EVAL-AD1928EB [ADI]

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec; 2 ADC / DAC 8与PLL , 192千赫, 24位编解码器
EVAL-AD1928EB
型号: EVAL-AD1928EB
厂家: ADI    ADI
描述:

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
2 ADC / DAC 8与PLL , 192千赫, 24位编解码器

解码器 编解码器
文件: 总32页 (文件大小:587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 ADC/8 DAC with PLL,  
192 kHz, 24-Bit Codec  
AD1928  
FEATURES  
GENERAL DESCRIPTION  
PLL-generated or direct master clock  
Low EMI design  
108 dB DAC/107 dB ADC dynamic range and SNR  
−94 dB THD + N  
3.3 V single supply  
Tolerance for 5 V logic inputs  
Supports 24 bits and 8 kHz to 192 kHz sample rates  
Differential ADC input  
Single-ended DAC output  
Log volume control with autoramp function  
SPI® controllable for flexibility  
Software-controllable clickless mute  
Software power-down  
Right-justified, left-justified, I2S-justified, and TDM modes  
Master and slave modes up to 16-channel input/output  
48-lead LQFP  
The AD1928 is a high performance, single-chip codec that  
provides two analog-to-digital converters (ADCs) with differ-  
ential input and eight digital-to-analog converters (DACs) with  
single-ended output using the Analog Devices, Inc., patented  
multibit sigma-delta (Σ-Δ) architecture. An SPI port is included,  
allowing a microcontroller to adjust volume and many other  
parameters. The AD1928 operates from 3.3 V digital and analog  
supplies. The AD1928 is available in a 48-lead (single-ended  
output) LQFP package. Other members of this family include a  
differential DAC output and I2C® control port versions.  
The AD1928 is designed for low EMI. This consideration is  
apparent in both the system and circuit design architectures.  
By using the on-board PLL to derive the master clock from the  
LR clock or from an external crystal, the AD1928 eliminates the  
need for a separate high frequency master clock and can be  
used with a suppressed bit clock. The digital-to-analog and  
analog-to-digital converters are designed using the latest  
Analog Devices continuous time architectures to further  
minimize EMI. By using 3.3 V supplies, power consumption is  
minimized, further reducing emissions.  
APPLICATIONS  
Automotive audio systems  
Home theater systems  
Set-top boxes  
Digital audio effects processors  
FUNCTIONAL BLOCK DIAGRAM  
DIGITAL AUDIO  
INPUT/OUTPUT  
AD1928  
SERIAL DATA PORT  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
SDATA  
OUT  
SDATA  
IN  
QUAD  
DEC  
FILTER  
48kHz/  
96kHz/  
192kHz  
DIGITAL  
FILTER  
AND  
VOLUME  
CONTROL  
ADC  
ADC  
ANALOG  
AUDIO  
INPUTS  
CLOCKS  
ANALOG  
AUDIO  
OUTPUTS  
TIMING MANAGEMENT  
AND CONTROL  
(CLOCK AND PLL)  
CONTROL PORT  
2
PRECISION  
VOLTAGE  
REFERENCE  
SPI/I C  
CONTROL DATA  
INPUT/OUTPUT  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD1928  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Analog-to-Digital Converters (ADCs).................................... 13  
Digital-to-Analog Converters (DACs).................................... 13  
Clock Signals............................................................................... 13  
Reset and Power-Down ............................................................. 14  
Serial Control Port ..................................................................... 14  
Power Supply and Voltage Reference....................................... 15  
Serial Data Ports—Data Format............................................... 15  
Time-Division Multiplexed (TDM) Modes............................ 15  
Daisy-Chain Mode..................................................................... 19  
Control Registers............................................................................ 24  
Definitions................................................................................... 24  
PLL and Clock Control Registers............................................. 24  
DAC Control Registers.............................................................. 25  
ADC Control Registers.............................................................. 27  
Additional Modes....................................................................... 29  
Application Circuits ....................................................................... 30  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Test Conditions............................................................................. 3  
Analog Performance Specifications........................................... 3  
Crystal Oscillator Specifications................................................. 5  
Digital Input/Output Specifications........................................... 5  
Power Supply Specifications........................................................ 5  
Digital Filters................................................................................. 6  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 13  
REVISION HISTORY  
4/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
AD1928  
SPECIFICATIONS  
TEST CONDITIONS  
Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.  
Supply voltages (AVDD, DVDD)  
Temperature range 1  
3.3 V  
As specified in Table 1 and Table 2  
Master clock  
12.288 MHz (48 kHz fS, 256 × fS mode)  
Input sample rate  
48 kHz  
Measurement bandwidth  
Word width  
20 Hz to 20 kHz  
24 bits  
Load capacitance (digital output)  
Load current (digital output)  
High level input voltage  
Low level input voltage  
20 pF  
1 mA or 1.5 kΩ to ½ DVDD supply  
2.0 V  
0.8 V  
1 Functionally guaranteed at −40°C to +125°C case temperature.  
ANALOG PERFORMANCE SPECIFICATIONS  
Specifications guaranteed at an ambient temperature of 25°C.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ANALOG-TO-DIGITAL CONVERTERS  
ADC Resolution  
All ADCs  
24  
Bits  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
98  
100  
102  
105  
−96  
1.9  
dB  
dB  
dB  
V rms  
%
With A-Weighted Filter (RMS)  
Total Harmonic Distortion + Noise  
Full-Scale Input Voltage (Differential)  
Gain Error  
−1 dBFS  
−87  
−10  
+10  
Interchannel Gain Mismatch  
Offset Error  
Gain Drift  
Interchannel Isolation  
CMRR  
−0.25  
−10  
+0.25  
+10  
dB  
0
mV  
ppm/°C  
dB  
dB  
dB  
100  
−110  
55  
100 mV rms, 1 kHz  
100 mV rms, 20 kHz  
55  
Input Resistance  
14  
kΩ  
Input Capacitance  
10  
pF  
Input Common-Mode Bias Voltage  
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
1.5  
V
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
98  
100  
104  
106  
108  
dB  
dB  
dB  
With A-Weighted Filter (RMS)  
With A-Weighted Filter (Average)  
Total Harmonic Distortion + Noise  
Single-Ended Version  
0 dBFS  
Two channels running  
Eight channels running  
−92  
−86  
dB  
dB  
−75  
Full-Scale Output Voltage  
Gain Error  
Interchannel Gain Mismatch  
Offset Error  
0.88 (2.48)  
V rms (V p-p)  
%
dB  
mV  
−10  
−0.2  
−25  
−30  
+10  
+0.2  
+25  
+30  
−4  
Gain Drift  
ppm/°C  
Rev. 0 | Page 3 of 32  
 
 
 
AD1928  
Parameter  
Conditions  
Min  
Typ  
100  
0
0.375  
95  
Max  
Unit  
dB  
Degrees  
dB  
dB  
dB  
Interchannel Isolation  
Interchannel Phase Deviation  
Volume Control Step  
Volume Control Range  
De-emphasis Gain Error  
Output Resistance at Each Pin  
REFERENCE  
0.6  
100  
Ω
Internal Reference Voltage  
External Reference Voltage  
Common-Mode Reference Output  
FILTR pin  
FILTR pin  
CM pin  
1.50  
1.50  
1.50  
V
V
V
1.32  
1.68  
Specifications measured at a case temperature of 130°C.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ANALOG-TO-DIGITAL CONVERTERS  
ADC Resolution  
All ADCs  
24  
Bits  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
95  
97  
102  
105  
−96  
1.9  
dB  
dB  
dB  
V rms  
%
With A-Weighted Filter (RMS)  
Total Harmonic Distortion + Noise  
Full-Scale Input Voltage (Differential)  
Gain Error  
−1 dBFS  
−87  
−10  
+10  
Interchannel Gain Mismatch  
Offset Error  
−0.25  
−10  
+0.25  
+10  
dB  
mV  
0
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
98  
100  
104  
106  
108  
dB  
dB  
dB  
With A-Weighted Filter (RMS)  
With A-Weighted Filter (Average)  
Total Harmonic Distortion + Noise  
Single-Ended Version  
0 dBFS  
Two channels running  
Eight channels running  
−92  
−86  
dB  
dB  
−70  
Full-Scale Output Voltage  
Gain Error  
Interchannel Gain Mismatch  
Offset Error  
0.8775 (2.482)  
V rms (V p-p)  
%
dB  
mV  
−10  
−0.2  
−25  
−30  
+10  
+0.2  
+25  
+30  
−4  
Gain Drift  
ppm/°C  
REFERENCE  
Internal Reference Voltage  
External Reference Voltage  
Common-Mode Reference Output  
FILTR pin  
FILTR pin  
CM pin  
1.50  
1.50  
1.50  
V
V
V
1.32  
1.68  
Rev. 0 | Page 4 of 32  
 
AD1928  
CRYSTAL OSCILLATOR SPECIFICATIONS  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Transconductance  
3.5  
mmhos  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
−40°C < TA < +130°C, DVDD = 3.3 V 10ꢀ.  
Table 4.  
Parameter  
Conditions/Comments  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage (VIH)  
MCLKI/XI pin  
2.2  
V
Low Level Input Voltage (VIL)  
Input Leakage  
0.8  
10  
10  
V
IIH @ VIH = 2.4 V  
IIL @ VIL = 0.8 V  
IOH = 1 mA  
μA  
μA  
V
High Level Output Voltage (VOH  
)
DVDD − 0.60  
Low Level Output Voltage (VOL  
Input Capacitance  
)
IOL = 1 mA  
0.4  
5
V
pF  
POWER SUPPLY SPECIFICATIONS  
Table 5.  
Parameter  
SUPPLIES  
Voltage  
Conditions/Comments  
Min  
Typ  
Max  
Unit  
DVDD  
AVDD  
3.0  
3.0  
3.3  
3.3  
3.6  
3.6  
V
V
Digital Current  
Normal Operation  
Master clock = 256 fS  
fS = 48 kHz  
56  
65  
95  
2.0  
mA  
mA  
mA  
mA  
fS = 96 kHz  
fS = 192 kHz  
fS = 48 kHz to 192 kHz  
Power-Down  
Analog Current  
Normal Operation  
Power-Down  
74  
23  
mA  
mA  
DISSIPATION  
Normal Operation  
All Supplies  
Digital Supply  
Master clock = 256 fS, 48 kHz  
429  
185  
244  
83  
mW  
mW  
mW  
mW  
Analog Supply  
Power-Down, All Supplies  
POWER SUPPLY REJECTION RATIO  
Signal at Analog Supply Pins  
1 kHz, 200 mV p-p  
20 kHz, 200 mV p-p  
50  
50  
dB  
dB  
Rev. 0 | Page 5 of 32  
 
AD1928  
DIGITAL FILTERS  
Table 6.  
Parameter  
Mode  
Factor  
Min  
Typ  
Max  
Unit  
ADC DECIMATION FILTER  
Pass Band  
All modes, typ @ 48 kHz  
0.4375 fS  
21  
0.015  
kHz  
dB  
Pass-Band Ripple  
Transition Band  
Stop Band  
Stop-Band Attenuation  
Group Delay  
0.5 fS  
0.5625 fS  
24  
27  
kHz  
kHz  
dB  
79  
35  
22.9844/fS  
479  
22  
μs  
DAC INTERPOLATION FILTER  
Pass Band  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
0.4535 fS  
0.3646 fS  
0.3646 fS  
kHz  
kHz  
kHz  
dB  
dB  
dB  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
dB  
70  
Pass-Band Ripple  
Transition Band  
Stop Band  
0.01  
0.05  
0.1  
0.5 fS  
0.5 fS  
0.5 fS  
0.5465 fS  
0.6354 fS  
0.6354 fS  
24  
48  
96  
26  
61  
122  
Stop-Band Attenuation  
Group Delay  
70  
70  
70  
dB  
dB  
μs  
μs  
25/fS  
11/fS  
8/fS  
521  
115  
42  
μs  
TIMING SPECIFICATIONS  
−40°C < TA < +130°C, DVDD = 3.3 V 10ꢀ.  
Table 7.  
Parameter  
Condition  
Comments  
Min  
Max  
Unit  
INPUT MASTER CLOCK (MCLK) AND  
RESET  
tMH  
MCLK duty cycle  
MCLK frequency  
DAC/ADC clock source = PLL clock @ 256 fS,  
384 fS, 512 fS, and 768 fS  
DAC/ADC clock source = direct MCLK @ 512 fS  
(bypass on-chip PLL)  
PLL mode, 256 fS reference  
Direct 512 fS mode  
40  
40  
6.9  
60  
60  
%
%
fMCLK  
13.8  
27.6  
MHz  
MHz  
ns  
tPDR  
RST low  
15  
tPDRR  
RST recovery  
Reset to active output  
4096  
tMCLK  
PLL  
Lock Time  
MCLK and LR  
clock input  
MCLKO/XO pin  
10  
60  
ms  
%
256 fS VCO Clock Output Duty Cycle  
40  
Rev. 0 | Page 6 of 32  
 
AD1928  
Parameter  
Condition  
Comments  
Min  
Max  
Unit  
SPI PORT  
See Figure 11, except where otherwise noted  
tCCH  
tCCL  
fCCLK  
tCDS  
tCDH  
tCLS  
CCLK high  
CCLK low  
CCLK frequency  
CIN setup  
CIN hold  
CLATCH setup  
CLATCH hold  
CLATCH high  
COUT enable  
COUT delay  
COUT hold  
COUT tristate  
35  
35  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fCCLK = 1/tCCP, only tCCP shown in Figure 11  
To CCLK rising  
From CCLK rising  
10  
10  
10  
10  
10  
10  
To CCLK rising  
tCLH  
From CCLK falling  
tCLHIGH  
Not shown in Figure 11  
From CCLK falling  
From CCLK falling  
From CCLK falling, not shown in Figure 11  
From CCLK falling  
tCOE  
tCOD  
tCOH  
tCOTS  
30  
30  
30  
30  
DAC SERIAL PORT  
See Figure 24  
tDBH  
tDBL  
tDLS  
tDLH  
tDLSKEW  
tDDS  
tDDH  
DBCLK high  
DBCLK low  
Slave mode  
Slave mode  
To DBCLK rising, slave mode  
From DBCLK rising, slave mode  
From DBCLK falling, master mode  
To DBCLK rising  
10  
10  
10  
5
−8  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLRCLK setup  
DLRCLK hold  
DLRCLK skew  
DSDATA setup  
DSDATA hold  
+8  
From DBCLK rising  
ADC SERIAL PORT  
See Figure 25  
tABH  
tABL  
tALS  
tALH  
tALSKEW  
tABDD  
ABCLK high  
ABCLK low  
ALRCLK setup  
ALRCLK hold  
ALRCLK skew  
ASDATA delay  
Slave mode  
Slave mode  
To ABCLK rising, slave mode  
From ABCLK rising, slave mode  
From ABCLK falling, master mode  
From ABCLK falling  
10  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
−8  
+8  
18  
AUXILIARY INTERFACE  
tAXDS  
tAXDH  
tDXDD  
tXBH  
tXBL  
tDLS  
AAUXDATA setup  
AAUXDATA hold  
DAUXDATA delay  
AUXBCLK high  
AUXBCLK low  
To AUXBCLK rising  
From AUXBCLK rising  
From AUXBCLK falling  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
18  
10  
10  
10  
5
AUXLRCLK setup  
AUXLRCLK hold  
To AUXBCLK rising  
From AUXBCLK rising  
tDLH  
Rev. 0 | Page 7 of 32  
AD1928  
ABSOLUTE MAXIMUM RATINGS  
Table 8.  
Parameter  
THERMAL RESISTANCE  
Rating  
θJA represents thermal resistance, junction-to-ambient;  
θJC represents the thermal resistance, junction-to-case. All  
characteristics are for a 4-layer board.  
Analog (AVDD)  
Digital (DVDD)  
Input Current (Except Supply Pins)  
Analog Input Voltage (Signal Pins)  
Digital Input Voltage (Signal Pins)  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
20 mA  
–0.3 V to AVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
Table 9. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
Operating Temperature Range (Case) −40°C to +125°C  
Storage Temperature Range −65°C to +150°C  
48-Lead LQFP  
50.1  
17  
°C/W  
ESD CAUTION  
Stresses above those listed under the Absolute Maximum  
Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 8 of 32  
 
AD1928  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AGND  
MCLKI/XI  
MCLKO/XO  
AGND  
AGND  
FILTR  
AGND  
AVDD  
AGND  
OR2  
3
4
5
AVDD  
AD1928  
6
OL3  
TOP VIEW  
(Not to Scale)  
7
OR3  
OL2  
SINGLE-ENDED  
OUTPUT  
8
OL4  
OR1  
9
OR4  
OL1  
10  
11  
12  
PD/RST  
DSDATA4  
DGND  
CLATCH  
CCLK  
DGND  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
Figure 2. Pin Configuration, 48-Lead LQFP  
Table 10. Pin Function Descriptions  
Pin No.  
Input/Output Mnemonic  
Description  
1
I
AGND  
Analog Ground.  
2
3
4
I
O
I
MCLKI/XI  
MCLKO/XO  
AGND  
Master Clock Input/Crystal Oscillator Input.  
Master Clock Output/Crystal Oscillator Output.  
Analog Ground.  
5
6
7
8
I
AVDD  
OL3  
OR3  
OL4  
Analog Power Supply. Connect to analog 3.3 V supply.  
DAC Left 3 Output.  
DAC Right 3Output.  
DAC Left 4 Output.  
DAC Right 4 Output.  
O
O
O
O
I
9
OR4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
PD/RST  
DSDATA4  
DGND  
Power-Down Reset (Active Low).  
I/O  
I
I
DAC Input 4 (Input to DAC L4 and R4)/DAC TDM Data Output 2/AUX ADC 1 Data Input.  
Digital Ground.  
Digital Power Supply. Connect to digital 3.3 V supply.  
DAC Input 3 (Input to DAC L3 and R3)/DAC TDM Data Input 2/AUX DAC 2 Data Output.  
DAC Input 2 (Input to DAC L2 and R2)/DAC TDM Data Output 1/AUX ADC 1 Data Input.  
DAC Input 1 (Input to DAC L1 and R1)/DAC TDM Data Input 1/AUX ADC 2 Data Input.  
Bit Clock for DACs.  
LR Clock for DACs.  
DVDD  
I/O  
I/O  
I
I/O  
I/O  
I/O  
O
I/O  
I/O  
I
DSDATA3  
DSDATA2  
DSDATA1  
DBCLK  
DLRCLK  
ASDATA1  
ADCTDMOUT  
ABCLK  
ALRCLK  
CIN  
ADC Serial Data Output 1 (ADC L1 and R1)/ADC TDM Data Input/AUX DAC 1 Data Output.  
ADC TDM Data Output.  
Bit Clock for ADCs.  
LR Clock for ADCs.  
Control Data Input (SPI).  
Control Data Output (SPI).  
Digital Ground.  
Control Clock Input (SPI).  
Latch Input for Control Data (SPI).  
I/O  
I
I
COUT  
DGND  
CCLK  
CLATCH  
I
Rev. 0 | Page 9 of 32  
 
AD1928  
Pin No.  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39 to 42  
43  
44  
45  
46  
47  
Input/Output Mnemonic  
Description  
O
O
O
O
I
I
I
O
I
I
OL1  
OR1  
OL2  
OR2  
AGND  
AVDD  
AGND  
FILTR  
AGND  
AVDD  
CM  
DAC Left 1 Output.  
DAC Right 1 Output.  
DAC Left 2 Output.  
DAC Right 2 Output.  
Analog Ground.  
Analog Power Supply. Connect to analog 3.3 V supply.  
Analog Ground.  
Voltage Reference Filter Capacitor Connection. Bypass with 10 μF||100 nF to AGND.  
Analog Ground.  
Analog Power Supply. Connect to analog 3.3 V supply.  
Common-Mode Reference Filter Capacitor Connection. Bypass with 47 μF||100 nF to AGND.  
No Connect. Must be tied to common mode, Pin 38. Alternately, ac-coupled to ground.  
ADC Left 1 Positive Input.  
ADC Left 1 Negative Input.  
ADC Right 1 Positive Input.  
ADC Right 1 Negative Input.  
PLL Loop Filter. Return to AVDD.  
O
I
NC  
I
I
I
I
O
I
ADC1LP  
ADC1LN  
ADC1RP  
ADC1RN  
LF  
48  
AVDD  
Analog Power Supply. Connect to analog 3.3 V supply.  
Rev. 0 | Page 10 of 32  
AD1928  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.10  
0
0.08  
0.06  
0.04  
–50  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–100  
–150  
0
12  
24  
36  
48  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 3. ADC Pass-Band Filter Response, 48 kHz  
Figure 6. DAC Stop-Band Filter Response, 48 kHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.10  
0.05  
0
–0.05  
–0.10  
0
5000 10000 15000 20000 25000 30000 35000 40000  
FREQUENCY (Hz)  
0
24  
48  
72  
96  
FREQUENCY (kHz)  
Figure 4. ADC Stop-Band Filter Response, 48 kHz  
Figure 7. DAC Pass-Band Filter Response, 96 kHz  
0.06  
0.04  
0.02  
0
0
–50  
–0.02  
–0.04  
–0.06  
–100  
–150  
0
24  
48  
72  
96  
0
8
16  
FREQUENCY (kHz)  
24  
FREQUENCY (kHz)  
Figure 8. DAC Stop-Band Filter Response, 96 kHz  
Figure 5. DAC Pass-Band Filter Response, 48 kHz  
Rev. 0 | Page 11 of 32  
 
AD1928  
0.5  
0.4  
0
–2  
0.3  
0.2  
0.1  
–4  
0
–0.1  
–0.2  
–0.3  
–0.4  
–6  
–8  
–10  
48  
–0.5  
0
64  
80  
96  
8
16  
32  
64  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 10. DAC Stop-Band Filter Response, 192 kHz  
Figure 9. DAC Pass-Band Filter Response, 192 kHz  
Rev. 0 | Page 12 of 32  
AD1928  
THEORY OF OPERATION  
The voltage at CM, the common-mode reference pin, can be  
used to bias the external op amps that buffer the output signals  
(see the Power Supply and Voltage Reference section).  
ANALOG-TO-DIGITAL CONVERTERS (ADCS)  
There are two analog-to-digital converter (ADC) channels in  
the AD1928, configured as a stereo pair with differential inputs.  
The ADCs can operate at a nominal sample rate of 48 kHz,  
96 kHz, or 192 kHz. The ADCs include on-board digital  
antialiasing filters with 79 dB stop-band attenuation and linear  
phase response, operating at an oversampling ratio of 128  
(48 kHz, 96 kHz, and 192 kHz modes). Digital outputs are  
supplied through two serial data output pins (one for each  
stereo pair) and a common frame clock (ALRCLK) and bit  
clock (ABCLK). Alternatively, one of the TDM modes can be  
used to access up to 14 channels on a single TDM data line.  
CLOCK SIGNALS  
The on-chip phase-locked loop (PLL) can be selected to  
reference the input sample rate from either of the LRCLK pins  
or 256, 384, 512, or 768 times the sample rate, referenced to the  
48 kHz mode from the MCLKI/XI pin. The default at power-up  
is 256 × fS from MCLKI/XI. In 96 kHz mode, the master clock  
frequency stays at the same absolute frequency; therefore, the  
actual multiplication rate is divided by 2. In 192 kHz mode,  
the actual multiplication rate is divided by 4. For example, if the  
AD1928 is programmed in 256 × fS mode, the frequency of the  
master clock input is 256 × 48 kHz = 12.288 MHz. If the AD1928  
is then switched to 96 kHz operation (by writing to the SPI or  
I2C port), the frequency of the master clock should remain at  
12.288 MHz, which, under these conditions, is 128 × fS. In 192 kHz  
mode, this becomes 64 × fS.  
The ADCs must be driven from a differential signal source for  
best performance. The input pins of the ADCs connect to internal  
switched capacitors. To isolate the external driving op amp from  
the glitches caused by the internal switched capacitors, each  
input pin should be isolated by using a series-connected, exter-  
nal, 100 Ω resistor together with a 1 nF capacitor connected  
from each input to ground. This capacitor must be of high quality,  
for example, ceramic NPO or polypropylene film.  
The internal clock for the ADCs is 256 × fS for all clock modes.  
The internal clock for the DACs varies by mode: 512 × fS (48 kHz  
mode), 256 × fS (96 kHz mode), or 128 × fS (192 kHz mode). By  
default, the on-board PLL generates this internal master clock  
from an external clock. A direct 512 × fS (referenced to 48 kHz  
mode) master clock can be used for either the ADCs or DACs if  
selected in the PLL and Clock Control 1 register.  
The differential inputs have a nominal common-mode voltage  
of 1.5 V. The voltage at the common-mode reference pin (CM)  
can be used to bias external op amps to buffer the input signals  
(see the Power Supply and Voltage Reference section). The  
inputs can also be ac-coupled and do not need an external dc  
bias to CM.  
Note that it is not possible to use a direct clock for the ADCs set  
to the 192 kHz mode. It is required that the on-chip PLL be  
used in this mode.  
A digital high-pass filter can be switched in line with the ADCs  
under serial control to remove residual dc offsets. It has a  
1.4 Hz, 6 dB per octave cutoff at a 48 kHz sample rate. The  
cutoff frequency scales directly with sample frequency.  
The PLL can be powered down in the PLL and Clock Control 0  
register. To ensure reliable locking when changing PLL modes,  
or if the reference clock is unstable at power-on, power down  
the PLL and then power it back up when the reference clock has  
stabilized.  
DIGITAL-TO-ANALOG CONVERTERS (DACS)  
The AD1928 digital-to-analog converter (DAC) channels are  
arranged as four single-ended stereo pairs, providing eight  
analog outputs for minimum external components. The DACs  
include on-board digital reconstruction filters with 70 dB stop-  
band attenuation and linear phase response, operating at an  
oversampling ratio of 4 (48 kHz or 96 kHz modes) or 2 (192 kHz  
mode). Each channel has its own independently programmable  
attenuator, adjustable in 255 steps in 0.375 dB increments. Digital  
inputs are supplied through four serial data input pins (one for  
each stereo pair) and a common frame clock (DLRCLK) and bit  
clock (DBCLK). Alternatively, one of the TDM modes can be  
used to access up to 16 channels on a single TDM data line.  
The internal master clock (MCLK) can be disabled in the PLL  
and Clock Control 0 register to reduce power dissipation when  
the AD1928 is idle. The clock should be stable before it is  
enabled. Unless a standalone mode is selected (see the Serial  
Control Port section), the clock is disabled by reset and must be  
enabled by writing to the SPI or I2C port for normal operation.  
To maintain the highest performance possible, it is recommended  
that the clock jitter of the internal master clock signal be limited  
to less than 300 ps rms TIE (time interval error). Even at these  
levels, extra noise or tones can appear in the DAC outputs if the  
jitter spectrum contains large spectral peaks. If the internal PLL  
is not being used, it is best to use an independent crystal oscilla-  
tor to generate the master clock. In addition, it is especially  
important that the clock signal should not be passed through an  
FPGA, CPLD, or other large digital chip (such as a DSP) before  
being applied to the AD1928. In most cases, this induces clock  
jitter due to the sharing of common power and  
Each output pin has a nominal common-mode dc level of 1.5 V  
and swings 1.27 V for a 0 dBFS digital input signal. A single op  
amp, third-order, external, low-pass filter is recommended to  
remove high frequency noise present on the output pins. The  
use of op amps with low slew rate or low bandwidth can cause  
high frequency noise and tones to fold down into the audio  
band; therefore, exercise care in selecting these components.  
Rev. 0 | Page 13 of 32  
 
AD1928  
ground connections with other unrelated digital output signals.  
When the PLL is used, jitter in the reference clock is attenuated  
above a certain frequency depending on the loop filter.  
available for operation without serial control that is configured  
at reset using the serial control pins. All registers are set to  
default, except the internal master clock enable is set to 1  
and ADC BCLK and LRCLK master/slave is set by the COUT  
pin. Standalone mode only supports stereo mode with an I2S  
data format and 256 fS master clock rate. Refer to Table 11 for  
details. It is recommended to use a weak pull-up resistor on  
RESET AND POWER-DOWN  
RST  
The function of the  
their default settings. To avoid pops, reset does not power  
RST  
pin sets all the control registers to  
down the analog outputs. After  
is deasserted and the PLL  
CLATCH  
in applications that have a microcontroller. This pull-  
acquires lock condition, an initialization routine runs inside the  
AD1928. This initialization lasts for approximately 256 master  
clock cycles.  
up resistor ensures that the AD1928 recognizes the presence of  
a microcontroller.  
The SPI control port of the AD1928 is a 4-wire serial control  
port. The format is similar to the Motorola® SPI format, except  
the input data-word is 24 bits wide. The serial bit clock and  
latch can be completely asynchronous to the sample rate of the  
ADCs and DACs. Figure 11 shows the format of the SPI signal.  
The first byte is a global address with a read/write bit. For the  
The power-down bits in the PLL and Clock Control 0, DAC  
Control 1, and ADC Control 1 registers power down the  
respective sections. All other register settings are retained. The  
PD RST  
reset pin,  
/
, should be pulled low by an external resistor  
to guarantee proper startup.  
W
AD1928, the address is 0x04, shifted left 1 bit due to the R/  
SERIAL CONTROL PORT  
bit. The second byte is the AD1928 register address and the  
third byte is the data.  
The AD1928 has an SPI control port that permits programming  
and reading back of the internal control registers for the ADCs,  
DACs, and clock system. There is also a standalone mode  
Table 11. Standalone Mode Selection  
CLATCH  
ADC Clocks  
Slave  
Master  
CIN  
0
0
COUT  
CCLK  
0
1
0
0
0
0
tCLS  
tCLH  
tCCH tCCL  
tCCP  
CLATCH  
tCOTS  
CCLK  
tCDS tCDH  
CIN  
D23  
D22  
D9  
D8  
D8  
D0  
D0  
tCOE  
COUT  
D9  
tCOD  
Figure 11. Format of SPI Signal  
Rev. 0 | Page 14 of 32  
 
 
 
 
AD1928  
POWER SUPPLY AND VOLTAGE REFERENCE  
TIME-DIVISION MULTIPLEXED (TDM) MODES  
The AD1928 is designed for 3.3 V supplies. Separate power  
supply pins are provided for the analog and digital sections.  
These pins should be bypassed with 100 nF ceramic chip  
capacitors, as close to the pins as possible, to minimize noise  
pickup. A bulk aluminum electrolytic capacitor of at least 22 μF  
should also be provided on the same PC board as the codec. For  
critical applications, improved performance is obtained with  
separate supplies for the analog and digital sections. If this is  
not possible, it is recommended that the analog and digital  
supplies be isolated by means of a ferrite bead in series with  
each supply. It is important that the analog supply be as clean  
as possible.  
The AD1928 serial ports also have several different TDM serial  
data modes. The first and most commonly used configurations  
are shown in Figure 12 and Figure 13. In Figure 12, the ADC  
serial port outputs one data stream consisting of two on-chip  
ADCs and unused slots. In Figure 13, the eight on-chip DAC  
data slots are packed into one TDM stream. In this mode, both  
DBCLK and ABCLK are 256 fS.  
The input/output pins of the serial ports are defined according  
to the serial mode selected. For a detailed description of the  
function of each pin in TDM and auxilliary modes, see  
Table 12.  
The AD1928 allows systems with more than eight DAC channels  
to be easily configured by the use of an auxiliary serial data port.  
The DAC TDM-AUX mode is shown in Figure 14. In this mode,  
the AUX channels are the last four slots of the TDM data stream.  
These slots are extracted and output to the AUX serial port.  
Note that due to the high DBCLK frequency, this mode is available  
only in the 48 kHz/44.1 kHz/32 kHz sample rate.  
All digital inputs are compatible with TTL and CMOS levels.  
All outputs are driven from the 3.3 V DVDD supply and are  
compatible with TTL and 3.3 V CMOS levels.  
The ADC and DAC internal voltage reference (VREF) is brought  
out on FILTR and should be bypassed as close as possible to the  
chip, with a parallel combination of 10 μF and 100 nF. Any  
external current drawn should be limited to less than 50 μA.  
The AD1928 also allows system configurations with more than  
two ADC channels, as shown in Figure 15 and Figure 16, which  
show configurations using 6 ADCs and 14 ADCs, respectively.  
Again, due to the high ABCLK frequency, this mode is available  
only in the 48 kHz/44.1 kHz/32 kHz sample rate.  
The internal reference can be disabled in the PLL and Clock  
Control 1 register, and FILTR can be driven from an external  
source. This can be used to scale the DAC output to the clipping  
level of a power amplifier based on its power supply voltage.  
The ADC input gain varies by the inverse ratio. The total gain  
from ADC input to DAC output remains constant.  
Combining the AUX ADC and DAC modes results in a system  
configuration of 6 ADCs and 12 DACs. The system, then, con-  
sists of two external stereo ADCs, two external stereo DACs,  
and one AD1928. This mode is shown in Figure 17 (combined  
AUX DAC and ADC modes).  
The CM pin is the internal common-mode reference. It should  
be bypassed as close as possible to the chip, with a parallel  
combination of 47 μF and 100 nF. This voltage can be used to  
bias external op amps to the common-mode voltage of the input  
and output signal pins. The output current should be limited to  
less than 0.5 mA source and 2 mA sink.  
LRCLK  
256 BCLKs  
BCLK  
32 BCLKs  
SLOT 3 SLOT 4  
LEFT 1 RIGHT 1  
SERIAL DATA PORTS—DATA FORMAT  
SLOT 1 SLOT 2  
SLOT 5 SLOT 6 SLOT 7 SLOT 8  
DATA  
The eight DAC channels use a common serial bit clock (DBCLK)  
and a common left-right framing clock (DLRCLK) in the serial  
data port. The two ADC channels use a common serial bit clock  
(ABCLK) and left-right framing clock (ALRCLK) in the serial  
data port. The clock signals are all synchronous with the sample  
rate. The normal stereo serial modes are shown in Figure 23.  
LRCLK  
BCLK  
DATA  
MSB  
MSB – 1  
MSB – 2  
Figure 12. ADC TDM (6-Channel I2S Mode)  
The ADC and DAC serial data modes default to I2S. The ports  
can also be programmed for left-justified, right-justified, and  
TDM modes. The word width is 24 bits by default and can be  
programmed for 16 or 20 bits. The DAC serial formats are  
programmable according to DAC Control 0 register. The  
polarity of the DBCLK and DLRCLK is programmable according  
to the DAC Control 1 register. The ADC serial formats and  
serial clock polarity are programmable according to ADC  
Control 1 register. Both DAC and ADC serial ports are  
programmable to become the bus masters according to the  
DAC Control 1 register and the ADC Control 2 register. By  
default, both ADC and DAC serial ports are in slave mode.  
LRCLK  
BCLK  
256 BCLKs  
32 BCLKs  
SLOT 1 SLOT 2 SLOT 3 SLOT 4 SLOT 5 SLOT 6 SLOT 7 SLOT 8  
LEFT 1 RIGHT 1 LEFT 2 RIGHT 2 LEFT 3 RIGHT 3 LEFT 4 RIGHT 4  
DATA  
LRCLK  
BCLK  
MSB  
MSB – 1  
MSB – 2  
DATA  
Figure 13. DAC TDM (8-Channel I2S Mode)  
Rev. 0 | Page 15 of 32  
 
 
 
 
AD1928  
Table 12. Pin Function Changes in TDM-AUX Mode  
Mnemonic  
ADCTDMOUT  
ASDATA1  
DSDATA1  
DSDATA2  
DSDATA3  
DSDATA4  
ALRCLK  
Stereo Modes  
TDM Modes  
AUX Modes  
NC  
ADC TDM Data Output  
ADC TDM Data Input  
DAC TDM Data Input  
DAC TDM Data Output  
DAC TDM Data Input 2 (Dual-Line Mode)  
DAC TDM Data Output 2 (Dual-Line Mode)  
ADC TDM Frame Sync Input/Output  
ADC TDM BCLK Input/Output  
DAC TDM Frame Sync Input/Output  
DAC TDM BCLK Input/Output  
TDM Data Output  
AUX Data Output 1 (to External DAC 1)  
TDM Data Input  
AUX Data Input 1 (from External ADC 1)  
AUX Data Input 2 (from External ADC 2)  
AUX Data Output 2 (to External DAC 2)  
TDM Frame Sync Input/Output  
TDM BCLK Input/Output  
ADC1 Data Output  
DAC1 Data Input  
DAC2 Data Input  
DAC3 Data Input  
DAC4 Data Input  
ADC LRCLK Input/Output  
ADC BCLK Input/Output  
DAC LRCLK Input/Output  
DAC BCLK Input/Output  
ABCLK  
DLRCLK  
DBCLK  
AUX LRCLK Input/Output  
AUX BCLK Input/Output  
ALRCLK  
ABCLK  
AUXILIARY DAC CHANNELS  
WILL APPEAR AT  
UNUSED SLOTS  
8 ON-CHIP DAC CHANNELS  
AUX DAC PORTS  
DSDATA1  
(TDM_IN)  
EMPTY EMPTY EMPTY EMPTY DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 AUX L1 AUX R1 AUX L2 AUX R2  
32 BITS  
MSB  
DLRCLK  
(AUX PORT)  
LEFT  
RIGHT  
DBCLK  
(AUX PORT)  
ASDATA1  
MSB  
MSB  
MSB  
(AUX1_OUT)  
DSDATA4  
(AUX2_OUT)  
MSB  
Figure 14. 16-Channel DAC TDM-AUX Mode  
Rev. 0 | Page 16 of 32  
 
 
AD1928  
ALRCLK  
ABCLK  
8 ON-CHIP DAC CHANNELS  
DSDATA1  
(TDM_IN)  
DAC L1  
DAC R1  
DAC L2  
DAC R2  
DAC L3  
DAC R3  
DAC L4  
DAC R4  
AUX R2  
2 ON-CHIP ADC CHANNELS  
UNUSED ADC L1  
4-AUX ADC CHANNELS  
AUX R1 AUX L2  
ADCTDMOUT  
(TDM_OUT)  
UNUSED  
ADC R1  
AUX L1  
32 BITS  
MSB  
DLRCLK  
(AUX PORT)  
LEFT  
RIGHT  
DBCLK  
(AUX PORT)  
DSDATA2  
(AUX1_IN)  
MSB  
MSB  
MSB  
DSDATA3  
(AUX2_IN)  
MSB  
Figure 15. 6-Channel AUX ADC Mode  
ALRCLK  
ABCLK  
2 ON-CHIP ADC CHANNELS  
AUXILIARY ADC CHANNELS  
UNUSED SLOTS  
ADCTDMOUT  
(TDM_OUT)  
UNUSED UNUSED ADC L1 ADC R1 AUX L1 AUX R1 AUX L2 AUX R2 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED  
32 BITS  
MSB  
DLRCLK  
(AUX PORT)  
LEFT  
RIGHT  
DBCLK  
(AUX PORT)  
DSDATA2  
(AUX1_IN)  
MSB  
MSB  
MSB  
DSDATA3  
(AUX2_IN)  
MSB  
Figure 16. 14-Channel AUX ADC Mode  
Rev. 0 | Page 17 of 32  
 
 
AD1928  
ALRCLK  
ABCLK  
AUXILIARY DAC CHANNELS  
WILL APPEAR AT  
UNUSED SLOTS  
8 ON-CHIP DAC CHANNELS  
AUX DAC PORTS  
DSDATA1  
(TDM_IN)  
EMPTY EMPTY EMPTY EMPTY DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 AUX L1 AUX R1 AUX L2 AUX R2  
2 ON-CHIP ADC CHANNELS  
AUXILIARY ADC CHANNELS  
UNUSED SLOTS  
ADCTDMOUT  
(TDM_OUT)  
UNUSED UNUSED ADC L1 ADC R1 AUX L1 AUX R1 AUX L2 AUX R2 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED  
DLRCLK  
(AUX PORT)  
LEFT  
RIGHT  
DBCLK  
(AUX PORT)  
DSDATA2  
(AUX1_IN)  
MSB  
MSB  
MSB  
MSB  
MSB  
DSDATA3  
(AUX2_IN)  
MSB  
MSB  
MSB  
ASDATA1  
(AUX1_OUT)  
DSDATA4  
(AUX2_OUT)  
Figure 17. Combined AUX DAC and ADC Mode  
Rev. 0 | Page 18 of 32  
 
AD1928  
There are two configurations for the ADC port to work in  
DAISY-CHAIN MODE  
daisy-chain mode. The first one is with an ABCLK at 256 fS,  
shown in Figure 21. The second configuration is shown in  
Figure 22. Note that in the 512 fS ABCLK mode, the ADC  
channels occupy the first eight slots; the second eight slots are  
empty. The TDM_IN of the first AD1928 must be grounded in  
all modes of operation.  
The AD1928 also allows a daisy-chain configuration to expand  
the system to 4 ADCs and 16 DACs (see Figure 18). In this mode,  
the DBCLK frequency is 512 fS. The first eight slots of the DAC  
TDM data stream belong to the first AD1928 in the chain and  
the last eight slots belong to the second AD1928. The second  
AD1928 is the device attached to the DSP TDM port.  
The input/output pins of the serial ports are defined according  
to the serial mode selected. See Table 13 for a detailed  
description of the function of each pin. See Figure 26 for a  
typical AD1928 configuration with two external stereo DACs  
and two external stereo ADCs.  
To accommodate 16 channels at a 96 kHz sample rate, the  
AD1928 can be configured into a dual-line TDM mode, as  
shown in Figure 19. This mode allows a slower DBCLK than  
normally required by the one-line TDM mode.  
Again, the first four channels of each TDM input belong to the  
first AD1928 in the chain and the last four channels belong to  
the second AD1928.  
Figure 23 through Figure 25 show the serial mode formats. For  
maximum flexibility, the polarity of LRCLK and BCLK are  
programmable. In these figures, all of the clocks are shown with  
their normal polarity. The default mode is I2S.  
The dual-line TDM mode can also be used to send data at a  
192 kHz sample rate into the AD1928, as shown in Figure 20.  
DLRCLK  
DBCLK  
8 DAC CHANNELS OF THE FIRST IC IN THE CHAIN  
DSDATA1 (TDM_IN)  
OF THE SECOND AD1928  
8 DAC CHANNELS OF THE SECOND IC IN THE CHAIN  
DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4  
DSDATA2 (TDM_OUT)  
OF THE SECOND AD1928  
THIS IS THE TDM  
DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4  
TO THE FIRST AD1928  
8 UNUSED SLOTS  
32 BITS  
FIRST  
AD1928  
SECOND  
AD1928  
DSP  
MSB  
Figure 18. Single-Line DAC TDM Daisy-Chain Mode (Applicable to 48 kHz Sample Rate, 16-Channel, Two-AD1928 Daisy Chain)  
Rev. 0 | Page 19 of 32  
 
 
AD1928  
DLRCLK  
DBCLK  
8 DAC CHANNELS OF THE FIRST IC IN THE CHAIN  
8 DAC CHANNELS OF THE SECOND IC IN THE CHAIN  
DSDATA1  
(IN)  
DAC L1  
DAC R1  
DAC L2  
DAC R2  
DAC L1  
DAC L1  
DAC L3  
DAC L3  
DAC R1  
DAC R1  
DAC R3  
DAC R3  
DAC L2  
DAC L2  
DAC L4  
DAC L4  
DAC R2  
DAC R2  
DAC R4  
DAC R4  
DSDATA2  
(OUT)  
DSDATA3  
(IN)  
DAC L3  
DAC R3  
DAC L4  
DAC R4  
DSDATA4  
(OUT)  
32 BITS  
MSB  
FIRST  
AD1928  
SECOND  
AD1928  
DSP  
Figure 19. Dual-Line DAC TDM Mode (Applicable to 96 kHz Sample Rate, 16-Channel, Two-AD1928 Daisy Chain, DSDATA3 and DSDATA4 are the Daisy Chain)  
DLRCLK  
DBCLK  
DSDATA1  
DSDATA2  
DAC L1  
DAC L3  
DAC R1  
DAC R3  
DAC L2  
DAC L4  
DAC R2  
DAC R4  
32 BITS  
MSB  
Figure 20. Dual-Line DAC TDM Mode (Applicable to 192 kHz Sample Rate, 8-Channel Mode)  
ALRCLK  
ABCLK  
2 ADC CHANNELS OF SECOND IC IN THE CHAIN  
2 ADC CHANNELS OF FIRST IC IN THE CHAIN  
UNUSED UNUSED ADC L1 ADC R1  
ADCTDMOUT (TDM_OUT  
OF THE SECOND AD1928  
IN THE CHAIN)  
UNUSED  
UNUSED  
ADC L1  
ADC R1  
ASDATA1 (TDM_IN  
OF THE SECOND AD1928  
IN THE CHAIN)  
UNUSED  
UNUSED  
ADC L1  
ADC R1  
32 BITS  
FIRST  
AD1928  
SECOND  
AD1928  
DSP  
MSB  
Figure 21. ADC TDM Daisy-Chain Mode (256 fS BCLK, Two-AD1928 Daisy Chain)  
Rev. 0 | Page 20 of 32  
 
 
 
AD1928  
ALRCLK  
ABCLK  
2 ADC CHANNELS OF  
SECOND IC IN THE CHAIN  
2 ADC CHANNELS OF  
FIRST IC IN THE CHAIN  
ADCTDMOUT (TDM_OUT  
OF THE SECOND AD1928  
IN THE CHAIN)  
UNUSED UNUSED ADC L1 ADC R1 UNUSED UNUSED ADC L1 ADC R1  
ASDATA1 (TDM_IN  
OF THE SECOND AD1928  
IN THE CHAIN)  
UNUSED UNUSED ADC L1 ADC R1  
32 BITS  
FIRST  
AD1928  
SECOND  
DSP  
AD1928  
MSB  
Figure 22. ADC TDM Daisy-Chain Mode (512 fS BCLK, Two-AD1928 Daisy Chain)  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
LEFT-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL  
LEFT CHANNEL  
LRCLK  
RIGHT CHANNEL  
BCLK  
MSB  
I S-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL  
LSB  
SDATA  
MSB  
LSB  
2
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
RIGHT-JUSTIFIED MODE—SELECT NUMBER OF BITS PER CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
DSP MODE—16 BITS TO 24 BITS PER CHANNEL  
1/fS  
NOTES  
1. DSP MODE DOES NOT IDENTIFY CHANNEL.  
2. LRCLK NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH, IS 2 × fS  
.
3. BCLK FREQUENCY IS NORMALLY 64 × LRCLK BUT MAY BE OPERATED IN BURST MODE.  
Figure 23. Stereo Serial Modes  
Rev. 0 | Page 21 of 32  
 
 
 
AD1928  
tDBH  
tDBP  
DBCLK  
tDBL  
tDLS  
tDLH  
DLRCLK  
tDLSKEW  
tDDS  
DSDATA  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB – 1  
tDDH  
tDDS  
MSB  
DSDATAx  
I S-JUSTIFIED  
2
MODE  
tDDH  
tDDS  
MSB  
tDDS  
LSB  
DSDATAx  
RIGHT-JUSTIFIED  
MODE  
tDDH  
tDDH  
Figure 24. DAC Serial Timing  
tABH  
ABCLK  
tABL  
tALS  
tALH  
ALRCLK  
tALSKEW  
tABDD  
ASDATA  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB – 1  
tABDD  
ASDATA  
I S-JUSTIFIED  
2
MSB  
MODE  
tABDD  
ASDATA  
RIGHT-JUSTIFIED  
MODE  
MSB  
LSB  
Figure 25. ADC Serial Timing  
Rev. 0 | Page 22 of 32  
 
 
 
AD1928  
Table 13. Pin Function Changes in TDM-AUX Mode (Replication of Table 12)  
Mnemonic  
ADCTDMOUT  
ASDATA1  
DSDATA1  
DSDATA2  
DSDATA3  
DSDATA4  
ALRCLK  
Stereo Modes  
TDM Modes  
AUX Modes  
NC  
ADC TDM Data Output  
ADC TDM Data Input  
DAC TDM Data Input  
DAC TDM Data Output  
DAC TDM Data Input 2 (Dual-Line Mode)  
DAC TDM Data Output 2 (Dual-Line Mode)  
ADC TDM Frame Sync Input/Output  
ADC TDM BCLK Input/Output  
DAC TDM Frame Sync Input/Output  
DAC TDM BCLK Input/Output  
TDM Data Output  
AUX Data Output 1 (to External DAC 1)  
TDM Data Input  
AUX Data Input 1 (from External ADC 1)  
AUX Data Input 2 (from External ADC 2)  
AUX Data Output 2 (to External. DAC 2)  
TDM Frame Sync Input/Output  
TDM BCLK Input/Output  
ADC1 Data Output  
DAC1 Data Input  
DAC2 Data Input  
DAC3 Data Input  
DAC4 Data Input  
ADC LRCLK Input/Output  
ADC BCLK Input/Output  
DAC LRCLK Input/Output  
DAC BCLK Input/Output  
ABCLK  
DLRCLK  
DBCLK  
AUX LRCLK Input/Output  
AUX BCLK Input/Output  
SHARC IS RUNNING IN SLAVE MODE  
(INTERRUPT-DRIVEN)  
30MHz  
SHARC  
12.288MHz  
LRCLK  
BCLK  
LRCLK  
BCLK  
AUX  
ADC 1  
AUX  
DAC 1  
DATA  
MCLK  
DATA  
MCLK  
ADCTDMOUT ALRCLK ABCLK DSDATA1  
DBCLK  
DLRCLK  
AD1928  
LRCLK  
BCLK  
LRCLK  
BCLK  
ASDATA1  
DSDATA4  
DSDATA2  
DSDATA3  
MCLKI/XI  
TDM MASTER  
AUX MASTER  
AUX  
ADC 2  
AUX  
DATA DAC 2  
DATA  
MCLK  
MCLK  
Figure 26. Example of AUX Mode Connection to SHARC® (AD1928 as TDM Master/AUX Master Shown)  
Rev. 0 | Page 23 of 32  
 
 
AD1928  
CONTROL REGISTERS  
DEFINITIONS  
2
W
The format is the same for I C and SPI ports. The global address for the AD1928 is 0x04, shifted left one bit due to the R/ bit. All  
registers are reset to 0, except for the DAC volume registers that are set to full volume. Note that the first setting in each control register  
parameter is the default setting.  
Table 14. Register Format  
Global Address  
R/W  
Register Address  
Data  
23:17  
16  
15:8  
7:0  
Bit  
Table 15. Register Addresses and Functions  
Address  
Function  
0
1
2
PLL and Clock Control 0  
PLL and Clock Control 1  
DAC Control 0  
3
DAC Control 1  
4
DAC Control 2  
5
6
7
8
DAC individual channel mutes  
DAC 1L volume control  
DAC 1R volume control  
DAC 2L volume control  
DAC 2R volume control  
DAC 3L volume control  
DAC 3R volume control  
DAC 4L volume control  
DAC 4R volume control  
ADC Control 0  
9
10  
11  
12  
13  
14  
15  
16  
ADC Control 1  
ADC Control 2  
PLL AND CLOCK CONTROL REGISTERS  
Table 16. PLL and Clock Control 0 Register  
Bit  
Value  
Function  
Description  
0
0
1
Normal operation  
Power-down  
PLL power-down  
2:1  
4:3  
6:5  
7
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0
Input 256 (×44.1 kHz or 48 kHz)  
Input 384 (×44.1 kHz or 48 kHz)  
Input 512 (×44.1 kHz or 48 kHz)  
Input 768 (×44.1 kHz or 48 kHz)  
XTAL oscillator enabled  
256 × fS VCO output  
512 × fS VCO output  
Off  
MCLKI/XI pin functionality (PLL active), master clock rate setting  
MCLKO/XO pin, master clock rate setting  
PLL input  
MCLKI/XI  
DLRCLK  
ALRCLK  
Reserved  
Disable: ADC and DAC idle  
Enable: ADC and DAC active  
Internal master clock enable  
1
Rev. 0 | Page 24 of 32  
 
AD1928  
Table 17. PLL and Clock Control 1 Register  
Bit  
Value  
Function  
PLL clock  
MCLK  
Description  
0
0
1
DAC clock source select  
1
0
1
PLL clock  
MCLK  
ADC clock source select  
2
0
1
Enabled  
Disabled  
Not locked  
Locked  
On-chip voltage reference  
PLL lock indicator (read only)  
3
0
1
7:4  
0000  
Reserved  
DAC CONTROL REGISTERS  
Table 18. DAC Control 0 Register  
Bit  
Value  
Function  
Description  
0
0
Normal operation  
Power-down  
1
Power-down  
2:1  
5:3  
00  
01  
10  
11  
32 kHz/44.1 kHz/48 kHz  
64 kHz/88.2 kHz/96 kHz  
128 kHz/176.4 kHz/192 kHz  
Reserved  
Sample rates  
000  
001  
010  
011  
100  
101  
110  
111  
00  
1
0
8
12  
16  
Reserved  
Reserved  
Reserved  
SDATA delay (BCLK periods)  
7:6  
Stereo (normal)  
Serial format  
01  
10  
11  
TDM (daisy chain)  
DAC AUX mode (ADC-, DAC-, TDM-coupled)  
Dual-line TDM  
Table 19. DAC Control 1 Register  
Bit  
Value  
Function  
Description  
0
0
1
Latch in midcycle (normal)  
Latch in at end of cycle (pipeline)  
64 (2 channels)  
128 (4 channels)  
256 (8 channels)  
512 (16 channels)  
Left low  
BCLK active edge (TDM in)  
2:1  
00  
01  
10  
11  
0
BCLKs per frame  
3
4
5
6
7
LRCLK polarity  
LRCLK master/slave  
BCLK master/slave  
BCLK source  
1
Left high  
0
1
Slave  
Master  
0
1
Slave  
Master  
0
1
DBCLK pin  
Internally generated  
Normal  
0
BCLK polarity  
1
Inverted  
Rev. 0 | Page 25 of 32  
 
AD1928  
Table 20. DAC Control 2 Register  
Bit  
Value  
Function  
Unmute  
Mute  
Description  
0
0
1
Master mute  
2:1  
4:3  
00  
01  
10  
11  
00  
01  
10  
11  
0
Flat  
De-emphasis (32 kHz/44.1 kHz/48 kHz mode only)  
48 kHz curve  
44.1 kHz curve  
32 kHz curve  
24  
20  
Reserved  
16  
Word width  
5
Noninverted  
Inverted  
Reserved  
DAC output polarity  
1
7:6  
00  
Table 21. DAC Individual Channel Mutes  
Bit  
Value  
Function  
Unmute  
Mute  
Description  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DAC 1L mute  
1
2
3
4
5
6
7
Unmute  
Mute  
DAC 1R mute  
DAC 2L mute  
DAC 2R mute  
DAC 3L mute  
DAC 3R mute  
DAC 4L mute  
DAC 4R mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Table 22. DAC Volume Controls  
Bit  
Value  
Function  
Description  
7:0  
0
No attenuation  
DAC volume control  
1 to 254 −3/8 dB per step  
255 Full attenuation  
Rev. 0 | Page 26 of 32  
AD1928  
ADC CONTROL REGISTERS  
Table 23. ADC Control 0 Register  
Bit  
Value  
Function  
Description  
0
0
1
Normal operation  
Power down  
Off  
Power-down  
1
0
High-pass filter  
1
On  
2
3
4
0
Reserved  
0
Reserved  
0
Unmute  
ADC 1L mute  
1
Mute  
5
0
Unmute  
ADC 1R mute  
1
Mute  
7:6  
00  
01  
10  
11  
32 kHz/44.1 kHz/48 kHz  
64 kHz/88.2 kHz/96 kHz  
128 kHz/176.4 kHz/192 kHz  
Reserved  
Output sample rate  
Table 24. ADC Control 1 Register  
Bit  
Value  
Function  
Description  
1:0  
00  
24  
Word width  
01  
20  
10  
Reserved  
11  
16  
4:2  
000  
001  
010  
011  
100  
101  
110  
111  
00  
1
0
8
12  
16  
Reserved  
Reserved  
Reserved  
SDATA delay (BCLK periods)  
6:5  
7
Stereo  
TDM (daisy chain)  
ADC AUX mode (ADC-, DAC-, TDM-coupled)  
Reserved  
Serial format  
01  
10  
11  
0
1
Latch in midcycle (normal)  
Latch in at end of cycle (pipeline)  
BCLK active edge (TDM in)  
Rev. 0 | Page 27 of 32  
 
AD1928  
Table 25. ADC Control 2 Register  
Bit  
Value  
Function  
Description  
0
0
50/50 (allows 32, 24, 20, 16 bit clocks (BCLKs) per LRCLK format  
channel  
1
Pulse (32 BCLKs per channel)  
1
0
Drive out on falling edge (DEF)  
BCLK polarity  
1
Drive out on rising edge  
2
0
1
Left low  
Left high  
Slave  
Master  
64  
128  
256  
512  
LRCLK polarity  
LRCLK master/slave  
BCLKs per frame  
3
0
1
5:4  
00  
01  
10  
11  
0
6
7
Slave  
BCLK master/slave  
BCLK source  
1
Master  
ABCLK pin  
Internally generated  
0
1
Rev. 0 | Page 28 of 32  
AD1928  
To relax the requirement for the setup time of the AD1928 in  
ADDITIONAL MODES  
cases of high speed TDM data transmission, the AD1928 can  
latch in the data using the falling edge of DBCLK. This  
effectively dedicates the entire BCLK period to the setup time.  
This mode is useful in cases where the source has a large delay  
time in the serial data driver. Figure 28 shows this pipeline  
mode of data transmission.  
The AD1928 offers several additional modes for board-level  
design enhancements. To reduce the EMI in board-level design,  
serial data can be transmitted without an explicit BCLK. See  
Figure 27 for an example of a DAC TDM data transmission  
mode that does not require high speed DBCLK. This configura-  
tion is applicable when the AD1928 master clock is generated  
by the PLL with the DLRCLK as the PLL reference frequency.  
Both the BCLK-less and pipeline modes are available on the  
ADC serial data port.  
DLRCLK  
32 BITS  
INTERNAL  
DBCLK  
DSDATAx  
DLRCLK  
INTERNAL  
DBCLK  
TDM-DSDATAx  
Figure 27. Serial DAC Data Transmission in TDM Format without DBCLK  
(Applicable only if PLL locks to DLRCLK. This mode is also available in the ADC serial data port.)  
DLRCLK  
DBCLK  
DATA MUST BE VALID  
AT THIS BCLK EDGE  
MSB  
DSDATAx  
Figure 28. I2S Pipeline Mode in DAC Serial Data Transmission  
(Applicable in stereo and TDM, useful for high frequency TDM transmission. This mode is also available in the ADC serial data port.)  
Rev. 0 | Page 29 of 32  
 
 
 
AD1928  
APPLICATION CIRCUITS  
PLL reference are shown in Figure 30. Output filters for the  
DAC outputs are shown in Figure 31 and Figure 32 for the  
noninverting and inverting cases.  
Typical applications circuits are shown in Figure 29 through  
Figure 32. Figure 29 shows a typical ADC input filter circuit.  
Recommended loop filters for LR clock and master clock as the  
120pF  
600Z  
5.76k  
5.76kΩ  
AUDIO  
INPUT  
2
3
240pF  
NPO  
100pF  
1
OP275  
+
3
+
DAC OUT  
4.7µF  
+
604  
1
AUDIO  
4.75k4.75kΩ  
OP275  
4.7µF  
+
OUTPUT  
2
5.76kΩ  
237Ω  
3.3nF  
NPO  
ADCxN  
4.99kΩ  
49.9kΩ  
1nF  
120pF  
NPO  
270pF  
NPO  
4.99kΩ  
100pF  
5.76kΩ  
1nF  
6
5
NPO  
237Ω  
4.7µF  
+
7
OP275  
+
ADCxP  
Figure 29. Typical ADC Input Filter Circuit  
Figure 31. Typical DAC Output Filter Circuit (Single-Ended, Noninverting)  
LRCLK  
39nF  
MCLK  
5.6nF  
LF  
LF  
68pF  
11k  
NPO  
+
2
3
DAC  
OUT  
2.2nF  
390pF  
4.7µF  
+
2.2nF  
NPO  
604Ω  
1
AUDIO  
OUTPUT  
11kΩ  
3.01kΩ  
CM  
OP275  
+
3.32k  
562Ω  
49.9kΩ  
AVDD2  
AVDD2  
270pF  
NPO  
0.1µF  
Figure 30. Recommended Loop Filters for LRCLK and MCLK PLL Reference  
Figure 32. Typical DAC Output Filter Circuit (Single-Ended, Inverting)  
Rev. 0 | Page 30 of 32  
 
 
 
AD1928  
OUTLINE DIMENSIONS  
9.20  
9.00 SQ  
8.80  
0.75  
0.60  
0.45  
1.60  
MAX  
37  
48  
36  
1
PIN 1  
7.20  
TOP VIEW  
(PINS DOWN)  
7.00 SQ  
6.80  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
25  
12  
0.15  
0.05  
13  
24  
SEATING  
PLANE  
0.08  
0.27  
0.22  
0.17  
VIEW A  
0.50  
BSC  
LEAD PITCH  
COPLANARITY  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BBC  
Figure 33. 48-Lead Low Profile Quad Flat Package [LQFP]  
(ST-48)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD1928YSTZ1, 2  
AD1928YSTZ-RL1, 2  
EVAL-AD1928EB  
EVAL-AD1928EBZ1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
48-Lead LQFP  
48-Lead LQFP, 13Reel  
Evaluation Board  
Evaluation Board  
Package Option  
ST-48  
ST-48  
1 Z = RoHS Compliant Part.  
2 Single-ended output; SPI control port.  
Rev. 0 | Page 31 of 32  
 
 
AD1928  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, if the system conforms to the I2C Standard Specifications as defined by Philips.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06623-0-4/07(0)  
Rev. 0 | Page 32 of 32  

相关型号:

EVAL-AD1928EBZ

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1934EB

8-Channel DAC with PLL, 192 kHz, 24 Bits
ADI

EVAL-AD1935EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1936EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1937EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1937EBZ

Four ADCs/Eight DACs with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1938AZ

4 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1938EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1939AZ

8-Channel DAC with PLL and Differential Outputs, 192 kHz, 24 Bits
ADI

EVAL-AD1939EB

4 ADC/8 DAC with PLL, 192 kHz, 24-Bit CODEC
ADI

EVAL-AD1940EB

SigmaDSP-TM Multichannel 28-Bit Audio Processor
ADI

EVAL-AD1953EB

SigmaDSP⑩ 3-Channel, 26-Bit Signal Processing DAC
ADI