EVAL-AD5663REBZ [ADI]

Dual 12-/14-/16-Bit nanoDAC with 5 ppm/ C On-Chip Reference; 双12位/ 14位/ 16位属于nanoDAC 5 PPM / C片参考
EVAL-AD5663REBZ
型号: EVAL-AD5663REBZ
厂家: ADI    ADI
描述:

Dual 12-/14-/16-Bit nanoDAC with 5 ppm/ C On-Chip Reference
双12位/ 14位/ 16位属于nanoDAC 5 PPM / C片参考

文件: 总32页 (文件大小:967K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 12-/14-/16-Bit nanoDAC® with  
5 ppm/°C On-Chip Reference  
Data Sheet  
AD5623R/AD5643R/AD5663R  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
/V  
DD  
REFIN REFOUT  
Low power, smallest pin-compatible, dual nanoDAC  
AD5663R: 16 bits  
1.25V/2.5V  
REFERENCE  
LDAC  
AD5643R: 14 bits  
AD5623R: 12 bits  
User-selectable external or internal reference  
External reference default  
INPUT  
DAC  
STRING  
DAC A  
V
V
A
SCLK  
SYNC  
DIN  
BUFFER  
OUT  
OUT  
REGISTER  
REGISTER  
INTERFACE  
LOGIC  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
B
BUFFER  
On-chip 1.25 V/2.5 V, 5 ppm/°C reference  
10-lead MSOP and 3 mm × 3 mm LFCSP  
2.7 V to 5.5 V power supply  
AD5623R/AD5643R/AD5663R  
POWER-ON  
RESET  
POWER-DOWN  
LOGIC  
Guaranteed monotonic by design  
Power-on reset to zero scale  
Per channel power-down  
LDAC CLR  
GND  
Figure 1.  
Table 1. Related Devices  
Serial interface up to 50 MHz  
Part No.  
Description  
LDAC  
CLR  
functions  
Hardware  
and  
AD5663  
2.7 V to 5.5 V, dual 16-bit nanoDAC, with external  
reference  
APPLICATIONS  
Process control  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
GENERAL DESCRIPTION  
The AD5623R/AD5643R/AD5663R, members of the nanoDAC  
family, are low power, dual 12-, 14-, and 16-bit buffered voltage-  
out digital-to-analog converters (DAC) that operate from a single  
2.7 V to 5.5 V supply and are guaranteed monotonic by design.  
The low power consumption of this part in normal operation  
makes it ideally suited to portable, battery-operated equipment.  
The AD5623R/AD5643R/AD5663R use a versatile, 3-wire serial  
interface that operates at clock rates up to 50 MHz, and they are  
compatible with standard SPI®, QSPI™, MICROWIRE™, and  
DSP interface standards. The on-chip precision output amplifier  
enables rail-to-rail output swing to be achieved.  
The AD5623R/AD5643R/AD5663R have an on-chip reference.  
The AD5623R-3/AD5643R-3/AD5663R-3 have a 1.25 V, 5 ppm/°C  
reference, giving a full-scale output of 2.5 V; and the AD5623R-5/  
AD5643R-5/AD5663R-5 have a 2.5 V, 5 ppm/°C reference,  
giving a full-scale output of 5 V. The on-chip reference is off at  
power-up, allowing the use of an external reference; and all  
devices can be operated from a single 2.7 V to 5.5 V supply.  
The internal reference is turned on by writing to the DAC.  
PRODUCT HIGHLIGHTS  
1. Dual 12-, 14-, and 16-bit DAC.  
2. On-chip 1.25 V/2.5 V, 5 ppm/°C reference.  
3. Available in 10-lead MSOP and 10-lead, 3 mm ×  
3 mm LFCSP.  
The parts incorporate a power-on reset circuit that ensures the  
DAC output powers up to 0 V and remains there until a valid  
write takes place. The part contains a power-down feature that  
reduces the current consumption of the device to 480 nA at 5 V  
and provides software-selectable output loads while in power-  
down mode.  
4. Low power; typically consumes 0.6 mW at 3 V and  
1.25 mW at 5 V.  
5. 4.5 μs maximum settling time for the AD5623R.  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2006–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Amplifier........................................................................ 20  
Internal Reference ...................................................................... 20  
External Reference ..................................................................... 20  
Serial Interface ............................................................................ 20  
Input Shift Register .................................................................... 21  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD5623R-5/AD5643R-5/AD5663R-5....................................... 3  
AD5623R-3/AD5643R-3/AD5663R-3....................................... 5  
AC Characteristics........................................................................ 6  
Timing Characteristics ................................................................ 7  
Timing Diagram ........................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 20  
Digital-to-Analog Section ......................................................... 20  
Resistor String............................................................................. 20  
SYNC  
Interrupt .......................................................................... 21  
Power-On Reset.......................................................................... 22  
Software Reset............................................................................. 22  
Power-Down Modes .................................................................. 22  
LDAC  
Function .......................................................................... 23  
Internal Reference Setup ........................................................... 24  
Microprocessor Interfacing....................................................... 25  
Applications Information .............................................................. 26  
Using a Reference as a Power Supply....................................... 26  
Bipolar Operation Using the AD5663R .................................. 26  
Using the AD5663R with a Galvanically Isolated Interface . 26  
Power Supply Bypassing and Grounding................................ 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 29  
REVISION HISTORY  
2/13—Rev. E to Rev. F  
4/10—Rev. A to Rev. B  
Changes to Table 14........................................................................ 23  
Updated Outline Dimensions....................................................... 28  
4/12—Rev. D to Rev. E  
12/06—Rev. 0 to Rev. A  
Changes to Table 2............................................................................ 3  
Updated Outline Dimensions....................................................... 28  
Changes to Ordering Guide .......................................................... 29  
Changes to Table 2.............................................................................3  
Changes to Table 3.............................................................................5  
Changes to Figure 3...........................................................................9  
Changes to Ordering Guide .......................................................... 28  
4/11—Rev. C to Rev. D  
Changes to Ordering Guide .......................................................... 29  
4/06—Revision 0: Initial Version  
6/10—Rev. B to Rev. C  
Changes to Ordering Guide .......................................................... 28  
Rev. F | Page 2 of 32  
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
SPECIFICATIONS  
AD5623R-5/AD5643R-5/AD5663R-5  
VDD = 4.5 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
A Grade1  
Typ  
B Grade1  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Conditions/Comments  
STATIC PERFORMANCE2  
AD5663R  
Resolution  
16  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5643R  
±±  
±16  
±1  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5623R  
±2  
±4  
±0.5  
Resolution  
Bits  
LSB  
LSB  
mV  
mV  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Offset Error  
±1  
±2  
±1  
+10  
±10  
±1  
±0.5  
±1  
±0.25  
+10  
±10  
±1  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
+2  
±1  
−0.1  
+2  
±1  
−0.1  
Full-Scale Error  
% of  
FSR  
All 1s loaded to DAC register  
Gain Error  
±1.5  
±1.5  
% of  
FSR  
Zero-Scale Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
±2  
±2.5  
−100  
±2  
±2.5  
−100  
µV/°C  
ppm  
dB  
Of FSR/°C  
DAC code = midscale ; VDD = 5 V ±  
10%  
DC Crosstalk (External Reference)  
DC Crosstalk (Internal Reference)  
10  
10  
µV  
Due to full-scale output change;  
RL = 2 kΩ to GND or VDD  
Due to load current change  
Due to powering down (per channel)  
Due to full-scale output change;  
RL = 2 kΩ to GND or VDD  
10  
5
25  
10  
5
25  
µV/mA  
µV  
µV  
20  
10  
20  
10  
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
VDD  
0
VDD  
V
Capacitive Load Stability  
2
2
nF  
nF  
Ω
mA  
μs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
4
10  
0.5  
30  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode;  
VDD = 5 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
170  
26  
200  
VDD  
170  
26  
200  
VDD  
µA  
V
kΩ  
VREF = VDD = 5.5 V  
0.75  
0.75  
Rev. F | Page 3 of 32  
 
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
A Grade1  
Typ  
B Grade1  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Conditions/Comments  
At ambient  
REFERENCE OUTPUT  
Output Voltage  
Reference Temperature Coefficient3  
2.495  
2.505 2.495  
2.505  
±10  
V
±10  
±10  
7.5  
±5  
±10  
7.5  
ppm/°C MSOP package models  
ppm/°C LFCSP package models  
kΩ  
Output Impedance  
LOGIC INPUTS3  
Input Current  
Input Low Voltage (VINL  
Input High Voltage (VINH  
Pin Capacitance  
±2  
0.±  
2
±2  
0.±  
µA  
V
V
pF  
pF  
All digital inputs  
VDD = 5 V  
VDD = 5 V  
DIN, SCLK, and SYNC  
LDAC and CLR  
)
)
2
3
3
19  
19  
POWER REQUIREMENTS  
VDD  
4.5  
5.5  
4.5  
5.5  
V
IDD (Normal Mode)4  
VDD = 4.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
VIH = VDD and VIL = GND  
Internal reference off  
Internal reference on  
0.25  
0.±  
0.45  
1
0.25  
0.±  
0.45  
1
mA  
mA  
IDD (All Power-Down Modes)5  
VDD = 4.5 V to 5.5 V  
0.4±  
1
0.4±  
1
µA  
VIH = VDD and VIL = GND  
1 Temperature range: A, B grade = −40°C to +105°C.  
2 Linearity calculated using a reduced code range: AD5663R (Code 512 to Code 65,024), AD5643R (Code 12± to Code 16,256), and AD5623R (Code 32 to Code 4064).  
Output unloaded.  
3 Guaranteed by design and characterization, not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 Both DACs powered down.  
Rev. F | Page 4 of 32  
Data Sheet  
AD5623R/AD5643R/AD5663R  
AD5623R-3/AD5643R-3/AD5663R-3  
VDD = 2.7 V to 3.6 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
B Grade1  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
STATIC PERFORMANCE2  
AD5663R  
Resolution  
16  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5643R  
±±  
±16  
±1  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5623R  
±2  
±4  
±0.5  
Resolution  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Offset Error  
Full-Scale Error  
±0.5  
±1  
LSB  
LSB  
mV  
mV  
% of FSR  
% of FSR  
µV/°C  
ppm  
dB  
±0.25  
+10  
±10  
±1  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
+2  
±1  
−0.1  
All 1s loaded to DAC register  
Gain Error  
±1.5  
Zero-Scale Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
DC Crosstalk (External Reference)  
±2  
±2.5  
−100  
10  
Of FSR/°C  
DAC code = midscale; VDD = 3 V ± 10%  
Due to full-scale output change;  
RL = 2 kΩ to GND or VDD  
µV  
10  
5
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
DC Crosstalk (Internal Reference)  
25  
µV  
Due to full-scale output change;  
RL = 2 kΩ to GND or VDD  
20  
10  
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
VDD  
V
Capacitive Load Stability  
2
nF  
nF  
Ω
mA  
µs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
4
DC Output Impedance  
Short Circuit Current  
Power-Up Time  
VDD = 3 V  
Coming out of power-down mode; VDD = 3 V  
REFERENCE INPUTS  
Reference Current  
170  
26  
200  
VDD  
µA  
V
kΩ  
VREF = VDD = 3.6 V  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT  
Output Voltage  
0.75  
1.247  
1.253  
±15  
V
At ambient  
MSOP package models  
LFCSP package models  
Reference Temperature Coefficient3  
±5  
±10  
7.5  
ppm/°C  
ppm/°C  
kΩ  
Output Impedance  
Rev. F | Page 5 of 32  
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
B Grade1  
Typ  
Parameter  
LOGIC INPUTS3  
Min  
Max  
Unit  
Conditions/Comments  
Input Current  
±2  
0.±  
µA  
V
V
pF  
pF  
All digital inputs  
VDD = 3 V  
VDD = 3 V  
DIN, SCLK, and SYNC  
LDAC and CLR  
VINL, Input Low Voltage  
VINH, Input High Voltage  
Pin Capacitance  
2
3
19  
POWER REQUIREMENTS  
VDD  
2.7  
3.6  
V
IDD (Normal Mode)4  
VDD = 2.7 V to 3.6 V  
VDD = 2.7 V to 3.6 V  
IDD (All Power-Down Modes)5  
VDD = 2.7 V to 3.6 V  
VIH = VDD and VIL = GND  
Internal reference off  
Internal reference on  
200  
±00  
425  
900  
µA  
µA  
0.2  
1
µA  
VIH = VDD and VIL = GND  
1 Temperature range: B grade = −40°C to +105°C.  
2 Linearity calculated using a reduced code range: AD5663R (Code 512 to Code 65,024), AD5643R (Code 12± to Code 16,256), and AD5623R (Code 32 to Code 4064).  
Output unloaded.  
3 Guaranteed by design and characterization, not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 Both DACs powered down.  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 4.  
Parameter1, 2  
Min  
Typ  
Max  
Unit  
Conditions/Comments3  
Output Voltage Settling Time  
AD5623R  
AD5643R  
3
3.5  
4
4.5  
5
7
µs  
µs  
µs  
¼ to ¾ scale settling to ±0.5 LSB  
¼ to ¾ scale settling to ±0.5 LSB  
¼ to ¾ scale settling to ±2 LSB  
AD5663R  
Slew Rate  
1.±  
10  
0.1  
−90  
0.1  
1
4
1
4
340  
−±0  
120  
100  
15  
V/µs  
nV-s  
nV-s  
dB  
nV-s  
nV-s  
nV-s  
nV-s  
nV-s  
kHz  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Reference Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
1 LSB change around major carry  
VREF = 2 V ± 0.1 V p-p, frequency 10 Hz to 20 MHz  
External reference  
Internal reference  
External reference  
Internal reference  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
Output Noise Spectral Density  
VREF = 2 V ± 0.1 V p-p  
dB  
VREF = 2 V ± 0.1 V p-p, frequency = 10 kHz  
DAC code = midscale, 1 kHz  
DAC code = midscale, 10 kHz  
0.1 Hz to 10 Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
Output Noise  
1 Guaranteed by design and characterization, not production tested.  
2 See the Terminology section.  
3 Temperature range: A, B grade = −40°C to +105°C, typical at +25°C.  
Rev. F | Page 6 of 32  
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
DD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.1  
V
Table 5.  
Limit at TMIN, TMAX  
VDD = 2.7 V to 5.5 V  
20  
Parameter  
Unit  
Conditions/Comments  
2
t1  
ns min  
SCLK cycle time  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
9
9
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to SCLK fall ignore  
SCLK falling edge to SYNC fall ignore  
13  
5
5
0
15  
13  
0
LDAC pulse width low  
t11  
t12  
t13  
t14  
t15  
10  
15  
5
ns min  
ns min  
ns min  
ns min  
ns max  
SCLK falling edge to LDAC rising edge  
CLR pulse width low  
SCLK falling edge to LDAC falling edge  
CLR pulse activation time  
0
300  
1 Guaranteed by design and characterization, not production tested.  
2 Maximum SCLK frequency is 50 MHz at VDD = 2.7 V to 5.5 V.  
TIMING DIAGRAM  
t10  
t1  
t9  
SCLK  
t2  
t8  
t3  
t4  
t7  
SYNC  
t6  
t5  
DIN  
1
DB23  
DB0  
t14  
t11  
LDAC  
t12  
2
LDAC  
t13  
CLR  
t15  
V
OUT  
1
2
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Serial Write Operation  
Rev. F | Page 7 of 32  
 
 
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
VDD to GND  
VOUT to GND  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
VREFIN/VREFOUT to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Junction Temperature (TJ max)  
Power Dissipation  
−40°C to +105°C  
−65°C to +150°C  
150°C  
ESD CAUTION  
(TJ max − TA)/θJA  
LFCSP Package (4-Layer Board)  
θJA Thermal Impedance  
MSOP Package (4-Layer Board)  
θJA Thermal Impedance  
θJC Thermal Impedance  
Reflow Soldering Peak Temperature  
Pb-Free  
61°C/W  
142°C/W  
43.7°C/W  
260(+0/−5)°C  
Rev. F | Page ± of 32  
 
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
10  
9
V
V
A
B
V
V
/V  
OUT  
REFIN REFOUT  
AD5623R/  
AD5643R/  
AD5663R  
TOP VIEW  
(Not to Scale)  
OUT  
DD  
8
GND  
DIN  
7
LDAC  
CLR  
SCLK  
SYNC  
6
NOTE:  
EXPOSED PAD TIED TO GND ON  
LFCSP PACKAGE.  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
VOUT  
VOUT  
GND  
A
B
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Ground. Reference point for all circuitry on the part.  
Pulsing this pin low allows any or all DAC registers to be updated if the input registers have new data.  
This allows simultaneous update of all DAC outputs. Alternatively, this pin can be tied permanently low.  
LDAC  
5
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. While CLR is low, all LDAC pulses are  
ignored. When CLR is activated, zero scale is loaded to all input and DAC registers. This clears the output to 0 V.  
The part exits clear code mode on the 24th falling edge of the next write to the part. If CLR is activated during  
a write sequence, the write is aborted.  
6
SYNC  
Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input data.  
When SYNC goes low, it enables the input shift register, and data is transferred in on the falling edges of the  
following clocks. The DAC is updated following the 24th clock cycle unless SYNC is taken high before this edge,  
in which case the rising edge of SYNC acts as an interrupt and the write sequence is ignored by the DAC.  
7
SCLK  
DIN  
VDD  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input.  
Data can be transferred at rates up to 50 MHz.  
Serial Data Input. This device has a 24-bit shift register. Data is clocked into the register on the falling edge  
of the serial clock input.  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and the supply should be decoupled with  
a 10 μF capacitor in parallel with a 0.1 μF capacitor to GND.  
±
9
10  
VREFIN/VREFOUT Common Reference Input/Reference Output. When the internal reference is selected, this is the reference output  
pin. When using an external reference, this is the reference input pin. The default for this pin is a reference input.  
Rev. F | Page 9 of 32  
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
10  
V
T
= V = 5V  
REF  
V
= V = 5V  
DD  
= 25°C  
DD  
= 25°C  
REF  
0.8  
0.6  
0.4  
0.2  
8
T
A
A
6
4
2
0
–2  
–4  
0
–0.2  
–0.4  
–0.6  
–6  
–8  
–0.8  
–1.0  
–10  
0
10k  
20k  
30k  
CODE  
40k  
50k  
60k  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
Figure 7. DNL—AD5663R, External Reference  
Figure 4. INL—AD5663R, External Reference  
0.5  
4
V
= V = 5V  
REF  
V
T
= V = 5V  
REF  
DD  
= 25°C  
DD  
= 25°C  
T
0.4  
0.3  
0.2  
0.1  
A
A
3
2
1
0
0
–0.1  
–1  
–2  
–3  
–4  
–0.2  
–0.3  
–0.4  
–0.5  
0
2.5k  
5.0k  
7.5k  
CODE  
10.0k  
12.5k  
15.0k  
0
2.5k  
5.0k  
7.5k  
CODE  
10.0k  
12.5k  
15.0k  
Figure 8. DNL—AD5643R, External Reference  
Figure 5. INL—AD5643R, External Reference  
1.0  
0.20  
0.15  
0.10  
0.05  
0
V
= V = 5V  
REF  
V
= V = 5V  
REF  
DD  
= 25°C  
DD  
= 25°C  
T
T
0.8  
0.6  
A
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.05  
–0.10  
–0.15  
–0.20  
0
0.5k  
1.0k  
1.5k  
2.0k  
2.5k  
3.0k  
3.5k  
4.0k  
0
0.5k  
1.0k  
1.5k  
2.0k  
CODE  
2.5k  
3.0k  
3.5k  
4.0k  
CODE  
Figure 6. INL—AD5623R, External Reference  
Figure 9. DNL—AD5623R, External Reference  
Rev. F | Page 10 of 32  
 
 
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
10  
1.0  
0.8  
0.6  
0.4  
0.2  
V
V
= 5V  
V
= 5V  
DD  
DD  
REFOUT  
= 25°C  
8
6
4
2
= 2.5V  
V
= 2.5V  
REFOUT  
T
T = 25°C  
A
A
0
0
–2  
–0.2  
–4  
–6  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
Figure 10. INL—AD5663R-5  
Figure 13. DNL—AD5663R-5  
4
0.5  
0.4  
0.3  
0.2  
0.1  
V
V
= 5V  
V
V
= 5V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
= 2.5V  
= 2.5V  
3
2
T
T
A
A
1
0
0
–0.1  
–1  
–2  
–0.2  
–0.3  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 11. INL—AD5643R-5  
Figure 14. DNL—AD5643R-5  
1.0  
0.20  
0.15  
0.10  
0.05  
V
V
= 5V  
V
V
= 5V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
= 2.5V  
= 2.5V  
0.8  
0.6  
0.4  
0.2  
T
T
A
A
0
–0.2  
–0.4  
–0.6  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
0.5k  
1.0k  
1.5k  
2.0k  
2.5k  
3.0k  
3.5k  
4.0k  
0
0.5k  
1.0k  
1.5k  
2.0k  
2.5k  
3.0k  
3.5k  
4.0k  
CODE  
CODE  
Figure 12. INL—AD5623R-5  
Figure 15. DNL—AD5623R-5  
Rev. F | Page 11 of 32  
AD5623R/AD5643R/AD5663R  
Data Sheet  
10  
1.0  
V
V
T
= 3V  
V
V
T
= 3V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
8
6
= 1.25V  
0.8  
0.6  
= 1.25V  
A
A
4
0.4  
2
0.2  
0
0
–2  
–4  
–6  
–0.2  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
Figure 16. INL—AD5663R-3  
Figure 19. DNL—AD5663R-3  
4
3
0.5  
0.4  
V
V
= 3V  
V
= 3V  
DD  
DD  
REFOUT  
= 25°C  
= 1.25V  
V
= 1.25V  
REFOUT  
T = 25°C  
A
T
A
0.3  
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–1  
–2  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 17. INL—AD5643R-3  
Figure 20. DNL—AD5643R-3  
1.0  
0.8  
0.20  
0.15  
0.10  
0.05  
0
V
V
= 3V  
DD  
REFOUT  
= 25°C  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
= 1.25V  
= 1.25V  
T
A
T
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
0.5k  
1.0k  
1.5k  
2.0k  
2.5k  
3.0k  
3.5k  
4.0k  
0
0.5k  
1.0k  
1.5k  
2.0k  
2.5k  
3.0k  
3.5k  
4.0k  
CODE  
CODE  
Figure 18. INL—AD5623R-3  
Figure 21. DNL—AD5623R-3  
Rev. F | Page 12 of 32  
Data Sheet  
AD5623R/AD5643R/AD5663R  
8
0
–0.02  
–0.04  
–0.06  
–0.08  
V
= 5V  
DD  
6
MAX INL  
V
= V = 5V  
REF  
DD  
4
2
GAIN ERROR  
MAX DNL  
MIN DNL  
0
–0.10  
–0.12  
–2  
–4  
–6  
–8  
–0.14  
–0.16  
FULL-SCALE ERROR  
MIN INL  
100  
–0.18  
–0.20  
–40  
–20  
0
20  
40  
60  
80  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. INL Error and DNL Error vs. Temperature  
Figure 25. Gain Error and Full-Scale Error vs. Temperature  
10  
8
1.5  
MAX INL  
1.0  
ZERO-SCALE ERROR  
6
V
= 5V  
DD  
= 25°C  
0.5  
0
4
T
A
2
MAX DNL  
MIN DNL  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–2  
–4  
–6  
OFFSET ERROR  
MIN INL  
4.25  
–8  
–10  
0.75  
1.25  
1.75  
2.25  
2.75  
3.25  
(V)  
3.75  
4.75  
–40  
–20  
0
20  
40  
60  
80  
100  
V
REF  
TEMPERATURE (°C)  
Figure 23. INL Error and DNL Error vs. VREF  
Figure 26. Zero-Scale Error and Offset Error vs. Temperature  
8
6
1.0  
MAX INL  
T
A
= 25°C  
0.5  
4
2
GAIN ERROR  
0
MAX DNL  
MIN DNL  
FULL-SCALE ERROR  
–0.5  
0
–2  
–4  
–6  
–8  
–1.0  
MIN INL  
–1.5  
–2.0  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
DD  
V
DD  
Figure 24. INL Error and DNL Error vs. Supply  
Figure 27. Gain Error and Full-Scale Error vs. Supply  
Rev. F | Page 13 of 32  
 
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
1.0  
0.5  
T
= 25°C  
A
DAC LOADED WITH  
FULL-SCALE  
SOURCING CURRENT  
DAC LOADED WITH  
ZERO-SCALE  
SINKING CURRENT  
0.4  
0.3  
0.5  
0
ZERO-SCALE ERROR  
0.2  
V
V
= 3V  
0.1  
DD  
REFOUT  
–0.5  
–1.0  
–1.5  
= 1.25V  
0
–0.1  
–0.2  
–0.3  
V
V
= 5V  
DD  
–2.0  
–2.5  
= 2.5V  
–2  
REFOUT  
OFFSET ERROR  
–0.4  
–0.5  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
–10  
–8  
–6  
–4  
0
2
4
6
8
10  
V
DD  
CURRENT (mA)  
Figure 28. Zero-Scale Error and Offset Error vs. Supply  
Figure 31. Headroom at Rails vs. Source and Sink  
6
5
4
3
2
1
V
= 5.5V  
DD  
= 25°C  
V
V
= 5V  
DD  
FULL SCALE  
T
A
= 2.5V  
REFOUT  
= 25°C  
8
6
4
2
0
T
A
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
0
ZERO SCALE  
–1  
–30  
0.230  
0.235  
0.240  
0.245  
0.250  
0.255  
–20  
–10  
0
10  
20  
30  
I
(mA)  
DD  
CURRENT (mA)  
Figure 29. IDD Histogram with External Reference  
Figure 32. AD56x3R-5 Source and Sink Capability  
4
3
2
1
5
4
3
2
1
0
V
V
= 3V  
DD  
REFOUT  
= 25°C  
V
= 5.5V  
DD  
= 25°C  
= 1.25V  
T
A
T
A
FULL SCALE  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
0
ZERO SCALE  
–1  
–30  
0.78  
0.80  
0.82  
(mA)  
0.84  
–20  
–10  
0
10  
20  
30  
I
DD  
CURRENT (mA)  
Figure 33. AD56x3R-3 Source and Sink Capability  
Figure 30. IDD Histogram with Internal Reference  
Rev. F | Page 14 of 32  
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
0.30  
SYNC  
T
= 25°C  
A
V
V
= V  
= V  
= 5V  
= 3V  
DD  
REFIN  
0.25  
0.20  
0.15  
0.10  
1
3
SLCK  
DD  
REFIN  
V
OUT  
V
= 5V  
DD  
0.05  
0
2
–40  
–20  
0
20  
40  
60  
80  
100  
CH1 5.0V  
CH3 5.0V  
CH2 500mV  
M400ns  
A CH1  
1.4V  
TEMPERATURE (°C)  
Figure 34. Supply Current vs. Temperature  
Figure 37. Exiting Power-Down to Midscale  
2.538  
V
= V = 5V  
REF  
DD  
= 25°C  
2.537  
2.536  
2.535  
2.534  
2.533  
2.532  
2.531  
2.530  
2.529  
2.528  
2.527  
2.526  
2.525  
2.524  
2.523  
2.522  
2.521  
T
A
5ns/SAMPLE NUMBER  
GLITCH IMPULSE = 9.494nV  
1LSB CHANGE AROUND  
MIDSCALE (0x8000 TO 0x7FFF)  
V
T
= V = 5V  
REF  
DD  
= 25°C  
A
FULL-SCALE CODE CHANGE  
0x0000 TO 0xFFFF  
OUTPUT LOADED WITH 2kΩ  
AND 200pF TO GND  
V
= 909mV/DIV  
OUT  
1
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
TIME BASE = 4µs/DIV  
Figure 35. Full-Scale Settling Time, 5 V  
Figure 38. Digital-to-Analog Glitch Impulse (Negative)  
2.498  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
V
= V = 5V  
REF  
DD  
= 25°C  
V
= V = 5V  
REF  
DD  
= 25°C  
T
A
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 0.424nV  
V
DD  
1
2
MAX(C2)*  
420.0mV  
V
OUT  
CH2 500mV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
CH1 2.0V  
M100µs 125MS/s  
A CH1 1.28V  
8.0ns/pt  
Figure 36. Power-On Reset to 0 V  
Figure 39. Analog Crosstalk, External Reference  
Rev. F | Page 15 of 32  
 
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
2.496  
2.494  
2.492  
2.490  
2.488  
2.486  
2.484  
2.482  
2.480  
2.478  
2.476  
2.474  
2.472  
2.470  
2.468  
2.466  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
= 1.25V  
T
A
DAC LOADED WITH MIDSCALE  
1
V
V
= 5V  
DD  
REFOUT  
= 25°C  
2.464  
2.462  
2.460  
2.458  
2.456  
= 2.5V  
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 4.462nV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
4s/DIV  
Figure 40. Analog Crosstalk, Internal Reference  
Figure 43. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference  
800  
T
= 25°C  
A
MIDSCALE LOADED  
700  
600  
500  
400  
300  
200  
V
= V = 5V  
REF  
DD  
= 25°C  
T
A
DAC LOADED WITH MIDSCALE  
1
V
V
= 5V  
DD  
REFOUT  
= 2.5V  
100  
0
V
V
= 3V  
DD  
REFOUT  
= 1.25V  
1k  
Y AXIS = 2µV/DIV  
X AXIS = 4s/DIV  
100  
10k  
FREQUENCY (Hz)  
1M  
10M  
Figure 41. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Figure 44. Noise Spectral Density, Internal Reference  
–20  
V
= 5V  
DD  
= 25°C  
V
V
= 5V  
DD  
REFOUT  
= 25°C  
T
A
–30  
–40  
= 2.5V  
DAC LOADED WITH FULL SCALE  
= 2V ± 0.3V p-p  
T
A
V
REF  
DAC LOADED WITH MIDSCALE  
–50  
–60  
–70  
1
–80  
–90  
–100  
2k  
4k  
6k  
8k  
10k  
5s/DIV  
FREQUENCY (Hz)  
Figure 42. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference  
Figure 45. Total Harmonic Distortion  
Rev. F | Page 16 of 32  
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
16  
V
= V  
DD  
REF  
= 25°C  
T
A
14  
12  
10  
8
CLR  
3
V
= 3V  
DD  
V
A
OUT  
V
= 5V  
DD  
V
B
OUT  
6
4
4
2
0
1
2
3
4
5
6
7
8
9
10  
CH2 1.0V  
CH4 1.0V  
M200ns A CH3  
1.10V  
CH3 5.0V  
CAPACITANCE (nF)  
Figure 46. Settling Time vs. Capacitive Load  
CLR  
Figure 48.  
Pulse Activation Time  
5
0
V
= 5V  
DD  
= 25°C  
T
A
5  
10  
15  
20  
25  
30  
35  
–40  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 47. Multiplying Bandwidth  
Rev. F | Page 17 of 32  
AD5623R/AD5643R/AD5663R  
TERMINOLOGY  
Data Sheet  
Relative Accuracy or Integral Nonlinearity (INL)  
DC Power Supply Rejection Ratio (PSRR)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC transfer  
function. A typical INL vs. code plot is shown in Figure 5.  
PSRR indicates how the output of the DAC is affected by  
changes in the supply voltage. PSRR is the ratio of the change in  
VOUT to a change in VDD for full-scale output of the DAC. It  
is measured in dB. VREF is held at 2 V, and VDD is varied by  
10%.  
Differential Nonlinearity (DNL)  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed  
monotonic by design. A typical DNL vs. code plot is shown in  
Figure 9.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for  
the output of a DAC to settle to a specified level for a 1/4 to 3/4  
full-scale input change and is measured from the 24th falling  
edge of SCLK.  
Digital-to-Analog Glitch Impulse  
Zero-Scale Error  
The impulse injected into the analog output when the input  
code in the DAC register changes state. It is normally specified  
as the area of the glitch in nV-s and is measured when the  
digital input code is changed by 1 LSB at the major carry  
transition (0x7FFF to 0x8000). See Figure 38.  
Zero-scale error is the measurement of the output error when  
zero code (0x0000) is loaded to the DAC register. Ideally, the  
output should be 0 V. The zero-scale error is always positive in  
the AD56x3R because the output of the DAC cannot go below  
0 V. It is due to a combination of the offset errors in the DAC  
and the output amplifier. Zero-scale error is expressed in mV.  
A plot of zero-scale error vs. temperature is shown in Figure 26.  
Digital Feedthrough  
A measure of the impulse injected into the analog output of the  
DAC from the digital inputs of the DAC, digital feedthrough is  
measured when the DAC output is not updated. It is specified  
in nV-s, and it is measured with a full-scale code change on the  
data bus, that is, from all 0s to all 1s and vice versa.  
Full-Scale Error  
Full-scale error is the measurement of the output error when  
full-scale code (0xFFFF) is loaded into the DAC register. Ideally,  
the output should be VDD − 1 LSB. Full-scale error is expressed  
in percent of full-scale range. A plot of full-scale error vs.  
temperature is shown in Figure 25.  
Reference Feedthrough  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
Gain Error  
LDAC  
is not being updated (that is,  
decibels (dB).  
is high). It is expressed in  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from ideal,  
expressed as a percent of the full-scale range.  
Noise Spectral Density  
Noise spectral density is a measurement of the internally  
generated random noise. Random noise is characterized as a  
spectral density (nV/√Hz). It is measured by loading the DAC  
to midscale and measuring noise at the output. A plot of noise  
spectral density is shown in Figure 44.  
Zero-Scale Error Drift  
Zero-scale error drift is the measurement of the change in zero-  
scale error with a change in temperature. It is expressed in  
microvolts/°C (µV/°C).  
Gain Temperature Coefficient  
DC Crosstalk  
Gain temperature coefficient is a measurement of the change in  
gain error with changes in temperature. It is expressed in (ppm  
of full-scale range)/°C.  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is  
measured with a full-scale output change on one DAC (or soft  
power-down and power-up) while monitoring another DAC  
kept at midscale. It is expressed in microvolts (μV).  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured on the AD56x3R  
with code 512 loaded in the DAC register. It can be negative or  
positive.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has to  
another DAC kept at midscale. It is expressed in microvolts/  
milliamps (μV/mA).  
Rev. F | Page 1± of 32  
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
Digital Crosstalk  
Multiplying Bandwidth  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s and vice versa) in the input register of another  
DAC. It is measured in standalone mode and is expressed  
in nanovolts-second (nV-s).  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
Analog Crosstalk  
Total Harmonic Distortion (THD)  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by loading one of the input registers with a full-scale  
code change (all 0s to all 1s and vice versa) while keeping LDAC  
Total harmonic distortion is the difference between an ideal  
sine wave and its attenuated version using the DAC. The sine  
wave is used as the reference for the DAC, and the THD is a  
measurement of the harmonics present on the DAC output.  
It is measured in decibels (dB).  
LDAC  
high. Then pulse  
low and monitor the output of the DAC  
whose digital code was not changed. The area of the glitch is  
expressed in nanovolts-second (nV-s).  
DAC-to-DAC Crosstalk  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
output change of another DAC. This includes both digital and  
analog crosstalk. It is measured by loading one of the DACs  
with a full-scale code change (all 0s to all 1s and vice versa) with  
LDAC  
low and monitoring the output of another DAC. The  
energy of the glitch is expressed in nanovolts-second (nV-s).  
Rev. F | Page 19 of 32  
AD5623R/AD5643R/AD5663R  
Data Sheet  
THEORY OF OPERATION  
DIGITAL-TO-ANALOG SECTION  
R
The AD5623R/AD5643R/AD5663R DAC is fabricated on  
a CMOS process. The architecture consists of a string DAC  
followed by an output buffer amplifier. Figure 49 shows a block  
diagram of the DAC architecture.  
R
R
TO OUTPUT  
AMPLIFIER  
V
DD  
OUTPUT  
AMPLIFIER  
(GAIN = +2)  
REF (+)  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
REF (–)  
R
R
GND  
Figure 49. DAC Architecture  
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
Figure 50. Resistor String  
D
INTERNAL REFERENCE  
VOUT VREFIN  
2N  
The AD5623R/AD5643R/AD5663R on-chip reference is off at  
power-up and is enabled via a write to a control register. See the  
Internal Reference Setup section for details.  
The ideal output voltage when using the internal reference is  
given by  
D
The AD56x3R-3 has a 1.25 V, 5 ppm/°C reference, giving a full-  
scale output of 2.5 V. The AD56x3R-5 has a 2.5 V, 5 ppm/°C  
reference, giving a full-scale output of 5 V. The internal refer-  
ence associated with each part is available at the VREFOUT pin.  
A buffer is required if the reference output is used to drive  
external loads. When using the internal reference, it is  
recommended that a 100 nF capacitor be placed between  
reference output and GND for reference stability.  
VOUT 2VREFOUT  
2N  
where:  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register:  
0 to 4095 for AD5623R (12-bit)  
0 to 16,383 for AD5643R (14-bit)  
0 to 65,535 for AD5663R (16-bit)  
EXTERNAL REFERENCE  
N is the DAC resolution.  
The VREFIN pins on the AD56x3R-3 and the AD56x3R-5 allows  
the use of an external reference if the application requires it.  
The on-chip reference is off at power-up, and this is the default  
condition. The AD56x3R-3 and the AD56x3R-5 can be operated  
from a single 2.7 V to 5.5 V supply.  
RESISTOR STRING  
The resistor string section is shown in Figure 50. It is simply a  
string of resistors, each of Value R. The code loaded to the DAC  
register determines at which node on the string the voltage is  
tapped off to be fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the string  
to the amplifier. Because it is a string of resistors, it is guaranteed  
monotonic.  
SERIAL INTERFACE  
The AD5623R/AD5643R/AD5663R have a 3-wire serial interface  
SYNC  
(
, SCLK, and DIN) that is compatible with SPI, QSPI, and  
MICROWIRE interface standards, as well as with most DSPs.  
See Figure 2 for a timing diagram of a typical write sequence.  
OUTPUT AMPLIFIER  
The output buffer amplifier can generate rail-to-rail voltages on  
its output, which gives an output range of 0 V to VDD. It can drive  
a load of 2 kΩ in parallel with 1000 pF to GND. The source and  
sink capabilities of the output amplifier can be seen in Figure 31.  
The slew rate is 1.8 V/μs with a 1/4 to 3/4 full-scale settling time  
of 10 μs.  
SYNC  
The write sequence begins by bringing the  
line low. Data  
from the DIN line is clocked into the 24-bit shift register on the  
falling edge of SCLK. The serial clock frequency can be as high  
as 50 MHz, making the AD5623R/AD5643R/AD5663R compatible  
with high speed DSPs. On the 24th falling clock edge, the last  
data bit is clocked in and the programmed function is executed,  
for example, a change in DAC register contents and/or a change  
in the mode of operation.  
Rev. F | Page 20 of 32  
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
SYNC  
At this stage, the  
line can be kept low or be brought high.  
Table 8. Command Definition  
In either case, it must be brought high for a minimum of 15 ns  
before the next write sequence, so that a falling edge of  
can initiate the next write sequence.  
C2  
C1  
C0  
Command  
SYNC  
0
0
0
0
0
1
Write to Input Register n  
Update DAC Register n  
0
1
0
Write to Input Register n, update all  
(software LDAC)  
SYNC  
Because the  
buffer draws more current when VIN = 2 V  
SYNC  
than it does when VIN = 0.8 V,  
should be idled low between  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Write to and update DAC Channel n  
Power down DAC (power up)  
Reset  
write sequences for even lower power operation. As mentioned  
previously, it must, however, be brought high again just before  
the next write sequence.  
LDAC register setup  
INPUT SHIFT REGISTER  
Internal reference setup (on/off)  
The input shift register is 24 bits wide (see Figure 52). The first  
two bits are don’t cares. The next three are Command Bit C2 to  
Command Bit C0 (see Table 8), followed by the 3-bit DAC  
Address A2 to DAC Address A0 (see Table 9), and, finally, the  
16-, 14-, and 12-bit data-word.  
Table 9. Address Command  
A2  
A1  
A0  
ADDRESS (n)  
DAC A  
DAC B  
Reserved  
Reserved  
All DACs  
0
0
0
0
0
1
0
1
0
The data-word comprises the 16-, 14-, and 12-bit input codes,  
followed by zero, two, or four don’t care bits, for the AD5663R,  
AD5643R, and AD5623R, respectively (see Figure 51, Figure 52,  
and Figure 53). The data bits are transferred to the DAC register  
on the 24th falling edge of SCLK.  
0
1
1
1
1
1
SYNC  
INTERRUPT  
SYNC  
In a normal write sequence, the  
least 24 falling edges of SCLK, and the DAC is updated on the  
SYNC  
line is kept low for at  
24th falling edge. However, if  
is brought high before the  
24th falling edge, this acts as an interrupt to the write sequence.  
The shift register is reset, and the write sequence is seen as  
invalid. Neither an update of the DAC register contents nor a  
change in the operating mode occurs (see Figure 54).  
DB23 (MSB)  
DB0 (LSB)  
X
X
C2  
C1  
C0  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D3  
D1  
D4  
D2  
D0  
D3  
D1  
X
D2  
D0  
X
D1  
D0  
DATA BITS  
COMMAND BITS ADDRESS BITS  
Figure 51. AD5663R Input Shift Register Contents  
DB23 (MSB)  
DB0 (LSB)  
X
X
C2  
C1  
C0  
A2  
A1  
A0 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
X
X
DATA BITS  
COMMAND BITS ADDRESS BITS  
Figure 52. AD5643R Input Shift Register Contents  
DB23 (MSB)  
DB0 (LSB)  
X
X
C2  
C1  
C0  
A2  
A1  
A0 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
X
X
DATA BITS  
COMMAND BITS ADDRESS BITS  
Figure 53. AD5623R Input Shift Register Contents  
SCLK  
SYNC  
DIN  
DB23  
DB0  
DB23  
DB0  
INVALID WRITE SEQUENCE:  
TH  
VALID WRITE SEQUENCE, OUTPUT UPDATES  
TH  
SYNC HIGH BEFORE 24 FALLING EDGE  
ON THE 24 FALLING EDGE  
SYNC  
Figure 54.  
Interrupt Facility  
Rev. F | Page 21 of 32  
 
 
 
 
 
 
 
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
Again, to select which combination of DAC channels to power  
up, set the corresponding bits (Bit DB1 and Bit DB0) to 1. See  
Table 13 for contents of the input shift register during power-  
down/power-up operation.  
POWER-ON RESET  
The AD5623R/AD5643R/AD5663R contain a power-on reset  
circuit that controls the output voltage during power-up. The  
AD5623R/AD5643R/AD5663R DACs output power up to 0 V,  
and the output remains there until a valid write sequence is  
made to the DACs. This is useful in applications where it is  
important to know the state of the output of the DACs while  
The DAC output powers up to the value in the input register  
LDAC  
LDAC  
while  
is low. If  
is high, the DAC ouput powers up  
to the value held in the DAC register before power-down.  
LDAC  
they are in the process of powering up. Any events on  
CLR  
or  
during power-on reset are ignored.  
Table 11. Modes of Operation  
DB5  
DB4  
Operating Mode  
Normal operation  
Power-down modes  
1 kΩ to GND  
100 kΩ to GND  
Three-state  
SOFTWARE RESET  
0
0
The AD5623R/AD5643R/AD5663R contain a software reset  
function. Command 101 is reserved for the software reset  
function (see Table 8). The software reset command contains  
two reset modes that are software-programmable by setting bit  
DB0 in the control register. Table 10 shows how the state of the  
bit corresponds to the mode of operation of the device. Table 12  
shows the contents of the input shift register during the  
software reset mode of operation.  
0
1
1
1
0
1
When both Bit DB1 and Bit DB2 are set to 0, the part works  
normally, with its normal power consumption of 250 µA at 5 V.  
However, for the three power-down modes, the supply current  
falls to 480 nA at 5 V (200 nA at 3 V). Not only does the supply  
current fall, but the output stage is also internally switched from  
the output of the amplifier to a resistor network of known values.  
This has the advantage that the output impedance of the part is  
known while the part is in power-down mode. The outputs can  
either be connected internally to GND through a 1 kΩ or 100 kΩ  
resistor or left open-circuited (three-state) (see Figure 55).  
Table 10. Software Reset Modes  
DB0  
0
Registers Reset to Zero  
DAC register  
Input register  
DAC register  
Input register  
1 (Power-on Reset)  
LDAC register  
Power-down register  
Internal reference setup register  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
POWER-DOWN MODES  
The AD5623R/AD5643R/AD5663R contain four separate  
modes of operation. Command 100 is reserved for the power-  
down function (see Table 8). These modes are software-  
programmable by setting Bit DB5 and Bit DB4 in the control  
register. Table 11 shows how the state of the bits corresponds to  
the mode of operation of the device. Any or all DACs (DAC B  
and DAC A) can be powered down to the selected mode by  
setting the corresponding two bits (Bit DB1 and Bit DB0) to 1.  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 55. Output Stage During Power-Down  
The bias generator, the output amplifier, the resistor string,  
and other associated linear circuitry are shut down when  
power-down mode is activated. However, the contents of the  
DAC register are unaffected when in power-down. The time  
to exit power-down is typically 4 µs for both VDD = 5 V and  
VDD = 3 V (see Figure 37).  
By executing the same Command 100, any combination of DACs  
can be powered up by setting Bit DB5 and Bit DB4 to normal  
operation mode.  
Table 12. 24-Bit Input Shift Register Contents for Software Reset Command  
MSB  
LSB  
DB23 to DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB1  
DB0  
x
1
0
1
x
x
x
x
1/0  
Don’t care  
Command bits (C2 to C0)  
Address bits (A2 to A0)  
Don’t care  
Determines software reset mode  
Rev. F | Page 22 of 32  
 
 
 
 
 
 
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
Table 13. 24-Bit Input Shift Register Contents of Power Up/Down Function  
MSB  
LSB  
DB23 to  
DB22  
DB15 to  
DB21 DB20 DB19 DB18 DB17 DB16 DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
x
1
0
0
x
x
x
x
PD1  
PD0  
x
x
DAC B  
DAC A  
Don’t  
care  
Command bits (C2 to C0) Address bits (A2 to A0)  
Don’t care  
Don’t  
care  
Power-down  
mode  
Don’t care  
Power down/Power up  
channel selection;  
set bit to 1 to select  
channel  
LDAC  
Table 14. 24-Bit Input Shift Register Contents for  
Setup Command  
MSB  
LSB  
DB23 to  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB2  
DB1  
DAC B  
DB0  
x
1
1
0
x
x
x
x
DAC A  
Don’t care  
Command bits (C2 to C0)  
Address bits (A3 to A0)  
Don’t care  
Don’t care  
Set DAC to 0 or 1 for required  
mode of operation  
LDAC  
LDAC FUNCTION  
Asynchronous  
The AD5623R/AD5643R/AD5663R DACs have double-  
buffered interfaces consisting of two banks of registers: input  
registers and DAC registers. The input registers are connected  
directly to the input shift register, and the digital code is  
transferred to the relevant input register on completion of a  
valid write sequence. The DAC registers contain the digital code  
used by the resistor strings.  
The outputs are not updated at the same time that the input  
LDAC  
registers are updated with the contents of the input register.  
registers are written to. When  
goes low, the DAC  
LDAC  
The  
the hardware  
which combination of channels to simultaneously update when  
LDAC LDAC  
register gives the user full flexibility and control over  
LDAC  
pin. This register allows the user to select  
the hardware  
register to 0 for a DAC channel means that the update of this  
LDAC  
pin is executed. Setting the  
bit  
LDAC  
Access to the DAC registers is controlled by the  
pin.  
pin is high, the DAC registers are latched and  
the input registers can change state without affecting the  
LDAC  
LDAC  
When the  
channel is controlled by the  
pin. If this bit is set to 1, this  
channel synchronously updates; that is, the DAC register is  
updated after new data is read in, regardless of the state of the  
contents of the DAC registers. When  
is brought low,  
however, the DAC registers become transparent and the  
contents of the input registers are transferred to them. The  
double-buffered interface is useful if the user requires  
simultaneous updating of all DAC outputs. The user can write  
to one of the input registers individually and then, by bringing  
LDAC  
LDAC  
pin. It effectively sees the  
pin as being pulled low.  
LDAC  
See Table 15 for the  
register mode of operation. This  
flexibility is useful in applications where the user wants to  
simultaneously update select channels while the rest of the  
channels are synchronously updating.  
LDAC  
low when writing to the other DAC input register, all  
outputs will update simultaneously.  
LDAC  
Writing to the DAC using Command 110 loads the 2-bit  
register [DB1:DB0]. The default for each channel is 0; that is,  
These parts each contain an extra feature whereby a DAC  
register is not updated unless its input register has been updated  
LDAC  
the  
DAC register is updated, regardless of the state of the  
pin. See Table 14 for contents of the input shift register during  
LDAC  
pin works normally. Setting the bits to 1 means the  
LDAC  
LDAC  
LDAC  
since the last time  
was brought low. Normally, when  
is brought low, the DAC registers are filled with the contents of  
the input registers. In the case of the AD5623R/AD5643R/  
AD5663R, the DAC register updates only if the input register  
has changed since the last time the DAC register was updated,  
thereby removing unnecessary digital crosstalk.  
the  
register setup command.  
LDAC  
Table 15.  
Bits  
Register Mode of Operation  
LDAC  
Pin  
Operation  
LDAC  
LDAC  
(DB1 to DB0)  
The outputs of all DACs can be simultaneously updated, using  
0
1/0  
Determined by LDAC pin  
LDAC  
the hardware  
pin.  
1
x = don’t care The DAC registers are updated  
after new data is read in on the  
falling edge of the 24th SCLK  
pulse.  
LDAC  
Synchronous  
The DAC registers are updated after new data is read in on the  
LDAC  
falling edge of the 24th SCLK pulse.  
low or pulsed as shown in Figure 2.  
can be permanently  
Rev. F | Page 23 of 32  
 
 
 
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
Table 16. Reference Setup Register  
INTERNAL REFERENCE SETUP  
Internal Reference  
Setup Register (DB0)  
The on-chip reference is off at power-up by default. This  
reference can be turned on or off by setting a software  
programmable bit, DB0, in the control register. Table 16 shows  
how the state of the bit corresponds to the mode of operation.  
Command 111 is reserved for setting up the internal reference  
(see Table 8). See Table 16 for the contents of the input shift  
register during the internal reference setup command.  
Action  
Reference off (default)  
0
1
Reference on  
Table 17. 32-Bit Input Shift Register Contents for Reference Setup Function  
MSB  
LSB  
DB23 to DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB1 DB0  
x
1
1
1
x
x
x
x
1/0  
Don’t care  
Command bits (C2 to C0)  
Address bits (A2 to A0)  
Don’t care  
Reference  
setup register  
Rev. F | Page 24 of 32  
 
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
transferred, and a second serial write operation is performed to  
the DAC. PC7 is taken high at the end of this procedure.  
MICROPROCESSOR INTERFACING  
AD5623R/AD5643R/AD5663R to Blackfin® ADSP-BF53X  
Interface  
AD5623R/AD5643R/AD5663R to 80C51/80L51 Interface  
Figure 56 shows a serial interface between the AD5623R/  
AD5643R/AD5663R and the Blackfin ADSP-BF53X micro-  
processor. The ADSP-BF53X processor family incorporates two  
dual-channel synchronous serial ports, SPORT1 and SPORT0,  
for serial and multiprocessor communications. Using SPORT0  
to connect to the AD5623R/AD5643R/AD5663R, the setup for  
the interface is as follows: DT0PRI drives the DIN pin of the  
AD5623R/AD5643R/AD5663R, while TSCLK0 drives the  
Figure 58 shows a serial interface between the AD5623R/  
AD5643R/AD5663R and the 80C51/80L51 microcontroller.  
The setup for the interface is as follows: TxD of the 80C51/  
80L51 drives SCLK of the AD5623R/AD5643R/AD5663R,  
SYNC  
and RxD drives the serial data line of the part. The  
signal  
is again derived from a bit-programmable pin on the port. In this  
case, Port Line P3.3 is used. When data is to be transmitted to the  
AD5623R/AD5643R/AD5663R, P3.3 is taken low. The 80C51/  
80L51 transmit data in 8-bit bytes only; thus, only eight falling  
clock edges occur in the transmit cycle. To load data to the  
DAC, P3.3 is left low after the first eight bits are transmitted,  
and a second write cycle is initiated to transmit the second byte  
of data. P3.3 is taken high following the completion of this cycle.  
SYNC  
SCLK of the parts. The  
is driven from TFS0.  
1
AD5643R/  
AD5663R1  
ADSP-BF53x  
TFS0  
DTOPRI  
TSCLK0  
SYNC  
DIN  
SCLK  
The 80C51/80L51 output the serial data in a format that has the  
LSB first. The AD5623R/AD5643R/AD5663R must receive data  
with the MSB first. The 80C51/80L51 transmit routine should  
take this into account.  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 56. AD5623R/AD5643R/AD5663R to Blackfin ADSP-BF53X Interface  
AD5623R/AD5643R/AD5663R to 68HC11/68L11  
Interface  
1
AD5643R/  
AD5663R1  
SYNC  
SCLK  
DIN  
80C51/80L51  
P3.3  
TxD  
RxD  
Figure 57 shows a serial interface between the AD5623R/  
AD5643R/AD5663R and the 68HC11/68L11 microcontroller.  
SCK of the 68HC11/68L11 drives the SCLK of the AD5623R/  
AD5643R/AD5663R, and the MOSI output drives the serial  
data line of the DAC.  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 58. AD5623R/AD5643R/AD5663R to 80C512/80L51 Interface  
1
AD5643R/  
AD5663R1  
SYNC  
SCLK  
DIN  
68HC11/68L11  
AD5623R/AD5643R/AD5663R to MICROWIRE Interface  
PC7  
SCK  
Figure 59 shows an interface between the AD5623R/AD5643R/  
AD5663R and any MICROWIRE-compatible device. Serial data is  
shifted out on the falling edge of the serial clock and is clocked into  
the AD5623R/AD5643R/AD5663R on the rising edge of the SK.  
MOSI  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
1
AD5643R/  
AD5663R1  
MICROWIRE  
Figure 57. AD5623R/AD5643R/AD5663R to 68HC11/68L11 Interface  
CS  
SYNC  
SCLK  
DIN  
SYNC  
The  
signal is derived from a port line (PC7). The setup  
SK  
SO  
conditions for correct operation of this interface are as follows:  
the 68HC11/68L11 is configured with its CPOL bit as 0, and its  
CPHA bit as 1. When data is being transmitted to the DAC, the  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
SYNC  
line is taken low (PC7). When the 68HC11/68L11 is  
Figure 59. AD5623R/AD5643R/AD5663R to MICROWIRE Interface  
configured as described previously, data appearing on the MOSI  
output is valid on the falling edge of SCK. Serial data from the  
68HC11/68L11 is transmitted in 8-bit bytes with only eight  
falling clock edges occurring in the transmit cycle.  
Data is transmitted MSB first. To load data to the AD5623R/  
AD5643R/AD5663R, PC7 is left low after the first eight bits are  
Rev. F | Page 25 of 32  
 
 
 
 
 
AD5623R/AD5643R/AD5663R  
Data Sheet  
APPLICATIONS INFORMATION  
USING A REFERENCE AS A POWER SUPPLY  
This is an output voltage range of 5 V, with 0x0000 corre-  
sponding to a −5 V output, and 0xFFFF corresponding to a  
+5 V output.  
Because the supply current required by the AD5623R/AD5643R/  
AD5663R is extremely low, an alternative option is to use a  
voltage reference to supply the required voltage to the parts (see  
Figure 60). This is especially useful if the power supply is quite  
noisy or if the system supply voltages are at some value other  
than 5 V or 3 V, for example, 15 V. The voltage reference outputs  
a steady supply voltage for the AD5623R/AD5643R/ AD5663R.  
If the low dropout REF195 is used, it must supply 500 µA of  
current to the AD5623R/AD5643R/AD5663R, with no load on  
the output of the DAC. When the DAC output is loaded, the  
REF195 also needs to supply the current to the load. The total  
current required (with a 5 kΩ load on the DAC output) is  
R2 = 10kΩ  
+5V  
+5V  
R1 = 10kΩ  
AD820/  
±5V  
OP295  
V
V
OUT  
DD  
10µF  
0.1µF  
AD5663R  
–5V  
THREE-WIRE  
SERIAL  
INTERFACE  
Figure 61. Bipolar Operation with the AD5663R  
500 µA + (5 V/5 kΩ) = 1.25 mA  
USING THE AD5663R WITH A  
GALVANICALLY ISOLATED INTERFACE  
The load regulation of the REF195 is typically 2 ppm/mA,  
which results in a 3 ppm (15 µV) error for the 1.5 mA current  
drawn from it. This corresponds to a 0.196 LSB error.  
In process control applications in industrial environments,  
it is often necessary to use a galvanically isolated interface to  
protect and isolate the controlling circuitry from any hazardous  
common-mode voltages that can occur in the area where  
the DAC is functioning. iCoupler® provides isolation in excess  
of 2.5 kV. The AD5663R uses a 3-wire serial logic interface, so  
the ADuM1300 3-channel digital isolator provides the required  
isolation (see Figure 62). The power supply to the part also  
needs to be isolated, which is done by using a transformer. On  
the DAC side of the transformer, a 5 V regulator provides the  
5 V supply required for the AD5663R.  
15V  
5V  
REF195  
V
DD  
SYNC  
SCLK  
DIN  
THREE-WIRE  
SERIAL  
INTERFACE  
AD5623R/  
AD5643R/  
AD5663R  
V
= 0V TO 5V  
OUT  
Figure 60. REF195 as Power Supply to the AD5623R/AD5643R/AD5663R  
5V  
BIPOLAR OPERATION USING THE AD5663R  
REGULATOR  
10µF  
0.1µF  
POWER  
The AD5663R has been designed for single-supply operation,  
but a bipolar output range is also possible using the circuit in  
Figure 61. The circuit gives an output voltage range of 5 V.  
Rail-to-rail operation at the amplifier output is achievable using  
an AD820 or an OP295 as the output amplifier.  
V
DD  
SCLK  
V
V
V
V
OA  
SCLK  
IA  
ADuM1300  
AD5663R  
The output voltage for any input code can be calculated as  
follows:  
V
SDI  
OUT  
SYNC  
V
IB  
OB  
OC  
D
65,536  
R1+ R2  
R1  
R2  
R1  
V
DATA  
DIN  
IC  
V = V  
×
×
V  
×
O
DD  
DD  
GND  
where D represents the input code in decimal (0 to 65,535).  
With VDD = 5 V, R1 = R2 = 10 kΩ,  
Figure 62. AD5663R with a Galvanically Isolated Interface  
10 × D  
65,536  
V =  
5 V  
O
Rev. F | Page 26 of 32  
 
 
 
 
 
 
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
This 0.1 µF capacitor provides a low impedance path to ground  
for high frequencies caused by transient currents due to internal  
logic switching.  
POWER SUPPLY BYPASSING AND GROUNDING  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the  
board. The printed circuit board containing the AD5663R  
should have separate analog and digital sections, each having its  
own area of the board.  
The power supply line itself should have as large a trace as  
possible to provide a low impedance path and to reduce glitch  
effects on the supply line. Clocks and other fast switching  
digital signals should be shielded from other parts of the board  
by digital ground. Avoid crossover of digital and analog signals,  
if possible. When traces cross on opposite sides of the board,  
ensure that they run at right angles to each other to reduce  
feedthrough effects through the board. The best board layout  
technique is the microstrip technique, where the component  
side of the board is dedicated to the ground plane only and the  
signal traces are placed on the solder side. However, this is not  
always possible with a 2-layer board.  
If the AD5663R is in a system where other devices require an  
AGND-to-DGND connection, the connection should be made at  
one point only. This ground point should be as close as possible  
to the AD5663R.  
The power supply to the AD5663R should be bypassed with  
10 µF and 0.1 µF capacitors. The capacitors should be located as  
close as possible to the device, with the 0.1 µF capacitor ideally  
right up against the device. The 10 µF capacitors are the  
tantalum bead type. It is important that the 0.1 µF capacitor  
have low effective series resistance (ESR) and effective series  
inductance (ESI), which is found, for example, in common  
ceramic types of capacitors.  
Rev. F | Page 27 of 32  
 
AD5623R/AD5643R/AD5663R  
OUTLINE DIMENSIONS  
Data Sheet  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
6
10  
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
5
1
PIN 1  
INDICATOR  
TOP VIEW  
BOTTOM VIEW  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 63. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm x 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 64. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
Rev. F | Page 28 of 32  
 
Data Sheet  
AD5623R/AD5643R/AD5663R  
ORDERING GUIDE  
Internal  
Reference  
Package  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Accuracy  
Package Description  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead MSOP  
Option  
CP-10-9  
CP-10-9  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
Branding  
D±5  
D±5  
D±6  
D±5  
D±5  
D±6  
D±6  
DKB  
DKP  
DKP  
D±1  
D±1  
D7Q  
D7Q  
D7S  
AD5623RBCPZ-3R2  
AD5623RBCPZ-3REEL7  
AD5623RBCPZ-5REEL7  
AD5623RBRMZ-3  
AD5623RBRMZ-3REEL7  
AD5623RBRMZ-5  
AD5623RBRMZ-5REEL7  
AD5623RACPZ-5REEL7  
AD5623RARMZ-5REEL7  
AD5623RARMZ-5  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±2 LSB INL  
±2 LSB INL  
±2 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
1.25 V  
1.25 V  
2.5 V  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5V  
2.5V  
10-Lead MSOP  
AD5643RBRMZ-3  
AD5643RBRMZ-3REEL7  
AD5643RBRMZ-5  
AD5643RBRMZ-5REEL7  
AD5663RBCPZ-3R2  
AD5663RBCPZ-3REEL7  
AD5663RBCPZ-5REEL7  
AD5663RBRMZ-3  
AD5663RBRMZ-3REEL7  
AD5663RBRMZ-5  
AD5663RBRMZ-5REEL7  
EVAL-AD5663REBZ  
1.25 V  
1.25 V  
2.5 V  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
2.5 V  
1.25 V  
1.25 V  
2.5 V  
1.25 V  
1.25 V  
2.5 V  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
D7S  
D7H  
D7S  
D7S  
D7H  
D7H  
2.5 V  
10-Lead MSOP  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. F | Page 29 of 32  
 
AD5623R/AD5643R/AD5663R  
NOTES  
Data Sheet  
Rev. F | Page 30 of 32  
Data Sheet  
NOTES  
AD5623R/AD5643R/AD5663R  
Rev. F | Page 31 of 32  
AD5623R/AD5643R/AD5663R  
NOTES  
Data Sheet  
©2006–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05858-0-2/13(F)  
Rev. F | Page 32 of 32  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY