ADuM4152ARIZ-RL [ADI]

5 kV, 7-Channel, SPIsolator Digital Isolators for SPI;
ADuM4152ARIZ-RL
型号: ADuM4152ARIZ-RL
厂家: ADI    ADI
描述:

5 kV, 7-Channel, SPIsolator Digital Isolators for SPI

文件: 总22页 (文件大小:447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 kV, 7-Channel,  
SPIsolator Digital Isolators for SPI  
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Supports up to 17 MHz SPI clock speed  
4 high speed, low propagation delay, SPI signal isolation  
channels  
V
1
2
20  
19  
V
DD1  
GND  
DD2  
GND  
ADuM4151  
ENCODE  
1
2
DECODE  
DECODE  
ENCODE  
DECODE  
MCLK  
MO  
3
18 SCLK  
ENCODE  
Three 250 kbps data channels  
SI  
4
17  
16  
15  
14  
13  
12  
11  
20-lead SOIC_IC package with 8.3 mm creepage  
High temperature operation: 125°C  
High common-mode transient immunity: >25 kV/µs  
Safety and regulatory approvals  
DECODE  
SO  
SSS  
MI  
5
ENCODE  
MSS  
6
V
V
7
IA  
OA  
UL recognition per UL 1577  
CONTROL  
BLOCK  
CONTROL  
BLOCK  
V
V
8
IB  
OB  
5000 V rms for 1 minute SOIC long package  
CSA Component Acceptance Notice 5A  
VDE certificate of conformity  
V
V
9
OC  
IC  
GND  
GND  
1
10  
2
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
Maximum working insulation voltage (VIORM): 849 V peak  
Figure 1. ADuM4151 Functional Block Diagram  
V
1
2
20  
19  
V
DD1  
DD2  
ADuM4152  
ENCODE  
APPLICATIONS  
GND  
GND  
1
2
DECODE  
DECODE  
ENCODE  
DECODE  
Industrial programmable logic controllers (PLCs)  
Sensor isolation  
MCLK  
MO  
3
18 SCLK  
ENCODE  
SI  
4
17  
16  
15  
14  
13  
12  
11  
DECODE  
GENERAL DESCRIPTION  
SO  
SSS  
MI  
5
ENCODE  
The ADuM4151/ADuM4152/ADuM41531 are 7-channel,  
SPIsolator™ digital isolators optimized for isolated serial peripheral  
interfaces (SPIs). Based on the Analog Devices, Inc., iCoupler®  
chip scale transformer technology, the low propagation delay in  
MSS  
6
V
V
7
IA  
OA  
CONTROL  
BLOCK  
CONTROL  
BLOCK  
V
V
8
OB  
IB  
V
V
9
OC  
IC  
SS  
the CLK, MO/SI, MI/SO, and SPI bus signals supports SPI  
clock rates of up to 17 MHz. These channels operate with 14 ns  
propagation delay and 1 ns jitter to optimize timing for SPI.  
GND  
GND  
1
10  
2
Figure 2. ADuM4152 Functional Block Diagram  
The ADuM4151/ADuM4152/ADuM4153 isolators also provide  
three additional independent low data rate isolation channels in  
three different channel direction combinations. Data in the slow  
channels is sampled and serialized for a 250 kbps data rate with  
up to 2.5 µs of jitter in the low speed channels.  
V
1
2
20  
19  
V
DD1  
DD2  
ADuM4153  
ENCODE  
GND  
GND  
1
2
DECODE  
DECODE  
ENCODE  
DECODE  
MCLK  
MO  
3
18 SCLK  
ENCODE  
SI  
4
17  
16  
15  
14  
13  
12  
11  
DECODE  
SO  
SSS  
MI  
5
ENCODE  
MSS  
6
V
V
7
OA  
IA  
CONTROL  
BLOCK  
CONTROL  
BLOCK  
V
V
8
OB  
IB  
V
V
9
OC  
IC  
GND  
GND  
1
10  
2
Figure 3. ADuM4153 Functional Block Diagram  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,262,600; and 7,075,329. Other patents are pending.  
Rev. A Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 12  
Absolute Maximum Ratings ......................................................... 13  
ESD Caution................................................................................ 13  
Pin Configurations and Function Descriptions......................... 14  
Typical Performance Characteristics ........................................... 17  
Applications Information .............................................................. 18  
Introduction................................................................................ 18  
Printed Circuit Board (PCB) Layout ....................................... 19  
Propagation Delay Related Parameters ................................... 19  
DC Correctness and Magnetic Field Immunity..................... 19  
Power Consumption .................................................................. 20  
Insulation Lifetime..................................................................... 20  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3.3 V Operation ............................ 5  
Electrical Characteristics—Mixed 5 V/3.3 V Operation ........ 7  
Electrical Characteristics—Mixed 3.3 V/5 V Operation ........ 9  
Package Characteristics ............................................................. 10  
Regulatory Information............................................................. 11  
Insulation and Safety Related Specifications .......................... 11  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12  
Insulation Characteristics.......................................................... 12  
REVISION HISTORY  
3/15—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Changes to Table 2............................................................................ 3  
Changes to Table 5............................................................................ 5  
Changes to Table 8............................................................................ 7  
Changes to Table 11.......................................................................... 9  
Changes to Table 14........................................................................ 11  
Changes to Table 16........................................................................ 12  
Changes to High Speed Channels Section .................................. 18  
10/14—Revision 0: Initial Version  
Rev. A | Page 2 of 22  
 
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All typical specifications are at TA = 25°C and VDD1 = VDD2 = 5 V. Minimum and maximum specifications apply over the entire  
recommended operation range: 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching  
specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 1. Switching Specifications  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
MCLK, MO, SO  
SPI Clock Rate  
SPIMCLK  
DRFAST  
tPHL, tPLH  
PW  
1
2
25  
17  
34  
14  
MHz  
Mbps  
ns  
Data Rate Fast (MO, SO)  
Propagation Delay  
Pulse Width  
Within PWD limit  
50% input to 50% output  
Within PWD limit  
12  
100  
12.5  
ns  
Pulse Width Distortion  
Codirectional Channel Matching1  
Jitter, High Speed  
MSS  
PWD  
tPSKCD  
JHS  
3
3
2
2
ns  
ns  
ns  
|tPLH − tPHL|  
1
1
Data Rate Fast  
Propagation Delay  
Pulse Width  
Pulse Width Distortion  
Setup Time2  
DRFAST  
tPHL, tPLH  
PW  
PWD  
MSSSETUP  
JHS  
2
25  
34  
25  
Mbps  
ns  
ns  
ns  
ns  
Within PWD limit  
50% input to 50% output  
Within PWD limit  
21  
21  
100  
1.5  
12.5  
10  
3
3
|tPLH − tPHL|  
Jitter, High Speed  
VIA, VIB, VIC  
1
1
ns  
Data Rate Slow  
Propagation Delay  
Pulse Width  
DRSLOW  
tPHL, tPLH  
PW  
250  
2.6  
250  
2.6  
kbps  
µs  
µs  
Within PWD limit  
50% input to 50% output  
Within PWD limit  
0.1  
4
0.1  
4
Jitter, Low Speed  
VIx3 Minimum Input Skew4  
JLS  
tVIx SKEW  
2.5  
2.5  
µs  
ns  
3
10  
10  
1 Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier.  
2
MSS  
MSS  
The  
signal is glitch filtered in both speed grades, whereas the other fast signals are not glitch filtered in the B grade. To guarantee that  
reaches the output  
MSS  
ahead of another fast signal, set up  
prior to the competing signal by different times depending on speed grade.  
3 VIx = VIA, VIB, or VIC.  
4 An internal asynchronous clock not available to users samples the low speed signals. If edge sequence in codirectional channels is critical to the end application, the  
leading pulse must be at least 1 tVIx SKEW time ahead of a later pulse to guarantee the correct order or simultaneous arrival at the output.  
Table 2. Supply Current  
1 MHz, A Grade  
17 MHz, B Grade  
Device Number  
Symbol  
IDD1  
IDD2  
Min  
Typ  
4.0  
6.0  
4.8  
6.5  
4.0  
6.0  
Max  
Min  
Typ  
14.0  
13.5  
14.0  
14.0  
14.0  
13.3  
Max  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Test Conditions/Comments  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
ADuM4151  
8.5  
11  
22  
23  
ADuM4152  
ADuM4153  
IDD1  
IDD2  
8.5  
10.5  
8.5  
21.5  
22.5  
22  
IDD1  
IDD2  
10.5  
21  
Rev. A | Page 3 of 22  
 
 
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
Table 3. For All Models1, 2, 3  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
MCLK, MSS, MO, SO, VIA, VIB, VIC  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
Input Current per Channel  
SCLK, SSS, MI, SI, VOA, VOB, VOC  
Logic High Output Voltages  
VIH  
VIL  
VIHYST  
II  
0.7 × VDDx  
V
V
mV  
µA  
0.3 × VDDx  
500  
−1  
+0.01 +1  
0 V ≤ VINPUT ≤ VDDx  
VOH  
VDDx − 0.1  
VDDx − 0.4  
5.0  
4.8  
0.0  
0.2  
2.6  
V
V
V
V
V
IOUTPUT = −20 µA, VINPUT = VIH  
IOUTPUT = −4 mA, VINPUT = VIH  
IOUTPUT = 20 µA, VINPUT = VIL  
IOUTPUT = 4 mA, VINPUT = VIL  
Logic Low Output Voltages  
VOL  
0.1  
0.4  
VDD1, VDD2 Undervoltage Lockout  
Supply Current per High Speed Channel  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
Supply Current for All Low Speed Channels  
Quiescent Side 1 Current  
UVLO  
IDDI(D)  
IDDO(D)  
0.080  
0.046  
mA/Mbps  
mA/Mbps  
IDD1(Q)  
IDD2Q)  
4.3  
6.1  
mA  
mA  
Quiescent Side 2 Current  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity4  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
10% to 90%  
VINPUT = VDDx, VCM = 1000 V,  
25  
transient magnitude = 800 V  
1 VDDx = VDD1 or VDD2  
.
2
MSS  
, MO, SO, VIA, VIB, or VIC pins.  
SSS  
, MI, SI, VOA, VOB, or VOC pins.  
VINPUT is the input voltage of any of the MCLK,  
IOUTPUT is the output current of any of the SCLK,  
3
4 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining output voltages within the VOH and VOL limits. The common-mode  
voltage slew rates apply to both rising and falling common-mode voltage edges.  
Rev. A | Page 4 of 22  
 
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION  
All typical specifications are at TA = 25°C and VDD1 = VDD2 = 3.3 V. Minimum and maximum specifications apply over the entire  
recommended operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching  
specifications are tested with CL =15 pF and CMOS signal levels, unless otherwise noted.  
Table 4. Switching Specifications  
A Grade  
B Grade  
Parameter  
Symbol  
Min Typ Max Min Typ Max Unit  
Test Conditions/Comments  
MCLK, MO, SO  
SPI Clock Rate  
SPIMCLK  
DRFAST  
tPHL, tPLH  
PW  
1
2
30  
12.5  
34  
20  
MHz  
Mbps Within PWD limit  
Data Rate Fast (MO, SO)  
Propagation Delay  
Pulse Width  
Pulse Width Distortion  
Codirectional Channel Matching1 tPSKCD  
ns  
ns  
ns  
ns  
ns  
50% input to 50% output  
Within PWD limit  
|tPLH − tPHL  
100  
12.5  
PWD  
3
4
3
2
|
Jitter, High Speed  
MSS  
JHS  
1
1
Data Rate Fast  
Propagation Delay  
Pulse Width  
Pulse Width Distortion  
Setup Time2  
DRFAST  
tPHL, tPLH  
PW  
PWD  
MSSSETUP  
JLS  
2
30  
34  
30  
Mbps Within PWD limit  
ns  
ns  
ns  
ns  
ns  
50% input to 50% output  
Within PWD limit  
|tPLH − tPHL  
100  
1.5  
12.5  
10  
3
3
|
Jitter, Low Speed  
2.5  
2.5  
VIA, VIB, VIC  
Data Rate Slow  
Propagation Delay  
Pulse Width  
DRSLOW  
tPHL, tPLH  
PW  
250  
2.6  
250  
2.6  
kbps  
µs  
µs  
Within PWD limit  
50% input to 50% output  
Within PWD limit  
0.1  
4
0.1  
4
Jitter, Low Speed  
VIx3 Minimum Input Skew4  
JLS  
tVIx SKEW  
2.5  
2.5  
µs  
ns  
|tPLH − tPHL|  
3
10  
10  
1 Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier.  
2
MSS  
MSS  
The  
signal is glitch filtered in both speed grades, whereas the other fast signals are not glitch filtered in the B grade. To guarantee that  
reaches the output  
MSS  
ahead of another fast signal, set up  
prior to the competing signal by different times depending on speed grade.  
3 VIx = VIA, VIB, or VIC.  
4 An internal asynchronous clock not available to users samples the low speed signals. If edge sequence in codirectional channels is critical to the end application, the  
leading pulse must be at least 1 tVIx SKEW time ahead of a later pulse to guarantee the correct order or simultaneous arrival at the output.  
Table 5. Supply Current  
1 MHz, A Grade/B Grade  
17 MHz, B Grade  
Device Number  
Symbol  
IDD1  
IDD2  
Min  
Typ  
3.8  
5.1  
3.7  
5.2  
3.7  
5.2  
Max  
7
8
Min  
Typ  
10.5  
9.0  
Max  
18  
17  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Test Conditions/Comments  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
ADuM4151  
ADuM4152  
ADuM4153  
IDD1  
IDD2  
6.5  
8
11.7  
10.0  
11.7  
10.0  
18  
16  
IDD1  
IDD2  
6.5  
9
18  
15  
Rev. A | Page 5 of 22  
 
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
Table 6. For All Models1, 2, 3  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
MCLK, MSS, MO, SO, VIA, VIB, VIC  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
Input Current per Channel  
SCLK, SSS, MI, SI, VOA, VOB, VOC  
Logic High Output Voltages  
VIH  
VIL  
VIHYST  
II  
0.7 × VDDx  
V
V
mV  
µA  
0.3 × VDDx  
500  
−1  
+0.01 +1  
0 V ≤ VINPUT ≤ VDDx  
VOH  
VDDx − 0.1  
VDDx − 0.4  
5.0  
4.8  
0.0  
0.2  
2.6  
V
V
V
V
V
IOUTPUT = −20 µA, VINPUT = VIH  
IOUTPUT = −4 mA, VINPUT = VIH  
IOUTPUT = 20 µA, VINPUT = VIL  
IOUTPUT = 4 mA, VINPUT = VIL  
Logic Low Output Voltages  
VOL  
0.1  
0.4  
VDD1, VDD2 Undervoltage Lockout  
Supply Current per High Speed Channel  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
Supply Current for All Low Speed Channels  
Quiescent Side 1 Current  
UVLO  
IDDI(D)  
IDDO(D)  
0.086  
0.019  
mA/Mbps  
mA/Mbps  
IDD1(Q)  
IDD2Q)  
2.9  
4.7  
mA  
mA  
Quiescent Side 2 Current  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity4  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
10% to 90%  
VINPUT = VDDx, VCM = 1000 V,  
25  
transient magnitude = 800 V  
1 VDDx = VDD1 or VDD2  
.
2
MSS  
, MO, SO, VIA, VIB, or VIC pins.  
SSS  
, MI, SI, VOA, VOB, or VOC pins.  
VINPUT is the input voltage of any of the MCLK,  
IOUTPUT is the output current of any of the SCLK,  
3
4 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining output voltages within the VOH and VOL limits. The common-mode  
voltage slew rates apply to both rising and falling common-mode voltage edges.  
Rev. A | Page 6 of 22  
 
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V. Minimum and maximum specifications apply over the entire  
recommended operation range: 4.5 V ≤ VDD1 ≤ 5.5 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching  
specifications are tested with CL =15 pF and CMOS signal levels, unless otherwise noted.  
Table 7. Switching Specifications  
A Grade  
B Grade  
Parameter  
Symbol  
Min Typ Max Min Typ Max Unit  
Test Conditions/Comments  
MCLK, MO, SO  
SPI Clock Rate  
SPIMCLK  
DRFAST  
tPHL, tPLH  
PW  
1
2
27  
15.6  
34  
16  
MHz  
1/(4 × tPHL)  
Data Rate Fast (MO, SO)  
Propagation Delay  
Pulse Width  
Pulse Width Distortion  
Codirectional Channel Matching1 tPSKCD  
Mbps Within PWD limit  
ns  
ns  
ns  
ns  
ns  
50% input to 50% output  
Within PWD limit  
|tPLH − tPHL  
100  
12.5  
PWD  
3
3
3
2
|
Jitter, High Speed  
MSS  
JHS  
1
1
1
1
Data Rate Fast  
Propagation Delay  
Pulse Width  
Pulse Width Distortion  
Setup Time2  
DRFAST  
tPHL, tPLH  
PW  
PWD  
MSSSETUP  
JHS  
2
27  
34  
26  
Mbps Within PWD limit  
ns  
ns  
ns  
ns  
ns  
50% input to 50% output  
Within PWD limit  
|tPLH − tPHL  
100  
1.5  
12.5  
10  
3
3
|
Jitter, High Speed  
VIA, VIB, VIC  
Data Rate Slow  
Propagation Delay  
Pulse Width  
DRSLOW  
tPHL, tPLH  
PW  
250  
2.6  
250  
2.6  
kbps  
µs  
µs  
Within PWD limit  
50% input to 50% output  
Within PWD limit  
0.1  
4
0.1  
4
Jitter, Low Speed  
VIx3 Minimum Input Skew4  
JLS  
tVIx SKEW  
2.5  
2.5  
µs  
ns  
3
10  
10  
1 Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier.  
2
MSS  
MSS  
The  
signal is glitch filtered in both speed grades, whereas the other fast signals are not glitch filtered in the B grade. To guarantee that  
reaches the output  
MSS  
ahead of another fast signal, set up  
prior to the competing signal by different times depending on speed grade.  
3 VIx = VIA, VIB, or VIC.  
4 An internal asynchronous clock not available to users samples the low speed signals. If edge sequence in codirectional channels is critical to the end application, the  
leading pulse must be at least 1 tVIx SKEW time ahead of a later pulse to guarantee the correct order or simultaneous arrival at the output.  
Table 8. Supply Current  
1 MHz, A Grade/B Grade  
17 MHz, B Grade  
Device Number  
Symbol  
IDD1  
IDD2  
Min  
Typ  
4.0  
4.6  
4.8  
5.0  
4.0  
4.7  
Max  
8.5  
8
Min  
Typ  
13.9  
9.0  
Max  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Test Conditions/Comments  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
ADuM4151  
22  
17  
ADuM4152  
ADuM4153  
IDD1  
IDD2  
8.5  
8
14.0  
10.0  
14.0  
10.0  
21.5  
16  
IDD1  
IDD2  
8.5  
9
22  
15  
Rev. A | Page 7 of 22  
 
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
Table 9. For All Models1, 2, 3  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
MCLK, MSS, MO, SO, VIA, VIB, VIC  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
Input Current per Channel  
SCLK, SSS, MI, SI, VOA, VOB, VOC  
Logic High Output Voltages  
VIH  
VIL  
VIHYST  
II  
0.7 × VDDx  
V
V
mV  
µA  
0.3 × VDDx  
500  
−1  
+0.01 +1  
0 V ≤ VINPUT ≤ VDDx  
VOH  
VDDX − 0.1  
VDDX − 0.4  
5.0  
4.8  
0.0  
0.2  
2.6  
V
V
V
V
V
IOUTPUT = −20 µA, VINPUT = VIH  
IOUTPUT = −4 mA, VINPUT = VIH  
IOUTPUT = 20 µA, VINPUT = VIL  
IOUTPUT = 4 mA, VINPUT = VIL  
Logic Low Output Voltages  
VOL  
0.1  
0.4  
VDD1, VDD2 Undervoltage Lockout  
Supply Current for All Low Speed Channels  
Quiescent Side 1 Current  
UVLO  
IDD1(Q)  
IDD2Q)  
4.3  
4.7  
mA  
mA  
Quiescent Side 2 Current  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity4  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
10% to 90%  
VINPUT = VDDX, VCM = 1000 V,  
25  
transient magnitude = 800 V  
1 VDDx = VDD1 or VDD2  
.
2
MSS  
, MO, SO, VIA, VIB, or VIC pins.  
SSS  
, MI, SI, VOA, VOB, VOC pins.  
VINPUT is the input voltage of any of the MCLK,  
IOUTPUT is the output current of any of the SCLK,  
3
4 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining output voltages within the VOH and VOL limits. The common-mode  
voltage slew rates apply to both rising and falling common-mode voltage edges.  
Rev. A | Page 8 of 22  
 
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
ELECTRICAL CHARACTERISTICS—MIXED 3.3 V/5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 3.3 V, and VDD2 = 5 V. Minimum and maximum specifications apply over the entire  
recommended operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching  
specifications are tested with CL =15 pF and CMOS signal levels, unless otherwise noted.  
Table 10. Switching Specifications  
A Grade  
Symbol Min Typ  
B Grade  
Max Min Typ  
Parameter  
Max Unit  
Test Conditions/Comments  
MCLK, MO, SO  
SPI Clock Rate  
SPIMCLK  
DRFAST  
tPHL, tPLH  
PW  
PWD  
tPSKCD  
JHS  
1
2
27  
15.6 MHz  
Data Rate Fast (MO, SO)  
Propagation Delay  
Pulse Width  
Pulse Width Distortion  
Codirectional Channel Matching1  
Jitter, High Speed  
MSS  
34  
16  
Mbps Within PWD limit  
ns  
ns  
ns  
ns  
ns  
50% input to 50% output  
Within PWD limit  
|tPLH − tPHL|  
100  
100  
12.5  
3
5
3
2
1
1
1
1
Data Rate Fast  
Propagation Delay  
Pulse Width  
Pulse Width Distortion  
Setup Time2  
DRFAST  
tPHL, tPLH  
PW  
PWD  
MSSSETUP 1.5  
JHS  
2
27  
34  
27  
Mbps Within PWD limit  
ns  
ns  
ns  
ns  
ns  
50% input to 50% output  
Within PWD limit  
|tPLH − tPHL  
12.5  
10  
2
3
|
Jitter, High Speed  
VIA, VIB, VIC  
Data Rate  
Propagation Delay  
Pulse Width  
DRSLOW  
tPHL, tPLH  
PW  
250  
2.6  
250  
2.6  
kbps  
µs  
µs  
Within PWD limit  
50% input to 50% output  
Within PWD limit  
0.1  
4
0.1  
4
Jitter, Low Speed  
VIx3 Minimum Input Skew4  
JLS  
tVIx SKEW  
2.5  
2.5  
µs  
ns  
|tPLH − tPHL|  
3
10  
10  
1 Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier.  
2
MSS  
MSS  
The  
signal is glitch filtered in both speed grades, whereas the other fast signals are not glitch filtered in the B grade. To guarantee that  
reaches the output  
ahead of another fast signal, it must be set up prior to the competing signal by different times depending on speed grade.  
3 VIx = VIA, VIB, or VIC.  
4 An internal asynchronous clock not available to users samples the low speed signals. If edge sequence in codirectional channels is critical to the end application, the  
leading pulse must be at least 1 tVIx SKEW time ahead of a later pulse to guarantee the correct order or simultaneous arrival at the output.  
Table 11. Supply Current  
1 MHz, A Grade/B Grade  
17 MHz, B Grade  
Device Number  
Symbol  
IDD1  
IDD2  
Min  
Typ  
2.8  
6.0  
3.5  
6.5  
2.8  
6.0  
Max  
7
10.5  
6.5  
10.5  
6.5  
10.5  
Min  
Typ  
10.5  
13.0  
11.7  
13.4  
11.7  
13.4  
Max  
18  
23  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Test Conditions/Comments  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
CL = 0 pF, low speed channels  
ADuM4151  
ADuM4152  
ADuM4153  
IDD1  
IDD2  
18  
22.5  
18  
IDD1  
IDD2  
21  
Rev. A | Page 9 of 22  
 
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
Table 12. For All Models1, 2, 3  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
MCLK, MSS, MO, SO, VIA, VIB, VIC  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
Input Current per Channel  
SCLK, SSS, MI, SI, VOA, VOB, VOC  
Logic High Output Voltages  
VIH  
VIL  
VIHYST  
II  
0.7 × VDDx  
V
V
mV  
µA  
0.3 × VDDx  
500  
−1  
+0.01 +1  
0 V ≤ VINPUT ≤ VDDx  
VOH  
VDDx − 0.1  
VDDx − 0.4  
5.0  
4.8  
0.0  
0.2  
2.6  
V
V
V
V
V
IOUTPUT = −20 µA, VINPUT = VIH  
IOUTPUT = −4 mA, VINPUT = VIH  
IOUTPUT = 20 µA, VINPUT = VIL  
IOUTPUT = 4 mA, VINPUT = VIL  
Logic Low Output Voltages  
VOL  
0.1  
0.4  
VDD1, VDD2 Undervoltage Lockout  
Supply Current for All Low Speed Channels  
Quiescent Side 1 Current  
UVLO  
IDD1(Q)  
IDD2Q)  
2.9  
6.1  
mA  
mA  
Quiescent Side 2 Current  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity4  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/µs  
10% to 90%  
VINPUT = VDDX, VCM = 1000 V,  
25  
transient magnitude = 800 V  
1 VDDx = VDD1 or VDD2  
.
2
MSS  
, MO, SO, VIA, VIB, VIC pins.  
SSS  
, MI, SI, VOA, VOB, VOC pins.  
VINPUT is the input voltage of any of the MCLK,  
IOUTPUT is the output current of any of the SCLK,  
3
4 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining output voltages within the VOH and VOL limits. The common-mode  
voltage slew rates apply to both rising and falling common-mode voltage edges.  
PACKAGE CHARACTERISTICS  
Table 13.  
Parameter  
Symbol Min Typ Max Unit  
Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1012  
1.0  
4.0  
46  
pF  
pF  
f = 1 MHz  
IC Junction to Ambient Thermal Resistance θJA  
°C/W Thermocouple located at center of package underside  
1 The device is considered a 2-terminal device: Pin 1 through Pin 10 are shorted together, and Pin 11 through Pin 20 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
Rev. A | Page 10 of 22  
 
 
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
REGULATORY INFORMATION  
The ADuM4151/ADuM4152/ADuM4153 are approved by the organizations listed in Table 14. See Table 19 and the Insulation Lifetime  
section for the recommended maximum working voltages for specific cross isolation waveforms and insulation levels.  
Table 14.  
UL  
CSA  
VDE  
Recognized Under UL 1577  
Approved under CSA Component Acceptance  
Notice 5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
Component Recognition Program1  
5000 V rms Single Protection  
Basic insulation per CSA 60950-1-07+A1+A2  
and IEC 60950-12nd Ed+A1+A2., 800 V rms  
(1131 V peak) maximum working voltage3  
Reinforced insulation, 849 V peak  
Reinforced Insulation per CSA 60950-1-  
07+A1+A2 and IEC 60950-1 2nd Ed.+A1+A2,  
400 V rms (565 V peak) maximum working  
voltage  
Reinforced insulation (2MOPP) per IEC 60601-1  
Ed.3.1, 250 V rms (353 V peak) maximum  
working  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each model is proof tested by applying an insulation test voltage ≥6000 V rms for 1 second (current leakage detection limit = 10 µA).  
2 In accordance with DIN V VDE V 0884-10, each model is proof tested by applying an insulation test voltage ≥ 1590 V peak for 1 second (partial discharge detection limit = 5 pC).  
The asterisk (*) marked on the component designates DIN V VDE V 0884-10 approval.  
3 Use at working voltages above 400 VAC RMS shortens lifetime of the isolator significantly. See Table 19 for recommended maximum working voltages under ac and dc conditions.  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 15.  
Parameter  
Symbol Value  
Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
5000  
8.3  
V rms  
1-minute duration  
L(I01)  
L(I02)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum External Tracking (Creepage)  
8.3  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
0.017  
>400  
II  
mm min Insulation distance through insulation  
CTI  
V
DIN IEC 112/VDE 0303, Part 1  
Material group (DIN VDE 0110, 1/89, Table 1)  
Rev. A | Page 11 of 22  
 
 
 
 
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marked on packages denotes DIN V VDE V 0884-10 approval.  
Table 16.  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
Vpd(m)  
849  
1592  
V peak  
V peak  
VIORM × 1.875 = Vpd(m), 100% production test,  
t
ini = tm = 1 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
Vpd(m)  
Vpd(m)  
1274  
1019  
V peak  
V peak  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec,  
and Subgroup 3  
partial discharge < 5 pC  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
VIOTM  
VIOSM  
6000  
6250  
V peak  
V peak  
VIOSM(TEST) = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Safety Limiting Values  
Maximum value allowed in the event of a  
failure (see Figure 4)  
Case Temperature  
Safety Total Dissipated Power  
Insulation Resistance at TS  
TS  
PS  
RS  
130  
2.4  
>109  
°C  
W
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RECOMMENDED OPERATING CONDITIONS  
Table 17.  
Parameter  
Symbol  
TA  
VDD1, VDD2  
Value  
Operating Temperature Range  
Supply Voltage Range1  
Input Signal Rise and Fall Times  
−40°C to +125°C  
3.0 V to 5.5 V  
1.0 ms  
1 See the DC Correctness and Magnetic Field Immunity section for information  
on the immunity to the external magnetic fields.  
0
50  
100  
150  
AMBIENT TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN V VDE V 0884-10  
Rev. A | Page 12 of 22  
 
 
 
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 19. Maximum Continuous Working Voltage1  
Parameter  
Value  
Constraint  
Table 18.  
Parameter  
60 Hz AC Voltage  
400 V rms  
20-year lifetime at  
0.1% failure rate, zero  
average voltage  
Limited by the  
creepage of the  
package,  
Rating  
Storage Temperature (TST) Range  
Ambient Operating Temperature (TA) −40°C to +125°C  
Range  
−65°C to +150°C  
DC Voltage  
1173 V peak  
Supply Voltages (VDD1, VDD2  
)
−0.5 V to +7.0 V  
Input Voltages (VIA, VIB, VIC, MCLK, MO, −0.5 V to VDDx + 0.5 V  
SO, MSS)  
Pollution Degree 2,  
Material Group II2, 3  
Output Voltages (SCLK, SSS, MI, SI,  
VOA, VOB, VOC)  
Average Current per Output Pin1  
Common-Mode Transients2  
−0.5 V to VDDx + 0.5 V  
1 See the Insulation Lifetime section for more details.  
2 Other pollution degree and material group requirements yield a different limit.  
3 Some system level standards allow components to use the printed wiring  
board (PWB) creepage values. The supported dc voltage may be higher for  
those standards.  
−10 mA to +10 mA  
−100 kV/µs to +100 kV/µs  
1 See Figure 4 for maximum safety rated current values across temperature.  
2 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum ratings may cause latch-up  
or permanent damage.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 13 of 22  
 
 
 
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
9
V
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DD1  
GND  
DD2  
GND  
1
2
MCLK  
MO  
SCLK  
SI  
ADuM4151  
TOP VIEW  
(Not to Scale)  
MI  
SO  
MSS  
SSS  
V
V
IA  
OA  
V
V
IB  
OB  
V
V
OC  
IC  
GND 10  
GND  
2
1
Figure 5. ADuM4151 Pin Configuration  
Table 20. ADuM4151 Pin Function Descriptions  
Pin No. Mnemonic Direction Description  
1
VDD1  
Power  
Input Power Supply for Isolator Side 1. A bypass capacitor from VDD1 to GND1 to local ground is  
required.  
2, 10  
GND1  
MCLK  
MO  
MI  
MSS  
Return  
Clock  
Input  
Output  
Input  
Ground 1. Ground reference for Isolator Side 1.  
SPI Clock from the Master Controller.  
SPI Data from the Master to the Slave MO/SI Line.  
SPI Data from the Slave to the Master MI/SO Line.  
Slave Select from the Master. This signal uses an active low logic. The slave select pin requires a 10 ns  
setup time from the next clock or data edge.  
3
4
5
6
7
VIA  
Input  
Low Speed Data Input A.  
8
VIB  
Input  
Low Speed Data Input B.  
9
VOC  
GND2  
VIC  
VOB  
VOA  
SSS  
SO  
SI  
SCLK  
VDD2  
Output  
Return  
Input  
Output  
Output  
Output  
Input  
Output  
Output  
Power  
Low Speed Data Output C.  
Ground 2. Ground reference for Isolator Side 2.  
Low Speed Data Input C.  
Low Speed Data Output B.  
Low Speed Data Output A.  
Slave Select to the Slave. This signal uses an active low logic.  
SPI Data from the Slave to the Master MI/SO Line.  
SPI Data from the Master to the Slave MO/SI Line.  
SPI Clock from the Master Controller.  
Input Power Supply for Isolator Side 2. A bypass capacitor from VDD2 to GND2 to local ground is  
required.  
11, 19  
12  
13  
14  
15  
16  
17  
18  
20  
Rev. A | Page 14 of 22  
 
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
V
1
2
3
4
5
6
7
8
9
V
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DD1  
GND  
DD2  
GND  
1
2
MCLK  
MO  
SCLK  
SI  
ADuM4152  
MI  
SO  
TOP VIEW  
(Not to Scale)  
MSS  
SSS  
V
V
IA  
OA  
V
V
OB  
IB  
V
V
OC  
IC  
GND 10  
GND  
2
1
Figure 6. ADuM4152 Pin Configuration  
Table 21. ADuM4152 Pin Function Descriptions  
Pin No. Mnemonic Direction Description  
1
2, 10  
3
4
5
6
VDD1  
GND1  
MCLK  
MO  
MI  
MSS  
Power  
Return  
Clock  
Input  
Output  
Input  
Input Power Supply for Isolator Side 1. A bypass capacitor from VDD1 to GND1 to local ground is required.  
Ground 1. Ground reference for Isolator Side 1.  
SPI Clock from the Master Controller.  
SPI Data from the Master to the Slave MO/SI Line.  
SPI Data from the Slave to the Master MI/SO Line.  
Slave Select from the Master. This signal uses an active low logic. The slave select pin requires a 10 ns  
setup time from the next clock or data edge.  
7
VIA  
Input  
Low Speed Data Input A.  
8
9
VOB  
VOC  
GND2  
VIC  
Output  
Output  
Return  
Input  
Low Speed Data Output B.  
Low Speed Data Output C.  
Ground 2. Ground reference for Isolator Side 2.  
Low Speed Data Input C.  
Low Speed Data Input B.  
11, 19  
12  
13  
14  
15  
16  
17  
18  
20  
VIB  
Input  
VOA  
SSS  
SO  
SI  
SCLK  
VDD2  
Output  
Output  
Input  
Output  
Output  
Power  
Low Speed Data Output A.  
Slave Select to the Slave. This signal uses an active low logic.  
SPI Data from the Slave to the Master MI/SO Line.  
SPI Data from the Master to the Slave MO/SI Line.  
SPI Clock from the Master Controller.  
Input Power Supply for Isolator Side 2. A bypass capacitor from VDD2 to GND2 to local ground is required.  
Rev. A | Page 15 of 22  
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
V
1
2
3
4
5
6
7
8
9
V
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DD1  
GND  
DD2  
GND  
1
2
MCLK  
MO  
SCLK  
SI  
ADuM4153  
TOP VIEW  
(Not to Scale)  
MI  
SO  
MSS  
SSS  
V
V
OA  
IA  
V
V
OB  
IB  
V
V
OC  
IC  
GND 10  
GND  
2
1
Figure 7. ADuM4153 Pin Configuration  
Table 22. ADuM4153 Pin Function Descriptions  
Pin No. Mnemonic Direction Description  
1
2, 10  
3
4
5
6
VDD1  
GND1  
MCLK  
MO  
MI  
MSS  
Power  
Return  
Clock  
Input  
Output  
Input  
Input Power Supply for Isolator Side 1. A bypass capacitor from VDD1 to GND1 to local ground is required.  
Ground 1. Ground reference for Isolator Side 1.  
SPI Clock from the Master Controller.  
SPI Data from the Master to the Slave MO/SI Line  
SPI Data from the Slave to the Master MI/SO Line.  
Slave Select from the Master. This signal uses an active low logic. The slave select pin requires a 10 ns  
setup time from the next clock or data edge.  
7
8
9
VOA  
VOB  
VOC  
GND2  
VIC  
VIB  
VIA  
SSS  
SO  
SI  
Output  
Output  
Output  
Return  
Input  
Low Speed Data Output A.  
Low Speed Data Output B.  
Low Speed Data Output C.  
Ground 1. Ground reference for Isolator Side 2.  
Low Speed Data Input C.  
Low Speed Data Input B.  
Low Speed Data Input A.  
Slave Select to the Slave. This signal uses an active low logic.  
SPI Data from the Slave to the Master MI/SO Line.  
SPI Data from the Master to the Slave MO/SI Line.  
SPI Clock from the Master Controller.  
11, 19  
12  
13  
14  
15  
16  
17  
18  
20  
Input  
Input  
Output  
Input  
Output  
Output  
Power  
SCLK  
VDD2  
Input Power Supply for Isolator Side 2. A bypass capacitor from VDD2 to GND2 to local ground is required.  
Table 23. ADuM4151/ADuM4152/ADuM4153 Power-Off Default State Truth Table (Positive Logic)1  
VDD1 State  
VDD2 State  
Side 1 Outputs Side 2 Outputs  
Comments  
SSS  
Unpowered Powered  
Z
Z
Z
Outputs on an unpowered side are high impedance within  
one diode drop of ground  
Powered  
Unpowered  
Z
Z
Z
Outputs on an unpowered side are high impedance within one  
diode drop of ground  
1 Z is high impedance.  
Rev. A | Page 16 of 22  
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
TYPICAL PERFORMANCE CHARACTERISTICS  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
7
6
5
5.0V  
3.3V  
5.0V  
3.3V  
4
3
2
1
0
0
20  
40  
60  
80  
0
20  
40  
DATA RATE (Mbps)  
60  
80  
DATA RATE (Mbps)  
Figure 11. Typical Dynamic Supply Current per Output Channel vs. Data Rate  
for 5.0 V and 3.3 V Operation  
Figure 8. Typical Dynamic Supply Current per Input Channel vs. Data Rate  
for 5.0 V and 3.3 V Operation  
25  
30  
25  
20  
5.0V  
20  
5.0V  
15  
3.3V  
3.3V  
15  
10  
5
10  
5
0
0
0
20  
40  
60  
80  
0
20  
40  
60  
80  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 12. Typical IDD2 Supply Current vs. Data Rate for  
5.0 V and 3.3 V Operation  
Figure 9. Typical IDD1 Supply Current vs. Data Rate for  
5.0 V and 3.3 V Operation  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
3.3V  
5.0V  
3.3V  
5.0V  
6
4
2
0
0
–40  
10  
60  
110  
–40  
10  
60  
110  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 13. Typical Propagation Delay vs. Ambient Temperature for High  
Speed Channels with Glitch Filter (See the High Speed Channels Section)  
Figure 10. Typical Propagation Delay vs. Ambient Temperature for High  
Speed Channels Without Glitch Filter (See the High Speed Channels Section)  
Rev. A | Page 17 of 22  
 
 
 
 
 
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
APPLICATIONS INFORMATION  
prevents short pulses from propagating to the output or causing  
INTRODUCTION  
other errors in operation. The  
signal requires a 10 ns setup  
MSS  
The ADuM4151/ADuM4152/ADuM4153 are a family of devices  
created to optimize isolation of SPI for speed and to provide  
additional low speed channels for control and status monitoring  
functions. The isolators are based on differential signaling  
iCoupler technology for enhanced speed and noise immunity.  
time in the B grade devices prior to the first active clock edge to  
allow the added propagation time of the glitch filter.  
Low Speed Data Channels  
The low speed data channels are provided as economical  
isolated datapaths where timing is not critical. The dc value of  
all high and low speed inputs on a given side of the devices are  
sampled simultaneously, packetized and shifted across an  
isolation coil. The high speed channels are compared for dc  
accuracy, and the low speed data is transferred to the appropriate  
low speed outputs. The process is then reversed by reading the  
inputs on the opposite side of the devices, packetizing them and  
sending them back for similar processing. The dc correctness data  
for the high speed channels is handled internally, and the low  
speed data is clocked to the outputs simultaneously.  
High Speed Channels  
The ADuM4151/ADuM4152/ADuM4153 have four high speed  
channels. The first three channels, CLK, MI/SO, and MO/SI  
(the slash indicates the connection of the particular input and  
output channel across the isolator), are optimized for either low  
propagation delay in the B grade or high noise immunity in the  
A grade. The difference between the grades is the addition of a  
glitch filter to these three channels in the A grade version,  
which increases the propagation delay. The B grade version,  
with a maximum propagation delay of 14 ns, supports a  
maximum clock rate of 17 MHz in the standard 4-wire SPI.  
However, because the glitch filter is not present in the B grade  
version, ensure that spurious glitches of less than 10 ns are not  
present.  
A free running internal clock regulates this bidirectional data  
shuttling. Because data is sampled at discrete times based on  
this clock, the propagation delay for a low speed channel is  
between 0.1 µs and 2.6 µs, depending on where the input data  
edge changes with respect to the internal sample clock.  
Glitches of less than 10 ns in the B grade devices can cause the  
missing of the second edge of the glitch. This pulse condition is  
then seen as a spurious data transition on the output that is  
corrected by a refresh or the next valid data edge. It is recommended  
to use the A grade devices in noisy environments.  
Figure 14 illustrates the behavior of the low speed channels and  
the relationship between the codirectional channels.  
Point A: When data is sampled between the input edges of  
two low speed data inputs, a very narrow gap between  
edges is increased to the width of the output clock.  
Point B: Data edges that occur on codirectional channels  
between samples are sampled and simultaneously sent to  
the outputs, which synchronizes the data edges between  
the two channels at the outputs.  
The relationship between the SPI signal paths and the pin  
mnemonics of the ADuM4151/ADuM4152/ADuM4153 and the  
data directions is detailed in Table 24.  
Table 24. Pin Mnemonics Correspondence to the SPI Signal  
Path Names  
SPI Signal Path Master Side 1 Data Direction Slave Side 2  
Point C: Data pulses that are less than the minimum low  
speed pulse width may not be transmitted because they  
may not be sampled.  
CLK  
MCLK  
MO  
MI  
SCLK  
SI  
SO  
MO/SI  
MI/SO  
SS  
SAMPLE CLOCK  
MSS  
SSS  
The datapaths are SPI mode agnostic. The CLK and MO/SI SPI  
datapaths are optimized for propagation delay and channel to  
channel matching. The MI/SO SPI datapath is optimized for  
propagation delay. The devices do not synchronize to the clock  
channels; therefore, there are no constraints on the clock  
polarity or the timing with respect to the data lines. To allow  
compatibility with nonstandard SPI interfaces, the MI pin is  
always active, and does not tristate when the slave select is not  
asserted. This precludes tying several MI lines together without  
adding a trisate buffer or multiplexor.  
INPUT A  
INPUT B  
A
B
A
C
B
OUTPUT A  
OUTPUT B  
A
C
(slave select bar) is typically an active low signal. can have  
SS  
SS  
OUTPUT CLOCK  
many different functions in SPI and SPI like busses. Many of  
Figure 14. Slow Channel Timing  
these functions are edge triggered; therefore, the path contains a  
SS  
glitch filter in both the A grade and the B grade. The glitch filter  
Rev. A | Page 18 of 22  
 
 
 
 
 
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
The low speed data system is carefully designed so that staggered  
data transitions at the inputs become either synchronized or  
pushed apart when they are presented at the output. Edge order  
is always preserved for as long as the edges are separated by at  
least tVIx SKEW. In other words, if one edge is leading another at  
the input, the order of the edges is not reversed by the isolator.  
DC CORRECTNESS AND MAGNETIC FIELD  
IMMUNITY  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent via the transformer to the decoder.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses indicating input logic transitions. In the absence of  
logic transitions at the input for more than ~1.2 µs, a periodic  
set of refresh pulses indicative of the correct input state are sent  
via the low speed channel to ensure dc correctness at the output.  
PRINTED CIRCUIT BOARD (PCB) LAYOUT  
The ADuM4151/ADuM4152/ADuM4153 digital isolators  
require no external interface circuitry for the logic interfaces.  
Power supply bypassing is strongly recommended at both the  
If the low speed decoder receives no pulses for more than about  
5 µs, the input side is assumed to be unpowered or nonfunctional,  
in which case, the isolator output is forced to a high-Z state by  
the watchdog timer circuit.  
V
DD1 and VDD2 supply pins (see Figure 15). The capacitor value  
must be between 0.01 µF and 0.1 µF. The total lead length  
between both ends of the capacitor and the input power supply  
pin must not exceed 20 mm.  
The limitation on the magnetic field immunity of the device is  
set by the condition in which induced voltage in the transformer  
receiving coil is sufficiently large to either falsely set or reset the  
decoder. The following analysis defines such conditions. The  
ADuM4151/ADuM4152/ADuM4153 were examined in a 3 V  
operating condition because it represents the most susceptible  
mode of operation for this product.  
BYPASS < 10mm  
V
V
DD2  
DD1  
GND  
2
GND  
1
SCLK  
SI  
MCLK  
MO  
ADuM4151/  
ADuM4152/  
ADuM4153  
SO  
MI  
MSS  
SSS  
V
/V  
V
V
/V  
IA OA  
OA IA  
The pulses at the transformer output have an amplitude greater  
than 1.5 V. The decoder has a sensing threshold of about 1.0 V;  
thereby, establishing a 0.5 V margin in which induced voltages  
can be tolerated. The voltage induced across the receiving coil is  
given by  
/V  
V
/V  
IB OB  
IB OB  
V
V
OC  
IC  
GND  
GND  
2
1
Figure 15. Recommended PCB Layout  
In applications involving high common-mode transients, it is  
important to minimize board coupling across the isolation  
barrier. Furthermore, design the PCB layout so that any  
coupling that does occur affects all pins equally on a given  
component side. Failure to ensure this may cause voltage  
differentials between pins that exceed the absolute maximum  
ratings of the device, thereby leading to latch-up or permanent  
damage.  
2
V = (−dβ/dt)∑πrn ; n = 1, 2, …, N  
where:  
β is the magnetic flux density.  
rn is the radius of the nth turn in the receiving coil.  
N is the number of turns in the receiving coil.  
Given the geometry of the receiving coil in the ADuM4151/  
ADuM4152/ADuM4153 and an imposed requirement that the  
induced voltage be, at most, 50% of the 0.5 V margin at the  
decoder, a maximum allowable magnetic field is calculated as  
shown in Figure 17.  
PROPAGATION DELAY RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The input to  
output propagation delay time for a high to low transition may  
differ from the propagation delay time of a low to high  
transition.  
100  
10  
1
INPUT  
50%  
tPLH  
tPHL  
OUTPUT  
50%  
0.1  
Figure 16. Propagation Delay Parameters  
0.01  
Pulse width distortion is the maximum difference between  
these two propagation delay values and an indication of how  
accurately the timing of the input signal is preserved.  
0.001  
1k  
100M  
10k  
100k  
1M  
10M  
MAGNETIC FIELD FREQUENCY (Hz)  
Channel to channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM4151/ADuM4152/ADuM4153 component.  
Figure 17. Maximum Allowable External Magnetic Flux Density  
Rev. A | Page 19 of 22  
 
 
 
 
 
ADuM4151/ADuM4152/ADuM4153  
Data Sheet  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.5 kgauss, induces a  
voltage of 0.25 V at the receiving coil. This voltage is about 50%  
of the sensing threshold and does not cause a faulty output  
transition. If such an event occurs, with the worst-case polarity,  
during a transmitted pulse, the interference reduces the  
received pulse from >1.0 V to 0.75 V. This voltage is still well  
above the 0.5 V sensing threshold of the decoder.  
These quiescent currents add to the high speed current as is  
shown in the following equations for the total current for each  
side of the isolator. Dynamic currents are taken from Table 3  
and Table 6 for the respective voltages.  
For Side 1, the supply current is given by  
I
DD1 = IDDI(D) × (fMCLK + fMO + fMSS) +  
MI × (IDDO(D) + ((0.5 × 10−3) × CL(MI) × VDD1)) + IDD1(Q)  
For Side 2, the supply current is given by  
DD2 = IDDI(D) × fSO  
f
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances away from the  
ADuM4151/ADuM4152/ADuM4153 transformers. Figure 18  
expresses these allowable current magnitudes as a function of  
frequency for selected distances. The ADuM4151/ADuM4152/  
ADuM4153 are insensitive to external fields. Only extremely  
large, high frequency currents, very close to the component are  
a concern. For the 1 MHz example noted, placing a 1.2 kA  
current 5 mm away from the ADuM4151/ADuM4152/  
ADuM4153 affects component operation.  
I
+
f
SCLK × (IDDO(D) +((0.5 × 10−3) × CL(SCLK) × VDD2)) +  
fSI × (IDDO(D) +((0.5 × 10−3) × CL(SI) × VDD2)) +  
fSSS × (IDDO(D) +((0.5 × 10−3) × CL( ) × VDD2)) + IDD2(Q)  
SSS  
where:  
DDI(D), IDDO(D) are the input and output dynamic supply currents  
I
per channel (mA/Mbps).  
fx is the logic signal data rate for the specified channel (Mbps).  
C
V
I
L(x) is the load capacitance of the specified output (pF).  
DDx is the supply voltage of the side being evaluated (V).  
DD1(Q), IDD2(Q) are the specified Side 1 and Side 2 quiescent  
1000  
DISTANCE = 1m  
100  
supply currents (mA).  
Figure 8 and Figure 11 show the typical supply current per  
channel as a function of data rate for an input and unloaded  
output. Figure 9 and Figure 12 show the total IDD1 and IDD2 supply  
currents as a function of data rate for the ADuM4151/ADuM4152/  
ADuM4153 channel configurations with all high speed channels  
running at the same speed and the low speed channels at idle.  
10  
DISTANCE = 100mm  
1
DISTANCE = 5mm  
0.1  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation as well as the  
materials and material interfaces.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 18. Maximum Allowable Current for Various Current to  
ADuM4151/ADuM4152/ADuM4153 Spacings  
At combinations of strong magnetic field and high frequency,  
any loops formed by the PCB traces may induce sufficiently  
large error voltages to trigger the thresholds of succeeding  
circuitry. Take care to avoid PCB structures that form loops.  
Two types of insulation degradation are of primary interest:  
breakdown along surfaces exposed to the air and insulation  
wear out. Surface breakdown is the phenomenon of surface  
tracking and the primary determinant of surface creepage  
requirements in system level standards. Insulation wear out is  
the phenomenon where charge injection or displacement  
currents inside the insulation material cause long-term  
insulation degradation.  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM4151/  
ADuM4152/ADuM4153 isolators is a function of the supply  
voltage, the data rate of the channel, and the output load of the  
channel and whether it is a high or low speed channel.  
The low speed channels draw a constant quiescent current  
caused by the internal ping-pong datapath. The operating  
frequency is low enough that the capacitive losses caused by  
the recommended capacitive load are negligible compared to  
the quiescent current. The explicit calculation for the data rate  
is eliminated for simplicity, and the quiescent current for each  
side of the isolator due to the low speed channels can be found  
in Table 3, Table 6, Table 9, and Table 12 for the particular  
operating voltages.  
Rev. A | Page 20 of 22  
 
 
 
Data Sheet  
ADuM4151/ADuM4152/ADuM4153  
Surface Tracking  
Calculation and Use of Parameters Example  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working  
voltage, the environmental conditions, and the properties of the  
insulation material. Safety agencies perform characterization  
testing on the surface insulation of components that allow the  
components to be categorized into different material groups.  
Lower material group ratings are more resistant to surface  
tracking and, therefore, can provide adequate lifetime with  
smaller creepage. The minimum creepage for a given working  
voltage and material group is in each system level standard and  
is based on the total rms voltage across the isolation, pollution  
degree, and material group. The material group and creepage  
for the ADuM4151/ADuM4152/ADuM4153 isolators are  
detailed in Table 15.  
The following is an example that frequently arises in power  
conversion applications. Assume that the line voltage on one  
side of the isolation is 240 V ac rms, and a 400 V dc bus voltage  
is present on the other side of the isolation barrier. The isolator  
material is polyimide. To establish the critical voltages in  
determining the creepage clearance and lifetime of a device, see  
Figure 19 and the following equations.  
V
AC RMS  
V
V
V
DC  
PEAK  
RMS  
Insulation Wear Out  
The lifetime of insulation due to wear out is determined by its  
thickness, the material properties, and the voltage stress applied.  
It is important to verify that the product lifetime is adequate at  
the application working voltage. The working voltage supported  
by an isolator for wear out may not be the same as the working  
voltage supported for tracking. It is the working voltage  
TIME  
Figure 19. Critical Voltage Example  
The working voltage across the barrier from Equation 1 is  
2
applicable to tracking that is specified in most standards.  
VRMS VAC RMS2 VDC  
Testing and modeling have shown that the primary driver of  
long-term degradation is displacement current in the polyimide  
insulation causing incremental damage. The stress on the  
insulation can be broken down into broad categories, such as  
dc stress, which causes very little wear out because there is no  
displacement current, and an ac component time varying  
voltage stress, which causes wear out.  
VRMS 2402 4002  
V
RMS = 466 V  
The 466 V rms is the working voltage used together with the  
material group and pollution degree when looking up the  
creepage required by a system standard.  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. The ac rms voltage can be  
obtained from Equation 2.  
The ratings in certification documents are usually based on 60 Hz  
sinusoidal stress because this stress reflects isolation from line  
voltage. However, many practical applications have combinations  
of 60 Hz ac and dc across the barrier, as shown in Equation 1.  
Because only the ac portion of the stress causes wear out, the  
equation can be rearranged to solve for the ac rms voltage, as  
shown in Equation 2. For insulation wear out with the  
polyimide materials used in this product, the ac rms voltage  
determines the product lifetime.  
VAC RMS VRMS2 VDC  
2
V
AC RMS 4662 4002  
AC RMS = 240 V  
V
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform is  
not sinusoidal. The value is compared to the limits for the working  
voltage listed in Table 19 for the expected lifetime, less than a 60 Hz  
sine wave, and it is well within the limit for a 50-year service life.  
2
VRMS VAC RMS2 VDC  
(1)  
or  
2
VAC RMS VRMS2 VDC  
(2)  
Note that the dc working voltage limit in Table 19 is set by the  
creepage of the package as specified in IEC 60664-1. This value  
may differ for specific system level standards  
where:  
V
V
V
AC RMS is the time varying portion of the working voltage.  
RMS is the total rms working voltage.  
DC is the dc offset of the working voltage.  
Rev. A | Page 21 of 22  
 
ADuM4151/ADuM4152/ADuM4153  
OUTLINE DIMENSIONS  
Data Sheet  
15.40  
15.30  
15.20  
1.93 REF  
20  
11  
10  
7.60  
7.50  
7.40  
10.51  
10.31  
10.11  
1
PIN 1  
MARK  
0.71  
0.50 45°  
0.31  
0.25 BSC  
2.64  
2.54  
2.44  
2.44  
2.24  
GAGE  
0.32  
0.23  
PLANE  
0.30  
0.20  
0.10  
SEATING  
PLANE  
8°  
0°  
1.27 BSC  
1.01  
0.76  
0.51  
0.46  
0.36  
COPLANARITY  
0.1  
COMPLIANT TO JEDEC STANDARDS MS-013  
Figure 20. 20-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
Wide Body  
(RI-20-1)  
Dimension shown in millimeters  
ORDERING GUIDE  
No. of  
No. of  
Inputs,  
DD1 Side VDD2 Side (MHz)  
Maximum Maximum  
Data Rate Propagation  
Isolation  
Rating  
Inputs,  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model1, 2, 3  
V
5
5
Delay, 5 V (ns) (V ac)  
ADuM4151ARIZ  
ADuM4151ARIZ-RL  
2
2
1
1
25  
25  
5000  
5000  
−40°C to +125°C 20-Lead SOIC_IC  
RI-20-1  
−40°C to +125°C 20-Lead SOIC_IC, RI-20-1  
13”Tape and Reel  
ADuM4151BRIZ  
ADuM4151BRIZ-RL  
5
5
2
2
17  
17  
14  
14  
5000  
5000  
−40°C to +125°C 20-Lead SOIC_IC  
−40°C to +125°C 20-Lead SOIC_IC, RI-20-1  
13”Tape and Reel  
RI-20-1  
ADuM4152ARIZ  
ADuM4152ARIZ-RL  
4
4
3
3
1
1
25  
25  
5000  
5000  
−40°C to +125°C 20-Lead SOIC_IC  
−40°C to +125°C 20-Lead SOIC_IC, RI-20-1  
13”Tape and Reel  
RI-20-1  
ADuM4152BRIZ  
ADuM4152BRIZ-RL  
4
4
3
3
17  
17  
14  
14  
5000  
5000  
−40°C to +125°C 20-Lead SOIC_IC  
−40°C to +125°C 20-Lead SOIC_IC, RI-20-1  
13”Tape and Reel  
RI-20-1  
ADuM4153ARIZ  
ADuM4153ARIZ-RL  
3
3
4
4
1
1
25  
25  
5000  
5000  
−40°C to +125°C 20-Lead SOIC_IC  
−40°C to +125°C 20-Lead SOIC_IC, RI-20-1  
13”Tape and Reel  
RI-20-1  
ADuM4153BRIZ  
ADuM4153BRIZ-RL  
3
3
4
4
17  
17  
14  
14  
5000  
5000  
−40°C to +125°C 20-Lead SOIC_IC  
−40°C to +125°C 20-Lead SOIC_IC, RI-20-1  
13”Tape and Reel  
RI-20-1  
EVAL-ADuM3151Z  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 The EVAL-ADuM3151Z uses a functionally equivalent device for evaluation. The pad layout on the EVAL-ADuM3151Z board does not support the 20-lead SOIC_IC package.  
3 To evaluate the functionality of the alternative low speed channel configurations of the ADuM4152 and the ADuM4153, the user must purchase an ADuM3152 or an  
ADuM3153 and replace the component on the EVAL-ADuM3151Z evaluation board.  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12370-0-3/15(A)  
Rev. A | Page 22 of 22  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY