EVAL-AD5520EB [ADI]

Per Pin Parametric Measurement Unit/Source Measure Unit; 每个引脚参数测量单元/源测量单元
EVAL-AD5520EB
型号: EVAL-AD5520EB
厂家: ADI    ADI
描述:

Per Pin Parametric Measurement Unit/Source Measure Unit
每个引脚参数测量单元/源测量单元

文件: 总20页 (文件大小:736K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Per Pin Parametric  
Measurement Unit/Source Measure Unit  
AD5520  
FEATURES  
GENERAL DESCRIPTION  
Force/Measure Functions  
The AD5520 is a single channel per pin parametric measure-  
Force Voltage/Current, Measure Current/Voltage  
Force Current/Voltage, Measure Current/Voltage  
Force/Measure Voltage Range 11 V  
4 Programmable Force/Measure Current Ranges  
4 A, 40 A, 400 A, 4 mA  
ment unit (PPMU) for use in semiconductor automatic test  
equipment. The part is also suited for use as a source  
measurement unit for instrumentation applications. It  
contains programmable modes to force a pin voltage and  
measure the corresponding current or force a current and  
measure the voltage. The AD5520 can force/measure over a  
±11 V range or currents up to ±4 mA with its on-board  
force amplifier. An external amplifier is required for wider  
current ranges. The device provides a force sense capability to  
ensure accuracy at the tester pin. A guard output is also  
available to drive the shield of a force/sense pair. The AD5520  
is available in a 64-lead LQFP package.  
Extended Current Ranges  
40 mA and 160 mA with External Driver  
Clamp Circuitry and Window Comparators On Board  
Guard Amplifier  
64-Lead LQFP Package  
APPLICATIONS  
Automatic Test Equipment  
Per Pin PMU, Shared Pin PMU, Device Power Supply  
Instrumentation  
Source Measure, Parametric Measurement, Precision  
Measurement  
FUNCTIONAL BLOCK DIAGRAM  
AV  
AV  
CC  
EE  
AD5520  
FOH  
BW SELECT  
FOH3  
FOH2  
FOH1  
FOH0  
FIN  
MEASI5H  
CLAMP  
MEASI4H  
MEASI3H  
MEASI2H  
MEASI1H  
DETECT  
CLH  
CLL  
MEASI0H  
REFGND  
G = 16  
MEASIOUT  
MEASIL  
I
SENSE  
INST AMP  
GUARDIN  
GUARD  
V
MEASOUT  
G = 1  
SENSE  
INST AMP  
MEASVH  
MEASVL  
G = 1  
MEASVOUT  
COMPARATOR  
CPH  
CPOH  
AGND  
QM5  
LOGICS  
CPOH  
CPL  
QM4  
CPCK  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(AVCC = +15 V 5%, AVEE = –15 V 5%, DVDD = 5 V 10%, AGND = 0 V, REFGND = 0 V,  
AD5520–SPECIFICATIONS DGND = 0 V. All specifications 0C to 70C, unless otherwise noted.)  
Parameter  
Min  
Typ1 Max  
Unit  
Test Conditions/Comments  
VOLTAGE FORCE MODE  
Force Control Output Voltage Range  
FOH Output Impedance  
FOH0  
Ϯ11  
V
k  
kΩ  
mV  
%
RLOAD = 10 k, CLOAD = 50 pF  
70  
2.5  
3
500  
60  
FOH1  
FOH2  
FOH3  
Input Offset Error  
Gain Error  
Ϯ1  
Ϯ5  
1
Ϯ1  
Clamp Voltage Error2  
% FS  
of FIN  
CURRENT MEASURE/FORCE  
Set with external sense resistors  
MODE0, RS = 125 kΩ  
MODE1, RS = 12.5 kΩ  
MODE2, RS = 12.5 kΩ  
MODE3, RS = 125 Ω  
FOH0  
FOH1  
FOH2  
FOH3  
4
40  
400  
4
µA  
µA  
µA  
mA  
CURRENT MEASURE MODE  
High Sense Input Range, VMEASIxH  
Linearity3  
Ϯ11  
Ϯ0.01  
Ϯ3  
V
% FSR  
nA  
+11 V > VFOL > –11 V  
Input Bias Current  
Ϯ1  
50  
Input Bias Current Drift1  
Output Offset Error  
pA/°C  
mV  
mV  
mV  
mV  
%
µV/°C  
mA  
dB  
Ϯ100  
Ϯ100  
Ϯ100  
Ϯ100  
MODE0  
MODE1  
MODE2  
MODE3  
Gain of 16  
Gain Error  
Ϯ0.1 Ϯ0.35  
Gain Error Temperature Coefficient4  
MEASIOUT Output Load Current  
CMRR  
30  
Ϯ4  
95  
@ DC  
CURRENT FORCE MODE  
Input Offset Error  
Ϯ10  
1
Ϯ1  
mV  
%
% FS  
With MODE0, MODE1, MODE2, MODE3  
of FIN  
Gain Error  
Clamp Current Error2  
VOLTAGE MEASURE MODE  
Differential Input Range  
Low Sense Input Voltage Range  
Linearity3  
Ϯ11  
Ϯ100  
V
mV  
% FSR  
mV  
MEASVL  
+11 V > VMEASVH to VMEASVL > –11 V  
FIN = 0 V, Measured @ MEASVOUT  
+0.005  
Ϯ10  
Input Offset Error  
Ϯ5  
Input Offset Error Temperature  
Coefficient1  
Ϯ15  
Ϯ0.03 Ϯ0.15  
2
Ϯ1  
50  
Ϯ4  
73  
mV/°C  
%
mV/°C  
nA  
pA/°C  
mA  
dB  
Gain Error  
Gain of 1  
@ DC  
Gain Error Temperature Coefficient4  
Input Bias Current  
Ϯ3  
Input Bias Current Drift4  
MEASVOUT Output Load Current  
CMRR4  
AMPLIFIER SETTLING TIME4, 5  
VSENSE Amp  
ISENSE Amp  
20  
12  
µs  
µs  
To 0.2%  
To 0.2%  
LOOP SETTLING4, 5  
COMPIN2 = 100 pF  
Settling to within 0.024% of 8 V step  
MODE0  
MODE1  
MODE2, MODE3  
MODE0  
MODE1, MODE2, MODE3  
MODE0, MODE1, MODE2, MODE3  
450  
285  
170  
2
1.8  
5.75  
600  
390  
240  
2.5  
2.4  
8.7  
µs  
µs  
µs  
COMPIN1 = 1000 pF  
COMPIN0 = 3000 pF  
ms  
ms  
ms  
–2–  
REV. A  
AD5520  
Parameter  
Min  
Typ1 Max  
Unit  
Test Conditions/Comments  
SLEW RATE4, 5  
50  
4.3  
1.28  
mV/µs  
mV/µs  
mV/µs  
COMPIN2 = 100 pF  
COMPIN1 = 1000 pF  
COMPIN0 = 3000 pF  
COMPARATOR  
CPH, CPL Input Range  
Input Offset  
Ϯ11  
Ϯ11  
V
mV  
VCPH > VCPL  
Ϯ7  
GUARD DRIVER  
Output Voltage  
V
Output Impedance  
Output Offset Voltage  
Load Current4  
130  
400  
Ϯ4  
Capacitive Load Only  
mV  
mA  
µs  
Output Settling Time4  
0.5  
2
100 pF Capacitive Load  
ANALOG REFERENCE INPUTS  
Force Control Input Range  
Force Control Input Impedance  
Clamp Control Input Range  
Clamp Control Input Impedance  
Comparator Threshold Input Range  
Comparator Threshold Input Impedance  
Input Capacitance4  
Ϯ11  
Ϯ11  
Ϯ11  
V
MΩ  
V
MΩ  
V
MΩ  
pF  
1
1
VCLH > VCLL  
1
3
ANALOG MEASUREMENT OUTPUTS  
Voltage Measure Output Impedance  
Current Measure Output Impedance  
Multiplexed Sense Output Impedance  
Input Capacitance  
2
3
1
kΩ  
MEASIxH, MEASVH, FOHx  
8
pF  
LOGIC INPUTS  
Input Current  
Ϯ1  
0.8  
µA  
V
V
All digital inputs together  
Input Low Voltage, VINL  
Input High Voltage, VIHL  
Input Capacitance4  
2.0  
2.4  
3
pF  
LOGIC OUTPUTS  
Output Low Voltage, VOL  
Output High Voltage, VOH  
4
0.4  
V
V
ISINK = 2 mA  
ISOURCE = 2 mA  
4
POWER REQUIREMENTS  
AVCC  
+14.25 +15 +15.75  
–14.25 –15 +15.75  
V
V
For specific performance6  
AVEE  
Power Supply Rejection Ratio, PSRR1  
FOH  
–25  
–16  
–15  
–55  
–10  
90  
dB  
dB  
dB  
dB  
dB  
dB  
V
mA  
mA  
mA  
100 kHz  
500 kHz  
1 MHz  
100 kHz  
500 kHz  
MEASOUT  
DC PSR  
DVDD  
IAVCC  
IAVEE  
IDVDD  
5
12  
12  
0.5  
Digital inputs at supply rails  
NOTES  
1Typical values are at 25°C and nominal supply, unless otherwise noted.  
2Full-scale = 11 V.  
3Full-scale range = 22 V.  
4Guaranteed by design and characterization but not subject to production test.  
5Force control amplifier dominates slew rate and settling time.  
6Operational with 12 V supplies, force/measure range is reduced to 8.5 V.  
Specifications subject to change without notice.  
REV. A  
–3–  
AD5520  
(AVCC = +15 V 5%, AVEE = –15 V 5%, AGND = 0 V, REFGND = 0 V, DGND = 0 V. All  
specifications 0C to 70C, unless otherwise noted.)  
TIMING CHARACTERISTICS1, 2  
DVDD  
Parameter  
5 V 10%  
3.3 V  
Unit  
Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
30  
40  
0
550  
320  
450  
150  
100  
240  
150  
100  
320  
0
200  
70  
40  
560  
320  
500  
800  
440  
240  
500  
440  
320  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
µs min  
ns min  
ns min  
ns min  
CS Falling Edge to STB Falling Edge Setup Time  
STB Pulse Width  
STB Rising Edge to CS Rising Edge Setup Time  
Data Setup Time  
CS Falling Edge to CPCK Rising Edge Setup Time  
CPCK Pulse Width  
CPCK to STB Falling Edge Setup Time  
STB Rising Edge to QMx, CLxDETECT Valid  
STB Rising Edge to CPOH, CPOL Valid  
Comparator Setup Time, MODE2, MODE3 settling  
Comparator Hold Time  
Comparator Output Delay Time  
Comparator Strobe Pulse Width  
t9  
t10  
t11  
t12  
t13  
NOTES  
1See Figure 1.  
2All input signals are specified with tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
Specifications subject to change without notice.  
CS  
t3  
t1  
t2  
STB  
t4  
AMx, ACx, FSEL,  
MSEL, CPSEL  
t5  
t6  
t7  
CPCK  
t8  
t9  
QM4, QM5,  
CLHDETECT,  
CLLDETECT  
CPOL, CPOH  
Figure 1. Timing Diagram  
t11  
MEASVOUT  
OR MEASIOUT  
CPCK  
CPOH, CPOL  
t10  
t13  
t12  
Figure 2. Comparator Timing  
–4–  
REV. A  
AD5520  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
Operating Temperature Range  
Commercial (J Version) . . . . . . . . . . . . . . . . . . 0°C to 70°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature, (TJ max) . . . . . . . . . 150°C  
AVCC to AVEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 V  
AVCC to AGND . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +17 V  
AVEE to AGND . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V, –17 V  
DVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
Digital Inputs to DGND . . . . . . . . . . –0.3 V to DVDD + 0.3 V  
Analog Inputs to AGND . . . . . AVCC + 0.3 V to AVEE – 0.3 V  
Package Power Dissipation . . . . . . . . . . . . . (TJ max – TA)/  
JA  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 47.8°C/W  
JA  
Lead Temperature (Soldering 10 sec) . . . . . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature . . . . . . . . . . . . . . . . . . . . 220°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
C
LH to CLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +34 V  
CPH to CPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +34 V  
REFGND, DGND . . . . . . . . . AVCC + 0.3 V to AVEE – 0.3 V  
ORDERING GUIDE  
Temperature Range Package Description  
0°C to 70°C  
Model  
Package Option  
AD5520JST  
AD5520JST-REEL 0°C to 70°C  
EVAL-AD5520EB  
64-Lead LQFP  
64-Lead LQFP  
ST-64-2  
ST-64-2  
Evaluation Board and Software  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD5520 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. A  
–5–  
AD5520  
PIN CONFIGURATION  
64-Lead LQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
AV  
EE_B  
1
2
3
4
5
6
CPH  
CPL  
47  
46  
MEASI5H  
MEASI4H  
FOH3  
DV  
DD  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
CPOH  
MEASI3H  
FOH2  
CPOL  
CPCK  
MEASI2H  
FOH1  
7
8
9
DGND  
AD5520  
CLHDETECT  
CLLDETECT  
(Not to Scale)  
MEASI1H  
FOH0  
10  
11  
12  
13  
QM4  
QM5  
MEASI0H  
MEASIL  
MOE  
CS  
MEASVH  
GUARD(NC)  
14  
15  
STB  
AC0  
AC1  
MEASVL  
AV  
16  
CC_G  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS  
Pin No.  
Mnemonic  
CPH  
CPL  
Description  
1
2
Upper Comparator Threshold Voltage Input, CPH > CPL.  
Lower Comparator Threshold Voltage Input, CPL < CPH.  
Digital Supply Voltage.  
3, 18  
DVDD  
4
5
6
CPOH  
CPOL  
CPCK  
DGND  
CLHDETECT  
CLLDETECT  
QM4  
Logic Output. When high, indicates MEASVOUT or MEASIOUT > CPH.  
Logic Output. When high, indicates MEASVOUT or MEASIOUT < CPL.  
Logic Input. Used to initiate comparator sampling and update CPOH and CPOL.  
Digital Ground.  
Logic Output. When high, indicates upper clamp active. For details, see the Clamp Function section.  
Logic Output. When high, indicates lower clamp active. For details, see the Clamp Function section.  
7, 17  
8
9
10  
Logic Output. When high, indicates current range Mode 4 is enabled. May be used to drive external  
relay or switch. For details, see the High Current Ranges section.  
11  
QM5  
Logic Output. When high, indicates current range Mode 5 is enabled. May be used to drive external  
relay or switch. For details, see the High Current Ranges section.  
12  
13  
MOE  
CS  
Active Low MEASOUT Enable.  
Active Low Logic Input. The device is selected when this pin is low. For details, see the Interface  
section.  
14  
15  
16  
STB  
AC0  
AC1  
Active Low Logic Input. Used in conjunction with CPCK and CS to configure the device for differ-  
ent configurations. Rising edge of STB triggers sequence inputs. For details, see the Interface section.  
Logic Input. Used in conjunction with AC1 to select one of three external compensation capacitors.  
For details, see the Force Control Amplifier section.  
Logic Input. Used in conjunction with AC0 to select one of three external compensation capacitors.  
For details, see the Force Control Amplifier section.  
–6–  
REV. A  
AD5520  
PIN FUNCTION DESCRIPTIONS (continued)  
Description  
Pin No.  
Mnemonic  
19  
AM2  
Logic Input. Used in conjunction with AM1 and AM0 to select one of six current ranges or to enable  
standby mode. For details, see the Current Ranges section.  
20  
21  
22  
23  
24  
25  
AM1  
Logic Input. Used in conjunction with AM2 and AM0 to select one of six current ranges or to enable  
standby mode. For details, see the Current Ranges section.  
Logic Input. Used in conjunction with AM2 and AM1 to select one of six current ranges or to enable  
standby mode. For details, see the Current Ranges section.  
Logic Input. When high, device is in standby mode of operation. For details, see the Standby  
Mode section.  
Logic Input. Force mode select. Used to select between current or voltage force operation. For details,  
see the Force Voltage or Force Current section.  
Logic Input. Measure mode select. Used to connect MEASOUT to either MEASIOUT when high or  
MEASVOUT when low.  
Logic Input. Comparator select. Used to compare CPL, CPH to MEASVOUT when low, or to  
MEASIOUT when high. For details, see the Comparator Function and Strobing section.  
AM0  
STANDBY  
FSEL  
MSEL  
CPSEL  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57, 59  
58  
60  
61  
62  
63  
64  
AVEE  
AVCC  
AGND  
AVEE_G  
Most Negative Supply Voltage.  
Most Positive Supply Voltage.  
MEASx Input Ground.  
Most Negative Supply Voltage.  
Guard Output.  
No Connect.  
Guard Input.  
Most Positive Supply Voltage.  
DUT Voltage Sense Inputs (Low Sense).  
No Connect.  
DUT Voltage Sense Inputs (High Sense).  
DUT Current Sense Inputs (Low Sense).  
DUT Current Sense Inputs (High Sense).  
Force Control Voltage Output.  
DUT Current Sense Inputs (High Sense).  
Force Control Voltage Output.  
DUT Current Sense Inputs (High Sense).  
Force Control Voltage Output.  
DUT Current Sense Inputs (High Sense).  
Force Control Voltage Output.  
DUT Current Sense Inputs (High Sense).  
DUT Current Sense Inputs (High Sense).  
Most Negative Supply Voltage.  
GUARD  
NC  
GUARDIN  
AVCC_G  
MEASVL  
GUARD(NC)  
MEASVH  
MEASIL  
MEASI0H  
FOH0  
MEASI1H  
FOH1  
MEASI2H  
FOH2  
MEASI3H  
FOH3  
MEASI4H  
MEASI5H  
AVEE_B  
FOH  
AVCC_B  
External Force Driver Control Voltage Output.  
Most Positive Supply Voltage.  
COMPOUT0  
COMPOUT1  
COMPOUT2  
COMPIN0  
COMPIN1  
COMPIN2  
REFGND  
MEASOUT  
MEASIOUT  
MEASVOUT  
FIN  
Compensation Capacitor 0 Output.  
Compensation Capacitor 1 Output.  
Compensation Capacitor 2 Output.  
Compensation Capacitor 0 Input.  
Compensation Capacitor 1 Input.  
Compensation Capacitor 2 Input.  
Analog Input/Output Reference Ground.  
Multiplexed DUT Voltage/Current Sense Output. For details, see the Measured Parameter section.  
DUT Current Sense Output.  
DUT Voltage Sense Output.  
Force Control Voltage Input.  
Upper Clamp Voltage Input CLH > CLL.  
Lower Clamp Voltage CLL < CLH.  
CLH  
CLL  
REV. A  
–7–  
AD5520–Typical Performance Characteristics  
0.0030  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
V
V
= +15V  
= –15V  
V
V
= +15V  
= –15V  
DD  
SS  
DD  
SS  
MODE 3  
MODE 3  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (C)  
TEMPERATURE (C)  
TPC 1. Voltage Sense Amplifier Linearity vs. Temperature  
TPC 4. Current Sense Linearity vs. Temperature  
80  
140  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +15V  
= –15V  
I
CMRR  
DD  
SS  
SENSE  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25C  
120  
100  
80  
60  
40  
20  
0
A
T
= 25C  
A
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 2. Voltage Sense Amplifier CMRR vs. Frequency  
TPC 5. Current Sense Amplifier CMRR vs. Frequency  
10  
5
0
C
= 0.1nF  
0
–10  
–20  
–30  
–40  
–50  
–60  
COMP  
–5  
C
= 0.1nF  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
COMP  
C
= 1.0nF  
COMP  
C
= 1.0nF  
COMP  
C
= 3.3nF  
10k  
COMP  
C
= 3.3nF  
10k  
COMP  
V
V
T
= +15V  
= –15V  
V
V
T
= +15V  
= –15V  
DD  
SS  
DD  
SS  
= 25C  
= 25C  
A
A
100  
1k  
100k  
100  
1k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 3. Force Amplifier Bandwidth–MODE 0 (4 A)  
TPC 6. Force Amplifier Bandwidth–MODE 1 (40 A)  
–8–  
REV. A  
AD5520  
0
–5  
0
–5  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25C  
A
T
= 25C  
A
C
= 0.1nF  
COMP  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
C
= 0.1nF  
COMP  
C
= 1.0nF  
COMP  
C
= 1.0nF  
COMP  
C
= 3.3nF  
COMP  
C
= 3.3nF  
COMP  
100  
1k  
10k  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
FREQUENCY (Hz)  
TPC 7. Force Amplifier Bandwidth–MODE 2 (400 A)  
TPC 10. Force Amplifier Bandwidth–MODE 3 (4 mA)  
5
30  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25C  
A
0
–5  
20  
10  
I
SENSE  
–10  
–15  
–20  
–25  
0
V
SENSE  
–10  
–20  
–30  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25C  
A
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 8. Guard Amplifier Bandwidth  
TPC 11. Voltage Sense and Current Sense  
Amplifier Bandwidths  
20  
10  
0
–5  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25C  
A
T
= 25C  
A
0
–10  
–15  
–20  
–25  
–30  
–10  
–20  
–30  
–40  
–50  
–60  
100k  
1M  
10M  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 9. Current Sense Amplifier AC PSRR  
TPC 12. Force Amplifier AC PSRR–MODE 3,  
CCOMP = 100 pF  
REV. A  
–9–  
AD5520  
20  
16  
14  
12  
10  
8
V
V
= +15V  
= –15V  
= 25C  
DD  
SS  
10  
T
A
V
CC  
0
–10  
–20  
–30  
–40  
–50  
6
4
2
V
DUT  
0
–60  
100k  
–2  
1M  
10M  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (Hz)  
TIME (ms)  
TPC 13. Voltage Sense Amplifier AC PSRR  
TPC 15. Power Up  
700  
9
8
7
6
5
4
3
2
1
0
COMPIN2 = 100pF  
COMPIN1 = 1000pF  
600  
500  
400  
300  
200  
100  
0
GUARD  
COMPIN2 = 3000pF  
V
SENSE  
FOH  
I
SENSE  
100  
–1  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008  
TIME (s)  
TPC 14. Noise Spectral Density  
TPC 16. Settling Time, Mode 2  
–10–  
REV. A  
AD5520  
THEORY OF OPERATION  
DAC  
The AD5520 is a single channel per pin parametric measurement  
unit (PPMU) for use in semiconductor automatic test equip-  
ment. It contains programmable modes to force a pin voltage and  
measure the corresponding current (FVMI), force current mea-  
sure voltage (FIMV), force current measure current (FIMI), and  
force voltage measure voltage (FVMV). The PPMU can force or  
measure a voltage from –11 V to +11 V. It can force or measure a  
current over four ranges: 4 µA, 40 µA, 400 µA, and 4 mA. The  
addition of an external driver allows two extended ranges.  
FIN  
FOHx  
MEASIHx  
MEASIL  
G = 16  
G = 1  
MEASIOUT  
MEASVOUT  
R
S
MEASVH  
MEASVL  
DUT  
The device provides a force sense capability to ensure accuracy  
at the tester pin. A guard output is also available to drive the  
shield of a force/sense pair.  
Figure 3. PMU in Standby Mode  
Force Voltage or Force Current  
FSEL is an input that determines whether the PPMU forces a  
voltage or current.  
The AD5520 has an on-board window comparator that pro-  
vides two bits of useful information, DUT too low or too high.  
Also provided on the chip is clamp circuitry that will flag via  
CLHDETECT and CLLDETECT if the voltage applied to  
FIN or across the DUT has exceeded the voltage applied to  
CLL and CLH.  
Table II. FSEL Function  
On chip is clamp circuitry that clamps the output of the force  
amplifier if the voltage at MEASIOUT and MEASVOUT  
exceeds CLL and CLH.  
FSEL  
Function  
Low  
Voltage Force and Current Clamp with  
MEASIOUT Voltage  
High  
Current Force and Voltage Clamp with  
MEASVOUT Voltage  
INTERFACE  
The AD5520 PPMU is controlled via a number of digital inputs,  
which are discussed in detail in the following sections. All inputs  
are TTL compatible. CS is used to select the device while STB  
(active low input) latches data available on the other digital inputs  
and updates any required digital outputs. The rising edge of STB  
triggers sequence inputs. The remaining digital inputs control the  
function of the PMU—which measure mode it is in, which com-  
pensation capacitor is used, and the selected current range.  
Measured Parameter  
MEASOUT is a muxed output that tracks the sensed parameter,  
MSEL connects it to the output of either the current sense  
amplifier or the voltage sense amplifier, depending on which is  
the measured parameter of interest.  
The MEASOUT pin will be connected back to an ADC to  
allow the measured value to be converted to a digital code.  
Standby Mode  
The AD5520 may be placed into standby mode via the standby  
logic input. In this mode, the force amplifier is disconnected from  
the force input (FIN), the switch in series with the force output  
pins, FOHx, is opened, and the current measure amplifier is dis-  
connected from the sense resistors. The voltage measure amplifier  
is still connected across the DUT, so DUT voltage measure-  
ments may still be made while in standby mode. Figure 3 shows  
the configuration of the PMU while in standby mode.  
Table III. MEASOUT Connected to  
Voltage or Current  
MSEL  
Function  
Low  
High  
MEASOUT = DUT Voltage  
MEASOUT = DUT Current  
The MEASOUT pin may also be made high impedance through  
the MOEB logic input.  
Table I. Standby Mode  
STANDBY  
Function  
Table IV. MOEB Allows MEASOUT  
to Go High Impedance  
Low  
High  
Normal Force Mode  
Standby Mode  
MOEB  
Function  
Low  
High  
Enable MEASOUT Output  
Hi-Z MEASOUT Output  
REV. A  
–11–  
AD5520  
Current Ranges  
After CPSEL has selected which amplifier output is of interest,  
logic input CPCK is used to initiate comparator sampling and  
update the logic outputs CPOH and CPOL, indicating if the  
voltages at MEASIOUT or MEASVOUT have exceeded volt-  
ages set at CPL or CPH (thus providing DUT too high or DUT  
too low information). A rising edge on STB is required to clock  
the CPOH and CPOL data out.  
A number of current ranges are possible with the AD5520. The  
AM0, AM1, and AM2 pins are digital inputs used to establish  
full-scale current range of the PMU.  
Table V. Selection of Current Range  
AM0 AM1 AM2 Function  
Table VIII. CPCK Synchronous Logic Outputs  
Low Low Low Current Range MODE0 (up to 4 µA)  
High Low Low Current Range MODE1 (up to 40 µA)  
Low High Low Current Range MODE2 (up to 400 µA)  
High High Low Current Range MODE3 (up to 4 mA)  
Low Low High Current Range MODE4 (External  
Buffer Mode)  
High Low High Current Range MODE5 (External  
Buffer Mode)  
Low High High Standby (same as STANDBY = High)  
CPOH  
Function  
Low  
High  
MEASVOUT or MEASIOUT < CPH  
MEASVOUT or MEASIOUT > CPH  
CPOL  
Function  
Low  
High  
MEASVOUT or MEASIOUT > CPL  
MEASVOUT or MEASIOUT < CPL  
High High High Standby (same as STANDBY = High)  
Clamp Function  
Clamp circuitry is also included on chip, allowing the output of  
the force amplifier to be clamped in the event of the voltage at  
MEASIOUT and MEASVOUT exceeding CLL and CLH. The  
clamp circuitry play their role in the event of a short or open  
circuit. When in force current range, the voltage clamps protect  
the DUT in the event of an open circuit. Likewise, when forcing  
a voltage and a short circuit occurs, the current clamps will  
protect the DUT in this case. The clamps also function to pro-  
tect the DUT in the event of a transient voltage or current spike  
that may occur when changing to a different operating mode or  
when programming the device to a different current range.  
RS Selection  
The AD5520 is designed so that the voltage drop across each of  
the RS resistors will be less than 500 mV when maximum current  
is flowing through them. To support other current ranges, these  
sense resistor values may be changed. A force amplifier can  
drive a maximum of 6 mA. It is not recommended to increase  
the maximum current above the nominal range.  
The two external current ranges use an external buffer to drive the  
required current. Our example uses 40 mA and 160 mA ranges.  
These ranges can be changed to suit user requirements for a high  
current range.  
The digital output flags, which indicate a clamp limit has been  
hit, are CLHDETECT for the upper clamp and CLLDETECT  
output for the lower clamp.  
Force Control Amplifier  
The force control amplifier requires external capacitors connected  
between the COMPOUTx and COMPINx pins. For stability  
with large capacitance at the DUT, the largest capacitance value  
(3000 pF) should be selected. The force control amplifier should  
always contribute the dominant pole in the control loop. Set-  
tling times will increase with larger capacitances. ACx inputs  
select which external compensation capacitor is used.  
Table IX. Clamp Detect Outputs  
CLHDETECT  
Function  
Low  
High  
Upper Clamp Inactive  
Upper Clamp Active  
CLLDETECT  
Function  
Table VI. AC0, AC1 Compensation Capacitor Selection  
AC0 AC1 Function  
Low  
High  
Lower Clamp Inactive  
Lower Clamp Active  
Low Low  
High Low  
Select External Compensation Capacitor 0  
Select External Compensation Capacitor 1  
High Current Ranges  
With the use of an external high current amplifier, two high  
current ranges are possible. The current range values can be  
selected as required in the application through appropriate  
selection of the sense resistors connected between MEASI5H,  
MEASI4H, and MEASIL. When one of these high current  
ranges (MODE 4 or MODE 5) is selected via the AMx control  
lines, the appropriate QM4 or QM5 output will be enabled.  
These outputs can thus be used to control relays connected in  
series with the high current amplifier as shown in Figure 8.  
Low High Select External Compensation Capacitor 2  
Comparator Function and Strobing  
The AD5520 has an on-board window comparator that pro-  
vides two bits of useful information, DUT too low or too high.  
CPSEL is the digital input that controls this function, selecting  
whether it should compare to the voltage sense or the current  
sense amplifier.  
Table VII. Comparator Function Select  
Table X. High Current Range Logic Outputs  
CPSEL  
Function  
QM4  
QM5  
Function  
Low  
High  
Compare CPL, CPH to MEASVOUT  
Compare CPL, CPH to MEASIOUT  
High  
Low  
Low  
High  
Current Range MODE 4 Enable Output  
Current Range MODE 5 Enable Output  
–12–  
REV. A  
AD5520  
CIRCUIT OPERATION  
Force Voltage  
the CLL and CLH levels to ensure the clamp voltages have not  
been exceeded. Strobing CPCK and STB will provide information  
about the voltage level with respect to the comparator levels,  
CPH and CPL.  
Most PMU measurements are performed while in force voltage  
and measure current modes, for example, when the device is  
used as a device power supply, or in continuity or leakage  
testing. In the force voltage mode, the voltage at analog input  
FIN is mapped directly to the voltage forced at the DUT.  
FIN  
FOHx  
MEASIHx  
When in force voltage and measure current modes, the maxi-  
mum voltage applied to the input corresponds to the maximum  
current outputs. Figure 4 shows the transfer function when forcing  
a voltage.  
G = 16  
G = 1  
VFIN  
R
S
CLH  
CLL  
MEASIL  
MEASVH  
V
DUT  
R
DUT  
VCLL  
VCLH  
MEASVL  
REFGNDI/V  
R
DUT  
16  
V
CLH  
R
S
V
V
VMEASVOUT  
VMEASIOUT  
V
V
< I  
< I  
R 16  
V
V
> I  
> I  
R 16  
S
V
CLH  
CLL  
> I  
R 16  
V
CLH  
CLL  
DUT  
DUT  
S
CLH  
CLL  
DUT  
DUT  
DUT  
DUT  
S
FIN  
CONDITION  
OUTPUT  
R 16  
R 16  
V
< I  
R 16  
S
S
S
V
= V  
CLH  
V
= V  
V
= V  
FIN  
DUT  
DUT CLL  
DUT  
R
DUT  
16  
V
CLL  
R
S
Figure 5. Voltage Force, Measure Current Mode  
Force Current  
In the force current mode, the voltage at FIN is now converted  
to a current through the following relationship:  
Force Current =VFIN /RSENSE  
I
DUT  
Figure 6 shows a simplified diagram of the PMU when in  
force current mode. The control loop consists of the force  
amplifier with the current sense amplifier making up the feed-  
back path. In this case, voltage at the DUT is sensed across  
the voltage measure amplifier (Gain = 1) and presented at  
the MEASVOUT output.  
V
CLH  
16  
R
S
V
CLH  
V
FIN  
FIN  
V
CLH  
V
CLL  
FOHx  
MEASIHx  
R
16  
S
G = 16  
G = 1  
VFIN  
R
S
CLH  
CLL  
MEASIL  
MEASVH  
R
DUT  
VCLL  
VCLH  
Figure 4. Voltage Force Transfer Function  
Measure Current  
MEASVL  
REFGNDI/V  
Figure 5 shows a simplified diagram of the PMU when in force  
voltage mode. The control loop consists of the force amplifier  
with the voltage sense amplifier making up the feedback path.  
Current flowing through the DUT is measured by sensing the  
current flowing through a selectable sense resistor, which is in  
series with the DUT. The current sense amplifier (Gain = 16)  
generates a voltage at its output, which is proportional to the  
current flowing through the DUT. This voltage is compared to  
V
V
VMEASVOUT  
VMEASIOUT  
V
< V  
< V  
V
> V  
> V  
V
V
> V  
< V  
CLH  
CLL  
DUT  
DUT  
CLH  
CLL  
DUT  
DUT  
CLH  
CLL  
DUT  
DUT  
CONDITION  
OUTPUT  
V
V
V
V
V
FIN  
S
CLH  
CLL  
I
=
I
=
I
=
DUT  
DUT  
DUT  
R
R
R
S
S
Figure 6. Current Force, Voltage Measure Mode  
REV. A  
–13–  
AD5520  
Figure 7 illustrates the transfer function of the current force mode.  
external compensation capacitors are added. As mentioned, mak-  
ing an accurate measurement in the fastest time while avoiding  
overshoots and ringing is the key requirement in any ATE system.  
This in itself provides challenges. The external compensation  
capacitors set up different settling times or bandwidths on the force  
control amplifier, and, while one compensation capacitor value  
may suit one range, it may not suit other ranges. To optimize  
measurement performance and speed, differences in signal behav-  
ior on each range and frequency of use of each range need to be  
taken into account.  
I
DUT  
V
CLH  
R
DUT  
V
FIN  
When selecting a faster settling time, there is a trade-off between  
the faster settling, overshoots, and ringing. A small compensa-  
tion value will result in faster settling but may incur penalties in  
overshoots or ringing at the DUT. Compensation capacitor  
selection should be optimized to ensure minimum overshoots  
while still giving good settling time performance.  
V
CLL  
R
DUT  
While careful selection of the compensation capacitor is required  
to minimize the settling time, another factor can greatly contribute  
to the overall settling of the loop if the feedback loop is broken  
in some manner and the force control amplifier goes to either  
the positive or negative rails. There is a finite amount of time  
required for the amplifier to recover from this condition, typi-  
cally 85 µs, which adds to the settling of the loop. Ensuring that  
the force control amplifier never goes into saturation is the best  
solution. This solution can be helped by putting the device into  
standby mode at any time the operating mode or range selection  
is changed. In addition, ensure that the selected output range  
can supply the required current needed by the DUT.  
V
DUT  
V
CLH  
V
CLH  
V
FIN  
V
CLH  
V
CLH  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful consideration  
to the power supply and the ground return layout helps to ensure  
the rated performance. The printed circuit board on which  
the AD5520 is mounted should be designed so that the analog  
and digital sections are separated and confined to certain areas  
of the board. If the PMU is in a system where multiple devices  
require an AGND-to-DGND connection, the connection should  
be made at one point only. The star ground point should be  
established as close as possible to the device.  
Figure 7. Current Force Transfer Function  
Measure Voltage  
A DUT voltage is tested via the voltage measure amplifier by a  
window comparator to ensure that CPH and CPL levels are not  
exceeded. In addition, the DUT voltage is automatically tested  
against the voltage levels at the clamp, and clamp flags are  
enabled if the DUT voltage exceeds either of the levels.  
This PMU should have ample supply bypassing of 10 µF in  
parallel with 0.1 µF on the supply located as close to the pack-  
age as possible, ideally right up against the device. The 0.1 µF  
capacitor should have low effective series resistance (ESR) and  
effective series inductance (ESI), such as the common ceramic  
types that provide a low impedance path to ground at high  
frequencies, to handle transient currents due to internal logic  
switching. Low ESR, 1 µF to 10 µF, tantalum or electrolytic  
capacitors should also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
Short Circuit Protection  
The AD5520 is designed to withstand a direct short circuit on  
any of the amplifier outputs.  
SETTLING TIME CONSIDERATIONS  
Fast throughput is a key requirement in automatic test equipment  
because it relates directly to the cost of manufacturing the DUT,  
thus reducing the time required to make a DAC measurement is of  
upmost importance. When taking measurements using a PMU, the  
limiting factor is usually the time it takes the output to settle to the  
required accuracy so a measurement can be taken. DUT capaci-  
tance, measurement accuracy, and the design of the PMU are the  
major contributors to this time. Figure 8 shows a simplified block  
diagram of the AD5520 PMU. In brief, the device consists of a  
force control amplifier, access to a number of selectable sense  
resistors, a voltage measure instrumentation amplifier, and a  
current measure instrumentation amplifier. To optimize the  
performance of the device, there are also nodes provided where  
Fast switching signals, such as clocks, should be shielded with  
digital ground to avoid radiating noise to other parts of the  
board and should never be run near the reference inputs.  
Avoid crossover of digital and analog signals. Traces on oppo-  
site sides of the board should run at right angles to each other.  
This reduces the effects of feedthrough through the board. A  
microstrip technique is by far the best but not always possible  
with a double-sided board. In this technique, the component  
side of the board is dedicated to the ground plane while signal  
traces are placed on the solder side.  
–14–  
REV. A  
AD5520  
It is good practice to employ compact, minimum lead length  
PCB layout design. Leads to the input should be as short as  
possible to minimize IR drops and stray inductance.  
required, an external amplifier must be used with relays to switch  
in the different current ranges to the DUT. Other components  
are also required to make the PMU function. The PMU requires  
a number of discrete voltage levels: five DAC levels for each  
PMU used in the system, two levels each for the comparator  
and clamps, and one voltage level for the AD5520 force input  
voltage. To utilize the information gathered from the DUT, an  
ADC (such as the AD7665 16-Bit ADC) must be connected to  
the MEASOUT pin to convert the measured current or voltage  
to the digital world for analysis.  
TYPICAL CONNECTION CIRCUIT FOR THE AD5520  
Figure 8 shows the AD5520 connected as it would be in a typical  
application. The external components required are three com-  
pensation capacitors and six sense resistors, depending on how  
many ranges are required. If high current ranges > 6 mA are  
3000pF  
1000pF  
100pF  
+15V –15V  
AV  
EE  
AV  
CC  
AD5520  
AD815  
FOH  
FOH3  
BW SELECT  
RELAY  
FOH2  
FOH1  
FOH0  
FIN  
FORCE  
AMPLIFIER  
<؎11.5V  
MEASI5H  
CLAMP  
DETECT  
MEASI4H  
MEASI3H  
MEASI2H  
3.126⍀  
12.5⍀  
125⍀  
CLH  
CLL  
MEASI1H  
MEASI0H  
1.25k⍀  
12.5k⍀  
REFGND  
125k⍀  
G = 16  
MEASIOUT  
MEASIL  
I
SENSE  
INST AMP  
GUARDIN  
GUARD  
MEASOUT  
V
SENSE  
G = 1  
Յ؎11V  
INST AMP  
MEASVH  
MEASVL  
G = 1  
DUT  
MEASVOUT  
COMPARATOR  
CPH  
AGND  
QM5  
<؎100mV  
CPOH  
LOGICS  
QM4  
CPOH  
CPL  
CPCK  
Figure 8. Typical Configuration of the AD5520 as Used in an ATE Circuit  
REV. A  
–15–  
AD5520  
TYPICAL APPLICATION CIRCUIT  
centronics connector to a PC. PC-based software to control the  
AD5520 is provided as part of the evaluation kit. The evalua-  
tion board schematic is shown in Figure 10. Note that VDD and  
VSS must provide sufficient headroom for the force and measure  
voltage range. In addition to the supply voltages for the evalua-  
tion board, it is also necessary to provide the following voltage  
levels for the clamp, comparator, and the force input pin—CLL,  
CLH, CPL, CPH, and FIN. SMB connections are provided  
for these voltage inputs. To use the evaluation board, it will also  
be necessary to provide a DUT connected via the gold pins.  
Figure 9 shows the AD5520 as it would be used in an ATE  
system. This device could be used as a per pin parametric unit  
in order to speed up the rate at which testing could be done. It  
could also be used as a DUT power supply, as shown in the  
application circuit. The central PMU shown in the block  
diagram is usually a highly accurate PMU and is shared among a  
number of pins in the tester. In general, many discrete levels are  
required in an ATE system for the pin drivers, comparators,  
clamps, and active loads. DAC devices, such as the AD5379, offer  
a highly integrated solution for a number of these levels. The  
AD5379 is a dense 40-channel DAC designed with high channel  
requirements, like ATE in mind.  
Both AGND and DGND inputs are provided on the board.  
The AGND and DGND planes are connected at one location  
close to the AD5520. It is recommended not to connect AGND  
and DGND elsewhere in the system to avoid ground loop prob-  
lems. REFGND is routed back to AGND at the power block to  
maintain a clean ground reference for accurate measurements.  
The flexible function of the AD5520 also makes it suited for use in  
instrumentation applications such as source measure units. Source  
measure units are programmable instruments capable of sourcing  
and measuring voltage or current simultaneously. The AD5520  
provides a more integrated solution in such equipment.  
Each supply is decoupled to the relevant ground plane with  
10 F and 0.1 F capacitors. The device supply pin is again  
decoupled with a 10 F and 0.1 F capacitor pair to the relevant  
ground plane.  
EVALUATION BOARD FOR THE AD5520 PMU  
A full featured evaluation kit is available for the AD5520. It  
consists of an evaluation board with direct hookup via a 36-way  
Care should be taken when replacing devices to ensure that  
the pins line up correctly with the PCB pads.  
CENTRAL PMU  
DAC  
GUARD AMP  
PPMU  
ADC  
VCH  
DAC  
DAC  
ADC  
VTERM  
DAC  
VH  
TIMING DATA  
MEMORY  
DEVICE UNDER  
TEST (DUT)  
DAC  
RELAYS  
50COAX  
TIMING  
FORMATTER  
DE-SKEW  
DRIVER  
VL  
GENERATOR  
DLL, LOGIC  
VCL  
GUARD  
AMP  
DAC  
DAC  
DAC  
GND SENSE  
DEVICE POWER  
SUPPLIES  
VTH  
VTL  
DAC  
COMPARE  
MEMORY  
FORMATTER  
DE-SKEW  
COMP  
ADC  
DAC  
ACTIVE LOAD  
IOL  
DAC  
DAC  
VCOM  
DAC  
IOH  
Figure 9. Typical Application ATE Circuit  
–16–  
REV. A  
AD5520  
R L 2  
– G Y 6 H R E L A  
R L 1  
R 7  
R 6  
– G Y 6 H R E L A  
1 2 . R 4 5 ,  
1 2 4 R 4 ,  
1 . 2 R 4 3 k ,  
1 2 . R 4 2 k ,  
1 2 4 R k 1 ,  
D [ 0 : 7 ]  
Figure 10. Evaluation Board Schematic  
–17–  
REV. A  
AD5520  
OUTLINE DIMENSIONS  
64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
0.75  
0.60  
0.45  
12.00 BSC  
1.60  
MAX  
SQ  
64  
49  
1
48  
SEATING  
PLANE  
PIN 1  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
10؇  
6؇  
2؇  
1.45  
1.40  
1.35  
0.20  
0.09  
VIEW A  
7؇  
3.5؇  
0؇  
16  
33  
0.15  
0.05  
17  
32  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
0.50  
BSC  
VIEW A  
ROTATED 90؇ CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BCD  
–18–  
REV. A  
AD5520  
Revision History  
Location  
Page  
10/03—Data Sheet changed from REV. 0 to REV. A.  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
REV. A  
–19–  
–20–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY