AMP01BX [ADI]

Low Noise, Precision Instrumentation Amplifier; 低噪声,精密仪表放大器
AMP01BX
型号: AMP01BX
厂家: ADI    ADI
描述:

Low Noise, Precision Instrumentation Amplifier
低噪声,精密仪表放大器

仪表放大器 放大器电路
文件: 总22页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Precision  
a
Instrumentation Amplifier  
AMP01*  
PIN CONFIGURATIONS  
18-Lead Cerdip  
FEATURES  
Low Offset Voltage: 50 V Max  
Very Low Offset Voltage Drift: 0.3 V/؇C Max  
Low Noise: 0.12 V p-p (0.1 Hz to 10 Hz)  
Excellent Output Drive: ؎10 V at ؎50 mA  
Capacitive Load Stability: to 1 F  
Gain Range: 0.1 to 10,000  
Excellent Linearity: 16-Bit at G = 1000  
High CMR: 125 dB min (G = 1000)  
Low Bias Current: 4 nA Max  
R
R
1
2
3
4
5
6
7
8
9
18 +IN  
G
17  
16  
15  
14  
13  
12  
11  
10  
V
NULL  
NULL  
G
IOS  
IOS  
–IN  
NULL  
NULL  
V
V
V
R
R
OOS  
S
OOS  
S
TEST PIN*  
SENSE  
+V  
OP  
V+  
V–  
May Be Configured as a Precision Op Amp  
Output-Stage Thermal Shutdown  
Available in Die Form  
REFERENCE  
OUTPUT  
–V  
OP  
AMP01  
TOP VIEW  
(Not to Scale)  
GENERAL DESCRIPTION  
The AMP01 is a monolithic instrumentation amplifier designed  
for high-precision data acquisition and instrumentation applica-  
tions. The design combines the conventional features of an  
instrumentation amplifier with a high current output stage. The  
output remains stable with high capacitance loads (1 µF), a  
unique ability for an instrumentation amplifier. Consequently,  
the AMP01 can amplify low level signals for transmission  
through long cables without requiring an output buffer. The output  
stage may be configured as a voltage or current generator.  
*MAKE NO ELECTRICAL CONNECTION  
AMP01 BTC/883  
28-Terminal LCC  
4
3
2
1
28 27 26  
25  
V
NULL  
NC  
NULL  
NC  
5
6
7
8
9
IOS  
Input offset voltage is very low (20 µV), which generally elimi-  
nates the external null potentiometer. Temperature changes  
have minimal effect on offset; TCVIOS is typically 0.15 µV/°C.  
Excellent low-frequency noise performance is achieved with a  
minimal compromise on input protection. Bias current is very  
low, less than 10 nA over the military temperature range. High  
common-mode rejection of 130 dB, 16-bit linearity at a gain of  
1000, and 50 mA peak output current are achievable simulta-  
neously. This combination takes the instrumentation amplifier  
one step further towards the ideal amplifier.  
V
V
24 NC  
23  
OOS  
R
R
S
S
AMP01  
TOP VIEW  
(Not to Scale)  
22  
21  
20  
19  
NULL  
NC  
OOS  
+V  
OP  
TEST PIN* 10  
NC  
V+  
11  
NC  
12  
13 14 15 16 17 18  
NC = NO CONNECT  
*MAKE NO ELECTRICAL CONNECTION  
AC performance complements the superb dc specifications. The  
AMP01 slews at 4.5 V/µs into capacitive loads of up to 15 nF,  
settles in 50 µs to 0.01% at a gain of 1000, and boasts a healthy  
26 MHz gain-bandwidth product. These features make the  
AMP01 ideal for high speed data acquisition systems.  
20-Lead SOIC  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
R
G
R
1
2
G
TEST PIN*  
+IN  
TEST PIN*  
–IN  
Gain is set by the ratio of two external resistors over a range of  
0.1 to 10,000. A very low gain temperature coefficient of  
10 ppm/°C is achievable over the whole gain range. Output  
voltage swing is guaranteed with three load resistances; 50 ,  
500 , and 2 k. Loaded with 500 , the output delivers  
±13.0 V minimum. A thermal shutdown circuit prevents de-  
struction of the output transistors during overload conditions.  
3
4
V
V
NULL  
NULL  
V
NULL  
NULL  
IOS  
IOS  
OOS  
OOS  
5
V
AMP01  
TOP VIEW  
(Not to Scale)  
6
TEST PIN*  
SENSE  
R
R
S
S
7
REFERENCE  
OUTPUT  
8
+V  
V+  
V–  
OP  
9
The AMP01 can also be configured as a high performance op-  
erational amplifier. In many applications, the AMP01 can be  
used in place of op amp/power-buffer combinations.  
–V  
OP  
10  
*MAKE NO ELECTRICAL CONNECTION  
REV. D  
*Protected under U.S. Patent Numbers 4,471,321 and 4,503,381.  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AMP01–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (@ VS = ؎15 V, RS = 10 k, RL = 2 k, TA = +25؇C, unless otherwise noted)  
AMP01A  
Min Typ Max  
AMP01B  
Min Typ Max  
Parameter  
Symbol  
Conditions  
Units  
OFFSET VOLTAGE  
Input Offset Voltage  
VIOS  
TA = +25°C  
20  
40  
50  
80  
40  
60  
0.3  
2
100  
150  
1.0  
6
µV  
µV  
µV/°C  
mV  
mV  
–55°C TA +125°C  
–55°C TA +125°C  
TA = +25°C  
Input Offset Voltage Drift  
Output Offset Voltage  
TCVIOS  
VOOS  
0.15 0.3  
1
3
3
6
–55°C TA +125°C  
6
10  
Output Offset Voltage Drift  
TCVOOS  
PSR  
RG = ∞  
–55°C TA +125°C  
G = 1000  
20  
50  
50  
120  
µV/°C  
dB  
dB  
dB  
dB  
Offset Referred to Input  
vs. Positive Supply  
V+ = +5 V to +15 V  
120  
110  
95  
130  
130  
110  
90  
110  
100  
90  
120  
120  
100  
80  
G = 100  
G = 10  
G = 1  
75  
70  
–55°C TA +125°C  
G = 1000  
G = 100  
G = 10  
G = 1  
G = 1000  
G = 100  
G = 10  
120  
110  
95  
75  
105  
90  
130  
130  
110  
90  
125  
105  
85  
110  
100  
90  
70  
105  
90  
120  
120  
100  
80  
115  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Offset Referred to Input  
vs. Negative Supply  
V– = –5 V to –15 V  
PSR  
70  
50  
70  
50  
75  
60  
G = 1  
65  
–55°C TA +125°C  
G = 1000  
G = 100  
G = 10  
G = 1  
105  
90  
70  
125  
105  
85  
105  
90  
70  
115  
95  
75  
dB  
dB  
dB  
dB  
50  
85  
50  
60  
Input Offset Voltage Trim  
Range  
Output Offset Voltage Trim  
Range  
VS = ±4.5 V to ±18 V1  
VS = ±4.5 V to ±18 V1  
±6  
±6  
mV  
mV  
±100  
±100  
INPUT CURRENT  
Input Bias Current  
IB  
TA = +25°C  
1
4
40  
0.2  
0.5  
3
4
10  
2
6
50  
0.5  
1.0  
5
6
15  
nA  
nA  
pA/°C  
nA  
nA  
–55°C TA +125°C  
–55°C TA +125°C  
TA = +25°C  
–55°C TA +125°C  
–55°C TA +125°C  
Input Bias Current Drift  
Input Offset Current  
TCIB  
IOS  
1.0  
3.0  
2.0  
6.0  
Input Offset Current Drift  
TCIOS  
RIN  
pA/°C  
INPUT  
Input Resistance  
Differential, G = 1000  
Differential, G 100  
Common Mode, G = 1000  
TA = +25°C2  
–55°C TA +125°C  
VCM = ±10 V, 1 kΩ  
Source Imbalance  
G = 1000  
1
10  
20  
1
10  
20  
GΩ  
GΩ  
GΩ  
V
Input Voltage Range  
IVR  
±10.5  
±10.0  
±10.5  
±10.0  
V
Common-Mode Rejection  
CMR  
125  
120  
100  
85  
130  
130  
120  
100  
115  
110  
95  
125  
125  
110  
90  
dB  
dB  
dB  
dB  
G = 100  
G = 10  
G = 1  
75  
–55°C TA +125°C  
G = 1000  
G = 100  
G = 10  
G = 1  
120  
115  
95  
125  
125  
115  
95  
110  
105  
90  
120  
120  
105  
90  
dB  
dB  
dB  
dB  
80  
75  
NOTES  
1VIOS and VOOS nulling has minimal affect on TCVIOS and TCVOOS respectively.  
2Refer to section on common-mode rejection.  
Specifications subject to change without notice.  
–2–  
REV. D  
AMP01  
(@ VS = ؎15 V, RS = 10 k, RL = 2 k, TA = +25؇C, –25؇C TA +85؇C for E, F  
grades, 0؇C TA +70؇C for G grade, unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
AMP01E  
Min Typ Max  
AMP01F/G  
Min Typ Max  
Parameter  
Symbol  
Conditions  
Units  
OFFSET VOLTAGE  
Input Offset Voltage  
VIOS  
TA = +25°C  
20  
40  
50  
80  
40  
60  
0.3  
2
100  
150  
1.0  
6
µV  
µV  
µV/°C  
mV  
mV  
TMIN TA TMAX  
TMIN TA TMAX  
TA = +25°C  
1
Input Offset Voltage Drift  
Output Offset Voltage  
TCVIOS  
VOOS  
0.15 0.3  
1
3
3
6
TMIN TA TMAX  
6
10  
1
Output Offset Voltage Drift  
TCVOOS  
PSR  
RG = ∞  
TMIN TA TMAX  
G = 1000  
G = 100  
20  
100  
50  
120  
µV/°C  
dB  
dB  
dB  
dB  
Offset Referred to Input  
vs. Positive Supply  
V+ = +5 V to +15 V  
120  
110  
95  
130  
130  
110  
90  
110  
100  
90  
120  
120  
100  
80  
G = 10  
G = 1  
75  
70  
TMIN TA TMAX  
G = 1000  
G = 100  
G = 10  
120  
110  
95  
75  
110  
95  
130  
130  
110  
90  
125  
105  
85  
110  
100  
90  
70  
105  
90  
120  
120  
100  
80  
115  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
G = 1  
Offset Referred to Input  
vs. Negative Supply  
V– = –5 V to –15 V  
PSR  
G = 1000  
G = 100  
G = 10  
75  
55  
70  
50  
75  
60  
G = 1  
65  
TMIN TA TMAX  
G = 1000  
G = 100  
G = 10  
G = 1  
110  
95  
75  
125  
105  
85  
105  
90  
70  
115  
95  
75  
dB  
dB  
dB  
dB  
55  
85  
50  
60  
Input Offset Voltage Trim  
Range  
Output Offset Voltage Trim  
Range  
VS = ±4.5 V to ±18 V2  
VS = ±4.5 V to ±18 V2  
±6  
±6  
mV  
mV  
±100  
±100  
INPUT CURRENT  
Input Bias Current  
IB  
TA = +25°C  
1
4
40  
0.2  
0.5  
3
4
10  
2
6
50  
0.5  
1.0  
5
6
15  
mV  
mV  
pA/°C  
mV  
mV  
TMIN TA TMAX  
TMIN TA TMAX  
TA = +25°C  
TMIN TA TMAX  
TMIN TA TMAX  
Input Bias Current Drift  
Input Offset Current  
TCIB  
IOS  
1.0  
3.0  
2.0  
6.0  
Input Offset Current Drift  
TCIOS  
RIN  
pA/°C  
INPUT  
Input Resistance  
Differential, G = 1000  
Differential, G 100  
Common Mode, G = 1000  
TA = +25°C3  
TMIN TA TMAX  
VCM = ±10 V, 1 kΩ  
Source Imbalance  
G = 1000  
1
10  
20  
1
10  
20  
GΩ  
GΩ  
GΩ  
V
Input Voltage Range  
IVR  
±10.5  
±10.0  
±10.5  
±10.0  
V
Common-Mode Rejection  
CMR  
125  
120  
100  
85  
130  
130  
120  
100  
115  
110  
95  
125  
125  
110  
90  
dB  
dB  
dB  
dB  
G = 100  
G = 10  
G = 1  
75  
TMIN TA TMAX  
G = 1000  
G = 100  
G = 10  
G = 1  
120  
115  
95  
125  
125  
115  
95  
110  
105  
90  
120  
120  
105  
90  
dB  
dB  
dB  
dB  
80  
75  
NOTES  
1Sample tested.  
2VIOS and VOOS nulling has minimal affect on TCVIOS and TCVOOS, respectively.  
3Refer to section on common-mode rejection.  
Specifications subject to change without notice.  
REV. D  
–3–  
AMP01  
ELECTRICAL CHARACTERISTICS (@ VS = ؎15 V, RS = 10 k, RL = 2 k, TA = +25؇C, unless otherwise noted)  
AMP01A/E  
Min Typ Max  
AMP01B/F/G  
Min Typ Max  
Parameter  
Symbol Conditions  
Units  
GAIN  
20 × RS  
RG  
Gain Equation Accuracy  
G =  
0.3  
0.6  
0.5  
0.8  
%
Accuracy Measured  
from G = 1 to 1000  
Gain Range  
Nonlinearity  
G
0.1  
10k  
0.0007 0.005  
0.005  
0.1  
10k  
0.0007 0.005  
0.005  
V/V  
%
%
%
%
G = 10001  
G = 1001  
G = 101  
0.005  
0.010  
10  
0.007  
0.015  
15  
G = 11  
Temperature Coefficient  
GTC  
1 G 10001, 2  
5
5
ppm°C  
OUTPUT RATING  
Output Voltage Swing  
VOUT  
RL = 2 kΩ  
RL = 500 Ω  
RL = 50 Ω  
±13.0 ±13.8  
±13.0 ±13.5  
±2.5 ±4.0  
±12.0 ±13.8  
±12.0 ±13.5  
±13.0 ±13.8  
±13.0 ±13.5  
±2.5 ±4.0  
±12.0 ±13.8  
±12.0 ±13.5  
V
V
V
V
RL = 2 kOver Temp.  
RL = 500 3  
V
Positive Current Limit  
Negative Current Limit  
Capacitive Load Stability  
Output-to-Ground Short  
Output-to-Ground Short  
1 G 1000  
60  
60  
100  
90  
120  
120  
60  
60  
100  
90  
120  
120  
mA  
mA  
No Oscillations1  
0.1  
1
0.1  
1
µF  
°C  
Thermal Shutdown  
Temperature  
Junction Temperature  
165  
165  
NOISE  
Voltage Density, RTI  
en  
en  
en  
en  
en  
fO = 1 kHz  
G = 1000  
G = 100  
G = 10  
G = 1  
5
10  
59  
540  
0.15  
5
10  
59  
540  
0.15  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
Noise Current Density, RTI in  
fO = 1 kHz, G = 1000  
0.1 Hz to 10 Hz  
G = 1000  
G = 100  
G = 10  
Input Noise Voltage  
en p-p  
en p-p  
en p-p  
en p-p  
en p-p  
in p-p  
0.12  
0.16  
1.4  
13  
0.12  
0.16  
1.4  
13  
µV p-p  
µV p-p  
µV p-p  
µV p-p  
pA p-p  
G = 1  
Input Noise Current  
0.1 Hz to 10 Hz, G = 1000  
2
2
DYNAMIC RESPONSE  
Small-Signal  
G = 1  
G = 10  
G = 100  
G = 1000  
G = 10  
To 0.01%, 20 V step  
G = 1  
G = 10  
G = 100  
G = 1000  
570  
100  
82  
26  
4.5  
570  
100  
82  
26  
4.5  
kHz  
kHz  
kHz  
kHz  
V/µs  
Bandwidth (–3 dB)  
BW  
Slew Rate  
Settling Time  
SR  
tS  
3.5  
3.0  
12  
13  
15  
50  
12  
13  
15  
50  
µs  
µs  
µs  
µs  
NOTES  
1Guaranteed by design.  
