EVAL-AD1934EB [ADI]

8-Channel DAC with PLL, 192 kHz, 24 Bits; 8通道DAC,内置PLL , 192千赫, 24位
EVAL-AD1934EB
型号: EVAL-AD1934EB
厂家: ADI    ADI
描述:

8-Channel DAC with PLL, 192 kHz, 24 Bits
8通道DAC,内置PLL , 192千赫, 24位

文件: 总28页 (文件大小:528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Channel DAC with PLL,  
192 kHz, 24 Bits  
AD1934  
FEATURES  
GENERAL DESCRIPTION  
PLL generated or direct master clock  
Low EMI design  
108 dB DAC dynamic range and SNR  
−94 dB THD + N  
The AD1934 is a high performance, single-chip that provides  
eight digital-to-analog converters (DACs) with single-ended  
output using the Analog Devices, Inc. patented multibit sigma-  
delta (Σ-Δ) architecture. An SPI port is included, allowing a  
microcontroller to adjust volume and many other parameters.  
The AD1934 operates from 3.3 V digital and analog supplies.  
The AD1934 is available in a 48-lead (single-ended output)  
LQFP. Other members of this family include a differential DAC  
output and I2C® control port version.  
Single 3.3 V supply  
Tolerance for 5 V logic inputs  
Supports 24 bits and 8 kHz to 192 kHz sample rates  
Single-ended DAC output  
Log volume control with autoramp function  
SPI® controllable for flexibility  
Software-controllable clickless mute  
Software power-down  
Right-justified, left-justified, I2S and TDM modes  
Master and slave modes up to 16-channel in/out  
48-lead LQFP  
The AD1934 is designed for low EMI. This consideration is  
apparent in both the system and circuit design architectures.  
By using the on-board PLL to derive the master clock from the  
LR clock or from an external crystal, the AD1934 eliminates the  
need for a separate high frequency master clock and can also be  
used with a suppressed bit clock. The digital-to-analog  
converters are designed using the latest ADI continuous time  
architectures to further minimize EMI. By using 3.3 V supplies,  
power consumption is minimized, further reducing emissions.  
APPLICATIONS  
Automotive audio systems  
Home theater systems  
Set-top boxes  
Digital audio effects processors  
FUNCTIONAL BLOCK DIAGRAM  
AD1934  
DAC  
DAC  
DAC  
DIGITAL  
FILTER  
AND  
DAC  
DAC  
DAC  
DAC  
DAC  
ANALOG  
AUDIO  
OUTPUTS  
VOLUME  
CONTROL  
CLOCKS  
SDATAIN  
SERIAL  
DATA  
PORT  
TIMING MANAGEMENT  
AND CONTROL  
(CLOCK AND PLL)  
DIGITAL AUDIO  
INPUT/OUTPUT  
6.144MHz  
PRECISION  
VOLTAGE  
REFERENCE  
CONTROL PORT  
2
I C/SPI  
CONTROL DATA  
INPUT/OUTPUT  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD1934  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Digital-to-Analog Converters (DACs).................................... 12  
Clock Signals............................................................................... 12  
Reset and Power-Down ............................................................. 12  
Serial Control Port ..................................................................... 13  
Power Supply and Voltage Reference....................................... 14  
Serial Data Ports—Data Format............................................... 14  
Time-Division Multiplexed (TDM) Modes............................ 14  
Daisy-Chain Mode..................................................................... 16  
Control Registers............................................................................ 20  
Definitions................................................................................... 20  
PLL and Clock Control Registers............................................. 20  
DAC Control Registers .............................................................. 21  
Auxiliary TDM Port Control Registers ................................... 23  
Additional Modes....................................................................... 23  
Application Circuits ....................................................................... 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Test Conditions............................................................................. 3  
Analog Performance Specifications........................................... 3  
Crystal Oscillator Specifications................................................. 4  
Digital Input/Output Specifications........................................... 4  
Power Supply Specifications........................................................ 5  
Digital Filters................................................................................. 6  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 12  
REVISION HISTORY  
6/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD1934  
SPECIFICATIONS  
TEST CONDITIONS  
Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.  
Supply Voltages (AVDD, DVDD)  
Temperature Range1  
Master Clock  
3.3 V  
As specified in Table 1 and Table 2  
12.288 MHz (48 kHz fS, 256 × fS mode)  
Input Sample Rate  
48 kHz  
Measurement Bandwidth  
Word Width  
20 Hz to 20 kHz  
24 bits  
Load Capacitance (Digital Output)  
Load Current (Digital Output)  
Input Voltage HI  
20 pF  
1 mA or 1.5 kꢀ to ½ DVDD supply  
2.0 V  
0.8 V  
Input Voltage LO  
1 Functionally guaranteed at −40°C to +125°C case temperature.  
ANALOG PERFORMANCE SPECIFICATIONS  
Specifications guaranteed at 25°C (ambient).  
Table 1.  
Parameter  
Conditions/Comments  
Min  
Typ  
Max  
Unit  
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
98  
100  
104  
106  
108  
dB  
dB  
dB  
With A-Weighted Filter (RMS)  
With A-Weighted Filter (Average)  
Total Harmonic Distortion + Noise  
Single-Ended Version  
0 dBFS  
Two channels running  
Eight channels running  
−92  
−86  
dB  
dB  
−75  
Full-Scale Output Voltage  
Gain Error  
Interchannel Gain Mismatch  
Offset Error  
0.88 (2.48)  
V rms (V p-p)  
%
dB  
mV  
ppm/°C  
dB  
Degrees  
dB  
−10  
−0.2  
−16  
−30  
+10  
+0.2  
+16  
+30  
−4  
Gain Drift  
Interchannel Isolation  
Interchannel Phase Deviation  
Volume Control Step  
Volume Control Range  
De-emphasis Gain Error  
Output Resistance at Each Pin  
REFERENCE  
100  
0
0.375  
95  
dB  
dB  
0.6  
100  
Internal Reference Voltage  
External Reference Voltage  
Common-Mode Reference Output  
FILTR pin  
FILTR pin  
CM pin  
1.50  
1.50  
1.50  
V
V
V
1.32  
1.68  
Rev. 0 | Page 3 of 28  
 
 
AD1934  
Specifications measured at 130°C (case).  
Table 2.  
Parameter  
Conditions/Comments  
Min  
Typ  
Max  
Unit  
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
98  
100  
104  
106  
108  
dB  
dB  
dB  
With A-Weighted Filter (RMS)  
With A-Weighted Filter (Average)  
Total Harmonic Distortion + Noise  
Single-Ended Version  
0 dBFS  
Two channels running  
Eight channels running  
−92  
−86  
dB  
dB  
−70  
Full-Scale Output Voltage  
Gain Error  
Interchannel Gain Mismatch  
Offset Error  
0.8775 (2.482)  
V rms (V p-p)  
%
dB  
mV  
−10  
−0.2  
−16  
−30  
+10  
+0.2  
+16  
+30  
−4  
Gain Drift  
ppm/°C  
REFERENCE  
Internal Reference Voltage  
External Reference Voltage  
Common-Mode Reference Output  
FILTR pin  
FILTR pin  
CM pin  
1.50  
1.50  
1.50  
V
V
V
1.32  
1.68  
CRYSTAL OSCILLATOR SPECIFICATIONS  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Transconductance  
3.5  
Mmhos  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
−40°C < TA < +130°C, DVDD = 3.3 V 10ꢀ.  
Table 4.  
Parameter  
Conditions/Comments  
Min  
2.0  
2.2  
Typ  
Max  
Unit  
V
V
Input Voltage HI (VIH)  
Input Voltage HI (VIH)  
Input Voltage LO (VIL)  
Input Leakage  
MCLKI pin  
0.8  
10  
10  
V
IIH @ VIH = 2.4 V  
IIL @ VIL = 0.8 V  
IOH = 1 mA  
μA  
μA  
V
V
pF  
High Level Output Voltage (VOH)  
Low Level Output Voltage (VOL)  
Input Capacitance  
DVDD − 0.60  
IOL = 1 mA  
0.4  
5
Rev. 0 | Page 4 of 28  
 
 
AD1934  
POWER SUPPLY SPECIFICATIONS  
Table 5.  
Parameter  
SUPPLIES  
Voltage  
Conditions/Comments  
Min  
Typ  
Max  
Unit  
DVDD  
AVDD  
3.0  
3.0  
3.3  
3.3  
3.6  
3.6  
V
V
Digital Current  
Normal Operation  
MCLK = 256 fS  
fS = 48 kHz  
fS = 96 kHz  
fS = 192 kHz  
fS = 48 kHz to 192 kHz  
56  
65  
95  
2.0  
mA  
mA  
mA  
mA  
Power-Down  
Analog Current  
Normal Operation  
Power-Down  
74  
23  
mA  
mA  
DISSIPATION  
Operation  
MCLK = 256 fS, 48 kHz  
All Supplies  
Digital Supply  
Analog Supply  
429  
185  
244  
83  
mW  
mW  
mW  
mW  
Power-Down, All Supplies  
POWER SUPPLY REJECTION RATIO  
Signal at Analog Supply Pins  
1 kHz, 200 mV p-p  
20 kHz, 200 mV p-p  
50  
50  
dB  
dB  
Rev. 0 | Page 5 of 28  
 
AD1934  
DIGITAL FILTERS  
Table 6.  
Parameter  
Mode  
Factor  
Min  
Typ  
22  
Max  
Unit  
DAC INTERPOLATION FILTER  
Pass Band  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
48 kHz mode, typ @ 48 kHz  
96 kHz mode, typ @ 96 kHz  
192 kHz mode, typ @ 192 kHz  
0.4535 fS  
0.3646 fS  
0.3646 fS  
kHz  
kHz  
kHz  
dB  
dB  
dB  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
dB  
35  
70  
Pass-Band Ripple  
Transition Band  
Stop Band  
0.01  
0.05  
0.1  
0.5 fS  
0.5 fS  
0.5 fS  
0.5465 fS  
0.6354 fS  
0.6354 fS  
24  
48  
96  
26  
61  
122  
Stop-Band Attenuation  
Group Delay  
70  
70  
70  
dB  
dB  
μs  
μs  
25/fS  
11/fS  
8/fS  
521  
115  
42  
μs  
TIMING SPECIFICATIONS  
−40°C < TA < +130°C, DVDD = 3.3 V 10ꢀ.  
Table 7.  
Parameter  
Condition  
Comments  
Min  
Max Unit  
INPUT MASTER CLOCK (MCLK) AND RESET  
tMH  
MCLK duty cycle  
DAC clock source = PLL clock @ 256 fS, 384 fS,  
512 fS, 768 fS  
DAC clock source = direct MCLK @ 512 fS  
(bypass on-chip PLL)  
PLL mode, 256 fS reference  
Direct 512 fS mode  
40  
40  
6.9  
60  
60  
%
%
tMH  
fMCLK  
fMCLK  
tPDR  
MCLK frequency  
13.8 MHz  
27.6 MHz  
ns  
RST low  
15  
tPDRR  
RST recovery  
Reset to active output  
See Figure 9  
4096  
tMCLK  
PLL  
Lock Time  
256 fS VCO Clock, Output Duty Cycle  
MCLKO Pin  
SPI PORT  
tCCH  
tCCL  
fCCLK  
tCDS  
tCDH  
tCLS  
MCLK and LRCLK input  
10  
60  
ms  
%
40  
CCLK high  
CCLK low  
35  
35  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK frequency  
CDATA setup  
CDATA hold  
CLATCH setup  
CLATCH hold  
CLATCH high  
COUT enable  
COUT delay  
COUT hold  
fCCLK = 1/tCCP, only tCCP shown in Figure 9  
To CCLK rising  
From CCLK rising  
10  
10  
10  
10  
10  
10  
To CCLK rising  
tCLH  
From CCLK falling  
tCLHIGH  
tCOE  
tCOD  
tCOH  
tCOTS  
Not shown in Figure 9  
From CCLK falling  
From CCLK falling  
From CCLK falling, not shown in Figure 9  
From CCLK falling  
30  
30  
30  
COUT tri-state  
30  
Rev. 0 | Page 6 of 28  
 
AD1934  
Parameter  
Condition  
Comments  
Min  
Max Unit  
DAC SERIAL PORT  
See Figure 16  
tDBH  
tDBL  
tDLS  
tDLH  
tDLS  
tDDS  
tDDH  
DBCLK high  
DBCLK low  
Slave mode  
Slave mode  
To DBCLK rising, slave mode  
From DBCLK rising, slave mode  
From DBCLK falling, master mode  
To DBCLK rising  
10  
10  
10  
5
−8  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLRCLK setup  
DLRCLK hold  
DLRCLK skew  
DSDATA setup  
DSDATA hold  
+8  
From DBCLK rising  
AUXTDM SERIAL PORT  
See Figure 17  
tABH  
tABL  
tALS  
tALH  
tALS  
tDDS  
tDDH  
AUXTDMBCLK high  
AUXTDMBCLK low  
AUXTDMLRCLK setup  
AUXTDMLRCLK hold  
AUXTDMLRCLK skew  
DSDATA setup  
Slave mode  
Slave mode  
10  
10  
10  
5
−8  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
To AUXTDMBCLK rising, slave mode  
From AUXTDMBCLK rising, slave mode  
From AUXTDMBCLK falling, master mode  
To AUXTDMBCLK, not shown in Figure 17  
From AUXTDMBCLK rising, not shown in Figure 17  
+8  
18  
DSDATA hold  
AUXILIARY INTERFACE  
tDXDD  
tXBH  
tXBL  
tDLS  
tDLH  
AUXDATA delay  
AUXBCLK high  
AUXBCLK low  
AUXLRCLK setup  
AUXLRCLK hold  
From AUXBCLK falling  
ns  
ns  
ns  
ns  
ns  
10  
10  
10  
5
To AUXBCLK rising  
From AUXBCLK rising  
Rev. 0 | Page 7 of 28  
AD1934  
ABSOLUTE MAXIMUM RATINGS  
Table 8.  
THERMAL RESISTANCE  
θJA represents thermal resistance, junction-to-ambient; θJC  
represents the thermal resistance, junction-to-case. All  
characteristics are for a 4-layer board.  
Parameter  
Rating  
Analog (AVDD)  
Digital (DVDD)  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
20 mA  
–0.3 V to AVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
Input Current (Except Supply Pins)  
Analog Input Voltage (Signal Pins)  
Digital Input Voltage (Signal Pins)  
Operating Temperature Range (Case) −40°C to +125°C  
Storage Temperature Range −65°C to +150°C  
Table 9. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
48-Lead LQFP  
50.1  
17  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 8 of 28  
 
AD1934  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AGND  
MCLKI/XI  
MCLKO/XO  
AGND  
AGND  
FILTR  
AGND  
AVDD  
3
4
5
AVDD  
AGND  
OR2  
AD1934  
6
OL3  
TOP VIEW  
(Not to Scale)  
7
OR3  
OL2  
SINGLE-ENDED  
OUTPUT  
8
OL4  
OR1  
9
OR4  
OL1  
10  
11  
12  
PD/RST  
DSDATA4  
DGND  
CLATCH/ADR1  
CCLK/SCL  
DGND  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 10. Pin Function Description  
Pin No.  
In/Out Mnemonic  
Description  
1
I
AGND  
Analog Ground.  
2
3
4
I
O
I
MCLKI/XI  
MCLKO/XO  
AGND  
Master Clock Input/Crystal Oscillator Input.  
Master Clock Output/Crystal Oscillator Output.  
Analog Ground.  
5
6
7
8
I
AVDD  
OL3  
OR3  
OL4  
Analog Power Supply. Connect to analog 3.3 V supply.  
DAC 3 Left Output.  
DAC 3 Right Output.  
DAC 4 Left Output.  
DAC 4 Right Output.  
O
O
O
O
I
9
OR4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PD/RST  
DSDATA4  
DGND  
Power-Down Reset (Active Low).  
I/O  
I
I
I/O  
I/O  
I
I/O  
I/O  
O
DAC Input 4 (Input to DAC 4 L and R)/DAC TDM Data Out 2.  
Digital Ground.  
DVDD  
Digital Power Supply. Connect to digital 3.3 V supply.  
DAC Input 3 (Input to DAC 3 L and R)/DAC TDM Data In 2/Aux DAC 2 Data Output.  
DAC Input 2 (Input to DAC 2 L and R)/DAC TDM Data Out 1.  
DAC Input 1 (Input to DAC 1 L and R)/DAC TDM Data In 1.  
Bit Clock for DACs (Regular Stereo, TDM or Daisy-Chain TDM Mode).  
LR Clock for DACs (Regular Stereo, TDM or Daisy-Chain TDM Mode).  
Auxiliary Data Out 1 (to External DAC 1, Auxiliary Mode Only).  
No Connect.  
Auxiliary Mode Only DAC TDM Bit Clock.  
Auxiliary Mode Only DAC LR TDM Clock.  
Control Data Input (SPI).  
Control Data Output (SPI).  
Digital Ground.  
DSDATA3  
DSDATA2  
DSDATA1  
DBCLK  
DLRCLK  
AUXDATA1  
NC  
AUXTDMBCLK  
AUXTDMLRCLK  
CIN/ADR0  
COUT/SDA  
DGND  
I/O  
I/O  
I
I/O  
I
Rev. 0 | Page 9 of 28  
 
AD1934  
Pin No.  
In/Out Mnemonic  
Description  
26  
27  
I
I
CCLK/SCL  
CLATCH/ADR1  
OL1  
OR1  
OL2  
Control Clock Input (SPI).  
Latch Input for Control Data (SPI).  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39 to 46  
47  
O
O
O
O
I
I
I
O
I
I
DAC 1 Left Output.  
DAC 1 Right Output.  
DAC 2 Left Output.  
DAC 2 Right Output.  
OR2  
AGND  
AVDD  
AGND  
FILTR  
AGND  
AVDD  
CM  
NC  
LF  
AVDD  
Analog Ground.  
Analog Power Supply. Connect to analog 3.3 V supply.  
Analog Ground.  
Voltage Reference Filter Capacitor Connection. Bypass with 10 μF||100 nF to AGND.  
Analog Ground.  
Analog Power Supply. Connect to analog 3.3 V supply.  
Common-Mode Reference Filter Capacitor Connection. Bypass with 47 μF||100 nF to AGND.  
Must Be Tied to Common Mode, Pin 38. Alternately, ac-coupled to ground.  
PLL Loop Filter. Return to AVDD.  
O
O
I
48  
Analog Power Supply. Connect to analog 3.3 V supply.  
Rev. 0 | Page 10 of 28  
AD1934  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.06  
0
0.04  
0.02  
0
–50  
–100  
–150  
–0.02  
–0.04  
–0.06  
0
24  
48  
72  
96  
0
0
0
8
16  
FREQUENCY (kHz)  
24  
48  
96  
FREQUENCY (kHz)  
Figure 6. DAC Stop-Band Filter Response, 96 kHz  
Figure 3. DAC Pass-Band Filter Response, 48 kHz  
0.5  
0
0.4  
0.3  
0.2  
–50  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–100  
–150  
12  
24  
36  
0
8
16  
32  
64  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 7. DAC Pass-Band Filter Response, 192 kHz  
Figure 4. DAC Stop-Band Filter Response, 48 kHz  
0.10  
0.05  
0
0
–2  
–4  
–6  
–0.05  
–0.10  
–8  
–10  
48  
64  
80  
96  
24  
48  
72  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 5. DAC Pass-Band Filter Response, 96 kHz  
Figure 8. DAC Stop-Band Filter Response, 192 kHz  
Rev. 0 | Page 11 of 28  
 
AD1934  
THEORY OF OPERATION  
The PLL can be powered down in PLL and Clock Control 0  
Register. To ensure reliable locking when changing PLL modes,  
or if the reference clock is unstable at power-on, power down  
the PLL and then power it back up when the reference clock  
has stabilized.  
DIGITAL-TO-ANALOG CONVERTERS (DACs)  
The AD1934 DAC channels are arranged as single-ended, four  
stereo pairs giving eight analog outputs for minimum external  
components. The DACs include on-board digital reconstruction  
filters with 70 dB stop-band attenuation and linear phase  
response, operating at an oversampling ratio of 4 (48 kHz or  
96 kHz modes) or 2 (192 kHz mode). Each channel has its own  
independently programmable attenuator, adjustable in 255 steps  
in increments of 0.375 dB. Digital inputs are supplied through  
four serial data input pins (one for each stereo pair) and a  
common frame (DLRCLK) and bit (DBCLK) clock. Alternatively,  
one of the TDM modes can be used to access up to 16 channels  
on a single TDM data line.  
The internal MCLK can be disabled in PLL and Clock Control 0  
Register to reduce power dissipation when the AD1934 is idle.  
The clock should be stable before it is enabled. Unless a stand-  
alone mode is selected (see the Serial Control Port section), the  
clock is disabled by reset and must be enabled by writing to the  
SPI or I2C port for normal operation.  
To maintain the highest performance possible, it is recommended  
that the clock jitter of the internal master clock signal be limited  
to less than 300 ps rms time interval error (TIE). Even at these  
levels, extra noise or tones can appear in the DAC outputs if the  
jitter spectrum contains large spectral peaks. If the internal PLL  
is not being used, it is highly recommended that an independent  
crystal oscillator generate the master clock. In addition, it is  
especially important that the clock signal not be passed through  
an FPGA, CPLD, or other large digital chip (such as a DSP)  
before being applied to the AD1934. In most cases, this induces  
clock jitter due to the sharing of common power and ground  
connections with other unrelated digital output signals. When  
the PLL is used, jitter in the reference clock is attenuated above  
a certain frequency depending on the loop filter.  
Each output pin has a nominal common-mode dc level of 1.5 V  
and swings 1.27 V for a 0 dBFS digital input signal. A single op  
amp, third-order, external, low-pass filter is recommended to  
remove high frequency noise present on the output pins. The  
use of op amps with low slew rate or low bandwidth can cause  
high frequency noise and tones to fold down into the audio  
band; therefore, exercise care in selecting these components.  
The voltage at CM, the common-mode reference pin, can be  
used to bias the external op amps that buffer the output signals  
(see the Power Supply and Voltage Reference section).  
CLOCK SIGNALS  
The on-chip phase locked loop (PLL) can be selected to  
reference the input sample rate from either of the LRCLK pins  
or 256, 384, 512, or 768 times the sample rate, referenced to the  
48 kHz mode from the MCLKI pin. The default at power-up is  
256 × fS from MCLKI pin. In 96 kHz mode, the master clock  
frequency stays at the same absolute frequency; therefore, the  
actual multiplication rate is divided by 2. In 192 kHz mode,  
the actual multiplication rate is divided by 4. For example, if a  
device in the AD1934 family is programmed in 256 × fS mode, the  
frequency of the master clock input is 256 × 48 kHz = 12.288 MHz.  
If the AD1934 is then switched to 96 kHz operation (by writing  
to the SPI or I2C port), the frequency of the master clock should  
remain at 12.288 MHz, which is now 128 × fS. In 192 kHz mode,  
this becomes 64 × fS.  
RESET AND POWER-DOWN  
Reset sets all the control registers to their default settings.  
To avoid pops, reset does not power down the analog outputs.  
After reset is deasserted, and the PLL acquires lock condition,  
an initialization routine runs inside the AD1934. This  
initialization lasts for approximately 256 MCLKs.  
The power-down bits in the PLL and Clock Control 0 and DAC  
Control 1 registers power down the respective sections. All  
other register settings are retained. To guarantee proper startup,  
the reset pin should be pulled low by an external resistor.  
The internal clock for the DACs varies by mode: 512 × fS (48 kHz  
mode), 256 × fS (96 kHz mode), or 128 × fS (192 kHz mode). By  
default, the on-board PLL generates this internal master clock  
from an external clock. A direct 512 × fS (referenced to 48 kHz  
mode) master clock can be used for DACs if selected in PLL  
and Clock Control 1 Register.  
Rev. 0 | Page 12 of 28  
 
AD1934  
SERIAL CONTROL PORT  
The AD1934 has an SPI control port that permits programming  
and reading back of the internal control registers for the DACs  
and clock system. There is also a standalone mode available for  
operation without serial control that is configured at reset using  
the serial control pins. All registers are set to default, except the  
internal MCLK enable which is set to 1. Standalone mode only  
supports stereo mode with I2S data format and 256 fS master  
clock rate. Table 11 shows the SPI control port pins logic state  
when configured in standalone and SPI software control mode.  
All four SPI control port pins need to be set to logic low for  
standalone operation (see Table 11).It is recommended to use a  
The SPI control port of the AD1934 is a 4-wire serial control  
port. The format is similar to the Motorola SPI format except  
the input data-word is 24 bits wide. The serial bit clock and  
latch can be completely asynchronous to the sample rate of the  
DACs. Figure 9 shows the format of the SPI signal. The first  
byte is a global address with a read/write bit. For the AD1934,  
W
the address is 0x04, shifted left 1 bit due to the R/ bit. The  
second byte is the AD1934 register address and the third byte  
is the data.  
CLATCH  
weak pull-up resistor on  
in applications that have a  
microcontroller. This pull-up resistor ensures that the AD1934  
recognizes the presence of a microcontroller.  
Table 11. SPI vs. Standalone Mode Configuration  
Codec Control  
COUT  
CIN  
CLATCH  
CCLK  
SPI  
Standalone  
OUT  
0
IN  
0
1 (Pull-Up)  
0
IN  
0
tCLS  
tCLH  
tCCH tCCL  
tCCP  
CLATCH  
tCOTS  
CCLK  
tCDS tCDH  
CIN  
D23  
D22  
D9  
D8  
D8  
D0  
D0  
tCOE  
COUT  
D9  
tCOD  
Figure 9. Format of SPI Signal  
Rev. 0 | Page 13 of 28  
 
 
 
 
AD1934  
POWER SUPPLY AND VOLTAGE REFERENCE  
mode, the AUXTDMLRCLK and AUXTDMBCLK pins are  
configured as TDM port clocks. In regular TDM mode, the  
DLRCLK and DBCLK pins are used as the TDM port clocks.  
The auxiliary TDM serial ports format and its serial clock  
polarity is programmable according to the Auxiliary TDM Port  
Control 0 Register and Control 1 Register. Both DAC and  
auxiliary TDM serial ports are programmable to become the  
bus masters according to DAC Control 1 Register and auxiliary  
TDM Control 1 Register. By default, both auxiliary TDM and  
DAC serial ports are in the slave mode.  
The AD1934 is designed for 3.3 V supplies. Separate power  
supply pins are provided for the analog and digital sections.  
These pins should be bypassed with 100 nF ceramic chip  
capacitors, as close to the pins as possible, to minimize noise  
pickup. A bulk aluminum electrolytic capacitor of at least 22 μF  
should also be provided on the same PC board as the codec. For  
critical applications, improved performance is obtained with  
separate supplies for the analog and digital sections. If this is  
not possible, it is recommended that the analog and digital  
supplies be isolated by means of a ferrite bead in series with  
each supply. It is important that the analog supply be as  
clean as possible.  
TIME-DIVISION MULTIPLEXED (TDM) MODES  
The AD1934 serial ports also have several different TDM serial  
data modes. The most commonly used configuration is shown  
in Figure 10. In Figure 10, the eight on-chip DAC data slots are  
packed into one TDM stream. In this mode, DBCLK is 256 fS.  
All digital inputs are compatible with TTL and CMOS levels.  
All outputs are driven from the 3.3 V DVDD supply and are  
compatible with TTL and 3.3 V CMOS levels.  
The I/O pins of the serial ports are defined according to the  
serial mode selected. For a detailed description of the function  
of each pin in TDM and AUX Modes, see Table 12.  
The DAC internal voltage reference (VREF) is brought out on  
FILTR and should be bypassed as close as possible to the chip,  
with a parallel combination of 10 μF and 100 nF. Any external  
current drawn should be limited to less than 50 μA.  
The AD1934 allows systems with more than eight DAC channels  
to be easily configured by the use of an auxiliary serial data port.  
The DAC TDM-AUX mode is shown in Figure 11. In this mode,  
the AUX channels are the last four slots of the 16-channel TDM  
data stream. These slots are extracted and output to the AUX  
serial port. One major difference between the TDM mode and  
an auxiliary TDM mode is the assignment of the TDM port  
pins, as shown in Table 12. In auxiliary TDM mode, DBCLK  
and DLRCLK are assigned as the auxiliary port clocks, and  
AUXTDMBCLK and AUXTDMLRCLK are assigned as the  
TDM port clocks. In regular TDM or 16-channel, daisy-chain  
TDM mode, the DLRCLK and DBCLK pins are set as the TDM  
port clocks. It should be noted that due to the high  
The internal reference can be disabled in PLL and Clock  
Control 1 Register and FILTR can be driven from an external  
source. This can be used to scale the DAC output to the clipping  
level of a power amplifier based on its power supply voltage.  
The CM pin is the internal common-mode reference. It should  
be bypassed as close as possible to the chip, with a parallel  
combination of 47 μF and 100 nF. This voltage can be used to  
bias external op amps to the common-mode voltage of the input  
and output signal pins. The output current should be limited to  
less than 0.5 mA source and 2 mA sink.  
SERIAL DATA PORTS—DATA FORMAT  
AUXTDMBCLK frequency, 16-channel auxiliary TDM mode is  
available only in the 48 kHz/44.1 kHz/32 kHz sample rate.  
The eight DAC channels use a common serial bit clock (DBCLK)  
and a common left-right framing clock (DLRCLK) in the serial  
data port. The clock signals are all synchronous with the sample  
rate. The normal stereo serial modes are shown in Figure 15.  
LRCLK  
256 BCLKs  
BCLK  
32 BCLK  
The DAC serial data modes default to I2S. The ports can also be  
programmed for left-justified, right-justified, and TDM modes.  
The word width is 24 bits by default and can be programmed  
for 16 or 20 bits. The DAC serial formats are programmable  
according to DAC Control 0 Register. The polarity of the  
DBCLK and DLRCLK is programmable according to DAC  
Control 1 Register. The auxiliary TDM port is also provided for  
applications requiring more than eight DAC channels. In this  
SLOT 1 SLOT 2 SLOT 3 SLOT 4 SLOT 5 SLOT 6 SLOT 7 SLOT 8  
DATA  
LEFT 1 RIGHT 1 LEFT 2 RIGHT 2 LEFT 3 RIGHT 3 LEFT 4 RIGHT 4  
LRCLK  
BCLK  
MSB  
MSB–1  
MSB–2  
DATA  
Figure 10. DAC TDM (8-Channel I2S Mode  
Rev. 0 | Page 14 of 28  
 
 
 
AD1934  
Table 12. Pin Function Changes in TDM and AUX Modes  
Pin Name  
AUXDATA1  
DSDATA1  
DSDATA2  
DSDATA3  
DSDATA4  
AUXTDMLRCLK  
AUXTDMBCLK  
DLRCLK  
Stereo Modes  
Not Used (Float)  
DAC1 Data In  
DAC2 Data In  
DAC3 Data In  
TDM Modes  
AUX Modes  
Not Used (Float)  
DAC TDM Data In  
DAC TDM Data Out  
DAC TDM Data In 2 (Dual-Line Mode)  
DAC TDM Data Out 2 (Dual-Line Mode)  
Not Used (Ground)  
Not Used (Ground)  
DAC TDM Frame Sync In/Out  
DAC TDM BCLK In/Out  
AUX Data Out 1 (to External DAC 1)  
TDM Data In  
Not Used (Ground)  
Not Used (Ground)  
DAC4 Data In  
AUX Data Out 2 (to External DAC 2)  
TDM Frame Sync In/Out  
TDM BCLK In/Out  
AUX LRCLK In/Out  
AUX BCLK In/Out  
Not Used (Ground)  
Not Used (Ground)  
DAC LRCLK In/Out  
DAC BCLK In/Out  
DBCLK  
AUXTDMLRCLK  
AUXTDMBCLK  
AUXILIARY DAC CHANNELS  
WILL APPEAR AT  
AUX DAC PORTS  
UNUSED SLOTS  
8-ON-CHIP DAC CHANNELS  
DSDATA1  
(TDM_IN)  
EMPTY EMPTY EMPTY EMPTY DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 AUX L1 AUX R1 AUX L2 AUX R2  
32 BITS  
MSB  
DLRCLK  
(AUX PORT)  
LEFT  
RIGHT  
DBCLK  
(AUX PORT)  
AUXDATA1  
MSB  
MSB  
MSB  
(AUX1_OUT)  
DSDATA4  
(AUX2_OUT)  
MSB  
Figure 11. 16-Channel DAC TDM-AUX Mode  
Rev. 0 | Page 15 of 28  
 
 
AD1934  
DAISY-CHAIN MODE  
The AD1934 also allows a daisy-chain configuration to expand  
the system 16 DACs (see Figure 12). In this mode, the DBCLK  
frequency is 512 fS. The first eight slots of the DAC TDM data  
stream belong to the first AD1934 in the chain and the last eight  
slots belong to the second AD1934. The second AD1934 is the  
device attached to the DSP TDM port.  
The dual-line, DAC TDM mode can also be used to send data at  
a 192 kHz sample rate into the AD1934, as shown in Figure 14.  
The I/O pins of the serial ports are defined according to the  
serial mode selected. See Table 13 for a detailed description of  
the function of each pin. See Figure 18 for a typical AD1934  
configuration with two external stereo DACs. Figure 15 and  
Figure 16 show the serial mode formats. For maximum  
flexibility, the polarity of LRCLK and BCLK are programmable.  
In these figures, all of the clocks are shown with their normal  
polarity. The default mode is I2S.  
To accommodate 16 channels at a 96 kHz sample rate, the  
AD1934 can be configured into a dual-line, DAC TDM mode,  
as shown in Figure 13. This mode allows a slower DBCLK than  
normally required by the one-line TDM mode.  
Again, the first four channels of each TDM input belong to the  
first AD1934 in the chain and the last four channels belong to  
the second AD1934.  
DLRCLK  
DBCLK  
8 DAC CHANNELS OF THE FIRST IC IN THE CHAIN  
DSDATA1 (TDM_IN)  
8 DAC CHANNELS OF THE SECOND IC IN THE CHAIN  
DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4  
OF THE SECOND AD1934  
DSDATA2 (TDM_OUT)  
OF THE SECOND AD1934  
THIS IS THE TDM  
DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4  
TO THE FIRST AD1934  
8 UNUSED SLOTS  
32 BITS  
FIRST  
AD1934  
SECOND  
AD1934  
DSP  
MSB  
Figure 12. Single-Line DAC TDM Daisy-Chain Mode (Applicable to 48 kHz Sample Rate, 16-Channel, Two AD1934 Daisy Chain)  
DLRCLK  
DBCLK  
8 DAC CHANNELS OF THE FIRST IC IN THE CHAIN  
8 DAC CHANNELS OF THE SECOND IC IN THE CHAIN  
DSDATA1  
(IN)  
DAC L1  
DAC R1  
DAC L2  
DAC R2  
DAC L1  
DAC L1  
DAC L3  
DAC L3  
DAC R1  
DAC R1  
DAC R3  
DAC R3  
DAC L2  
DAC L2  
DAC L4  
DAC L4  
DAC R2  
DAC R2  
DAC R4  
DAC R4  
DSDATA2  
(OUT)  
DSDATA3  
(IN)  
DAC L3  
DAC R3  
DAC L4  
DAC R4  
DSDATA4  
(OUT)  
32 BITS  
MSB  
FIRST  
AD1934  
SECOND  
AD1934  
DSP  
Figure 13. Dual-Line, DAC TDM Mode (Applicable to 96 kHz Sample Rate, 16-Channel, Two AD1934 Daisy Chain); DSDATA3 and DSDATA4 Are the Daisy Chain  
Rev. 0 | Page 16 of 28  
 
 
 
AD1934  
DLRCLK  
DBCLK  
DSDATA1  
DSDATA2  
DAC L1  
DAC L3  
DAC R1  
DAC R3  
DAC L2  
DAC L4  
DAC R2  
DAC R4  
32 BITS  
MSB  
Figure 14. Dual-Line, DAC TDM Mode (Applicable to 192 kHz Sample Rate, 8-Channel Mode)  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
LEFT-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL  
LEFT CHANNEL  
LRCLK  
RIGHT CHANNEL  
BCLK  
MSB  
I S MODE—16 BITS TO 24 BITS PER CHANNEL  
LSB  
SDATA  
MSB  
LSB  
2
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
RIGHT-JUSTIFIED MODE—SELECT NUMBER OF BITS PER CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
DSP MODE—16 BITS TO 24 BITS PER CHANNEL  
1/fS  
NOTES  
1. DSP MODE DOES NOT IDENTIFY CHANNEL.  
2. LRCLK NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE, WHICH IS 2 × fS.  
3. BCLK FREQUENCY IS NORMALLY 64 × LRCLK BUT MAY BE OPERATED IN BURST MODE.  
Figure 15. Stereo Serial Modes  
Rev. 0 | Page 17 of 28  
 
 
AD1934  
tDBH  
DBCLK  
tDBL  
tDLS  
tDLH  
DLRCLK  
tDDS  
DSDATA  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB–1  
tDDH  
tDDS  
MSB  
DSDATA  
I S-JUSTIFIED  
2
MODE  
tDDH  
tDDS  
MSB  
tDDS  
LSB  
tDDH  
DSDATA  
RIGHT-JUSTIFIED  
MODE  
tDDH  
Figure 16. DAC Serial Timing  
tABH  
AUXTDMBCLK  
AUXTDMLRCLK  
tABL  
tALS  
tALH  
DSDATA1  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB–1  
MSB  
DSDATA1  
I S-JUSTIFIED  
2
MODE  
DSDATA1  
RIGHT-JUSTIFIED  
MODE  
MSB  
LSB  
Figure 17. AUXTDM Serial Timing  
Rev. 0 | Page 18 of 28  
 
 
AD1934  
Table 13. Pin Function Changes in TDM and AUX Modes (Replication of Table 12)  
Pin Name  
AUXDATA1  
DSDATA1  
DSDATA2  
DSDATA3  
DSDATA4  
AUXTDMLRCLK  
AUXTDMBCLK  
DLRCLK  
Stereo Modes  
Not Used (Float)  
DAC1 Data In  
DAC2 Data In  
DAC3 Data In  
TDM Modes  
AUX Modes  
Not Used (Float)  
DAC TDM Data In  
DAC TDM Data Out  
DAC TDM Data In 2 (Dual-Line Mode)  
DAC TDM Data Out 2 (Dual-Line Mode)  
Not Used (Ground)  
Not Used (Ground)  
DAC TDM Frame Sync In/Out  
DAC TDM BCLK In/Out  
AUX Data Out 1 (to External DAC 1)  
TDM Data In  
Not Used (Ground)  
Not Used (Ground)  
DAC4 Data In  
AUX Data Out 2 (to External DAC 2)  
TDM Frame Sync In/Out  
TDM BCLK In/Out  
AUX LRCLK In/Out  
AUX BCLK In/Out  
Not Used (Ground)  
Not Used (Ground)  
DAC LRCLK In/Out  
DAC BCLK In/Out  
DBCLK  
SHARC IS RUNNING IN SLAVE MODE  
(INTERRUPT-DRIVEN)  
30MHz  
SHARC  
12.288MHz  
LRCLK  
BCLK  
AUX  
DAC 1  
DATA  
MCLK  
AUXTDMLRCLK AUXTDMBCLK DSDATA1  
DBCLK  
DLRCLK  
AD1934  
LRCLK  
BCLK  
AUXDATA1  
DSDATA4  
DSDATA2  
DSDATA3  
TDM MASTER  
AUX MASTER  
AUX  
DATA DAC 2  
MCLK  
MCLK  
Figure 18. Example of AUX Mode Connection to SHARC® (AD1934 as TDM Master/AUX Master Shown)  
Rev. 0 | Page 19 of 28  
 
 
AD1934  
CONTROL REGISTERS  
DEFINITIONS  
2
W
The format is the same for I C and SPI ports. The global address for the AD1934 is 0x04, shifted left 1 bit due to the R/ bit. However, in  
I2C, ADR0 and ADR1 are ORed into Bit 17 and Bit 8 to provide multiple chip addressing. All registers are reset to 0, except for the DAC  
volume registers that are set to full volume.  
Note that the first setting in each control register parameter is the default setting.  
Table 14. Register Format  
Global Address  
R/W  
Register Address  
Data  
23:17  
16  
15:8  
7:0  
Bit  
Table 15. Register Addresses and Functions  
Address  
Function  
0
1
2
PLL and Clock Control 0  
PLL and Clock Control 1  
DAC Control 0  
3
DAC Control 1  
4
DAC Control 2  
5
6
7
8
DAC individual channel mutes  
DAC 1L volume control  
DAC 1R volume control  
DAC 2L volume control  
DAC 2R volume control  
DAC 3L volume control  
DAC 3R volume control  
DAC 4L volume control  
DAC 4R volume control  
Reserved  
9
10  
11  
12  
13  
14  
15  
16  
Auxiliary TDM Port Control 0  
Auxiliary TDM Port Control 1  
PLL AND CLOCK CONTROL REGISTERS  
Table 16. PLL and Clock Control 0  
Bit  
Value  
Function  
Description  
0
0
1
Normal operation  
Power-down  
PLL power-down  
2:1  
4:3  
6:5  
7
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0
INPUT 256 (×44.1 kHz or 48 kHz)  
INPUT 384 (×44.1 kHz or 48 kHz)  
INPUT 512 (×44.1 kHz or 48 kHz)  
INPUT 768 (×44.1 kHz or 48 kHz)  
XTAL oscillator enabled  
256 × fS VCO output  
512 × fS VCO output  
Off  
MCLK pin functionality (PLL active)  
MCLKO pin  
MCLK  
DLRCLK  
AUXTDMLRCLK  
Reserved  
PLL input  
Disable: DAC idle  
Enable: DAC active  
Internal MCLK enable  
1
Rev. 0 | Page 20 of 28  
 
AD1934  
Table 17. PLL and Clock Control 1  
Bit  
Value  
Function  
PLL clock  
MCLK  
Description  
0
0
1
DAC clock source select  
1
0
1
PLL clock  
MCLK  
Clock source select  
2
0
1
Enabled  
Disabled  
Not locked  
Locked  
On-chip voltage reference  
PLL lock indicator (read-only)  
3
0
1
7:4  
0000  
Reserved  
DAC CONTROL REGISTERS  
Table 18. DAC Control 0  
Bit  
Value  
Function  
Description  
0
0
Normal  
Power-down  
1
Power-down  
2:1  
5:3  
00  
01  
10  
11  
32 kHz/44.1 kHz/48 kHz  
64 kHz/88.2 kHz/96 kHz  
128 kHz/176.4 kHz/192 kHz  
Reserved  
Sample rate  
000  
001  
010  
011  
100  
101  
110  
111  
00  
1
0
8
12  
16  
Reserved  
Reserved  
Reserved  
SDATA delay (BCLK periods)  
7:6  
Stereo (normal)  
TDM (daisy chain)  
DAC aux mode (DAC-, TDM-coupled)  
Dual-line TDM  
Serial format  
01  
10  
11  
Table 19. DAC Control 1  
Bit  
Value  
Function  
Description  
0
0
1
Latch in midcycle (normal)  
Latch in at end of cycle (pipeline)  
64 (2 channels)  
128 (4 channels)  
256 (8 channels)  
512 (16 channels)  
Left low  
BCLK active edge (TDM in)  
2:1  
00  
01  
10  
11  
0
BCLKs per frame  
3
4
5
6
7
LRCLK polarity  
LRCLK master/slave  
BCLK master/slave  
BCLK source  
1
Left high  
0
1
Slave  
Master  
0
1
Slave  
Master  
0
1
DBCLK pin  
Internally generated  
Normal  
0
BCLK polarity  
1
Inverted  
Rev. 0 | Page 21 of 28  
 
AD1934  
Table 20. DAC Control 2  
Bit  
Value  
Function  
Unmute  
Mute  
Description  
0
0
1
Master mute  
2:1  
4:3  
00  
01  
10  
11  
00  
01  
10  
11  
0
Flat  
De-emphasis (32 kHz/44.1 kHz/48 kHz mode only)  
48 kHz curve  
44.1 kHz curve  
32 kHz curve  
24  
20  
Reserved  
16  
Word width  
5
Noninverted  
Inverted  
Reserved  
DAC output polarity  
1
7:6  
00  
Table 21. DAC Individual Channel Mutes  
Bit  
Value  
Function  
Unmute  
Mute  
Description  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DAC 1 left mute  
1
2
3
4
5
6
7
Unmute  
Mute  
DAC 1 right mute  
DAC 2 left mute  
DAC 2 right mute  
DAC 3 left mute  
DAC 3 right mute  
DAC 4 left mute  
DAC 4 right mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Unmute  
Mute  
Table 22. DAC Volume Controls  
Bit  
Value  
Function  
Description  
7:0  
0
No attenuation  
DAC volume control  
1 to 254 −3/8 dB per step  
255 Full attenuation  
Rev. 0 | Page 22 of 28  
AD1934  
AUXILIARY TDM PORT CONTROL REGISTERS  
Table 23. Auxiliary TDM Control 0  
Bit  
Value  
Function  
Description  
1:0  
00  
24  
Word width  
01  
20  
10  
Reserved  
11  
16  
4:2  
000  
001  
010  
011  
100  
101  
110  
111  
00  
1
0
8
12  
16  
Reserved  
Reserved  
Reserved  
SDATA delay (BCLK periods)  
6:5  
7
Reserved  
Reserved  
DAC aux mode  
Reserved  
Serial format  
01  
10  
11  
0
1
Latch in midcycle (normal)  
Latch in at end of cycle (pipeline)  
BCLK active edge (TDM in)  
Table 24. Auxiliary TDM Control 1  
Bit  
Value  
Function  
Description  
0
0
50/50 (allows 32/24/20/16 BCLK/channel)  
LRCLK format  
1
Pulse (32 BCLK/channel)  
1
0
1
Drive out on falling edge (DEF)  
Drive out on rising edge  
BCLK polarity  
LRCLK polarity  
2
0
Left low  
1
Left high  
3
0
Slave  
LRCLK master/slave  
1
Master  
5:4  
00  
01  
10  
11  
0
64  
128  
256  
512  
BCLKs per frame  
6
7
Slave  
Master  
BCLK master/slave  
BCLK source  
1
0
1
AUXTDMBCLK pin  
Internally generated  
To relax the requirement for the setup time of the AD1934 in  
cases of high speed TDM data transmission, the AD1934 can  
latch in the data using the falling edge of DBCLK. This  
effectively dedicates the entire BCLK period to the setup time.  
This mode is useful in cases where the source has a large delay  
time in the serial data driver. Figure 20 shows this pipeline  
mode of data transmission.  
ADDITIONAL MODES  
The AD1934 offers several additional modes for board level  
design enhancements. To reduce the EMI in board level design,  
serial data can be transmitted without an explicit BCLK. See  
Figure 19 for an example of a DAC TDM data transmission  
mode that does not require high speed DBCLK. This configuration  
is applicable when the AD1934 master clock is generated by the  
PLL with the DLRCLK as the PLL reference frequency.  
Both the BLCK-less and pipeline modes are available.  
Rev. 0 | Page 23 of 28  
 
AD1934  
DLRCLK  
32 BITS  
INTERNAL  
DBCLK  
DSDATA  
DLRCLK  
INTERNAL  
DBCLK  
TDM-DSDATA  
Figure 19. Serial DAC Data Transmission in TDM Format Without DBCLK (Applicable Only If PLL Locks to DLRCLK)  
DLRCLK  
DBCLK  
DATA MUST BE VALID  
AT THIS BCLK EDGE  
MSB  
DSDATA  
Figure 20. I2S Pipeline Mode in DAC Serial Data Transmission (Applicable in Stereo and TDM Useful for High Frequency TDM Transmission)  
Rev. 0 | Page 24 of 28  
 
 
AD1934  
APPLICATION CIRCUITS  
240pF  
NPO  
Typical applications circuits are shown in Figure 21, Figure 22,  
and Figure 23. Recommended loop filters for LR clock and  
master clock as the PLL reference are shown in Figure 21.  
Output filters for the DAC outputs are shown in Figure 22 and  
Figure 23 for the noninverting and inverting cases, respectively.  
3
2
+
DAC OUT  
4.7µF  
+
604  
1
AUDIO  
OUTPUT  
4.75k4.75kΩ  
OP275  
3.3nF  
NPO  
4.99kΩ  
49.9kΩ  
270pF  
NPO  
4.99kΩ  
LRCLK  
MCLK  
LF  
LF  
39nF  
5.6nF  
+
2.2nF  
390pF  
Figure 22. Typical DAC Output Filter Circuit (Single-Ended, Noninverting)  
3.32k  
562Ω  
AVDD2  
AVDD2  
68pF  
NPO  
11k  
Figure 21. Recommended Loop Filters for LRCLK or MCLK PLL Reference  
2
3
DAC  
OUT  
4.7µF  
+
2.2nF  
NPO  
604Ω  
1
AUDIO  
OUTPUT  
11kΩ  
3.01kΩ  
CM  
OP275  
+
49.9kΩ  
270pF  
NPO  
0.1µF  
Figure 23. Typical DAC Output Filter Circuit (Single-Ended, Inverting)  
Rev. 0 | Page 25 of 28  
 
 
 
 
AD1934  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
9.00  
BSC SQ  
1.60  
MAX  
37  
48  
36  
1
PIN 1  
7.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
25  
12  
0.15  
0.05  
13  
24  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
VIEW A  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BBC  
Figure 24. 48-Lead Low Profile Quad Flat Package [LQFP]  
(ST-48)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
48-Lead LQFP  
48-Lead LQFP, 13Reel  
Evaluation Board  
Package Option  
ST-48  
ST-48  
AD1934YSTZ1  
–40°C to +105°C  
–40°C to +105°C  
AD1934YSTZ-RL1  
EVAL-AD1934EB  
1 Z = Pb-free part.  
Rev. 0 | Page 26 of 28  
 
 
AD1934  
NOTES  
Rev. 0 | Page 27 of 28  
AD1934  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06106-0-6/07(0)  
Rev. 0 | Page 28 of 28  

相关型号:

EVAL-AD1935EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1936EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1937EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1937EBZ

Four ADCs/Eight DACs with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1938AZ

4 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1938EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1939AZ

8-Channel DAC with PLL and Differential Outputs, 192 kHz, 24 Bits
ADI

EVAL-AD1939EB

4 ADC/8 DAC with PLL, 192 kHz, 24-Bit CODEC
ADI

EVAL-AD1940EB

SigmaDSP-TM Multichannel 28-Bit Audio Processor
ADI

EVAL-AD1953EB

SigmaDSP⑩ 3-Channel, 26-Bit Signal Processing DAC
ADI

EVAL-AD1954EB

SigmaDSP™ 3-Channel, 26-Bit Signal Processing DAC
ADI

EVAL-AD1955EB

High Performance Multibit with SACD Playback
ADI