DAC08_16 [ADI]

8-Bit, High Speed, Multiplying D/A Converter;
DAC08_16
型号: DAC08_16
厂家: ADI    ADI
描述:

8-Bit, High Speed, Multiplying D/A Converter

文件: 总21页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit, High Speed, Multiplying  
D/A Converter  
Data Sheet  
DAC08  
Direct interface to all popular logic families with full noise  
immunity is provided by the high swing, adjustable threshold  
logic input.  
FEATURES  
Fast settling output current: 85 ns  
Full-scale current prematched to 1 LSB  
Direct interface to TTL, CMOS, ECL, HTL, PMOS  
Nonlinearity to 0.1% maximum over temperature range  
High output impedance and compliance: −10 V to +18 V  
Complementary current outputs  
Wide range multiplying capability: 1 MHz bandwidth  
Low FS current drift: 10 ppm/°C  
Wide power supply range: 4.5 V to 18 V  
Low power consumption: 33 mW at 5 V  
Low cost  
High voltage compliance complementary current outputs are  
provided, increasing versatility and enabling differential operation  
to effectively double the peak-to-peak output swing. In many  
applications, the outputs can be directly converted to voltage  
without the need for an external op amp. All DAC08 series models  
guarantee full 8-bit monotonicity, and nonlinearities as tight as  
0.1% over the entire operating temperature range are available.  
Device performance is essentially unchanged over the 4.5 V to  
18 V power supply range, with 33 mW power consumption  
attainable at 5 V supplies.  
GENERAL DESCRIPTION  
The compact size and low power consumption make the DAC08  
attractive for portable and military/aerospace applications;  
devices processed to MIL-STD-883, Level B are available.  
The DAC08 series of 8-bit monolithic digital-to-analog convert-  
ers provide very high speed performance coupled with low cost  
and outstanding applications flexibility.  
DAC08 applications include 8-bit, 1 µs A/D converters, servo  
motor and pen drivers, waveform generators, audio encoders  
and attenuators, analog meter drivers, programmable power  
supplies, LCD display drivers, high speed modems, and other  
applications where low cost, high speed, and complete  
input/output versatility are required.  
Advanced circuit design achieves 85 ns settling times with very  
low glitch energy and at low power consumption. Monotonic  
multiplying performance is attained over a wide 20 to 1 reference  
current range. Matching to within 1 LSB between reference and  
full-scale currents eliminates the need for full-scale trimming in  
most applications.  
FUNCTIONAL BLOCK DIAGRAM  
(MSB)  
B1  
(LSB)  
B8  
V+  
13  
V
LC  
B2  
B3  
B4  
B5  
B6  
10  
B7  
11  
1
5
6
7
8
9
12  
DAC08  
I
I
OUT  
BIAS  
NETWORK  
CURRENT  
SWITCHES  
4
2
14  
15  
OUT  
V
V
(+)  
(–)  
REF  
REF  
REFERENCE  
AMPLIFIER  
16  
COMP  
3
V–  
Figure 1.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2002–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
DAC08  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Application Information................................................................ 14  
Reference Amplifier Setup ........................................................ 14  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Typical Electrical Characteristics ............................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Test and Burn-In Circuits................................................................ 7  
Typical Performance Characteristics ............................................. 8  
Basic Connections .......................................................................... 11  
Reference Amplifier Compensation for Multiplying  
Applications ................................................................................ 14  
Logic Inputs................................................................................. 14  
Analog Output Currents ........................................................... 14  
Power Supplies............................................................................ 15  
Temperature Performance......................................................... 15  
Multiplying Operation............................................................... 15  
Settling Time............................................................................... 15  
Analog Devices Current Output DACs....................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
REVISION HISTORY  
3/16—Rev. C to Rev. D  
2/02—Rev. A to Rev. B  
Added Thermal Resistance Section ............................................... 5  
Changes to Table 4............................................................................ 5  
Change to Figure 29 ....................................................................... 12  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 10  
Edits to Specifications.......................................................................2  
Edits to Absolute Maximum Ratings..............................................3  
Edits to Ordering Guide ...................................................................3  
Edits to Wafer Test Limits ................................................................5  
Edit to Figure 13 ................................................................................8  
Edits to Figures 14 and 15 ................................................................9  
11/04—Rev. B to Rev. C  
Changed SO to SOIC .........................................................Universal  
Removed DIE......................................................................Universal  
Changes to Figure 30, Figure 31, Figure 32................................. 12  
Change to Figure 33 ....................................................................... 15  
Added Table 4.................................................................................. 16  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 18  
Rev. D | Page 2 of 21  
 
Data Sheet  
DAC08  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 15 V, IREF = 2.0 mA, –55°C ≤ TA ≤ +125°C for DAC08/DAC08A, 0°C ≤ TA ≤ +70°C for DAC08E and DAC08H, −40°C to +85°C for  
IOUT  
DAC08C, unless otherwise noted. Output characteristics refer to both IOUT and  
.
Table 1.  
DAC08A/DAC08H  
DAC08E  
DAC08C  
Max Min Typ  
Parameter  
Symbol Test Conditions/Comments Min Typ  
Max Min Typ  
Max Unit  
Bits  
RESOLUTION  
MONOTONICITY  
NONLINEARITY  
SETTLING TIME  
8
8
8
8
8
8
Bits  
NL  
0.1  
0.19  
150  
0.39 %FS  
150 ns  
tS  
To 1/2 LSB, all bits switched  
on or off, TA = 25°C1  
85  
135  
85  
85  
PROPAGATION DELAY  
Each Bit  
All Bits Switched  
tPLH  
tPHL  
TA = 25°C1  
35  
35  
60  
60  
50  
35  
35  
60  
60  
35  
35  
60  
60  
ns  
ns  
FULL-SCALE TEMPCO1 TCIFS  
10  
10  
80  
50  
10  
80 ppm/°C  
DAC08E  
OUTPUT VOLTAGE  
Compliance  
VOC  
Full-scale current  
(True Compliance)  
Change <1/2 LSB, ROUT  
20 MΩ typ  
>
−10  
+18 −10  
+18 –10  
2.04 1.94 1.99  
+18  
V
2.04 mA  
16 µA  
FULL RANGE CURRENT IFR4  
VREF = 10.000 V R14, R15 =  
5.000 kΩ TA = 25°C  
1.984 1.992  
0.5  
2.000 1.94 1.99  
FULL RANGE  
SYMMETRY  
IFRS  
IFR4 − IFR2  
4
1
8
2
ZERO-SCALE CURRENT IZS  
0.1  
2.1  
1
0.2  
2
0.2  
4
µA  
OUTPUT CURRENT  
RANGE  
IOR1  
R14, R15 = 5.000 kΩ  
2.1  
4.2  
2.1  
4.2  
mA  
IOR2  
VREF = +15.0 V, V− = −10 V  
VREF = +25.0 V,  
V− = −12 V  
4.2  
mA  
nA  
OUTPUT CURRENT  
NOISE  
IREF = 2 mA  
25  
25  
25  
LOGIC INPUT LEVELS  
Logic 0  
Logic 1  
VIL  
VIL  
VLC = 0 V  
0.8  
0.8  
0.8  
V
V
2
2
2
LOGIC INPUT CURRENT  
Logic 0  
Logic 1  
VLC = 0 V  
IIL  
IIH  
VIN = −10 V to +0.8 V  
VIN = 2.0 V to 18 V  
V− = −15 V  
−2  
0.002  
−10  
−10  
10  
−2  
0.002  
−10  
10  
−2  
0.002  
−10 µA  
10  
µA  
V
LOGIC INPUT SWING VIS  
+18 −10  
+13.5 −10  
+18 −10  
+13.5 −10  
+18  
LOGIC THRESHOLD  
RANGE  
VTHR  
VS = 15 V1  
−10  
+13.5 V  
−3 µA  
mA/µs  
REFERENCE BIAS  
CURRENT  
I15  
−1  
−3  
−1  
8
−3  
−1  
8
REFERENCE INPUT  
SLEW RATE  
dI/dt  
REQ = 200 Ω  
4
8
4
4
RL = 100 Ω  
CC = 0 pF. See Figure 7.1  
Rev. D | Page 3 of 21  
 
 
DAC08  
Data Sheet  
DAC08A/DAC08H  
Symbol Test Conditions/Comments Min Typ Max Min Typ  
0.0003 0.01 0.0003 0.01  
DAC08E  
DAC08C  
Max Min Typ  
Parameter  
Max Unit  
POWER SUPPLY  
SENSITIVITY  
PSSIFS+ V+ = 4.5 V to 18 V  
PSSIFS– V− = −4.5 V to −18 V  
IREF = 1.0 mA  
0.0003 0.01 %∆IO/  
%∆V+  
0.002  
0.002  
0.01  
0.002  
0.01  
0.01 %∆IO/  
%∆V−  
POWER SUPPLY  
CURRENT  
I+  
VS = 5 V, IREF = 1.0 mA  
2.3  
3.8  
2.3  
3.8  
2.3  
3.8  
mA  
I−  
I+  
I−  
I+  
I−  
−4.3  
2.4  
−6.4  
2.5  
−6.5  
33  
−5.8  
3.8  
−7.8  
3.8  
−7.8  
48  
−4.3  
2.4  
−6.4  
2.5  
−6.5  
33  
−5.8  
3.8  
−7.8  
3.8  
−7.8  
48  
−4.3  
2.4  
−6.4  
2.5  
−6.5  
33  
−5.8 mA  
VS = +5 V, −15 V  
IREF = 2.0 mA  
VS = 15 V  
3.8  
−7.8 mA  
3.8 mA  
−7.8 mA  
48 mW  
mA  
IREF = 2.0 mA  
POWER DISSIPATION PD  
5 V, IREF = 1.0 mA +5 V,  
−15 V  
IREF = 2.0 mA 15 V, IREF  
2.0 mA  
=
108  
135  
136  
174  
103  
135  
136  
174  
108  
135  
136 mW  
174 mW  
1 Guaranteed by design.  
TYPICAL ELECTRICAL CHARACTERISTICS  
IOUT  
VS = 15 V, and IREF = 2.0 mA, unless otherwise noted. Output characteristics apply to both IOUT and  
.
Table 2.  
Parameter  
Symbol  
dI/dt  
tPLH, tPHL  
tS  
Test Conditions/Comments  
All Grades Typical  
Unit  
mA/µs  
ns  
REFERENCE INPUT SLEW RATE  
PROPAGATION DELAY  
SETTLING TIME  
8
35  
85  
TA = 25°C, any bit  
To 1/2 LSB, all bits switched on or  
off, TA = 25°C  
ns  
Rev. D | Page 4 of 21  
 
Data Sheet  
DAC08  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for worst case mounting conditions, that is, θJA is  
specified for device in socket for CERDIP, PDIP, and LCC  
packages; θJA is specified for device soldered to printed circuit  
board for SOIC package.  
Parameter  
Rating  
Operating Temperature  
DAC08AQ, DAC08Q  
DAC08HQ, DAC08EQ, DAC08CQ  
DAC08CP, DAC08CS  
Junction Temperature (TJ)  
Storage Temperature Q Package  
Storage Temperature P Package  
Lead Temperature (Soldering, 60 sec)  
V+ Supply to V− Supply  
Logic Inputs  
−55°C to +125°C  
0°C to +70°C  
−40°C to +85°C  
−65°C to +150°C  
−65°C to +150°C  
−65°C to +125°C  
300°C  
36 V  
V− to V− + 36 V  
V− to V+  
Table 4. Thermal Resistance  
Package Type  
θJA  
100  
82  
76  
111  
θJC  
16  
39  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
16-Lead CERDIP (Q)  
16-Lead PDIP (P)  
20-Terminal LCC (RC)  
16-Lead SOIC (S)  
VLC  
ESD CAUTION  
Analog Current Outputs (at VS− = 15 V)  
Reference Input (V14 to V15)  
Reference Input Differential Voltage  
(V14 to V15)  
4.25 mA  
V− to V+  
18 V  
Reference Input Current (I14)  
5.0 mA  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. D | Page 5 of 21  
 
 
 
DAC08  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
V
COMP  
LC  
I
V
V
(–)  
(+)  
OUT  
V–  
REF  
REF  
DAC08  
I
V+  
OUT  
TOP VIEW  
(Not To Scale)  
(MSB) B1  
12 B8 (LSB)  
11 B7  
B2  
B3  
B4  
10 B6  
9
B5  
Figure 2. 16-Lead Dual In-Line Package (PDIP and CERDIP)  
1
2
3
4
5
6
7
8
16  
B8 (LSB)  
V+  
(+)  
(–)  
V
V
15 B7  
14 B6  
REF  
REF  
DAC08  
TOP VIEW  
COMP  
B5  
13  
V
(Not To Scale) 12 B4  
LC  
I
11 B3  
10 B2  
OUT  
V–  
9
I
B1 (MSB)  
OUT  
Figure 3. 16-Lead Standard Small Outline Package (SOIC_N)  
3
2
1
20 19  
4
5
6
7
8
18  
17  
V
(+)  
V–  
REF  
V+  
I
OUT  
NC  
DAC08  
TOP VIEW  
(Not To Scale)  
16 NC  
(MSB) B1  
B2  
15  
B8 (LSB)  
14 B7  
10 11 12 13  
9
NC = NO CONNECT  
Figure 4. DAC08RC/883 20-Terminal Ceramic Leadless Chip Carrier (LCC)  
Rev. D | Page 6 of 21  
 
Data Sheet  
DAC08  
TEST AND BURN-IN CIRCUITS  
+V  
R
REF  
OPTIONAL RESISTOR  
FOR OFFSET INPUTS  
R
REF  
14  
R
R
R
L
IN  
4
2
EQ  
200  
0V  
R
P
L
15  
16  
TYPICAL VALUES:  
=5kΩ  
R
IN  
+V =10V  
IN  
NO CAP  
Figure 5. Pulsed Reference Operation  
C2  
R1 = 9k  
C1 = 0.001µF  
+18V  
C2, C3 = 0.01µF  
C1  
R1  
16 15 14 13 12 11 10  
9
8
DAC08  
1
2
3
4
5
6
7
C3  
–18V MIN  
Figure 6. Burn-In Circuit  
Rev. D | Page 7 of 21  
 
DAC08  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
ALL BITS SWITCHED ON  
1V  
1V  
2.4V  
0.4V  
2.5V  
0.5V  
–1/2LSB  
0V  
+1/2LSB  
OUTPUT  
SETTLING  
–0.5mA  
I
OUT  
–2.5mA  
100mV  
200Ω  
= 100Ω  
= 0  
200ns  
50ns  
10mV  
200ns/DIVISION  
R
R
C
EQ  
50ns/DIVISION  
SETTLINGTIMEFIXTURE  
=2mA,R =1k  
L
I
FS  
L
C
1/2LSB=4µA  
Figure 7. Fast Pulsed Reference Operation  
Figure 10. Full-Scale Settling Time  
5
T
= T  
MIN  
TO T  
MAX  
LIMIT FOR  
V– = –15V  
A
ALL BITS HIGH  
4
0mA  
I
OUT  
3
2
1
1.0mA  
2.0mA  
LIMIT FOR  
V– = –5V  
I
OUT  
0
(0000|0000)  
(1111|1111)  
I
= 2mA  
REF  
0
1
2
3
4
5
I
, REFERENCE CURRENT (mA)  
REF  
Figure 8. True and Complementary Output Operation  
Figure 11. Full-Scale Current vs. Reference Current  
500  
400  
300  
200  
100  
5mV  
2V  
2.4V  
0.4V  
0V  
1LSB = 7.8µA  
8µA  
0
1LSB = 61nA  
50ns  
100mV  
0
50ns/DIVISION  
0.005 0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00  
, OUTPUT FULL-SCALE CURRENT (mA)  
I
FS  
Figure 12. LSB Propagation Delay vs. IFS  
Figure 9. LSB Switching  
Rev. D | Page 8 of 21  
 
 
 
Data Sheet  
DAC08  
10  
2.0  
1.6  
1.2  
R14 = R15 = 1kΩ  
500V  
ALL BITS ON  
= 0V  
8
R
L
6
4
2
V
R15  
2
0
–2  
–4  
–6  
–8  
1
0.8  
0.4  
C
= 15pF, V = 2.0V p-p  
IN  
C
CENTERED AT +1.0V  
LARGE SIGNAL  
–10  
–12  
–14  
C
= 15pF, V = 50mV p-p  
IN  
C
CENTERED AT +200mV  
SMALL SIGNAL  
0
0.1  
0.5  
2.0  
5.0  
10.0  
–50  
0
50  
100  
150  
0.2  
1.0  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 16. VTH − VLC vs. Temperature  
Figure 13. Reference Input Frequency Response  
4.0  
4.0  
3.6  
3.2  
T
= T  
TO T  
MAX  
ALL BITS ON  
ALL BITS ON  
T
= T  
TO T  
A
MIN  
A
MIN MAX  
3.6  
3.2  
NOTE: POSITIVE COMMON-MODE  
RANGE IS ALWAYS (V+) –1.5V  
2.8  
2.8  
2.4  
2.4  
2.0  
1.6  
1.2  
V– = –15V  
V– = –5V  
I
= 2mA  
V– = –15V  
V– = –5V  
V+ = +15V  
REF  
2.0  
1.6  
1.2  
0.8  
I
= 2mA  
REF  
I
= 1mA  
I
= 1mA  
REF  
REF  
0.8  
0.4  
I
= 0.2mA  
10  
I
= 0.2mA  
10  
REF  
0.4  
0
REF  
0
–14  
–10  
–6  
–2  
2
6
14  
18  
–14  
–10  
–6  
18  
–2  
2
6
14  
OUTPUT VOLTAGE (V)  
V
, REFERENCE COMMON-MODE VOLTAGE (V)  
15  
Figure 17. Output Current vs. Output Voltage (Output Voltage Compliance)  
Figure 14. Reference Amplifier Common-Mode Range  
28  
24  
20  
16  
10  
8
12  
6
SHADED AREA INDICATES PERMISSIBLE  
OUTPUT VOLTAGE RANGE FOR V– = –15V.  
8
I
2.0mA.  
REF  
4
0
4
FOR OTHER V– OR I  
REF  
SEE OUTPUT CURRENT VS. OUTPUT  
VOLTAGE CURVE.  
,
–4  
–8  
–12  
2
0
–12  
–50  
0
50  
100  
150  
–8  
–4  
0
4
8
12  
16  
TEMPERATURE (°C)  
LOGIC INPUT VOLTAGE (V)  
Figure 18. Output Voltage Compliance vs. Temperature  
Figure 15. Logic Input Current vs. Input Voltage  
Rev. D | Page 9 of 21  
 
 
 
DAC08  
Data Sheet  
1.8  
1.6  
1.4  
10  
9
BITS MAY BE HIGH OR LOW  
8
7
I– WITH I  
= 2mA  
= 1mA  
1.2  
1.0  
REF  
REF  
B1  
6
5
I
= 2.0mA  
REF  
I– WITH I  
0.8  
0.6  
4
3
B2  
B3  
I– WITH I  
= 0.2mA  
REF  
0.4  
0.2  
B4  
B5  
2
1
0
I+  
V– = –5V  
–4  
V– = –15V  
0
–12  
–8  
0
4
8
12  
16  
0
–2  
–4  
–6  
–8  
–10 –12 –14 –16 –18 –20  
LOGIC INPUT VOLTAGE (V)  
V–, NEGATIVE POWER SUPPLY (V dc)  
NOTE:  
B1 THROUGH B8 HAVE IDENTICAL TRANSFER  
CHARACTERISTICS. BITS ARE FULLY SWITCHED WITH LESS  
THAN 1/2 LSB ERROR, AT LESS THAN ±100mV FROM ACTUAL  
THRESHOLD. THESE SWITCHING POINTS ARE GUARANTEED  
TO LIE BETWEEN 0.8V AND 2.0V OVER THE OPERATING  
TEMPERATURE RANGE (V = 0.0V).  
LC  
Figure 19. Bit Transfer Characteristics  
Figure 21. Power Supply Current vs. V−  
10  
9
10  
ALL BITS HIGH OR LOW  
ALL BITS HIGH OR LOW  
9
8
7
8
7
6
5
4
3
2
V– = –15V  
= 2.0mA  
I–  
I–  
6
5
4
3
2
I
REF  
I+  
V+ = +15V  
I+  
1
0
1
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
V+, POSITIVE POWER SUPPLY (V dc)  
Figure 22. Power Supply Current vs. Temperature  
Figure 20. Power Supply vs. V+  
Rev. D | Page 10 of 21  
Data Sheet  
DAC08  
BASIC CONNECTIONS  
+V  
REF  
R
IN  
REF  
I
REF  
I
V
14  
IN  
R
IN  
15  
I
PEAK NEGATIVE SWING OF I  
IN  
REF  
R
REF  
R
R15  
+V  
REF  
REF  
14  
15  
R15  
(OPTIONAL)  
V
IN  
HIGH INPUT  
IMPEDANCE  
+V  
REF  
MUST BE ABOVE PEAK POSITIVE SWING OF V  
IN  
Figure 23. Accommodating Bipolar References  
MSB  
LSB  
B1 B2 B3 B4 B5 B6 B7 B8  
I
REF  
V
(+)  
(–)  
I
I
REF  
O
O
5
6
7
8
9
10 11 12  
+V  
14  
15  
REF  
4
2
R
(R14)  
REF  
V
REF  
3
16  
13  
1
R15  
V–  
V+  
FOR FIXED REFERENCE,  
TTL OPERATION,  
C
C
TYPICAL VALUES ARE:  
COMP  
0.1µF  
V
= 10.000V  
REF  
R
= 5.000k  
REF  
0.1µF  
+V  
255  
REF  
I
=
×
R15 = R  
REF  
FR  
R
256  
REF  
C
= 0.01µF  
= 0V (GROUND)  
C
I
+ I = I FOR  
O
O
FR  
V
LC  
ALL LOGIC STATES  
V
V+  
V–  
LC  
Figure 24. Basic Positive Reference Operation  
MSB  
LSB  
B1 B2 B3 B4 B5 B6 B7 B8  
E
O
B1 B2 B3 B4 B5 B6 B7 B8  
I
I
E
E
O
O
O
O
I
5.000k  
5.000kΩ  
FULL RANGE  
HALF SCALE +LSB  
HALF SCALE  
HALF SCALE –LSB  
ZERO SCALE +LSB  
ZERO SCALE  
1
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
1
1
0
1.992 0.000 –9.960 –0.000  
1.008 0.984 –5.040 –4.920  
1.000 0.992 –5.000 –4.960  
0.992 1.000 –4.960 –5.000  
0.008 1.984 –0.040 –9.920  
0.000 1.992 0.000 –9.960  
O
4
2
I
= 2.000mA  
REF  
14  
I
O
E
O
Figure 25. Basic Unipolar Negative Operation  
10V  
MSB  
LSB  
B1 B2 B3 B4 B5 B6 B7 B8  
B1 B2 B3 B4 B5 B6 B7 B8  
E
E
O
10k  
10kΩ  
O
1
1
1
1
0
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
1
0
–9.920 +10.000  
–9.840 +9.920  
–0.080 +0.160  
0.000 +0.080  
+0.080 0.000  
+9.920 –9.840  
+10.000 –9.920  
POS. FULL RANGE  
POS. FULL RANGE –LSB  
ZERO SCALE +LSB  
ZERO SCALE  
ZERO SCALE –LSB  
NEG. FULL SCALE +LSB  
NEG. FULL SCALE  
I
I
O
O
4
I
= 2.000mA  
REF  
E
O
14  
2
E
O
Figure 26. Basic Bipolar Output Operation  
Rev. D | Page 11 of 21  
 
DAC08  
Data Sheet  
LOW T.C.  
4.5kΩ  
V
REF  
10V  
14  
15  
I
(+) 2mA  
REF  
39kΩ  
1V  
10kΩ  
POT  
APPROX  
5kΩ  
Figure 27. Recommended Full-Scale Adjustment Circuit  
R
REF  
I
O
14  
4
2
I
O
R15  
–V  
REF  
15  
NOTE  
–V  
REF  
I
R
SETS I ; R15 IS FOR  
FS  
REF  
FS  
R
REF  
BIAS CURRENT CANCELLATION.  
Figure 28. Basic Negative Reference Operation  
10k  
5.0kΩ  
15V  
MSB  
LSB  
B1 B2 B3 B4 B5 B6 B7 B8  
+15V  
2
5.000kΩ  
5.0kΩ  
10V  
6
5
B1 B2 B3 B4 B5 B6 B7 B8  
E
O
I
V
O
O
4
2
POS. FULL RANGE  
O
ZERO SCALE  
NEG. FULL SCALE +1LSB  
NEG. FULL SCALE  
1
1
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
1
0
+4.960  
0.000  
–4.960  
–5.000  
E
AD8671  
REF01*  
I
V
C
V+ –V  
O
LC  
C
4
*OR ADR01  
+15V –15V  
–15V  
Figure 29. Offset Binary Operation  
R
L
I
O
4
2
E
AD8671  
0 TO –I  
O
I
O
×
R
FR  
L
255  
256  
I
=
I
REF  
FR  
FOR COMPLEMENTARY OUTPUT (OPERATION AS A NEGATIVE LOGIC DAC).  
CONNECT INVERTING INPUT OF OP AMP TO I (PIN 2): CONNECT I (PIN 4)  
O
O
TO GROUND.  
Figure 30. Positive Low Impedance Output Operation  
E
AD8671  
0 TO –I  
O
I
O
4
2
×
R
L
FR  
I
R
L
O
255  
256  
I
=
I
REF  
FR  
FOR COMPLEMENTARY OUTPUT (OPERATION AS A NEGATIVE LOGIC DAC).  
CONNECT NONINVERTING INPUT OF OP AMP TO I (PIN 2): CONNECT I (PIN 4)  
O
O
TO GROUND.  
Figure 31. Negative Low Impedance Output Operation  
Rev. D | Page 12 of 21  
 
Data Sheet  
DAC08  
CMOS, HTL, NMOS  
V+  
V
= V 1.4V  
LC  
ECL  
TH  
15V CMOS  
= 7.6V  
V
15V  
TH  
TTL, DTL,  
= 1.4V  
V
TH  
20k  
13kΩ  
9.1kΩ  
6.2kΩ  
V
LC  
2N3904  
2N3904  
"A"  
2N3904  
"A"  
2N3904  
V
LC  
0.1µF  
3kΩ  
3kΩ  
TO PIN 1  
TO PIN 1  
1
39kΩ  
20kΩ  
V
V
LC  
LC  
R3  
400µA  
6.2kΩ  
–5.2V  
TEMPERATURE COMPENSATING V CIRCUITS  
LC  
Figure 32. Interfacing with Various Logic Families  
Rev. D | Page 13 of 21  
 
DAC08  
Data Sheet  
APPLICATION INFORMATION  
For fastest response to a pulse, low values of R14 enabling small  
CC values must be used. If Pin 14 is driven by a high impedance  
such as a transistor current source, none of the preceding values  
suffice, and the amplifier must be heavily compensated, which  
decreases overall bandwidth and slew rate. For R14 = 1 kΩ and  
CC = 15 pF, the reference amplifier slews at 4 mA/μs, enabling a  
transition from IREF = 0 to IREF = 2 mA in 500 ns.  
REFERENCE AMPLIFIER SETUP  
The DAC08 is a multiplying D/A converter in which the output  
current is the product of a digital number and the input reference  
current. The reference current may be fixed or may vary from  
nearly zero to 4.0 mA. The full-scale output current is a linear  
function of the reference current and is given by  
255  
IFR  
IREF  
Operation with pulse inputs to the reference amplifier can be  
accommodated by an alternate compensation scheme. This  
technique provides lowest full-scale transition times. An internal  
clamp allows quick recovery of the reference amplifier from a  
cutoff (IREF = 0) condition. Full-scale transition (0 mA to 2 mA)  
occurs in 120 ns when the equivalent impedance at Pin 14 is 200 Ω  
and CC = 0. This yields a reference slew rate of 16 mA/μs, which  
is relatively independent of the RIN and VIN values.  
256  
where IREF = I14  
In positive reference applications, an external positive reference  
voltage forces current through R14 into the VREF(+) terminal (Pin 14)  
of the reference amplifier. Alternatively, a negative reference may be  
applied to VREF(–) at Pin 15; reference current flows from ground  
through R14 into VREF(+) as in the positive reference case. This  
negative reference connection has the advantage of a very high  
impedance presented at Pin 15. The voltage at Pin 14 is equal to  
and tracks the voltage at Pin 15 due to the high gain of the internal  
reference amplifier. R15 (nominally equal to R14) cancels bias  
current errors; R15 may be eliminated with only a minor  
increase in error.  
LOGIC INPUTS  
The DAC08 design incorporates a unique logic input circuit that  
enables direct interface to all popular logic families and provides  
maximum noise immunity. This feature is made possible by the  
large input swing capability, 2 μA logic input current, and  
completely adjustable logic threshold voltage. For V− = −15 V, the  
logic inputs may swing between −10 V and +18 V. This enables  
direct interface with 15 V CMOS logic, even when the DAC08  
is powered from a 5 V supply. Minimum input logic swing and  
minimum logic threshold voltage are given by  
Bipolar references may be accommodated by offsetting VREF or  
Pin 15. The negative common-mode range of the reference  
amplifier is given by VCM – = V− plus (IREF × 1 kΩ) plus 2.5 V.  
The positive common-mode range is V+ less 1.5 V.  
When a dc reference is used, a reference bypass capacitor is  
recommended. A 5.0 V TTL logic supply is not recommended  
as a reference. If a regulated power supply is used as a reference,  
R14 must be split into two resistors with the junction bypassed  
to ground with a 0.1 μF capacitor.  
V− + (IREF × 1 kΩ) + 2.5 V  
The logic threshold may be adjusted over a wide range by  
placing an appropriate voltage at the logic threshold control pin  
(Pin 1, VLC). Figure 16 shows the relationship between VLC and  
V
TH over the temperature range, with VTH nominally 1.4 above  
For most applications, the tight relationship between IREF and IFS  
eliminates the need for trimming IREF. If required, full-scale  
trimming can be accomplished by adjusting the value of R14, or  
by using a potentiometer for R14. An improved method of full-  
scale trimming that eliminates potentiometer T.C. effects is shown  
in the recommended full-scale adjustment circuit (Figure 27).  
VLC. For TTL and DTL interface, simply ground Pin 1. When  
interfacing ECL, an IREF = 1 mA is recommended. For interfacing  
other logic families, see Figure 32. For general set-up of the logic  
control circuit, note that Pin 1 sources 100 μA typical; external  
circuitry must be designed to accommodate this current.  
Fastest settling times are obtained when Pin 1 sees a low  
impedance. If Pin 1 is connected to a 1 kΩ divider, for example,  
it must be bypassed to ground by a 0.01 μF capacitor.  
Using lower values of reference current reduces negative power  
supply current and increases reference amplifier negative common-  
mode range. The recommended range for operation with a dc  
reference current is 0.2 mA to 4.0 mA.  
ANALOG OUTPUT CURRENTS  
Both true and complemented output sink currents are provided  
REFERENCE AMPLIFIER COMPENSATION FOR  
MULTIPLYING APPLICATIONS  
IO  
where IO + = IFS. Current appears at the true (IO) output when  
a 1 (logic high) is applied to each logic input. As the binary count  
increases, the sink current at Pin 4 increases proportionally, in  
the fashion of a positive logic DAC. When a 0 is applied to any  
input bit, that current is turned off at Pin 4 and turned on at Pin 2.  
AC reference applications require the reference amplifier to be  
compensated using a capacitor from Pin 16 to V−. e value of  
this capacitor depends on the impedance presented to Pin 14;  
for R14 values of 1.0 kΩ, 2.5 kΩ, and 5.0 kΩ, minimum values  
of CC are 15 pF, 37 pF, and 75 pF. Larger values of R14 require  
proportionately increased values of CC for proper phase margin,  
so the ratio of CC (pF) to R14 (kΩ) = 15.  
IO  
A decreasing logic count increases as in a negative or inverted  
logic DAC. Both outputs may be used simultaneously.  
Rev. D | Page 14 of 21  
 
 
 
 
 
Data Sheet  
DAC08  
If one of the outputs is not required, it must be connected to  
ground or to a point capable of sourcing IFS; do not leave an  
unused output pin open.  
The reference amplifier must be compensated by using a capacitor  
from Pin 16 to V−. For fixed reference operation, a 0.01 µF  
capacitor is recommended. For variable reference applications,  
refer to the Reference Amplifier Compensation for Multiplying  
Applications section.  
Both outputs have an extremely wide voltage compliance  
enabling fast direct current to voltage conversion through a  
resistor tied to ground or other voltage source. Positive compli-  
ance is 36 V above V− and is independent of the positive supply.  
Negative compliance is given by  
MULTIPLYING OPERATION  
The DAC08 provides excellent multiplying performance with an  
extremely linear relationship between IFS and IREF over a range of  
4 µA to 4 mA. Monotonic operation is maintained over a typical  
range of IREF from 100 µA to 4.0 mA.  
V− + (IREF × 1 kΩ) + 2.5 V  
The dual outputs enable double the usual peak-to-peak load  
swing when driving loads in quasi-differential fashion. This  
feature is especially useful in cable driving, CRT deflection and  
in other balanced applications such as driving center-tapped  
coils and transformers.  
SETTLING TIME  
The DAC08 is capable of extremely fast settling times, typically  
85 ns at IREF = 2.0 mA. Judicious circuit design and careful board  
layout must obtain full performance potential during testing  
and application. The logic switch design enables propagation  
delays of only 35 ns for each of the 8 bits. Settling time to within  
1/2 LSB of the LSB is therefore 35 ns, with each progressively  
larger bit taking successively longer. The MSB settles in 85 ns, thus  
determining the overall settling time of 85 ns. Settling to 6-bit  
accuracy requires about 65 ns to 70 ns. The output capacitance  
of the DAC08, including the package, is approximately 15 pF;  
therefore the output RC time constant dominates settling time if  
RL > 500 Ω.  
POWER SUPPLIES  
The DAC08 operates over a wide range of power supply voltages  
from a total supply of 9 V to 36 V. When operating at supplies  
of 5 V or lower, IREF ≤ 1 mA is recommended. Low reference  
current operation decreases power consumption and increases  
negative compliance (Figure 11), reference amplifier negative  
common-mode range (Figure 14), negative logic input range  
(Figure 15), and negative logic threshold range (Figure 16). For  
example, operation at −4.5 V with IREF = 2 mA is not recommended  
because negative output compliance reduces to near zero.  
Operation from lower supplies is possible; however, at least  
8 V total must be applied to ensure turn on of the internal bias  
network.  
Settling time and propagation delay are relatively insensitive to  
logic input amplitude and rise and fall times, due to the high  
gain of the logic switches. Settling time also remains essentially  
constant for IREF values. The principal advantage of higher IREF  
values lies in the ability to attain a given output level with lower  
load resistors, thus reducing the output RC time constant.  
Symmetrical supplies are not required, as the DAC08 is quite  
insensitive to variations in supply voltage. Battery operation is  
feasible because no ground connection is required; however, an  
artificial ground can ensure logic swings, etc., remain between  
acceptable limits. Power consumption is calculated as follows:  
Measuring the settling time requires the ability to accurately  
resolve 4 µA; therefore a 1 kΩ load is needed to provide adequate  
drive for most oscilloscopes. The settling time fixture shown in  
Figure 33 uses a cascade design to permit driving a 1 kΩ load  
with less than 5 pF of parasitic capacitance at the measurement  
node. At IREF values of less than 1.0 mA, excessive RC damping  
of the output is difficult to prevent while maintaining adequate  
sensitivity. However, the major carry from 01111111 to 10000000  
provides an accurate indicator of settling time. This code change  
does not require the normal 6.2 time constants to settle to within  
0.2% of the final value, and thus settling time is observed at  
PD = (I +)(V +) + (I )(V )  
A useful feature of the DAC08 design is that supply current is  
constant and independent of input logic states. This is useful in  
cryptographic applications and further reduces the size of the  
power supply bypass capacitors.  
TEMPERATURE PERFORMANCE  
The nonlinearity and monotonicity specifications of the DAC08  
are guaranteed to apply over the entire rated operating temperature  
range. Full-scale output current drift is low, typically 10 ppm/°C,  
with zero-scale output current and drift essentially negligible  
compared to 1/2 LSB.  
lower values of IREF  
.
DAC08 switching transients or “glitches” are very low and can  
be further reduced by small capacitive loads at the output at a  
minor sacrifice in settling time. Fastest operation can be obtained  
by using short leads, minimizing output capacitance and load  
resistor values, and by adequate bypassing at the supply, reference,  
and VLC terminals. Supplies do not require large electrolytic bypass  
capacitors because the supply current drain is independent of  
input logic states; 0.1 µF capacitors at the supply pins provide  
full transient protection.  
The temperature coefficient of the reference resistor R14 must  
match and track that of the output resistor for minimum overall  
full-scale drift. Settling times of the DAC08 decrease approximately  
10% at –55°C. At +125°C, an increase of about 15% is typical.  
Rev. D | Page 15 of 21  
 
 
 
 
DAC08  
Data Sheet  
V
+5V  
Q2  
L
FORTURN-ON,V =2.7V  
L
FORTURN-OFF,V =0.7V  
L
1µF  
1kΩ  
50µF  
1µF  
MINIMUM  
CAPACITANCE  
1kΩ  
V
1×  
OUT  
PROBE  
V
CL  
0.7V  
+0.4V  
0V  
0V  
Q1  
V
8
0.1µF  
IN  
–0.4V  
0.1µF  
15kΩ  
R
REF  
100kΩ  
2kΩ  
5
6
9 10 11 12  
7
+V  
REF  
14  
15  
4
I
OUT  
DAC08  
R15  
2
13  
3
16  
–15V  
0.01µF  
0.1µF  
0.1µF  
+15V –15V  
Figure 33. Settling Time Measurement  
Rev. D | Page 16 of 21  
 
Data Sheet  
DAC08  
ANALOG DEVICES, INC., CURRENT OUTPUT DACs  
Table 4 lists the latest DACs available from Analog Devices.  
Table 5.  
Model  
Bits Outputs  
Interface  
SPI, 8-bit load  
SPI  
SPI  
Parallel  
SPI  
Parallel  
SPI  
SPI  
Parallel  
SPI  
Parallel  
SPI  
SPI  
Parallel  
SPI  
SPI  
SPI  
Parallel  
Parallel  
SPI  
SPI  
Parallel  
SPI  
Package  
MSOP-10  
MSOP-10  
SOT23-8  
TSSOP-16  
TSSOP-16  
TSSOP-20  
MSOP-10  
SOT23-8  
TSSOP-20  
TSSOP-16  
TSSOP-24  
MSOP-10  
SOT23-8  
TSSOP-20  
MSOP-10  
TSSOP-16  
TSSOP-24  
TSSOP-24  
LFCSP-40  
SOT23-8  
Comments  
AD5425  
AD5426  
AD5450  
AD5424  
AD5429  
AD5428  
AD5432  
AD5451  
AD5433  
AD5439  
AD5440  
AD5443  
AD5452  
AD5445  
AD5444  
AD5449  
AD5415  
AD5447  
AD5405  
AD5453  
AD5553  
AD5556  
AD5446  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
8
1
1
1
1
2
2
1
1
1
2
2
1
1
1
1
2
2
2
2
1
1
1
1
2
2
1
1
2
2
Fast 8-bit load; see also AD5426  
See also AD5425 fast load  
See also AD5425 fast load  
8
8
8
8
8
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
See also AD5452 and AD5444  
Higher accuracy version of AD5443; see also AD5444  
Higher accuracy version of AD5443; see also AD5452  
Uncommitted resistors  
Uncommitted resistors  
MSOP-8  
TSSOP-28  
MSOP-10  
TSSOP-16  
TSSOP-38  
MSOP-8  
TSSOP-28  
TSSOP-16  
TSSOP-38  
MSOP version of AD5453; compatible with AD5443, AD5432, and AD5426  
SPI  
Parallel  
SPI  
Parallel  
SPI  
Parallel  
Rev. D | Page 17 of 21  
 
DAC08  
Data Sheet  
OUTLINE DIMENSIONS  
0.775  
0.755  
0.735  
9
8
16  
1
0.280  
0.250  
0.240  
PIN 1  
INDICATOR  
TOP VIEW  
SIDE VIEW  
0.325  
0.310  
0.300  
0.100  
BSC  
0.195  
0.130  
0.115  
0.210  
MAX  
0.015  
0.150  
0.130  
0.115  
0.015  
GAUGE  
PLANE  
MIN  
END VIEW  
0.012  
0.010  
0.008  
SEATING  
PLANE  
0.021  
0.022  
0.430  
MAX  
0.018  
0.015  
0.016  
0.011  
0.070  
0.060  
0.055  
0.045  
0.039  
0.030  
COMPLIANT TO JEDEC STANDARDS MS-001-BB  
Figure 34. 16-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-16)  
Dimensions shown in inches  
0.005 (0.13) MIN  
0.098 (2.49) MAX  
16  
9
0.310 (7.87)  
0.220 (5.59)  
1
8
PIN 1  
0.100 (2.54) BSC  
0.320 (8.13)  
0.290 (7.37)  
0.840 (21.34) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 35. 16-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-16)  
Dimensions shown in inches and (millimeters)  
Rev. D | Page 18 of 21  
 
Data Sheet  
DAC08  
10.00 (0.3937)  
9.80 (0.3858)  
9
8
16  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 36. 16-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-16)  
Dimensions shown in millimeters and (inches)  
0.200 (5.08)  
0.075 (1.91)  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 37. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20-1)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model1, 2, 3  
DAC08AQ  
NL  
Temperature Range  
−55°C to +125°C  
−55°C to +125°C  
0°C to 70°C  
−55°C to +125°C  
−55°C to +125°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
Package Description  
16-Lead CERDIP  
16-Lead CERDIP  
16-Lead CERDIP  
16-Lead CERDIP  
20-Terminal LCC  
16-Lead CERDIP  
16-Lead SOIC  
16-Lead SOIC  
16-Lead SOIC  
16-Lead PDIP  
16-Lead PDIP  
Package Option  
Q-16  
Q-16  
Q-16  
Q-16  
E-20-1  
Q-16  
R-16  
R-16  
R-16  
N-16  
N-16  
R-16  
R-16  
R-16  
R-16  
N-16  
No. Parts Per Container  
0.10%  
25  
25  
25  
25  
55  
25  
47  
47  
2500  
25  
25  
47  
2500  
47  
DAC08AQ/883C  
DAC08HQ  
DAC08Q  
DAC08RC/883C  
DAC08EQ  
DAC08ES  
DAC08ESZ  
DAC08ESZ-REEL  
DAC08CP  
DAC08CPZ  
DAC08CS  
DAC08CS-REEL  
DAC08CSZ  
DAC08CSZ-REEL  
DAC08EPZ  
0.10%  
0.10%  
0.19%  
0.19%  
0.19%  
0.19%  
0.19%  
0.19%  
0.39%  
0.39%  
0.39%  
0.39%  
0.39%  
0.39%  
0.19%  
16-Lead SOIC  
16-Lead SOIC  
16-Lead SOIC  
16-Lead SOIC  
2500  
25  
16-Lead PDIP  
1 Devices processed in total compliance to MIL-STD-883. Consult the factory for the 883 data sheet.  
2 For availability and burn-in information on the SOIC package, contact your local sales office.  
3 Z = RoHS Compliant Part.  
Rev. D | Page 19 of 21  
 
DAC08  
NOTES  
Data Sheet  
Rev. D | Page 20 of 21  
Data Sheet  
NOTES  
DAC08  
©2002–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00268-0-3/16(D)  
Rev. D | Page 21 of 21  

相关型号:

DAC0A

32-Bit AVR UC3 C Series Schematic Checklist
ATMEL

DAC0B

32-Bit AVR UC3 C Series Schematic Checklist
ATMEL

DAC10

10-Bit High Speed Multiplying D/A Converter Universal Digital Logic Interface
ADI

DAC1000

DOUBLE-BUFFERED D TO A CONVERTERS
NSC

DAC1000LCD

IC,D/A CONVERTER,SINGLE,10-BIT,CMOS,DIP,24PIN
TI

DAC1000LCJ

DOUBLE-BUFFERED D TO A CONVERTERS
NSC

DAC1000LCJ

PARALLEL, WORD INPUT LOADING, 0.5us SETTLING TIME, 10-BIT DAC, CDIP24, 0.600 INCH, CERAMIC, DIP-24
TI

DAC1000LCN

DOUBLE-BUFFERED D TO A CONVERTERS
NSC

DAC1000LCN

PARALLEL, WORD INPUT LOADING, 0.5us SETTLING TIME, 10-BIT DAC, PDIP24, 0.600 INCH, PLASTIC, DIP-24
TI

DAC1000LCN/A+

10-Bit Digital-to-Analog Converter
ETC

DAC1000LD/883

IC,D/A CONVERTER,SINGLE,10-BIT,CMOS,DIP,24PIN
TI

DAC1000LD/883B

IC,D/A CONVERTER,SINGLE,10-BIT,CMOS,DIP,24PIN
TI