2Gain tempco does not include the effects of gain and scale resistor tempco match.  
3–55°C TA +125°C for A/B grades, –25°C TA +85°C for E/F grades, 0°C TA 70°C for G grades.  
Specifications subject to change without notice.  
REV. D  
–4–  
AMP01  
ELECTRICAL CHARACTERISTICS (@ VS = ؎15 V, RS = 10 k, RL = 2 k, TA = +25؇C, unless otherwise noted)  
AMP01A/E  
AMP01B/F/G  
Parameter  
Symbol Conditions  
Min Typ Max  
Min Typ Max  
Units  
SENSE INPUT  
Input Resistance  
Input Current  
Voltage Range  
RIN  
IIN  
35  
50  
280  
65  
35  
50  
280  
65  
kΩ  
µA  
V
Referenced to V–  
(Note 1)  
–10.5  
+15  
–10.5  
+15  
REFERENCE INPUT  
Input Resistance  
Input Current  
RIN  
IIN  
35  
50  
280  
65  
35  
50  
280  
65  
kΩ  
µA  
V
Referenced to V–  
(Note 1)  
Voltage Range  
–10.5  
+15  
–10.5  
+15  
Gain to Output  
1
1
V/V  
POWER SUPPLY –25°C TA +85°C for E/F Grades, –55°C TA +125°C for A/B Grades  
Supply Voltage Range  
VS  
VS  
IQ  
+V linked to +VOP  
–V linked to –VOP  
+V linked to +VOP  
–V linked to –VOP  
±4.5  
±4.5  
±18  
±18  
4.8  
±4.5  
±4.5  
±18  
±18  
4.8  
V
V
mA  
mA  
Quiescent Current  
3.0  
3.4  
3.0  
3.4  
IQ  
4.8  
4.8  
NOTE  
1Guaranteed by design.  
Specifications subject to change without notice.  
ORDERING GUIDE  
Temperature Range Package Description Package Option  
Model  
AMP01AX  
AMP01AX/883C  
AMP01BTC/883C –55°C to +125°C  
AMP01BX  
AMP01BX/883C  
AMP01EX  
AMP01FX  
AMP01GBC  
AMP01GS  
AMP01GS-REEL  
AMP01NBC  
–55°C to +125°C  
–55°C to +125°C  
18-Lead Cerdip  
18-Lead Cerdip  
28-Terminal LCC  
18-Lead Cerdip  
18-Lead Cerdip  
18-Lead Cerdip  
18-Lead Cerdip  
Die  
Q-18  
Q-18  
E-28A  
Q-18  
Q-18  
Q-18  
Q-18  
–55°C to +125°C  
–55°C to +125°C  
–25°C to +85°C  
–25°C to +85°C  
0°C to +70°C  
0°C to +70°C  
20-Lead SOIC  
13" Tape and Reel  
Die  
R-20  
R-20  
5962-8863001VA* –55°C to +125°C  
5962-88630023A* –55°C to +125°C  
5962-8863002VA* –55°C to +125°C  
18-Lead Cerdip  
28-Terminal LCC  
18-Lead Cerdip  
Q-18  
E-28A  
Q-18  
*Standard military drawing available.  
DICE CHARACTERISTICS  
Die Size 0.111 × 0.149 inch, 16,539 sq. mils  
(2.82 × 3.78 mm, 10.67 sq. mm)  
1. R  
2. R  
3. –INPUT  
10. V– (OUTPUT)  
11. V–  
12. V+  
13. V+ (OUTPUT)  
G
G
4. V  
5. V  
NULL  
NULL  
OOS  
OOS  
14. R  
15. R  
16. V  
17. V  
S
S
6. TEST PIN*  
7. SENSE  
8. REFERENCE  
9. OUTPUT  
NULL  
NULL  
IOS  
IOS  
18. +INPUT  
*MAKE NO ELECTRICAL CONNECTION  
REV. D  
–5–  
AMP01  
WAFER TEST LIMITS (@ VS = ؎15 V, RS = 10 k, RL = 2 k, TA = +25؇C, unless otherwise noted)  
AMP01NBC  
AMP01GBC  
Limit  
Parameter  
Symbol Conditions  
Limit  
Units  
Input Offset Voltage  
Output Offset Voltage  
Offset Referred to Input  
vs. Positive Supply  
VIOS  
VOOS  
PSR  
60  
4
120  
8
µV max  
mV max  
dB min  
dB min  
dB min  
dB min  
dB min  
dB min  
dB min  
dB min  
dB min  
dB min  
nA max  
nA max  
V min  
V+ = +5 V to +15 V  
G = 1000  
G = 100  
G = 10  
120  
110  
95  
110  
100  
90  
G = 1  
75  
70  
Offset Referred to Input  
vs. Negative Supply  
PSR  
V– = –5 V to –15 V  
G = 1000  
G = 100  
G = 10  
105  
90  
70  
50  
4
1
±10  
105  
90  
70  
50  
8
3
±10  
G = 1  
Input Bias Current  
IB  
IOS  
IVR  
CMR  
Input Offset Current  
Input Voltage Range  
Common Mode Rejection  
Guaranteed by CMR Tests  
VCM = ±10 V  
G = 1000  
G = 100  
G = 10  
dB min  
dB min  
dB min  
dB min  
dB min  
125  
120  
100  
85  
115  
110  
95  
G = 1  
75  
20 × RS  
RG  
Gain Equation Accuracy  
Output Voltage Swing  
G =  
0.6  
0.8  
% max  
VOUT  
VOUT  
VOUT  
RL = 2 kΩ  
RL = 500 Ω  
RL = 50 Ω  
Output to Ground Short  
Output to Ground Short  
+V Linked to +VOP  
–V Linked to –VOP  
±13  
±13  
±2.5  
±60  
±120  
4.8  
±13  
±13  
±2.5  
±60  
±120  
4.8  
V min  
V min  
V min  
mA min  
mA max  
mA max  
mA max  
Output Current Limit  
Output Current Limit  
Quiescent Current  
IQ  
4.8  
4.8  
NOTE  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
V+  
V
IOS  
+V  
NULL  
OP  
A1  
OUTPUT  
250⍀  
250⍀  
–V  
OP  
–IN  
+IN  
Q1  
Q2  
REFERENCE  
R1  
47.5k⍀  
R3  
47.5k⍀  
R
GAIN  
SENSE  
A2  
A3  
R
SCALE  
R2  
2.5k⍀  
R4  
2.5k⍀  
V
NULL  
OOS  
V–  
Figure 1. Simplified Schematic  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AMP01 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. D  
–6–  
AMP01  
ELECTRICAL CHARACTERISTICS (@ VS = ؎15 V, RS = 10 k, RL = 2 k, TA = +25؇C, unless otherwise noted)  
AMP01NBC  
Typical  
AMP01GBC  
Typical  
Parameter  
Symbol  
Conditions  
Units  
Input Offset Voltage Drift  
Output Offset Voltage Drift  
Input Bias Current Drift  
Input Offset Current Drift  
Nonlinearity  
TCVIOS  
TCVOOS  
TCIB  
0.15  
20  
40  
0.30  
50  
50  
µV/°C  
µV/°C  
pA/°C  
pA/°C  
%
RG  
=
TCIOS  
3
5
G = 1000  
G = 1000  
0.0007  
0.0007  
Voltage Noise Density  
en  
fO = 1 kHz  
G = 1000  
fO = 1 kHz  
G = 1000  
0.1 Hz to 10 Hz  
G = 1000  
5
5
nV/Hz  
pA/Hz  
Current Noise Density  
Voltage Noise  
in  
0.15  
0.15  
en p-p  
in p-p  
0.12  
2
0.12  
2
µV p-p  
pA p-p  
Current Noise  
0.1 Hz to 10 Hz  
G = 1000  
G = 10  
Small-Signal Bandwidth (–3 dB) BW  
26  
4.5  
26  
4.5  
kHz  
V/µs  
Slew Rate  
SR  
Settling Time  
tS  
To 0.01%, 20 V Step  
G = 1000  
50  
50  
µs  
NOTE  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
REV. D  
–7–  
AMP01  
–Typical Performance Characteristics  
8
5
4
3
50  
T
= +25؇C  
A
V
= ؎15V  
V
= ؎15V  
S
S
40  
30  
20  
10  
0
6
4
2
1
UNIT NO.  
