EVAL-AD5667REBZ [ADI]

Dual, 12-/14-/16-Bit nanoDACs® with 5 ppm/°C On-Chip Reference, I2C® Interface; 双通道, 12位/ 14位/ 16位nanoDACs® 5 PPM / ° C片参考, I 2 C接口
EVAL-AD5667REBZ
型号: EVAL-AD5667REBZ
厂家: ADI    ADI
描述:

Dual, 12-/14-/16-Bit nanoDACs® with 5 ppm/°C On-Chip Reference, I2C® Interface
双通道, 12位/ 14位/ 16位nanoDACs® 5 PPM / ° C片参考, I 2 C接口

文件: 总32页 (文件大小:1546K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, 12-/14-/16-Bit nanoDACs® with  
5 ppm/°C On-Chip Reference, I2C® Interface  
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
V
/V  
DD  
GND  
REFIN REFOUT  
Low power, smallest pin-compatible, dual nanoDACs  
AD5627R/AD5647R/AD5667R  
12-/14-/16-bit  
On-chip 1.25 V/2.5 V, 5 ppm/°C reference  
AD5627/AD5667  
AD5627R/AD5647R/AD5667R  
1.25V/2.5V REF  
BUFFER  
BUFFER  
ADDR  
SCL  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC A  
V
A
B
OUT  
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
12-/16-bit  
External reference only  
V
SDA  
POWER-ON  
RESET  
POWER-DOWN  
LOGIC  
3 mm x 3 mm LFCSP and 10-lead MSOP  
2.7 V to 5.5 V power supply  
Guaranteed monotonic by design  
Power-on reset to zero scale  
Per channel power-down  
LDAC CLR  
Figure 1. AD5627R/AD5647R/AD5667R  
V
V
REFIN  
DD  
GND  
LDAC  
CLR  
functions  
Hardware  
and  
AD5627/AD5667  
I2C-compatible serial interface supports standard (100 kHz),  
fast (400 kHz), and high speed (3.4 MHz) modes  
BUFFER  
BUFFER  
ADDR  
SCL  
INPUT  
DAC  
STRING  
DAC A  
V
V
A
B
OUT  
REGISTER  
REGISTER  
APPLICATIONS  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
OUT  
SDA  
Process control  
POWER-ON  
RESET  
POWER-DOWN  
LOGIC  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
LDAC CLR  
Figure 2. AD5627/AD5667  
GENERAL DESCRIPTION  
The AD5627R/AD5647R/AD5667R, AD5627/AD5667  
members of the nanoDAC family are low power, dual, 12-, 14-,  
16-bit buffered voltage-out DACs with/without on-chip  
reference. All devices operate from a single 2.7 V to 5.5 V  
supply, are guaranteed monotonic by design, and have an I2C-  
compatible serial interface.  
software-selectable output loads while in power-down mode.  
The low power consumption of this part in normal operation  
makes it ideally suited to portable battery-operated equipment.  
The on-chip precision output amplifier enables rail-to-rail  
output swing.  
The AD56x7R/AD56x7 use a 2-wire I2C-compatible serial  
interface that operates in standard (100 kHz), fast (400 kHz),  
and high speed (3.4 MHz) modes.  
The AD5627R/AD5647R/AD5667R have an on-chip reference.  
The AD56x7RBCPZ have a 1.25 V, 5 ppm/°C reference, giving a  
full-scale output range of 2.5 V; the AD56x7RBRMZ have a  
2.5 V, 5 ppm/°C reference, giving a full-scale output range of 5  
V. The on-chip reference is off at power-up, allowing the use of  
an external reference. The internal reference is enabled via a  
software write. The AD5667 and AD5627 require an external  
reference voltage to set the output range of the DAC.  
Table 1. Related Devices  
Part No.  
Description  
AD5663  
2.7 V to 5.5 V, dual 16-bit DAC,  
external reference, SPI® interface  
AD5623R/AD5643R/AD5663R  
2.7 V to 5.5 V, dual 12-, 14-, 16-bit  
DACs, internal reference,  
SPI interface  
The AD56x7R/AD56x7 incorporate a power-on reset circuit  
that ensures the DAC output powers up to 0 V, and remains  
there until a valid write takes place. The part contains a per-  
channel power-down feature that reduces the current  
consumption of the device to 480 nA at 5 V and provides  
AD5625R/AD5645R/AD5665R,  
AD5625/AD5665  
2.7 V to 5.5 V, quad 12-, 14-, 16-bit  
DACs, with/without internal  
reference, I2C interface  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Serial Interface............................................................................ 21  
Write Operation.......................................................................... 21  
Read Operation........................................................................... 21  
High Speed Mode....................................................................... 21  
Input Shift Register .................................................................... 23  
Multiple Byte Operation............................................................ 23  
Broadcast Mode.......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 5  
I2C Timing Specifications............................................................ 6  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 20  
D/A Section................................................................................. 20  
Resistor String............................................................................. 20  
Output Amplifier........................................................................ 20  
Internal reference........................................................................ 20  
External reference....................................................................... 20  
LDAC  
Function .......................................................................... 23  
Power-Down Modes .................................................................. 25  
Power-On Reset and Software Reset ....................................... 26  
CLR  
Clear Pin (  
).......................................................................... 26  
Internal Reference Setup (R Versions) .................................... 26  
Application Information................................................................ 27  
Using a Reference as a Power Supply for the  
AD56x7R/AD56x7..................................................................... 27  
Bipolar Operation Using the AD56x7R/AD56x7 .................. 27  
Power Supply Bypassing and Grounding................................ 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 29  
REVISION HISTORY  
1/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
±±  
Max  
Unit  
Conditions/Comments1  
STATIC PERFORMANCE2  
AD5667R/AD5667  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
AD5647R  
16  
Bits  
LSB  
LSB  
±12  
±1  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5627R/AD5627  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
±2  
±4  
±0.5  
Bits  
LSB  
LSB  
mV  
mV  
±0.5  
±1  
±0.25  
10  
±10  
±1  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
2
±1  
−0.1  
Offset Error  
Full-Scale Error  
% of FSR All 1s loaded to DAC register  
Gain Error  
±1.5  
% of FSR  
μV/°C  
ppm  
dB  
Zero-Code Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
DC Crosstalk (External Reference)  
±2  
±2.5  
−100  
15  
Of FSR/°C  
DAC code = midscale ; VDD = 5 V ± 10%  
Due to full-scale output change,  
RL = 2 kΩ to GND or 2 kΩ to VDD  
μV  
10  
±
μV/mA  
μV  
Due to load current change  
Due to powering down (per channel)  
DC Crosstalk (Internal Reference)  
25  
μV  
Due to full-scale output change,  
RL = 2 kΩ to GND or 2 kΩ to VDD  
20  
10  
μV/mA  
μV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
VDD  
V
Capacitive Load Stability  
2
nF  
nF  
Ω
mA  
μs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode; VDD = 5 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
110  
50  
130  
VDD  
μA  
V
kΩ  
VREF = VDD = 5.5 V  
0.75  
REFERENCE OUTPUT  
(LFCSP_WD PACKAGE)  
Output Voltage  
Reference TC3  
Output Impedance  
REFERENCE OUTPUT (MSOP PACKAGE)  
Output Voltage  
Reference TC3  
Output Impedance  
1.247  
1.253  
V
At ambient  
At ambient  
±10  
7.5  
ppm/°C  
kΩ  
2.495  
2.505  
±10  
V
±5  
7.5  
ppm/°C  
kΩ  
Rev. 0 | Page 3 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments1  
LOGIC INPUTS (ADDR, CLR, LDAC)3  
IIN, Input Current  
±1  
0.15 × VDD  
μA  
V
V
pF  
pF  
V
VINL, Input Low Voltage  
VINH, Input High Voltage  
CIN, Pin Capacitance  
0.±5 × VDD  
0.1 × VDD  
2
20  
ADDR  
CLR, LDAC  
VHYST, Input Hysteresis  
LOGIC INPUTS (SDA, SCL)  
IIN, Input Current  
VINL, Input Low Voltage  
VINH, Input High Voltage  
CIN, Pin Capacitance  
VHYST, Input Hysteresis  
LOGIC OUTPUTS (OPEN-DRAIN)  
VOL, Output Low Voltage  
±1  
0.3 × VDD  
μA  
V
V
pF  
V
0.7 × VDD  
0.1 × VDD  
2
2
0.4  
0.6  
±1  
V
V
μA  
pF  
ISINK = 3 mA  
ISINK = 6 mA  
Floating-State Leakage Current  
Floating-State Output Capacitance  
POWER REQUIREMENTS  
VDD  
2.7  
5.5  
V
IDD (Normal Mode)4  
VIH = VDD, VIL = GND  
Internal reference off  
Internal reference off  
Internal reference on  
Internal reference on  
VIH = VDD, VIL = GND  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
0.4  
0.5  
mA  
mA  
mA  
mA  
μA  
0.35  
0.95  
0.±  
0.45  
1.15  
0.95  
1
IDD (All Power-Down Modes)5  
0.4±  
1 Temperature range: B grade: −40°C to +105°C.  
2 Linearity calculated using a reduced code range: AD5567R/AD5667 (Code 512 to Code 65,024); AD5647R (Code 12± to Code 16,256); AD5627R/AD5627 (Code 32 to  
Code 4064). Output unloaded.  
3 Guaranteed by design and characterization, not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All DACs powered down.  
Rev. 0 | Page 4 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.1  
Table 3.  
Parameter2  
Min  
Typ  
Max  
Unit  
Conditions/Comments3  
Output Voltage Settling Time  
AD5627R/AD5627  
AD5647R  
AD5667R/AD5667  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Reference Feedthrough  
Digital Crosstalk  
3
3.5  
4
1.±  
15  
0.1  
−90  
0.1  
1
4
1
4
340  
−±0  
120  
100  
15  
4.5  
5
7
μs  
μs  
μs  
¼ to ¾ scale settling to ±0.5 LSB  
¼ to ¾ scale settling to ±0.5 LSB  
¼ to ¾ scale settling to ±2 LSB  
V/μs  
nV-s  
nV-s  
dB  
nV-s  
nV-s  
nV-s  
nV-s  
nV-s  
kHz  
1 LSB change around major carry transition  
VREF = 2 V ± 0.1 V p-p, frequency 10 Hz to 20 MHz  
Analog Crosstalk  
External reference  
Internal reference  
External reference  
Internal reference  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
Output Noise Spectral Density  
VREF = 2 V ± 0.1 V p-p  
dB  
VREF = 2 V ± 0.1 V p-p, frequency = 10 kHz  
DAC code = midscale, 1 kHz  
DAC code = midscale, 10 kHz  
0.1 Hz to 10 Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
Output Noise  
1 Guaranteed by design and characterization, not production tested.  
2 See the Terminology section.  
3 Temperature range is −40°C to +105°C, typical @ 25°C.  
Rev. 0 | Page 5 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
I2C TIMING SPECIFICATIONS  
VDD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, fSCL = 3.4 MHz, unless otherwise noted.1  
Table 4.  
Parameter Conditions2  
Min Max Unit Description  
3
fSCL  
Standard mode  
100  
400  
3.4  
kHz  
kHz  
MHz  
MHz  
ꢀs  
ꢀs  
ns  
ns  
ꢀs  
Serial clock frequency  
tHIGH, SCL high time  
tLOW, SCL low time  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
1.7  
t1  
4
0.6  
Fast mode  
High speed mode, CB = 100 pF 60  
High speed mode, CB = 400 pF 120  
t2  
Standard mode  
Fast mode  
4.7  
1.3  
ꢀs  
High speed mode, CB = 100 pF 160  
High speed mode, CB = 400 pF 320  
ns  
ns  
t3  
t4  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
250  
100  
10  
0
ns  
ns  
ns  
ꢀs  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
3.45  
0.9  
0
ꢀs  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
High speed mode, CB = 100 pF 10  
High speed mode, CB = 400 pF 20  
Standard mode  
0
0
70  
150  
ns  
ns  
ꢀs  
ꢀs  
ns  
ꢀs  
ꢀs  
ns  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
t5  
t6  
4.7  
0.6  
160  
4
0.6  
160  
4.7  
1.3  
4
tSU;STA, setup time for a repeated start condition  
tHD;STA, hold time (repeated) start condition  
t7  
t±  
tBUF, bus free time between a stop and a start condition  
tSU;STO, setup time for a stop condition  
0.6  
160  
ns  
t9  
1000 ns  
300  
±0  
160  
300  
300  
±0  
160  
1000 ns  
300  
40  
±0  
tRDA, rise time of SDA signal  
tFDA, fall time of SDA signal  
tRCL, rise time of SCL signal  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t10  
t11  
t11A  
Fast mode  
High speed mode, CB = 100 pF 10  
High speed mode, CB = 400 pF 20  
Standard mode  
Fast mode  
ns  
ns  
ns  
High speed mode, CB = 100 pF 10  
High speed mode, CB = 400 pF 20  
Standard mode  
1000 ns  
tRCL1, rise time of SCL signal after a repeated start condition and after  
an acknowledge bit  
Fast mode  
High speed mode, CB = 100 pF 10  
High speed mode, CB = 400 pF 20  
300  
±0  
160  
ns  
ns  
ns  
Rev. 0 | Page 6 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
Parameter Conditions2  
Min Max Unit Description  
t12  
Standard mode  
Fast mode  
High speed mode, CB = 100 pF 10  
High speed mode, CB = 400 pF 20  
Standard mode  
Fast mode  
300  
300  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFCL, fall time of SCL signal  
±0  
t13  
10  
LDAC pulse width low  
10  
10  
300  
High speed mode  
Standard mode  
t14  
Falling edge of 9th SCL clock pulse of last byte of valid write to LDAC  
falling edge  
Fast mode  
300  
30  
20  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High speed mode  
Standard mode  
Fast mode  
High speed mode  
Fast mode  
t15  
CLR pulse width low  
4
tSP  
50  
10  
Pulse width of spike suppressed  
High speed mode  
0
1 See Figure 3. High speed mode timing specification applies only to the AD5627RBRMZ-2/AD5627BRMZ-2REEL7 and AD5667RBRMZ-2/AD5667BRMZ-2REEL7.  
2 CB refers to the capacitance on the bus line.  
3 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate but has a negative effect on EMC behavior  
of the part.  
4 Input filtering on the SCL and SDA inputs suppresses noise spikes that are less than 50 ns for fast mode or 10 ns for high speed mode.  
t11  
t12  
t6  
t2  
t6  
SCL  
SDA  
t1  
t3  
t5  
t10  
t8  
t4  
t9  
t7  
P
S
S
P
t14  
t13  
LDAC*  
CLR  
t15  
*ASYNCHRONOUS LDAC UPDATE MODE.  
Figure 3. 2-Wire Serial Interface Timing Diagram  
Rev. 0 | Page 7 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
VDD to GND  
VOUT to GND  
VREFIN/VREFOUT to GND  
Digital Input Voltage to GND  
Operating Temperature Range, Industrial  
Storage Temperature Range  
Junction Temperature (TJ maximum)  
Power Dissipation  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−40°C to +105°C  
−65°C to +150°C  
150°C  
ESD CAUTION  
(TJ max − TA)/θJA  
θJA Thermal Impedance  
LFCSP_WD Package (4-Layer Board)  
MSOP Package  
61°C/W  
150.4°C/W  
260°C ± 5°C  
Reflow Soldering Peak Temperature, Pb-Free  
Rev. 0 | Page ± of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
10  
1
2
3
4
5
10  
V
A
V
V
A
V
/V  
OUT  
REFIN  
OUT  
REFIN REFOUT  
AD5627/  
AD5667  
AD5627R/  
AD5647R/  
AD5667R  
TOP VIEW  
(Not to Scale)  
9
9
V
B
V
V
B
V
OUT  
DD  
OUT  
DD  
8
8
GND  
SDA  
GND  
SDA  
7
7
LDAC  
CLR  
SCL  
LDAC  
CLR  
SCL  
TOP VIEW  
(Not to Scale)  
6
6
ADDR  
ADDR  
EXPOSED PAD TIED TO GND  
ON LFCSP PACKAGE.  
EXPOSED PAD TIED TO GND  
ON LFCSP PACKAGE.  
Figure 4. AD5627/AD5667 Pin Configuration  
Figure 5. AD5627R/AD5647R/AD5667R Pin Configuration  
Table 6. Pin Function Descriptions  
Pin  
No.  
Mnemonic Description  
1
2
3
4
VOUT  
VOUT  
GND  
A
B
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Ground reference point for all circuitry on the part.  
Pulsing this pin low allows any or all DAC registers to be updated if the inputs have new data. This allows  
simultaneous updates of all DAC outputs. Alternatively, this pin can be tied permanently low.  
LDAC  
5
CLR  
Asynchronous Clear Input. The CLR input is falling-edge sensitive. While CLR is low, all LDAC pulses are ignored.  
When CLR is activated, zero scale is loaded to all input and DAC registers. This clears the output to 0 V. The part exits  
clear code mode on the falling edge of the 9th clock pulse of the last byte of valid write. If CLR is activated during a  
write sequence, the write is aborted. If CLR is activated during high speed mode the part will exit high speed mode.  
6
7
±
ADDR  
SCL  
SDA  
Three-State Address Input. Sets the two least significant bits (Bit A1, Bit A0) of the 7-bit slave address.  
Serial Clock Line. This is used in conjunction with the SDA line to clock data into or out of the 24-bit input register.  
Serial Data Line. This is used in conjunction with the SCL line to clock data into or out of the 24-bit input register. It is  
a bidirectional, open-drain data line that should be pulled to the supply with an external pull-up resistor.  
9
VDD  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and the supply should be decoupled with a  
10 ꢀF capacitor in parallel with a 0.1 ꢀF capacitor to GND.  
10  
VREFIN/VREFOUT The AD56x7R have a common pin for reference input and reference output. When using the internal reference, this is  
the reference output pin. When using an external reference, this is the reference input pin. The default for this pin is  
as a reference input. (The internal reference and reference output are only available on R suffix versions.) The AD56x7  
has a reference input pin only.  
Rev. 0 | Page 9 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
10  
V
T
= V  
= 5V  
V
T
= V = 5V  
REF  
DD  
REF  
DD  
= 25°C  
= 25°C  
A
0.8  
0.6  
0.4  
0.2  
8
A
6
4
2
0
–2  
–4  
0
–0.2  
–0.4  
–0.6  
–6  
–8  
–0.8  
–1.0  
–10  
0
10k  
20k  
30k  
CODE  
40k  
50k  
60k  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
Figure 9. AD5667 DNL, External Reference  
Figure 6. AD5667 INL, External Reference  
4
0.5  
V
= V = 5V  
REF  
DD  
= 25°C  
V
= V  
= 5V  
DD  
REF  
T
A
0.4  
0.3  
0.2  
0.1  
T = 25°C  
A
3
2
1
0
0
–0.1  
–1  
–2  
–3  
–4  
–0.2  
–0.3  
–0.4  
–0.5  
0
2500  
5000  
7500  
CODE  
10000  
12500  
15000  
0
2500  
5000  
7500  
CODE  
10000  
12500  
15000  
Figure 7. AD5647R INL, External Reference  
Figure 10. DNL AD5647R, External Reference  
1.0  
0.20  
0.15  
0.10  
0.05  
0
V
= V  
= 25°C  
= 5V  
V
= V = 5V  
REF  
DD  
REF  
DD  
T = 25°C  
A
T
0.8  
0.6  
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.05  
–0.10  
–0.15  
–0.20  
0
500  
1000  
1500 2000  
CODE  
2500 3000 3500 4000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
Figure 8. AD5627 INL, External Reference  
Figure 11. AD5627 DNL, External Reference  
Rev. 0 | Page 10 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
1.0  
10  
8
V
V
= 5V  
V
V
= 5V  
DD  
DD  
0.8  
0.6  
0.4  
0.2  
= 2.5V  
= 2.5V  
REFOUT  
REFOUT  
TA = 25°C  
TA = 25°C  
6
4
2
0
0
–0.2  
–2  
–0.4  
–0.6  
–4  
–6  
–0.8  
–1.0  
–8  
–10  
CODE  
CODE  
Figure 15. AD5667R DNL, 2.5 V Internal Reference  
Figure 12. AD5667R INL, 2.5 V Internal Reference  
4
0.5  
0.4  
0.3  
0.2  
0.1  
V
V
= 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
= 2.5V  
REFOUT  
REFOUT  
3
2
TA = 25°C  
TA = 25°C  
1
0
0
–0.1  
–1  
–2  
–0.2  
–0.3  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 13. AD5647R INL, 2.5 V Internal Reference  
Figure 16. AD5647R DNL, 2.5 V Internal Reference  
1.0  
0.20  
0.15  
0.10  
0.05  
V
= 5V  
V
V
= 5V  
DD  
DD  
V
T
= 2.5V  
0.8  
0.6  
0.4  
0.2  
= 2.5V  
REFOUT  
= 25°C  
REFOUT  
TA = 25°C  
A
0
–0.2  
–0.4  
–0.6  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
Figure 14. AD5627R INL, 2.5 V Internal Reference  
Figure 17. AD5627R DNL, 2.5 V Internal Reference  
Rev. 0 | Page 11 of 32  
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
10  
1.0  
V
V
= 3V  
= 1.25V  
= 25°C  
V
V
= 3V  
DD  
REFOUT  
DD  
REFOUT  
= 25°C  
8
6
0.8  
0.6  
= 1.25V  
T
T
A
A
4
0.4  
2
0.2  
0
0
–2  
–4  
–6  
–0.2  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
CODE  
CODE  
Figure 18. AD5667R INL,1.25 V Internal Reference  
Figure 21. AD5667R DNL,1.25 V Internal Reference  
4
3
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 3V  
= 1.25V  
= 25°C  
V
V
T
= 3V  
= 1.25V  
= 25°C  
A
DD  
REFOUT  
DD  
REFOUT  
T
A
2
1
0
–0.1  
–0.2  
–0.3  
–1  
–2  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 19. AD5647R INL, 1.25 V Internal Reference  
Figure 22. AD5647R DNL,1.25 V Internal Reference  
1.0  
0.8  
0.20  
0.15  
0.10  
0.05  
0
V
V
= 3V  
= 1.25V  
= 25°C  
V
V
T
= 3V  
= 1.25V  
= 25°C  
A
DD  
REFOUT  
DD  
REFOUT  
T
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
Figure 20. AD5627R INL,1.25 V Internal Reference  
Figure 23. AD5627R DNL, 1.25 V Internal Reference  
Rev. 0 | Page 12 of 32  
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
8
6
0
V
= 5V  
DD  
–0.02  
–0.04  
–0.06  
–0.08  
MAX INL  
V
= V = 5V  
REF  
DD  
GAIN ERROR  
4
2
MAX DNL  
MIN DNL  
0
–0.10  
–0.12  
–2  
–4  
–6  
–8  
–0.14  
–0.16  
FULL-SCALE ERROR  
MIN INL  
80  
–0.18  
–0.20  
–40  
–20  
0
20  
40  
60  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24. INL Error and DNL Error vs. Temperature  
Figure 27. Gain Error and Full-Scale Error vs. Temperature  
10  
8
1.5  
MAX INL  
1.0  
ZERO-SCALE ERROR  
6
0.5  
0
V
= 5V  
DD  
= 25°C  
4
T
A
2
MAX DNL  
MIN DNL  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0
–2  
–4  
–6  
OFFSET ERROR  
MIN INL  
4.25  
–8  
–10  
0.75 1.25  
1.75  
2.25  
2.75  
3.25  
(V)  
3.75  
4.75  
–40  
–20  
0
20  
40  
60  
80  
100  
V
TEMPERATURE (°C)  
REF  
Figure 28. Zero-Scale Error and Offset Error vs. Temperature  
Figure 25. INL and DNL Error vs. VREF  
8
6
1.0  
MAX INL  
0.5  
T
= 25°C  
A
4
2
GAIN ERROR  
0
MAX DNL  
MIN DNL  
FULL-SCALE ERROR  
–0.5  
0
–2  
–4  
–6  
–8  
–1.0  
MIN INL  
–1.5  
–2.0  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
V
DD  
DD  
Figure 26. INL and DNL Error vs. Supply  
Figure 29. Gain Error and Full-Scale Error vs. Supply  
Rev. 0 | Page 13 of 32  
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
0.5  
1.0  
T
= 25°C  
DAC LOADED WITH  
FULL-SCALE  
SOURCING CURRENT  
DAC LOADED WITH  
ZERO-SCALE  
SINKING CURRENT  
A
0.4  
0.3  
0.5  
0
ZERO-SCALE ERROR  
0.2  
V
V
= 3V  
0.1  
DD  
REFOUT  
–0.5  
–1.0  
–1.5  
= 1.25V  
0
–0.1  
–0.2  
–0.3  
V
V
= 5V  
DD  
= 2.5V  
–2  
REFOUT  
–2.0  
–2.5  
OFFSET ERROR  
–0.4  
–0.5  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
–10  
–8  
–6  
–4  
0
2
4
6
8
10  
V
CURRENT (mA)  
DD  
Figure 30. Zero-Scale Error and Offset Error vs. Supply  
Figure 33. Headroom at Rails vs. Source and Sink  
6
18  
16  
14  
12  
10  
8
V
V
= 3.6V  
= 5.5V  
DD  
DD  
V
V
= 5V  
= 2.5V  
= 25°C  
DD  
REFOUT  
FULL SCALE  
5
4
3
2
1
T
A
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
6
4
0
ZERO SCALE  
2
–1  
–30  
0
0.30  
0.32  
0.34  
0.36  
0.38  
0.40  
0.42  
0.44  
–20  
–10  
0
10  
20  
30  
I
(mA)  
CURRENT (mA)  
DD  
Figure 34. AD56x7R with 2.5 V Reference, Source and Sink Capability  
Figure 31. IDD Histogram with External Reference  
14  
12  
10  
8
4
V
V
= 3.6V  
= 5.5V  
DD  
V
V
= 3V  
= 1.25V  
= 25°C  
DD  
REFOUT  
V
= 1.25V  
REFOUT  
DD  
T
A
3
2
1
FULL SCALE  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
V
= 2.5V  
REFOUT  
6
4
0
ZERO SCALE  
2
–1  
–30  
0
–20  
–10  
0
10  
20  
30  
CURRENT (mA)  
I
(mA)  
DD  
Figure 32. IDD Histogram with Internal Reference  
Figure 35. AD56x7R with 1.25 V Reference, Source and Sink Capability  
Rev. 0 | Page 14 of 32  
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
A
V
= 5V, V = 2.5V  
REFOUT  
DD  
V
= V  
= 25°C  
= 5V  
DD  
REF  
T
A
FULL-SCALE CODE CHANGE  
0x0000 TO 0xFFFF  
OUTPUT LOADED WITH 2k  
AND 200pF TO GND  
V
= V = 5V  
REF  
DD  
V
= 909mV/DIV  
OUT  
1
512  
10512  
20512  
30512  
CODE  
40512  
50512  
60512  
TIME BASE = 4µs/DIV  
Figure 36. Supply Current vs. Code  
Figure 39. Full-Scale Settling Time, 5 V  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= V  
= 25°C  
= 5V  
DD  
REF  
T
A
V
DD  
1
2
MAX(C2)  
420.0mV  
V
OUT  
T
= 25°C  
A
CH1 2.0V  
CH2 500mV  
M100µs 125MS/s  
A CH1 1.28V  
8.0ns/pt  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
SUPPLY VOLTAGE (V)  
Figure 37. Supply Current vs. Supply Voltage  
Figure 40. Power-On Reset to 0 V  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
SYNC  
SLCK  
V
= V  
REFIN  
= 5V  
= 3V  
DD  
1
3
V
= V  
REFIN  
DD  
V
OUT  
V
= 5V  
DD  
2
CH1 5.0V  
CH3 5.0V  
CH2 500mV  
M400ns  
A CH1  
1.4V  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 38. Supply Current vs. Temperature  
Figure 41. Exiting Power-Down to Midscale  
Rev. 0 | Page 15 of 32  
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
2.538  
V
T
= V  
= 25°C  
= 5V  
V
T
= V = 5V  
REF  
DD  
REF  
DD  
= 25°C  
2.537  
2.536  
2.535  
2.534  
2.533  
2.532  
2.531  
2.530  
2.529  
2.528  
2.527  
2.526  
2.525  
2.524  
2.523  
2.522  
2.521  
A
A
DAC LOADED WITH MIDSCALE  
5ns/SAMPLE NUMBER  
GLITCH IMPULSE = 9.494nV  
1LSB CHANGE AROUND  
MIDSCALE (0x8000 TO 0x7FFF)  
1
4s/DIV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
Figure 42. Digital-to-Analog Glitch Impulse (Negative)  
Figure 45. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
2.498  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
V
V
= 5V  
V
= V = 5V  
REF  
DD  
REFOUT  
= 25°C  
DD  
= 25°C  
= 2.5V  
T
A
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 0.424nV  
DAC LOADED WITH MIDSCALE  
1
0
50  
100 150 200 250 300 350 400 450 512  
SAMPLE NUMBER  
5s/DIV  
Figure 43. Analog Crosstalk, External Reference  
Figure 46. 0.1 Hz to 10 Hz Output Noise Plot, 2.5 V Internal Reference  
2.496  
2.494  
2.492  
2.490  
2.488  
2.486  
2.484  
2.482  
2.480  
2.478  
2.476  
2.474  
2.472  
2.470  
2.468  
2.466  
2.464  
2.462  
2.460  
2.458  
2.456  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
= 1.25V  
T
A
DAC LOADED WITH MIDSCALE  
1
V
V
= 5V  
DD  
REFOUT  
= 25°C  
= 2.5V  
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 4.462nV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
4s/DIV  
Figure 47. 0.1 Hz to 10 Hz Output Noise Plot,1.25 V Internal Reference  
Figure 44. Analog Crosstalk, Internal Reference  
Rev. 0 | Page 16 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
800  
700  
600  
500  
400  
300  
200  
16  
T
= 25°C  
V
= V  
DD  
= 25°C  
A
REF  
MIDSCALE LOADED  
T
A
14  
12  
10  
8
V
= 3V  
DD  
V
= 5V  
DD  
V
V
= 5V  
DD  
REFOUT  
= 2.5V  
6
4
V
V
= 3V  
100  
0
DD  
REFOUT  
= 1.25V  
1k  
100  
10k  
FREQUENCY (Hz)  
100k  
1M  
0
1
2
3
4
5
6
7
8
9
10  
CAPACITANCE (nF)  
Figure 48. Noise Spectral Density, Internal Reference  
Figure 50. Settling Time vs. Capacitive Load  
–20  
–30  
–40  
5
0
V
T
= 5V  
= 25°C  
V
T
= 5V  
DD  
A
DD  
= 25°C  
A
DAC LOADED WITH FULL SCALE  
= 2V ± 0.3V p-p  
V
REF  
5  
10  
15  
20  
25  
30  
35  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
2k  
4k  
6k  
8k  
10k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 49. Total Harmonic Distortion  
Figure 51. Multiplying Bandwidth  
Rev. 0 | Page 17 of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer function.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000) (see  
Figure 42).  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent codes.  
A specified differential nonlinearity of 1 LSB maximum ensures  
monotonicity. This DAC is guaranteed monotonic by design.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated. It  
is specified in nV-s, and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Zero-Code Error  
Zero-code error is a measurement of the output error when  
zero scale (0x0000) is loaded to the DAC register. Ideally, the  
output should be 0 V. The zero-code error is always positive in  
the AD5667R because the output of the DAC cannot go below  
0 V due to a combination of the offset errors in the DAC and  
the output amplifier. Zero-code error is expressed in mV.  
Reference Feedthrough  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated. It is expressed in dB.  
Full-Scale Error  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. Ideally, the  
output should be VDD − 1 LSB. Full-scale error is expressed in %  
of full-scale range (FSR).  
Output Noise Spectral Density  
Output noise spectral density is a measurement of the internally  
generated random noise. Random noise is characterized as a  
spectral density. It is measured by loading the DAC to midscale  
and measuring noise at the output. It is measured in nV/√Hz. A  
plot of noise spectral density can be seen in Figure 48.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from ideal  
expressed in % of FSR.  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is  
measured with a full-scale output change on one DAC (or soft  
power-down and power-up) while monitoring another DAC kept  
at midscale. It is expressed in ꢀV.  
Zero-Code Error Drift  
Zero-code error drift is a measurement of the change in zero-  
code error with a change in temperature. It is expressed in μV/°C.  
Gain Temperature Coefficient  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has to  
another DAC kept at midscale. It is expressed in μV/mA.  
Gain temperature coefficient is a measurement of the change in  
gain error with changes in temperature. It is expressed in ppm  
of FSR/°C.  
Digital Crosstalk  
Offset Error  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s and vice versa) in the input register of another  
DAC. It is measured in standalone mode and is expressed in nV-s.  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured on the AD5667R  
with code 512 loaded in the DAC register. It can be negative or  
positive.  
DC Power Supply Rejection Ratio (PSRR)  
DC PSRR indicates how the output of the DAC is affected by  
changes in the supply voltage. PSRR is the ratio of the change in  
VOUT to a change in VDD for full-scale output of the DAC. It is  
measured in dB. VREF is held at 2 V and VDD is varied by 10%.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for  
the output of a DAC to settle to a specified level for a ¼ to ¾  
full-scale input change and is measured from the rising edge of  
the stop condition.  
Rev. 0 | Page 1± of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
Analog Crosstalk  
Multiplying Bandwidth  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by loading one of the input registers with a full-scale  
code change (all 0s to all 1s and vice versa), then executing a  
The multiplying bandwidth is a measure of the finite bandwidth  
of the amplifiers within the DAC. A sine wave on the reference  
(with full-scale code loaded to the DAC) appears on the output.  
The multiplying bandwidth is the frequency at which the output  
amplitude falls to 3 dB below the input.  
LDAC  
software  
and monitoring the output of the DAC whose  
digital code was not changed. The area of the glitch is expressed  
in nV-s.  
Total Harmonic Distortion (THD)  
THD is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in dB.  
DAC-to-DAC Crosstalk  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
analog output change of another DAC. It is measured by  
loading the attack channel with a full-scale code change (all 0s  
LDAC  
to all 1s and vice versa) with  
low while monitoring the  
output of the victim channel that is at midscale. The energy of  
the glitch is expressed in nV-s.  
Rev. 0 | Page 19 of 32  
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
THEORY OF OPERATION  
D/A SECTION  
R
The AD56x7R/AD56x7 DACs are fabricated on a CMOS  
process. The architecture consists of a string DAC followed by  
an output buffer amplifier. Figure 52 shows a block diagram of  
the DAC architecture.  
R
R
TO OUTPUT  
AMPLIFIER  
V
DD  
OUTPUT  
AMPLIFIER  
GAIN = +2  
REF (+)  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
REF (–)  
R
R
GND  
Figure 52. DAC Architecture  
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
Figure 53. Resistor String  
INTERNAL REFERENCE  
D
VOUT = VREFIN  
×
2N  
The AD5627R/AD5647R/AD5667R feature an on-chip  
reference. Versions without the R suffix require an external  
reference. The on-chip reference is off at power-up and is  
enabled via a write to a control register. See the Internal  
Reference Setup section for details.  
The ideal output voltage when using the internal reference is  
given by  
D
VOUT = 2×VREFOUT  
×
2N  
Versions packaged in a 10-lead LFCSP package have a 1.25 V  
reference, giving a full-scale output of 2.5 V. These parts can be  
operated with a VDD supply of 2.7 V to 5.5 V. Versions packaged  
in a 10-lead MSOP package have a 2.5 V reference, giving a full-  
scale output of 5 V. The parts are functional with a VDD supply  
of 2.7 V to 5.5 V, but with a VDD supply of less than 5 V, the  
output is clamped to VDD. See the Ordering Guide for a full list  
of models. The internal reference associated with each part is  
available at the VREFOUT pin.  
where:  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register:  
0 to 4095 for AD5627R/AD5627 (12-bit).  
0 to 16,383 for AD5647R (14-bit).  
0 to 65,535 for AD5667R/AD5667 (16-bit).  
N is the DAC resolution.  
RESISTOR STRING  
A buffer is required if the reference output is used to drive  
external loads. When using the internal reference, it is  
recommended that a 100 nF capacitor be placed between the  
reference output and GND for reference stability.  
The resistor string is shown in Figure 53. It is simply a string of  
resistors, each of value R. The code loaded to the DAC register  
determines at which node on the string the voltage is tapped off  
to be fed into the output amplifier. The voltage is tapped off by  
closing one of the switches connecting the string to the amplifier.  
Because it is a string of resistors, it is guaranteed monotonic.  
EXTERNAL REFERENCE  
The AD5627/AD5667 require an external reference, which is  
applied at the VREFIN pin. The VREFIN pin on the AD56x7R allows  
the use of an external reference if the application requires it.  
The default condition of the on-chip reference is off at power-  
up. All devices can be operated from a single 2.7 V to 5.5 V supply.  
OUTPUT AMPLIFIER  
The output buffer amplifier can generate rail-to-rail voltages on  
its output, which gives an output range of 0 V to VDD. It can drive  
a load of 2 kꢁ in parallel with 1000 pF to GND. The source and  
sink capabilities of the output amplifier can be seen in Figure 33  
and Figure 34. The slew rate is 1.8 V/μs with a ¼ to ¾ full-scale  
settling time of 7 μs.  
Rev. 0 | Page 20 of 32  
 
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
SERIAL INTERFACE  
WRITE OPERATION  
The AD56x7R/AD56x7 have 2-wire I2C-compatible serial  
interfaces (refer to I2C-Bus Specification, Version 2.1, January 2000,  
available from Philips Semiconductor). The AD56x7R/AD56x7  
can be connected to an I2C bus as a slave device, under the control  
of a master device. See Figure 3 for a timing diagram of a  
typical write sequence.  
When writing to the AD56x7R/AD56x7, the user must begin  
W
with a start command followed by an address byte (R/ = 0),  
after which the DAC acknowledges that it is prepared to receive  
data by pulling SDA low. The AD56x7R/AD56x7 requires two  
bytes of data for the DAC and a command byte that controls  
various DAC functions. Three bytes of data must therefore be  
written to the DAC, the command byte followed by the most  
significant data byte and the least significant data byte, as  
shown in Figure 54. All these data bytes are acknowledged by  
the AD56x7R/AD56x7. A stop condition follows.  
The AD56x7R/AD56x7 support standard (100 kHz), fast  
(400 kHz), and high speed (3.4 MHz) data transfer modes.  
High speed operation is only available on select models. See  
the Ordering Guide for a full list of models. Support is not  
provided for 10-bit addressing and general call addressing.  
READ OPERATION  
The AD56x7R/AD56x7 each have a 7-bit slave address. The five  
MSBs are 00011 and the two LSBs (A1, A0) are set by the state  
of the ADDR address pin. The facility to make hardwired  
changes to ADDR allows the user to incorporate up to three of  
these devices on one bus, as outlined in Table 7.  
When reading data back from the AD56x7R/AD56x7, the user  
begins with a start command followed by an address byte  
W
(R/ = 1), after which the DAC acknowledges that it is  
prepared to transmit data by pulling SDA low. Three bytes of  
data are then read from the DAC, which are acknowledged by  
the master, as shown in Figure 55. A stop condition follows.  
Table 7. Device Address Selection  
HIGH SPEED MODE  
ADDR Pin Connection  
A1  
0
1
A0  
0
0
VDD  
The AD5627RBRMZ and the AD5667RBRMZ offer high speed  
serial communication with a clock frequency of 3.4 MHz. See  
the Ordering Guide for details.  
No Connection  
GND  
1
1
High speed mode communication commences after the master  
addresses all devices connected to the bus with the Master Code  
00001XXX to indicate that a high speed mode transfer is to  
begin (see Figure 56). No device connected to the bus is  
permitted to acknowledge the high speed master code.  
Therefore, the code is followed by a no acknowledge. The  
master must then issue a repeated start followed by the device  
address. The selected device then acknowledges its address.  
The 2-wire serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a start  
condition when a high-to-low transition on the SDA line  
occurs while SCL is high. The following byte is the address  
byte, which consists of the 7-bit slave address. The slave  
address corresponding to the transmitted address responds  
by pulling SDA low during the 9th clock pulse (this is  
termed the acknowledge bit). At this stage, all other devices  
on the bus remain idle while the selected device waits for  
data to be written to, or read from, its shift register.  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge  
bit). The transitions on the SDA line must occur during the  
low period of SCL and remain stable during the high  
period of SCL.  
All devices continue to operate in high speed mode until the  
master issues a stop condition. When the stop condition is  
issued, the devices return to standard/fast mode. The part also  
CLR  
returns to standard/fast mode when  
part is in high speed mode.  
is activated while the  
3. When all data bits have been read or written, a stop  
condition is established. In write mode, the master pulls  
the SDA line high during the 10th clock pulse to establish a  
stop condition. In read mode, the master issues a no  
acknowledge for the 9th clock pulse (that is, the SDA line  
remains high). The master then brings the SDA line low  
before the 10th clock pulse, and then high during the 10th  
clock pulse to establish a stop condition.  
Rev. 0 | Page 21 of 32  
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
1
9
1
9
SCL  
0
0
0
1
1
A1  
A0  
R/W  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
SDA  
ACK. BY  
AD56x7  
ACK. BY  
AD56x7  
START BY  
MASTER  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB8  
STOP BY  
MASTER  
ACK. BY  
AD56x7  
ACK. BY  
AD56x7  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 54. I2C Write Operation  
1
9
1
9
SCL  
SDA  
0
0
0
1
1
A1  
A0  
R/W  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
ACK. BY  
AD56x7  
ACK. BY  
MASTER  
START BY  
MASTER  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
STOP BY  
MASTER  
ACK. BY  
MASTER  
NO ACK.  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 55. I2C Read Operation  
FAST MODE  
HIGH-SPEED MODE  
1
9
1
9
SCL  
SDA  
0
0
0
0
1
X
X
X
0
0
0
1
1
A1  
A0  
R/W  
NO ACK  
SR  
START BY  
MASTER  
ACK. BY  
AD56x7  
HS-MODE  
MASTER CODE  
SERIAL BUS  
ADDRESS BYTE  
Figure 56. Placing the AD5627RBRMZ-2/AD5667RBRMZ-2 in High Speed Mode  
Rev. 0 | Page 22 of 32  
 
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
INPUT SHIFT REGISTER  
Table 9. DAC Address Command  
The input shift register is 24 bits wide. Data is loaded into the  
device as a 24-bit word under the control of a serial clock input,  
SCL. The timing diagram for this operation is shown in Figure 3.  
The 8 MSBs make up the command byte. DB23 is reserved and  
should always be set to 0 when writing to the device. DB22 (S)  
is used to select multiple byte operation The next three bits are  
the command bits (C2, C1, C0) that control the mode of operation  
of the device. See Table 8 for details. The last 3 bits of first byte  
are the address bits (A2, A1, A0). See Table 9 for details. The  
rest of the bits are the 16-, 14-, 12-bit data word. The data word  
comprises the 16-, 14-, 12-bit input code followed by two or four  
don’t cares for the AD5647R and the AD5627R/AD5627,  
respectively (see Figure 59 through Figure 61).  
A2  
A1  
A0  
ADDRESS (n)  
0
0
1
0
0
1
0
1
1
DAC A  
DAC B  
Both DACs  
LDAC FUNCTION  
The AD56x7R/AD56x7 DACs have double-buffered interfaces  
consisting of two banks of registers, input registers and DAC  
registers. The input registers are connected directly to the input  
shift register, and the digital code is transferred to the relevant  
input register on completion of a valid write sequence. The  
DAC registers contain the digital codes used by the resistor strings.  
LDAC  
Access to the DAC registers is controlled by the  
pin.  
pin is high, the DAC registers are latched and  
the input registers can change state without affecting the  
LDAC  
MULTIPLE BYTE OPERATION  
LDAC  
When the  
Multiple byte operation is supported on the AD56x7R/AD56x7.  
A 2-byte operation is useful for applications that require fast  
DAC updating and do not need to change the command byte.  
The S bit (DB22) in the command register can be set to 1 for 2-  
byte mode of operation (see Figure 57). For standard 3-byte  
and 4-byte operation, the S bit (DB22) in the command byte  
should be set to 0 (see Figure 58).  
contents of the DAC registers. When  
is brought low,  
however, the DAC registers become transparent and the contents  
of the input registers are transferred to them. The double-  
buffered interface is useful if the user requires simultaneous  
updating of all DAC outputs. The user can write to one of the  
LDAC  
input registers individually and then, by bringing  
low  
when writing to the other DAC input register, all outputs  
update simultaneously.  
BROADCAST MODE  
Broadcast addressing is supported on the AD56x7R/AD56x7.  
Broadcast addressing can be used to synchronously update or  
power down multiple AD56x7R/AD56x7 devices. Using the  
broadcast address, the AD56x7R/AD56x7 responds regardless of  
the states of the address pins. Broadcast is supported only in write  
mode. The AD56x7R/AD56x7 broadcast address is 00010000.  
These parts each contain an extra feature whereby a DAC  
register is not updated unless its input register has been updated  
LDAC  
LDAC  
since the last time  
was brought low. Normally, when  
is brought low, the DAC registers are filled with the contents of the  
input registers. In the case of the AD56x7R/AD56x7, the DAC  
register updates only if the input register has changed since the  
last time the DAC register was updated, thereby removing  
unnecessary digital crosstalk.  
Table 8. Command Definition  
C2 C1 C0 Command  
0
0
0
0
0
1
0
1
0
Write to input register n  
Update DAC register n  
Write to input register n, update all  
The outputs of all DACs can be simultaneously updated, using  
LDAC  
the hardware  
pin.  
(software LDAC)  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Write to and update DAC channel n  
Power up/power down  
Reset  
LDAC register setup  
Internal reference setup (on/off )  
Rev. 0 | Page 23 of 32  
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
BLOCK 1  
BLOCK 2  
BLOCK n  
S = 1  
S = 1  
S = 1  
SLAVE  
ADDRESS  
COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT MOST SIGNIFICANT LEAST SIGNIFICANT  
BYTE DATA BYTE DATA BYTE DATA BYTE DATA BYTE  
MOST SIGNIFICANT LEAST SIGNIFICANT  
STOP  
DATA BYTE  
DATA BYTE  
Figure 57. Multiple Block Write with Initial Command Byte Only (S = 1)  
BLOCK 1  
BLOCK 2  
BLOCK n  
S = 0  
S = 0  
S = 0  
SLAVE  
ADDRESS  
COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT  
BYTE DATA BYTE DATA BYTE BYTE DATA BYTE DATA BYTE  
COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT  
STOP  
BYTE  
DATA BYTE  
DATA BYTE  
Figure 58. Multiple Block Write with Command Byte in Each Block (S = 0)  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
R
S
C2  
C1  
C0  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 59. AD5667R/AD5667 Input Shift Register (16-Bit DAC)  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
R
S
C2  
C1  
C0  
A2  
A1  
A0  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 60. AD5647R Input Shift Register (14-Bit DAC)  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
R
S
C2  
C1  
C0  
A2  
A1  
A0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
X
X
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 61. AD5627R/AD5627 Input Shift Register (12-Bit DAC)  
Rev. 0 | Page 24 of 32  
 
 
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
amplifier, as shown in Table 11. Bit DB1and Bit DB0 determine  
to which DAC or DACs the power-up/down command is  
applied. Setting one of these bits to 1 applies the power-up/down  
state defined by DB5 and DB4 to the corresponding DAC. If a  
bit is 0, the state of the DAC is unchanged. Figure 65 shows the  
contents of the input shift register for the power up/down  
command.  
LDAC  
Synchronous  
LDAC  
The DAC registers are updated after new data is read in.  
can be permanently low or pulsed.  
LDAC  
Asynchronous  
The outputs are not updated at the same time that the input  
LDAC  
registers are written to. When  
registers are updated with the contents of the input register.  
LDAC  
goes low, the DAC  
When Bit DB5 and Bit DB4 are set to 0, the part works normally  
with its normal power consumption of 400 μA at 5 V. However,  
for the three power-down modes, the supply current falls to  
480 nA at 5 V. Not only does the supply current fall, but the  
output stage is also internally switched from the output of the  
amplifier to a resistor network of known values. This allows the  
output impedance of the part to be known while the part is in  
power-down mode. The outputs can either be connected  
internally to GND through a 1 kꢁ or 100 kꢁ resistor, or left  
open-circuited (three-state) as shown in Figure 62.  
The  
the hardware  
which combination of channels to simultaneously update when  
LDAC LDAC  
register gives the user full flexibility and control over  
LDAC  
pin. This register allows the user to select  
the hardware  
register to 0 for a DAC channel means that the update of this  
LDAC  
pin is executed. Setting the  
bit  
channel is controlled by the  
pin. If this bit is set to 1, this  
channel synchronously updates, that is, the DAC register is  
updated after new data is read in, regardless of the state of the  
LDAC  
LDAC  
pin. It effectively sees the  
pin as being pulled low.  
LDAC  
See Table 10 for the  
register mode of operation. This  
Table 11. Modes of Operation for the AD56x7R/AD56x7  
flexibility is useful in applications when the user wants to  
simultaneously update select channels while the rest of the  
channels are synchronously updating.  
DB5  
DB4  
Operating Mode  
0
0
Normal operation  
Power-down modes  
0
1
1
1
0
1
1 kΩ pull-down to GND  
100 kΩ pull-down to GND  
Three-state, high impedance  
LDAC  
Writing to the DAC using Command 110 loads the 2-bit  
register [DB1:DB0]. The default for each channel is 0, that is,  
LDAC  
the  
DAC register is updated, regardless of the state of the  
pin. See Figure 63 for contents of the input shift register during  
LDAC  
pin works normally. Setting the bits to 1 means the  
LDAC  
the  
Table 10.  
register setup command.  
LDAC  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
Register Mode of Operation:  
Load DAC Register  
LDAC Bits  
(DB1 to DB0)  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
LDAC Pin  
1/0  
LDAC Operation  
0
Determined by LDAC pin.  
Figure 62. Output Stage During Power-Down  
1
x = don’t care The DAC registers are updated  
after new data is read in.  
The bias generator, the output amplifier, the resistor string, and  
other associated linear circuitry are shut down when power-  
down mode is activated. However, the contents of the DAC  
register are unaffected when in power-down. The time to exit  
power-down is typically 4 μs for VDD = 5 V.  
POWER-DOWN MODES  
Command 100 is reserved for the power-up/down function.  
The power-up/down modes are programmed by setting Bit  
DB5 and Bit DB4. This defines the output state of the DAC  
R
0
S
X
C2  
1
C1  
1
C0  
0
A2  
A2  
A1  
A1  
A0  
A0  
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DACB DACA  
DAC ADDRESS  
(DON’T CARE)  
COMMAND  
DON’T CARE  
DON’T CARE  
DAC SELECT  
(0 = LDAC PIN ENABLED)  
LDAC  
Figure 63.  
Setup Command  
Rev. 0 | Page 25 of 32  
 
 
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
POWER-ON RESET AND SOFTWARE RESET  
CLEAR PIN (CLR)  
The AD56x7R/AD56x7 contain a power-on reset circuit that  
controls the output voltage during power-up. The device powers  
up to 0 V and the output remains powered up at this level until  
a valid write sequence is made to the DAC. This is useful in  
applications where it is important to know the state of the  
output of the DAC while it is in the process of powering up. Any  
The AD56x7R/AD56x7 has an asynchronous clear input. The  
CLR  
CLR  
LDAC  
input is falling-edge sensitive. While  
is low, all  
CLR  
pulses are ignored. When  
is activated, zero scale is loaded  
to all input and DAC registers. This clears the output to 0 V. The  
part exits clear code mode on the on the falling edge of the 9th  
CLR  
clock pulse of the last byte of valid write. If  
is activated  
CLR  
LDAC CLR  
events on  
or  
during power-on reset are ignored.  
during a write sequence, the write is aborted. If  
is activated  
There is also a software reset function. Command 101 is the  
software reset command. The software reset command contains  
two reset modes that are software programmable by setting Bit  
DB0 in the input shift register.  
during high speed mode, the part exits high speed mode to  
standard/fast mode.  
INTERNAL REFERENCE SETUP (R VERSIONS)  
The on-chip reference is off at power-up by default. It can be  
turned on by sending the reference setup command (111) and  
setting DB0 in the input shift register. Table 13 shows how the  
state of the bit corresponds to the mode of operation. See Figure 66  
for the contents of the input shift register during the internal  
reference setup command.  
Table 12 shows how the state of the bit corresponds to the  
software reset modes of operation of the devices. Figure 64  
shows the contents of the input shift register during the  
software reset mode of operation.  
Table 12. Software Reset Modes for the AD56x7R/AD56x7  
DB0  
Registers reset to zero  
Table 13. Reference Setup Command  
0
DAC register  
Input shift register  
DAC register  
Input shift register  
LDAC register  
DB0  
Action  
0
1
Internal reference off (default)  
Internal reference on  
1 (Power-On Reset)  
Power-down register  
Internal reference setup register  
X
0
S
X
C2  
1
C1  
0
C0  
1
A2  
X
A1  
X
A0 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RST  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DAC ADDRESS  
(DON’T CARE)  
COMMAND  
DON’T CARE  
DON’T CARE  
Figure 64. Software Reset Command  
R
0
S
X
C2  
C1  
0
C0  
A2  
X
A1  
X
A0  
X
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1
0
X
X
X
X
X
X
X
X
X
X
PD1 PD0  
X
X
DACB DACA  
DAC ADDRESS  
(DON’T CARE)  
POWER-  
COMMAND  
DON’T CARE  
DON’T CARE  
DON’T CARE  
DOWN MODE  
DAC SELECT  
(1 = DAC SELECTED)  
Figure 65. Power Up/Down Command  
R
0
S
X
C2  
C1  
1
C0  
1
A2  
X
A1  
X
A0 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
REF  
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DAC ADDRESS  
(DON’T CARE)  
COMMAND  
DON’T CARE  
DON’T CARE  
Figure 66. Reference Setup Command  
Rev. 0 | Page 26 of 32  
 
 
 
 
 
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
APPLICATION INFORMATION  
USING A REFERENCE AS A POWER SUPPLY FOR  
THE AD56x7R/AD56x7  
R2 = 10k  
+5V  
R1 = 10kΩ  
Because the supply current required by the AD56x7R/AD56x7 is  
extremely low, an alternative option is to use a voltage reference  
to supply the required voltage to the part (see Figure 67). This is  
especially useful if the power supply is quite noisy, or if the  
system supply voltages are at some value other than 5 V or 3 V,  
for example, 15 V. The voltage reference outputs a steady supply  
voltage for the AD56x7R/AD56x7. If the low dropout REF195 is  
used, it must supply 450 μA of current to the AD56x7R/AD56x7  
with no load on the output of the DAC. When the DAC output is  
loaded, the REF195 also needs to supply the current to the load.  
The total current required (with a 5 kΩ load on the DAC  
output) is  
V
±5V  
O
AD820/  
OP295  
V
V
OUT  
+5V  
10µF  
DD  
0.1µF  
AD5627R/  
AD5647R/  
AD5667R/  
AD5627/  
AD5667  
–5V  
GND SCL SDA  
2-WIRE  
SERIAL  
INTERFACE  
Figure 68. Bipolar Operation with the AD56x7R/AD56x7  
POWER SUPPLY BYPASSING AND GROUNDING  
450 μA + (5 V/5 kΩ) = 1.45 mA  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the  
board. The printed circuit board containing the AD56x7R/AD56x7  
should have separate analog and digital sections, each having its  
own area of the board. If the AD56x7R/AD56x7 are in a system  
where other devices require an AGND to DGND connection, the  
connection should be made at one point only. This ground point  
should be as close as possible to the AD56x7R/AD56x7.  
The load regulation of the REF195 is typically 2 ppm/mA,  
resulting in a 2.9 ppm (14.5 μV) error for the 1.45 mA current  
drawn from it. This corresponds to a 0.191 LSB error.  
15V  
5V  
REF195  
V
DD  
SCL  
SDA  
AD5627R/  
AD5647R/  
AD5667R/  
AD5627/  
AD5667  
GND  
V
= 0V TO 5V  
2-WIRE  
SERIAL  
INTERFACE  
OUT  
The power supply to the AD56x7R/AD56x7 should be bypassed  
with 10 μF and 0.1 μF capacitors. The capacitors should be  
located as close as possible to the device, with the 0.1 μF capacitor  
ideally right up against the device. The 10 μF capacitor should be  
the tantalum bead type. It is important that the 0.1 μF capacitor  
have low effective series resistance (ESR) and effective series  
inductance (ESI), for example, common ceramic types of  
capacitors. This 0.1 μF capacitor provides a low impedance path  
to ground for high frequencies caused by transient currents due  
to internal logic switching.  
Figure 67. REF195 as Power Supply to the AD56x7R/AD56x7  
BIPOLAR OPERATION USING THE  
AD56x7R/AD56x7  
The AD56x7R/AD56x7 has been designed for single-supply  
operation, but a bipolar output range is also possible using the  
circuit in Figure 68. The circuit gives an output voltage range of  
5 V. Rail-to-rail operation at the amplifier output is achieved  
using an AD820 or an OP295 as the output amplifier.  
The power supply line itself should have as large a trace as  
possible to provide a low impedance path and to reduce glitch  
effects on the supply line. Clocks and other fast switching  
digital signals should be shielded from other parts of the board  
by digital ground. Avoid crossover of digital and analog signals  
if possible. When traces cross on opposite sides of the board,  
ensure that they run at right angles to each other to reduce  
feedthrough effects through the board. The best board layout  
technique is the microstrip technique where the component  
side of the board is dedicated to the ground plane only and the  
signal traces are placed on the solder side. However, this is not  
always possible with a two-layer board.  
The output voltage for any input code can be calculated as  
follows:  
D
65,536  
R1+ R2  
R1  
R2  
R1  
VO = VDD  
×
×
V  
×
DD  
where D represents the input code in decimal (0 to 65535).  
With VDD = 5 V, R1 = R2 = 10 kΩ,  
10×D  
65,536  
VO  
=
5 V  
This is an output voltage range of 5 V, with 0x0000 corre-  
sponding to a −5 V output, and 0xFFFF corresponding to a  
+5 V output.  
Rev. 0 | Page 27 of 32  
 
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
OUTLINE DIMENSIONS  
INDEX  
AREA  
PIN 1  
INDICATOR  
3.00  
BSC SQ  
10  
1
1.50  
BCS SQ  
0.50  
BSC  
2.48  
2.38  
2.23  
EXPOSED  
PAD  
TOP VIEW  
(BOTTOM VIEW)  
6
5
0.50  
0.40  
0.30  
1.74  
1.64  
1.49  
0.80 MAX  
0.55 TYP  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SIDE VIEW  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
Figure 69. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm x 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
10  
6
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 70. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
Rev. 0 | Page 2± of 32  
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
ORDERING GUIDE  
Temperature  
Range  
On-Chip  
Reference Speed  
Max I2C  
Package  
Description  
Package  
Option  
Model  
Accuracy  
Branding  
DA1  
DA1  
DA1  
DA1  
D9J  
AD5627BCPZ-R21  
AD5627BCPZ-REEL71  
AD5627BRMZ1  
AD5627BRMZ-REEL71  
AD5627RBCPZ-R21  
AD5627RBCPZ-REEL71  
AD5627RBRMZ-11  
AD5627RBRMZ-1REEL71 −40°C to +105°C ±1 LSB INL  
AD5627RBRMZ-21  
−40°C to +105°C ±1 LSB INL  
AD5627RBRMZ-2REEL71 −40°C to +105°C ±1 LSB INL  
AD5647RBCPZ-R21  
AD5647RBCPZ-REEL71  
AD5647RBRMZ1  
AD5647RBRMZ-REEL71  
AD5667BCPZ-R21  
AD5667BCPZ-REEL71  
AD5667BRMZ1  
AD5667BRMZ-REEL71  
AD5667RBCPZ-R21  
AD5667RBCPZ-REEL71  
AD5667RBRMZ-11  
AD5667RBRMZ-1REEL71 −40°C to +105°C ±12 LSB INL 2.5 V  
AD5667RBRMZ-21  
−40°C to +105°C ±12 LSB INL 2.5 V  
−40°C to +105°C ±1 LSB INL  
−40°C to +105°C ±1 LSB INL  
−40°C to +105°C ±1 LSB INL  
−40°C to +105°C ±1 LSB INL  
−40°C to +105°C ±1 LSB INL  
−40°C to +105°C ±1 LSB INL  
−40°C to +105°C ±1 LSB INL  
None  
None  
None  
None  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
3.4 MHz  
3.4 MHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
3.4 MHz  
3.4 MHz  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
CP-10 -9  
CP-10-9  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
RU-14  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
D9J  
DA7  
DA7  
DA±  
DA±  
D9G  
D9G  
D9G  
D9G  
D9Z  
D9Z  
D9Z  
D9Z  
D±X  
D±X  
DA5  
DA5  
DA6  
DA6  
10-Lead MSOP  
−40°C to +105°C ±4 LSB INL  
−40°C to +105°C ±4 LSB INL  
−40°C to +105°C ±4 LSB INL  
−40°C to +105°C ±4 LSB INL  
1.25 V  
1.25 V  
2.5 V  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
RU-14  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
2.5 V  
10-Lead MSOP  
−40°C to +105°C ±12 LSB INL None  
−40°C to +105°C ±12 LSB INL None  
−40°C to +105°C ±12 LSB INL None  
−40°C to +105°C ±12 LSB INL None  
−40°C to +105°C ±12 LSB INL 1.25 V  
−40°C to +105°C ±12 LSB INL 1.25 V  
−40°C to +105°C ±12 LSB INL 2.5 V  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
AD5667RBRMZ-2REEL71 −40°C to +105°C ±12 LSB INL 2.5 V  
EVAL-AD5667REBZ1  
10-Lead MSOP  
Evaluation Board  
1 Z = Pb-free part.  
Rev. 0 | Page 29 of 32  
 
 
 
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
NOTES  
Rev. 0 | Page 30 of 32  
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
NOTES  
Rev. 0 | Page 31 of 32  
AD5627R/AD5647R/AD5667R, AD5627/AD5667  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06342-0-1/07(0)  
Rev. 0 | Page 32 of 32  

相关型号:

EVAL-AD5667RSDZ

EVAL BOARD FOR AD5667R
ADI

EVAL-AD5668SDCZ

Octal, 12-/14-/16-Bit SPI Voltage Output denseDAC with 5 ppm/°C On-Chip Reference
ADI

EVAL-AD5668SDRZ

Octal, 12-/14-/16-Bit SPI Voltage Output denseDAC with 5 ppm/°C On-Chip Reference
ADI

EVAL-AD5680DBZ

EVAL BOARD FOR AD5680
ADI

EVAL-AD5680EB

5 V 18-Bit nanoDAC in a SOT-23
ADI

EVAL-AD5684RSDZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

EVAL-AD5686RSDZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

EVAL-AD5687R

PC control in conjunction with Analog Devices
ADI

EVAL-AD5687RSDZ

Dual, 16-/12-Bit nanoDAC with 2 ppm/°C Reference, SPI Interface
ADI

EVAL-AD5689R

PC control in conjunction with Analog Devices
ADI

EVAL-AD5689RSDZ

Dual, 16-/12-Bit nanoDAC with 2 ppm/°C Reference, SPI Interface
ADI

EVAL-AD5694RSDZ

Quad 16-/14-/12-Bit nanoDAC
ADI