VDDIO sets the logic high level for communications  
interface ports, as well as the interrupt and DRDY outputs.  
The LDO regulators are operational when VSUPPLY is between  
ꢀ.ꢀ5 V and 3.6 V. V±P8ANA and V±P8DIG are the regulator outputs in  
this mode. Alternatively, when tying VSUPPLY to VSS, V±P8ANA and  
V±P8DIG are supply voltage inputs with a ±.6ꢀ V to ±.98 V range.  
When using the internal LDO regulators, connect VSUPPLY to a  
voltage source between ꢀ.ꢀ5 V and 3.6 V. In this case, the  
recommended power sequence is to apply power to VDDIO  
,
followed by applying power to VSUPPLY approximately ±0 μs later.  
If necessary, VSUPPLY and VDDIO can be powered from the same  
voltage source, so that both are powered at the same time.  
OVERRANGE PROTECTION  
To avoid electrostatic capture of the proof mass when the  
accelerometer is subject to input acceleration beyond its full-  
scale range, all sensor drive clocks turn off for 0.5 ms. In the  
±±0 g range setting, the overrange protection activates for input  
signals beyond approximately ±0 g (±54), and for the ±0 g  
and ±0 g range settings, the threshold corresponds to about  
±80 g (±54).  
However, VSUPPLY cannot be powered before VDDIO  
.
To disable the internal LDO regulators, tie VSUPPLY to ground and  
use external ±.8 V supplies to power V±P8ANA and V±P8DIG. V±P8ANA  
and V±P8DIG must have the same voltage level. The maximum  
acceptable tolerance between the external V±P8ANA and V±P8DIG  
voltage levels is 50 mV. In the case of bypassing the LDO regulators,  
the recommended power sequence is to apply power to VDDIO  
,
When overrange protection occurs, the XOUT, YOUT, and ZOUT pins  
on the ADXL356 begin to drive to midscale, whereas the  
ADXL357 floats toward zero, and the first in, first out (FIFO)  
buffer begins filling with this data.  
followed by applying power to V±P8DIG approximately ±0 μs later,  
and then applying power to V±P8ANA approximately ±0 μs later. If  
necessary, V±P8DIG and VDDIO can be powered from the same  
external ±.8 V supply, which can also be tied to V±P8ANA with  
proper isolation, so that all are powered at the same time. In this  
case, proper decoupling and low frequency isolation are  
important to maintain the noise performance of the sensor.  
SELF TEST  
The ADXL356 and ADXL357 incorporate a self test feature  
that effectively tests the mechanical and electronic system.  
Enabling self test stimulates the sensor electrostatically to  
produce an output corresponding to the test signal applied as  
well as the mechanical force exerted. Only the z-axis response is  
specified to validate device functionality.  
POWER SUPPLY DESCRIPTION  
The ADXL356/ADXL357 have four different power supply  
domains: VSUPPLY, V±P8ANA, V±P8DIG, and VDDIO. The internal  
analog and digital circuitry operates at ±.8 V nominal.  
In the ADXL356, drive the ST± pin to VDDIO to invoke self test  
mode. Then, by driving the STꢀ pin to VDDIO, the ADXL356  
applies an electrostatic force to the mechanical sensor and  
induces a change in output in response to the force. The self test  
delta (or response) is the difference in output voltage in the  
z-axis when STꢀ is high vs. STꢀ is low, while ST± is asserted.  
VSUPPLY  
VSUPPLY is ꢀ.ꢀ5 V to 3.6 V, which is the input range to the two  
LDO regulators that generate the nominal ±.8 V outputs for  
V±P8ANA and V±P8DIG. Connect VSUPPLY to VSS to disable the LDO  
regulators, which allows driving V±P8ANA and V±P8DIG from an  
external source.  
Rev. A | Page 23 of 42  
 
 
 
 
 
 
ADXL356/ADXL357  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
After the self test measurement is complete, bring both pins low  
to resume normal operation.  
The self test operation is similar in the ADXL357, except ST±  
and STꢀ can be accessed through the SELF_TEST register  
(Register 0xꢀE).  
The self test feature rejects externally applied acceleration and  
only responds to the self test force, which allows an accurate  
measurement of the self test, even in the presence of external  
mechanical noise. When the self test feature is not used, both  
ST± and STꢀ must be kept low.  
FILTER  
1
10  
100  
1k  
10k  
The ADXL356/ADXL357 use an analog, low-pass, antialiasing  
filter to reduce out of band noise and to limit bandwidth. The  
ADXL357 provides further digital filtering options to maintain  
optimal noise performance at various ODRs.  
INPUT FREQUENCY (Hz)  
Figure 61. ADXL357 Digital LPF Response for 4 kHz ODR  
The ADXL357 also includes an optional digital high-pass filter  
with a programmable corner frequency. By default, the high-  
pass filter is disabled. The high-pass corner frequency, where  
the output is attenuated by 3 dB, is related to the ODR, and the  
HPF_CORNER setting in the filter register (Register 0xꢀ8,  
Bits[6:ꢁ]). Table ±± shows the HPF_CORNER response. Figure 6ꢀ  
and Figure 63 show the simulated high-pass filter pass-band  
and delay responses for a 9.88 Hz cutoff.  
The analog, low-pass antialiasing filter in the ADXL356/  
ADXL357 provides a fixed 3 dB bandwidth of approximately  
±.5 kHz, the frequency at which the voltage output response is  
attenuated by approximately 304. The shape of the filter  
response in the frequency domain is that of a sinc filter. While  
the analog antialiasing filter attenuates the output response  
around and above its cutoff frequency, the MEMS sensor has a  
resonance at 5.5 kHz and mechanically amplifies the output  
response at around ꢀ kHz and above. These competing trends  
are apparent in the overall transfer function of the ADXL356, as  
shown in Figure 8 to Figure ±0. Therefore, the overall −3 dB  
bandwidth of the ADXL356 is ꢀ.ꢁ kHz, and the overall  
bandwidth with ±dB flatness is about ꢁ.ꢁ kHz.  
0
–3  
–10  
–20  
The ADXL356 x-axis, y-axis, and z-axis analog outputs include  
an amplifier followed by a series 3ꢀ kΩ resistor, and output to  
the XOUT, the YOUT, and the ZOUT pins, respectively.  
–30  
–40  
–50  
The ADXL357 provides an internal ꢀ0-bit, Σ-Δ ADC to digitize  
the filtered analog signal. Additional digital filtering (beyond the  
analog, low-pass, antialiasing filter) consists of a low-pass digital  
decimation filter and a bypassable high-pass filter that supports  
output data rates between ꢁ kHz and 3.906 Hz. The decimation  
filter consists of two stages. The first stage is fixed decimation  
with a ꢁ kHz ODR and a low-pass filter cutoff (3 dB) at about  
± kHz. A variable second stage decimation filter is used for the  
ꢀ kHz output data rate and below (it is bypassed for ꢁ kHz ODR).  
Figure 6± shows the low-pass filter response with a ± kHz corner  
(ꢁ kHz ODR) for the ADXL357. Note that Figure 6± does not  
include the fixed frequency analog, low-pass, antialiasing filter  
with a fixed 3 dB bandwidth of approximately ±.5 kHz.  
0
9.8801  
100  
FREQUENCY (Hz)  
Figure 62. High-Pass Filter Pass-Band Response for a 4 kHz ODR and an  
HPF_CORNER Setting of 001 (Register 0x28, Bits[6:4])  
40  
32.2122  
30  
20  
10  
The ADXL357 pass band of the signal path relates to the  
combined filter responses, including the analog filter previously  
described, and the digital decimation filter/ODR setting. Table ±0  
shows the delay associated with the decimation filter for each  
setting and provides the attenuation at the ODR/ꢁ corner.  
1
0
0
9.8801  
100  
FREQUENCY (Hz)  
Figure 63. High-Pass Filter Delay Response for a 4 kHz ODR and an  
HPF_CORNER Setting of 001 (Register 0x28, Bits[6:4])  
Rev. A | Page 24 of 42  
 