1
2
2
0
–1  
–2  
0
–10  
3
4
–2  
–20  
–30  
–40  
–3  
–4  
–6  
–4  
–5  
0
؎5  
؎10  
؎15  
؎20  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
POWER SUPPLY VOLTAGE – Volts  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 4. Output Offset Voltage  
vs. Temperature  
Figure 2. Input Offset Voltage  
vs. Temperature  
Figure 3. Input Offset Voltage  
vs. Supply Voltage  
2.0  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= ؎15V  
T = +25؇C  
A
T
= +25؇C  
S
A
4
3
2
1
0
1.5  
1.0  
0.5  
0
–0.5  
–1  
–2  
–1.0  
–1.5  
–0.5  
–1.0  
0
0
؎5  
؎10  
؎15  
؎20  
؎5  
؎10  
؎15  
؎20  
؎25  
0
–75 –50 –25  
25 50 75 100 125 150  
POWER SUPPLY VOLTAGE – Volts  
POWER SUPPLY VOLTAGE – Volts  
TEMPERATURE – ؇C  
Figure 5. Output Offset Voltage  
Change vs. Supply Voltage  
Figure 7. Input Bias Current  
vs. Supply Voltage  
Figure 6. Input Bias Current  
vs. Temperature  
0.8  
0.6  
140  
120  
100  
80  
140  
130  
120  
110  
100  
G = 1000  
G = 100  
V
= ؎15V  
V
T
= ؎15V  
= +25؇C  
S
S
A
0.4  
0.2  
60  
0.0  
G = 10  
G = 1  
40  
–0.2  
–0.4  
–0.6  
V
V
T
= 2V p-p  
= ؎15V  
= +25؇C  
CM  
S
A
20  
0
0
1
10  
100  
1k  
10k  
100k  
–75 –50 –25  
25 50 75 100 125 150  
1
10  
100  
1k  
10k  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
VOLTAGE GAIN – G  
Figure 8. Input Offset Current  
vs. Temperature  
Figure 9. Common-Mode Rejection  
vs. Voltage Gain  
Figure 10. Common-Mode Rejection  
vs. Frequency  
REV. D  
–8–  
AMP01  
140  
120  
100  
80  
140  
120  
100  
80  
16  
14  
12  
10  
8
G = 1000  
G = 100  
V
= ؎15V  
= +25؇C  
S
V
= 0  
DM  
G = 1000  
T
A
V
V
= ؎15V  
S
V = ؎1V  
S
G = 10  
G = 1  
G = 100  
= ؎10V  
= ؎5V  
S
60  
60  
6
40  
40  
V
= ؎15V  
= +25؇C  
V
S
S
4
G = 10  
T
A
V = ؎1V  
20  
20  
S
2
G = 1  
1k  
0
0
0
0
1
10  
100  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
–75 –50 –25  
25 50 75 100 125 150  
FREQUENCY – Hz  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
Figure 13. Negative PSR  
vs. Frequency  
Figure 11. Common-Mode Voltage  
Range vs. Temperature  
Figure 12. Positive PSR  
vs. Frequency  
100  
10  
30  
25  
20  
18  
V
R
= ؎15V  
= 2k⍀  
V
= ؎15V  
S
V
= ؎15V  
= 20mA p-p  
S
S
16  
14  
12  
L
I
OUT  
G = 1000  
1.0  
0.1  
10  
8
15  
10  
5
G = 1  
6
4
2
0
0.01  
0.001  
0
100  
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
FREQUENCY – Hz  
FREQUENCY – Hz  
LOAD RESISTANCE ⍀  
Figure 15. Maximum Output Swing  
vs. Frequency  
Figure 16. Closed-Loop Output  
Impedance vs. Frequency  
Figure 14. Maximum Output Voltage  
vs. Load Resistance  
0.08  
80  
0.02  
V
T
= ؎15V  
= +25؇C  
V
= ؎15V  
= 600⍀  
= 20V p-p  
S
S
V
= ؎15V  
S
0.07  
G = 1000  
G = 100  
R
V
A
L
G = 100  
f = 1kHz  
60  
40  
OUT  
V
= 20V p-p  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
OUT  
G = 1000  
G = 100  
1k  
G = 10  
G = 1  
0.01  
20  
0
G = 10  
–20  
G = 1  
0
100  
–40  
10  
100  
10k  
1
10  
100  
1k  
10k  
100k  
1M  
1k  
LOAD RESISTANCE ⍀  
10k  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 18. Total Harmonic Distortion  
vs. Frequency  
Figure 17. Closed-Loop Voltage  
Gain vs. Frequency  
Figure 19. Total Harmonic Distortion  
vs. Load Resistance  
REV. D  
–9–  
AMP01  
6
6
5
4
70  
60  
50  
40  
30  
20  
10  
V
= ؎15V  
V
= ؎15V  
V
= ؎15V  
S
S
S
20V STEP  
5
4
3
2
1
0
3
2
1
0
1
10  
100  
1k  
100p  
1n  
10n  
100n  
1␮  
1
10  
100  
1k  
VOLTAGE GAIN – G  
LOAD CAPACITANCE – F  
VOLTAGE GAIN – G  
Figure 20. Slew Rate vs.  
Voltage Gain  
Figure 21. Slew Rate vs.  
Load Capacitance  
Figure 22. Settling Time to 0.01%  
vs. Voltage Gain  
15  
10  
1k  
100  
10  
8
V
= ؎15V  
T = +25؇C  
A
S
G = 1000  
f = 1kHz  
7
6
5
4
3
2
1
0
5
0
1
1
10  
100  
1k  
10k  
0
؎5  
؎10  
؎15  
؎20  
1
10  
100  
1k  
FREQUENCY – Hz  
POWER SUPPLY VOLTAGE – Volts  
VOLTAGE GAIN – G  
Figure 23. Voltage Noise Density  
vs. Frequency  
Figure 24. RTI Voltage Noise  
Density vs. Gain  
Figure 25. Positive Supply Current  
vs. Supply Voltage  
6
–8  
–6  
T
= +25؇C  
A
V
V
= ؎15V  
V
= ؎15V  
S
S
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
= V  
= 0V  
SENSE  
REF  
5
4
3
2
1
0
–5  
–4  
–3  
–2  
–1  
0
0
–75 –50 –25  
0
25 50 75 100 125 150  
؎5  
؎10  
؎15  
؎20  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE – ؇C  
POWER SUPPLY VOLTAGE – Volts  
TEMPERATURE – ؇C  
Figure 26. Negative Supply Current  
vs. Supply Voltage  
Figure 27. Positive Supply Current  
vs. Temperature  
Figure 28. Negative Supply Current  
vs. Temperature  
REV. D  
–10–  
AMP01  
INPUT AND OUTPUT OFFSET VOLTAGES  
GAIN  
Instrumentation amplifiers have independent offset voltages  
associated with the input and output stages. While the initial  
offsets may be adjusted to zero, temperature variations will  
cause shifts in offsets. Systems with auto-zero can correct for  
offset errors, so initial adjustment would be unnecessary. How-  
ever, many high-gain applications don’t have auto zero. For  
these applications, both offsets can be nulled, which has mini-  
mal effect on TCVIOS and TCVOOS  
The AMP01 uses two external resistors for setting voltage gain  
over the range 0.1 to 10,000. The magnitudes of the scale resis-  
tor, RS, and gain-set resistor, RG, are related by the formula:  
G = 20 × RS/RG, where G is the selected voltage gain (refer to  
Figure 29).  
