EV-ADF41020EB1Z [ADI]

The ADF41020 frequency synthesizer can be used to implement local oscillators as high as 18 GHz in the up conversion and down conversion sections of wireless receivers and transmitters.; 该ADF41020频率合成器可以用于实现本地振荡器高达18千兆赫的向上转换和向下的无线接收机和发射机的变频部分。
EV-ADF41020EB1Z
型号: EV-ADF41020EB1Z
厂家: ADI    ADI
描述:

The ADF41020 frequency synthesizer can be used to implement local oscillators as high as 18 GHz in the up conversion and down conversion sections of wireless receivers and transmitters.
该ADF41020频率合成器可以用于实现本地振荡器高达18千兆赫的向上转换和向下的无线接收机和发射机的变频部分。

振荡器 发射机 接收机 无线
文件: 总16页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18 GHz Microwave PLL Synthesizer  
Data Sheet  
ADF41020  
FEATURES  
GENERAL DESCRIPTION  
18 GHz maximum RF input frequency  
Integrated SiGe prescaler  
Software compatible with the ADF4106/ADF4107/ADF4108  
family of PLLs  
2.85 V to 3.15 V PLL power supply  
Programmable dual-modulus prescaler  
8/9, 16/17, 32/33, 64/65  
Programmable charge pump currents  
3-wire serial interface  
The ADF41020 frequency synthesizer can be used to implement  
local oscillators as high as 18 GHz in the up conversion and  
down conversion sections of wireless receivers and transmitters.  
It consists of a low noise, digital phase frequency detector  
(PFD), a precision charge pump, a programmable reference  
divider, and high frequency programmable feedback dividers  
(A, B, and P). A complete phase-locked loop (PLL) can be  
implemented if the synthesizer is used with an external loop  
filter and voltage controlled oscillator (VCO). The synthesizer  
can be used to drive external microwave VCOs via an active  
loop filter. Its very high bandwidth means a frequency doubler  
stage can be eliminated, simplifying system architecture and  
reducing cost. The ADF41020 is software-compatible with the  
existing ADF4106/ADF4107/ADF4108 family of devices from  
Analog Devices, Inc. Their pinouts match very closely with  
the exception of the ADF41020’s single-ended RF input pin,  
meaning only a minor layout change is required when updating  
current designs.  
Analog and digital lock detect  
Hardware and software power-down mode  
APPLICATIONS  
Microwave point-to-point/multipoint radios  
Wireless infrastructure  
VSAT radios  
Test equipment  
Instrumentation  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
V
R
SET  
DD  
DD  
P
GND  
REFERENCE  
PHASE  
FREQUENCY  
DETECTOR  
REF  
R COUNTER  
CHARGE  
PUMP  
IN  
CP  
R COUNTER  
LATCH  
LOCK  
DETECT  
CURRENT  
SETTING 1  
CURRENT  
SETTING 2  
CLK  
DATA  
LE  
24-BIT INPUT  
REGISTER  
FUNCTION  
LATCH  
CPI6 CPI5 CPI4  
HIGH-Z  
CPI3 CPI2 CPI1  
A, B COUNTER  
LATCH  
AV  
DD  
MUXOUT  
MUX  
N = 4(BP + A)  
SD  
OUT  
3pF  
A AND B  
COUNTERS  
DIVIDE  
BY 4  
RF  
IN  
P/P+ 1  
M3 M2 M1  
50Ω  
ADF41020  
GND  
CE  
GND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2012 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADF41020  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RF Input Stage................................................................................8  
Prescaler..........................................................................................8  
A Counter and B Counter............................................................8  
R Counter .......................................................................................9  
PFD and Charge Pump.................................................................9  
MUXOUT and Lock Detect.........................................................9  
Input Shift Register .......................................................................9  
The Function Latch.................................................................... 13  
Applications Information.............................................................. 15  
Interfacing ................................................................................... 15  
PCB Design Guidelines ............................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ........................................................................ 8  
Reference Input Section............................................................... 8  
REVISION HISTORY  
10/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
ADF41020  
SPECIFICATIONS  
DVDD = AVDD = VP = 3.0 V 5%, GND = 0 V, RSET = 5.1 kΩ, dBm referred to 50 Ω, TA = TMAX to TMIN, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RF CHARACTERISTICS  
RF Input Frequency (RFIN)  
RF Input Sensitivity  
Maximum Allowable Prescaler  
Output Frequency1  
See Figure 1 for input circuit  
4.0  
−10  
18.0  
+10  
350  
GHz  
dBm  
MHz  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
REFIN Input Sensitivity  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR  
Phase Detector Frequency2  
CHARGE PUMP  
ICP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
RSET  
ICP Three-State Leakage  
Sink and Source Current Matching  
ICP vs. VCP  
ICP vs. Temperature  
LOGIC INPUTS  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IINH, IINL, Input Current  
CIN, Input Capacitance  
LOGIC OUTPUTS  
10  
0.8  
400  
DVDD  
10  
MHz  
V p-p  
pF  
For f < 10 MHz, ensure slew rate > 50 V/μs  
Biased at DVDD/2 when input is ac-coupled  
100  
µA  
100  
MHz  
Programmable, see Figure 17  
With RSET = 5.1 kΩ  
5.0  
625  
3
5.1  
1
2
1
2
mA  
µA  
%
kΩ  
nA  
%
With RSET = 5.1 kΩ  
See Figure 17  
TA = 25°C  
0.5 V ≤ VCP ≤ VP − 0.5 V  
0.5 V ≤ VCP ≤ VP − 0.5 V  
VCP = VP/2  
5.1  
1.4  
5.1  
2
%
%
V
V
µA  
pF  
The SPI interface is 1.8 V and 3 V logic compatible  
0.6  
1
10  
VOH, Output High Voltage  
1.4  
V
Open-drain output chosen, 1 kΩ pull-up resistor  
to 1.8 V  
VOH, Output High Voltage  
IOH, Output High Current  
VOL, Output Low Voltage  
IOL, Output Low Current  
POWER SUPPLIES  
AVDD  
DVDD − 0.4  
V
µA  
V
CMOS output chosen  
500  
0.4  
500  
µA  
2.85  
2.85  
2.85  
3.15  
3.15  
3.15  
30  
V
V
V
mA  
mA  
µA  
DVDD  
VP  
3
IDD  
27  
4.5  
1
TA = 25°C  
TA = 25°C  
TA = 25°C  
3
IP  
5
Power-Down Mode  
Rev. 0 | Page 3 of 16  
 
 
ADF41020  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
NOISE CHARACTERISTICS  
Normalized Phase Noise Floor4  
Normalized 1/f Noise5  
Phase Noise Performance6  
5.7 GHz  
−221  
−118  
dBc/Hz PLL loop bandwidth = 500 kHz  
dBc/Hz Normalized to 10 kHz offset at 1 GHz  
At VCO output  
dBc/Hz At 1 kHz offset and 2.5 MHz PFD frequency with  
20 kHz loop bandwidth  
dBc/Hz At 3 kHz offset and 2.5 MHz PFD frequency with  
20 kHz loop bandwidth  
−89  
−82  
−96  
12.5 GHz7  
17.64 GHz  
dBc/Hz At 100 kHz offset and 90 MHz PFD frequency with  
700 kHz loop bandwidth  
Spurious Signals  
5.7 GHz  
−80/−86  
−98/<−110  
−109/−113  
dBc  
dBc  
dBc  
At 2.5 MHz/5 MHz and 2.5 MHz PFD frequency  
At 2.5 MHz/5 MHz and 2.5 MHz PFD frequency  
At 90 MHz/180 MHz and 90 MHz PFD frequency  
12.5 GHz7  
17.64 GHz  
1 This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that  
is less than this value.  
2 Guaranteed by design. Sample tested to ensure compliance.  
3 TA = 25°C; AVDD = DVDD = VP = 3.0 V; P = 16; fREF = 100 MHz; fPFD = 100 MHz; RFIN = 12.8 GHz.  
IN  
4 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider  
value) and 10 log fPFD. PNSYNTH = PNTOT − 10 log fPFD − 20 log N.  
5 The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency, fRF,  
and at a frequency offset, f, is given by PN = PN1_f + 10 log(10 kHz/f) + 20 log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in  
ADIsimPLL.  
6 The phase noise is measured with a Rohde & Schwarz FSUP spectrum analyzer. The reference is provided by a Rohde & Schwarz SMA100A.  
7 The phase noise and spurious noise is measured with the EV-ADF41020EB1Z evaluation board and the Rohde & Schwarz FSUP spectrum analyzer.  
TIMING CHARACTERISTICS  
AVDD = DVDD = VP = 3.0 V, GN D = 0 V, RSET = 5.1 kΩ, dBm referred to 50 Ω, TA = TMAX to TMIN, unless otherwise noted.  
Table 2.  
Parameter  
Limit  
10  
10  
25  
25  
Unit  
Test Conditions/Comments  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
t1  
t2  
t3  
t4  
t5  
t6  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
10  
20  
t3  
t4  
CLK  
t1  
t2  
DB0 (LSB)  
(CONTROL BIT C1)  
DB1 (CONTROL  
BIT C2)  
DB2  
DB23 (MSB)  
DB22  
DATA  
t6  
LE  
LE  
t5  
Figure 2. Timing Diagram  
Rev. 0 | Page 4 of 16  
 
 
 
Data Sheet  
ADF41020  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
AVDD to GND  
AVDD to DVDD  
VP to GND  
VP to AVDD  
Digital I/O Voltage, REFIN to GND  
Analog I/O Voltage to GND  
REFIN, RFIN to GND  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to VP + 0.3 V  
−0.3 V to AVDD + 0.3 V  
This device is a high performance RF integrated circuit with an  
ESD rating of <2 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Maximum Junction Temperature  
−40°C to +85°C  
−65°C to +125°C  
150°C  
ESD CAUTION  
LFCSP θJA Thermal Impedance1  
(Paddle Soldered)  
62.82°C/W  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
Transistor Count  
CMOS  
260°C  
40 sec  
6610  
358  
Bipolar  
1 Two signal planes (that is, on the top and bottom surfaces of the board), two  
buried planes, and four vias.  
Rev. 0 | Page 5 of 16  
 
 
 
ADF41020  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
GND  
1
2
15 MUXOUT  
14 LE  
ADF41020  
GND 3  
RF  
13 DATA  
12 CLK  
11 CE  
TOP  
4
VIEW  
IN  
GND 5  
NOTES  
1. THE EXPOSED PAD MUST BE  
CONNECTED TO GND.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1, 2, 3, 5, 9, 10 GND Ground Pins.  
Input to the RF Prescaler. This input is ac-coupled internally.  
4
RFIN  
6, 7  
AVDD  
Analog Power Supply. This may range from 2.85 V to 3.15 V. Decoupling capacitors to the ground plane  
should be placed as close as possible to this pin. Pin 6 is the supply for the fixed divide-by-4 prescaler.  
8
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of DVDD/2 and a dc equivalent input  
resistance of 100 kΩ (see Figure 9). This input can be driven from a TTL or CMOS crystal oscillator or it  
can be ac-coupled.  
11  
CE  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into three-  
state mode. Taking the pin high powers up the device, depending on the status of the power-down bit, PD1.  
12  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into  
the 24-bit shift register on the CLK rising edge. This is a high impedance CMOS input.  
13  
DATA  
LE  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This is a high  
impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the  
four latches with the latch being selected using the control bits.  
14  
15  
MUXOUT  
DVDD  
This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference frequency to be  
accessed externally.  
Digital Power Supply. This may range from 2.85 V to 3.15 V. Decoupling capacitors to the ground plane  
should be placed as close as possible to this pin. DVDD must be the same value as AVDD.  
16, 17  
18  
19  
VP  
RSET  
Charge Pump Power Supply.  
Connecting a resistor between this pin and GND sets the maximum charge pump output current.  
The nominal voltage potential at the RSET pin is 0.66 V. The relationship between ICP and RSET is  
25.5  
RSET  
ICP MAX  
=
So, with RSET = 5.1 kΩ, ICP MAX = 5.0 mA.  
20  
CP  
EP  
Charge Pump Output. When enabled, this provides ICP to the external loop filter, which in turn drives the  
external VCO.  
Exposed Pad. The exposed pad must be connected to GND.  
Rev. 0 | Page 6 of 16  
 
Data Sheet  
ADF41020  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
10  
5
8/9 PRESCALER  
10  
0
–10  
–20  
–30  
–40  
0
–5  
–10  
–15  
–20  
–25  
16/17 PRESCALER  
–50  
–60  
–70  
0
100 200 300 400 500 600 700 800 900 1000  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 4. RF Input Sensitivity  
Figure 7. REFIN Sensitivity  
FREQ UNIT:  
GHz KEYWORD: R  
s
PARAM TYPE:  
DATA FORMAT: MA  
6
5
FREQ MAGS11  
ANGS11  
FREQ MAGS11  
ANGS11  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.4  
6.6  
6.8  
7.0  
7.2  
7.4  
7.6  
7.8  
8.0  
8.2  
8.4  
8.6  
8.8  
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
0.20099200  
0.19669930  
0.19140480  
0.18317790  
0.17232760  
0.16071930  
0.14943970  
0.13791310  
0.12839340  
0.12090700  
0.11516160  
0.11252430  
0.11213720  
0.11236920  
0.11323590  
0.11401910  
0.11361600  
0.11225360  
0.10909150  
0.10484100  
0.09871251  
0.09258573  
0.08667851  
0.08075383  
0.07542522  
0.07048169  
0.06751262  
0.06561201  
0.06308079  
0.05995205  
0.05666475  
–133.9429000  
–134.7069000  
–135.0024000  
–135.1249000  
–135.0415000  
–135.1840000  
–136.0447000  
–137.7694000  
–140.5623000  
–144.7454000  
–149.8260000  
–155.1801000  
–160.0477000  
–164.5794000  
–168.1217000  
–170.9163000  
–173.2882000  
–175.2539000  
–176.9327000  
–179.0774000  
178.5525000  
175.9697000  
172.5878000  
168.3692000  
163.5676000  
159.0954000  
154.6976000  
149.2087000  
142.2284000  
137.8226000  
134.1730000  
10.2  
10.4  
10.6  
10.8  
11.0  
11.4  
11.8  
12.2  
12.6  
13.0  
13.4  
13.8  
14.2  
14.6  
15.0  
15.2  
15.4  
15.6  
15.8  
16.0  
16.2  
16.4  
16.6  
16.8  
17.0  
17.2  
17.4  
17.6  
17.8  
18.0  
0.05542031  
0.05306026  
0.05123230  
0.04471957  
0.03846882  
0.03402513  
0.04456061  
0.05158395  
0.06039219  
0.05580344  
0.08402054  
0.10374910  
0.11639920  
0.13647950  
0.16700580  
0.18309070  
0.19458010  
0.20377790  
0.21170140  
0.21883690  
0.22280700  
0.22498210  
0.22589250  
0.22572100  
0.22596830  
0.23197900  
0.24339450  
0.26023130  
0.28636130  
0.31905490  
130.0581000  
126.9556000  
115.8988000  
102.0333000  
86.3895600  
51.1515300  
21.0829700  
16.8124600  
16.5178200  
31.4631600  
36.3540700  
18.8428500  
0.2817307  
–15.4473000  
–22.3273100  
–24.3333900  
–25.3870800  
–25.0101800  
–24.2554800  
–23.4312200  
–23.5596400  
–24.411100  
–26.5202700  
–30.3773300  
–36.2808700  
–42.8398200  
–50.7222200  
–57.5844600  
–63.0764200  
–67.5389600  
5.0mA  
4.375mA  
3.75mA  
3.125mA  
2.5mA  
1.875mA  
1.25mA  
0.625mA  
4
3
2
1
0
0.625mA  
1.25mA  
1.875mA  
2.5mA  
3.125mA  
3.75mA  
4.375mA  
5.0mA  
–1  
–2  
–3  
–4  
–5  
–6  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
V
CP  
Figure 5. Charge Pump Output Characteristics  
Figure 8. S-Parameters  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY OFFSET (Hz)  
Figure 6. Closed-Loop Phase Noise, RF = 12.5 GHz, PFD = 2.5 MHz,  
Loop Bandwidth = 20 kHz  
Rev. 0 | Page 7 of 16  
 
ADF41020  
Data Sheet  
THEORY OF OPERATION  
REFERENCE INPUT SECTION  
PRESCALER  
The reference input stage is shown in Figure 9. SW1 and SW2  
are normally closed switches. SW3 is a normally open switch.  
When power-down is initiated, SW3 is closed and SW1 and  
SW2 are opened. This ensures that there is no loading of the  
REFIN pin on power-down.  
The ADF41020 uses a two prescaler approach to achieve  
operation up to 18 GHz. The first prescaler is a fixed  
divide-by-4 block. The second prescaler, which takes its  
input from the divide-by-4 output, is implemented as a dual-  
modulus prescaler (P/P + 1), which allows finer frequency  
resolution vs. a fixed prescaler. Along with the A counter and  
B counter, this enables the large division ratio, N, to be realized  
(N = 4(BP + A)). The dual-modulus prescaler, operating at  
CML levels, takes the clock from the fixed prescaler stage and  
divides it down to a manageable frequency for the CMOS A  
counter and B counter. The second prescaler is programmable.  
It can be set in software to 8/9, 16/17, 32/33, or 64/65. It is  
based on a synchronous 4/5 core. There is a minimum divide  
ratio possible for contiguous output frequencies. This minimum  
is given by 4(P2 − P).  
POWER-DOWN  
CONTROL  
100k  
SW2  
NC  
TO R COUNTER  
REF  
IN  
NC  
BUFFER  
SW1  
SW3  
NO  
Figure 9. Reference Input Stage  
A COUNTER AND B COUNTER  
RF INPUT STAGE  
The A counter and B counter combine with the two prescalers  
to allow a wide ranging division ratio in the PLL feedback  
counter. The counters are specified to work when the prescaler  
output is 350 MHz or less.  
The RF input stage is shown in Figure 10. It is followed by a  
buffer, which generates the differential CML levels needed for  
the prescaler.  
AV  
DD  
Pulse Swallow Function  
Because of the fixed divide-by-4 block, the generated output  
frequencies are spaced by four times the reference frequency  
divided by R. The equation for VCO frequency is  
TO DIVIDE BY 4  
PRESCALER  
3pF  
RF  
BUFFER  
IN  
4 fREF  
IN  
fVCO  
(P B) A   
R
50  
where:  
VCO is the output frequency of the external voltage controlled  
f
oscillator (VCO).  
GND  
P is the preset modulus of the dual-modulus prescaler  
Figure 10. RF Input Stage  
(such as, 8/9, 16/17).  
B is the preset divide ratio of the binary 13-bit counter  
(2 to 8191).  
A is the preset divide ratio of the binary 6-bit swallow  
counter (0 to 63).  
fREFIN is the external reference frequency oscillator.  
N = 4(BP + A)  
DIVIDE BY 4  
TO PFD  
13-BIT B  
COUNTER  
LOAD  
LOAD  
PRESCALER  
P/P + 1  
FROM RF INPUT  
BUFFER  
6-BIT A  
COUNTER  
MODULUS  
CONTROL  
N DIVIDER  
Figure 11. Prescalers, A and B Counters that Make Up the N-Divide Value  
Rev. 0 | Page 8 of 16  
 
 
 
 
 
 
 
Data Sheet  
ADF41020  
DV  
DD  
R COUNTER  
The 14-bit R counter allows the input reference frequency to  
be divided down to produce the reference clock to the phase  
frequency detector (PFD). Division ratios from 1 to 16,383  
are allowed.  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
MUX  
CONTROL  
MUXOUT  
PFD AND CHARGE PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 13 is a simplified schematic.  
The PFD includes a fixed delay element that controls the  
width of the antibacklash pulse. This pulse ensures that there  
is no dead zone in the PFD transfer function and minimizes  
phase noise and reference spurs. The charge pump converts the  
PFD output to current pulses, which are integrated by the PLL  
loop filter.  
GND  
Figure 12. MUXOUT Circuit  
INPUT SHIFT REGISTER  
The ADF41020 digital section includes a 24-bit input shift  
register, a 14-bit R counter, and a 19-bit N counter, comprising  
a 6-bit A counter and a 13-bit B counter. Data is clocked into  
the 24-bit shift register on each rising edge of CLK. The data is  
clocked in MSB first. Data is transferred from the shift register  
to one of three latches on the rising edge of LE. The destination  
latch is determined by the state of the two control bits (C2, C1)  
in the shift register. C2 and C1 are the two LSBs, DB1 and DB0,  
as shown in the timing diagram of Figure 2. The truth table for  
these bits is shown in Table 5. Table 5 shows a summary of  
how the latches are programmed. The SPI is both 1.8 V and  
3 V compatible.  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF41020 allows the user  
to access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2, and M1 in the function  
latch. Figure 17 shows the full truth table. Figure 12 shows  
the MUXOUT section in block diagram form.  
Lock Detect  
MUXOUT can be programmed for two types of lock detect:  
digital lock detect and analog lock detect.  
Digital lock detect is active high. Digital lock detect is set high  
when the phase error on five consecutive phase detector cycles  
is less than 15 ns. It stays set high until a phase error of greater  
than 25 ns is detected on any subsequent PD cycle.  
Table 5. C1, C2 Truth Table  
Control Bits  
C2  
0
C1  
0
Data Latch  
R counter  
0
1
1
0
N counter (A and B)  
Function latch (including prescaler)  
V
P
CHARGE  
PUMP  
UP  
Q1  
U1  
D1  
HIGH  
R DIVIDER  
CLR1  
FIXED  
DELAY  
U3  
CP  
CLR2  
D2 Q2  
DOWN  
HIGH  
U2  
N DIVIDER  
GND  
Figure 13. PFD Simplified Schematic  
Rev. 0 | Page 9 of 16  
 
 
 
 
 
 
 
ADF41020  
Data Sheet  
REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
R6  
DB1  
DB0  
1
0
0
1
0
0
0
1
R14  
R13  
R12  
R11  
R10  
R9  
R8  
R7  
R5  
R4  
R3  
R2  
R1  
C2 (0) C1 (0)  
N COUNTER LATCH  
CONTROL  
BITS  
RESERVED  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
0
0
G1  
B13 B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2 (0)  
C1 (1)  
FUNCTION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
PRESCALER  
VALUE  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F5  
F4  
F3  
F2  
M3  
M2  
M1  
PD1  
F1  
C2 (1) C1 (0)  
Figure 14. Latch Summary  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7  
DB6 DB5 DB4  
DB3 DB2  
DB1  
DB0  
1
0
0
1
0
0
0
1
R14  
R13  
R12 R11  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2 R1 C2 (0) C1 (0)  
R14  
R13  
R12  
..........  
R3  
R2  
R1  
DIVIDE RATIO  
0
0
0
0
0
0
0
0
0
..........  
..........  
..........  
0
0
0
0
1
1
1
0
1
1
2
3
0
.
0
.
0
.
..........  
..........  
1
.
0
.
0
.
4
.
.
.
.
.
.
.
..........  
..........  
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
..........  
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
Figure 15. Reference Counter Latch Map  
Rev. 0 | Page 10 of 16  
Data Sheet  
ADF41020  
CONTROL  
BITS  
RESERVED  
6-BIT A COUNTER  
13-BIT B COUNTER  
DB21  
G1  
DB19  
B12  
DB16 DB15 DB14  
DB10  
B3  
DB9  
B2  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB0  
C2 (0) C1 (1)  
DB23 DB22  
DB20  
B13  
DB18 DB17  
B11 B10  
DB13 DB12 DB11  
B6 B5 B4  
DB8  
B1  
DB7  
A6  
DB2  
A1  
DB1  
0
0
B9  
B8  
B7  
A COUNTER  
DIVIDE RATIO  
A6  
A5  
..........  
A2  
A1  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
1
.
1
..........  
..........  
.
0
.
0
.
60  
1
1
1
1
1
1
..........  
..........  
..........  
0
1
1
1
0
1
61  
62  
63  
B13  
B12  
B11  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
0
0
0
0
.
.
0
0
0
0
.
.
0
0
0
0
.
.
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
0
.
.
0
0
1
1
.
.
0
1
0
1
.
.
NOT ALLOWED  
NOT ALLOWED  
2
3
.
.
.
.
.
.
..........  
..........  
..........  
..........  
..........  
.
.
.
8188  
8189  
8190  
8191  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
F4 (FUNCTION LATCH)  
FASTLOCK ENABLE  
CP GAIN OPERATION  
0
0
1
1
0
1
0
1
CHARGE PUMP CURRENT  
SETTING 1 IS PERMANENTLY USED.  
CHARGE PUMP CURRENT  
SETTING 2 IS PERMANENTLY USED.  
CHARGE PUMP CURRENT  
SETTING 1 IS USED.  
CHARGE PUMP CURRENT IS  
SWITCHED TO SETTING 2. THE  
TIME SPENT IN SETTING 2 IS  
DEPENDENT ON WHICH FAST LOCK  
MODE IS USED. SEE FUNCTION  
LATCH DESCRIPTION.  
N = 4(BP + A), P IS A PRESCALER VALUE SET IN THE FUNCTION  
LATCH. B MUST BE GREATER THAN OR EQUAL TO A. FOR  
CONTINUOUSLY ADJACENT VALUES OF (N × FREF), AT THE  
2
OUTPUT, N MIN IS 4(P – P).  
BOTH OF THESE BITS  
MUST BE SET TO 0 FOR  
NORMAL OPERATION.  
Figure 16. N (A, B) Counter Latch Map  
Rev. 0 | Page 11 of 16  
ADF41020  
Data Sheet  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5  
DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2  
CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F4  
F3  
F2  
M3  
M2  
M1  
F1  
C2 (1) C1 (0)  
CPI6  
F5  
PD1  
PHASE DETECTOR  
POLARITY  
COUNTER  
OPERATION  
F2  
F1  
0
1
NEGATIVE  
POSITIVE  
0
1
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
CHARGE PUMP  
OUTPUT  
F3  
0
1
NORMAL  
THREE-STATE  
F4  
F5  
FAST LOCK MODE  
0
1
1
X
0
1
FAST LOCK DISABLED  
FAST LOCK MODE 1  
FAST LOCK MODE 2  
M3  
M2  
M1  
OUTPUT  
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
1
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
3
7
11  
15  
19  
23  
27  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
RESERVED  
SERIAL DATA OUTPUT  
DGND  
0
1
1
0
1
0
1
0
31  
35  
1
0
0
1
39  
1
1
0
0
1
1
0
1
43  
47  
1
1
1
1
0
0
0
1
51  
55  
1
1
1
1
1
1
0
1
59  
63  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
CPI3  
CPI2  
CPI1  
0.625  
1.25  
1.875  
0
0
0
0
0
1
0
1
0
2.5  
3.125  
0
1
1
0
1
0
3.75  
1
0
1
4.375  
5.0  
1
1
1
1
0
1
CE PIN  
PD2  
PD1  
MODE  
0
0
0
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
SOFTWARE POWER-DOWN  
0
1
1
X
0
1
PRESCALER VALUE  
P2  
P1  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
Figure 17. Function Latch Map  
Rev. 0 | Page 12 of 16  
 
Data Sheet  
ADF41020  
Fast Lock Mode 2  
THE FUNCTION LATCH  
With C2 and C1 set to 1 and 0, respectively, the on-chip  
function latch is programmed. Figure 17 shows the input  
data format for programming the function latch.  
The charge pump current is switched to the contents of Current  
Setting 2. The device enters fast lock when 1 is written to the  
CP gain bit in the N (A, B) counter latch. The device exits fast  
lock under the control of the timer counter. After the timeout  
period, which is determined by the value in TC4 to TC1, the CP  
gain bit in the N (A, B) counter latch is automatically reset to 0,  
and the device reverts to normal mode instead of fast lock. See  
Figure 17 for the timeout periods.  
Counter Reset  
DB2 (F1) is the counter reset bit. When this is 1, the R counter  
and the N (A, B) counter is reset. For normal operation, this bit  
should be 0. When powering up, disable the F1 bit (set to 0).  
The N counter then resumes counting in close alignment with  
the R counter. (The maximum error is one prescaler cycle).  
Timer Counter Control  
The user has the option of programming two charge pump  
currents. The intent is that Current Setting 1 is used when the  
RF output is stable and the system is in a static state. Current  
Setting 2 is used when the system is dynamic and in a state of  
change (that is, when a new output frequency is programmed).  
The normal sequence of events follows.  
Power-Down  
Bit DB3 (PD1) provides a software power-down mode to reduce  
the overall current drawn by the device. It is enabled by the CE  
pin. When the CE pin is low, the device is immediately disabled  
regardless of the state of PD1.  
In the programmed software power-down, the device powers  
down immediately after latching 1 into the PD1 bit. PD2 is a  
reserved bit and should be cleared to 0.  
The user initially decides what the preferred charge pump  
currents are going to be. For example, the choice may be  
0.85 mA as Current Setting 1 and 1.7 mA as Current Setting 2.  
When a power-down is activated, the following events occur:  
Simultaneously, the decision must be made as to how long the  
secondary current stays active before reverting to the primary  
current. This is controlled by the timer counter control bits,  
DB14 to DB11 (TC4 to TC1), in the function latch. The truth  
table is given in Figure 17.  
All active dc current paths in the main synthesizer section  
are removed. However, the RF divide-by-4 prescaler  
remains active.  
The R, N, and timeout counters are forced to their load  
state conditions.  
To program a new output frequency, simply program the N (A, B)  
counter latch with new values for A and B. Simultaneously, the  
CP gain bit can be set to 1, which sets the charge pump with the  
value in CPI6 to CPI4 for a period of time determined by TC4  
to TC1. When this time is up, the charge pump current reverts  
to the value set by CPI3 to CPI1. At the same time, the CP gain  
bit in the N (A, B) counter latch is reset to 0 and is ready for the  
next time the user wishes to change the frequency.  
The charge pump is forced into three-state mode.  
The digital clock detect circuitry is reset.  
The RFIN input is debiased.  
The reference input buffer circuitry is disabled.  
The input register remains active and capable of loading  
and latching data.  
MUXOUT Control  
Note that there is an enable feature on the timer counter. It is  
enabled when Fast Lock Mode 2 is chosen by setting the fast  
lock mode bit (DB10) in the function latch to 1.  
The on-chip multiplexer is controlled by M3, M2, and M1 on  
the ADF41020. Figure 17 shows the truth table.  
Fast Lock Enable Bit  
Charge Pump Currents  
Bit DB9 (F4) of the function latch is the fast lock enable bit.  
When this bit is 1, fast lock is enabled.  
CPI3, CPI2, and CPI1 program Current Setting 1 for the charge  
pump. CPI6, CPI5, and CPI4 program Current Setting 2 for the  
charge pump. The truth table is given in Figure 17.  
Fast Lock Mode Bit  
Bit DB10 (F5)of the function latch is the fast lock mode bit.  
When fast lock is enabled, this bit determines which fast lock  
mode is used. If the fast lock mode bit is 0, then Fast Lock  
Mode 1 is selected; and if the fast lock mode bit is 1, then Fast  
Lock Mode 2 is selected.  
Prescaler Value  
P2 and P1 in the function latch set the programmable P  
prescaler value. The P value should be chosen so that the  
prescaler output frequency is always less than or equal to  
350 MHz.  
Fast Lock Mode 1  
PD Polarity  
The charge pump current is switched to the contents of Current  
Setting 2. The device enters fast lock when 1 is written to the CP  
gain bit in the N (A, B) counter latch. The device exits fast lock  
when 0 is written to the CP gain bit in the N (A, B) counter latch.  
Bit DB7 (F2) sets the phase detector polarity bit. See Figure 17.  
Rev. 0 | Page 13 of 16  
 
ADF41020  
Data Sheet  
CP Three-State  
6. Bring CE high to take the device out of power-down. The  
R and N (A, B) counters now resume counting in close  
alignment.  
Bit DB8 (F3) controls the CP output pin. With the bit set high,  
the CP output is put into three-state. With the bit set low, the  
CP output is enabled.  
Note that after CE goes high, a 1 µs duration may be required  
for the prescaler band gap voltage and oscillator input buffer  
bias to reach steady state.  
CE can be used to power the device up and down to check  
for channel activity. The input register does not need to be  
reprogrammed each time the device is disabled and enabled  
as long as it is programmed at least once after VDD is initially  
applied.  
Device Programming After Initial Power-Up  
After initial power up of the device, there are three methods for  
programming the device: function latch, CE pin, and counter  
reset.  
Function Latch Method  
1. Apply VDD  
.
2. Program the function latch load (10 in two LSBs of the  
control word), making sure that the F1 bit is programmed  
to a 0.  
3. Do an R load (00 in two LSBs).  
4. Do an N (A, B) load (01 in two LSBs).  
Counter Reset Method  
1. Apply VDD  
.
2. Do a function latch load (10 in two LSBs). As part of this,  
load 1 to the F1 bit. This enables the counter reset.  
3. Do an R counter load (00 in two LSBs).  
4. Do an N (A, B) counter load (01 in two LSBs).  
5. Do a function latch load (10 in two LSBs). As part of this,  
load 0 to the F1 bit. This disables the counter reset.  
CE Pin Method  
1. Apply VDD  
.
2. Bring CE low to put the device into power-down. This is an  
asychronous power-down in that it happens immediately.  
3. Program the function latch (10).  
This sequence provides direct control over the internal  
counter reset.  
4. Program the R counter latch (00).  
5. Program the N (A, B) counter latch (01).  
Rev. 0 | Page 14 of 16  
Data Sheet  
ADF41020  
APPLICATIONS INFORMATION  
Blackfin BF527 Interface  
INTERFACING  
Figure 19 shows the interface between the ADF41020 and  
the Blackfin® ADSP-BF527 digital signal processor (DSP). The  
ADF41020 needs a 24-bit serial word for each latch write. The  
easiest way to accomplish this using the Blackfin family is to  
use the autobuffered transmit mode of operation with alternate  
framing. This provides a means for transmitting an entire block  
of serial data before an interrupt is generated. Set up the word  
length for 8 bits and use three memory locations for each 24-bit  
word. To program each 24-bit latch, store the three 8-bit bytes,  
enable the autobuffered mode, and write to the transmit register  
of the DSP. This last operation initiates the autobuffer transfer.  
As in the microcontroller case, ensure the clock speeds are  
within the maximum limits outlined in Table 1.  
The ADF41020 has a simple 1.8 V and 3 V SPI-compatible  
serial interface for writing to the device. CLK, DATA, and  
LE control the data transfer. When LE goes high, the 24 bits  
clocked into the input register on each rising edge of CLK  
are transferred to the appropriate latch. See Figure 2 for the  
timing diagram and Table 5 for the latch truth table.  
The maximum allowable serial clock rate is 20 MHz.  
ADuC7020 Interface  
Figure 18 shows the interface between the ADF41020 and the  
ADuC7019 to ADuC7023 family of analog microcontrollers.  
The ADuC70xx family is based on an AMR7 core, although the  
same interface can be used with any 8051-based micro-  
controller. The microcontroller is set up for SPI master mode  
with CPHA = 0. To initiate the operation, the I/O port driving  
LE is brought low. Each latch of the ADF41020 needs a 24-bit  
word. This is accomplished by writing three 8-bit bytes from the  
microcontroller to the device. When the third byte is written,  
bring the LE input high to complete the transfer.  
SCK  
CLK  
MOSI  
DATA  
GPIO  
LE  
CE  
ADSP-BF527  
ADF41020  
I/O FLAGS  
MUXOUT  
On first applying power to the ADF41020, it needs three writes  
(one each to the function latch, R counter latch, and N counter  
latch) for the output to become active.  
(LOCK DETECT)  
Figure 19. ADSP-BF527-to-ADF41020 Interface  
I/O port lines on the microcontroller are also used to control  
power-down (CE input) and to detect lock (MUXOUT  
configured as lock detect and polled by the port input).  
PCB DESIGN GUIDELINES  
The lands on the LFCSP (CP-20) are rectangular. The printed  
circuit board (PCB) pad for these should be 0.1 mm longer than  
the package land length and 0.05 mm wider than the package  
land width. Center the land on the pad to ensure that the solder  
joint size is maximized. The bottom of the LFCSP has a central  
thermal pad.  
When operating in the mode described, the maximum SPI  
transfer rate of the ADuC7023 is 20 Mbps. This means that  
the maximum rate at which the output frequency can be  
changed is 833 kHz. If using a faster SPI clock, ensure  
adherence to the SPI timing requirements listed in Table 1.  
The thermal pad on the PCB should be at least as large as the  
exposed pad. To avoid shorting, on the PCB, provide a  
clearance of at least 0.25 mm between the thermal pad and the  
inner edges of the pad pattern.  
SCLOCK  
MOSI  
CLK  
DATA  
LE  
CE  
ADuC70xx  
ADF41020  
Thermal vias may be used on the PCB thermal pad to improve  
thermal performance of the package. If vias are used, they should  
be incorporated in the thermal pad at 1.2 mm pitch grid. The  
via diameter should be between 0.3 mm and 0.33 mm, and plate  
the via barrel with 1 oz copper to plug the via.  
I/O PORTS  
MUXOUT  
(LOCK DETECT)  
Figure 18. ADuC70xx-to-ADF41020 Interface  
Connect the PCB thermal pad to GND.  
Rev. 0 | Page 15 of 16  
 
 
 
 
 
ADF41020  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.30  
2.10 SQ  
2.00  
11  
5
6
10  
0.65  
0.60  
0.55  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-1.  
Figure 20. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-20-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADF41020BCPZ  
ADF41020BCPZ-RL7  
EV-ADF41020EB1Z  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
CP-20-6  
CP-20-6  
20-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
20-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10304-0-10/12(0)  
Rev. 0 | Page 16 of 16  
 
 
 

相关型号:

EV-ADF4106SD1Z

PLL Frequency Synthesizer
ADI

EV-ADF411XSD1Z

RF PLL Frequency Synthesizers
ADI

EV-ADF41513SD1Z

26.5 GHz, Integer N/Fractional-N, PLL Synthesizer
ADI

EV-ADF41513SD2Z

26.5 GHz, Integer N/Fractional-N, PLL Synthesizer
ADI

EV-ADF4153SD1Z

Fractional-N Frequency Synthesizer
ADI

EV-ADF4159EB2Z

Direct Modulation/Fast Waveform Generating, 13 GHz, Fractional-N Frequency Synthesizer
ADI

EV-ADF4159EB3Z

Direct Modulation/Fast Waveform Generating, 13 GHz, Fractional-N Frequency Synthesizer
ADI

EV-ADF4360-0EB1Z

Integrated Synthesizer and VCO
ADI

EV-ADF4360-1EB1Z

Integrated Synthesizer and VCO
ADI

EV-ADF4360-2EB1Z

Integrated Synthesizer and VCO
ADI

EV-ADF4360-3EB1Z

Integrated Synthesizer and VCO
ADI

EV-ADF4360-7EB1Z

Integrated Synthesizer and VCO
ADI