EVAL-ADM2687EEBZ [ADI]

5 kV rms Signal and Power Isolated; 5 kV的均方根信号和电源隔离
EVAL-ADM2687EEBZ
型号: EVAL-ADM2687EEBZ
厂家: ADI    ADI
描述:

5 kV rms Signal and Power Isolated
5 kV的均方根信号和电源隔离

文件: 总24页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 kV rms Signal and Power Isolated  
RS-485 Transceiver with ± ±5 kV ꢀSꢁ  
AꢁM2682ꢀ/AꢁM2687ꢀ  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
ISOOUT  
CC  
5 kV rms isolated RS-485/RS-422 transceiver, configurable as  
half or full duplex  
isoPower DC-TO-DC CONVERTER  
isoPower integrated isolated dc-to-dc converter  
15 kV ESD protection on RS-485 input/output pins  
Complies with ANSI/TIA/EIA-485-A-98 and ISO 8482:1987(E)  
Data rate: 16 Mbps (ADM2682E), 500 kbps (ADM2687E)  
5 V or 3.3 V operation  
OSCILLATOR  
RECTIFIER  
V
ISOIN  
REGULATOR  
Connect up to 256 nodes on one bus  
Open- and short-circuit, fail-safe receiver inputs  
High common-mode transient immunity: >25 kV/μs  
Thermal shutdown protection  
TRANSCEIVER  
D
DIGITAL ISOLATION iCoupler  
Y
Z
ENCODE  
DECODE  
DECODE  
ENCODE  
TxD  
DE  
Safety and regulatory approvals  
UL recognition (pending)  
5000 V rms for 1 minute per UL 1577  
ENCODE  
DECODE  
CSA Component Acceptance Notice #5A (pending)  
IEC 60601-1: 400 V rms (basic), 250 V rms (reinforced)  
IEC 60950-1: 600 V rms (basic), 380 V rms (reinforced)  
VDE Certificates of Conformity (pending)  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01  
A
B
RxD  
R
RE  
ADM2682E/ADM2687E  
V
IORM = 846 V peak  
Operating temperature range: −40°C to +85°C  
16-lead wide-body SOIC with >8 mm creepage and clearance  
GND  
GND  
2
1
ISOLATION  
BARRIER  
Figure 1.  
APPLICATIONS  
Isolated RS-485/RS-422 interfaces  
Industrial field networks  
Multipoint data transmission systems  
GENERAL DESCRIPTION  
The ADM2682E/ADM2687E are fully integrated 5 kV rms  
signal and power isolated data transceivers with ±±5 kV EꢀD  
protection and are suitable for high speed communication on  
multipoint transmission lines. The ADM2682E/ADM2687E  
include an integrated 5 kV rms isolated dc-to-dc power supply  
that eliminates the need for an external dc-to-dc isolation block.  
The ADM2682E/ADM2687E drivers have an active high enable.  
An active low receiver enable is also provided, which causes the  
receiver output to enter a high impedance state when disabled.  
The devices have current limiting and thermal shutdown  
features to protect against output short circuits and situations  
where bus contention may cause excessive power dissipation.  
The parts are fully specified over the industrial temperature  
range and are available in a highly integrated, ±6-lead, wide-  
body ꢀOIC package with >8 mm creepage and clearance.  
They are designed for balanced transmission lines and comply  
with ANꢀI/TIA/EIA-485-A-98 and IꢀO 8482:±987(E).  
The devices integrate Analog Devices, Inc., iCoupler® technology to  
combine a 3-channel isolator, a three-state differential line driver, a  
differential input receiver, and Analog Devices isoPower® dc-to-dc  
converter into a single package. The devices are powered by a  
single 5 V or 3.3 V supply, realizing a fully integrated signal and  
power isolated Rꢀ-485 solution.  
The ADM2682E/ADM2687E contain isoPower technology that  
uses high frequency switching elements to transfer power through  
the transformer. ꢀpecial care must be taken during printed circuit  
board (PCB) layout to meet emissions standards. Refer to  
AN-097± Application Note, Recommendations for Control of  
Radiated Emissions with isoPower Devices, for details on board  
layout considerations.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
TABLꢀ OF CONTꢀNTS  
Features .............................................................................................. ±  
ꢀwitching Characteristics .............................................................. ±5  
Circuit Description......................................................................... ±6  
ꢀignal Isolation ........................................................................... ±6  
Power Isolation ........................................................................... ±6  
Truth Tables................................................................................. ±6  
Thermal ꢀhutdown .................................................................... ±6  
Open- and ꢀhort-Circuit, Fail-ꢀafe Receiver Inputs.............. ±6  
DC Correctness and Magnetic Field Immunity........................... ±6  
Applications Information.............................................................. ±8  
PCB Layout ................................................................................. ±8  
EMI Considerations................................................................... ±8  
Insulation Lifetime..................................................................... ±9  
Isolated ꢀupply Considerations ................................................ ±9  
Typical Applications................................................................... 20  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... ±  
Functional Block Diagram .............................................................. ±  
General Description......................................................................... ±  
Revision History ............................................................................... 2  
ꢀpecifications..................................................................................... 3  
ADM2682E Timing ꢀpecifications ............................................ 4  
ADM2687E Timing ꢀpecifications ............................................ 4  
Package Characteristics ............................................................... 4  
Regulatory Information............................................................... 5  
Insulation and ꢀafety-Related ꢀpecifications............................ 5  
VDE 0884 Insulation Characteristics (Pending)...................... 6  
Absolute Maximum Ratings............................................................ 7  
EꢀD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Test Circuits..................................................................................... ±4  
REVISION HISTORY  
7/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
SPꢀCIFICATIONS  
All voltages are relative to their respective ground; 3.0 ≤ VCC ≤ 5.5 V. All minimum/maximum specifications apply over the entire  
recommended operation range, unless otherwise noted. All typical specifications are at TA = 25°C, VCC = 5 V unless otherwise noted.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADM2687E SUPPLY CURRENT  
Data Rate ≤ 500 kbps  
ICC  
90  
72  
125  
98  
mA  
mA  
mA  
mA  
mA  
VCC = 3.3 V, 100 Ω load between Y and Z  
VCC = 5 V, 100 Ω load between Y and Z  
VCC = 3.3 V, 54 Ω load between Y and Z  
VCC = 5 V, 54 Ω load between Y and Z  
120 Ω load between Y and Z  
140  
ADM2682E SUPPLY CURRENT  
Data Rate = 16 Mbps  
ICC  
175  
260  
130  
200  
mA  
mA  
mA  
mA  
V
120 Ω load between Y and Z  
54 Ω load between Y and Z  
120 Ω load between Y and Z  
54 Ω load between Y and Z  
Data Rate = 16 Mbps, 4.5 ≤ VCC ≤ 5.5 V  
ISOLATED SUPPLY VOLTAGE  
DRIVER  
VISOOUT  
3.3  
Differential Outputs  
Differential Output Voltage, Loaded  
|VOD2  
|
|
2.0  
1.5  
1.5  
3.6  
3.6  
3.6  
0.2  
3.0  
0.2  
200  
30  
V
V
V
V
V
V
mA  
μA  
RL = 100 Ω (RS-422), see Figure 29  
RL = 54 Ω (RS-485), see Figure 29  
−7 V ≤ VTEST1 ≤ 12 V, see Figure 30  
RL = 54 Ω or 100 Ω, see Figure 29  
RL = 54 Ω or 100 Ω, see Figure 29  
RL = 54 Ω or 100 Ω, see Figure 29  
|VOD3  
Δ|VOD| for Complementary Output States Δ|VOD|  
Common-Mode Output Voltage  
Δ|VOC| for Complementary Output States  
Short-Circuit Output Current  
VOC  
Δ|VOC|  
IOS  
Output Leakage Current (Y, Z)  
IO  
DE = 0 V, RE = 0 V, VCC = 0 V or 3.6 V,  
VIN = 12 V  
−30  
μA  
DE = 0 V, RE = 0 V, VCC = 0 V or 3.6 V,  
VIN = −7 V  
Logic Inputs DE, RE, TxD  
Input Threshold Low  
Input Threshold High  
Input Current  
VIL  
VIH  
II  
0.27 VCC  
−10  
V
DE, RE, TxD  
DE, RE, TxD  
DE, RE, TxD  
0.7 VCC  
10  
V
0.01  
μA  
RECEIVER  
Differential Inputs  
Differential Input Threshold Voltage  
Input Voltage Hysteresis  
Input Current (A, B)  
VTH  
VHYS  
II  
−200  
−125  
15  
−30  
125  
mV  
mV  
μA  
μA  
kΩ  
−7 V < VCM < +12 V  
VOC = 0 V  
DE = 0 V, VCC = 0 V or 3.6 V, VIN = 12 V  
DE = 0 V, VCC = 0 V or 3.6 V, VIN = −7 V  
−7 V < VCM < +12 V  
−100  
96  
Line Input Resistance  
Logic Outputs  
RIN  
Output Voltage Low  
Output Voltage High  
VOL  
VOH  
0.2  
0.4  
V
V
IO = 1.5 mA, VA − VB = −0.2 V  
IO = −1.5 mA, VA − VB = 0.2 V  
VCC − 0.3 VCC − 0.2  
Short-Circuit Current  
100  
mA  
COMMON-MODE TRANSIENT IMMUNITY1  
25  
kV/μs VCM = 1 kV, transient magnitude = 800 V  
1 CM is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. VCM is the common-mode potential  
difference between the logic and bus sides. The transient magnitude is the range over which the common-mode is slewed. The common-mode voltage slew rates  
apply to both rising and falling common-mode voltage edges.  
Rev. 0 | Page 3 of 24  
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
ADM2682E TIMING SPECIFICATIONS  
TA = −40°C to +85°C.  
Table 2.  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DRIVER  
Maximum Data Rate  
Propagation Delay, Low to High tDPLH  
Propagation Delay, High to Low tDPHL  
Output Skew  
Rise Time/Fall Time  
Enable Time  
16  
Mbps  
ns  
ns  
ns  
ns  
63  
64  
1
100  
100  
8
15  
120  
150  
RL = 54 Ω, CL1 = C L2 = 100 pF, see Figure 31 and Figure 35  
RL = 54 Ω, CL1 = C L2 = 100 pF, see Figure 31 and Figure 35  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 31 and Figure 35  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 31 and Figure 35  
RL = 110 Ω, CL = 50 pF, see Figure 32 and Figure 37  
RL = 110 Ω, CL = 50 pF, see Figure 32 and Figure 37  
tSKEW  
tDR, tDF  
tZL, tZH  
tLZ, tHZ  
ns  
ns  
Disable Time  
RECEIVER  
Propagation Delay, Low to High tRPLH  
Propagation Delay, High to Low tRPHL  
94  
95  
1
110  
110  
12  
15  
15  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, see Figure 33 and Figure 36  
CL = 15 pF, see Figure 33 and Figure 36  
CL = 15 pF, see Figure 33 and Figure 36  
RL = 1 kΩ, CL = 15 pF, see Figure 34 and Figure 38  
RL = 1 kΩ, CL = 15 pF, see Figure 34 and Figure 38  
Output Skew1  
Enable Time  
Disable Time  
tSKEW  
tZL, tZH  
tLZ, tHZ  
1 Guaranteed by design.  
ADM2687E TIMING SPECIFICATIONS  
TA = −40°C to +85°C.  
Table 3.  
Parameter  
Symbol  
Min Typ Max  
Unit  
Test Conditions/Comments  
DRIVER  
Maximum Data Rate  
Propagation Delay, Low to High tDPLH  
Propagation Delay, High to Low tDPHL  
Output Skew  
Rise Time/Fall Time  
Enable Time  
500  
250  
250  
kbps  
ns  
ns  
503  
510  
7
700  
700  
100  
RL = 54 Ω, CL1 = C L2 = 100 pF, see Figure 31 and Figure 35  
RL = 54 Ω, CL1 = C L2 = 100 pF, see Figure 31 and Figure 35  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 31 and Figure 35  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 31 and Figure 35  
RL = 110 Ω, CL = 50 pF, see Figure 32 and Figure 37  
RL = 110 Ω, CL = 50 pF, see Figure 32 and Figure 37  
tSKEW  
ns  
tDR, tDF  
tZL, tZH  
tLZ, tHZ  
200  
1100 ns  
2.5  
200  
μs  
ns  
Disable Time  
RECEIVER  
Propagation Delay, Low to High tRPLH  
Propagation Delay, High to Low tRPHL  
91  
95  
4
200  
200  
30  
15  
15  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, see Figure 33 and Figure 36  
CL = 15 pF, see Figure 33 and Figure 36  
CL = 15 pF, see Figure 33 and Figure 36  
RL = 1 kΩ, CL = 15 pF, see Figure 34 and Figure 38  
RL = 1 kΩ, CL = 15 pF, see Figure 34 and Figure 38  
Output Skew  
Enable Time  
Disable Time  
tSKEW  
tZL, tZH  
tLZ, tHZ  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
RI-O  
CI-O  
Min  
Typ  
1012  
3
Max  
Unit  
Ω
pF  
Test Conditions/Comments  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
f = 1 MHz  
CI  
4
pF  
1 Device considered a 2-terminal device: short together Pin 1 to Pin 8 and short together Pin 9 to Pin 16.  
2 Input capacitance is from any input data pin to ground.  
Rev. 0 | Page 4 of 24  
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
REGULATORY INFORMATION  
Table 5. ADM2682E/ADM2687E Approvals (Pending)  
Organization  
Approval Type  
To be recognized under the UL 1577 Component Recognition Program of Underwriters Laboratories, Inc.  
Single protection, 5000 V rms isolation voltage.  
UL (Pending)  
In accordance with UL 1577, each ADM2682E/ADM2687E is proof tested by applying an insulation test voltage  
≥ 6000 V rms for 1 second.  
To be approved under CSA Component Acceptance Notice #5A.  
CSA (Pending)  
VDE (Pending)  
Reinforced insulation per IEC 60601-1, 250 V rms (353 V peak) maximum working voltage.  
Basic insulation per IEC 60601-1, 400 V rms (566 V peak) maximum working voltage.  
Reinforced insulation per CSA 60950-1-07 and IEC 60950-1, 380 V rms (537 V peak) maximum working voltage.  
Basic insulation per CSA 60950-1-07 and IEC 60950-1, 600 V rms (848 V peak) maximum working voltage.  
To be certified according to DIN EN 60747-5-2 (VDE 0884 Part 2):2003-01.  
In accordance with DIN EN 60747-5-2, each ADM2682E/ADM2687E is proof tested by applying an insulation test voltage  
≥1590 V peak for 1 second.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol Value  
Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
5000  
>8.0  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance along body  
Minimum External Tracking (Creepage)  
>8.0  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303-1  
Material Group (DIN VDE 0110:1989-01, Table 1)  
CTI  
>175  
IIIa  
V
Rev. 0 | Page 5 of 24  
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
VDE 0884 INSULATION CHARACTERISTICS (PENDING)  
This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured by  
means of protective circuits.  
Table 7.  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
CLASSIFICATIONS  
Installation Classification per DIN VDE 0110 for  
Rated Mains Voltage  
≤300 V rms  
≤450 V rms  
≤600 V rms  
I to IV  
I to III  
I to II  
40/85/21  
2
Climatic Classification  
Pollution Degree  
VOLTAGE  
Table 1 of DIN VDE 0110  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage  
Method b1  
VIORM  
VPR  
846  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production tested,  
tm = 1 sec, partial discharge < 5 pC  
1590  
Method a  
After Environmental Tests, Subgroup 1  
After Input and/or Safety Test,  
Subgroup 2/Subgroup 3  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC  
VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
1375  
1018  
V peak  
V peak  
Highest Allowable Overvoltage  
SAFETY-LIMITING VALUES  
Case Temperature  
Input Current  
Output Current  
Transient overvoltage, tTR = 10 sec  
VTR  
6000  
V peak  
Maximum value allowed in the event of a failure  
TS  
150  
265  
335  
>109  
°C  
IS, INPUT  
IS, OUTPUT  
RS  
mA  
mA  
Ω
Insulation Resistance at TS  
VIO = 500 V  
Rev. 0 | Page 6 of 24  
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
ABSOLUTꢀ MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. All voltages are relative to  
their respective ground.  
Table 9. Maximum Continuous Working Voltage1  
Parameter  
Max Unit  
Reference Standard  
AC Voltage  
Bipolar Waveform  
Table 8.  
Parameter  
424  
V peak All certifications,  
50-year minimum  
lifetime  
Rating  
VCC  
−0.5 V to +7 V  
−0.5 V to VDD + 0.5 V  
−0.5 V to VDD + 0.5 V  
−9 V to +14 V  
−40°C to +85°C  
−55°C to +150°C  
15 kV  
Digital Input Voltage (DE, RE, TxD)  
Digital Output Voltage (RxD)  
Driver Output/Receiver Input Voltage  
Operating Temperature Range  
Storage Temperature Range  
Unipolar Waveform  
Basic Insulation  
600  
V peak  
Reinforced Insulation 537  
V peak Maximum approved  
working voltage per  
IEC 60950-1  
DC Voltage  
Basic Insulation  
Reinforced Insulation  
ESD (Human Body Model) on  
A, B, Y, and Z pins  
600  
537  
V peak  
2 kV  
ESD (Human Body Model) on Other Pins  
Thermal Resistance θJA  
Lead Temperature  
Soldering (10 sec)  
Vapor Phase (60 sec)  
Infrared (15 sec)  
V peak Maximum approved  
working voltage per  
IEC 60950-1  
52°C/W  
1 Refers to continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more details.  
260°C  
215°C  
220°C  
ESD CAUTION  
ꢀtresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 7 of 24  
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
PIN CONFIGURATION ANꢁ FUNCTION ꢁꢀSCRIPTIONS  
GND  
1
2
3
4
5
6
7
8
16 GND  
1
2
V
15  
14  
13  
12  
11  
10  
9
V
ISOIN  
CC  
RxD  
RE  
A
B
Z
ADM2682E/  
ADM2687E  
DE  
TOP VIEW  
(Not to Scale)  
TxD  
Y
V
V
ISOOUT  
CC  
GND  
GND  
2
1
NOTES  
1. PIN 10 AND PIN 15 MUST BE  
CONNECTED EXTERNALLY.  
Figure 2. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
GND1  
VCC  
Ground, Logic Side.  
Logic Side Power Supply. It is recommended that a 0.1 μF and a 0.01 μF decoupling capacitor be fitted between  
Pin 2 and Pin 1.  
3
4
RxD  
RE  
Receiver Output Data. This output is high when (A − B) ≥ −30 mV and low when (A − B) ≤ –200 mV. The output is  
tristated when the receiver is disabled, that is, when RE is driven high.  
Receiver Enable Input. This is an active-low input. Driving this input low enables the receiver, while driving it high  
disables the receiver.  
5
6
7
DE  
TxD  
VCC  
Driver Enable Input. Driving this input high enables the driver, while driving it low disables the driver.  
Driver Input. Data to be transmitted by the driver is applied to this input.  
Logic Side Power Supply. It is recommended that a 0.1 μF and a 10 μF decoupling capacitor be fitted between  
Pin 7 and Pin 8.  
8
9
10  
GND1  
GND2  
VISOOUT  
Ground, Logic Side.  
Ground, Bus Side.  
Isolated Power Supply Output. This pin must be connected externally to VISOIN. It is recommended that a reservoir  
capacitor of 10 μF and a decoupling capacitor of 0.1 μF be fitted between Pin 10 and Pin 9.  
11  
12  
13  
14  
15  
Y
Z
B
A
Driver Noninverting Output  
Driver Inverting Output  
Receiver Inverting Input.  
Receiver Noninverting Input.  
Isolated Power Supply Input. This pin must be connected externally to VISOOUT. It is recommended that a 0.1 μF  
and a 0.01 μF decoupling capacitor be fitted between Pin 15 and Pin 16.  
VISOIN  
16  
GND2  
Ground, Bus Side.  
Rev. 0 | Page 8 of 24  
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
TYPICAL PꢀRFORMANCꢀ CHARACTꢀRISTICS  
200  
140  
120  
100  
80  
180  
160  
R
= 54  
L
R
= 54Ω  
L
140  
120  
100  
80  
R
= 120Ω  
L
R
= 120Ω  
L
60  
60  
40  
NO LOAD  
NO LOAD  
40  
20  
20  
0
0
–40  
–15  
10  
35  
60  
85  
85  
16  
1
4
7
10  
13  
16  
85  
85  
TEMPERATURE (°C)  
DATA RATE (Mbps)  
Figure 3. ADM2682E Supply Current (ICC) vs. Temperature  
(Data Rate = 16 Mbps, DE = 3.3 V, VCC = 3.3 V)  
Figure 6. ADM2682E Supply Current (ICC) vs. Data Rate  
(TA = 25°C, DE = 5 V, VCC = 5 V)  
160  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
R
= 54Ω  
R
= 54  
L
L
R
= 120Ω  
L
R
= 120Ω  
L
60  
NO LOAD  
40  
NO LOAD  
20  
0
–40  
–15  
10  
35  
60  
–40  
–15  
10  
35  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. ADM2682E Supply Current (ICC) vs. Temperature  
(Data Rate = 16 Mbps, DE = 5 V, VCC = 5 V)  
Figure 7. ADM2687E Supply Current (ICC) vs. Temperature  
(Data Rate = 500 kbps, DE = 5 V, VCC = 5 V)  
180  
160  
160  
140  
120  
100  
80  
140  
120  
100  
80  
R
= 54Ω  
L
R
= 54Ω  
L
R
= 120Ω  
L
R
= 120Ω  
L
60  
60  
40  
40  
NO LOAD  
NO LOAD  
20  
20  
0
0
1
4
7
10  
13  
–40  
–15  
10  
35  
60  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 5. ADM2682E Supply Current (ICC) vs. Data Rate  
(TA = 25°C, DE = 3.3 V, VCC = 3.3 V)  
Figure 8. ADM2687E Supply Current (ICC) vs. Temperature  
(Data Rate = 500 kbps, DE = 3.3 V, VCC = 3.3 V)  
Rev. 0 | Page 9 of 24  
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
140  
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
R
= 54  
L
120  
100  
80  
60  
40  
20  
0
tDPLH  
R
= 120Ω  
L
tDPHL  
NO LOAD  
50  
125  
200  
275  
350  
425  
500  
500  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DATA RATE (kbps)  
Figure 9. ADM2687E Supply Current (ICC) vs. Data Rate  
(TA = 25°C, DE = 3.3 V, VCC = 3.3 V)  
Figure 12. ADM2687E Differential Driver Propagation Delay vs. Temperature  
120  
100  
80  
60  
40  
20  
0
R
= 54Ω  
L
TxD  
R
= 120Ω  
L
1
Z
Y
NO LOAD  
3
CH1 2.0V CH2 2.0V  
CH3 2.0V  
M10.00ns  
A
CH1  
1.28V  
50  
125  
200  
275  
350  
425  
DATA RATE (kbps)  
Figure 10. ADM2687E Supply Current (ICC) vs. Data Rate  
(TA = 25°C, DE = 5 V, VCC = 5 V)  
Figure 13. ADM2682E Driver Propagation Delay  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
tDPHL  
tDPLH  
TxD  
1
Z
Y
3
CH1 2.0V CH2 2.0V  
CH3 2.0V  
M200ns  
A
CH1  
2.56V  
–40  
–15  
10  
35  
60  
TEMPERATURE (°C)  
Figure 11. ADM2682E Differential Driver Propagation Delay vs. Temperature  
Figure 14. ADM2687E Driver Propagation Delay  
Rev. 0 | Page 10 of 24  
AꢁM2682ꢀ/AꢁM2687ꢀ  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.32  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
–40  
–15  
10  
35  
60  
85  
0
1
2
3
4
5
TEMPERATURE (°C)  
OUTPUT HIGH VOLTAGE (V)  
Figure 18. Receiver Output Low Voltage vs. Temperature  
Figure 15. Receiver Output Current vs. Receiver Output High Voltage  
60  
50  
40  
30  
20  
10  
0
B
A
1
RxD  
3
CH1 2.0V CH2 2.0V  
CH3 2.0V  
M10.00ns  
A
CH1  
2.56V  
0
1
2
3
4
5
OUTPUT LOW VOLTAGE (V)  
Figure 16. Receiver Output Current vs. Receiver Output Low Voltage  
Figure 19. ADM2682E Receiver Propagation Delay  
4.75  
4.74  
A
B
4.73  
4.72  
4.71  
4.70  
4.69  
4.68  
4.67  
1
RxD  
3
4.66  
4.65  
CH1 2.0V CH2 2.0V  
CH3 2.0V  
M10.00ns  
A
CH1  
2.56V  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 17. Receiver Output High Voltage vs. Temperature  
Figure 20. ADM2687E Receiver Propagation Delay  
Rev. 0 | Page 11 of 24  
AꢁM2682ꢀ/AꢁM2687ꢀ  
3.44  
3.43  
3.42  
3.41  
3.40  
3.39  
3.38  
3.37  
3.36  
3.35  
3.34  
98  
97  
96  
tRPHL  
NO LOAD  
95  
94  
93  
92  
tRPLH  
R
= 120Ω  
L
R
= 54Ω  
L
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. ADM2682E Receiver Propagation Delay vs. Temperature  
Figure 24. ADM2682E Isolated Supply Voltage vs. Temperature  
(VCC = 5 V, Data Rate = 16 Mbps)  
3.37  
100  
99  
98  
97  
96  
3.36  
3.35  
NO LOAD  
3.34  
tRPHL  
R
= 120Ω  
95  
L
3.33  
3.32  
3.31  
3.30  
94  
93  
R
= 54Ω  
L
92  
tRPLH  
91  
90  
–40  
–40  
–15  
10  
35  
60  
85  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. ADM2687E Isolated Supply Voltage vs. Temperature  
(VCC = 3.3 V, Data Rate = 500 kbps)  
Figure 22. ADM2687E Receiver Propagation Delay vs. Temperature  
3.39  
3.38  
3.37  
3.36  
3.39  
3.38  
NO LOAD  
3.37  
R
= 120  
L
NO LOAD  
3.35  
3.36  
3.35  
3.34  
3.33  
R
= 120Ω  
R
= 54Ω  
L
L
3.34  
3.33  
3.32  
3.31  
R
= 54Ω  
L
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 26. ADM2687E Isolated Supply Voltage vs. Temperature  
(VCC = 5 V, Data Rate = 500 kbps  
Figure 23. ADM2682E Isolated Supply Voltage vs. Temperature  
(VCC = 3.3 V, Data Rate = 16 Mbps)  
Rev. 0 | Page 12 of 24  
AꢁM2682ꢀ/AꢁM2687ꢀ  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
R
= 54Ω  
L
R
= 54Ω  
L
R
= 120Ω  
L
R
= 120Ω  
L
NO LOAD  
NO LOAD  
0
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. ADM2682E Isolated Supply Current vs. Temperature  
(VCC = 3.3 V, Data Rate = 16 Mbps)  
Figure 28. ADM2687E Isolated Supply Current vs. Temperature  
(VCC = 3.3 V, Data Rate = 500 kbps)  
Rev. 0 | Page 13 of 24  
AꢁM2682ꢀ/AꢁM2687ꢀ  
TꢀST CIRCUITS  
Y
R
L
2
TxD  
V
OD2  
V
V
CC  
OUT  
R
L
Y
Z
R
110  
L
Z
2
V
OC  
TxD  
DE  
S1  
S2  
C
L
50pF  
Figure 29. Driver Voltage Measurement  
Figure 32. Driver Enable/Disable  
Y
375  
A
V
60ꢀ  
TxD  
OD3  
RxD  
375ꢀ  
V
Z
OUT  
V
TEST  
RE  
B
C
L
Figure 30. Driver Voltage Measurement over Common Mode  
Figure 33. Receiver Propagation Delay  
V
+1.5V  
–1.5V  
CC  
Y
C
C
L
S1  
TxD  
R
R
L
RxD  
L
S2  
L
RE  
Z
C
V
OUT  
L
RE IN  
Figure 31. Driver Propagation Delay  
Figure 34. Receiver Enable/Disable  
Rev. 0 | Page 14 of 24  
 
 
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
SWITCHING CHARACTꢀRISTICS  
V
CC  
V
/2  
V
/2  
CC  
CC  
0V  
Z
tDPLH  
tDPHL  
V
CC  
1/2V  
0.5V  
tZL  
0.5V  
CC  
O
CC  
DE  
V
O
0V  
tLZ  
2.3V  
2.3V  
Y
+V  
Y, Z  
Y, Z  
O
V
V
+ 0.5V  
– 0.5V  
OL  
90% POINT  
90% POINT  
V
= V – V  
(Y)  
DIFF  
(Z)  
V
OL  
V
DIFF  
tZH  
tHZ  
10% POINT  
10% POINT  
V
OH  
–V  
O
tDF  
tDR  
OH  
t
= t  
DPHL  
– t  
DPLH  
SKEW  
Figure 37. Driver Enable/Disable Timing  
Figure 35. Driver Propagation Delay, Rise/Fall Timing  
V
V
IH  
0.5V  
tZL  
0.5V  
tLZ  
CC  
CC  
RE  
IL  
A – B  
0V  
0V  
1.5V  
1.5V  
RxD  
V
+ 0.5V  
– 0.5V  
OL  
OUTPUT LOW  
OUTPUT HIGH  
tRPLH  
tRPHL  
V
OL  
V
V
tZH  
tHZ  
OH  
V
OH  
RxD  
1.5V  
V
1.5V  
OH  
tSKEW = |tRPLH tRPHL  
|
RxD  
0V  
OL  
Figure 38. Receiver Enable/Disable Timing  
Figure 36. Receiver Propagation Delay  
Rev. 0 | Page 15 of 24  
 
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
CIRCUIT ꢁꢀSCRIPTION  
Table 13. Receiving (see Table 11 for Abbreviations)  
Inputs Output  
SIGNAL ISOLATION  
The ADM2682E/ADM2687E signal isolation of 5 kV rms is  
implemented on the logic side of the interface. The part achieves  
signal isolation by having a digital isolation section and a trans-  
ceiver section (see Figure ±). Data applied to the TxD and DE  
pins and referenced to logic ground (GND±) are coupled across  
an isolation barrier to appear at the transceiver section referenced  
to isolated ground (GND2). ꢀimilarly, the single-ended receiver  
output signal, referenced to isolated ground in the transceiver  
section, is coupled across the isolation barrier to appear at the  
RxD pin referenced to logic ground.  
RE  
A − B  
RxD  
≥ −0.03 V  
≤ −0.2 V  
−0.2 V < A − B < −0.03 V  
Inputs open  
X
L or NC  
L or NC  
L or NC  
L or NC  
H
H
L
I
H
Z
THERMAL SHUTDOWN  
The ADM2682E/ADM2687E contain thermal shutdown circuitry  
that protects the parts from excessive power dissipation during  
fault conditions. ꢀhorting the driver outputs to a low impedance  
source can result in high driver currents. The thermal sensing  
circuitry detects the increase in die temperature under this  
condition and disables the driver outputs. This circuitry is  
designed to disable the driver outputs when a die temperature  
of ±50°C is reached. As the device cools, the drivers are reenabled  
at a temperature of ±40°C.  
POWER ISOLATION  
The ADM2682E/ADM2687E power isolation of 5 kV rms is  
implemented using an isoPower integrated isolated dc-to-dc  
converter. The dc-to-dc converter section of the ADM2682E/  
ADM2687E works on principles that are common to most  
modern power supplies. It is a secondary side controller  
architecture with isolated pulse-width modulation (PWM)  
feedback. VCC power is supplied to an oscillating circuit that  
switches current into a chip-scale air core transformer. Power  
transferred to the secondary side is rectified and regulated to  
3.3 V. The secondary (VIꢀO) side controller regulates the output  
by creating a PWM control signal that is sent to the primary  
(VCC) side by a dedicated iCoupler (5 kV rms signal isolated)  
data channel. The PWM modulates the oscillator circuit to  
control the power being sent to the secondary side. Feedback  
allows for significantly higher power and efficiency.  
OPEN- AND SHORT-CIRCUIT, FAIL-SAFE RECEIVER  
INPUTS  
The receiver inputs have open- and short-circuit, fail-safe features  
that ensure that the receiver output is high when the inputs are  
open or shorted. During line-idle conditions, when no driver on  
the bus is enabled, the voltage across a terminating resistance at  
the receiver input decays to 0 V. With traditional transceivers,  
receiver input thresholds specified between −200 mV and  
+200 mV mean that external bias resistors are required on the  
A and B pins to ensure that the receiver outputs are in a known  
state. The short-circuit, fail-safe receiver input feature eliminates  
the need for bias resistors by specifying the receiver input  
threshold between −30 mV and −200 mV. The guaranteed negative  
threshold means that when the voltage between A and B decays  
to 0 V, the receiver output is guaranteed to be high.  
TRUTH TABLES  
The truth tables in this section use the abbreviations found in  
Table ±±.  
Table 11. Truth Table Abbreviations  
Letter  
Description  
H
L
High level  
Low level  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
X
I
Z
Don’t care  
The digital signals transmit across the isolation barrier using  
iCoupler technology. This technique uses chip-scale transformer  
windings to couple the digital signals magnetically from one  
side of the barrier to the other. Digital inputs are encoded into  
waveforms that are capable of exciting the primary transformer  
winding. At the secondary winding, the induced waveforms are  
decoded into the binary value that was originally transmitted.  
Indeterminate  
High impedance (off)  
Disconnected  
NC  
Table 12. Transmitting (see Table 11 for Abbreviations)  
Inputs  
Outputs  
Positive and negative logic transitions at the isolator input cause  
narrow (~± ns) pulses to be sent to the decoder via the transformer.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses, indicating input logic transitions. In the absence of  
logic transitions at the input for more than ± μs, periodic sets of  
refresh pulses indicative of the correct input state are sent to  
ensure dc correctness at the output. If the decoder receives no  
internal pulses of more than approximately 5 μs, the input side  
DE  
H
H
L
TxD  
Y
H
L
Z
Z
Z
L
H
Z
Z
H
L
X
X
X
Rev. 0 | Page 16 of 24  
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
is assumed to be unpowered or nonfunctional, in which case,  
the isolator output is forced to a default state by the watchdog  
timer circuit.  
For example, at a magnetic field frequency of ± MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
ꢀimilarly, if such an event occurs during a transmitted pulse  
(and is of the worst-case polarity), it reduces the received pulse  
from >±.0 V to 0.75 V, which is still well above the 0.5 V sensing  
threshold of the decoder.  
This situation should occur in the ADM2682E/ADM2687E devices  
only during power-up and power-down operations. The limitation  
on the ADM2682E/ADM2687E magnetic field immunity is set  
by the condition in which induced voltage in the transformer  
receiving coil is sufficiently large to either falsely set or reset the  
decoder. The following analysis defines the conditions under  
which this can occur.  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADM2682E/ADM2687E transformers. Figure 40 expresses  
these allowable current magnitudes as a function of frequency  
for selected distances. As shown in Figure 40, the ADM2682E/  
ADM2687E are extremely immune and can be affected only by  
extremely large currents operated at high frequency very close  
to the component. For the ± MHz example, a 0.5 kA current must  
be placed 5 mm away from the ADM2682E/ADM2687E to affect  
The 3.3 V operating condition of the ADM2682E/ADM2687E  
is examined because it represents the most susceptible mode of  
operation. The pulses at the transformer output have an amplitude  
of >±.0 V. The decoder has a sensing threshold of about 0.5 V,  
thus establishing a 0.5 V margin in which induced voltages can  
be tolerated. The voltage induced across the receiving coil is  
given by  
component operation.  
2
V = (−dβ/dt)Σπrn ; n = ±, 2, … , N  
1k  
where:  
DISTANCE = 1m  
β is magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
100  
10  
Given the geometry of the receiving coil in the ADM2682E/  
ADM2687E and an imposed requirement that the induced  
voltage be, at most, 50% of the 0.5 V margin at the decoder, a  
maximum allowable magnetic field is calculated as shown in  
Figure 39.  
DISTANCE = 100mm  
1
DISTANCE = 5mm  
0.1  
100  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
10  
1
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 40. Maximum Allowable Current for Various Current-to-  
ADM2682E/ADM2687E Spacings  
Note that in combinations of strong magnetic field and high  
frequency, any loops formed by PCB traces can induce error  
voltages sufficiently large to trigger the thresholds of succeeding  
circuitry. Take care in the layout of such traces to avoid this  
possibility.  
0.1  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 39. Maximum Allowable External Magnetic Flux Density  
Rev. 0 | Page 17 of 24  
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
APPLICATIONS INFORMATION  
In applications involving high common-mode transients, ensure  
that board coupling across the isolation barrier is minimized.  
Furthermore, design the board layout such that any coupling  
that does occur equally affects all pins on a given component  
side. Failure to ensure this can cause voltage differentials between  
pins exceeding the absolute maximum ratings for the device,  
thereby leading to latch-up and/or permanent damage.  
PCB LAYOUT  
The ADM2682E/ADM2687E isolated Rꢀ-422/Rꢀ-485 transceiver  
contains an isoPower integrated dc-to-dc converter, requiring  
no external interface circuitry for the logic interfaces. Power  
supply bypassing is required at the input and output supply pins  
(see Figure 4±). The power supply section of the ADM2682E/  
ADM2687E uses an ±80 MHz oscillator frequency to pass power  
efficiently through its chip-scale transformers. In addition, the  
normal operation of the data section of the iCoupler introduces  
switching transients on the power supply pins.  
The ADM2682E/ADM2687E dissipate approximately 675 mW  
of power when fully loaded. Because it is not possible to apply  
a heat sink to an isolation device, the devices primarily depend  
on heat dissipation into the PCB through the GND pins. If the  
devices are used at high ambient temperatures, provide a thermal  
path from the GND pins to the PCB ground plane. The board  
layout in Figure 4± shows enlarged pads for Pin ±, Pin 8, Pin 9,  
and Pin ±6. Implement multiple vias from the pad to the ground  
plane to reduce the temperature inside the chip significantly. The  
dimensions of the expanded pads are at the discretion of the  
designer and dependent on the available board space.  
Bypass capacitors are required for several operating frequencies.  
Noise suppression requires a low inductance, high frequency  
capacitor, whereas ripple suppression and proper regulation  
require a large value capacitor. These capacitors are connected  
between Pin ± (GND±) and Pin 2 (VCC) and Pin 7 (VCC) and  
Pin 8 (GND±) for VCC. The VIꢀOIN and VIꢀOOUT capacitors are  
connected between Pin 9 (GND2) and Pin ±0 (VIꢀOOUT) and  
Pin ±5 (VIꢀOIN) and Pin ±6 (GND2). To suppress noise and reduce  
ripple, a parallel combination of at least two capacitors is required  
with the smaller of the two capacitors located closest to the device.  
The recommended capacitor values are 0.± μF and ±0 μF for  
EMI CONSIDERATIONS  
The dc-to-dc converter section of the ADM2682E/ADM2687E  
components must, of necessity, operate at very high frequency  
to allow efficient power transfer through the small transformers.  
This creates high frequency currents that can propagate in circuit  
board ground and power planes, causing edge and dipole radiation.  
Grounded enclosures are recommended for applications that  
use these devices. If grounded enclosures are not possible, good  
RF design practices should be followed in the layout of the PCB.  
ꢀee the AN-097± Application Note, Recommendations for  
Control of Radiated Emissions with isoPower Devices, for more  
information.  
VIꢀOOUT at Pin 9 and Pin ±0 and VCC at Pin 7 and Pin 8. Capacitor  
values of 0.0± μF and 0.± μF are recommended for VIꢀOIN at Pin ±5  
and Pin ±6 and VCC at Pin ± and Pin 2. The recommended best  
practice is to use a very low inductance ceramic capacitor, or its  
equivalent, for the smaller value capacitors. The total lead length  
between both ends of the capacitor and the input power supply  
pin should not exceed ±0 mm.  
10nF  
10nF  
100nF  
100nF  
GND  
V
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
V
CC  
ISOIN  
RxD  
A
B
Z
ADM2682E/  
ADM2687E  
RE  
DE  
TxD  
Y
V
V
CC  
ISOOUT  
GND  
1
GND  
2
10µF  
100nF  
10µF  
100nF  
Figure 41. Recommended PCB Layout  
Rev. 0 | Page 18 of 24  
 
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected to  
voltage stress over a sufficiently long period. The rate of insulation  
degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation. Analog Devices conducts  
an extensive set of evaluations to determine the lifetime of the  
insulation structure within the ADM2682E/ADM2687E.  
waveform that does not conform to Figure 43 or Figure 44 should  
be treated as a bipolar ac waveform, and its peak voltage should  
be limited to the 50-year lifetime voltage value listed in Table 9.  
RATED PEAK VOLTAGE  
0V  
Figure 42. Bipolar AC Waveform  
Accelerated life testing is performed using voltage levels higher  
than the rated continuous working voltage. Acceleration factors for  
several operating conditions are determined, allowing calculation  
of the time to failure at the working voltage of interest. The values  
shown in Table 9 summarize the peak voltages for 50 years of  
service life in several operating conditions. In many cases, the  
working voltage approved by agency testing is higher than the  
50-year service life voltage. Operation at working voltages higher  
than the service life voltage listed leads to premature insulation  
failure.  
RATED PEAK VOLTAGE  
0V  
Figure 43. DC Waveform  
RATED PEAK VOLTAGE  
0V  
NOTES  
1. THE VOLTAGE IS SHOWN AS SINUSODIAL FOR ILLUSTRATION  
PURPOSES ONLY. IT IS MEANT TO REPRESENT ANY VOLTAGE  
WAVEFORM VARYING BETWEEN 0 AND SOME LIMITING VALUE.  
THE LIMITING VALUE CAN BE POSITIVE OR NEGATIVE, BUT THE  
VOLTAGE CANNOT CROSS 0V.  
The insulation lifetime of the ADM2682E/ADM2687E depends  
on the voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates,  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure 42, Figure 43, and Figure 44 illustrate these different  
isolation voltage waveforms.  
Figure 44. Unipolar AC Waveform  
ISOLATED SUPPLY CONSIDERATIONS  
The typical output voltage of the integrated isoPower dc-to-dc  
isolated supply is 3.3 V. The isolated supply in the ADM2682E/  
ADM2687E is typically capable of supplying a current of 55 mA  
when the junction temperature of the device is kept below ±30°C.  
This includes the current required by the internal Rꢀ-485 circuitry,  
and typically, no additional current is available on VIꢀOOUT for  
external applications.  
Bipolar ac voltage is the most stringent environment. A 50-year  
operating lifetime under the bipolar ac condition determines  
the Analog Devices recommended maximum working voltage.  
In the case of unipolar ac or dc voltage, the stress on the insulation  
is significantly lower. This allows operation at higher working  
voltages while still achieving a 50-year service life. The working  
voltages listed in Table 9 can be applied while maintaining the  
50-year minimum lifetime, provided the voltage conforms to either  
the unipolar ac or dc voltage cases. Any cross-insulation voltage  
Rev. 0 | Page 19 of 24  
 
 
 
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
TYPICAL APPLICATIONS  
An example application of the ADM2682E/ADM2687E for a full-  
duplex Rꢀ-485 node is shown in the circuit diagram of Figure 45.  
Refer to the PCB Layout section for the recommended placement  
of the capacitors shown in this circuit diagram. Placement of  
the RT termination resistors depends on the location of the node  
and the network configuration. Refer to AN-960 Application Note,  
RS-485/RS-422 Circuit Implementation Guide, for guidance on  
termination.  
Figure 46 and Figure 47 show typical applications of the  
ADM2682E/ADM2687E in half duplex and full duplex Rꢀ-485  
network configurations. Up to 256 transceivers can be connected to  
the Rꢀ-485 bus. To minimize reflections, terminate the line at  
the receiving end in its characteristic impedance and keep stub  
lengths off the main line as short as possible. For half-duplex  
operation, this means that both ends of the line must be terminated  
because either end can be the receiving end.  
3.3V/5V POWER  
SUPPLY  
100nF  
10µF  
100nF  
10nF  
100nF 10µF  
V
V
CC  
ISOOUT  
V
CC  
isoPower DC-TO-DC CONVERTER  
OSCILLATOR  
RECTIFIER  
V
ISOIN  
100nF 10nF  
REGULATOR  
DIGITAL ISOLATION  
ENCODE  
i
Coupler  
TRANSCEIVER  
D
Y
TxD  
DE  
DECODE  
DECODE  
ENCODE  
Z
MICROCONTROLLER  
AND UART  
ENCODE  
DECODE  
A
B
RxD  
R
R
T
RE  
ADM2682E/ADM2687E  
GND  
GND  
2
1
ISOLATION  
BARRIER  
GND  
1
Figure 45. Example Circuit Diagram Using the ADM2682E/ADM2687E  
Rev. 0 | Page 20 of 24  
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
MAXIMUM NUMBER OF TRANSCEIVERS ON BUS = 256  
ADM2582E/  
ADM2587E  
ADM2682E/  
ADM2687E  
A
B
A
RxD  
RxD  
R
R
B
RE  
RE  
DE  
R
R
T
T
DE  
Z
Y
Z
TxD  
TxD  
D
D
Y
A
B
Z
Y
A
B
Z
Y
R
R
D
D
ADM2682E/  
ADM2687E  
ADM2682E/  
ADM2687E  
RxD RE DE TxD  
RxD RE DE TxD  
NOTES  
1. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE.  
T
2. ISOLATION NOT SHOWN.  
Figure 46. ADM2682E/ADM2687E Typical Half Duplex RS-485 Network  
MAXIMUM NUMBER OF NODES = 256  
MASTER  
R
SLAVE  
A
B
Z
Y
Z
RxD  
RE  
D
TxD  
DE  
R
T
B
A
DE  
RE  
R
T
TxD  
D
R
RxD  
Y
ADM2682E/  
ADM2687E  
ADM2682E/  
ADM2687E  
A
B
Z
Y
A
B
Z
Y
SLAVE  
SLAVE  
R
R
D
D
ADM2682E/  
ADM2687E  
ADM2682E/  
ADM2687E  
RxD RE DE TxD  
RxD RE DE TxD  
NOTES  
1. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE.  
T
2. ISOLATION NOT SHOWN.  
Figure 47. ADM2682E/ADM2687E Typical Full Duplex RS-485 Network  
Rev. 0 | Page 21 of 24  
 
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
OUTLINꢀ ꢁIMꢀNSIONS  
13.00 (0.5118)  
12.60 (0.4961)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27  
(0.0500)  
BSC  
0.33 (0.0130)  
0.20 (0.0079)  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
COMPLIANT TO JEDEC STANDARDS MS-013-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 48. 16-Lead Standard Small Outline Package with Increased Creepage [SOIC_IC]  
Wide Body,  
(RI-16-1)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
ADM2682EBRIZ  
ADM2682EBRIZ-RL7  
ADM2687EBRIZ  
ADM2687EBRIZ-RL7  
EVAL-ADM2682EEBZ  
EVAL-ADM2687EEBZ  
Data Rate (Mbps)  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
16-Lead SOIC_IC  
16-Lead SOIC_IC  
Package Option  
RI-16-1  
RI-16-1  
16  
16  
0.5  
0.5  
16-Lead SOIC_IC  
16-Lead SOIC_IC  
RI-16-1  
RI-16-1  
ADM2682E Evaluation Board  
ADM2687E Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 22 of 24  
 
AꢁM2682ꢀ/AꢁM2687ꢀ  
NOTꢀS  
Rev. 0 | Page 23 of 24  
AꢁM2682ꢀ/AꢁM2687ꢀ  
NOTꢀS  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09927-0-7/11(0)  
Rev. 0 | Page 24 of 24  

相关型号:

EVAL-ADM2914EBZ

Quad UV/OV Positive/Negative
ADI

EVAL-ADM3051EBZ

High Speed Industrial CAN Transceiver
ADI

EVAL-ADM3052EBZ

Isolated CAN Transceiver with Integrated High Voltage, Bus-Side, Linear Regulator
ADI

EVAL-ADM3053EBZ

Signal and Power Isolated CAN Transceiver
ADI

EVAL-ADM3054EBZ

5 kV rms Signal Isolated High Speed CAN Transceiver with Bus Protection
ADI

EVAL-ADM3061EEB1Z

IEC ESD Protected, 500 kbps/50 Mbps RS-485 Transceivers
ADI

EVAL-ADM3061EEBZ

IEC ESD Protected, 500 kbps/50 Mbps RS-485 Transceivers
ADI

EVAL-ADM3062EEB1Z

EVAL BOARD FOR ADM3062E LFCSP
ADI

EVAL-ADM3062EEBZ

EVAL BOARD FOR ADM3062E MSOP
ADI

EVAL-ADM3063EEBZ

IEC ESD Protected, 500 kbps/50 Mbps RS-485 Transceivers
ADI

EVAL-ADM3065EEB1Z

IEC ESD Protected, 500 kbps/50 Mbps RS-485 Transceivers
ADI

EVAL-ADM3065EEBZ

IEC ESD Protected, 500 kbps/50 Mbps RS-485 Transceivers
ADI