V+  
R
S
The input offset component is directly multiplied by the ampli-  
fier gain, whereas output offset is independent of gain. There-  
fore, at low gain, output-offset errors dominate, while at high  
14  
18  
1
15  
SENSE  
+IN  
–IN  
13  
12  
11  
7
9
gain, input-offset errors dominate. Overall offset voltage, VOS  
referred to the output (RTO) is calculated as follows;  
,
R
AMP01  
G
2
3
8
OUTPUT  
REFERENCE  
V
OS (RTO) = (VIOS × G) + VOOS  
where VIOS and VOOS are the input and output offset voltage  
specifications and G is the amplifier gain. Input offset nulling  
(1)  
10  
20 
؋
 R  
V–  
S
VOLTAGE GAIN, G =  
(
)
alone is recommended with amplifiers having fixed gain above  
50. Output offset nulling alone is recommended when gain is  
fixed at 50 or below.  
R
G
Figure 29. Basic AMP01 Connections for Gains  
0.1 to 10,000  
In applications requiring both initial offsets to be nulled, the  
input offset is nulled first by short-circuiting RG, then the output  
offset is nulled with the short removed.  
The magnitude of RS affects linearity and output referred errors.  
Circuit performance is characterized using RS = 10 kwhen  
operating on ±15 volt supplies and driving a ±10 volt output. RS  
may be reduced to 5 kin many applications particularly when  
operating on ±5 volt supplies or if the output voltage swing is  
limited to ±5 volts. Bandwidth is improved with RS = 5 kand  
this also increases common-mode rejection by approximately  
6 dB at low gain. Lowering the value below 5 kcan cause  
instability in some circuit configurations and usually has no  
advantage. High voltage gains between two and ten thousand  
would require very low values of RG. For RS = 10 kand  
AV = 2000 we get RG = 100 ; this value is the practical lower  
limit for RG. Below 100 , mismatch of wirebond and resistor  
temperature coefficients will introduce significant gain tempco  
errors. Therefore, for gains above 2,000, RG should be kept  
constant at 100 and RS increased. The maximum gain of  
10,000 is obtained with RS set to 50 k.  
The overall offset voltage drift TCVOS, referred to the output, is  
a combination of input and output drift specifications. Input  
offset voltage drift is multiplied by the amplifier gain, G, and  
summed with the output offset drift;  
TCVOS (RTO) = (TCVIOS × G) + TCVOOS  
(2)  
where TCVIOS is the input offset voltage drift, and TCVOOS is  
the output offset voltage specification. Frequently, the amplifier  
drift is referred back to the input (RTI), which is then equiva-  
lent to an input signal change;  
TCVOOS  
TCVOS (RTI) = TCVIOS  
(3)  
G
For example, the maximum input-referred drift of an AMP01 EX  
set to G = 1000 becomes;  
100µV/°C  
TCVOS (RTI ) = 0.3 µV/°C +  
= 0.4 µV/°C max  
Metal-film or wirewound resistors are recommended for best  
results. The absolute values and TCs are not too important,  
only the ratiometric parameters.  
1000  
INPUT BIAS AND OFFSET CURRENTS  
AC amplifiers require good gain stability with temperature and  
time, but dc performance is unimportant. Therefore, low cost  
metal-film types with TCs of 50 ppm/°C are usually adequate  
for RS and RG. Realizing the full potential of the AMP01’s offset  
voltage and gain stability requires precision metal-film or wire-  
wound resistors. Achieving a 15 ppm/°C gain tempco at all gains  
requires RS and RG temperature coefficient matching to  
5 ppm/°C or better.  
Input transistor bias currents are additional error sources that  
can degrade the input signal. Bias currents flowing through the  
signal source resistance appear as an additional offset voltage.  
Equal source resistance on both inputs of an IA will minimize  
offset changes due to bias current variations with signal voltage  
and temperature. However, the difference between the two bias  
currents, the input offset current, produces a nontrimmable  
error. The magnitude of the error is the offset current times the  
source resistance.  
A current path must always be provided between the differential  
inputs and analog ground to ensure correct amplifier operation.  
Floating inputs, such as thermocouples, should be grounded  
close to the signal source for best common-mode rejection.  
REV. D  
–11–  
AMP01  
IVR is the data sheet specification for input voltage range; VOUT  
is the maximum output signal; G is the chosen voltage gain. For  
example, at +25°C, IVR is specified as ±10.5 volt minimum  
with ±15 volt supplies. Using a ±10 volt maximum swing out-  
put and substituting the figures in (4) simplifies the formula to:  
1M  
V
= ؎15V  
S
100k  
5
G
R
R
10.5 –  
S
CMVR = ±  
(5)  
10k  
1k  
For all gains greater than or equal to 10, CMVR is ±10 volt  
minimum; at gains below 10, CMVR is reduced.  
G
ACTIVE GUARD DRIVE  
Rejection of common-mode noise and line pick-up can be im-  
proved by using shielded cable between the signal source and  
the IA. Shielding reduces pick-up, but increases input capaci-  
tance, which in turn degrades the settling-time for signal  
changes. Further, any imbalance in the source resistance be-  
tween the inverting and noninverting inputs, when capacitively  
loaded, converts the common-mode voltage into a differential  
voltage. This effect reduces the benefits of shielding. AC  
common-mode rejection is improved by “bootstrapping” the  
input cable capacitance to the input signal, a technique called  
“guard driving.” This technique effectively reduces the input  
capacitance. A single guard-driving signal is adequate at gains  
above 100 and should be the average value of the two inputs.  
The value of external gain resistor RG is split between two resis-  
tors RG1 and RG2; the center tap provides the required signal to  
drive the buffer amplifier (Figure 31).  
100  
1
10  
100  
VOLTAGE GAIN  
1k  
10k  
Figure 30. RG and RS Selection  
Gain accuracy is determined by the ratio accuracy of RS and RG  
combined with the gain equation error of the AMP01 (0.6%  
max for A/E grades).  
All instrumentation amplifiers require attention to layout so  
thermocouple effects are minimized. Thermocouples formed  
between copper and dissimilar metals can easily destroy the  
TCVOS performance of the AMP01 which is typically  
0.15 µV/°C. Resistors themselves can generate thermoelectric  
EMF’s when mounted parallel to a thermal gradient. “Vishay”  
resistors are recommended because a maximum value for ther-  
moelectric generation is specified. However, where thermal  
gradients are low and gain TCs of 20 ppm–50 ppm are suffi-  
cient, general-purpose metal-film resistors can be used for RG  
and RS.  
GROUNDING  
The majority of instruments and data acquisition systems have  
separate grounds for analog and digital signals. Analog ground  
may also be divided into two or more grounds which will be tied  
together at one point, usually the analog power-supply ground.  
In addition, the digital and analog grounds may be joined, nor-  
mally at the analog ground pin on the A-to-D converter. Fol-  
lowing this basic grounding practice is essential for good circuit  
performance (Figure 32).  
COMMON-MODE REJECTION  
Ideally, an instrumentation amplifier responds only to the dif-  
ference between the two input signals and rejects common-  
mode voltages and noise. In practice, there is a small change in  
output voltage when both inputs experience the same common-  
mode voltage change; the ratio of these voltages is called the  
common-mode gain. Common-mode rejection (CMR) is the  
logarithm of the ratio of differential-mode gain to common-  
mode gain, expressed in dB. CMR specifications are normally  
measured with a full-range input voltage change and a specified  
source resistance unbalance.  
Mixing grounds causes interactions between digital circuits and  
the analog signals. Since the ground returns have finite resis-  
tance and inductance, hundreds of millivolts can be developed  
between the system ground and the data acquisition compo-  
nents. Using separate ground returns minimizes the current flow  
in the sensitive analog return path to the system ground point.  
Consequently, noisy ground currents from logic gates do not  
interact with the analog signals.  
The current-feedback design used in the AMP01 inherently  
yields high common-mode rejection. Unlike resistive feedback  
designs, typified by the three-op-amp IA, the CMR is not de-  
graded by small resistances in series with the reference input. A  
slight, but trimmable, output offset voltage change results from  
resistance in series with the reference input.  
Inevitably, two or more circuits will be joined together with their  
grounds at differential potentials. In these situations, the differ-  
ential input of an instrumentation amplifier, with its high CMR,  
can accurately transfer analog information from one circuit to  
another.  
The common-mode input voltage range, CMVR, for linear  
operation may be calculated from the formula:  
SENSE AND REFERENCE TERMINALS  
|V OUT  
2G  
|
The sense terminal completes the feedback path for the instru-  
mentation amplifier output stage and is normally connected  
directly to the output. The output signal is specified with re-  
spect to the reference terminal, which is normally connected to  
analog ground.  
IVR –  
CMVR = ±  
(4)  
REV. D  
–12–  
AMP01  
+15V  
C3  
0.047F  
20 
؋
 R  
S
VOLTAGE GAIN, G =  
R
10k⍀  
(
)
S
R
*
G1  
+
C1  
C5  
10F  
A
= 500 WITH COMPONENTS SHOWN  
V
0.047F  
R4  
NC  
15  
14  
R
S
18  
6
+IN  
R
SENSE  
S
+15V  
13  
R
200⍀  
G3  
*
12  
V+  
1
2
3
2
3
7
7
8
R
R
G
R5  
*
9
6
R
400⍀  
GUARD  
DRIVE  
G1  
AMP01  
OUTPUT  
R
741  
G2  
V–  
11  
200⍀  
G
4
V
OOS  
10  
NULL  
5
–15V  
V
IOS  
–IN  
*SOLDER LINK  
4
NULL  
17  
16  
*
R2  
1M⍀  
R1  
1M⍀  
REFERENCE  
GROUND  
VR2  
100k⍀  
VR1  
100k⍀  
R3  
*
C4  
0.047F  
SIGNAL  
GROUND  
+
C6  
10F  
C2  
0.047F  
–15V  
Figure 31. AMP01 Evaluation Circuit Showing Guard-Drive Connection  
ANALOG  
POWER SUPPLY  
DIGITAL  
POWER SUPPLY  
+15V  
0V  
–15V  
0V  
+5V  
4.7F  
+
C
C
C
C
C
DIGITAL  
C
C
GROUND  
ANALOG  
GROUND  
DIGITAL  
GROUND  
7
8
DIGITAL  
DATA  
OUTPUT  
9
SMP-11  
SAMPLE AND HOLD  
AMP01  
ADC  
HOLD  
CAPACITOR  
OUTPUT  
REFERENCE  
C = 0.047F CERAMIC CAPACITORS  
Figure 32. Basic Grounding Practice  
REV. D  
–13–  
AMP01  
combination of these unique features in an instrumentation  
amplifier allows low-level transducer signals to be conditioned  
and directly transmitted through long cables in voltage or cur-  
rent form. Increased output current brings increased internal  
dissipation, especially with 50 loads. For this reason, the  
power-supply connections are split into two pairs; pins 10 and  
13 connect to the output stage only and pins 11 and 12 provide  
power to the input and following stages. Dual supply pins allow  
dropper resistors to be connected in series with the output stage  
so excess power is dissipated outside the package. Additional  
decoupling is necessary between pins 10 and 13 to ground to  
maintain stability when dropper resistors are used. Figure 34  
shows a complete circuit for driving 50 loads.  
If heavy output currents are expected and the load is situated  
some distance from the amplifier, voltage drops due to track or  
wire resistance will cause errors. Voltage drops are particularly  
troublesome when driving 50 loads. Under these conditions,  
the sense and reference terminals can be used to “remote sense”  
the load as shown in Figure 33. This method of connection puts  
the I×R drops inside the feedback loop and virtually eliminates  
the error. An unbalance in the lead resistances from the sense  
and reference pins does not degrade CMR, but will change the  
output offset voltage. For example, a large unbalance of 3 will  
change the output offset by only 1 mV.  
DRIVING 50 LOADS  
Output currents of 50 mA are guaranteed into loads of up to  
50 and 26 mA into 500 . In addition, the output is stable  
and free from oscillation even with a high load capacitance. The  
V+  
R
IN4148 DIODES ARE OPTIONAL. DIODES LIMIT THE OUTPUT  
VOLTAGE EXCURSION IF SENSE AND/OR REFERENCE LINES  
BECOME DISCONNECTED FROM THE LOAD.  
S
*
14  
18  
1
15  
+IN  
SENSE  
12  
11  
13  
10  
*
*
7
9
R
G
AMP01  
REMOTE  
LOAD  
8
TWISTED  
PAIRS  
2
3
REFERENCE  
–IN  
OUTPUT  
GROUND  
V–  
Figure 33. Remote Load Sensing  
POWER BANDWIDTH, G = 100, 130kHz  
POWER BANDWIDTH, G = 10, 200kHz  
T.H.D.~0.04% @ 1kHz, 2Vrms  
+15V  
R1  
130⍀  
1W  
0.047F  
R
5k⍀  
S
C1  
0.047F  
14  
18  
15  
+IN  
12  
SENSE  
13  
10  
1
7
V
OUT  
9
R
G
؎3V MAX  
AMP01  
8
50⍀  
LOAD  
2
REFERENCE  
11  
C2  
0.047F  
3
–IN  
R2  
130⍀  
1W  
0.047F  
20 
؋
 R  
–15V  
S
VOLTAGE GAIN, G =  
(
)
R
G
RESISTERS R1 AND R2 REDUCE IC DISSIPATION  
Figure 34. Driving 50 Loads  
REV. D  
–14–  
AMP01  
HEATSINKING  
External series resistors could be added to guard against higher  
voltage levels at the input, but resistors alone increase the input  
noise and degrade the signal-to-noise ratio, especially at high  
gains.  
To maintain high reliability, the die temperature of any IC  
should be kept as low as practicable, preferably below 100°C.  
Although most AMP01 application circuits will produce very  
little internal heat — little more than the quiescent dissipation  
of 90 mW—some circuits will raise that to several hundred  
milliwatts (for example, the 4-20 mA current transmitter appli-  
cation, Figure 37). Excessive dissipation will cause thermal  
shutdown of the output stage thus protecting the device from  
damage. A heatsink is recommended in power applications to  
reduce the die temperature.  
Protection can also be achieved by connecting back-to-back  
9.1 V Zener diodes across the differential inputs. This technique  
does not affect the input noise level and can be used down to a  
gain of 2 with minimal increase in input current. Although  
voltage-clamping elements look like short circuits at the limiting  
voltage, the majority of signal sources provide less than 50 mA,  
producing power levels that are easily handled by low-power  
Zeners.  
Several appropriate heatsinks are available; the Thermalloy  
6010B is especially easy to use and is inexpensive. Intended for  
dual-in-line packages, the heatsink may be attached with a  
cyanoacrylate adhesive. This heatsink reduces the thermal resis-  
tance between the junction and ambient environment to ap-  
proximately 80°C/W. Junction (die) temperature can then be  
calculated by using the relationship:  
Simultaneous connection of the differential inputs to a low  
impedance signal above 10 V during normal circuit operation is  
unlikely. However, additional protection involves adding 100 Ω  
current-limiting resistors in each signal path prior to the voltage  
clamp, the resistors increase the input noise level to just  
5.4 nV/Hz (refer to Figure 35).  
Input components, whether multiplexers or resistors, should be  
carefully selected to prevent the formation of thermocouple  
junctions that would degrade the input signal.  
TJ TA  
θJA  
Pd =  
where TJ and TA are the junction and ambient temperatures  
respectively, θJA is the thermal resistance from junction to ambi-  
ent, and Pd is the device’s internal dissipation.  
OPTIONAL PROTECTION  
RESISTORS, SEE TEXT.  
LINEAR INPUT RANGE,  
؎5V MAXIMUM  
*
+15V  
AMP01  
–15V  
DIFFERENTIAL PROTECTION  
TO ؎30V  
100⍀  
1W*  
OVERVOLTAGE PROTECTION  
+IN  
Instrumentation amplifiers invariably sit at the front end of  
instrumentation systems where there is a high probability of  
exposure to overloads. Voltage transients, failure of a trans-  
ducer, or removal of the amplifier power supply while the signal  
source is connected may destroy or degrade the performance of  
an unprotected amplifier. Although it is impractical to protect  
an IC internally against connection to power lines, it is relatively  
easy to provide protection against typical system overloads.  
9.1V 1W  
ZENERS  
V
OUT  
100⍀  
1W*  
–IN  
The AMP01 is internally protected against overloads for gains  
of up to 100. At higher gains, the protection is reduced and  
some external measures may be required. Limited internal over-  
load protection is used so that noise performance would not be  
significantly degraded.  
Figure 35. Input Overvoltage Protection for Gains  
2 to 10,000  
POWER SUPPLY CONSIDERATIONS  
Achieving the rated performance of precision amplifiers in a  
practical circuit requires careful attention to external influences.  
For example, supply noise and changes in the nominal voltage  
directly affect the input offset voltage. A PSR of 80 dB means  
that a change of 100 mV on the supply, not an uncommon  
value, will produce a 10 µV input offset change. Consequently,  
care should be taken in choosing a power unit that has a low  
output noise level, good line and load regulation, and good  
temperature stability.  
AMP01 noise level approaches the theoretical noise floor of the  
input stage which would be 4 nV/Hz at 1 kHz when the gain is  
set at 1000. Noise is the result of shot noise in the input devices  
and Johnson noise in the resistors. Resistor noise is calculated  
from the values of RG (200 at a gain of 1000) and the input  
protection resistors (250 ). Active loads for the input transis-  
tors contribute less than 1 nV/Hz of noise. The measured noise  
level is typically 5 nV/Hz.  
Diodes across the input transistor’s base-emitter junctions,  
combined with 250 input resistors and RG, protect against  
differential inputs of up to ±20 V for gains of up to 100. The  
diodes also prevent avalanche breakdown that would degrade  
the IB and IOS specifications. Decreasing the value of RG for  
gains above 100 limits the maximum input overload protection  
to ±10 V.  
REV. D  
–15–  
AMP01  
+15V  
COMPLIANCE, TYPICALLY ؎10V  
LINEARITY ~0.01%  
OUTPUT RESISTANCE AT 20mA ~5M⍀  
0.047F  
POWER BANDWIDTH (–3dB) ~60kHz  
18  
1
INTO 500LOAD  
+IN  
R
TRIM  
OUT  
12  
V+  
13  
10  
SENSE  
7
R2  
200⍀  
R
R
G
R1  
100⍀  
9
R
2k⍀  
G
؎I  
OUT  
AMP01  
V
IN  
8
2
3
REFERENCE  
G
V–  
11  
R
S
15  
–IN  
20 
؋
 R  
S
R
I
= V  
IN  
S
OUT  
(
)
R
؋
 R1  
G
14  
0.047F  
R1 = 100FOR I  
= ؎20mA  
OUT  
–15V  
R
S
V
= ؎100mV FOR ؎20mA FULL SCALE  
IN  
2k⍀  
Figure 36. High Compliance Bipolar Current Source with 13-Bit Linearity  
ALL RESISTORS 1% METAL FILM  
+15V  
TO +30V  
R
2k⍀  
S
0.047F  
14  
R
S
18  
1
15  
+IN  
R3  
100⍀  
R
12  
V+  
S
13  
10  
R2  
200⍀  
R
R
G
2
7
8
R
TRIM  
OUT  
9
4
6
R
G
AMP01  
2.75k⍀  
REF-02  
R5  
2
3
2.21k⍀  
G
V–  
11  
R6  
500⍀  
ZERO TRIM  
R1  
100⍀  
R4  
100⍀  
–IN  
0V  
I
OUT  
4mA TO 20mA  
0.047F  
–5V  
COMPLIANCE OF I  
, +20V WITH +30V SUPPLY (OUTPUT w.r.t. 0V)  
OUT  
DIFFERENTIAL INPUT OF 100mV FOR 16mA SPAN  
OUTPUT RESISTANCE ~5MAT I  
= 20mA  
OUT  
LINEARITY 0.01% OF SPAN  
Figure 37. 13-Bit Linear 4–20 mA Transmitter Constructed by Adding a Voltage Reference.  
Thermocouple Signals Can Be Accepted Without Preamplification.  
REV. D  
–16–  
AMP01  
+15V  
+
10F  
0.047F  
10k⍀  
14  
R
S
2N4921  
18  
1
15  
+IN  
R
S
12  
V+  
0.047F  
100⍀  
13  
SENSE  
7
R
R
G
9
V
R
OUT  
AMP01  
G
(؎10V INTO 10)  
8
2
3
REFERENCE  
G
10  
V–  
11  
–IN  
2N4918  
GND  
–15V  
0.047F  
VOLTAGE GAIN, G = 100  
POWER BANDWIDTH (–3dB), 60kHz  
QUIESCENT CURRENT, 4mA  
+
LINEARITY~0.01% @ FULL OUTPUT INTO 10⍀  
Figure 38. Adding Two Transistors Increases Output Current to ±1 A Without Affecting the Quiescent Current of 4 mA.  
Power Bandwidth is 60 kHz.  
Q1, Q2...........J110  
Q3, Q4, Q5....J107  
IC1 ...............CMP-04  
IC2 ...............OP15GZ  
+15V  
R
10k⍀  
S
0.047F  
18  
1
+IN  
–IN  
14  
R
S
15  
S
R
G
12  
V+  
R
200k20k⍀  
2k⍀  
196⍀  
47k⍀  
47k⍀  
47k⍀  
47k⍀  
SENSE  
13  
Q4  
7
9
Q5  
Q3  
AMP01  
OUT  
GND  
V–  
Q2  
8
10  
Q1  
V
REFERENCE  
OOS  
NULL  
+15V  
11  
2
3
5
3
2
V
IOS  
R
7
G
4
NULL  
6
IC2  
4
17  
16  
2
1
14  
+
13  
+
0.047F  
–15V  
100k⍀  
100k⍀  
+
+
3
4
IC1  
6
LINEARITY~0.005%, G = 10 AND 100  
~0.02%, G = 1 AND 1000  
8
12  
27k⍀  
10  
GAIN ACCURACY, UNTRIMMED~0.5%  
+15V  
SETTLING TIME TO 0.01%, ALL GAINS,  
LESS THAN 75s  
5
7
9
11  
G1000  
TTL COMPATIBLE INPUTS  
2.7k⍀  
–15V  
G1  
G10  
G100  
GAIN SWITCHING TIME, LESS THAN 100s  
Figure 39. The AMP01 Makes an Excellent Programmable-Gain Instrumentation Amplifier. Combined Gain-Switching  
and Settling Time to 13 Bits Falls Below 100 µs. Linearity Is Better than 12 Bits over a Gain Range 1 to 1000.  
REV. D  
–17–  
AMP01  
R
S
+15V  
10k⍀  
0.047F  
*MATCHED TO 0.1%  
0V  
14  
*5k⍀  
R
S
18  
1
15  
+IN  
R
S
12  
V+  
1.5k⍀  
13  
10  
SENSE  
R
R
G
7
7
*5k⍀  
2
3
9
AMP01  
R
G
6
470pF  
OP37  
4
8
2
3
REFERENCE  
G
V–  
11  
–IN  
0.047F  
0V  
–15V  
20 
؋
 R  
S
VOLTAGE GAIN, G =  
(
)
R
G
R
L
MAXIMUM OUTPUT, 20V p-p INTO 600⍀  
T.H.D. 0.01% @ 1kHz, 20V p-p INTO 600, G = 10  
+
OUTPUT  
DIFFERENTIAL COMMON-MODE  
OUTPUT  
REFERENCE  
(؎5V MAX)  
Figure 40. A Differential Input Instrumentation Amplifier with Differential Output Replaces a Transformer in Many  
Applications. The Output will Drive a 600 Load at Low Distortion, (0.01%).  
+15V  
POWER BANDWIDTH (–3dB)~150kHz  
TOTAL HARMONIC DISTORTION~0.006%  
@1kHz, 20V p-p INTO 500// 1000pF  
+
8
REF  
0.047F  
10F  
7
18  
1
SENSE  
V
IN  
12  
V+  
13  
10  
R
R
G
9
R1  
390⍀  
V
OUT  
AMP01  
2
3
G
V–  
11  
R2  
4.95k⍀  
R
S
C
R
L
L
15  
R
S
14  
0.047F  
10F  
+
NC  
NC  
–15V  
R3  
50⍀  
CLOSED-LOOP VOLTAGE GAIN MUST BE  
GREATER THAN 50 FOR STABLE OPERATION  
R2  
R3  
VOLTAGE GAIN, G =  
1 +  
(
)
NC = NO CONNECT  
Figure 41. Configuring the AMP01 as a Noninverting Operational Amplifier Provides Exceptional Performance. The  
Output Handles Low Load Impedances at Very Low Distortion, 0.006%.  
REV. D  
–18–  
AMP01  
NC  
NC  
R2  
220k⍀  
14  
R1  
3
2
R
S
V
15  
IN  
R
S
0.01F  
4.7k⍀  
7
8
SENSE  
R
R
G
REF  
9
V
OUT  
AMP01  
R4  
1
10  
G
V–  
11  
20V p-p INTO 500// 1000pF.  
V–  
TOTAL HARMONIC DISTORTION:  
R3  
+
<0.005% @ 1kHz, V  
= 20V p-p  
18  
12  
OUT  
G = 1 TO 1000  
13  
R2  
GAIN (G)  
R1 =  
0.047F  
0.047F  
10F  
10F  
R3 = R1 // R2  
+
R4 = 1.5k@ G = 1  
1.2k@ G = 10  
120@ G = 100 AND 1000  
+15V  
–15V  
Figure 42. TheInvertingOperationalAmplifierConfigurationhasExcellentLinearityovertheGainRange1to1000, Typically  
0.005%. Offset Voltage Drift at Unity Gain Is Improved over the Drift in the Instrumentation Amplifier Configuration.  
+15V  
8
680pF  
+
R1  
4.7k⍀  
REF  
7
10F  
0.047F  
18  
1
POWER BANDWIDTH (–3dB)~60kHz  
V
IN  
SENSE  
12  
V+  
TOTAL HARMONIC DISTORTION~0.001%  
@1kHz, 20V p-p INTO 500// 1000pF  
0.01F  
13  
10  
R
R
G
NC = NO CONNECT  
9
R
3k⍀  
R3  
330⍀  
G
V
OUT  
AMP01  
2
3
G
C
R
L
L
V–  
11  
R2  
R
S
4.7k⍀  
15  
R
S
0.047F  
10F  
14  
+
NC  
–15V  
NC  
Figure 43. Stability with Large Capacitive Loads Combined with High Output Current Capability make the AMP01 Ideal  
for Line Driving Applications. Offset Voltage Drift Approaches the TCVIOS Limit, (0.3 µV/°C).  
REV. D  
–19–  
AMP01  
V+  
V–  
16.2k⍀  
1F  
13  
18  
1
12  
2
3
11  
R
G
1
10  
200k20k2k200⍀  
OUTPUT  
1.82k⍀  
1.62M⍀  
1/2 OP215  
7
4
+
9
AMP01  
8
G
G
100  
8
10  
G
1
R
V+  
V–  
G
1000  
R
S
2
3
15  
16.2k⍀  
1F  
G
1F  
5
6
+
R
S
7
14  
1/2 OP215  
10k⍀  
e
OUT  
9.09k⍀  
1k⍀  
G
e
(G = 1, 10, 100) =  
1000  
n
1000 
؋
 G  
G
1,10,100  
e
OUT  
e
(G = 1000) =  
n
100 
؋
 G  
100⍀  
Figure 44. Noise Test Circuit (0.1 Hz to 10 Hz)  
200⍀  
10T  
1.91k⍀  
0.1%  
V
IN  
V
OUT  
20V p-p  
2 
؋
 HSCH-1001  
10k⍀  
0.1%  
2k⍀  
0.1%  
10k⍀  
0.1%  
G
1
G
10  
14  
S
3
1
R
G
1000  
G
100  
R
G
15  
1.1k⍀  
0.1%  
102⍀  
0.1%  
R
10⍀  
0.1%  
200k20k2k⍀  
0.1%  
200⍀  
0.1% 0.1% 0.1%  
S
7
8
9
AMP01  
G
G
100  
10  
G
1
R
G
1000  
10  
2
11  
G
12  
18  
13  
0.047F  
0.047F  
V+  
V–  
Figure 45. Settling-Time Test Circuit  
REV. D  
–20–  
AMP01  
+15V  
R
S
0.047F  
10k⍀  
11  
20 
؋
 R  
S
15  
16  
9
VOLTAGE GAIN, G =  
1
3
18  
1
(
)
R
+IN  
–IN  
G
14  
R
S
R
S
12  
V+  
SENSE  
R
13  
10  
G
DG390  
7
9
R
10  
15  
G
AMP01  
ANALOG  
SWITCH  
V
OUT  
200⍀  
7.5k⍀  
8
2
3
REFERENCE  
R
V–  
11  
G
4
5
6
8
15k⍀  
13  
14  
15  
4
؎1mA  
14  
13  
DAC-08  
1, 2  
16  
3
0.047F  
R1  
100⍀  
7.5k⍀  
0.01F  
TTL INPUT  
"OFFSET"  
0V  
TTL INPUT  
"ZERO"  
–15V  
Figure 46. Instrumentation Amplifier with Autozero  
+18V  
10k⍀  
0.047F  
14  
18  
1
15  
R
SENSE  
S
12  
R
S
13  
10  
R
R
G
7
9
AMP01  
V
OUT  
10k⍀  
2
8
G
3
11  
0.047F  
–18V  
Figure 47. Burn-In Circuit  
REV. D  
–21–  
AMP01  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
18-Lead Cerdip  
(Q-18)  
0.005 (0.13) MIN  
0.098 (2.49) MAX  
18  
10  
0.310 (7.87)  
0.220 (5.59)  
1
9
0.320 (8.13)  
0.290 (7.37)  
PIN 1  
0.960 (24.38) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
15؇  
0؇  
28-Terminal Ceramic Leadless Chip Carrier  
(E-28A)  
0.300 (7.62)  
BSC  
0.075  
(1.91)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.150  
(3.51)  
BSC  
0.015 (0.38)  
MIN  
0.095 (2.41)  
0.075 (1.90)  
26  
4
28  
25  
5
0.028 (0.71)  
0.022 (0.56)  
0.458 (11.63)  
1
0.442 (11.23)  
SQ  
0.458  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
BOTTOM  
VIEW  
(11.63)  
MAX  
SQ  
0.050  
(1.27)  
BSC  
0.075  
(1.91)  
REF  
19  
18  
12  
11  
45؇ TYP  
0.200  
(5.08)  
BSC  
0.055 (1.40)  
0.045 (1.14)  
0.088 (2.24)  
0.054 (1.37)  
20-Lead SOIC  
(R-20)  
0.5118 (13.00)  
0.4961 (12.60)  
20  
11  
1
10  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
؋
 45؇  
0.0500 (1.27)  
0.0157 (0.40)  
8؇  
0؇  
0.0118 (0.30)  
0.0040 (0.10)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
REV. D  
–22–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY