ADuM6010ARSZ [ADI]

The ADuM60101 is an integrated, isolated dc-to-dc converter.; 该ADuM60101是一个集成的隔离式DC - DC转换器。
ADuM6010ARSZ
型号: ADuM6010ARSZ
厂家: ADI    ADI
描述:

The ADuM60101 is an integrated, isolated dc-to-dc converter.
该ADuM60101是一个集成的隔离式DC - DC转换器。

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 CD
文件: 总16页 (文件大小:486K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated DC-to-DC Converter  
ADuM6010  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
isoPower integrated, isolated dc-to-dc converter  
Regulated 3.15 V to 5.25 V output  
Up to 150 mW output power  
20-lead SSOP package with 5.3 mm creepage  
High temperature operation: 105°C  
1
2
20  
NC  
ADuM6010  
NC  
19 GND  
18 NC  
GND  
ISO  
P
3
NC  
4
17  
NC  
NC  
GND  
5
16 GND  
High common-mode transient immunity: >25 kV/µs  
Safety and regulatory approvals  
UL recognition (pending)  
3750 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A (pending)  
VDE certificate of conformity (pending)  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
P
P
ISO  
ISO  
GND  
6
15  
14  
13  
GND  
NC  
NC  
7
PDIS  
PCS  
OSC  
8
V
V
SEL  
ISO  
V
1.25V 12  
11  
RECT REG  
9
DDP  
GND  
P
10  
GND  
ISO  
V
IORM = 849 V peak  
Figure 1.  
APPLICATIONS  
Power supply start-up bias and gate drives  
Isolated sensor interfaces  
Industrial PLCs  
Table 1. Power Levels  
Input Voltage (V)  
Output Voltage (V) Output Power (mW)  
5
5
3.3  
5
3.3  
3.3  
150  
100  
100  
GENERAL DESCRIPTION  
The ADuM60101 is an integrated, isolated dc-to-dc converter.  
Based on the Analog Devices, Inc., iCoupler® technology, the  
dc-to-dc converter provides regulated, isolated power, adjustable  
between 3.15 V and 5.25 V. Input supply voltages can range  
from slightly below the required output to significantly higher.  
Popular combination and their associated power levels are shown  
in Table 1.  
The iCoupler chip-scale transformer technology is used for isolated  
logic signals and for the magnetic components of the dc-to-dc  
converter. The result is a small form factor, total isolation  
solution.  
isoPower uses high frequency switching elements to transfer  
power through its transformer. Special care must be taken  
during printed circuit board (PCB) layout to meet emissions  
standards. See the AN-0971 Application Note for board layout  
recommendations.  
1
Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
 
ADuM6010  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics ...............................................................................7  
Recommended Operating Conditions .......................................7  
Absolute Maximum Ratings ............................................................8  
ESD Caution...................................................................................8  
Pin Configuration and Function Descriptions..............................9  
Truth Table .....................................................................................9  
Typical Performance Characteristics ........................................... 10  
Applications Information.............................................................. 12  
PCB Layout ................................................................................. 12  
Thermal Analysis ....................................................................... 13  
EMI Considerations................................................................... 13  
Insulation Lifetime..................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Primary Input Supply/5 V  
Secondary Isolated Supply .......................................................... 3  
Electrical Characteristics—3.3 V Primary Input Supply/3.3 V  
Secondary Isolated Supply .......................................................... 4  
Electrical Characteristics—5 V Primary Input Supply/3.3 V  
Secondary Isolated Supply .......................................................... 5  
Package Characteristics ............................................................... 6  
Regulatory Approvals................................................................... 6  
Insulation and Safety-Related Specifications............................ 6  
REVISION HISTORY  
5/13—Rev. 0 to Rev. A  
Changes to Table 16.......................................................................... 9  
10/12—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
Data Sheet  
ADuM6010  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDDP = VISO = 5 V, VSEL resistor network: R1 = 10 kΩ, R2 = 30.9 kΩ. Minimum/maximum  
specifications apply over the entire recommended operation range which is 4.5 V ≤ VDDP, VSEL, VISO ≤ 5.5 V, and −40°C ≤ TA ≤ +105°C,  
unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 2. DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Thermal Coefficient  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
5.0  
−44  
20  
1.3  
75  
200  
125  
600  
V
IISO = 15 mA, R1 = 10 kΩ, R2 = 30.9 kΩ  
VISO (TC)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
μV/°C  
mV/V  
%
IISO = 15 mA, VDDP = 4.5 V to 5.5 V  
IISO = 3 mA to 27 mA  
3
mV p-p 20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 27 mA  
mV p-p CBO = 0.1 µF||10 µF, IISO = 27 mA  
MHz  
kHz  
mA  
%
Output Noise  
Switching Frequency  
Pulse Width Modulation Frequency  
Output Supply  
Efficiency at IISO (MAX)  
IDDP, No VISO Load  
IDDP, Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
fPWM  
IISO (MAX)  
30  
VISO > 4.5 V  
IISO = 27 mA  
29  
6.8  
104  
IDD1 (Q)  
IDD1 (MAX)  
12  
mA  
mA  
154  
10  
°C  
°C  
Table 3. Input and Output Characteristics  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Undervoltage Lockout  
Positive Going Threshold  
Negative Going Threshold VUV−  
Input Currents per Channel IPDIS  
VIH  
VIL  
0.7 VDDP  
V
V
0.3 VDDP  
VISO, VDDP supply  
0 V ≤ VPDIS ≤ VDDP  
VUV+  
2.7  
2.4  
+0.01  
V
V
µA  
−10  
+10  
Rev. A | Page 3 of 16  
 
 
ADuM6010  
Data Sheet  
ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDDP = VISO = 3.3 V, VSEL resistor network: R1 = 10 kΩ, R2 = 16.2 kΩ. Minimum/maximum  
specifications apply over the entire recommended operation range which is 3.0 V ≤ VDDP, VSEL, VISO ≤ 3.6 V, and −40°C ≤ TA ≤ +105°C,  
unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 4. DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Thermal Coefficient  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
3.3  
−26  
20  
1.3  
50  
130  
125  
600  
V
IISO = 10 mA, R1 = 10 kΩ, R2 = 16.9 kΩ  
IISO = 20mA  
IISO = 10 mA, VDDP = 3.0 V to 3.6 V  
IISO = 2 mA to 18 mA  
20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 18 mA  
CBO = 0.1 µF||10 µF, IISO = 18 mA  
VISO (TC)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
μV/°C  
mV/V  
%
mV p-p  
mV p-p  
MHz  
kHz  
mA  
%
mA  
mA  
3
Output Noise  
Switching Frequency  
Pulse Width Modulation Frequency  
Output Supply  
Efficiency at IISO (MAX)  
IDD1, No VISO Load  
IDD1, Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
fPWM  
IISO (MAX)  
20  
3.6 V > VISO > 3 V  
IISO = 18 mA  
27  
3.3  
77  
IDD1 (Q)  
IDD1 (MAX)  
10.5  
154  
10  
°C  
°C  
Table 5. Input and Output Characteristics  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Undervoltage Lockout  
Positive Going Threshold  
VIH  
VIL  
0.7 VISO or 0.7 VDDP  
V
V
0.3 VISO or 0.3 VDDP  
VDDP supply  
VUV+  
2.7  
V
Negative Going Threshold VUV−  
Input Currents per Channel IPDIS  
2.4  
+0.01  
V
µA  
−10  
+10  
0 V ≤ VPDIS ≤ VDDP  
Rev. A | Page 4 of 16  
 
Data Sheet  
ADuM6010  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDDP = 5.0 V, VISO = 3.3 V, VSEL resistor network: R1 = 10 kΩ, R2 = 16.2 kΩ. Minimum/maximum  
specifications apply over the entire recommended operation range which is 4.5 V ≤ VDDP ≤ 5.5 V, 3.0 V ≤ VISO ≤ 3.6 V, and −40°C ≤ TA ≤  
+105°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 6. DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Thermal Coefficient  
Line Regulation  
Load Regulation  
Output Ripple  
Output Noise  
Switching Frequency  
Pulse Width Modulation Frequency fPWM  
Output Supply  
Efficiency at IISO (MAX)  
IDD1, No VISO Load  
IDD1, Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
VISO  
3.3  
−26  
20  
1.3  
50  
130  
125  
600  
V
IISO = 15 mA, R1 = 10 kΩ, R2 = 16.9 kΩ  
VISO (TC)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
μV/°C  
mV/V  
%
mV p-p  
mV p-p  
MHz  
kHz  
mA  
%
mA  
mA  
IISO = 15 mA, VDD1 = 4.5 V to 5.5 V  
IISO = 3 mA to 27 mA  
20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 27 mA  
CBO = 0.1 µF||10 µF, IISO = 27 mA  
3
8
IISO (MAX)  
30  
3.6 V > VISO > 3 V  
IISO = 27 mA  
24  
3.2  
85  
IDD1 (Q)  
IDD1 (MAX)  
154  
10  
°C  
°C  
Table 7. Input and Output Characteristics  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Undervoltage Lockout  
Positive Going Threshold  
Negative Going Threshold VUV−  
Input Currents per Channel IPDIS  
VIH  
VIL  
0.7 VDDP  
V
V
0.3 VDDP  
VISO, VDDP supply  
0V ≤ VPDIS ≤ VDDP  
VUV+  
2.7  
2.4  
+0.01  
V
V
µA  
−10  
+10  
Rev. A | Page 5 of 16  
 
ADuM6010  
Data Sheet  
PACKAGE CHARACTERISTICS  
Table 8. Thermal and Isolation Characteristics  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1012  
2.2  
4.0  
50  
Ω
pF  
pF  
f = 1 MHz  
IC Junction-to-Ambient Thermal  
Resistance  
θJA  
°C/W Thermocouple located at center of package underside,  
test conducted on 4-layer board with thin traces3  
1 The device is considered a 2-terminal device: Pin 1 through Pin 10 are shorted together; and Pin 11 through Pin 20 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
3 See the Thermal Analysis section for thermal model definitions.  
REGULATORY APPROVALS  
Table 9.  
UL (Pending)1  
CSA (Pending)  
VDE (Pending)2  
Recognized under 1577 component  
recognition program1  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
Single protection, 3750 V rms  
isolation voltage  
Reinforced insulation per CSA 60950-1-03  
and IEC 60950-1, 265 V rms (375 V peak)  
maximum working voltage  
Reinforced insulation, 849 V peak  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM6010 is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (current leakage detection  
limit = 10 µA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM6010 is proof tested by applying an insulation test voltage ≥1590 V peak for 1 second (partial discharge  
detection  
limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 10. Critical Safety-Related Dimensions and Material Properties  
Parameter  
Symbol Value  
Unit Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3750  
5.3  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External Tracking (Creepage)  
5.3  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.022 min mm  
Distance through insulation  
DIN IEC 112/VDE 0303, Part 1  
Material group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>400  
II  
V
Rev. A | Page 6 of 16  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADuM6010  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
the protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 11. VDE Characteristics  
Description  
Test Conditions/Comments  
Symbol  
Characteristic  
Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
I to IV  
I to IV  
I to III  
40/105/21  
2
VIORM  
Vpd(m)  
849  
1592  
V peak  
V peak  
VIORM × 1.875 = Vpd(m), 100% production test,  
tini = tm = 1 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = Vpd(m), tini = 60 sec,  
tm = 10 sec, partial discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 sec,  
tm = 10 sec, partial discharge < 5 pC  
Vpd(m)  
Vpd(m)  
1273  
1018  
V peak  
V peak  
After Input and/or Safety Test Subgroup 2 and  
Subgroup 3  
Highest Allowable Overvoltage  
Withstand Isolation Voltage  
Surge Isolation Voltage  
Safety Limiting Values  
Case Temperature  
VIOTM  
VISO  
VIOSM  
5300  
3750  
6000  
V peak  
V rms  
V peak  
1 minute withstand rating  
VIOSM(TEST) = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Maximum value allowed in the event of a failure  
(see Figure 2)  
TS  
IS1  
RS  
150  
2.5  
>109  
°C  
W
Ω
Safety Total Dissipated Power  
Insulation Resistance at TS  
3.0  
VIO = 500 V  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN V VDE V 0884-10  
RECOMMENDED OPERATING CONDITIONS  
Table 12.  
Parameter  
Symbol  
Min  
Max  
Unit  
Operating Temperature1  
Supply Voltages2  
VDD1 at VSEL = 0 V  
VDD1 at VSEL = VISO  
TA  
−40  
+105  
°C  
VDD  
3.0  
4.5  
5.5  
5.5  
V
V
1 Operation at 105°C requires reduction of the maximum load current as specified in Table 13.  
2 Each voltage is relative to its respective ground.  
Rev. A | Page 7 of 16  
 
 
 
 
 
ADuM6010  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 13.  
Parameter  
Rating  
Storage Temperature (TST)  
Ambient Operating Temperature (TA)  
Supply Voltages (VDDP, VISO  
VISO Supply Current2  
−55°C to +150°C  
−40°C to +105°C  
−0.5 V to +7.0 V  
1
)
TA = −40°C to +105°C  
Input Voltage (PDIS, VSEL  
Common-Mode Transients4  
30 mA  
−0.5 V to VDD + 0.5 V  
−100 kV/µs to +100 kV/µs  
Table 14. Maximum Continuous Working Voltage  
Supporting 50-Year Minimum Lifetime1  
Applicable  
1, 3  
)
Parameter  
Max Unit  
Certification  
1 All voltages are relative to their respective ground.  
2 The VISO provides current for dc and dynamic loads on the VISO I/O  
channels. This current must be included when determining the total  
AC Voltage  
Bipolar Waveform  
560  
V peak All certifications,  
50-year operation  
VISO supply current.  
3 VDD can be either VDDP or VISO depending on the whether the input is on  
the primary or secondary side of the part respectively.  
Unipolar Waveform 560  
DC Voltage  
|DC Peak Voltage|  
V peak  
4 Refers to common-mode transients across the insulation barrier.  
Common-mode transients exceeding the absolute maximum ratings may  
cause latch-up or permanent damage.  
560  
V peak  
1 Refers to the continuous voltage magnitude imposed across the isola-  
tion barrier. See the Insulation Lifetime section for more information.  
ESD CAUTION  
Rev. A | Page 8 of 16  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADuM6010  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
NC  
GND  
GND  
P
NC  
NC  
ISO  
3
NC  
4
NC  
ADuM6010  
GND  
GND  
5
P
P
ISO  
ISO  
TOP VIEW  
GND  
GND  
6
(Not to Scale)  
7
NC  
NC  
PDIS  
V
8
SEL  
V
V
9
DDP  
ISO  
GND  
P
11 GND  
ISO  
10  
NOTES  
1. PINS LABELED NC CAN BE ALLOWED  
TO FLOAT, BUT IT IS BETTER TO  
CONNECT THESE PINS TO GROUND.  
AVOID ROUTING HIGH SPEED SIGNALS  
THROUGH THESE PINS BECAUSE NOISE  
COUPLING MAY RESULT.  
Figure 3. Pin Configuration  
Table 15. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 3, 4, 7, 14, NC  
17, 18, 20  
This pin is not connected internally (see Figure 3).  
2, 5, 6, 10  
GNDP  
Ground 1. Ground reference for isolator primary. Pin 2 and Pin 10 are internally connected, and it is recommended  
that all pins be connected to a common ground.  
8
PDIS  
Power Disable. When this pin is tied to GNDP the power converter is active; when a logic high voltage is applied,  
the power supply enters a low power standby mode.  
9
VDDP  
Primary Supply Voltage, 3.0 V to 5.5 V.  
11, 15, 16, 19 GNDISO  
Ground Reference for Isolator Side 2. Pin 19 and Pin 11 are internally connected, and it is recommended that all pins  
be connected to a common ground.  
12  
13  
VISO  
VSEL  
Secondary Supply Voltage Output for External Loads, 3.15 V to 5.5 V depending on voltage divider connected  
to VSEL  
.
Output Voltage select input. A voltage divider attached to this pin between VISO and GNDISO determines the  
value of VISO, see Equation 1.  
TRUTH TABLE  
Table 16. Truth Table (Positive Logic)  
VDDP (V)  
VSEL Input  
PDIS Input  
VISO Output (V)  
Notes  
5
5
3.3  
3.3  
5
5
3.3  
3.3  
Low  
5
0
3.3  
0
3.3  
0
R1 = 10 kΩ, R2 = 30.9 kΩ  
R1 = 10 kΩ, R2 = 30.9 kΩ  
R1 = 10 kΩ, R2 = 16.9 kΩ  
R1 = 10 kΩ, R2 = 16.9 kΩ  
R1 = 10 kΩ, R2 = 16.9 kΩ  
R1 = 10 kΩ, R2 = 16.9 kΩ  
R1 = 10 kΩ, R2 = 30.9 kΩ  
R1 = 10 kΩ, R2 = 30.9 kΩ  
High  
Low  
High  
Low  
High  
Low  
High  
5
0
Configuration not recommended  
Rev. A | Page 9 of 16  
 
 
 
ADuM6010  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
35  
I
DDP  
POWER DISSIPATION  
30  
25  
20  
V
V
V
= 5V/V  
= 5V/V  
= 3.3V/V  
= 5V  
= 3.3V  
DDP  
DDP  
DDP  
ISO  
ISO  
= 3.3V  
ISO  
15  
10  
5
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
0.02  
0.04  
LOAD CURRENT (A)  
0.06  
0.08  
V
INPUT VOLTAGE (V)  
DDP  
Figure 7. Typical Short-Circuit Input Current and Power vs. VDDP Supply Voltage  
Figure 4. Typical Power Supply Efficiency at 5 V/5 V, 5 V/3.3 V, and 3.3 V/3.3 V  
450  
400  
350  
300  
250  
200  
150  
100  
90% LOAD  
V
V
V
= 5V/V  
= 5V/V  
= 3.3V/V  
= 5V  
= 3.3V  
DDP  
DDP  
DDP  
ISO  
50  
0
ISO  
= 3.3V  
ISO  
10% LOAD  
(1ms/DIV)  
0
10  
20  
(mA)  
30  
40  
I
ISO  
Figure 5. Typical Total Power Dissipation vs. IISO  
Figure 8. Typical VISO Transient Load Response, 5 V Input, 5 V Output,  
10% to 90% Load Step  
35  
30  
25  
20  
15  
10  
5
90% LOAD  
V
V
V
= 5V/V  
= 5V/V  
= 3.3V/V  
= 5V  
= 3.3V  
DDP  
DDP  
DDP  
ISO  
ISO  
10% LOAD  
= 3.3V  
ISO  
0
0
25  
50  
75  
100  
I
(mA)  
DDP  
(1ms/DIV)  
Figure 6. Typical Isolated Output Supply Current, IISO, as a Function of External  
Load, at 5 V/5 V, 5 V/3.3 V, and 3.3 V/3.3 V  
Figure 9. Typical Transient Load Response, 3.3 V Input 3.3 V Output,  
10% to 90% Load Step  
Rev. A | Page 10 of 16  
 
Data Sheet  
ADuM6010  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
90% LOAD  
30mA LOAD  
20mA LOAD  
10mA LOAD  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
10% LOAD  
(1ms/DIV)  
OUTPUT VOLTAGE (V)  
Figure 13. Relationship Between Output Voltage and Required Input Voltage,  
Under Load, to Maintain >80% Duty Factor in the PWM  
Figure 10. Typical Transient Load Response, 5 V Input, 3.3 V Output,  
10% to 90% Load Step  
500  
450  
400  
350  
300  
250  
4.970  
4.965  
4.960  
4.955  
4.950  
4.945  
4.940  
V
V
= 5V/V  
= 5V/V  
= 5V  
DDP  
DDP  
ISO  
200  
150  
100  
= 3.3V  
ISO  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
1
2
3
4
AMBIENT TEMPERATURE (°C)  
TIME (µs)  
Figure 11. Typical VISO = 5 V Output Voltage Ripple at 90% Load  
Figure 14. Power Dissipation with a 30 mA Load vs. Temperature  
500  
450  
3.280  
3.278  
3.276  
3.274  
3.272  
3.270  
V
V
V
= 5V/V  
= 3.3V/V  
= 5V  
DDP  
DDP  
DDP  
ISO  
400  
350  
300  
250  
200  
150  
100  
= 3.3V  
ISO  
= 5V/V  
= 3.3V  
ISO  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
1
2
3
4
AMBIENT TEMPERATURE (°C)  
TIME (µs)  
Figure 12. Typical VISO = 3.3 V Output Voltage Ripple at 90% Load  
Figure 15. Power Dissipation with a 20 mA Load vs. Temperature  
Rev. A | Page 11 of 16  
 
 
 
ADuM6010  
Data Sheet  
APPLICATIONS INFORMATION  
the power effectively as well as to set the output voltage and  
The dc-to-dc converter section of the ADuM6010 works on  
principles that are common to most modern power supplies.  
It has split controller architecture with isolated pulse-width  
modulation (PWM) feedback. VDDP power is supplied to an  
oscillating circuit that switches current into a chip-scale air core  
transformer. Power transferred to the secondary side is rectified  
and regulated to a value between 3.15 V and 5.25 V depending  
on the setpoint supplied by an external voltage divider (see  
Equation 1). The secondary (VISO) side controller regulates  
the output by creating a PWM control signal that is sent to the  
primary (VDDP) side by a dedicated iCoupler data channel. The  
PWM modulates the oscillator circuit to control the power being  
sent to the secondary side. Feedback allows for significantly higher  
power and efficiency.  
to bypass the core voltage regulator (see Figure 16 through  
Figure 18).  
PDIS  
8
V
DDP  
9
GND  
P
+
10  
10µF  
0.1µF  
Figure 16. VDDP Bias and Bypass Components  
V
V
SEL  
13  
12  
11  
30k  
ISO  
GND  
ISO  
+
10kΩ  
0.1µF  
10µF  
(R1+ R2)  
VISO =1.25 V  
(1)  
R1  
Figure 17. VISO Bias and Bypass Components  
where:  
R1 is a resistor between VSEL and GNDISO  
R2 is a resistor between VSEL and VISO  
The power supply section of the ADuM6010 uses a 125 MHz  
oscillator frequency to efficiently pass power through its chip-  
scale transformers. Bypass capacitors must do more than one  
job and must be chosen carefully. Noise suppression requires a  
low inductance, high frequency capacitor; ripple suppression  
and proper regulation require a large value bulk capacitor.  
These capacitors are most conveniently connected between  
.
.
Because the output voltage can be adjusted continuously  
there are an infinite number of operating conditions. This  
data sheet addresses three discrete operating conditions in the  
Specifications tables. Many other combinations of input and  
output voltage are possible; Figure 13 depicts the supported  
voltage combinations at room temperature. Figure 13 was  
generated by fixing the VISO load and decreasing the input  
voltage until the PWM was at 80% duty cycle. Each of the  
curves represents the minimum input voltage that is required  
for operation under this criterion. For example, if the applica-  
tion requires 30 mA of output current at 5 V, the minimum  
input voltage at VDDP is 4.25 V. Figure 13 also illustrates why  
the VDDP = 3.3 V input and VISO = 5 V configuration is not  
recommended. Even at 10 mA of output current, the PWM  
cannot maintain less than 80% duty factor, leaving no margin  
to support load or temperature variations.  
Pin 9 and Pin 10 for VDDP and between Pin 11 and Pin 12 for VISO  
.
To suppress noise and reduce ripple, a parallel combination of at  
least two capacitors is required. The recommended capacitor  
values are 0.1 µF and 10 µF for VDD1. The smaller capacitor  
must have a low ESR; for example, use of an NPO or X5R ceramic  
capacitor is advised. Ceramic capacitors are also recommended for  
the 10 mF bulk capacitance. An additional 10 nF capacitor can be  
added in parallel if further EMI/EMC control is desired.  
Note that the total lead length between the ends of the low ESR  
capacitor and the input power supply pin must not exceed 2 mm.  
GND  
GND  
ISO  
P
Typically, the ADuM6010 dissipates about 17% more power  
between room temperature and maximum temperature; there-  
fore, the 20% PWM margin covers temperature variations.  
ADuM6010  
The ADuM6010 implements undervoltage lockout (UVLO)  
with hysteresis on the primary and secondary sides I/O pins  
as well as the VDDP power input. This feature ensures that the  
converter does not go into oscillation due to noisy input power  
or slow power-on ramp rates.  
PDIS  
V
V
SEL  
ISO  
V
DDP  
GND  
GND  
ISO  
P
BYPASS < 2mm  
Figure 18. Recommended PCB Layout  
PCB LAYOUT  
In applications involving high common-mode transients, design  
the board layout such that any coupling that does occur equally  
affects all pins on a given component side. Failure to ensure this can  
cause voltage differentials between pins, exceeding the absolute  
maximum ratings specified in Table 13, and thereby leading to  
latch-up and/or permanent damage.  
The ADuM6010 digital isolator, with a 0.15 W isoPower integrated  
dc-to-dc converter, requires no external interface circuitry  
for the logic interfaces. Power supply bypassing with a low ESR  
capacitor is required as close to the chip pads as possible. The  
isoPower inputs require several passive components to bypass  
Rev. A | Page 12 of 16  
 
 
 
 
 
ADuM6010  
Data Sheet  
working voltage approved by agency testing is higher than the  
50-year service life voltage. Operation at working voltages  
higher than the service life voltage listed leads to premature  
insulation failure.  
The insulation lifetime of the ADuM6010 depends on the voltage  
waveform type imposed across the isolation barrier. The iCoupler  
insulation structure degrades at different rates, depending on  
whether the waveform is bipolar ac, unipolar ac, or dc. Figure 19,  
Figure 20, and Figure 21 illustrate these different isolation voltage  
waveforms.  
THERMAL ANALYSIS  
The ADuM6010 consist of two internal die attached to a split lead  
frame with two die attach paddles. For the purposes of thermal  
analysis, the chip is treated as a thermal unit, with the highest  
junction temperature reflected in the θJA from Table 8. The value  
of θJA is based on measurements taken with the parts mounted  
on a JEDEC standard, 4-layer board with fine width traces and  
still air. Under normal operating conditions, the ADuM6010  
can operate at full load across the full temperature range without  
derating the output current.  
Bipolar ac voltage is the most stringent environment. A 50-year  
operating lifetime under the bipolar ac condition determines  
the Analog Devices recommended maximum working voltage.  
Power dissipation in the part varies with ambient temperature  
due to the characteristics of the switching and rectification  
elements. Figure 14 and Figure 15 show the relationship  
between total power dissipation at two load conditions  
and ambient temperature. This information can be used  
to determine the junction temperature at various operating  
conditions to ensure that the part does not go into thermal  
shutdown unexpectedly.  
In the case of unipolar ac or dc voltage, the stress on the insulation  
is significantly lower. This allows operation at higher working  
voltages while still achieving a 50-year service life. The working  
voltages listed in Table 14 can be applied while maintaining the  
50-year minimum lifetime, provided the voltage conforms to either  
the unipolar ac or dc voltage cases. Any cross-insulation voltage  
waveform that does not conform to Figure 20 or Figure 21 must  
be treated as a bipolar ac waveform, and its peak voltage must  
be limited to the 50-year lifetime voltage value listed in Table 14.  
EMI CONSIDERATIONS  
The dc-to-dc converter section of the ADuM6010 components  
must, of necessity, operate at a very high frequency to allow  
efficient power transfer through the small transformers. This  
creates high frequency currents that can propagate in circuit  
board ground and power planes, causing edge and dipole  
radiation. Grounded enclosures are recommended for applica-  
tions that use these devices. If grounded enclosures are not  
possible, follow good RF design practices in the layout of the  
PCB. See the AN-0971 Application Note at www.analog.com for  
the most current PCB layout recommendations for the ADuM6010.  
RATED PEAK VOLTAGE  
0V  
Figure 19. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
INSULATION LIFETIME  
0V  
All insulation structures eventually break down when subjected to  
voltage stress over a sufficiently long period. The rate of insulation  
degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation. Analog Devices conducts  
an extensive set of evaluations to determine the lifetime of the  
insulation structure within the ADuM6010.  
Figure 20. DC Waveform  
RATED PEAK VOLTAGE  
0V  
NOTES  
Accelerated life testing is performed using voltage levels higher  
than the rated continuous working voltage. Acceleration factors for  
several operating conditions are determined, allowing calculation  
of the time to failure at the working voltage of interest. The values  
shown in Table 14 summarize the peak voltages for 50 years of  
service life in several operating conditions. In many cases, the  
1. THE VOLTAGE IS SHOWN AS SINU SOIDAL FOR ILLUSTRATION  
PUPOSES ONLY. IT IS MEANT TO REPRESENT ANY VOLTAGE  
WAVEFORM VARYING BETWEEN 0V AND SOME LIMITING VALUE.  
THE LIMITING VALUE CAN BE POSITIVE OR NEGATIVE,  
BUT THE VOLTAGE CANNOT CROSS 0V.  
Figure 21. Unipolar AC Waveform  
Rev. A | Page 13 of 16  
 
 
 
 
 
 
ADuM6010  
Data Sheet  
OUTLINE DIMENSIONS  
7.50  
7.20  
6.90  
11  
20  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
10  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AE  
Figure 22. 20-Lead Shrink Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
20-Lead SSOP  
20-Lead SSOP  
Package Option  
ADuM6010ARSZ  
ADuM6010ARSZ-RL7  
RS-20  
RS-20  
1 Tape and reel are available. The addition of an RL suffix designates a 7” tape and reel option.  
2 Z = RoHS Compliant Part.  
Rev. A | Page 14 of 16  
 
 
 
ADuM6010  
Data Sheet  
NOTES  
Rev. A | Page 15 of 16  
ADuM6010  
NOTES  
Data Sheet  
©2012–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11043-0-5/13(A)  
Rev. A | Page 16 of 16  

相关型号:

ADuM6010ARSZ-RL7

The ADuM60101 is an integrated, isolated dc-to-dc converter.
ADI

ADUM6020

Low Emission, 5 kV Isolated DC-to-DC Converters
ADI

ADUM6020-3BRIZ

Low Emission, 5 kV Isolated DC-to-DC Converters
ADI

ADUM6020-3BRIZ-RL

Low Emission, 5 kV Isolated DC-to-DC Converters
ADI

ADUM6020-5BRIZ

ADUM6020-5BRIZ
ADI

ADUM6020-5BRIZ-RL

Low Emission, 5 kV Isolated DC-to-DC Converters
ADI

ADUM6028

低辐射、5 kV 隔离式 DC-DC 转换器
ADI

ADUM6028-3BRIZ

Low Emission, 5 kV Isolated DC-to-DC Converters
ADI

ADUM6028-3BRIZ-RL

Low Emission, 5 kV Isolated DC-to-DC Converters
ADI

ADUM6028-5BRIZ

Low Emission, 5 kV Isolated DC-to-DC Converters
ADI

ADUM6028-5BRIZ-RL

Low Emission, 5 kV Isolated DC-to-DC Converters
ADI

ADUM6132

Isolated Half-Bridge Driver with Integrated Isolated High-Side Supply
ADI