 
 
 
Data Sheet  
ADXL356/ADXL357  
The ADXL357 also includes an interpolation filter after the  
decimation filters that produces oversampled/upconverted data  
and provides an external synchronization option. See the Data  
Synchronization section for more details. Table ±ꢀ shows the  
delay and attenuation relative to the programmed ODR.  
Group delay is the digital filter delay from the input to the ADC  
until data is available at the interface (see the Filter section).  
This delay is the largest component of the total delay from  
sensor to serial interface.  
Table 10. Digital Filter Group Delay and Profile  
Delay  
Attenuation  
Programmed ODR (Hz)  
4000  
ODR (Cycles)  
2.52  
2.00  
1.78  
1.63  
1.57  
1.54  
1.51  
1.49  
Time (ms)  
0.63  
1.00  
1.78  
3.26  
Decimator at ODR/4 (dB)  
Full Path at ODR/4 (dB)  
−3.44  
−2.21  
−1.92  
−1.83  
−1.83  
−1.83  
−1.83  
−1.83  
−1.83  
−1.83  
−1.83  
−3.63  
−2.26  
−1.93  
−1.83  
−1.83  
−1.83  
−1.83  
−1.83  
−1.83  
−1.83  
−1.83  
4000/2 = 2000  
4000/4 = 1000  
4000/8 = 500  
4000/16 = 250  
4000/32 = 125  
4000/64 = 62.5  
4000/128 ≈ 31  
4000/256 ≈ 16  
4000/512 ≈ 8  
4000/1024 ≈ 4  
6.27  
12.34  
24.18  
47.59  
96.25  
189.58  
384.31  
1.50  
1.50  
1.50  
Table 11. Digital High-Pass Filter Response  
HPF_CORNER Register Setting  
(Register 0x28, Bits[6:4])  
HPF_CORNER Frequency, −3 dB Point Relative to ODR Setting  
Not applicable, no high-pass filter enabled  
24.7 × 10−4 × ODR  
−3 dB at 4 kHz ODR (Hz)  
000  
001  
010  
011  
100  
101  
110  
Off  
9.88  
2.48  
0.62  
0.1545  
0.03816  
0.00952  
6.2084 × 10−4 × ODR  
1.5545 × 10−4 × ODR  
0.3862 × 10−4 × ODR  
0.0954 × 10−4 × ODR  
0.0238 × 10−4 × ODR  
Table 12. Combined Digital Interpolation Filter and Decimation Filter Response  
Interpolator Data Rate Resolution  
Relative to 64 × ODR (Hz)  
Combined Interpolator/  
Decimator Delay (ODR Cycles)  
Combined Interpolator/  
Decimator Delay (ms)  
Combined Interpolator/Decimator  
Output Attenuation at ODR/4 (dB)  
64 × 4000 = 256,000  
64 × 2000 = 128,000  
64 × 1000 = 64,000  
64 × 500 = 32,000  
64 × 250 = 16,000  
64 × 125 = 8000  
3.51661  
3.0126  
2.752  
0.88  
1.51  
2.75  
5.27  
10.31  
20.38  
40.52  
80.78  
161.31  
322.48  
644.39  
−6.18  
−4.93  
−4.66  
−4.58  
−4.55  
−4.55  
−4.55  
−4.55  
−4.55  
−4.55  
−4.55  
2.6346  
2.5773  
2.5473  
2.53257  
2.52452  
2.52045  
2.5194  
2.51714  
64 × 62.5 = 4000  
64 × 31.25 = 2000  
64 × 15.625 = 1000  
64 × 7.8125 = 500  
64 × 3.90625 = 250  
Rev. A | Page 25 of 42  
 
 
 
ADXL356/ADXL357  
Data Sheet  
SERIAL COMMUNICATIONS  
The ꢁ-wire serial interface communicates in either the SPI or  
IC protocol. The interface affectively autodetects the format  
being used, requiring no configuration control to select the format.  
SPI BUS SHARING  
Use a gated buffer on the SCLK line for the ADXL357 device to  
achieve the ultralow noise performance and possibly offset shift  
when the ADXL357 must share a SPI bus with another slave  
device. This gated SCLK allows the clock signal through only  
The ADXL357 multifunction pins are referred to by a single  
CS  
function of the pin, for example, , when only that function is  
CS  
relevant.  
when the chip select ( ) line is low. See Figure 65 for the  
example circuit that provides this type of protection.  
SPI PROTOCOL  
PROCESSOR  
ADXL357  
Wire the ADXL357 for SPI communication as shown in the  
connection diagram in Figure 6ꢁ. The SPI protocol timing is  
shown in Figure 66 to Figure 69. The timing scheme follows the  
clock polarity (CPOL) = 0 and clock phase (CPHA) = 0. The  
SPI clock speed ranges from ±00 kHz to ±0 MHz.  
CS  
SS1  
SS2  
SCLK  
SCLK  
SN74LVC1G125  
PROCESSOR  
SS  
ADXL357  
CS  
MOSI  
MISO  
SCLK  
TO SPI SLAVE 2  
MOSI  
MISO  
SCLK  
Figure 65. SCLK Protection Example  
Figure 64. 4-Wire SPI Connection  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCLK  
MOSI  
MISO  
A6 A5 A4 A3 A2 A1 A0 RW  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 66. SPI Timing Diagram—Single-Byte Read  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCLK  
MOSI  
A6 A5 A4 A3 A2 A1 A0 RW D7 D6 D5 D4 D3 D2 D1 D0  
MISO  
Figure 67. SPI Timing Diagram—Single-Byte Write  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
SCLK  
MOSI  
A6 A5 A4 A3 A2 A1 A0 RW  
BYTE n  
BYTE 1  
D7 D6 D5 D4 D3 D2 D1 D0 D7  
D0 D7 D6 D5 D4 D3 D2 D1 D0  
MISO  
Figure 68. SPI Timing Diagram—Multibyte Read  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
SCLK  
BYTE n  
BYTE 1  
A6 A5 A4 A3 A2 A1 A0 RW D7 D6 D5 D4 D3 D2 D1 D0 D7  
D0 D7 D6 D5 D4 D3 D2 D1 D0  
MOSI  
MISO  
Figure 69. SPI Timing Diagram—Multibyte Write  
Rev. A | Page 26 of 42  
 
 
 
 
 
 
 
Data Sheet  
ADXL356/ADXL357  
Figure 70 to Figure 7ꢀ detail the IC protocol timing. The IC  
interface can be used on most buses operating in IC standard  
mode (±00 kHz), fast mode (ꢁ00 kHz), fast mode plus (± MHz),  
and high speed mode (3.ꢁ MHz). The ADXL357 IC device ID  
is as follows:  
I2C PROTOCOL  
The ADXL357 supports point to point IC communication.  
However, when sharing an SDA bus, the ADXL357 may prevent  
communication with other devices on that bus. If at any point,  
even when the ADXL357 is not being addressed, the 0x3A and  
0x3B bytes (when the ADXL357 device address is set to 0x±D),  
or the 0xA6 and 0xA7 bytes (when the ADXL357 device address  
is set to 0x53) are transmitted on the SDA bus, the ADXL357  
responds with an acknowledge bit and pulls the SDA line down.  
For example, this response can occur when reading or writing  
the data bytes (0x3A/0x3B or 0xA6/0xA7) to another sensor on  
the bus. When the ADXL357 pulls the SDA line down,  
MISO/ASEL pin = 0, device address = 0x±D  
MISO/ASEL pin = ±, device address = 0x53  
If other devices are connected to the same IC bus, the nominal  
operating voltage level of these other devices cannot exceed  
VDDIO by more than 0.3 V. External pull-up resistors, RP, are  
necessary for proper IC operation.  
communication with other devices on the bus may be  
interrupted. To resolve this interruption, the ADXL357 must be  
READING ACCELERATION OR TEMPERATURE  
DATA FROM THE INTERFACE  
CS  
connected to a separate SDA bus, or the /SCL pin must be  
Acceleration data is left justified and has a register address order of  
most significant data to least significant data, which allows the  
user to use multibyte transfers and to take only as much data as  
required—8 bits, ±6 bits, or ꢀ0 bits, plus the marker. Temperature  
data is ±ꢀ bits unsigned, right justified. The ADXL357 temperature  
value is split over two bytes, but is not double buffered, meaning  
the value can update between readings of the two registers. The  
data in XDATA, YDATA, and ZDATA is always the most recent  
available. It is not guaranteed that XDATA, YDATA, and ZDATA  
form a set corresponding to one sample point in time. The routine  
used to retrieve the data from the device controls this data set  
continuity. If data transfers are initiated when the DATA_RDY bit  
goes high and completes in a time approximately equal to ±/ODR,  
XDATA, YDATA, and ZDATA apply to the same data set.  
switched high when communication with the ADXL357 is not  
desired (it is normally grounded).  
The ADXL357 supports standard (±00 kHz), fast (up to ± MHz)  
and high speed (up to 3.ꢁ MHz) data transfer modes when the  
bus parameters in Table ꢁ are met. There is no minimum SCL  
frequency, with the exception that, when reading data, the clock  
must be fast enough to read an entire sample set before new data  
overwrites it. Single-byte or multiple byte reads/writes are  
supported. With the MISO/ASEL pin low, the IC address for  
the device is 0x±D and an alternate IC address of 0x53 can be  
chosen by pulling the MISO/ASEL pin high.  
There are no internal pull-up or pull-down resistors for any unused  
pins. Therefore, there is no known state or default state for the pins  
if left floating or unconnected. SCLK/VSSIO must be connected  
to ground when communicating to the ADXL357 using IC.  
For multibyte read or write transactions through either serial  
interface, the internal register address auto-increments. When  
the top of the register address range, 0x3FF, is reached, the auto-  
increment stops and does not wrap back to Address 0x00.  
Due to communication speed limitations, the maximum output  
data rate when using the ꢁ00 kHz IC mode is 800 Hz, and it  
scales linearly with a change in the IC communication speed.  
For example, using IC at ±00 kHz limits the maximum ODR to  
ꢀ00 Hz. Operation at an output data rate above the recommended  
maximum may result in an undesirable effect on the acceleration  
data, including missing samples or additional noise.  
The address auto-increment function disables when the FIFO  
address is used, so that data can be read continuously from the  
FIFO as a multibyte transaction. In cases where the starting  
address of a multibyte transaction is less than the FIFO address,  
the address auto-increments until reaching the FIFO address,  
and then stops at the FIFO address.  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37  
SCL  
REPEAT  
START  
START  
DEVICE ADDRESS  
REGISTER ADDRESS  
DEVICE ADDRESS  
DATA BYTE  
STOP  
A6 A5 A4 A3 A2 A1 A0  
AK  
0
A6 A5 A4 A3 A2 A1 A0 AK  
AK  
RW  
0
D6 D5 D4 D3 D2 D1 D0 AK  
A6 A5 A4 A3 A2 A1 A0  
SINGLE BYTE READ  
RW  
SDA  
INDICATE SDA IS  
CONTROLLED BY ADXL357  
Figure 70. I2C Timing Diagram—Single-Byte Read  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
SCL  
START  
DEVICE ADDRESS  
REGISTER ADDRESS  
DATA BYTE  
STOP  
AK  
0
A6 A5 A4 A3 A2 A1 A0 AK D7 D6 D5 D4 D3 D2 D1 D0 AK  
A6 A5 A4 A3 A2 A1 A0  
RW  
SDA  
Figure 71. I2C Timing Diagram—Single-Byte Write  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 19  
SCL  
START  
DEVICE ADDRESS  
REGISTER ADDRESS  
DATA BYTE 1  
DATA BYTE n  
D0 AK D7 D6 D5 D4 D3 D2 D1 D0 AK  
AK  
0
A6 A5 A4 A3 A2 A1 A0 AK D7 D6 D5 D4 D3 D2 D1 D0 AK D7  
A6 A5 A4 A3 A2 A1 A0  
RW  
SDA  
Figure 72. I2C Timing Diagram—Multibyte Write  
Rev. A | Page 27 of 42  
 
 
 
 
ADXL356/ADXL357  
Data Sheet  
FIFO  
The FIFO operates in a stream mode. That is, when the FIFO  
overruns, new data overwrites the oldest data in the FIFO. A  
read from the FIFO address guarantees that the three bytes  
associated with the acceleration measurement on an axis all  
pertain to the same measurement. The FIFO never overflows,  
and the data is always taken out in sets (multiples of three data  
points).  
control logic inserts the two virtual bits (0b00) between the data  
bits and the empty indicator bit. Bit ± indicates that an attempt  
was made to read an empty FIFO, and that the data is not valid  
acceleration data. Bit 0 is a marker bit to identify the x-axis,  
which allows a user to verify that the FIFO data was correctly  
read. An acceleration data point for a given axis occupies one  
FIFO location. The read pointer, RD_PTR, points to the oldest  
stored data that was not read already from the interface (see  
Figure 73). There are no physical x-acceleration, y-acceleration, or  
z-acceleration data registers. The data read from data registers  
(Register 0x08 to Register 0x±0) also comes directly from the most  
recent data set in the FIFO, which is pointed to by the z pointer,  
Z_PTR (see Figure 73).  
There are 96 ꢀ±-bit locations in the FIFO. Each location  
contains ꢀ0 bits of data and a marker bit for the x-axis data. A  
single-byte read from the FIFO address pops one location from  
the FIFO. A multibyte read to the FIFO location pops the FIFO  
on the read of the first byte and every third byte read thereafter.  
Figure 73 shows the organization of the data in the FIFO. The  
acceleration data is twos complement, ꢀ0-bit data. The FIFO  
Z_PTR + 1  
Z_PTR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
Z19 Z18 Z17 Z16 Z15 Z14 Z13 Z12  
Z11 Z10 Z9 Z8 Z7 Z6 Z5 Z4  
Z3 Z2 Z1 Z0  
Z_PTR – 1  
Z_PTR – 2  
Y19 Y18 Y17 Y16 Y15 Y14 Y13 Y12  
X19 X18 X17 X16 X15 X14 X13 X12  
Z19 Z18 Z17 Z16 Z15 Z14 Z13 Z12  
Y19 Y18 Y17 Y16 Y15 Y14 Y13 Y12  
X19 X18 X17 X16 X15 X14 X13 X12  
Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4  
X11 X10 X9 X8 X7 X6 X5 X4  
Z11 Z10 Z9 Z8 Z7 Z6 Z5 Z4  
Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4  
X11 X10 X9 X8 X7 X6 X5 X4  
Y3 Y2 Y1 Y0  
X3 X2 X1 X0  
Z3 Z2 Z1 Z0  
Y3 Y2 Y1 Y0  
X3 X2 X1 X0  
0
0
0
0
0
0
1
0
0
1
RD_PTR  
VIRTUAL BITS  
ACCELERATION DATA  
(NOT ALLOCATED IN THE FIFO)  
EMPTY INDICATOR  
X-AXIS MARKER  
ASCENDING SPI ADDRESSES  
Figure 73. FIFO Data Organization  
Rev. A | Page 28 of 42  
 
 
Data Sheet  
ADXL356/ADXL357  
INTERRUPTS  
The status register (Register 0x0ꢁ) contains five individual bits,  
four of which can be mapped to either the INT± pin, the INTꢀ pin,  
or both. The polarity of the interrupt, active high or active low,  
is also selectable via the INT_POL bit in the range (Register 0xꢀC)  
register. In general, the status register clears when read, but this  
is not the case if the condition that caused the interrupt persists  
after the read of the register. The definition of persist varies  
slightly in each case, but it is described in the DATA_RDY,  
DRDY Pin, FIFO_FULL, FIFO_OVR, and Activity sections.  
The DRDY pin is similar to an interrupt pins (INTx) but clears  
differently. This case is also described.  
FIFO_OVR  
The FIFO_OVR bit is set when the FIFO is so far overrange that  
data is lost. The specified size of the FIFO is 96 locations. The  
FIFO_OVR bit is set only when there is an attempt to write past  
this 96-location limit.  
A read of the status register clears FIFO_OVR. FIFO_OVR is  
not set again until data is lost subsequent to this status register  
read.  
ACTIVITY  
The activity bit (Register 0x0ꢁ, Bit 3) is set when the measured  
acceleration on any axis is above the value set in the ACT_  
THRESH bits for ACT_COUNT consecutive measurements.  
An overthreshold condition can shift from one axis to another  
on successive measurements and is still counted toward the  
consecutive ACT_COUNT count.  
DATA_RDY  
The DATA_RDY bit is set when new acceleration data is  
available to the interface and clears on a read of the status  
register. This bit is not set again until acceleration data that is  
newer than the status register read is available.  
A read of the status register clears the activity bit (Register 0x0ꢁ,  
Bit 3), but the bit sets again at the end of the next measurement if  
the activity bit (Register 0x0ꢁ, Bit 3) conditions are still satisfied.  
Special logic on the clearing of the DATA_RDY bit covers the  
corner case where new data arrives during the read of the status  
register. In this case, the data ready condition may be missed  
completely. This logic results in a delay of the clearing of  
DATA_RDY of up to four 5±ꢀ kHz cycles.  
NVM_BUSY  
The NVM_BUSY bit indicates that the nonvolatile memory  
(NVM) controller is busy and, therefore, the NVM cannot be  
accessed to read or write. The interrupt functionality requires  
the NVM_BUSY bit to be cleared to function.  
DRDY PIN  
The DRDY pin is not a status register bit. DRDY instead  
behaves similar to an unmaskable interrupt. DRDY is set when  
new acceleration data is available to the interface. DRDY clears  
on a read of the FIFO, on a read of XDATA, YDATA, or  
ZDATA, or by an autoclear function that occurs approximately  
halfway between output acceleration data sets.  
A status register read that occurs after the NVM controller is no  
longer busy clears NVM_BUSY.  
EXTERNAL SYNCHRONIZATION AND  
INTERPOLATION  
DRDY is always active high. The INT_POL bit does not affect  
DRDY. In external synchronization modes (EXT_SYNC = 0±,  
EXT_SYNC = ±0), the first few DRDY pulses after initial  
synchronization can be lost or corrupted. The length of this  
potential corruption is equal to or less than the group delay.  
Therefore, the samples within one group delay is lost or  
corrupted after the first synchronization signal. Depending on  
the decimation setting and interpolation setting (see Table ±ꢀ),  
between one and three samples after the first synchronization  
pulse is lost, provided that all the restrictions set in the External  
Synchronization and Interpolation section is met.  
There are four possible synchronization options for the ADXL357,  
three of which are shown in Figure 7ꢁ to Figure 76. For clarity, the  
clock frequencies and delays are drawn to scale. The labels in  
Figure 7ꢁ to Figure 76 are defined as follows:  
Internal ODR is the alignment of the decimated output  
data based on the internal clock.  
ADC modulator clock shows the internal master clock rate.  
DRDY is an output indicator signaling a sample is ready.  
The four possible synchronization options are as follows:  
No external synchronization (internal clocks used)  
Synchronization with an external synchronization signal  
and internal clock, interpolation filter enabled  
Synchronization with external synchronization and clock  
signals, no interpolation filter  
FIFO_FULL  
The FIFO_FULL bit is set when the entries in the FIFO are  
equal to the setting of the FIFO_SAMPLES bits. FIFO_FULL  
clears as follows:  
Synchronization with external synchronization and clock  
signals, interpolation filter enabled  
If the number of entries in the FIFO is less than the  
number of samples indicated by the FIFO_SAMPLES bits,  
which is only the case if sufficient data is read from the  
FIFO.  
On a read of the status register, but only when the entries  
in the FIFO are less than the FIFO_SAMPLES bits.  
Rev. A | Page 29 of 42  
 
 
 
 
 
 
 
ADXL356/ADXL357  
Data Sheet  
EXT_SYNC = 00, EXT_CLK = 0—No External  
Synchronization or Interpolation  
EXT_SYNC = 01, EXT_CLK = 1—External Synchronization  
and External Clock, No Interpolation Filter  
This is the default mode of operation for the device. The sensor  
runs on an internal ODR and an internal clock that is generated by  
an internal oscillator. The internal ODR serves as the synchroniza-  
tion master, which generates the data. Register 0xꢀ8 is used to  
program the ODR. No external signals are required, and this  
mode is used typically when the external processor retrieves  
data from the device asynchronously and absolute synchronization  
to an external source is not required.  
When configured for EXT_SYNC = 0± and EXT_CLK = ± (sync  
register, see Table ꢁ7), the user must supply an external clock  
(enabled via the EXT_CLK bit) at ±.0ꢀꢁ MHz on the INTꢀ pin  
(Pin ±3) and an external synchronization signal, SYNC, on the  
DRDY pin (Pin ±ꢁ), as shown in Table ±ꢁ. If configured in this  
mode and an external clock is not supplied, the device does not  
process any data and reading from the output results in null  
values. This mode is schematically shown in Figure 76.  
The device outputs a DRDY (active high) to signal that a new  
sample is available, and data is retrieved from the real-time  
registers or the FIFO. The group delay is based on the  
decimation setting, as shown in Table ±0. This mode is shown  
in Figure 7ꢁ.  
Special restrictions when using this mode include the following:  
The external clock frequency on INTꢀ (Pin ±3, see Table ±ꢁ)  
must be ±.0ꢀꢁ MHz.  
The pulse width of the SYNC signal must be at least  
3.9± μs, which represents four cycles of the external clock  
(ꢁ ÷ ±.0ꢀꢁ MHz = ~3.9± μs).  
EXT_SYNC = 10, EXT_CLK = 0—External Synchronization  
with Interpolation  
The phase of SYNC must meet an approximate ꢀ5 ns setup  
time to the external clock rising edge.  
Synchronization using interpolation filters and an external ODR  
clock is commonly used when the external processor can  
provide a synchronization signal, SYNC, that is asynchronous  
to the internal clock at the desired ODR. In this case, an  
interpolation filter provides additional time resolution of 6ꢁ  
times the programmed ODR (see Table ±ꢀ). Synchronization  
with the interpolation filter enabled (EXT_SYNC = ±0) allows  
the sensor to operate on an internal clock and output data most  
closely associated with the SYNC rising edge.  
When using the EXT_SYNC mode and without providing the  
SYNC signal, the device runs on its own internal ODR. Similarly,  
after external synchronization, the device continues to run  
synchronized to the last SYNC pulse it received, which means that  
EXT_SYNC = 0± mode can be used with only a single  
synchronization pulse.  
For more information about the lost sample in Figure 76, see the  
DRDY Pin section.  
The advantage of this mode is that data is available at an arbitrary  
user defined SYNC sample rate and is asynchronous to the internal  
clock oscillator. The maximum sample rate cannot exceed  
ꢁ000 SPS. The disadvantage of this mode is that the group delay  
is increased, with increased attenuation at the band edge.  
Additionally, because there is a limit to the time resolution,  
there is some distortion related to the mismatch of the external  
synchronization relative to the internal clock oscillator. This  
mismatch degrades spectral performance. The group delay is  
based on the decimation setting and interpolation setting (see  
Table ±ꢀ). Figure 75 schematically shows the timings in this  
mode, and Table ±3 shows the delay between the SYNC signal  
(input) to DRDY (output).  
EXT_SYNC = 10, EXT_CLK = 1—External Synchronization  
and External Clock, with Interpolation Filter  
This mode can be used to run the device on an external clock  
and synchronization with an arbitrary sample rate set by the  
SYNC signal rate. Conditions for external SYNC and external  
clock signals is the same as EXT_SYNC = 0±, EXT_CLK = ±  
mode. The interpolation filter provides a frequency resolution  
related to the ODR (see Table ±ꢀ). In this case, the data  
provided corresponds to the external SYNC signal, which can  
be greater than the set ODR and less than ꢁ000 SPS, but the  
output pass band remains the same it was prior to the  
interpolation filter.  
Table 13. EXT_SYNC = 10, DRDY Delay  
ODR_LPF  
SYNC to DRDY Delay (Oscillator Cycles)  
0x0  
8
0x1  
10  
0x2  
14  
0x3  
22  
0x4  
38  
0x5  
70  
0x6  
0x7  
0x8  
0x9  
134  
262  
1031  
2054  
4102  
0xA  
Rev. A | Page 30 of 42  
 
Data Sheet  
ADXL356/ADXL357  
Table 14. Multiplexing of INT2 and DRDY  
Register or Bit Fields  
Pins  
DRDY (Pin 14)  
EXT_SYNC,  
Bits[1:0]  
INT_MAP,  
Bits[7:4]  
EXT_CLK  
INT2 (Pin 13)  
Low  
INT2  
EXT_CLK  
EXT_CLK  
DRDY2  
Comments  
0
0
1
1
0
0
1
1
00  
0000  
DRDY  
DRDY  
DRDY  
DRDY  
SYNC  
SYNC  
SYNC  
SYNC  
Synchronization is to the internal clocks, and there is no  
external clock synchronization.  
00  
00  
00  
Not 0000  
0000  
Not 00001  
01  
0000  
These options reset the digital filters on every  
synchronization pulse and are not recommended.  
013  
013  
013  
Not 0000  
0000  
Not 00001  
INT2  
EXT_CLK  
EXT_CLK  
External synchronization, no interpolation filter, and  
DRDY (active high) signals that data is ready. Data  
represents a sample point group delay earlier in time.  
DRDY2  
INT2  
0
0
1
1
10  
0000  
SYNC  
SYNC  
SYNC  
SYNC  
External synchronization, interpolation filter, and DRDY  
(active high) signals that data is ready. Data sample  
group delay earlier in time.  
103  
103  
103  
Not 0000  
0000  
EXT_CLK  
EXT_CLK  
Not 0000  
1 No INT2, even though it is enabled.  
2 DRDY routing through the INT_MAP register takes precedence over the default, per Table 14.  
3 No DRDY.  
GROUP DELAY  
(FIXED RELATIVE TO DRDY)  
SAMPLE POINT  
INTERNAL ODR  
ADC MODULATOR CLOCK  
DRDY  
Figure 74. EXT_SYNC = 00, EXT_CLK = 0, Internal Synchronization, Internal Clock  
GROUP DELAY  
(FIXED RELATIVE TO SYNC)  
SAMPLE POINT  
INTERFACE SYNCHRONIZATION DELAY  
INTERNAL ODR  
INTERPOLATOR  
64× ODR  
SYNC  
110% ODR  
DRDY  
Figure 75. EXT_SYNC = 10, EXT_CLK = 0, External Synchronization, Internal Clock, Interpolation Filter  
GROUP DELAY  
SAMPLE POINT  
(FIXED RELATIVE TO SYNC)  
INTERNAL ODR  
EXTERNAL CLOCK  
1.024MHz  
SYNCHRONIZE  
SYNC  
LOST SAMPLE  
DRDY  
Figure 76. EXT_SYNC = 01, EXT_CLK = 1, External Synchronization, External Clock, No Interpolation Filter  
Rev. A | Page 31 of 42  
 
 
 
 
ADXL356/ADXL357  
Data Sheet  
ADXL357 REGISTER MAP  
Note that while configuring the ADXL357 in an application, all configuration registers must be programmed before enabling measurement  
mode in the POWER_CTL register. When the ADXL357 is in measurement mode, only the following configurations can change: the  
HPF_CORNER bits in the filter register, the INT_MAP register, the ST± and STꢀ bits in the SELF_TEST register, and the reset register.  
Table 15. ADXL357 Register Map  
Hex.  
Addr.  
0x00  
0x01  
0x02  
0x03  
0x04  
Register Name  
DEVID_AD  
DEVID_MST  
PARTID  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
DEVID_AD  
DEVID_MST  
PARTID  
Bit 2  
Bit 1  
Bit 0  
Reset R/W  
0xAD  
0x1D  
0xED  
0x01  
R
R
R
R
R
REVID  
REVID  
Status  
Reserved  
NVM_  
BUSY  
Activity  
FIFO_OVR  
FIFO_FULL DATA_RDY 0x00  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
FIFO_ENTRIES  
TEMP2  
Reserved  
FIFO_ENTRIES  
0x00  
R
Reserved  
Temperature, Bits[11:8]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x00  
0x60  
0x00  
0x00  
0x81  
0x01  
0x00  
0x00  
R
TEMP1  
Temperature, Bits[7:0]  
XDATA, Bits[19:12]  
XDATA, Bits[11:4]  
R
XDATA3  
R
XDATA2  
R
XDATA1  
XDATA, Bits[3:0]  
YDATA, Bits[3:0]  
ZDATA, Bits[3:0]  
Reserved  
Reserved  
Reserved  
R
YDATA3  
YDATA, Bits[19:12]  
YDATA, Bits[11:4]  
R
YDATA2  
R
YDATA1  
R
ZDATA3  
ZDATA, Bits[19:12]  
ZDATA, Bits[11:4]  
R
ZDATA2  
R
ZDATA1  
R
FIFO_DATA  
OFFSET_X_H  
OFFSET_X_L  
OFFSET_Y_H  
OFFSET_Y_L  
OFFSET_Z_H  
OFFSET_Z_L  
ACT_EN  
FIFO_DATA  
R
OFFSET_X, Bits[15:8]  
OFFSET_X, Bits[7:0]  
OFFSET_Y, Bits[15:8]  
OFFSET_Y, Bits[7:0]  
OFFSET_Z, Bits[15:8]  
OFFSET_Z, Bits[7:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
Reserved  
ACT_Z  
ACT_Y  
ACT_X  
ACT_THRESH_H  
ACT_THRESH_L  
ACT_COUNT  
Filter  
ACT_THRESH, Bits[15:8]  
ACT_THRESH, Bits[7:0]  
ACT_COUNT  
Reserved  
Reserved  
HPF_CORNER  
ODR_LPF  
FIFO_SAMPLES  
INT_MAP  
Sync  
FIFO_SAMPLES  
ACT_EN2 OVR_EN2 FULL_EN2 RDY_EN2 ACT_EN1 OVR_EN1  
FULL_EN1 RDY_EN1  
EXT_SYNC  
Reserved  
EXT_CLK  
Range  
I2C_HS  
INT_POL  
Reserved  
Reset  
Range  
POWER_CTL  
SELF_TEST  
Reset  
Reserved  
DRDY_OFF TEMP_OFF Standby  
ST2 ST1  
Reserved  
Rev. A | Page 32 of 42  
 
 
Data Sheet  
ADXL356/ADXL357  
REGISTER DEFINITIONS  
This section describes the functions of the ADXL357 registers. The ADXL357 powers up with the default register values, as shown in the  
reset column of Table ±5.  
ANALOG DEVICES ID REGISTER  
This register contains the Analog Devices ID, 0xAD.  
Address: 0x00, Reset: 0xAD, Name: DEVID_AD  
Table 16. Bit Descriptions for DEVID_AD  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DEVID_AD  
Analog Devices ID  
0xAD  
R
ANALOG DEVICES MEMS ID REGISTER  
This register contains the Analog Devices MEMS ID, 0x±D.  
Address: 0x01, Reset: 0x1D, Name: DEVID_MST  
Table 17. Bit Descriptions for DEVID_MST  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x1D  
Access  
[7:0]  
DEVID_MST  
Analog Devices MEMS ID  
R
DEVICE ID REGISTER  
This register contains the device ID, 0xED (355 octal).  
Address: 0x02, Reset: 0xED, Name: PARTID  
Table 18. Bit Descriptions for PARTID  
Bits  
Bit Name  
Settings  
Description  
Reset  
0xED  
Access  
[7:0]  
PARTID  
Device ID (355 octal)  
R
PRODUCT REVISION ID REGISTER  
This register contains the product revision ID, beginning with 0x00 and incrementing for each subsequent revision.  
Address: 0x03, Reset: 0x01, Name: REVID  
Table 19. Bit Descriptions for REVID  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
REVID  
Mask revision  
0x01  
R
STATUS REGISTER  
This register includes bits that describe the various conditions of the ADXL357.  
Address: 0x04, Reset: 0x00, Name: Status  
Table 20. Bit Descriptions for Status  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] Reserved  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
4
3
2
1
0
NVM_BUSY  
Activity  
FIFO_OVR  
FIFO_FULL  
DATA_RDY  
NVM controller is busy with a refresh, programming, or a built in self test (BIST).  
Activity, as defined in the ACT_THRESH_x and ACT_COUNT registers, is detected.  
FIFO has overrun, and the oldest data is lost.  
FIFO watermark is reached.  
A complete x-axis, y-axis, and z-axis measurement was made and results can be read.  
Rev. A | Page 33 of 42  
 
 
 
 
 
 
ADXL356/ADXL357  
Data Sheet  
FIFO ENTRIES REGISTER  
This register indicates the number of valid data samples present in the FIFO buffer. This number ranges from 0 to 96.  
Address: 0x05, Reset: 0x00, Name: FIFO_ENTRIES  
Table 21. Bit Descriptions for FIFO_ENTRIES  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
7
Reserved  
Reserved  
R
R
[6:0]  
FIFO_ENTRIES  
Number of data samples stored in the FIFO  
0x0  
TEMPERATURE DATA REGISTERS  
These two registers contain the uncalibrated temperature data. The nominal intercept is ±885 LSB at ꢀ5°C and the nominal slope is  
−9.05 LSB/°C. TEMPꢀ contains the four most significant bits, and TEMP± contains the eight least significant bits of the ±ꢀ-bit value. The  
ADXL357 temperature value is not double buffered, meaning the value can update between reading of the two registers.  
Address: 0x06, Reset: 0x00, Name: TEMP2  
Table 22. Bit Descriptions for TEMP2  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Reset  
Access  
Reserved  
Reserved  
Temperature, Bits[11:8]  
Uncalibrated temperature data  
0x0  
R
Address: 0x07, Reset: 0x00, Name: TEMP1  
Table 23. Bit Descriptions for TEMP1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
Temperature, Bits[7:0]  
Uncalibrated temperature data  
0x00  
R
X-AXIS DATA REGISTERS  
These three registers contain the x-axis acceleration data. Data is left justified and formatted as twos complement.  
Address: 0x08, Reset: 0x00, Name: XDATA3  
Table 24. Bit Descriptions for XDATA3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
XDATA, Bits[19:12]  
X-axis data  
0x00  
R
Address: 0x09, Reset: 0x00, Name: XDATA2  
Table 25. Bit Descriptions for XDATA2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
XDATA, Bits[11:4]  
X-axis data  
0x00  
R
Address: 0x0A, Reset: 0x00, Name: XDATA1  
Table 26. Bit Descriptions for XDATA1  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
X-axis data  
Reserved  
Reset  
0x0  
Access  
XDATA, Bits[3:0]  
Reserved  
R
R
0x0  
Rev. A | Page 34 of 42  
 
 
 
Data Sheet  
ADXL356/ADXL357  
Y-AXIS DATA REGISTERS  
These three registers contain the y-axis acceleration data. Data is left justified and formatted as twos complement.  
Address: 0x0B, Reset: 0x00, Name: YDATA3  
Table 27. Bit Descriptions for YDATA3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
YDATA, Bits[19:12]  
Y-axis data  
0x00  
R
Address: 0x0C, Reset: 0x00, Name: YDATA2  
Table 28. Bit Descriptions for YDATA2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
YDATA, Bits[11:4]  
Y-axis data  
0x00  
R
Address: 0x0D, Reset: 0x00, Name: YDATA1  
Table 29. Bit Descriptions for YDATA1  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Y-axis data  
Reserved  
Reset  
0x0  
Access  
YDATA, Bits[3:0]  
Reserved  
R
R
0x0  
Z-AXIS DATA REGISTERS  
These three registers contain the z-axis acceleration data. Data is left justified and formatted as twos complement.  
Address: 0x0E, Reset: 0x00, Name: ZDATA3  
Table 30. Bit Descriptions for ZDATA3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ZDATA, Bits[19:12]  
Z-axis data  
0x00  
R
Address: 0x0F, Reset: 0x00, Name: ZDATA2  
Table 31. Bit Descriptions for ZDATA2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ZDATA, Bits[11:4]  
Z-axis data  
0x00  
R
Address: 0x10, Reset: 0x00, Name: ZDATA1  
Table 32. Bit Descriptions for ZDATA1  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Z-axis data  
Reserved  
Reset  
0x0  
Access  
ZDATA, Bits[3:0]  
Reserved  
R
R
0x0  
Rev. A | Page 35 of 42  
 
 
ADXL356/ADXL357  
Data Sheet  
FIFO ACCESS REGISTER  
Address: 0x11, Reset: 0x00, Name: FIFO_DATA  
Read this register to access data stored in the FIFO.  
Table 33. Bit Descriptions for FIFO_DATA  
Bits  
Bit Name  
Settings Description  
Reset Access  
[7:0]  
FIFO_DATA  
FIFO data is formatted to 24 bits, three bytes, most significant byte first. A read to this 0x0  
address pops an effective three equal byte words of axis data from the FIFO. Two  
R
subsequent reads or a multibyte read completes the transaction of this data onto the  
interface. Continued reading or a sustained multibyte read of this field continues to  
pop the FIFO every third byte. Multibyte reads to this address do not increment the  
address pointer. If this address is read due to an auto-increment from the previous  
address, it does not pop the FIFO. Instead, it returns zeros and increments on to the  
next address.  
X-AXIS OFFSET TRIM REGISTERS  
Address: 0x1E, Reset: 0x00, Name: OFFSET_X_H  
Table 34. Bit Descriptions for OFFSET_X_H  
Bits  
Bit Name  
Settings Description  
Reset Access  
[7:0]  
OFFSET_X,  
Bits[15:8]  
Offset added to x-axis data after all other signal processing. Data is in twos complement  
format. The significance of OFFSET_X, Bits[15:0] matches the significance of XDATA,  
Bits[19:4].  
0x0  
R/W  
Address: 0x1F, Reset: 0x00, Name: OFFSET_X_L  
Table 35. Bit Descriptions for OFFSET_X_L  
Bits  
Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0]  
OFFSET_X,  
Bits[7:0]  
Offset added to x-axis data after all other signal processing. Data is in twos complement  
format. The significance of OFFSET_X, Bits[15:0] matches the significance of XDATA,  
Bits[19:4].  
Y-AXIS OFFSET TRIM REGISTERS  
Address: 0x20, Reset: 0x00, Name: OFFSET_Y_H  
Table 36. Bit Descriptions for OFFSET_Y_H  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
0x0 R/W  
[7:0]  
OFFSET_Y,  
Bits[15:8]  
Offset added to y-axis data after all other signal processing. Data is in twos complement  
format. The significance of OFFSET_Y, Bits[15:0] matches the significance of YDATA,  
Bits[19:4].  
Address: 0x21, Reset: 0x00, Name: OFFSET_Y_L  
Table 37. Bit Descriptions for OFFSET_Y_L  
Bits  
Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0]  
OFFSET_Y,  
Bits[7:0]  
Offset added to y-axis data after all other signal processing. Data is in twos complement  
format. The significance of OFFSET_Y, Bits[15:0] matches the significance of YDATA,  
Bits[19:4].  
Rev. A | Page 36 of 42  
 
 
 
Data Sheet  
ADXL356/ADXL357  
Z-AXIS OFFSET TRIM REGISTERS  
Address: 0x22, Reset: 0x00, Name: OFFSET_Z_H  
Table 38. Bit Descriptions for OFFSET_Z_H  
Bits  
Bit Name  
Settings Description  
Reset Access  
[7:0]  
OFFSET_Z,  
Bits[15:8]  
Offset added to z-axis data after all other signal processing. Data is in twos complement  
format. The significance of OFFSET_Z, Bits[15:0] matches the significance of ZDATA,  
Bits[19:4].  
0x0  
R/W  
Address: 0x23, Reset: 0x00, Name: OFFSET_Z_L  
Table 39. Bit Descriptions for OFFSET_Z_L  
Bits  
Bit Name  
Settings Description  
Offset added to z-axis data after all other signal processing. Data is in twos complement 0x0  
format. The significance of OFFSET_Z, Bits[15:0] matches the significance of ZDATA,  
Bits[19:4].  
Reset Access  
[7:0]  
OFFSET_Z,  
Bits[7:0]  
R/W  
ACTIVITY ENABLE REGISTER  
Address: 0x24, Reset: 0x00, Name: ACT_EN  
Table 40. Bit Descriptions for ACT_EN  
Bits  
[7:3]  
2
Bit Name  
Reserved  
ACT_Z  
Settings  
Description  
Reset  
0x0  
Access  
R
Reserved.  
Z-axis data is a component of the activity detection algorithm.  
Y-axis data is a component of the activity detection algorithm.  
X-axis data is a component of the activity detection algorithm.  
0x0  
R/W  
R/W  
R/W  
1
ACT_Y  
0x0  
0
ACT_X  
0x0  
ACTIVITY THRESHOLD REGISTERS  
Address: 0x25, Reset: 0x00, Name: ACT_THRESH_H  
Table 41. Bit Descriptions for ACT_THRESH_H  
Bits  
Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0]  
ACT_THRESH,  
Bits[15:8]  
Threshold for activity detection. Acceleration magnitude must be above  
ACT_THRESH to trigger the activity counter. ACT_THRESH is an unsigned  
magnitude. The significance of ACT_THRESH, Bits[15:0] matches the  
significance of Bits[18:3] of XDATA, YDATA, and ZDATA.  
Address: 0x26, Reset: 0x00, Name: ACT_THRESH_L  
Table 42. Bit Descriptions for ACT_THRESH_L  
Bits  
Bit Name  
Settings Description  
Reset Access  
[7:0]  
ACT_THRESH,  
Bits[7:0]  
Threshold for activity detection. The acceleration magnitude must be greater  
0x0  
R/W  
than the value in ACT_THRESH to trigger the activity counter. ACT_THRESH is  
an unsigned magnitude. The significance of ACT_THRESH, Bits[15:0] matches  
the significance of Bits[18:3] of XDATA, YDATA, and ZDATA.  
ACTIVITY COUNT REGISTER  
Address: 0x27, Reset: 0x01, Name: ACT_COUNT  
Table 43. Bit Descriptions for ACT_COUNT  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ACT_COUNT  
Number of consecutive events above threshold (from ACT_THRESH) required to  
detect activity  
0x1  
R/W  
Rev. A | Page 37 of 42  
 
 
 
 
ADXL356/ADXL357  
Data Sheet  
FILTER SETTINGS REGISTER  
Address: 0x28, Reset: 0x00, Name: Filter  
Use this register to specify parameters for the internal high-pass and low-pass filters.  
Table 44. Bit Descriptions for Filter  
Bits  
Bit Name  
Settings Description  
Reset Access  
7
Reserved  
Reserved  
0x0  
0x0  
R
[6:4]  
HPF_CORNER  
−3 dB filter corner for the first-order, high-pass filter relative to the ODR  
R/W  
000 Not applicable, no high-pass filter enabled  
001 24.7 × 10−4 × ODR  
010 6.2084 × 10−4 × ODR  
011 1.5545 × 10−4 × ODR  
100 0.3862 × 10−4 × ODR  
101 0.0954 × 10−4 × ODR  
110 0.0238 × 10−4 × ODR  
ODR and low-pass filter corner  
0000 4000 Hz and 1000 Hz  
0001 2000 Hz and 500 Hz  
0010 1000 Hz and 250 Hz  
0011 500 Hz and 125 Hz  
[3:0]  
ODR_LPF  
0x0  
R/W  
0100 250 Hz and 62.5 Hz  
0101 125 Hz and 31.25 Hz  
0110 62.5 Hz and 15.625 Hz  
0111 31.25 Hz and 7.813 Hz  
1000 15.625 Hz and 3.906 Hz  
1001 7.813 Hz and 1.953 Hz  
1010 3.906 Hz and 0.977 Hz  
FIFO SAMPLES REGISTER  
Address: 0x29, Reset: 0x60, Name: FIFO_SAMPLES  
Use the FIFO_SAMPLES value to specify the number of samples to store in the FIFO. The default value of this register is 0x60 to avoid  
triggering the FIFO watermark interrupt.  
Table 45. Bit Descriptions for FIFO_SAMPLES  
Bits Bit Name  
Reserved  
[6:0] FIFO_SAMPLES  
Settings Description  
Reset Access  
7
Reserved.  
0x0  
R
Watermark number of samples stored in the FIFO that triggers a FIFO_FULL condition.  
Values range from 1 to 96.  
0x60  
R/W  
INTERRUPT PIN (INTx) FUNCTION MAP REGISTER  
Address: 0x2A, Reset: 0x00, Name: INT_MAP  
The INT_MAP register configures the interrupt pins. Bits[7:0] select which functions generate an interrupt on the INT± and INTꢀ pins.  
Multiple events can be configured. If the corresponding bit is set to ±, the function generates an interrupt on the interrupt pins.  
Table 46. Bit Descriptions for INT_MAP  
Bits  
Bit Name  
ACT_EN2  
OVR_EN2  
FULL_EN2  
RDY_EN2  
ACT_EN1  
OVR_EN1  
FULL_EN1  
RDY_EN1  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
Activity interrupt enable on INT2  
FIFO_OVR interrupt enable on INT2  
FIFO_FULL interrupt enable on INT2  
DATA_RDY interrupt enable on INT2  
Activity interrupt enable on INT1  
FIFO_OVR interrupt enable on INT1  
FIFO_FULL interrupt enable on INT1  
DATA_RDY interrupt enable on INT1  
Rev. A | Page 38 of 42  
6
5
4
3
2
1
0
 
 
 
 
Data Sheet  
ADXL356/ADXL357  
DATA SYNCHRONIZATION  
Address: 0x2B, Reset: 0x00, Name: Sync  
Use this register to control the external timing triggers.  
Table 47. Bit Descriptions for Sync  
Bits  
[7:3]  
2
Bit Name  
Reserved  
EXT_CLK  
EXT_SYNC  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
0x0  
R
Enable external clock. See Table 14 for configuration details.  
R/W  
R/W  
[1:0]  
Enable external synchronization control.  
00 Internal synchronization.  
01 External synchronization, no interpolation filter. After synchronization, and for  
EXT_SYNC within specification, DATA_RDY occurs on EXT_SYNC.  
10 External synchronization, interpolation filter, next available data indicated by  
DATA_RDY 14 to 8204 oscillator cycles later (longer delay for higher ODR_LPF setting),  
data represents a sample point group delay earlier in time.  
11 Reserved.  
I2C SPEED, INTERRUPT POLARITY, AND RANGE REGISTER  
Address: 0x2C, Reset: 0x81, Name: Range  
Table 48. Bit Descriptions for Range  
Bits  
Bit Name  
Settings  
Description  
I2C speed.  
Reset  
Access  
7
I2C_HS  
0x1  
R/W  
1
0
High speed mode.  
Fast mode.  
6
INT_POL  
Interrupt polarity.  
INT1 and INT2 are active low.  
INT1 and INT2 are active high.  
Reserved.  
0x0  
R/W  
0
1
[5:2]  
[1:0]  
Reserved  
Range  
0x0  
0x1  
R
Range.  
R/W  
01  
10  
11  
10 g.  
20 g.  
40 g.  
POWER CONTROL REGISTER  
Address: 0x2D, Reset: 0x01, Name: POWER_CTL  
Table 49. Bit Descriptions for POWER_CTL  
Bits  
[7:3]  
2
Bit Name  
Settings Description  
Reset Access  
Reserved  
Reserved.  
0x0  
R
DRDY_OFF  
TEMP_OFF  
Set to 1 to force the DRDY output to 0 in modes where it is normally signal data ready. 0x0  
R/W  
R/W  
1
Set to 1 to disable temperature processing. Temperature processing is also disabled  
when standby = 1.  
0x0  
0
Standby  
Standby or measurement mode.  
0x1  
R/W  
1
0
Standby mode. In standby mode, the device is in a low power state, and the  
temperature and acceleration datapaths are not operating. In addition, digital  
functions, including FIFO pointers, reset. Changes to the configuration setting of the  
device must be made when standby = 1. An exception is a high-pass filter that can be  
changed when the device is operating.  
Measurement mode.  
Rev. A | Page 39 of 42  
 
 
 
 
ADXL356/ADXL357  
Data Sheet  
SELF TEST REGISTER  
Address: 0x2E, Reset: 0x00, Name: SELF_TEST  
Refer to the Self Test section for more information on the operation of the self test feature.  
Table 50. Bit Descriptions for SELF_TEST  
Bits  
[7:2]  
1
Bit Name  
Reserved  
ST2  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
R
R/W  
R/W  
Reserved.  
Set to 1 to enable self test force  
Set to 1 to enable self test mode  
0
ST1  
0x0  
RESET REGISTER  
Address: 0x2F, Reset: 0x00, Name: Reset  
Table 51. Bit Descriptions for Reset  
Bits  
Bit Name  
Settings  
Description  
Write Code 0x52 to reset the device, similar to a power-on reset (POR)  
Reset  
0x0  
Access  
[7:0]  
Reset  
W
In case of a software reset, an unlikely race condition may occur in products with REVID = 0x0± or earlier. If the race condition occurs,  
some factory settings in the NVM load incorrectly to shadow registers (the registers from which the internal logic configures the sensor  
and calculates the output after a power-on or a software reset). The incorrect loading of the NVM affects overall performance of the  
sensor, such as an incorrect 0 g bias and other performance issues. The incorrect loading of NVM does not occur from a power-on or  
after a power cycle. To guarantee reliable operation of the sensor after a software reset, the user can access the shadow registers after a  
power-on, read and store the values on the host microprocessor, and compare the values read from the same shadow registers after a  
software reset. This method guarantees proper operation in all devices and under all conditions. The recommended steps are as follows:  
±. Read the shadow registers, Register 0x50 to Register 0x5ꢁ (five 8-bit registers) after power-up, but before any software reset.  
ꢀ. Store these values in a host device (for example, a host microprocessor).  
3. After each software reset, read the same five registers. If the values differ, perform a software reset again until they match.  
Rev. A | Page 40 of 42  
 
 
Data Sheet  
ADXL356/ADXL357  
PCB FOOTPRINT PATTERN  
Figure 77 shows the PCB footprint pattern and dimensions in millimeters.  
3.22mm  
0.68mm  
0.70mm  
0.70mm  
TRIANGULAR MARKER, DETAIL A, POINTS TO PIN 1,  
WHICH IS NOT ROUTED INTERNALLY AND DOES NOT  
NEED TO BE GROUNDED  
14 PLCS  
1.8mm × 0.68mm  
3.80mm  
Figure 77. PCB Footprint Pattern and Dimensions in Millimeters  
Rev. A | Page 41 of 42  
 
 
ADXL356/ADXL357  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
0.80  
BSC  
6.25  
6.00 SQ  
5.85  
2.25  
2.05  
1.85  
1.674 BSC  
0.510 REF  
0.30 SQ  
(PIN 1 INDEX)  
12  
14  
11  
1
DETAIL A  
5.60  
SQ  
3.81  
REF  
R 0.103  
(14 PLCS)  
0.508  
BSC  
8
4
7
5
R 0.25  
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
0.914  
BSC  
(4 PLCS)  
0.15  
BSC  
2.54 REF  
0.10 BSC  
2.20 REF  
R 0.203  
(14 PLCS)  
Figure 78. 14-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-14-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output  
Mode  
Measurement  
Range (g)  
Specified  
Voltage (V)  
Package  
Option  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
14-Terminal LCC  
14-Terminal LCC, 13Reel  
14-Terminal LCC, 7Reel  
14-Terminal LCC  
14-Terminal LCC, 13Reel  
14-Terminal LCC, 7Reel  
14-Terminal LCC  
ADXL356BEZ  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Digital  
Digital  
Digital  
10, 20  
10, 20  
10, 20  
10, 40  
10, 40  
10, 40  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
E-14-1  
E-14-1  
E-14-1  
E-14-1  
E-14-1  
E-14-1  
E-14-1  
E-14-1  
E-14-1  
ADXL356BEZ-RL  
ADXL356BEZ-RL7  
ADXL356CEZ  
ADXL356CEZ-RL  
ADXL356CEZ-RL7  
ADXL357BEZ  
ADXL357BEZ-RL  
ADXL357BEZ-RL7  
EVAL-ADXL356BZ  
EVAL-ADXL356CZ  
EVAL-ADXL357Z  
10, 20, 40  
10, 20, 40  
10, 20, 40  
14-Terminal LCC  
14-Terminal LCC  
Evaluation Board for ADXL356B  
Evaluation Board for ADXL356C  
Evaluation Board for ADXL357  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2017–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15429-6/20(A)  
Rev. A | Page 42 of 42  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY