EVAL-AD5620EB [ADI]

Single, 12-/14-/16-Bit nanoDAC with 5 ppm/C On-Chip Reference in SOT-23; 单, 12位/ 14位/ 16位属于nanoDAC用5ppm的/ C片内基准采用SOT -23
EVAL-AD5620EB
型号: EVAL-AD5620EB
厂家: ADI    ADI
描述:

Single, 12-/14-/16-Bit nanoDAC with 5 ppm/C On-Chip Reference in SOT-23
单, 12位/ 14位/ 16位属于nanoDAC用5ppm的/ C片内基准采用SOT -23

文件: 总24页 (文件大小:554K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single, 12-/14-/16-Bit nanoDAC™ with  
5 ppm/°C On-Chip Reference in SOT-23  
AD5620/AD5640/AD5660  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
V
DD  
Low power, single nanoDACs  
AD5660: 16 bits  
AD5640: 14 bits  
REFOUT  
GND  
1.25/2.5V  
REF  
AD5620/AD5640/AD5660  
POWER-ON  
RESET  
V
V
FB  
AD5620: 12 bits  
12-bit accuracy guaranteed  
On-chip, 1.25 V/2.5 V, 5 ppm/°C reference  
Tiny 8-lead SOT-23/MSOP packages  
Power-down to 480 nA @ 5 V, 200 nA @ 3 V  
3 V/5 V single power supply  
Guaranteed 16-bit monotonic by design  
Power-on reset to zero/midscale  
3 power-down functions  
REF(+)  
OUTPUT  
BUFFER  
DAC  
REGISTER  
OUT  
16-BIT  
DAC  
INPUT  
CONTROL  
LOGIC  
POWER-DOWN  
CONTROL LOGIC  
RESISTOR  
NETWORK  
Serial interface with Schmitt-triggered inputs  
Rail-to-rail operation  
SYNC interrupt facility  
SYNC SCLK DIN  
Figure 1.  
APPLICATIONS  
Process control  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
GENERAL DESCRIPTION  
The AD5620/AD5640/AD5660, members of the nanoDAC  
family of devices, are low power, single, 12-/14-/16-bit, buffered  
voltage-out DACs and are guaranteed monotonic by design.  
The AD5620/AD5640/AD5660-1 parts include an internal,  
1.25 V, 5 ppm/°C reference, giving a full-scale output voltage  
range of 2.5 V. The AD5620/AD5640/AD5660-2-3 parts include  
an internal, 2.5 V, 5 ppm/°C reference, giving a full-scale output  
voltage range of 5 V. The reference associated with each part is  
available at the VREFOUT pin.  
PRODUCT HIGHLIGHTS  
1. 12-/14-/16-bit nanoDAC—12-bit accuracy guaranteed.  
2. On-chip, 1.25 V/2.5 V, 5 ppm/°C reference.  
3. Available in 8-lead SOT-23 and 8-lead MSOP packages.  
4. Power-on reset to 0 V or midscale.  
The parts incorporate a power-on reset circuit to ensure that the  
DAC output powers up to 0 V (AD5620/AD5640/AD5660-1-2)  
or midscale (AD5620-3 and AD5660-3) and remains there until  
a valid write takes place. The parts contain a power-down  
feature that reduces the current consumption of the device to  
480 nA at 5 V and provides software-selectable output loads  
while in power-down mode. The power consumption is  
2.5 mW at 5 V, reducing to 1 μW in power-down mode.  
5. 10 μs settling time.  
RELATED DEVICE  
Part No.  
Description  
AD5662  
2.7 V to 5.5 V, 16-bit DAC in SOT-23, external  
reference  
The AD5620/AD5640/AD5660 on-chip precision output  
amplifier allows rail-to-rail output swing to be achieved. For  
remote sensing applications, the output amplifier’s inverting  
input is available to the user. The AD5620/AD5640/AD5660 use  
a versatile 3-wire serial interface that operates at clock rates up  
to 30 MHz and is compatible with standard SPI®, QSPI™,  
MICROWIRE™, and DSP interface standards.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD5620/AD5640/AD5660  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Amplifier........................................................................ 17  
Serial Interface............................................................................ 17  
Input Shift Register .................................................................... 18  
Applications....................................................................................... 1  
Product Highlights ........................................................................... 1  
Related Device................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD5620/AD5640/AD5660-2-3 .................................................. 3  
AD5620/AD5640/AD5660-1...................................................... 5  
Timing Characteristics ................................................................ 7  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 16  
Theory of Operation ...................................................................... 17  
D/A Section................................................................................. 17  
Resistor String............................................................................. 17  
Internal Reference ...................................................................... 17  
Interrupt .......................................................................... 18  
SYNC  
Power-On Reset.......................................................................... 19  
Power-Down Modes .................................................................. 19  
Microprocessor Interfacing....................................................... 19  
Applications..................................................................................... 21  
Using an REF19x as a Power Supply for the  
AD5620/AD5640/AD5660 ....................................................... 21  
Bipolar Operation Using the AD5660..................................... 21  
Using the AD5660 as an Isolated, Programmable,  
4 to 20 mA Process Controller ................................................. 21  
Using the AD5620/AD5640/AD5660  
with a Galvanically Isolated Interface...................................... 22  
Power Supply Bypassing and Grounding................................ 22  
Outline Dimensions....................................................................... 23  
AD5620 Ordering Guide........................................................... 23  
AD5640 Ordering Guide........................................................... 24  
AD5660 Ordering Guide........................................................... 24  
REVISION HISTORY  
9/05—Rev. 0 to Rev. A  
Changes to Specifications................................................................ 5  
Changes to Outline Dimensions................................................... 23  
7/05—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
AD5620/AD5640/AD5660  
SPECIFICATIONS  
AD5620/AD5640/AD5660-2-3  
VDD = 4.5 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, CREFOUT = 100 nF; all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
STATIC PERFORMANCE2  
A Grade1 B Grade1 C Grade1 Unit  
Conditions/Comments  
AD5660  
Resolution  
16  
±32  
±1  
16  
±16  
±1  
16  
±16  
±1  
Bits min  
LSB max  
LSB max  
Relative Accuracy  
Differential Nonlinearity  
AD5640  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
14  
±±  
±1  
14  
±4  
±1  
14  
±4  
±1  
Bits min  
LSB max  
LSB max  
Relative Accuracy  
Differential Nonlinearity  
AD5620  
Resolution  
12  
±6  
±1  
2
12  
±1  
±1  
2
12  
±1  
±1  
2
Bits min  
LSB max  
LSB max  
mV typ  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
10  
10  
10  
mV max  
mV max  
% FSR typ  
% FSR max  
% FSR max  
μV/°C typ  
ppm typ  
dB typ  
Offset Error  
±10  
−0.15  
−1  
±1.5  
±2  
±10  
−0.15  
−1  
±1.5  
±2  
±10  
−0.15  
−1  
±1.5  
±2  
Full-Scale Error  
All 1s loaded to DAC register  
Gain Error  
Zero-Code Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
±2.5  
−75  
±2.5  
−75  
±2.5  
−75  
Of FSR/°C  
DAC code = midscale; VDD = 5 V ± 10%  
0
0
0
V min  
VDD  
±
10  
1.5  
2
VDD  
±
10  
1.5  
2
VDD  
±
10  
1.5  
2
V max  
μs typ  
μs max  
V/μs typ  
nF typ  
Output Voltage Settling Time  
¼ to ¾ scale change settling to ±2 LSB  
RL = 2 kΩ; 0 pF < CL < 200 pF  
¼ to ¾ scale  
Slew Rate  
Capacitive Load Stability  
RL = ∞  
10  
±0  
45  
5
0.1  
0.5  
30  
5
10  
±0  
45  
5
0.1  
0.5  
30  
5
10  
±0  
45  
5
0.1  
0.5  
30  
5
nF typ  
RL = 2 kΩ  
Output Noise Spectral Density  
Output Noise (0.1 Hz to 10 Hz)  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
DC Output Impedance  
Short-Circuit Current  
nV/√Hz typ  
μV p-p typ  
nV-s typ  
nV-s typ  
Ω typ  
DAC code = midscale, 10 kHz  
DAC code = midscale  
1 LSB change around major carry  
mA typ  
μs typ  
VDD = 5 V  
Power-Up Time  
Coming out of power-down mode; VDD = 5 V  
REFERENCE OUTPUT  
Output Voltage  
2.495  
2.505  
±10  
2.495  
2.505  
±10  
2.495  
2.505  
±5  
±20  
2.±  
V min  
V max  
ppm/°C typ  
ppm/°C max  
kΩ typ  
At ambient  
Reference TC3  
Output Impedance  
2.±  
2.±  
Rev. A | Page 3 of 24  
 
AD5620/AD5640/AD5660  
Parameter  
LOGIC INPUTS3  
A Grade1 B Grade1 C Grade1 Unit  
Conditions/Comments  
Input Current  
±2  
0.±  
2
±2  
0.±  
2
±2  
0.±  
2
μA max  
V max  
V min  
All digital inputs  
VDD = 5 V  
VDD = 5 V  
VINL, Input Low Voltage  
VINH, Input High Voltage  
Pin Capacitance  
POWER REQUIREMENTS  
VDD  
3
3
3
pF typ  
4.5  
5.5  
4.5  
5.5  
4.5  
5.5  
V min  
V max  
All digital inputs at 0 V or VDD  
DAC active and excluding load current  
IDD (Normal Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
IDD (All Power-Down Modes)  
VDD = 4.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
0.55  
1
0.55  
1
0.55  
1
mA typ  
mA max  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
0.4±  
1
0.4±  
1
0.4±  
1
μA typ  
μA max  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
1 Temperature range is −15°C to +105°C, typical at 25°C.  
2 Linearity calculated using a reduced code range: AD5660 (Code 511 to Code 65024); AD5640 (Code 12± to Code 16256); AD5620 (Code 32 to Code 4064). Output  
unloaded. Linearity tested with VDD = 5.5 V. If part is operated with a VDD < 5 V, the output is clamped to VDD.  
3 Guaranteed by design and characterization; not production tested.  
Rev. A | Page 4 of 24  
AD5620/AD5640/AD5660  
AD5620/AD5640/AD5660-1  
VDD1 = 2.7 V to 3.3 V, RL = 2 kΩ to GND, CL = 200 pF to GND, CREFOUT = 100 nF; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
STATIC PERFORMANCE3  
A Grade2 B Grade2 C Grade2 Unit  
Conditions/Comments  
AD5660  
Resolution  
16  
±32  
±1  
16  
±16  
±1  
16  
±16  
±1  
Bits min  
LSB max  
LSB max  
Relative Accuracy  
Differential Nonlinearity  
AD5640  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
14  
±±  
±1  
14  
±4  
±1  
14  
±4  
±1  
Bits min  
LSB max  
LSB max  
Relative Accuracy  
Differential Nonlinearity  
AD5620  
Resolution  
12  
±6  
±1  
2
12  
±1  
±1  
2
12  
±1  
±1  
2
Bits min  
LSB max  
LSB max  
mV typ  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
±
±9  
±
±9  
±
±9  
mV max  
mV max  
% FSR typ  
% FSR max  
% FSR max  
μV/°C typ  
ppm typ  
dB typ  
Offset Error  
Full-Scale Error  
±0.15  
±0.±5  
±0.±5  
±2  
±2.5  
−60  
±0.15  
±0.±5  
±0.±5  
±2  
±2.5  
−60  
±0.15  
±0.±5  
±0.±5  
±2  
±2.5  
−60  
All 1s loaded to DAC register  
Gain Error  
Zero-Code Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
OUTPUT CHARACTERISTICS4  
Output Voltage Range  
Of FSR/°C  
DAC code = midscale; VDD = 3 V ± 10%  
0
0
V min  
VDD  
±
10  
1.5  
2
VDD  
±
10  
1.5  
2
VDD  
±
10  
1.5  
2
V max  
μs typ  
μs max  
V/μs typ  
nF typ  
Output Voltage Settling Time  
¼ to ¾ scale change settling to ±2 LSB  
RL = 2 kΩ; 0 pF < CL < 200 pF  
¼ to ¾ scale  
Slew Rate  
Capacitive Load Stability  
RL = ∞  
10  
±0  
20  
5
0.1  
0.5  
30  
5
10  
±0  
20  
5
0.1  
0.5  
30  
5
10  
±0  
20  
5
0.1  
0.5  
30  
5
nF typ  
RL = 2 kΩ  
Output Noise Spectral Density  
Output Noise (0.1 Hz to 10 Hz)  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
DC Output Impedance  
Short-Circuit Current  
nV/√Hz typ  
μV p-p typ  
nV-s typ  
nV-s typ  
Ω typ  
DAC code = midscale, 10 kHz  
DAC code = midscale  
1 LSB change around major carry  
mA typ  
μs typ  
VDD = 3 V  
Power-Up Time  
Coming out of power-down mode; VDD = 3 V  
REFERENCE OUTPUT  
Output Voltage  
1.247  
1.253  
±10  
1.247  
1.253  
±10  
1.247  
1.253  
±5  
±25  
2.±  
V min  
V max  
ppm/°C typ  
ppm/°C max  
kΩ typ  
At ambient  
Reference TC4  
Output Impedance  
2.±  
2.±  
Rev. A | Page 5 of 24  
 
AD5620/AD5640/AD5660  
Parameter  
LOGIC INPUTS4  
A Grade2 B Grade2 C Grade2 Unit  
Conditions/Comments  
Input Current  
±1  
0.±  
2
±1  
0.±  
2
±1  
0.±  
2
μA max  
V max  
V min  
All digital inputs  
VDD = 3 V  
VDD = 3 V  
VINL, Input Low Voltage  
VINH, Input High Voltage  
Pin Capacitance  
POWER REQUIREMENTS  
VDD  
3
3
3
pF max  
2.7  
3.3  
2.7  
3.3  
2.7  
3.3  
V min  
V max  
All digital inputs at 0 V or VDD  
DAC active and excluding load current  
IDD (Normal Mode)  
VDD = 2.7 V to 3.3 V  
VDD = 2.7 V to 3.3 V  
IDD (All Power-Down Modes)  
VDD = 2.7 V to 3.3 V  
VDD = 2.7 V to 3.3 V  
0.55  
0.65  
0.55  
0.65  
0.55  
0.65  
mA typ  
mA max  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
0.2  
0.25  
0.2  
0.25  
0.2  
0.25  
μA typ  
μA max  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
1 Part is functional with VDD up to 5.5 V.  
2 Temperature range is −15°C to +105°C, typical at +25°C.  
3 Linearity calculated using a reduced code range: AD5660 (Code 511 to Code 65024); AD5640 (Code 12± to Code 16256); AD5620 (Code 32 to Code 4064). Output  
unloaded.  
4 Guaranteed by design and characterization; not production tested.  
Rev. A | Page 6 of 24  
AD5620/AD5640/AD5660  
TIMING CHARACTERISTICS  
All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 2.  
DD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
V
Table 3.  
Limit at TMIN, TMAX  
VDD = 3.6 V to 5.5 V  
Parameter  
VDD = 2.7 V to 3.6 V  
Unit  
Conditions/Comments  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge set-up time  
Data set-up time  
1
t1  
50  
13  
13  
13  
5
33  
13  
13  
13  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
t2  
t3  
t4  
t5  
t6  
t7  
t±  
t9  
t10  
4.5  
0
4.5  
0
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to SCLK fall ignore  
SCLK falling edge to SYNC fall ignore  
50  
13  
0
33  
13  
0
1 Maximum SCLK frequency is 30 MHz at VDD = 3.6 V to 5.5 V and 20 MHz at VDD = 2.7 V to 3.6 V.  
t10  
t1  
t9  
SCLK  
t2  
t8  
t3  
t7  
t4  
SYNC  
DIN  
t6  
t5  
MSB  
LSB  
LSB = DB0  
MSB = DB23 FOR AD5660;  
MSB = DB15 FOR AD5620/AD5640  
Figure 2. Serial Write Operation  
Rev. A | Page 7 of 24  
 
AD5620/AD5640/AD5660  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
VOUT to GND  
VFB to GND  
VREFOUT to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Junction Temperature (TJ max)  
Power Dissipation  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−15°C to +105°C  
−65°C to +150°C  
150°C  
(TJ max − TA)/θJA  
SOT-23 Package (4-Layer Board)  
θJA Thermal Impedance  
MSOP Package (4-Layer Board)  
θJA Thermal Impedance  
θJC Thermal Impedance  
Reflow Soldering Peak Temperature  
SnPb  
119°C/W  
141°C/W  
44°C/W  
240°C  
260°C  
Pb-Free  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page ± of 24  
 
AD5620/AD5640/AD5660  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
8
7
6
5
GND  
DIN  
DD  
AD5620/  
AD5640/  
AD5660  
V
1
2
3
4
8
7
6
5
GND  
DIN  
DD  
V
REFOUT  
AD5620/  
AD5640/  
V
REFOUT  
V
SCLK  
SYNC  
FB  
TOP VIEW  
AD5660  
V
SCLK  
SYNC  
FB  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
V
OUT  
V
OUT  
Figure 3. SOT-23 Pin Configuration  
Figure 4. MSOP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
VDD  
VREFOUT  
VFB  
VOUT  
SYNC  
Power Supply Input. These parts can operate from 2.7 V to 5.5 V. VDD should be decoupled to GND.  
Reference Voltage Output.  
Feedback Connection for the output amplifier. VFB should be connected to VOUT for normal operation.  
Analog Output Voltage from DAC. The output amplifier has rail-to-rail operation.  
Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input data. When  
SYNC goes low, it enables the input shift register and data is transferred in on the falling edges of the following  
clocks. The DAC is updated following the 24th clock cycle for the AD5660 and the 16th clock cycle for  
AD5620/AD5640 unless SYNC is taken high before this edge. In this case, the rising edge of SYNC acts as an  
interrupt, and the write sequence is ignored by the DAC.  
6
7
±
SCLK  
DIN  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data  
can be transferred at rates up to 30 MHz.  
Serial Data Input. The AD5660 has a 24-bit shift register, and the AD5620/AD5640 have a 16 -bit shift register.  
Data is clocked into the register on the falling edge of the serial clock input.  
GND  
Ground Reference Point for all circuitry on the part.  
Rev. A | Page 9 of 24  
 
AD5620/AD5640/AD5660  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
1.0  
0.8  
0.6  
0.4  
0.2  
V
V
= 5V  
V
V
= 5V  
DD  
TARE=FO25U°TC  
DD  
8
6
4
2
= 2.5V  
= 2.5V  
TARE=FO25U°TC  
0
0
–2  
–0.2  
–4  
–6  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
CODE  
CODE  
Figure 5. INL—AD5660-2/AD5660-3  
Figure 8. DNL—AD5660-2/AD5660-3  
4
0.5  
0.4  
0.3  
0.2  
0.1  
V
V
= 5V  
V
V
= 5V  
DD  
TARE=FO25U°TC  
DD  
= 2.5V  
= 2.5V  
TARE=FO25U°TC  
3
2
1
0
0
–0.1  
–1  
–2  
–0.2  
–0.3  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 6. INL—AD5640-2/AD5640-3  
Figure 9. DNL—AD5640-2/AD5640-3  
1.0  
0.20  
0.15  
0.10  
0.05  
V
V
= 5V  
V
V
= 5V  
DD  
TARE=FO25U°TC  
DD  
= 2.5V  
= 2.5V  
0.8  
0.6  
0.4  
0.2  
TARE=FO25U°TC  
0
–0.2  
–0.4  
–0.6  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000 1500 2000 2500 3000  
CODE  
3500 4000  
0
500  
1000 1500 2000 2500 3000  
CODE  
3500 4000  
Figure 7. INL—AD5620-2/AD6520-3  
Figure 10. DNL—AD5620-2/AD6520-3  
Rev. A | Page 10 of 24  
 
AD5620/AD5640/AD5660  
10  
1.0  
V
V
= 3V  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
8
6
= 1.25V  
0.8  
0.6  
= 1.25V  
T
T
A
A
4
0.4  
2
0.2  
0
0
–2  
–4  
–6  
–0.2  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
CODE  
CODE  
Figure 11. INL—AD5660-1  
Figure 14. DNL—AD5660-1  
4
3
0.5  
0.4  
V
V
= 3V  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
= 1.25V  
= 1.25V  
T
T
A
A
0.3  
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–1  
–2  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 12. INL—AD5640-1  
Figure 15. DNL—AD5640-1  
1.0  
0.8  
0.20  
0.15  
0.10  
0.05  
0
V
V
= 3V  
V
V
= 3V  
DD  
REFOUT  
DD  
= 1.25V  
= 1.25V  
REFOUT  
= 25°C  
T
= 25°C  
T
A
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
Figure 13. INL—AD5620-1  
Figure 16. DNL—AD5620-1  
Rev. A | Page 11 of 24  
AD5620/AD5640/AD5660  
10  
200  
180  
160  
140  
120  
100  
80  
V
T
= 5V  
= 25°C  
MAX INL  
DD  
8
A
V
= 5V  
DD  
6
4
2
MAX DNL  
MIN DNL  
0
–2  
60  
–4  
–6  
40  
V
= 3.3V  
DD  
–8  
20  
0
MIN INL  
65  
–10  
–15  
5
25  
45  
85  
105  
TEMPERATURE (°C)  
I
(mA)  
DD  
Figure 17. INL Error and DNL Error vs. Temperature  
Figure 20. IDD Histogram  
0.5  
0.50  
DAC LOADED WITH  
FULL-SCALE  
SOURCING CURRENT  
DAC LOADED WITH  
ZERO-SCALE  
SINKING CURRENT  
V
= 5V  
DD  
0.40  
0.30  
0.20  
0.10  
0
0.4  
0.3  
0.2  
0.1  
GAIN ERROR  
V
V
= 3V  
DD  
= 1.25V  
REFOUT  
0
–0.1  
–0.10  
–0.20  
–0.30  
–0.2  
–0.3  
FULL-SCALE ERROR  
V
V
= 5V  
DD  
= 2.5V  
–2  
REFOUT  
–0.4  
–0.5  
–0.40  
–0.50  
–15  
5
25  
45  
65  
85  
105  
–10  
–8  
–6  
–4  
0
2
4
6
8
10  
TEMPERATURE (°C)  
CURRENT (mA)  
Figure 18. Gain Error and Full-Scale Error vs. Temperature  
Figure 21. Headroom at Rails vs. Source and Sink  
2.5  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
V
= 5V  
V
V
T
= 5V  
DD  
DD  
REFOUT  
FULL SCALE  
= 2.5V  
= 25°C  
1.5  
0.5  
A
ZERO-CODE ERROR  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
–0.5  
–1.5  
OFFSET ERROR  
–2.5  
–3.5  
0
ZERO SCALE  
–1.00  
–15  
5
25  
45  
65  
85  
105  
–30  
–20  
–10  
0
10  
20  
30  
TEMPERATURE (°C)  
CURRENT (mA)  
Figure 22. Source and Sink Capability—AD5660-2/AD5660-3  
Figure 19. Zero-Code and Offset Error vs. Temperature  
Rev. A | Page 12 of 24  
 
AD5620/AD5640/AD5660  
4.00  
3.00  
2.00  
1.00  
V
V
= 3V  
DD  
REFOUT  
= 1.25V  
T
= 25°C  
A
FULL SCALE  
V
= 5V  
DD  
= 25°C  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
T
A
FULL-SCALE CODE CHANGE  
0x0000 TO 0xFFFF  
OUTPUT LOADED WITH 2kΩ  
AND 200pF TO GND  
V
= 909mV/DIV  
OUT  
0
ZERO SCALE  
1
–1.00  
–30  
–20  
–10  
0
10  
20  
30  
TIME BASE = 4μs/DIV  
CURRENT (mA)  
Figure 26. Full-Scale Settling Time, 5 V  
Figure 23. Source and Sink Capability—AD5660-1  
0.7  
0.6  
0.5  
0.4  
V
V
= 5V  
= 3V  
DD  
DD  
T
A
= 25°C  
V
DD  
1
2
V
REF  
0.3  
0.2  
V
OUT  
0.1  
0
3
512  
10512  
20512  
30512  
CODE  
40512  
50512  
60512  
CH1 2.00V CH2 2.00V  
CH3 100mV  
M40.0ms  
CH1  
Figure 24. Supply Current vs. Code  
Figure 27. Power-On Reset to 0 V—AD5660-2  
1400  
1200  
1000  
800  
T
A
= 25°C  
V
DD  
1
2
V
= 5V  
DD  
V
REF  
600  
400  
V
= 3V  
DD  
V
OUT  
200  
0
3
CH1 2.00V CH2 2.00V  
CH3 200mV  
M20.0μs  
CH1  
1.88V  
0
1
2
3
4
5
V
(V)  
LOGIC  
Figure 28. Power-On Reset to Midscale—AD5660-3  
Figure 25. Supply Current vs. Logic Input Voltage  
Rev. A | Page 13 of 24  
 
AD5620/AD5640/AD5660  
1.250800  
1.250600  
1.250400  
1.250200  
V
DD  
1.250000  
1.249800  
1.249600  
1
2
V
REF  
1.249400  
1.249200  
1.249000  
1.248800  
V
V
= 3V  
= 1.25V  
= 25°C  
DD  
REFOUT  
T
A
V
OUT  
13nS/SAMPLE NUMBER  
1LSB CHANGE AROUND MIDSCALE  
(0x7FFF TO 0x8000)  
3
1.248600  
1.248400  
GLITCH IMPULSE = 0.284nV-s  
0
50 100 150 200 250 300 350 400 450 500 550  
SAMPLE NUMBER  
CH1 1.20V CH2 1.00V  
CH3 100mV  
M100μs  
CH1  
1.87V  
Figure 32. Digital-to-Analog Glitch Impulse—AD5660-1  
Figure 29. Power-On Reset to 0 V—AD5660-1  
2.500250  
V
= 5V  
DD  
V
= 3V  
DD  
2.500200  
2.500150  
2.500100  
SCLK  
T = 25°C  
A
20nS/SAMPLE NUMBER  
DAC LOADED WITH MIDSCALE  
DIGITAL FEEDTHROUGH = 0.06nV-s  
1
2.500050  
2.500000  
2.499950  
2.499900  
2.499850  
2.499800  
2.499750  
3
2.499700  
2.499650  
2.499600  
V
OUT  
0
50 100 150 200 250 300 350 400 450 500 550  
SAMPLE NUMBER  
CH1 2.00V  
M1.00μs  
CH2  
520mV  
CH3 50.0mV  
Figure 33. Digital Feedthrough  
Figure 30. Exiting Power-Down to Midscale  
16  
14  
12  
10  
8
2.501250  
2.501000  
2.500750  
2.500500  
2.500250  
T
= 25°C  
A
V
= 3V  
DD  
2.500000  
2.499750  
2.499500  
2.499250  
2.499000  
2.498750  
V
= 5V  
DD  
V
V
= 5V  
DD  
REFOUT  
= 25°C  
= 2.5V  
T
A
13nS/SAMPLE NUMBER  
6
2.498500  
2.498250  
2.498000  
1LSB CHANGE AROUND MIDSCALE  
(0x7FFF TO 0x8000)  
GLITCH IMPULSE = 0.497nV-s  
4
0
1
2
3
4
5
6
7
8
9
10  
0
50 100 150 200 250 300 350 400 450 500 550  
SAMPLE NUMBER  
CAPACITANCE (nF)  
Figure 34. Settling Time vs. Capacitive Load  
Figure 31. Digital-to-Analog Glitch Impulse—AD5660-2/AD5660-3  
Rev. A | Page 14 of 24  
 
AD5620/AD5640/AD5660  
800  
700  
600  
500  
V
V
= 5V  
T = 25°C  
A
MIDSCALE LOADED  
DD  
REFOUT  
= 25°C  
= 2.5V  
T
A
DAC LOADED WITH MIDSCALE  
1
400  
300  
200  
V
V
= 5V  
DD  
REFOUT  
= 2.5V  
100  
0
V
V
= 3V  
DD  
REFOUT  
= 1.25V  
1000  
100  
10000  
FREQUENCY (Hz)  
100000  
1000000  
5s/DIV  
Figure 35. 0.1 Hz to 10 Hz Output Noise—AD5660-2/AD5660-3  
Figure 37. Noise Spectral Density  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
= 1.25V  
T
A
DAC LOADED WITH MIDSCALE  
1
4s/DIV  
Figure 36. 0.1 Hz to 10 Hz Output Noise—AD5660-1  
Rev. A | Page 15 of 24  
 
AD5620/AD5640/AD5660  
TERMINOLOGY  
Relative Accuracy  
Offset Error  
For the DAC, relative accuracy, or integral nonlinearity (INL), is  
a measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC transfer  
function. Figure 5 through Figure 7 show typical INL vs. code.  
Offset error is a measurement of the difference between VOUT  
(actual) and VOUT (ideal) expressed in mV in the linear region of  
the transfer function. Offset error is measured on the AD5660  
with Code 512 loaded into the DAC register. It can be negative  
or positive.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. Figure 8 through Figure 10 show typical DNL vs. code.  
DC Power Supply Rejection Ratio (PSRR)  
This indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
the change in VDD for the full-scale output of the DAC. It is  
measured in dB. VREF is held at 2.5 V, and VDD is varied by 10%.  
Zero-Code Error  
Output Voltage Settling Time  
Zero-code error is a measurement of the output error when  
zero code (0x0000) is loaded to the DAC register. Ideally, the  
output should be 0 V. The zero-code error is always positive in  
the AD5620/AD5640/AD5660, because the output of the DAC  
cannot go below 0 V. It is due to a combination of the offset  
errors in the DAC and the output amplifier. Zero-code error is  
expressed in mV. Figure 19 shows a plot of zero-code error vs.  
temperature.  
This indicates the amount of time for the output of a DAC to  
settle to a specified level for a ¼ to ¾ full-scale input change. It  
is measured from the 24th falling edge of SCLK.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000). See  
Figure 31 and Figure 32.  
Full-Scale Error  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. Ideally, the  
output should be VDD − 1 LSB. Full-scale error is expressed as a  
percentage of the full-scale range. Figure 18 shows a plot of full-  
scale error vs. temperature.  
Digital Feedthrough  
Digital feedthrough is a measurement of the impulse injected  
into the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated. It  
is specified in nV-s and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s or vice versa.  
Gain Error  
This is a measurement of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed as a percentage of the full-scale range.  
Noise Spectral Density  
This is a measurement of the internally generated random  
noise. Random noise is characterized as a spectral density  
(voltage per √Hz). It is measured by loading the DAC to  
midscale and measuring noise at the output. It is measured  
in nV/√Hz. Figure 37 shows a plot of noise spectral density.  
Zero-Code Error Drift  
This is a measurement of the change in zero-code error with a  
change in temperature. It is expressed in μV/°C.  
Gain Temperature Coefficient  
This is a measurement of the change in gain error with changes  
in temperature. It is expressed in (ppm of full-scale range)/°C.  
Rev. A | Page 16 of 24  
 
AD5620/AD5640/AD5660  
THEORY OF OPERATION  
tapped off by closing one of the switches connecting the  
string to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
D/A SECTION  
The AD5620/AD5640/AD5660 DACs are fabricated on a CMOS  
process. The architecture consists of a string DAC followed by an  
output buffer amplifier. The parts include an internal 1.25 V/2.5 V,  
5 ppm/°C reference that is internally gained up by 2. Figure 38  
shows a block diagram of the DAC architecture.  
INTERNAL REFERENCE  
The AD5620/AD5640/AD5660-1 parts include an internal,  
1.25 V, 5 ppm/°C reference, giving a full-scale output voltage of  
2.5 V. The AD5620/AD5640/AD5660-2-3 parts include an  
internal, 2.5 V, 5 ppm/°C reference, giving a full-scale output  
voltage of 5 V. The reference associated with each part is  
available at the VREFOUT pin. A buffer is required if the reference  
output is used to drive external loads. It is recommended that a  
100 nF capacitor is placed between the reference output and  
GND for reference stability.  
V
DD  
R
V
FB  
R
REF (+)  
RESISTOR  
STRING  
V
DAC REGISTER  
OUT  
REF (ٛ)  
OUTPUT  
AMPLIFIER  
GND  
Figure 38. DAC Architecture  
OUTPUT AMPLIFIER  
The output buffer amplifier can generate rail-to-rail voltages on  
its output, which gives an output range of 0 V to VDD. This output  
buffer amplifier has a gain of 2 derived from a 50 kΩ resistor  
divider network in the feedback path. The inverting input of the  
output amplifier is available to the user, allowing for remote  
sensing. This VFB pin must be connected to VOUT for normal  
operation. It can drive a load of 2 kΩ in parallel with 1,000 pF  
to GND. Figure 21 shows the source and sink capabilities of the  
output amplifier. The slew rate is 1.5 V/μs with a ¼ to ¾ full-  
scale settling time of 10 μs.  
Because the input coding to the DAC is straight binary, the ideal  
output voltage is given by  
D
VOUT = 2×VREFOUT ×  
2N  
where:  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register.  
0 to 4,095 for AD5620 (12 bit)  
0 to 16,383 for AD5640 (14 bit)  
0 to 65,535 for AD5660 (16 bit)  
N is the DAC resolution.  
SERIAL INTERFACE  
The AD5620/AD5640/AD5660 have a 3-wire serial interface  
(
, SCLK, and DIN) that is compatible with SPI, QSPI, and  
SYNC  
R
R
MICROWIRE interface standards as well as most DSPs.  
See Figure 2 for a timing diagram of a typical write sequence.  
The write sequence begins by bringing the  
line low.  
SYNC  
TO OUTPUT  
R
Data from the DIN line is clocked into the 16-bit shift register  
(AD5620/AD5640) or the 24-bit shift register (AD5660) on the  
falling edge of SCLK. The serial clock frequency can be as high  
as 30 MHz, making the AD5620/AD5640/AD5660 compatible  
with high speed DSPs. On the 16th falling clock edge (AD5620/  
AD5640) or the 24th falling clock edge (AD5660), the last data  
bit is clocked in and the programmed function is executed, that  
is, a change in the DAC register contents and/or a change in the  
AMPLIFIER  
R
R
mode of operation is executed. At this stage, the  
line can  
SYNC  
be kept low or be brought high. In either case, it must be brought  
high for a minimum of 33 ns before the next write sequence so  
that a falling edge of  
can initiate the next write sequence.  
SYNC  
Figure 39. Resistor String  
Because the  
buffer draws more current when VIN = 2 V  
SYNC  
RESISTOR STRING  
than it does when VIN = 0.8 V,  
should be idled low between  
SYNC  
write sequences for even lower power operation of the parts. As  
is mentioned previously, however, must be brought high  
The resistor string section is shown in Figure 39. It is simply a  
string of resistors, each of value R. The code loaded to the DAC  
register determines at which node on the string the voltage is  
tapped off to be fed into the output amplifier. The voltage is  
SYNC  
again just before the next write sequence.  
Rev. A | Page 17 of 24  
 
AD5620/AD5640/AD5660  
INPUT SHIFT REGISTER  
AD5620/AD5640  
INTERRUPT  
SYNC  
In a normal write sequence for the AD5660, the  
line is  
SYNC  
kept low for at least 24 falling edges of SCLK, and the DAC is  
updated on the 24th falling edge. However, if is brought  
The input shift register is 16 bits wide for the AD5620/AD5640  
(see Figure 40 and Figure 41). The first two bits are control bits  
that control which mode of operation the part is in (normal  
mode or any of the three power-down modes). The next  
14/12 bits, respectively, are the data bits. These are transferred  
to the DAC register on the 16th falling edge of SCLK.  
SYNC  
high before the 24th falling edge, this acts as an interrupt to the  
write sequence. The shift register is reset, and the write sequence  
is seen as invalid. Neither an update of the DAC register contents  
nor a change in the operating mode occurs—see Figure 43.  
Similarly, in a normal write sequence for the AD5620/AD5640,  
AD5660  
the  
line is kept low for at least 16 falling edges of SCLK,  
SYNC  
and the DAC is updated on the 16th falling edge. However, if  
is brought high before the 16th falling edge, this acts as  
The input shift register is 24 bits wide for the AD5660 (see  
Figure 42). The first six bits are don’t care bits. The next two are  
control bits that control which mode of operation the part is in  
(normal mode or any of the three power-down modes). For a more  
complete description of the various modes, see the Power-Down  
Modes section. The next 16 bits are the data bits. These are  
transferred to the DAC register on the 24th falling edge of SCLK.  
SYNC  
an interrupt to the write sequence.  
DB15 (MSB)  
DB0 (LSB)  
PD1  
PD0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
DATA BITS  
Figure 40. AD5620 Input Register Contents  
DB15 (MSB)  
DB0 (LSB)  
PD1  
PD0 D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DATA BITS  
Figure 41. AD5640 Input Register Contents  
DB23 (MSB)  
DB0 (LSB)  
X
X
X
X
X
X
PD1 PD0 D15 D14  
D13 D12  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DATA BITS  
Figure 42. AD5660 Input Register Contents  
SCLK  
SYNC  
DIN  
MSB  
LSB  
MSB  
LSB  
INVALID WRITE SEQUENCE:  
SYNC HIGH BEFORE 16TH/24TH FALLING EDGE  
VALID WRITE SEQUENCE, OUTPUT UPDATES  
ON THE 16TH/24TH FALLING EDGE  
SYNC  
Figure 43.  
Interrupt Facility  
Rev. A | Page 1± of 24  
 
AD5620/AD5640/AD5660  
POWER-ON RESET  
The AD5620/AD5640/AD5660 family contains a power-on  
reset circuit that controls the output voltage during power-up.  
The AD5620/AD5640/AD5660-1-2 DAC output powers up to  
0 V, and the AD5620/AD5660-3 DAC output powers up to  
midscale. The output remains at this level until a valid write  
sequence is made to the DAC, which is useful in applications  
where it is important to know the state of the DAC output while  
it is in the process of powering up.  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 44. Output Stage During Power-Down  
POWER-DOWN MODES  
The bias generator, output amplifier, reference, resistor string,  
and other associated linear circuitry are all shut down when  
power-down mode is activated. However, the contents of the  
DAC register are unaffected when in power-down. The time to  
exit power-down is typically 5 μs for VDD = 5 V and VDD = 3 V.  
See Figure 23.  
The AD5620/AD5640/AD5660 have four separate modes of  
operation. These modes are software-programmable by setting  
two bits in the control register. Table 6 and Table 7 show how  
the state of the bits corresponds to the operating mode of the  
device.  
Table 6. Modes of Operation for the AD5660  
DB17  
DB16  
AD5660 Operating Mode  
Normal operation  
Power-down modes:  
1 kΩ to GND  
100 kΩ to GND  
Three-state  
MICROPROCESSOR INTERFACING  
AD5660-to-Blackfin® ADSP-BF53x Interface  
0
0
Figure 45 shows a serial interface between the AD5660 and the  
Blackfin ADSP-BF53x microprocessor. The ADSP-BF53x  
processor family incorporates two dual-channel synchronous  
serial ports, SPORT1 and SPORT0, for serial and multi-  
processor communications. Using SPORT0 to connect to the  
AD5660, the setup for the interface is as follows: DT0PRI drives  
the DIN pin of the AD5660, while TSCLK0 drives the SCLK of  
0
1
1
1
0
1
Table 7. Modes of Operation for the AD5620/AD5640  
DB15  
DB14  
AD5620/AD5640 Operating Mode  
Normal operation  
Power-down modes:  
1 kΩ to GND  
100 kΩ to GND  
Three-state  
0
0
the part and  
is driven from TFS0.  
SYNC  
0
1
1
1
0
1
1
ADSP-BF53x  
AD56601  
TFS0  
DTOPRI  
TSCLK0  
SYNC  
DIN  
When both bits are set to 0, the part works normally with its  
normal power consumption of 550 μA at 5 V. However, for the  
three power-down modes, the supply current falls to 480 nA  
at 5 V (200 nA at 3 V). Not only does the supply current fall,  
but the output stage is internally switched from the output of  
the amplifier to a resistor network of known values. The  
advantage is that the output impedance of the part is known  
while the part is in power-down mode. There are three options:  
the output is connected internally to GND through a  
SCLK  
1
ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 45. AD5660-to-Blackfin ADSP-BF53x Interface  
1 kΩ or a 100 kΩ resistor, or it is left open-circuited (three-  
stated). The output stage is shown in Figure 44.  
Rev. A | Page 19 of 24  
 
AD5620/AD5640/AD5660  
occur in the transmit cycle. To load data to the DAC, P3.3 is left  
low after the first eight bits are transmitted, and a second write  
cycle is initiated to transmit the second byte of data. P3.3 is taken  
high following the completion of this cycle. The 80C51/80L51  
output the serial data LSB first; however, the AD5660 requires  
its data with the MSB as the first bit received. The 80C51/80L51  
transmit routine should take this into account.  
AD5660-to-68HC11/68L11 Interface  
Figure 46 shows a serial interface between the AD5660 and the  
68HC11/68L11 microcontroller. SCK of 68HC11/68L11 drives  
the SCLK of AD5660, and the MOSI output drives the serial  
data line of the DAC. The  
signal is derived from a port line  
SYNC  
(PC7). The set-up conditions for correct operation of this  
interface are as follows: The 68HC11/68L11 should be con-  
figured so that its CPOL bit is 0, and its CPHA bit is 1. When  
AD56601  
1
80C51/80L51  
data is being transmitted to the DAC, the  
line is taken  
SYNC  
low (PC7). When the 68HC11/68L11 is configured in this way,  
data appearing on the MOSI output is valid on the falling edge  
of SCK. Serial data from the 68HC11/68L11 is transmitted in  
8-bit bytes with only eight falling clock edges occurring in the  
transmit cycle. Data is transmitted MSB first. To load data to the  
AD5660, PC7 is left low after the first eight bits are transferred, a  
second serial write operation is performed to the DAC, and PC7  
is taken high at the end of this procedure.  
P3.3  
TxD  
RxD  
SYNC  
SCLK  
DIN  
1
ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 47. AD5660-to-80C51/80L51 Interface  
AD5660-to-MICROWIRE Interface  
1
68HC11/68L11  
AD56601  
Figure 48 shows an interface between the AD5660 and any  
MICROWIRE-compatible device. Serial data is shifted out on  
the falling edge of the serial clock and is clocked into the  
AD5660 on the rising edge of the SK.  
PC7  
SYNC  
SCLK  
DIN  
SCK  
MOSI  
AD56601  
1
MICROWIRE  
1
ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 46. AD5660-to-68HC11/68L11 Interface  
CS  
SK  
SO  
SYNC  
SCLK  
DIN  
AD5660-to-80C51/80L51 Interface  
Figure 47 shows a serial interface between the AD5660 and the  
80C51/80L51 microcontroller. The setup for the interface is as  
follows: TxD of the 80C51/80L51 drives SCLK of the AD5660,  
1
ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 48. AD5660-to-MICROWIRE Interface  
and RxD drives the serial data line of the part. The  
signal  
SYNC  
is again derived from a bit-programmable pin on the port. In  
this case, Port Line P3.3 is used. When data is to be transmitted  
to the AD5660, P3.3 is taken low. The 80C51/80L51 transmit  
data only in 8-bit bytes; therefore, only eight falling clock edges  
Rev. A | Page 20 of 24  
 
AD5620/AD5640/AD5660  
APPLICATIONS  
R2  
10kΩ  
USING AN REF19x AS A POWER SUPPLY FOR THE  
AD5620/AD5640/AD5660  
+5V  
R1  
10kΩ  
+5V  
Because the supply current required by the AD5620/AD5640/  
AD5660 is extremely low, an alternative option is to use a REF19x  
voltage reference (REF195 for 5 V or REF193 for 3 V) to supply  
the required voltage to the part—see Figure 49. This is especially  
useful if the power supply is quite noisy or if the system supply  
voltages are at some value other than 5 V or 3 V, for example, 15 V.  
The REF19x outputs a steady supply voltage for the AD5620/  
AD5640/AD5660. If the low dropout REF195 is used, the current  
it needs to supply to the AD5660 is 500 μA. This is with no load  
on the output of the DAC. When the DAC output is loaded, the  
REF195 also must supply the current to the load. The total current  
required (with a 5 kΩ load on the DAC output) is  
AD820/  
±5V  
OP295  
V
FB  
V
V
DD  
OUT  
10μF  
0.1μF  
AD5660  
–5V  
3-WIRE  
SERIAL  
INTERFACE  
Figure 50. Bipolar Operation with the AD5660  
USING THE AD5660 AS AN ISOLATED,  
PROGRAMMABLE, 4 TO 20 mA PROCESS  
CONTROLLER  
500 μA + (5 V/5 kΩ) = 1.5 mA  
The load regulation of the REF195 is typically 2 ppm/mA,  
which results in an error of 3 ppm (15 μV) for the 1.5 mA  
current drawn from it. This corresponds to a 0.197 LSB error  
for the AD5660.  
In many process-control system applications, 2-wire current  
transmitters are used to transmit analog signals through noisy  
environments. These current transmitters use a zero-scale signal  
current of 4 mA to power the signal conditioning circuitry of  
the transmitter. The full-scale output signal in these transmitters  
is 20 mA. The converse approach to process control can also be  
used, in which a low-power, programmable current source is  
used to control remotely located sensors or devices in the loop.  
15V  
5V  
REF195  
SYNC  
A circuit that performs this function is shown in Figure 51.  
Using the AD5660 as the controller, the circuit provides a  
programmable output current of 4 to 20 mA, proportional to  
the digital code of the DAC. Biasing for the controller is provided  
by the ADR02 and requires no external trim for two reasons: first,  
the ADR02s tight initial output voltage tolerance, and second,  
the low supply current consumption of both the AD8627 and  
the AD5660. The entire circuit, including optocouplers, consumes  
less than 3 mA from the total budget of 4 mA. The AD8627  
regulates the output current to satisfy the current summation  
at the noninverting node of the AD8627.  
3-WIRE  
SERIAL  
INTERFACE  
V
= 0V TO 5V  
OUT  
SCLK  
DIN  
AD5660  
Figure 49. REF195 as the Power Supply to the AD5660  
BIPOLAR OPERATION USING THE AD5660  
The AD5660 is designed for single-supply operation, but a  
bipolar output range is also possible using the circuit in  
Figure 50. Figure 50 gives an output voltage range of 5 V.  
Rail-to-rail operation at the amplifier output is achievable  
using an AD820 or an OP295 as the output amplifier.  
IOUT = 1/R7 (VDAC × R3/R1 + VREF × R3/R2)  
The output voltage for any input code can be calculated as  
For the values shown in Figure 51,  
D
65536  
R1+ R2  
R1  
R2  
R1  
⎞ ⎛  
⎠ ⎝  
IOUT = 0.2435 μA × D + 4 mA  
VO = VDD  
×
×
V  
×
⎟ ⎜  
DD  
where D = 0 ≤ D ≤ 65,535, giving a full-scale output current of  
20 mA when the AD5660s digital code equals 0xFFFF.  
where D represents the input code in decimal (0 to 65,535).  
When VDD = 5 V, R1 = R2 = 10 kΩ,  
Offset trim at 4 mA is provided by P2, and P1 provides the circuit  
gain trim at 20 mA. These two trims do not interact because  
the noninverting input of the AD8627 is at virtual ground. The  
Schottky diode, D1, is required in this circuit to prevent loop  
supply power-on transients from pulling the noninverting input  
of the AD8627 more than 300 mV below its inverting input.  
Without this diode, such transients could cause phase reversal  
10×D  
65536  
V =  
5 V  
O
This results in an output voltage range of 5 V, with 0x0000  
corresponding to a −5 V output and 0xFFFF corresponding to a  
+5 V output.  
Rev. A | Page 21 of 24  
 
AD5620/AD5640/AD5660  
of the AD8627 and possible latch-up of the controller. The loop  
supply voltage compliance of the circuit is limited by the maximum  
applied input voltage to the ADR02 and is from 12 V to 40 V.  
POWER SUPPLY BYPASSING AND GROUNDING  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the  
board. The printed circuit board containing the AD5620/  
AD5640/AD5660 should have separate analog and digital  
sections, each having its own area of the board. If the AD5620/  
AD5640/AD5660 are in a system where other devices require  
an AGND-to-DGND connection, the connection should be  
made at one point only. This ground point should be as close as  
possible to the AD5620/AD5640/AD5660.  
ADR02  
V
LOOP  
12V TO 36V  
R2  
18.5kΩ  
P2  
4mA  
ADJUST  
SERIAL  
LOAD  
Q1  
2N3904  
R1  
4.7kΩ  
P1  
AD5660  
AD8627  
20mA  
R6  
3.3kΩ  
ADJUST  
D1  
4–20mA  
R3  
1.5kΩ  
RL  
R7  
100Ω  
The power supply to the AD5620/AD5640/AD5660 should be  
bypassed with 10 μF and 0.1 μF capacitors. The capacitors  
should be as close as physically possible to the device, with the  
0.1 μF capacitor ideally right up against the device. The 10 μF  
capacitors are the tantalum bead type. It is important that the  
0.1 μF capacitor has a low effective series resistance (ESR) and  
low effective series inductance (ESI), such as is typical of  
common ceramic types of capacitors. This 0.1 μF capacitor  
provides a low impedance path to ground for high frequencies  
caused by transient currents due to internal logic switching.  
Figure 51. Programmable 4 to 20 mA Process Controller  
USING THE AD5620/AD5640/AD5660 WITH A  
GALVANICALLY ISOLATED INTERFACE  
For process-control applications in industrial environments, it  
is often necessary to use a galvanically isolated interface to  
protect and isolate the controlling circuitry from hazardous  
common-mode voltages that might occur in the area where  
the DAC is functioning. The iCoupler® provides isolation in  
excess of 2.5 kV. The AD5620/AD5640/AD5660 use a 3-wire  
serial logic interface; therefore, the ADuM1300 3-channel  
digital isolator provides the required isolation (see Figure 52).  
The power supply to the part also must be isolated, which is  
done by using a transformer. On the DAC side of the trans-  
former, a 5 V regulator provides the 5 V supply required for the  
AD5620/AD5640/AD5660.  
The power supply line itself should have as large a trace as  
possible to provide a low impedance path and reduce glitch  
effects on the supply line. Clocks and other components with  
fast switching digital signals should be shielded from other  
parts of the board by digital ground. Avoid crossover of digital  
and analog signals if possible. When traces cross on opposite  
sides of the board, ensure that they run at right angles to each  
other to reduce feedthrough effects on the board. The best  
board layout technique is the microstrip technique, where the  
component side of the board is dedicated to the ground plane  
only and the signal traces are placed on the solder side.  
However, this is not always possible with a 2-layer board.  
5V  
REGULATOR  
10μF  
0.1μF  
POWER  
V
DD  
VOA  
VOB  
SCLK  
V1A  
V1B  
SCLK  
SYNC  
ADuM1300  
AD56x0  
V
OUT  
SDI  
VOC  
V1C  
DIN  
DATA  
GND  
Figure 52. AD5620/AD5640/AD5660 with a Galvanically Isolated Interface  
Rev. A | Page 22 of 24  
 
AD5620/AD5640/AD5660  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
2.90 BSC  
8
1
7
2
6
3
5
4
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
1.60 BSC  
2.80 BSC  
PIN 1  
INDICATOR  
0.65 BSC  
PIN 1  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
0.95  
0.85  
0.75  
1.10 MAX  
1.45 MAX  
0.22  
0.08  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
COMPLIANT TO JEDEC STANDARDS MO-178-BA  
Figure 53. 8-Lead Small Outline Transistor Package [SOT-23]  
Figure 54. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
(RJ-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
AD5620 ORDERING GUIDE  
Package  
Package  
Power-On  
Internal  
Model  
Temp. Range  
Description  
Option  
Branding  
D2K  
D2K  
D2L  
D2L  
D2H  
D2H  
D2J  
Reset to Code  
Accuracy  
±6 LSB INL  
±6 LSB INL  
±6 LSB INL  
±6 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
Reference  
1.25 V  
1.25 V  
2.5 V  
AD5620ARJ-1500RL7  
AD5620ARJ-1REEL7  
AD5620ARJ-2500RL7  
AD5620ARJ-2REEL7  
AD5620BRJ-1500RL7  
AD5620BRJ-1REEL7  
AD5620BRJ-2500RL7  
AD5620BRJ-2REEL7  
AD5620CRM-1  
AD5620CRM-1REEL7  
AD5620CRM-2  
AD5620CRM-2REEL7  
AD5620CRM-3  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
Evaluation Board  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RM-±  
RM-±  
RM-±  
RM-±  
RM-±  
RM-±  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Midscale  
Midscale  
2.5 V  
1.25 V  
1.25 V  
2.5 V  
D2J  
2.5 V  
D2M  
D2M  
D2N  
D2N  
D2P  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
AD5620CRM-3REEL7  
EVAL-AD5620EB  
D2P  
2.5 V  
Rev. A | Page 23 of 24  
 
AD5620/AD5640/AD5660  
AD5640 ORDERING GUIDE  
Package  
Description  
Package  
Option  
Power-On  
Branding Reset to Code  
Internal  
Reference  
Model  
Temp. Range  
Accuracy  
±± LSB INL  
±± LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
AD5640ARJ-2500RL7  
AD5640ARJ-2REEL7  
AD5640BRJ-1500RL7  
AD5640BRJ-1REEL7  
AD5640BRJ-2500RL7  
AD5640BRJ-2REEL7  
AD5640CRM-1  
AD5640CRM-1REEL7  
AD5640CRM-2  
AD5640CRM-2REEL7  
EVAL-AD5640EB  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
Evaluation Board  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
D2T  
D2T  
D2Q  
D2Q  
D2R  
D2R  
D2U  
D2U  
D2V  
D2V  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
2.5 V  
2.5 V  
1.25 V  
1.25 V  
2.5 V  
RJ-±  
2.5 V  
RM-±  
RM-±  
RM-±  
RM-±  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
AD5660 ORDERING GUIDE  
Package  
Description  
Package  
Option  
Power-On  
Branding Reset to Code Accuracy  
Internal  
Reference  
Model  
Temp. Range  
AD5660ARJ-1500RL7  
AD5660ARJ-1REEL7  
AD5660ARJ-2500RL7  
AD5660ARJ-2REEL7  
AD5660ARJ-3500RL7  
AD5660ARJ-3REEL7  
AD5660BRJ-1500RL7  
AD5660BRJ-1REEL7  
AD5660BRJ-2500RL7  
AD5660BRJ-2REEL7  
AD5660BRJ-3500RL7  
AD5660BRJ-3REEL7  
AD5660CRM-1  
AD5660CRM-1REEL7  
AD5660CRM-2  
AD5660CRM-2REEL7  
AD5660CRM-3  
AD5660CRM-3REEL7  
EVAL-AD5660EB  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
−15°C to +105°C  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead SOT-23  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
±-Lead MSOP  
Evaluation Board  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RM-±  
RM-±  
RM-±  
RM-±  
RM-±  
RM-±  
D30  
D30  
D31  
D31  
D32  
D32  
D2X  
D2X  
D2Y  
D2Y  
D2Z  
D2Z  
D33  
D33  
D34  
D34  
D35  
D35  
Zero  
Zero  
Zero  
Zero  
Midscale  
Midscale  
Zero  
Zero  
Zero  
±32 LSB INL  
±32 LSB INL  
±32 LSB INL  
±32 LSB INL  
±32 LSB INL  
±32 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
Zero  
Midscale  
Midscale  
Zero  
Zero  
Zero  
Zero  
Midscale  
Midscale  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04539–0–9/05(A)  
Rev. A | Page 24 of 24  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY