EVAL-ADuC7020QSZ [ADI]

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU; 精密模拟微控制器, 12位模拟I / O , ARM7TDMI MCU
EVAL-ADuC7020QSZ
型号: EVAL-ADuC7020QSZ
厂家: ADI    ADI
描述:

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU
精密模拟微控制器, 12位模拟I / O , ARM7TDMI MCU

微控制器
文件: 总104页 (文件大小:1747K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Analog Microcontroller, 12-Bit  
Analog I/O, ARM7TDMI MCU  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
On-chip peripherals  
FEATURES  
UART, 2× I2C® and SPI serial I/O  
Up to 40-pin GPIO port1  
4× general-purpose timers  
Wake-up and watchdog timers (WDT)  
Power supply monitor  
3-phase, 16-bit PWM generator1  
Programmable logic array (PLA)  
External memory interface, up to 512 kB1  
Power  
Analog I/O  
Multichannel, 12-bit, 1 MSPS ADC  
Up to 16 ADC channels1  
Fully differential and single-ended modes  
0 V to VREF analog input range  
12-bit voltage output DACs  
Up to 4 DAC outputs available1  
On-chip voltage reference  
On-chip temperature sensor ( 3°C)  
Voltage comparator  
Specified for 3 V operation  
Active mode: 11 mA @ 5 MHz, 40 mA @ 41.78 MHz  
Packages and temperature range  
From 40-lead 6 mm × 6 mm LFCSP to 80-lead LQFP1  
Fully specified for –40°C to +125°C operation  
Tools  
Microcontroller  
ARM7TDMI core, 16-bit/32-bit RISC architecture  
JTAG port supports code download and debug  
Clocking options  
Trimmed on-chip oscillator ( 3%)  
External watch crystal  
External clock source up to 44 MHz  
41.78 MHz PLL with programmable divider  
Memory  
62 kB Flash/EE memory, 8 kB SRAM  
In-circuit download, JTAG-based debug  
Low cost QuickStart™ development system  
Full third-party support  
APPLICATIONS  
Industrial control and automation systems  
Smart sensors, precision instrumentation  
Base station systems, optical networking  
Software-triggered in-circuit reprogrammability  
FUNCTIONAL BLOCK DIAGRAM  
12-BIT  
DAC  
DAC0  
DAC1  
DAC2  
1MSPS  
ADC0 TO ADC4,  
ADC12 TO ADC14  
MUX  
12-BIT ADC  
12-BIT  
DAC  
ADuC7019  
ADC15  
TEMP  
SENSOR  
12-BIT  
DAC  
CMP0  
CMP1  
BAND GAP  
REF  
CMP  
OUT  
V
REF  
3-PHASE  
OSC  
PWM  
XCLKI  
ARM7TDMI-BASED MCU WITH  
ADDITIONAL PERIPHERALS  
AND PLL  
XCLKO  
(SEE NOTE 1)  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
JTAG  
PSM  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
POR  
2
UART, SPI, I C  
NOTES  
1. SEE APPLICATION NOTE AN-798.  
Figure 1.  
1 Depending on part model. See Ordering Guide for more information.  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2005-2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Calibration................................................................................... 50  
Temperature Sensor ................................................................... 50  
Band Gap Reference................................................................... 50  
Nonvolatile Flash/EE Memory ..................................................... 51  
Programming.............................................................................. 51  
Security ........................................................................................ 52  
Flash/EE Control Interface ....................................................... 52  
Execution Time from SRAM and Flash/EE............................ 54  
Reset and Remap........................................................................ 54  
Other Analog Peripherals.............................................................. 56  
DAC.............................................................................................. 56  
Power Supply Monitor............................................................... 57  
Comparator................................................................................. 57  
Oscillator and PLL—Power Control........................................ 58  
Digital Peripherals.......................................................................... 61  
3-Phase PWM............................................................................. 61  
Description of the PWM Block................................................ 62  
General-Purpose Input/Output................................................ 67  
Serial Port Mux........................................................................... 70  
UART Serial Interface................................................................ 70  
Serial Peripheral Interface......................................................... 74  
I2C-Compatible Interfaces......................................................... 76  
Programmable Logic Array (PLA)........................................... 80  
Processor Reference Peripherals................................................... 83  
Interrupt System......................................................................... 83  
Timers.......................................................................................... 84  
External Memory Interfacing ................................................... 89  
Hardware Design Considerations ................................................ 93  
Power Supplies............................................................................ 93  
Grounding and Board Layout Recommendations................. 94  
Clock Oscillator.......................................................................... 94  
Power-On Reset Operation....................................................... 95  
Typical System Configuration .................................................. 95  
Development Tools......................................................................... 96  
PC-Based Tools........................................................................... 96  
In-Circuit Serial Downloader................................................... 96  
Outline Dimensions....................................................................... 97  
Ordering Guide ........................................................................ 101  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
General Description ......................................................................... 4  
Detailed Block Diagram .............................................................. 9  
Specifications................................................................................... 10  
Timing Specifications ................................................................ 13  
Absolute Maximum Ratings.......................................................... 20  
ESD Caution................................................................................ 20  
Pin Configurations and Function Descriptions ......................... 21  
ADuC7019/ADuC7020/ADuC7021/ADuC7022 .................. 21  
ADuC7024/ADuC7025 ............................................................. 25  
ADuC7026/ADuC7027 ............................................................. 28  
ADuC7028................................................................................... 31  
ADuC7029................................................................................... 33  
Typical Performance Characteristics ........................................... 35  
Terminology .................................................................................... 38  
ADC Specifications .................................................................... 38  
DAC Specifications..................................................................... 38  
Overview of the ARM7TDMI Core............................................. 39  
Thumb Mode (T)........................................................................ 39  
Long Multiply (M)...................................................................... 39  
EmbeddedICE (I) ....................................................................... 39  
Exceptions ................................................................................... 39  
ARM Registers ............................................................................ 39  
Interrupt Latency........................................................................ 40  
Memory Organization ................................................................... 41  
Memory Access........................................................................... 41  
Flash/EE Memory....................................................................... 41  
SRAM........................................................................................... 41  
Memory Mapped Registers....................................................... 41  
ADC Circuit Overview .................................................................. 45  
Transfer Function ....................................................................... 45  
Typical Operation ....................................................................... 46  
MMRs Interface.......................................................................... 46  
Converter Operation.................................................................. 48  
Driving the Analog Inputs ........................................................ 49  
Rev. F | Page 2 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
REVISION HISTORY  
Updated Outline Dimensions........................................................91  
Changes to Ordering Guide...........................................................94  
5/13—Rev. E to Rev. F  
Changes to Figure 1...........................................................................1  
Added Figure 2 to Figure 10; Renumbered Sequentially.............4  
Changes to Figure 19; Added Figure 20 .......................................21  
Changes to EPAD Note in Figure 21 and Figure 22..................... 22  
Changes to EPAD Note in Table 11.................................................... 23  
Changes to EPAD Note in Figure 23 ............................................25  
Changes to EPAD Note in Table 12 ..............................................26  
Changes to Table 14 ........................................................................31  
Changes to Table 15 ........................................................................33  
Changes to Table 82 ........................................................................68  
Added Table 83, Figure 73, Figure 74, Following Text, and  
Table 84; Renumbered Sequentially..............................................69  
Changes to Bit 2 Description, Table 98 ........................................71  
Changes to Table 101 ......................................................................72  
Changes to Timer2 (Wake-Up Timer) Section ...........................87  
Changes to Figure 94 ......................................................................95  
Updated Outline Dimensions........................................................97  
Changes to Ordering Guide.........................................................101  
12/09—Rev. B to Rev. C  
Added ADuC7029 Part ..................................................... Universal  
Added Table Numbers and Renumbered Tables............... Universal  
Changes to Figure Numbers ............................................. Universal  
Changes to Table 1 ............................................................................6  
Changes to Figure 3 .........................................................................9  
Changes to Table 3 and Figure 4 ...................................................10  
Changes to Table 10 ........................................................................16  
Changes to Figure 55 ......................................................................53  
Changes to Serial Peripheral Interface Section ...........................69  
Changes to Table 137......................................................................73  
Changes to Figure 71 and Figure 72 .............................................85  
Changes to Figure 73 and Figure 74 .............................................86  
Updated Outline Dimensions........................................................91  
Changes to Ordering Guide...........................................................94  
3/07—Rev. A to Rev. B  
Added ADuC7028 Part ..................................................... Universal  
Updated Format ................................................................. Universal  
Changes to Figure 2 ..........................................................................5  
Changes to Table 1 ............................................................................6  
Changes to ADuC7026/ADuC7027 Section ...............................23  
Changes to Figure 21 ......................................................................28  
Changes to Figure 32 Caption.......................................................30  
Changes to Table 14 ........................................................................35  
Changes to ADC Circuit Overview Section................................38  
Changes to Programming Section ................................................44  
Changes to Flash/EE Control Interface Section..........................45  
Changes to Table 24 ........................................................................47  
Changes to RSTCLR Register Section..........................................48  
Changes to Figure 52 ......................................................................49  
Changes to Figure 53 ......................................................................50  
Changes to Comparator Section ...................................................50  
Changes to Oscillator and PLL—Power Control Section..........51  
Changes to Digital Peripherals Section........................................54  
Changes to Interrupt System Section ...........................................75  
Changes to Timers Section ............................................................76  
Changes to External Memory Interfacing Section .....................80  
Added IOVDD Supply Sensitivity Section.....................................84  
Changes to Ordering Guide...........................................................90  
7/12—Rev. D to Rev. E  
Changed SCLOCK to SCLK When Refering to SPI Clock,  
SPIMISO to MISO when Refering to SPI MISO, SPIMOSI to  
MOSI when Refering to SPI MOSI, and SPICSL to  
CS  
when  
Refering to SPI Chip Select...............................................Universal  
Changes to Table 4, Table 5, and Figure 5....................................11  
Changes to Endnote 1 in Table 6 and Figure 6............................12  
Changes to Table 7 and Figure 7 ...................................................13  
Changes to Table 8 and Figure 8 ...................................................14  
Changes to Table 9 and Figure 9 ...................................................15  
Changed EPAD Note in Figure 12 and Table 11 .........................18  
Changed EPAD Note in Figure 13 and Table 12 .........................21  
Changes to Bit 6 in Table 18...........................................................43  
Changes to Example Source Code (External Crystal Selection)  
Section and Example Source Code (External Clock Selection)  
Section ...............................................................................................55  
Changes to Serial Peripheral Interface Section ...........................69  
Changes to SPICON[10] and SPICON[9] Descriptions in  
Table 123............................................................................................70  
Changes to Timer Interval Down Equation and Added Timer  
Interval Up Equation ......................................................................79  
Added Hour:Minute:Second:1/128 Format Section...................80  
Changes to Table 189 ......................................................................84  
Removed CP-40-10 Package..........................................................92  
Changes to Ordering Guide...........................................................96  
1/06—Rev. 0 to Rev. A  
Changes to Table 1 ............................................................................6  
Added the Flash/EE Memory Reliability Section .......................43  
Changes to Table 30 ........................................................................52  
Changes to Serial Peripheral Interface .........................................66  
Changes to Ordering Guide...........................................................90  
5/11—Rev. C to Rev. D  
Changes to Table 4 ..........................................................................11  
Changes to Table 105 ......................................................................67  
10/05—Revision 0: Initial Version  
Rev. F | Page 3 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
GENERAL DESCRIPTION  
The devices operate from an on-chip oscillator and a PLL  
The ADuC7019/20/21/22/24/25/26/27/28/29 are fully integrated,  
1 MSPS, 12-bit data acquisition systems incorporating high  
performance multichannel ADCs, 16-bit/32-bit MCUs, and  
Flash®/EE memory on a single chip.  
generating an internal high frequency clock of 41.78 MHz  
(UCLK). This clock is routed through a programmable clock  
divider from which the MCU core clock operating frequency  
is generated. The microcontroller core is an ARM7TDMI®,  
16-bit/32-bit RISC machine, which offers up to 41 MIPS peak  
performance. Eight kilobytes of SRAM and 62 kilobytes of  
nonvolatile Flash/EE memory are provided on-chip. The  
ARM7TDMI core views all memory and registers as a single  
linear array.  
The ADC consists of up to 12 single-ended inputs. An additional  
four inputs are available but are multiplexed with the four DAC  
output pins. The four DAC outputs are available only on certain  
models (ADuC7020, ADuC7026, ADuC7028, and ADuC7029).  
However, in many cases where the DAC outputs are not present,  
these pins can still be used as additional ADC inputs, giving a  
maximum of 16 ADC input channels. The ADC can operate in  
single-ended or differential input mode. The ADC input voltage  
is 0 V to VREF. A low drift band gap reference, temperature sensor,  
and voltage comparator complete the ADC peripheral set.  
On-chip factory firmware supports in-circuit serial download  
via the UART or I2C serial interface port; nonintrusive emulation  
is also supported via the JTAG interface. These features are  
incorporated into a low cost QuickStart™ development system  
supporting this MicroConverter® family.  
Depending on the part model, up to four buffered voltage  
output DACs are available on-chip. The DAC output range is  
programmable to one of three voltage ranges.  
The parts operate from 2.7 V to 3.6 V and are specified over an  
industrial temperature range of −40°C to +125°C. When  
operating at 41.78 MHz, the power dissipation is typically  
120 mW. The ADuC7019/20/21/22/24/25/26/27/28/29 are  
available in a variety of memory models and packages (see  
Ordering Guide).  
12-BIT  
DAC0  
DAC  
ADC0 TO ADC4,  
ADC12 TO ADC15  
1MSPS  
12-BIT ADC  
MUX  
12-BIT  
ADuC7020  
DAC1  
DAC  
TEMP  
SENSOR  
12-BIT  
DAC2  
DAC  
CMP0  
CMP1  
BAND GAP  
REF  
12-BIT  
DAC3  
DAC  
CMP  
OUT  
V
REF  
3-PHASE  
PWM  
OSC  
XCLKI  
ARM7TDMI-BASED MCU WITH  
AND PLL  
ADDITIONAL PERIPHERALS  
XCLKO  
(SEE NOTE 1)  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
JTAG  
PSM  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
POR  
2
UART, SPI, I C  
NOTES  
1. SEE APPLICATION NOTE AN-798.  
Figure 2.  
Rev. F | Page 4 of 104  
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
12-BIT  
DAC0  
DAC  
ADC0 TO ADC7,  
ADC12 TO ADC13  
1MSPS  
12-BIT ADC  
MUX  
12-BIT  
ADuC7021  
DAC1  
DAC  
TEMP  
SENSOR  
CMP0  
CMP1  
BAND GAP  
REF  
CMP  
OUT  
V
REF  
3-PHASE  
PWM  
OSC  
XCLKI  
ARM7TDMI-BASED MCU WITH  
AND PLL  
ADDITIONAL PERIPHERALS  
XCLKO  
(SEE NOTE 1)  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
JTAG  
PSM  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
POR  
2
UART, SPI, I C  
NOTES  
1. SEE APPLICATION NOTE AN-798.  
Figure 3.  
1MSPS  
MUX  
ADC0 TO ADC9  
12-BIT ADC  
ADuC7022  
TEMP  
SENSOR  
CMP0  
CMP1  
BAND GAP  
REF  
CMP  
OUT  
V
REF  
3-PHASE  
PWM  
OSC  
XCLKI  
ARM7TDMI-BASED MCU WITH  
ADDITIONAL PERIPHERALS  
AND PLL  
XCLKO  
(SEE NOTE 1)  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
PSM  
POR  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
JTAG  
2
UART, SPI, I C  
NOTES  
1. SEE APPLICATION NOTE AN-798.  
Figure 4.  
Rev. F | Page 5 of 104  
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
12-BIT  
DAC  
DAC0  
DAC1  
ADC0 TO ADC9,  
ADC12, ADC13  
1MSPS  
12-BIT ADC  
MUX  
12-BIT  
DAC  
ADuC7024  
TEMP  
SENSOR  
CMP0  
CMP1  
BAND GAP  
REF  
CMP  
OUT  
V
REF  
PWM0  
PWM0  
PWM1  
PWM1  
PWM2  
PWM2  
H
L
H
L
H
L
3-PHASE  
OSC  
PWM  
XCLKI  
ARM7TDMI-BASED MCU WITH  
ADDITIONAL PERIPHERALS  
AND PLL  
XCLKO  
(SEE NOTE 1)  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
JTAG  
PSM  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
POR  
2
UART, SPI, I C  
NOTES  
1. SEE APPLICATION NOTE AN-798.  
Figure 5.  
ADC0 TO ADC9,  
ADC12, ADC13  
1MSPS  
MUX  
12-BIT ADC  
ADuC7025  
TEMP  
SENSOR  
CMP0  
CMP1  
BAND GAP  
REF  
CMP  
OUT  
V
REF  
PWM0  
PWM0  
PWM1  
PWM1  
PWM2  
PWM2  
H
L
H
L
H
L
3-PHASE  
PWM  
OSC  
XCLKI  
ARM7TDMI-BASED MCU WITH  
ADDITIONAL PERIPHERALS  
AND PLL  
XCLKO  
(SEE NOTE 1)  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
JTAG  
PSM  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
POR  
2
UART, SPI, I C  
NOTES  
1. SEE APPLICATION NOTE AN-798.  
Figure 6.  
Rev. F | Page 6 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
12-BIT  
DAC0  
DAC  
1MSPS  
MUX  
ADC0 TO ADC15  
12-BIT ADC  
12-BIT  
ADuC7026  
DAC1  
DAC2  
DAC3  
DAC  
TEMP  
SENSOR  
12-BIT  
DAC  
CMP0  
CMP1  
BAND GAP  
REF  
12-BIT  
DAC  
CMP  
OUT  
V
REF  
PWM0  
PWM0  
PWM1  
PWM1  
PWM2  
PWM2  
H
L
H
L
H
L
OSC  
3-PHASE  
XCLKI  
ARM7TDMI-BASED MCU WITH  
AND PLL  
PWM  
ADDITIONAL PERIPHERALS  
XCLKO  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
JTAG  
PSM  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
EXT. MEMORY  
INTERFACE  
POR  
2
UART, SPI, I C  
Figure 7.  
1MSPS  
12-BIT ADC  
MUX  
ADC0 TO ADC15  
ADuC7027  
TEMP  
SENSOR  
CMP0  
CMP1  
BAND GAP  
REF  
CMP  
OUT  
V
REF  
PWM0  
PWM0  
PWM1  
PWM1  
PWM2  
PWM2  
H
L
H
L
H
L
OSC  
3-PHASE  
PWM  
XCLKI  
ARM7TDMI-BASED MCU WITH  
ADDITIONAL PERIPHERALS  
AND PLL  
XCLKO  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
JTAG  
PSM  
POR  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
EXT. MEMORY  
INTERFACE  
2
UART, SPI, I C  
Figure 8.  
Rev. F | Page 7 of 104  
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
12-BIT  
DAC  
DAC0  
DAC1  
DAC2  
DAC3  
1MSPS  
ADC0 TO ADC7,  
ADC12 TO ADC15  
MUX  
12-BIT ADC  
12-BIT  
DAC  
ADuC7028  
TEMP  
SENSOR  
12-BIT  
DAC  
CMP0  
CMP1  
BAND GAP  
REF  
12-BIT  
DAC  
CMP  
OUT  
V
REF  
PWM0  
PWM0  
PWM1  
PWM1  
PWM2  
PWM2  
H
L
H
L
H
L
OSC  
3-PHASE  
PWM  
XCLKI  
ARM7TDMI-BASED MCU WITH  
ADDITIONAL PERIPHERALS  
AND PLL  
XCLKO  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
JTAG  
PSM  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
POR  
2
UART, SPI, I C  
Figure 9.  
12-BIT  
DAC  
DAC0  
DAC1  
DAC2  
DAC3  
1MSPS  
ADC0 TO ADC6,  
ADC12 TO ADC15  
MUX  
12-BIT ADC  
12-BIT  
DAC  
ADuC7029  
TEMP  
SENSOR  
12-BIT  
DAC  
CMP0  
CMP1  
BAND GAP  
REF  
12-BIT  
DAC  
CMP  
OUT  
V
REF  
PWM0  
PWM0  
PWM1  
PWM1  
PWM2  
PWM2  
H
L
H
L
H
L
OSC  
3-PHASE  
PWM  
ARM7TDMI-BASED MCU WITH  
ADDITIONAL PERIPHERALS  
AND PLL  
2k × 32 SRAM  
31k × 16 FLASH/EEPROM  
PLA  
GPIO  
JTAG  
PSM  
POR  
4 GENERAL-  
PURPOSE TIMERS  
SERIAL I/O  
RST  
2
UART, SPI, I C  
Figure 10.  
Rev. F | Page 8 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
DETAILED BLOCK DIAGRAM  
8
72 71 67 73 74  
53 26 25 54  
28 27 37  
75 70 69  
12-BIT  
ADuC7026*  
10 DAC0*/ADC12  
11 DAC1*/ADC13  
12 DAC2*/ADC14  
13 DAC3*/ADC15  
VOLTAGE  
BUF  
BUF  
BUF  
BUF  
ADC0 77  
ADC1 78  
OUTPUT DAC  
12-BIT SAR  
ADC 1MSPS  
ADC  
CONTROL  
ADC2/CMP0 79  
ADC3/CMP1 80  
12-BIT  
VOLTAGE  
OUTPUT DAC  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC10  
1
2
3
4
5
6
7
DAC  
CONTROL  
12-BIT  
VOLTAGE  
MUX  
OUTPUT DAC  
12-BIT  
VOLTAGE  
OUTPUT DAC  
ADC11 76  
ADCNEG  
TEMP  
SENSOR  
29 P3.0/AD0/PWM0 /PLAI[8]  
H
9
62kB FLASH/EE  
(31k × 16 BITS)  
30 P3.1/AD1/PWM0 /PLAI[9]  
L
31 P3.2/AD2/PWM1 /PLAI[10]  
H
32 P3.3/AD3/PWM1 /PLAI[11]  
L
ARM7TDMI  
3-PHASE  
PWM  
8192 BYTES USER RAM  
(2k × 32 BITS)  
MUX  
38 P3.4/AD4/PWM2 /PLAI[12]  
H
CMP  
/IRQ  
WAKE-UP/  
RTC TIMER  
MCU  
CORE  
DAC  
OUT  
39 P3.5/AD5/PWM2 /PLAI[13]  
L
BM/P0.0/CMP  
/PLAI[7]/MS0 20  
OUT  
46 P3.6/AD6/PWM  
47 P3.7/AD7/PWM  
/PLAI[14]  
/PLAI[15]  
TRIP  
POWER SUPPLY  
MONITOR  
DOWNLOADER  
SYNC  
V
68  
V
REF  
REF  
OSC  
BAND GAP  
REFERENCE  
44 XCLKO  
45 XCLKI  
PROG. CLOCK  
DIVIDER  
PLL  
43 P0.7/ECLK/XCLK/SPM8/PLAO[4]  
2
SPI/I C SERIAL  
INTERFACE  
UART  
SERIAL PORT  
P4.6/AD14/PLAO[14] 18  
P4.7/AD15/PLAO[15] 19  
PROG. LOGIC  
ARRAY  
40 IRQ0/P0.4/PWM  
41 IRQ1/P0.5/ADC  
/PLAO[1]/MS1  
/PLAO[2]/MS2  
TRIP  
INTERRUPT  
POR  
21  
CONTROLLER  
BUSY  
SERIAL PORT MULTIPLEXER  
55 56 63 64 65 66 62 61 60 59 58 57 52 51  
42  
14 15 23 22 34  
49 50 17 33 35 36 48 24 16  
* SEE ORDERING GUIDE FOR  
FEATURE AVAILABILITY ON  
DIFFERENT MODELS.  
Figure 11.  
Rev. F | Page 9 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
SPECIFICATIONS  
Data Sheet  
AVDD = IOVDD = 2.7 V to 3.6 V, VREF = 2.5 V internal reference, fCORE = 41.78 MHz, TA = −40°C to +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADC CHANNEL SPECIFICATIONS  
ADC Power-Up Time  
DC Accuracy1, 2  
Eight acquisition clocks and fADC/2  
5
μs  
Resolution  
Integral Nonlinearity  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
0.6  
1.0  
0.5  
+0.7/−0.6  
1
1.5  
2.5 V internal reference  
1.0 V external reference  
2.5 V internal reference  
1.0 V external reference  
ADC input is a dc voltage  
Differential Nonlinearity3, 4  
+1/−0.9  
DC Code Distribution  
ENDPOINT ERRORS5  
Offset Error  
Offset Error Match  
Gain Error  
1
1
2
1
2
5
LSB  
LSB  
LSB  
LSB  
Gain Error Match  
DYNAMIC PERFORMANCE  
Signal-to-Noise Ratio (SNR)  
Total Harmonic Distortion (THD)  
Peak Harmonic or Spurious Noise  
(PHSN)  
fIN = 10 kHz sine wave, fSAMPLE = 1 MSPS  
Includes distortion and noise components  
69  
−78  
−75  
dB  
dB  
dB  
Channel-to-Channel Crosstalk  
ANALOG INPUT  
−80  
dB  
Measured on adjacent channels  
Input Voltage Ranges  
Differential Mode  
6
VCM VREF/2  
V
Single-Ended Mode  
Leakage Current  
Input Capacitance  
0 to VREF  
6
V
µA  
pF  
1
20  
During ADC acquisition  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
0.47 µF from VREF to AGND  
2.5  
V
Accuracy  
5
mV  
ppm/°C  
dB  
ms  
TA = 25°C  
TA = 25°C  
Reference Temperature Coefficient  
Power Supply Rejection Ratio  
Output Impedance  
Internal VREF Power-On Time  
EXTERNAL REFERENCE INPUT  
Input Voltage Range  
DAC CHANNEL SPECIFICATIONS  
DC Accuracy7  
40  
75  
70  
1
0.625  
AVDD  
V
RL = 5 kΩ, CL = 100 pF  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
Gain Error8  
12  
2
Bits  
LSB  
LSB  
mV  
%
1
15  
1
Guaranteed monotonic  
2.5 V internal reference  
Gain Error Mismatch  
ANALOG OUTPUTS  
0.1  
%
% of full scale on DAC0  
Output Voltage Range_0  
Output Voltage Range_1  
Output Voltage Range_2  
Output Impedance  
0 to DACREF  
0 to 2.5  
0 to DACVDD  
2
V
V
V
DACREF range: DACGND to DACVDD  
Rev. F | Page 10 of 104  
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DAC AC CHARACTERISTICS  
Voltage Output Settling Time  
Digital-to-Analog Glitch Energy  
10  
20  
µs  
nV-sec  
1 LSB change at major carry (where maximum  
number of bits simultaneously changes in the  
DACxDAT register)  
COMPARATOR  
Input Offset Voltage  
Input Bias Current  
Input Voltage Range  
Input Capacitance  
Hysteresis4, 6  
15  
1
mV  
µA  
V
pF  
mV  
AGND  
2
AVDD − 1.2  
15  
7
3
Hysteresis turned on or off via the CMPHYST bit in  
the CMPCON register  
100 mV overdrive and configured with CMPRES = 11  
Response Time  
µs  
TEMPERATURE SENSOR  
Voltage Output at 25°C  
Voltage TC  
780  
−1.3  
3
mV  
mV/°C  
°C  
Accuracy  
POWER SUPPLY MONITOR (PSM)  
IOVDD Trip Point Selection  
2.79  
3.07  
2.5  
V
V
%
V
Two selectable trip points  
Power Supply Trip Point Accuracy  
POWER-ON-RESET  
GLITCH IMMUNITY ON RESET PIN4  
WATCHDOG TIMER (WDT)  
Timeout Period  
Of the selected nominal trip point voltage  
2.36  
50  
µs  
0
512  
sec  
FLASH/EE MEMORY  
Endurance9  
Data Retention10  
10,000  
20  
Cycles  
Years  
TJ = 85°C  
DIGITAL INPUTS  
Logic 1 Input Current  
Logic 0 Input Current  
All digital inputs excluding XCLKI and XCLKO  
VIH = IOVDD or VIH = 5 V  
VIL = 0 V; except TDI on  
0.2  
−40  
1
−60  
µA  
µA  
ADuC7019/20/21/22/24/25/29  
−80  
10  
−120  
0.8  
µA  
pF  
VIL = 0 V; TDI on ADuC7019/20/21/22/24/25/29  
Input Capacitance  
LOGIC INPUTS3  
VINL, Input Low Voltage  
VINH, Input High Voltage  
LOGIC OUTPUTS  
VOH, Output High Voltage  
VOL, Output Low Voltage11  
CRYSTAL INPUTS XCLKI and XCLKO  
Logic Inputs, XCLKI Only  
VINL, Input Low Voltage  
VINH, Input High Voltage  
XCLKI Input Capacitance  
XCLKO Output Capacitance  
INTERNAL OSCILLATOR  
All logic inputs excluding XCLKI  
V
V
2.0  
2.4  
All digital outputs excluding XCLKO  
ISOURCE = 1.6 mA  
ISINK = 1.6 mA  
V
V
0.4  
1.1  
1.7  
20  
20  
V
V
pF  
pF  
kHz  
%
32.768  
3
24  
%
TA = 0°C to 85°C range  
Rev. F | Page 11 of 104  
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
MCU CLOCK RATE  
From 32 kHz Internal Oscillator  
From 32 kHz External Crystal  
Using an External Clock  
326  
41.78  
kHz  
CD12 = 7  
MHz  
MHz  
MHz  
CD12 = 0  
0.05  
0.05  
44  
41.78  
TA = 85°C  
TA = 125°C  
START-UP TIME  
Core clock = 41.78 MHz  
At Power-On  
From Pause/Nap Mode  
130  
24  
3.06  
1.58  
1.7  
ms  
ns  
µs  
ms  
ms  
CD12 = 0  
CD12 = 7  
From Sleep Mode  
From Stop Mode  
PROGRAMMABLE LOGIC ARRAY (PLA)  
Pin Propagation Delay  
Element Propagation Delay  
POWER REQUIREMENTS13, 14  
Power Supply Voltage Range  
12  
2.5  
ns  
ns  
From input pin to output pin  
AVDD to AGND and IOVDD to IOGND 2.7  
Analog Power Supply Currents  
AVDD Current  
3.6  
25  
V
200  
400  
3
µA  
µA  
µA  
ADC in idle mode; all parts except ADuC7019  
ADC in idle mode; ADuC7019 only  
DACVDD Current15  
Digital Power Supply Current  
IOVDD Current in Normal Mode  
Code executing from Flash/EE  
CD12 = 7  
7
10  
15  
45  
30  
400  
1000  
mA  
mA  
mA  
mA  
µA  
11  
40  
25  
250  
600  
CD12 = 3  
CD12 = 0 (41.78 MHz clock)  
CD12 = 0 (41.78 MHz clock)  
TA = 85°C  
IOVDD Current in Pause Mode  
IOVDD Current in Sleep Mode  
µA  
TA = 125°C  
Additional Power Supply Currents  
ADC  
2
0.7  
700  
mA  
mA  
µA  
@ 1 MSPS  
@ 62.5 kSPS  
per DAC  
DAC  
ESD TESTS  
2.5 V reference, TA = 25°C  
HBM Passed Up To  
FCIDM Passed Up To  
4
0.5  
kV  
kV  
1 All ADC channel specifications are guaranteed during normal MicroConverter core operation.  
2 Apply to all ADC input channels.  
3 Measured using the factory-set default values in the ADC offset register (ADCOF) and gain coefficient register (ADCGN).  
4 Not production tested but supported by design and/or characterization data on production release.  
5 Measured using the factory-set default values in ADCOF and ADCGN with an external AD845 op amp as an input buffer stage as shown in Figure 59. Based on external ADC  
system components; the user may need to execute a system calibration to remove external endpoint errors and achieve these specifications (see the Calibration section).  
6 The input signal can be centered on any dc common-mode voltage (VCM) as long as this value is within the ADC voltage input range specified.  
7 DAC linearity is calculated using a reduced code range of 100 to 3995.  
8 DAC gain error is calculated using a reduced code range of 100 to internal 2.5 V VREF  
.
9 Endurance is qualified as per JEDEC Standard 22, Method A117 and measured at −40°C, +25°C, +85°C, and +125°C.  
10 Retention lifetime equivalent at junction temperature (TJ) = 85°C as per JEDEC Standard 22m, Method A117. Retention lifetime derates with junction temperature.  
11 Test carried out with a maximum of eight I/Os set to a low output level.  
12 See the POWCON register.  
13 Power supply current consumption is measured in normal, pause, and sleep modes under the following conditions: normal mode with 3.6 V supply, pause mode with  
3.6 V supply, and sleep mode with 3.6 V supply.  
14 IOVDD power supply current decreases typically by 2 mA during a Flash/EE erase cycle.  
15 On the ADuC7019/20/21/22, this current must be added to the AVDD current.  
Rev. F | Page 12 of 104  
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
TIMING SPECIFICATIONS  
Table 2. External Memory Write Cycle  
Parameter  
CLK1  
Min  
Typ  
Max  
Unit  
UCLK  
tMS_AFTER_CLKH  
tADDR_AFTER_CLKH  
tAE_H_AFTER_MS  
tAE  
tHOLD_ADDR_AFTER_AE_L  
tHOLD_ADDR_BEFORE_WR_L  
tWR_L_AFTER_AE_L  
tDATA_AFTER_WR_L  
tWR  
tWR_H_AFTER_CLKH  
tHOLD_DATA_AFTER_WR_H  
tBEN_AFTER_AE_L  
tRELEASE_MS_AFTER_WR_H  
0
4
4
8
ns  
ns  
½ CLK  
(XMxPAR[14:12] + 1) × CLK  
½ CLK + (!XMxPAR[10]) × CLK  
(!XMxPAR[8]) × CLK  
½ CLK + (!XMxPAR[10] + !XMxPAR[8]) × CLK  
8
0
12  
4
ns  
ns  
(XMxPAR[7:4] + 1) × CLK  
(!XMxPAR[8]) × CLK  
½ CLK  
(!XMxPAR[8] + 1) × CLK  
1 See Table 78.  
CLK  
CLK  
tMS_AFTER_CLKH  
MSx  
AE  
tWR_L_AFTER_AE_L  
tAE_H_AFTER_MS  
tWR  
tRELEASE_MS_AFTER_WR_H  
tAE  
tWR_H_AFTER_CLKH  
WS  
RS  
tHOLD_DATA_AFTER_WR_H  
tHOLD_ADDR_AFTER_AE_L  
tHOLD_ADDR_BEFORE_WR_L  
tADDR_AFTER_CLKH  
9ABC  
tDATA_AFTER_WR_L  
AD[16:1]  
FFFF  
5678  
9ABE  
1234  
tBEN_AFTER_AE_L  
BLE  
BHE  
A16  
Figure 12. External Memory Write Cycle (See Table 78)  
Rev. F | Page 13 of 104  
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Table 3. External Memory Read Cycle  
Parameter  
CLK1  
Min  
Typ  
Max  
Unit  
1/MD clock  
ns typ × (POWCON[2:0] + 1)  
tMS_AFTER_CLKH  
tADDR_AFTER_CLKH  
tAE_H_AFTER_MS  
tAE  
tHOLD_ADDR_AFTER_AE_L  
tRD_L_AFTER_AE_L  
tRD_H_AFTER_CLKH  
tRD  
4
4
8
16  
ns  
ns  
½ CLK  
(XMxPAR[14:12] + 1) × CLK  
½ CLK + (! XMxPAR[10] ) × CLK  
½ CLK + (! XMxPAR[10]+ ! XMxPAR[9] ) × CLK  
0
4
(XMxPAR[3:0] + 1) × CLK  
tDATA_BEFORE_RD_H  
tDATA_AFTER_RD_H  
tRELEASE_MS_AFTER_RD_H  
16  
8
ns  
+ (! XMxPAR[9]) × CLK  
1 × CLK  
1 See Table 78.  
CLK  
ECLK  
MSx  
tMS_AFTER_CLKH  
tAE_H_AFTER_MS  
tRELEASE_MS_AFTER_RD_H  
tAE  
tRD_L_AFTER_AE_L  
AE  
WS  
tRD  
tRD_H_AFTER_CLKH  
RS  
tDATA_BEFORE_RD_H  
tDATA_AFTER_RD_H  
tADDR_AFTER_CLKH  
AD[16:1] FFFF  
2348  
XXXX CDEF XX  
234A  
XX  
89AB  
tHOLD_ADDR_AFTER_AE_L  
BHE  
BLE  
A16  
Figure 13. External Memory Read Cycle (See Table 78)  
Rev. F | Page 14 of 104  
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 4. I2C Timing in Fast Mode (400 kHz)  
Slave  
Max  
Master  
Typ  
Parameter  
Description  
Min  
200  
100  
300  
100  
0
100  
100  
1.3  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
ns  
ns  
ns  
tL  
tH  
SCL low pulse width1  
1360  
1140  
SCL high pulse width1  
Start condition hold time  
Data setup time  
tSHD  
tDSU  
tDHD  
tRSU  
tPSU  
tBUF  
tR  
740  
400  
Data hold time  
Setup time for repeated start  
Stop condition setup time  
Bus-free time between a stop condition and a start condition  
Rise time for both SCL and SDA  
Fall time for both SCL and SDA  
Pulse width of spike suppressed  
400  
200  
300  
300  
50  
tF  
tSUP  
1 tHCLK depends on the clock divider or CD bits in the POWCON MMR. tHCLK = tUCLK/2CD; see Figure 67.  
Table 5. I2C Timing in Standard Mode (100 kHz)  
Slave  
Master  
Typ  
Parameter  
Description  
Min  
Max  
Unit  
μs  
ns  
μs  
ns  
μs  
μs  
μs  
μs  
μs  
ns  
tL  
tH  
SCL low pulse width1  
4.7  
4.0  
4.0  
250  
0
4.7  
4.0  
4.7  
SCL high pulse width1  
Start condition hold time  
Data setup time  
tSHD  
tDSU  
tDHD  
tRSU  
tPSU  
tBUF  
tR  
Data hold time  
3.45  
Setup time for repeated start  
Stop condition setup time  
Bus-free time between a stop condition and a start condition  
Rise time for both SCL and SDA  
Fall time for both SCL and SDA  
1
300  
tF  
1 tHCLK depends on the clock divider or CD bits in the POWCON MMR. tHCLK = tUCLK/2CD; see Figure 67.  
tBUF  
tSUP  
tR  
MSB  
tF  
SDA (I/O)  
MSB  
LSB  
ACK  
tDSU  
tDSU  
tDHD  
tDHD  
tPSU  
tR  
tSHD  
tRSU  
tH  
1
2–7  
8
9
1
SCL (I)  
tL  
tSUP  
P
S
S(R)  
tF  
STOP  
START  
REPEATED  
START  
CONDITION CONDITION  
Figure 14. I2C Compatible Interface Timing  
Rev. F | Page 15 of 104  
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Table 6. SPI Master Mode Timing (Phase Mode = 1)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSL  
tSH  
SCLK low pulse width1  
SCLK high pulse width1  
Data output valid after SCLK edge  
Data input setup time before SCLK edge2  
Data input hold time after SCLK edge2  
Data output fall time  
(SPIDIV + 1) × tHCLK  
(SPIDIV + 1) × tHCLK  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
25  
1 × tUCLK  
2 × tUCLK  
5
5
5
5
12.5  
12.5  
12.5  
12.5  
Data output rise time  
SCLK rise time  
SCLK fall time  
tSF  
1 tHCLK depends on the clock divider or CD bits in the POWCONMMR. tHCLK = tUCLK/2CD; see Figure 67.  
2 tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 67.  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MOSI  
MISO  
MSB  
BITS 6 TO 1  
LSB  
MSB IN  
BITS 6 TO 1  
LSB IN  
tDSU  
tDHD  
Figure 15. SPI Master Mode Timing (Phase Mode = 1)  
Rev. F | Page 16 of 104  
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 7. SPI Master Mode Timing (Phase Mode = 0)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSL  
tSH  
SCLK low pulse width1  
(SPIDIV + 1) × tHCLK  
(SPIDIV + 1) × tHCLK  
SCLK high pulse width1  
Data output valid after SCLK edge  
Data output setup before SCLK edge  
Data input setup time before SCLK edge2  
Data input hold time after SCLK edge2  
Data output fall time  
Data output rise time  
SCLK rise time  
SCLK fall time  
tDAV  
tDOSU  
tDSU  
tDHD  
tDF  
tDR  
tSR  
tSF  
25  
75  
1 × tUCLK  
2 × tUCLK  
5
5
5
5
12.5  
12.5  
12.5  
12.5  
1 tHCLK depends on the clock divider or CD bits in the POWCONMMR. tHCLK = tUCLK/2CD; see Figure 67.  
2 tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 67.  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDOSU  
tDF  
tDR  
MOSI  
MISO  
MSB  
BITS 6 TO 1  
LSB  
MSB IN  
BITS 6 TO 1  
LSB IN  
tDSU  
tDHD  
Figure 16. SPI Master Mode Timing (Phase Mode = 0)  
Rev. F | Page 17 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Table 8. SPI Slave Mode Timing (Phsae Mode = 1)  
Parameter  
Description  
CS to SCLK edge1  
Min  
Typ  
Max  
Unit  
tCS  
(2 × tHCLK) + (2 × tUCLK  
)
ns  
tSL  
tSH  
SCLK low pulse width2  
(SPIDIV + 1) × tHCLK  
(SPIDIV + 1) × tHCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high pulse width2  
Data output valid after SCLK edge  
Data input setup time before SCLK edge1  
Data input hold time after SCLK edge1  
Data output fall time  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
25  
1 × tUCLK  
2 × tUCLK  
5
5
5
5
12.5  
12.5  
12.5  
12.5  
Data output rise time  
SCLK rise time  
SCLK fall time  
CS high after SCLK edge  
tSF  
tSFS  
0
1 tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 67.  
2 tHCLK depends on the clock divider or CD bits in the POWCONMMR. tHCLK = tUCLK/2CD; see Figure 67.  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MISO  
MOSI  
MSB  
BITS 6 TO 1  
LSB  
MSB IN  
BITS 6 TO 1  
LSB IN  
tDSU  
tDHD  
Figure 17. SPI Slave Mode Timing (Phase Mode = 1)  
Rev. F | Page 18 of 104  
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 9. SPI Slave Mode Timing (Phase Mode = 0)  
Parameter  
Description  
CS to SCLK edge1  
Min  
Typ  
Max  
Unit  
tCS  
(2 × tHCLK) + (2 × tUCLK  
)
ns  
tSL  
tSH  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
tSF  
tDOCS  
tSFS  
SCLK low pulse width2  
(SPIDIV + 1) × tHCLK  
(SPIDIV + 1) × tHCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high pulse width2  
Data output valid after SCLK edge  
Data input setup time before SCLK edge1  
Data input hold time after SCLK edge1  
Data output fall time  
Data output rise time  
SCLK rise time  
SCLK fall time  
Data output valid after CS edge  
CS high after SCLK edge  
25  
1 × tUCLK  
2 × tUCLK  
5
5
5
5
12.5  
12.5  
12.5  
12.5  
25  
0
1 tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 67.  
2 tHCLK depends on the clock divider or CD bits in the POWCONMMR. tHCLK = tUCLK/2CD; see Figure 67.  
CS  
tCS  
tSFS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSF  
tSR  
SCLK  
(POLARITY = 1)  
tDAV  
tDOCS  
tDF  
tDR  
MISO  
MOSI  
MSB  
BITS 6 TO 1  
LSB  
MSB IN  
BITS 6 TO 1  
LSB IN  
tDSU  
tDHD  
Figure 18. SPI Slave Mode Timing (Phase Mode = 0)  
Rev. F | Page 19 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
AGND = REFGND = DACGND = GNDREF, TA = 25°C, unless  
otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 10.  
Parameter  
Rating  
AVDD to IOVDD  
AGND to DGND  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +6 V  
−0.3 V to +5.3 V  
−0.3 V to IOVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
IOVDD to IOGND, AVDD to AGND  
Digital Input Voltage to IOGND  
Digital Output Voltage to IOGND  
VREF to AGND  
Analog Inputs to AGND  
Analog Outputs to AGND  
Only one absolute maximum rating can be applied at any one time.  
ESD CAUTION  
Operating Temperature Range, Industrial –40°C to +125°C  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance  
40-Lead LFCSP  
49-Ball CSP_BGA  
64-Lead LFCSP  
64-Ball CSP_BGA  
64-Lead LQFP  
80-Lead LQFP  
–65°C to +150°C  
150°C  
26°C/W  
80°C/W  
24°C/W  
75°C/W  
47°C/W  
38°C/W  
Peak Solder Reflow Temperature  
SnPb Assemblies (10 sec to 30 sec)  
RoHS Compliant Assemblies  
(20 sec to 40 sec)  
240°C  
260°C  
Rev. F | Page 20 of 104  
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADuC7019/ADuC7020/ADuC7021/ADuC7022  
ADC3/CMP1  
ADC4  
1
2
3
4
5
6
7
8
9
30 P1.3/SPM3/PLAI[3]  
29 P1.4/SPM4/PLAI[4]/IRQ2  
28 P1.5/SPM5/PLAI[5]/IRQ3  
27 P1.6/SPM6/PLAI[6]  
GNDREF  
DAC0/ADC12  
DAC1/ADC13  
DAC2/ADC14  
DAC3/ADC15  
TMS  
ADuC7019  
26 P1.7/SPM7/PLAO[0]  
25 XCLKI  
TOP VIEW  
(Not to Scale)  
24 XCLKO  
23 P0.7/ECLK/XCLK/SPM8/PLAO[4]  
22 P2.0/SPM9/PLAO[5]/CONVSTART  
21 IRQ1/P0.5/ADCBUSY/PLAO[2]  
TDI  
BM/P0.0/CMPOUT/PLAI[7] 10  
NOTES  
1. THE EXPOSED PAD MUST BE SOLDERED FOR MECHANICAL PURPOSES AND LEFT UNCONNECTED.  
Figure 19. 40-Lead LFCSP_VQ Pin Configuration (ADuC7019)  
1
2
30  
29  
28  
ADC3/CMP1  
ADC4  
P1.3/SPM3/PLAI[3]  
P1.4/SPM4/PLAI[4]/IRQ2  
P1.5/SPM5/PLAI[5]/IRQ3  
GNDREF  
3
DAC0/ADC12  
DAC1/ADC13  
DAC2/ADC14  
DAC3/ADC15  
TMS  
4
5
6
27 P1.6/SPM6/PLAI[6]  
26 P1.7/SPM7/PLAO[0]  
25 XCLKI  
ADuC7020  
TOP VIEW  
(Not to Scale)  
7
24 XCLKO  
23 P0.7/ECLK/XCLK/SPM8/PLAO[4]  
22 P2.0/SPM9/PLAO[5]/CONVSTART  
8
9
TDI  
BM/P0.0/CMPOUT/PLAI[7]  
10  
IRQ1/P0.5/ADCBUSY/PLAO[2]  
21  
NOTES  
1. THE EXPOSED PAD MUST BE SOLDERED FOR MECHANICAL PURPOSES AND LEFT UNCONNECTED.  
Figure 20. 40-Lead LFCSP_WQ Pin Configuration (ADuC7020)  
Rev. F | Page 21 of 104  
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
ADC4  
ADC5  
ADC6  
ADC7  
1
2
3
4
5
6
7
8
9
30 P1.3/SPM3/PLAI[3]  
29 P1.4/SPM4/PLAI[4]/IRQ2  
28 P1.5/SPM5/PLAI[5]/IRQ3  
27 P1.6/SPM6/PLAI[6]  
26 P1.7/SPM7/PLAO[0]  
25 XCLKI  
PIN 1  
INDICATOR  
GND  
REF  
ADuC7021  
DAC0/ADC12  
TOP VIEW  
DAC1/ADC13  
TMS  
24 XCLKO  
(Not to Scale)  
23 P0.7/ECLK/XCLK/SPM8/PLAO[4]  
TDI  
22 P2.0/SPM9/PLAO[5]/CONV  
START  
BM/P0.0/CMP  
/PLAI[7] 10  
21 IRQ1/P0.5/ADC  
/PLAO[2]  
OUT  
BUSY  
NOTES  
1. THE EXPOSED PAD MUST BE SOLDERED FOR MECHANICAL PURPOSES AND LEFT UNCONNECTED.  
Figure 21. 40-Lead LFCSP_VQ Pin Configuration (ADuC7021)  
ADC5  
1
2
3
4
5
6
7
8
9
30 P1.2/SPM2/PLAI[2]  
29 P1.3/SPM3/PLAI[3]  
28 P1.4/SPM4/PLAI[4]/IRQ2  
27 P1.5/SPM5/PLAI[5]/IRQ3  
26 P1.6/SPM6/PLAI[6]  
25 P1.7/SPM7/PLAO[0]  
24 XCLKI  
PIN 1  
INDICATOR  
ADC6  
ADC7  
ADC8  
ADC9  
ADuC7022  
GNDREF  
TMS  
TDI  
TOP VIEW  
(Not to Scale)  
23 XCLKO  
BM/P0.0/CMPOUT/PLAI[7]  
P0.6/T1/MRST/PLAO[3] 10  
22 P0.7/ECLK/XCLK/SPM8/PLAO[4]  
21 P2.0/SPM9/PLAO[5]/CONVSTART  
NOTES  
1. THE EXPOSED PAD MUST BE SOLDERED FOR MECHANICAL PURPOSES AND LEFT UNCONNECTED.  
Figure 22. 40-Lead LFCSP_VQ Pin Configuration (ADuC7022)  
Rev. F | Page 22 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 11. Pin Function Descriptions (ADuC7019/ADuC7020/ADuC7021/ADuC7022)  
Pin No.  
7019/7020 7021 7022 Mnemonic  
Description  
38  
39  
40  
1
37  
38  
39  
40  
36  
37  
38  
39  
ADC0  
ADC1  
ADC2/CMP0  
ADC3/CMP1  
Single-Ended or Differential Analog Input 0.  
Single-Ended or Differential Analog Input 1.  
Single-Ended or Differential Analog Input 2/Comparator Positive Input.  
Single-Ended or Differential Analog Input 3 (Buffered Input on ADuC7019)/  
Comparator Negative Input.  
2
3
1
2
40  
1
ADC4  
ADC5  
Single-Ended or Differential Analog Input 4.  
Single-Ended or Differential Analog Input 5.  
3
4
2
3
4
5
6
ADC6  
ADC7  
ADC8  
ADC9  
GNDREF  
Single-Ended or Differential Analog Input 6.  
Single-Ended or Differential Analog Input 7.  
Single-Ended or Differential Analog Input 8.  
Single-Ended or Differential Analog Input 9.  
5
Ground Voltage Reference for the ADC. For optimal performance, the  
analog power supply should be separated from IOGND and DGND.  
4
5
6
7
6
7
DAC0/ADC12  
DAC1/ADC13  
DAC2/ADC14  
DAC3/ADC15  
DAC0 Voltage Output/Single-Ended or Differential Analog Input 12.  
DAC1 Voltage Output/Single-Ended or Differential Analog Input 13.  
DAC2 Voltage Output/Single-Ended or Differential Analog Input 14.  
DAC3 Voltage Output on ADuC7020. On the ADuC7019, a 10 nF capacitor  
must be connected between this pin and AGND/Single-Ended or  
Differential Analog Input 15 (see Figure 53).  
8
8
7
TMS  
Test Mode Select, JTAG Test Port Input. Debug and download access.  
This pin has an internal pull-up resistor to IOVDD. In some cases, an external  
pull-up resistor (~100K) is also required to ensure that the part does not  
enter an erroneous state.  
9
10  
9
10  
8
9
TDI  
Test Data In, JTAG Test Port Input. Debug and download access.  
BM/P0.0/CMPOUT/PLAI[7]  
Multifunction I/O Pin. Boot Mode (BM). The ADuC7019/20/21/22 enter  
serial download mode if BM is low at reset and execute code if BM is  
pulled high at reset through a 1 kΩ resistor/General-Purpose Input and  
Output Port 0.0/Voltage Comparator Output/Programmable Logic Array  
Input Element 7.  
11  
12  
11  
12  
10  
11  
P0.6/T1/MRST/PLAO[3]  
TCK  
Multifunction Pin. Driven low after reset. General-Purpose Output Port 0.6/  
Timer1 Input/Power-On Reset Output/Programmable Logic Array Output  
Element 3.  
Test Clock, JTAG Test Port Input. Debug and download access. This pin has  
an internal pull-up resistor to IOVDD. In some cases an external pull-up  
resistor (~100K) is also required to ensure that the part does not enter an  
erroneous state.  
13  
14  
15  
13  
14  
15  
12  
13  
14  
TDO  
IOGND  
IOVDD  
Test Data Out, JTAG Test Port Output. Debug and download access.  
Ground for GPIO (see Table 78). Typically connected to DGND.  
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage  
Regulator.  
16  
16  
15  
LVDD  
2.6 V Output of the On-Chip Voltage Regulator. This output must be  
connected to a 0.47 µF capacitor to DGND only.  
17  
18  
17  
18  
16  
17  
DGND  
P0.3/TRST/ADCBUSY  
Ground for Core Logic.  
General-Purpose Input and Output Port 0.3/Test Reset, JTAG Test Port Input/  
ADCBUSY Signal Output.  
19  
20  
19  
20  
18  
19  
RST  
Reset Input, Active Low.  
IRQ0/P0.4/PWMTRIP/PLAO[1]  
Multifunction I/O Pin. External Interrupt Request 0, Active High/General-  
Purpose Input and Output Port 0.4/PWM Trip External Input/Programmable  
Logic Array Output Element 1.  
21  
21  
20  
IRQ1/P0.5/ADCBUSY/PLAO[2]  
Multifunction I/O Pin. External Interrupt Request 1, Active High/General-  
Purpose Input and Output Port 0.5/ADCBUSY Signal Output/Programmable  
Logic Array Output Element 2.  
Rev. F | Page 23 of 104  
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Pin No.  
7019/7020 7021 7022 Mnemonic  
Description  
22  
22  
21  
P2.0/SPM9/PLAO[5]/CONVSTART  
Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/  
Programmable Logic Array Output Element 5/Start Conversion Input Signal  
for ADC.  
23  
23  
22  
P0.7/ECLK/XCLK/SPM8/PLAO[4] Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/  
Output for External Clock Signal/Input to the Internal Clock Generator  
Circuits/UART/ Programmable Logic Array Output Element 4.  
24  
25  
24  
25  
23  
24  
XCLKO  
XCLKI  
Output from the Crystal Oscillator Inverter.  
Input to the Crystal Oscillator Inverter and Input to the Internal Clock  
Generator Circuits.  
26  
27  
28  
26  
27  
28  
25  
26  
27  
P1.7/SPM7/PLAO[0]  
P1.6/SPM6/PLAI[6]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART,  
SPI/Programmable Logic Array Output Element 0.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART,  
SPI/Programmable Logic Array Input Element 6.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART,  
SPI/Programmable Logic Array Input Element 5/External Interrupt  
Request 3, Active High.  
P1.5/SPM5/PLAI[5]/IRQ3  
29  
29  
28  
P1.4/SPM4/PLAI[4]/IRQ2  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART,  
SPI/Programmable Logic Array Input Element 4/External Interrupt  
Request 2, Active High.  
30  
31  
32  
33  
34  
35  
30  
31  
32  
33  
29  
30  
31  
32  
P1.3/SPM3/PLAI[3]  
P1.2/SPM2/PLAI[2]  
P1.1/SPM1/PLAI[1]  
P1.0/T1/SPM0/PLAI[0]  
P4.2/PLAO[10]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART,  
I2C1/Programmable Logic Array Input Element 3.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART,  
I2C1/Programmable Logic Array Input Element 2.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART,  
I2C0/Programmable Logic Array Input Element 1.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/  
Timer1 Input/UART, I2C0/Programmable Logic Array Input Element 0.  
General-Purpose Input and Output Port 4.2/Programmable Logic Array  
Output Element 10.  
2.5 V Internal Voltage Reference. Must be connected to a 0.47 µF capacitor  
when using the internal reference.  
34  
33  
VREF  
36  
37  
35  
36  
34  
35  
AGND  
AVDD  
Analog Ground. Ground reference point for the analog circuitry.  
3.3 V Analog Power.  
0
0
0
EP  
Exposed Pad. The pin configuration for the ADuC7019/ADuC7020/  
ADuC7021/ADuC7022 has an exposed pad that must be soldered for  
mechanical purposes and left unconnected.  
Rev. F | Page 24 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
ADuC7024/ADuC7025  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
1
2
3
4
5
6
7
8
9
48 P1.2/SPM2/PLAI[2]  
47 P1.3/SPM3/PLAI[3]  
46 P1.4/SPM4/PLAI[4]/IRQ2  
45 P1.5/SPM5/PLAI[5]/IRQ3  
44 P4.1/PLAO[9]  
PIN 1  
INDICATOR  
ADuC7024/  
43 P4.0/PLAO[8]  
GND  
42 IOV  
REF  
DD  
ADuC7025  
ADCNEG  
DAC0/ADC12  
DAC1/ADC13 10  
TMS 11  
TDI 12  
P4.6/PLAO[14] 13  
P4.7/PLAO[15] 14  
41 IOGND  
40 P1.6/SPM6/PLAI[6]  
39 P1.7/SPM7/PLAO[0]  
TOP VIEW  
(Not to Scale)  
38 P3.7/PWM  
37 P3.6/PWM  
36 XCLKI  
/PLAI[15]  
/PLAI[14]  
SYNC  
TRIP  
35 XCLKO  
BM/P0.0/CMP /PLAI[7] 15  
OUT  
34 P0.7/ECLK/XCLK/SPM8/PLAO[4]  
P0.6/T1/MRST/PLAO[3] 16  
33 P2.0/SPM9/PLAO[5]/CONV  
START  
NOTES  
1. THE EXPOSED PAD MUST BE SOLDERED FOR MECHANICAL PURPOSES AND LEFT UNCONNECTED.  
Figure 23. 64-Lead LFCSP_VQ Pin Configuration (ADuC7024/ADuC7025)  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
1
2
3
4
5
6
7
8
9
48 P1.2/SPM2/PLAI[2]  
47 P1.3/SPM3/PLAI[3]  
46 P1.4/SPM4/PLAI[4]/IRQ2  
45 P1.5/SPM5/PLAI[5]/IRQ3  
44 P4.1/PLAO[9]  
PIN 1  
INDICATOR  
ADuC7024/  
43 P4.0/PLAO[8]  
GND  
42 IOV  
REF  
DD  
ADuC7025  
ADCNEG  
DAC0/ADC12  
DAC1/ADC13 10  
TMS 11  
TDI 12  
P4.6/PLAO[14] 13  
P4.7/PLAO[15] 14  
41 IOGND  
40 P1.6/SPM6/PLAI[6]  
39 P1.7/SPM7/PLAO[0]  
TOP VIEW  
(Not to Scale)  
38 P3.7/PWM  
37 P3.6/PWM  
36 XCLKI  
/PLAI[15]  
/PLAI[14]  
SYNC  
TRIP  
35 XCLKO  
BM/P0.0/CMP  
/PLAI[7] 15  
P0.6/T1/MRST/PLAO[3] 16  
34 P0.7/ECLK/XCLK/SPM8/PLAO[4]  
OUT  
33 P2.0/SPM9/PLAO[5]/CONV  
START  
Figure 24. 64-Lead LQFP Pin Configuration (ADuC7024/ADuC7025)  
Rev. F | Page 25 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Table 12. Pin Function Descriptions (ADuC7024/ADuC7025 64-Lead LFCSP_VQ and 64-Lead LQFP)  
Pin No. Mnemonic  
Description  
1
2
3
4
5
6
7
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
GNDREF  
Single-Ended or Differential Analog Input 4.  
Single-Ended or Differential Analog Input 5.  
Single-Ended or Differential Analog Input 6.  
Single-Ended or Differential Analog Input 7.  
Single-Ended or Differential Analog Input 8.  
Single-Ended or Differential Analog Input 9.  
Ground Voltage Reference for the ADC. For optimal performance, the analog power supply  
should be separated from IOGND and DGND.  
8
ADCNEG  
Bias Point or Negative Analog Input of the ADC in Pseudo Differential Mode. Must be connected  
to the ground of the signal to convert. This bias point must be between 0 V and 1 V.  
9
DAC0/ADC12  
DAC1/ADC13  
DAC0 Voltage Output/Single-Ended or Differential Analog Input 12. DAC outputs are not present  
on the ADuC7025.  
DAC1 Voltage Output/Single-Ended or Differential Analog Input 13. DAC outputs are not present  
on the ADuC7025.  
10  
11  
12  
13  
14  
15  
TMS  
TDI  
JTAG Test Port Input, Test Mode Select. Debug and download access.  
JTAG Test Port Input, Test Data In. Debug and download access  
General-Purpose Input and Output Port 4.6/Programmable Logic Array Output Element 14.  
General-Purpose Input and Output Port 4.7/Programmable Logic Array Output Element 15.  
Multifunction I/O Pin. Boot mode. The ADuC7024/ADuC7025 enter download mode if BM is low at  
reset and execute code if BM is pulled high at reset through a 1 kΩ resistor/General-Purpose Input  
and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array Input Element 7.  
P4.6/PLAO[14]  
P4.7/PLAO[15]  
BM/P0.0/CMPOUT/PLAI[7]  
16  
P0.6/T1/MRST/PLAO[3]  
Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/Power-  
On Reset Output/Programmable Logic Array Output Element 3.  
17  
18  
19  
20  
21  
TCK  
TDO  
IOGND  
IOVDD  
LVDD  
JTAG Test Port Input, Test Clock. Debug and download access.  
JTAG Test Port Output, Test Data Out. Debug and download access.  
Ground for GPIO (see Table 78). Typically connected to DGND.  
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.  
2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 µF  
capacitor to DGND only.  
22  
23  
DGND  
P3.0/PWM0H/PLAI[8]  
Ground for Core Logic.  
General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable Logic  
Array Input Element 8.  
24  
25  
26  
P3.1/PWM0L/PLAI[9]  
P3.2/PWM1H/PLAI[10]  
P3.3/PWM1L/PLAI[11]  
General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable Logic  
Array Input Element 9.  
General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable Logic  
Array Input Element 10.  
General-Purpose Input and Output Port 3.3/PWM Phase 1 Low-Side Output/Programmable Logic  
Array Input Element 11.  
27  
28  
29  
P0.3/TRST/ADCBUSY  
RST  
General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADCBUSY Signal Output.  
Reset Input, Active Low.  
P3.4/PWM2H/PLAI[12]  
General-Purpose Input and Output Port 3.4/PWM Phase 2 High-Side Output/Programmable Logic  
Array Input 12.  
30  
31  
32  
33  
34  
P3.5/PWM2L/PLAI[13]  
General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable Logic  
Array Input Element 13.  
Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and  
Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.  
Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and  
Output Port 0.5/ADCBUSY Signal Output/Programmable Logic Array Output Element 2.  
IRQ0/P0.4/PWMTRIP/PLAO[1]  
IRQ1/P0.5/ADCBUSY/PLAO[2]  
P2.0/SPM9/PLAO[5]/CONVSTART Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable Logic  
Array Output Element 5/Start Conversion Input Signal for ADC.  
P0.7/ECLK/XCLK/SPM8/PLAO[4] Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External Clock  
Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array Output  
Element 4.  
35  
36  
XCLKO  
XCLKI  
Output from the Crystal Oscillator Inverter.  
Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.  
Rev. F | Page 26 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Pin No. Mnemonic  
Description  
37  
38  
39  
40  
P3.6/PWMTRIP/PLAI[14]  
General-Purpose Input and Output Port 3.6/PWM Safety Cutoff/Programmable Logic Array Input  
Element 14.  
General-Purpose Input and Output Port 3.7/PWM Synchronization Input and Output/  
Programmable Logic Array Input Element 15.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable  
Logic Array Output Element 0.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable  
Logic Array Input Element 6.  
P3.7/PWMSYNC/PLAI[15]  
P1.7/SPM7/PLAO[0]  
P1.6/SPM6/PLAI[6]  
41  
42  
43  
44  
45  
IOGND  
IOVDD  
P4.0/PLAO[8]  
P4.1/PLAO[9]  
P1.5/SPM5/PLAI[5]/IRQ3  
Ground for GPIO (see Table 78). Typically connected to DGND.  
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.  
General-Purpose Input and Output Port 4.0/Programmable Logic Array Output Element 8.  
General-Purpose Input and Output Port 4.1/Programmable Logic Array Output Element 9.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable  
Logic Array Input Element 5/External Interrupt Request 3, Active High.  
46  
47  
48  
49  
50  
P1.4/SPM4/PLAI[4]/IRQ2  
P1.3/SPM3/PLAI[3]  
P1.2/SPM2/PLAI[2]  
P1.1/SPM1/PLAI[1]  
P1.0/T1/SPM0/PLAI[0]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable  
Logic Array Input Element 4/External Interrupt Request 2, Active High.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable  
Logic Array Input Element 3.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable  
Logic Array Input Element 2.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2C0/Programmable Logic  
Array Input Element 1.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/  
Programmable Logic Array Input Element 0.  
51  
52  
53  
54  
55  
P4.2/PLAO[10]  
P4.3/PLAO[11]  
P4.4/PLAO[12]  
P4.5/PLAO[13]  
VREF  
General-Purpose Input and Output Port 4.2/Programmable Logic Array Output Element 10.  
General-Purpose Input and Output Port 4.3/Programmable Logic Array Output Element 11.  
General-Purpose Input and Output Port 4.4/Programmable Logic Array Output Element 12.  
General-Purpose Input and Output Port 4.5/Programmable Logic Array Output Element 13.  
2.5 V Internal Voltage Reference. Must be connected to a 0.47 µF capacitor when using the  
internal reference.  
56  
57  
58  
59  
60  
61  
62  
63  
64  
0
DACREF  
DACGND  
AGND  
AVDD  
DACVDD  
ADC0  
External Voltage Reference for the DACs. Range: DACGND to DACVDD.  
Ground for the DAC. Typically connected to AGND.  
Analog Ground. Ground reference point for the analog circuitry.  
3.3 V Analog Power.  
3.3 V Power Supply for the DACs. Must be connected to AVDD.  
Single-Ended or Differential Analog Input 0.  
Single-Ended or Differential Analog Input 1.  
Single-Ended or Differential Analog Input 2/Comparator Positive Input.  
Single-Ended or Differential Analog Input 3/Comparator Negative Input.  
ADC1  
ADC2/CMP0  
ADC3/CMP1  
EP  
Exposed Pad. The pin configuration for the ADuC7024/ADuC7025 LFCSP_VQ has an exposed pad  
that must be soldered for mechanical purposes and left unconnected.  
Rev. F | Page 27 of 104  
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
ADuC7026/ADuC7027  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC10  
1
2
3
4
5
6
7
8
9
60 P1.2/SPM2/PLAI[2]  
59 P1.3/SPM3/PLAI[3]  
58 P1.4/SPM4/PLAI[4]/IRQ2  
57 P1.5/SPM5/PLAI[5]/IRQ3  
56 P4.1/AD9/PLAO[9]  
55 P4.0/AD8/PLAO[8]  
PIN 1  
INDICATOR  
54 IOV  
53 IOGND  
DD  
GND  
REF  
ADuC7026/  
ADuC7027  
ADCNEG  
52 P1.6/SPM6/PLAI[6]  
51 P1.7/SPM7/PLAO[0]  
DAC0/ADC12 10  
DAC1/ADC13 11  
DAC2/ADC14 12  
DAC3/ADC15 13  
TMS 14  
50 P2.2/RS/PWM0 /PLAO[7]  
L
TOP VIEW  
49 P2.1/WS/PWM0 /PLAO[6]  
(Not to Scale)  
H
48 P2.7/PWM1 /MS3  
L
47 P3.7/AD7/PWM  
46 P3.6/AD6/PWM  
45 XCLKI  
/PLAI[15]  
SYNC  
/PLAI[14]  
TDI 15  
TRIP  
P0.1/PWM2 /BLE 16  
H
P2.3/AE 17  
P4.6/AD14/PLAO[14] 18  
P4.7/AD15/PLAO[15] 19  
44 XCLKO  
43 P0.7/ECLK/XCLK/SPM8/PLAO[4]  
42 P2.0/SPM9/PLAO[5]/CONV  
START  
/PLAO[2]/MS2  
BM/P0.0/CMP  
/PLAI[7]/MS0 20  
41 IRQ1/P0.5/ADC  
OUT  
BUSY  
Figure 25. 80-Lead LQFP Pin Configuration (ADuC7026/ADuC7027)  
Table 13. Pin Function Descriptions (ADuC7026/ADuC7027)  
Pin No. Mnemonic  
Description  
1
2
3
4
5
6
7
8
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC10  
GNDREF  
Single-Ended or Differential Analog Input 4.  
Single-Ended or Differential Analog Input 5.  
Single-Ended or Differential Analog Input 6.  
Single-Ended or Differential Analog Input 7.  
Single-Ended or Differential Analog Input 8.  
Single-Ended or Differential Analog Input 9.  
Single-Ended or Differential Analog Input 10.  
Ground Voltage Reference for the ADC. For optimal performance, the analog power supply  
should be separated from IOGND and DGND.  
9
ADCNEG  
Bias Point or Negative Analog Input of the ADC in Pseudo Differential Mode. Must be connected  
to the ground of the signal to convert. This bias point must be between 0 V and 1 V.  
10  
11  
12  
13  
DAC0/ADC12  
DAC1/ADC13  
DAC2/ADC14  
DAC3/ADC15  
DAC0 Voltage Output/Single-Ended or Differential Analog Input 12. DAC outputs are not  
present on the ADuC7027.  
DAC1 Voltage Output/Single-Ended or Differential Analog Input 13. DAC outputs are not  
present on the ADuC7027.  
DAC2 Voltage Output/Single-Ended or Differential Analog Input 14. DAC outputs are not  
present on the ADuC7027.  
DAC3 Voltage Output/Single-Ended or Differential Analog Input 15. DAC outputs are not  
present on the ADuC7027.  
14  
15  
16  
TMS  
TDI  
P0.1/PWM2H/BLE  
JTAG Test Port Input, Test Mode Select. Debug and download access.  
JTAG Test Port Input, Test Data In. Debug and download access.  
General-Purpose Input and Output Port 0.1/PWM Phase 2 High-Side Output/External Memory  
Byte Low Enable.  
17  
P2.3/AE  
General-Purpose Input and Output Port 2.3/External Memory Access Enable.  
Rev. F | Page 28 of 104  
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Pin No. Mnemonic  
Description  
18  
19  
20  
P4.6/AD14/PLAO[14]  
General-Purpose Input and Output Port 4.6/External Memory Interface/Programmable Logic  
Array Output Element 14.  
General-Purpose Input and Output Port 4.7/External Memory Interface/Programmable Logic  
Array Output Element 15.  
Multifunction I/O Pin. Boot Mode. The ADuC7026/ADuC7027 enter UART download mode if BM  
is low at reset and execute code if BM is pulled high at reset through a 1 kΩ resistor/General-  
Purpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array  
Input Element 7/External Memory Select 0.  
P4.7/AD15/PLAO[15]  
BM/P0.0/CMPOUT/PLAI[7]/MS0  
21  
P0.6/T1/MRST/PLAO[3]  
Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/  
Power-On Reset Output/Programmable Logic Array Output Element 3.  
22  
23  
24  
TCK  
TDO  
P0.2/PWM2L/BHE  
JTAG Test Port Input, Test Clock. Debug and download access.  
JTAG Test Port Output, Test Data Out. Debug and download access.  
General-Purpose Input and Output Port 0.2/PWM Phase 2 Low-Side Output/External Memory  
Byte High Enable.  
25  
26  
27  
IOGND  
IOVDD  
LVDD  
Ground for GPIO (see Table 78). Typically connected to DGND.  
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.  
2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 µF  
capacitor to DGND only.  
28  
29  
DGND  
Ground for Core Logic.  
P3.0/AD0/PWM0H/PLAI[8]  
General-Purpose Input and Output Port 3.0/External Memory Interface/PWM Phase 0 High-Side  
Output/Programmable Logic Array Input Element 8.  
30  
31  
32  
33  
P3.1/AD1/PWM0L/PLAI[9]  
P3.2/AD2/PWM1H/PLAI[10]  
P3.3/AD3/PWM1L/PLAI[11]  
P2.4/PWM0H/MS0  
General-Purpose Input and Output Port 3.1/External Memory Interface/PWM Phase 0 Low-Side  
Output/Programmable Logic Array Input Element 9.  
General-Purpose Input and Output Port 3.2/External Memory Interface/PWM Phase 1 High-Side  
Output/Programmable Logic Array Input Element 10.  
General-Purpose Input and Output Port 3.3/External Memory Interface/PWM Phase 1 Low-Side  
Output/Programmable Logic Array Input Element 11.  
General-Purpose Input and Output Port 2.4/PWM Phase 0 High-Side Output/External Memory  
Select 0.  
34  
35  
P0.3/TRST/A16/ADCBUSY  
P2.5/PWM0L/MS1  
General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADCBUSY Signal Output.  
General-Purpose Input and Output Port 2.5/PWM Phase 0 Low-Side Output/External Memory  
Select 1.  
36  
P2.6/PWM1H/MS2  
General-Purpose Input and Output Port 2.6/PWM Phase 1 High-Side Output/External Memory  
Select 2.  
37  
38  
RST  
Reset Input, Active Low.  
P3.4/AD4/PWM2H/PLAI[12]  
General-Purpose Input and Output Port 3.4/External Memory Interface/PWM Phase 2 High-Side  
Output/Programmable Logic Array Input 12.  
39  
40  
P3.5/AD5/PWM2L/PLAI[13]  
General-Purpose Input and Output Port 3.5/External Memory Interface/PWM Phase 2 Low-Side  
Output/Programmable Logic Array Input Element 13.  
IRQ0/P0.4/PWMTRIP/PLAO[1]/MS1 Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and  
Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1/  
External Memory Select 1.  
41  
IRQ1/P0.5/ADCBUSY/PLAO[2]/MS2 Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and  
Output Port 0.5/ADCBUSY Signal Output/Programmable Logic Array Output Element 2/External  
Memory Select 2.  
42  
43  
CONVSTART  
Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable Logic  
Array Output Element 5/Start Conversion Input Signal for ADC.  
P0.7/ECLK/XCLK/SPM8/PLAO[4] Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External Clock  
Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array Output  
Element 4.  
P2.0/SPM9/PLAO[5]/  
44  
45  
XCLKO  
XCLKI  
Output from the Crystal Oscillator Inverter.  
Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.  
Rev. F | Page 29 of 104  
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Pin No. Mnemonic  
Description  
46  
47  
48  
49  
50  
51  
52  
P3.6/AD6/PWMTRIP/PLAI[14]  
General-Purpose Input and Output Port 3.6/External Memory Interface/PWM Safety Cutoff/  
Programmable Logic Array Input Element 14.  
General-Purpose Input and Output Port 3.7/External Memory Interface/PWM Synchronization/  
Programmable Logic Array Input Element 15.  
General-Purpose Input and Output Port 2.7/PWM Phase 1 Low-Side Output/External Memory  
Select 3.  
General-Purpose Input and Output Port 2.1/External Memory Write Strobe/PWM Phase 0 High-  
Side Output/Programmable Logic Array Output Element 6.  
General-Purpose Input and Output Port 2.2/External Memory Read Strobe/PWM Phase 0 Low-  
Side Output/Programmable Logic Array Output Element 7.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable Logic  
Array Output Element 0.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable Logic  
Array Input Element 6.  
P3.7/AD7/PWMSYNC/PLAI[15]  
P2.7/PWM1L/MS3  
P2.1/WS/PWM0H/PLAO[6]  
P2.2/RS/PWM0L/PLAO[7]  
P1.7/SPM7/PLAO[0]  
P1.6/SPM6/PLAI[6]  
53  
54  
55  
IOGND  
IOVDD  
P4.0/AD8/PLAO[8]  
Ground for GPIO (see Table 78). Typically connected to DGND.  
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.  
General-Purpose Input and Output Port 4.0/External Memory Interface/Programmable Logic  
Array Output Element 8.  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
P4.1/AD9/PLAO[9]  
General-Purpose Input and Output Port 4.1/External Memory Interface/Programmable Logic  
Array Output Element 9.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable Logic  
Array Input Element 5/External Interrupt Request 3, Active High.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable Logic  
Array Input Element 4/External Interrupt Request 2, Active High.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable  
Logic Array Input Element 3.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable  
Logic Array Input Element 2.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2C0/Programmable  
Logic Array Input Element 1.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/  
Programmable Logic Array Input Element 0.  
General-Purpose Input and Output Port 4.2/External Memory Interface/Programmable Logic  
Array Output Element 10.  
P1.5/SPM5/PLAI[5]/IRQ3  
P1.4/SPM4/PLAI[4]/IRQ2  
P1.3/SPM3/PLAI[3]  
P1.2/SPM2/PLAI[2]  
P1.1/SPM1/PLAI[1]  
P1.0/T1/SPM0/PLAI[0]  
P4.2/AD10/PLAO[10]  
P4.3/AD11/PLAO[11]  
P4.4/AD12/PLAO[12]  
P4.5/AD13/PLAO[13]  
General-Purpose Input and Output Port 4.3/External Memory Interface/Programmable Logic  
Array Output Element 11.  
General-Purpose Input and Output Port 4.4/External Memory Interface/Programmable Logic  
Array Output Element 12.  
General-Purpose Input and Output Port 4.5/External Memory Interface/Programmable Logic  
Array Output Element 13.  
67  
68  
REFGND  
VREF  
Ground for the Reference. Typically connected to AGND.  
2.5 V Internal Voltage Reference. Must be connected to a 0.47 μF capacitor when using the  
internal reference.  
69  
70  
71, 72  
73, 74  
75  
DACREF  
DACGND  
AGND  
AVDD  
DACVDD  
ADC11  
External Voltage Reference for the DACs. Range: DACGND to DACVDD.  
Ground for the DAC. Typically connected to AGND.  
Analog Ground. Ground reference point for the analog circuitry.  
3.3 V Analog Power.  
3.3 V Power Supply for the DACs. Must be connected to AVDD.  
Single-Ended or Differential Analog Input 11.  
76  
77  
ADC0  
Single-Ended or Differential Analog Input 0.  
78  
ADC1  
Single-Ended or Differential Analog Input 1.  
79  
80  
ADC2/CMP0  
ADC3/CMP1  
Single-Ended or Differential Analog Input 2/Comparator Positive Input.  
Single-Ended or Differential Analog Input 3/Comparator Negative Input.  
Rev. F | Page 30 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
ADUC7028  
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
BOTTOM VIEW  
(Not to Scale)  
Figure 26. 64-Ball CSP_BGA Pin Configuration (ADuC7028)  
Table 14. Pin Function Descriptions (ADuC7028)  
Ball No.  
Mnemonic  
ADC3/CMP1  
DACVDD  
Description  
A1  
A2  
Single-Ended or Differential Analog Input 3/Comparator Negative Input.  
3.3 V Power Supply for the DACs. Must be connected to AVDD.  
3.3 V Analog Power.  
A3  
AVDD  
A4  
AGND  
Analog Ground. Ground reference point for the analog circuitry.  
Ground for the DAC. Typically connected to AGND.  
General-Purpose Input and Output Port 4.2/Programmable Logic Array Output Element 10.  
A5  
DACGND  
A6  
P4.2/PLAO[10]  
P1.1/SPM1/PLAI[1]  
A7  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2C0/Programmable  
Logic Array Input Element 1.  
A8  
P1.2/SPM2/PLAI[2]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable  
Logic Array Input Element 2.  
B1  
B2  
B3  
B4  
B5  
ADC4  
Single-Ended or Differential Analog Input 4.  
ADC2/CMP0  
ADC1  
Single-Ended or Differential Analog Input 2/Comparator Positive Input.  
Single-Ended or Differential Analog Input 1.  
DACREF  
VREF  
External Voltage Reference for the DACs. Range: DACGND to DACVDD.  
2.5 V Internal Voltage Reference. Must be connected to a 0.47 µF capacitor when using the  
internal reference.  
B6  
B7  
B8  
P1.0/T1/SPM0/PLAI[0]  
P1.4/SPM4/PLAI[4]/IRQ2  
P1.3/SPM3/PLAI[3]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/  
Programmable Logic Array Input Element 0.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable  
Logic Array Input Element 4/External Interrupt Request 2, Active High.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable  
Logic Array Input Element 3.  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
D1  
ADC6  
Single-Ended or Differential Analog Input 6.  
ADC5  
Single-Ended or Differential Analog Input 5.  
ADC0  
Single-Ended or Differential Analog Input 0.  
P4.5/PLAO[13]  
P4.3/PLAO[11]  
P4.0/PLAO[8]  
P4.1/PLAO[9]  
IOGND  
General-Purpose Input and Output Port 4.5/Programmable Logic Array Output Element 13.  
General-Purpose Input and Output Port 4.3/Programmable Logic Array Output Element 11.  
General-Purpose Input and Output Port 4.0/Programmable Logic Array Output Element 8.  
General-Purpose Input and Output Port 4.1/Programmable Logic Array Output Element 9.  
Ground for GPIO (see Table 78). Typically connected to DGND.  
ADCNEG  
Bias Point or Negative Analog Input of the ADC in Pseudo Differential Mode. Must be  
connected to the ground of the signal to convert. This bias point must be between 0 V and 1 V.  
D2  
GNDREF  
Ground Voltage Reference for the ADC. For optimal performance, the analog power supply  
should be separated from IOGND and DGND.  
D3  
D4  
D5  
ADC7  
Single-Ended or Differential Analog Input 7.  
P4.4/PLAO[12]  
P3.6/PWMTRIP/PLAI[14]  
General-Purpose Input and Output Port 4.4/Programmable Logic Array Output Element 12.  
General-Purpose Input and Output Port 3.6/PWM Safety Cutoff/Programmable Logic Array  
Input Element 14.  
D6  
P1.7/SPM7/PLAO[0]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable  
Logic Array Output Element 0.  
Rev. F | Page 31 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Ball No.  
Mnemonic  
Description  
D7  
P1.6/SPM6/PLAI[6]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable  
Logic Array Input Element 6.  
D8  
E1  
E2  
E3  
E4  
IOVDD  
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.  
DAC3 Voltage Output/ADC Input 15.  
DAC3/ADC15  
DAC2/ADC14  
DAC1/ADC13  
P3.0/PWM0H/PLAI[8]  
DAC2 Voltage Output/ADC Input 14.  
DAC1 Voltage Output/ADC Input 13.  
General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable  
Logic Array Input Element 8.  
E5  
E6  
E7  
P3.2/PWM1H/PLAI[10]  
P1.5/SPM5/PLAI[5]/IRQ3  
P3.7/PWMSYNC/PLAI[15]  
General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable  
Logic Array Input Element 10.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable  
Logic Array Input Element 5/External Interrupt Request 3, Active High.  
General-Purpose Input and Output Port 3.7/PWM Synchronization/Programmable Logic  
Array Input Element 15.  
E8  
F1  
F2  
XCLKI  
Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.  
General-Purpose Input and Output Port 4.6/Programmable Logic Array Output Element 14.  
JTAG Test Port Input, Test Data In. Debug and download access.  
P4.6/PLAO[14]  
TDI  
F3  
F4  
DAC0/ADC12  
DAC0 Voltage Output/ADC Input 12.  
P3.1/PWM0L/PLAI[9]  
General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable  
Logic Array Input Element 9.  
F5  
P3.3/PWM1L/PLAI[11]  
General-Purpose Input and Output Port 3.3/PWM Phase 1 Low-Side Output/Programmable  
Logic Array Input Element 11.  
F6  
F7  
RST  
Reset Input, Active Low.  
P0.7/ECLK/XCLK/SPM8/PLAO[4] Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External  
Clock Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array  
Output Element 4.  
F8  
XCLKO  
Output from the Crystal Oscillator Inverter.  
G1  
BM/P0.0/CMPOUT/PLAI[7]  
Multifunction I/O Pin. Boot mode. The ADuC7028 enters UART download mode if BM is low  
at reset and executes code if BM is pulled high at reset through a 1 kΩ resistor/General-  
Purpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array  
Input Element 7.  
G2  
G3  
G4  
G5  
P4.7/PLAO[15]  
TMS  
General-Purpose Input and Output Port 4.7/Programmable Logic Array Output Element 15.  
JTAG Test Port Input, Test Mode Select. Debug and download access.  
TDO  
JTAG Test Port Output, Test Data Out. Debug and download access.  
P0.3/TRST/ADCBUSY  
General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADCBUSY Signal  
Output.  
G6  
G7  
G8  
H1  
P3.4/PWM2H/PLAI[12]  
P3.5/PWM2L/PLAI[13]  
General-Purpose Input and Output Port 3.4/PWM Phase 2 High-Side Output/Programmable  
Logic Array Input 12.  
General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable  
Logic Array Input Element 13.  
Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable  
Logic Array Output Element 5/Start Conversion Input Signal for ADC.  
Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/  
Power-On Reset Output/Programmable Logic Array Output Element 3.  
P2.0/SPM9/PLAO[5]/CONVSTART  
P0.6/T1/MRST/PLAO[3]  
H2  
H3  
H4  
H5  
TCK  
JTAG Test Port Input, Test Clock. Debug and download access.  
Ground for GPIO (see Table 78). Typically connected to DGND.  
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.  
IOGND  
IOVDD  
LVDD  
2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 µF  
capacitor to DGND only.  
H6  
H7  
DGND  
Ground for Core Logic.  
IRQ0/P0.4/PWMTRIP/PLAO[1]  
Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and  
Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.  
H8  
IRQ1/P0.5/ADCBUSY/PLAO[2]  
Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and  
Output Port 0.5/ADCBUSY Signal Output/Programmable Logic Array Output Element 2.  
Rev. F | Page 32 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
ADUC7029  
7
6
5
4
3
2
1
A
B
C
D
E
F
G
BOTTOM VIEW  
(Not to Scale)  
Figure 27. 49-Ball CSP_BGA Pin Configuration (ADuC7029)  
Table 15. Pin Function Descriptions (ADuC7029)  
Ball No.  
Mnemonic  
ADC3/CMP1  
ADC1  
Description  
A1  
A2  
Single-Ended or Differential Analog Input 3/Comparator Negative Input.  
Single-Ended or Differential Analog Input 1.  
Single-Ended or Differential Analog Input 0.  
3.3 V Analog Power.  
A3  
ADC0  
A4  
AVDD  
A5  
VREF  
2.5 V Internal Voltage Reference. Must be connected to a 0.47 µF capacitor when using the  
internal reference.  
A6  
A7  
P1.0/T1/SPM0/PLAI[0]  
P1.1/SPM1/PLAI[1]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/  
Programmable Logic Array Input Element 0.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2C0/Programmable  
Logic Array Input Element 1.  
B1  
B2  
B3  
B4  
B5  
B6  
ADC6  
Single-Ended or Differential Analog Input 6.  
ADC5  
Single-Ended or Differential Analog Input 5.  
ADC4  
Single-Ended or Differential Analog Input 4.  
AGND  
Analog Ground. Ground reference point for the analog circuitry.  
External Voltage Reference for the DACs. Range: DACGND to DACVDD.  
DACREF  
P1.4/SPM4/PLAI[4]/IRQ2  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable  
Logic Array Input Element 4/External Interrupt Request 2, Active High.  
B7  
C1  
P1.3/SPM3/PLAI[3]  
GNDREF  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable  
Logic Array Input Element 3.  
Ground Voltage Reference for the ADC. For optimal performance, the analog power supply  
should be separated from IOGND and DGND.  
C2  
C3  
C4  
C5  
AGND  
Analog Ground. Ground reference point for the analog circuitry.  
Single-Ended or Differential Analog Input 2/Comparator Positive Input.  
Ground for GPIO (see Table 78). Typically connected to DGND.  
ADC2/CMP0  
IOGND  
P1.2/SPM2/PLAI[2]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable  
Logic Array Input Element 2.  
C6  
C7  
P1.6/SPM6/PLAI[6]  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable  
Logic Array Input Element 6.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable  
Logic Array Input Element 5/External Interrupt Request 3, Active High.  
P1.5/SPM5/PLAI[5]/IRQ3  
D1  
D2  
D3  
D4  
DAC0/ADC12  
DAC0 Voltage Output/ADC Input 12.  
DAC3 Voltage Output/ADC Input 15.  
DAC1 Voltage Output/ADC Input 13.  
DAC3/ADC15  
DAC1/ADC13  
P3.3/PWM1L/PLAI[11]  
General-Purpose Input and Output Port 3.3/PWM Phase 1 Low-Side Output/Programmable  
Logic Array Input Element 11.  
D5  
D6  
D7  
P3.4/PWM2H/PLAI[12]  
P3.6/PWMTRIP/PLAI[14]  
P1.7/SPM7/PLAO[0]  
General-Purpose Input and Output Port 3.4/PWM Phase 2 High-Side Output/Programmable  
Logic Array Input 12.  
General-Purpose Input and Output Port 3.6/PWM Safety Cutoff/Programmable Logic Array  
Input Element 14.  
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable  
Logic Array Output Element 0.  
Rev. F | Page 33 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Ball No.  
E1  
Mnemonic  
Description  
TMS  
JTAG Test Port Input, Test Mode Select. Debug and download access.  
E2  
BM/P0.0/CMPOUT/PLAI[7]  
Multifunction I/O Pin. Boot mode. The ADuC7029 enters UART download mode if BM is low  
at reset and executes code if BM is pulled high at reset through a 1 kΩ resistor/General-  
Purpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array  
Input Element 7.  
E3  
E4  
E5  
DAC2/ADC14  
IOVDD  
DAC2 Voltage Output/ADC Input 14.  
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.  
P3.2/PWM1H/PLAI[10]  
General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable  
Logic Array Input Element 10.  
E6  
E7  
P3.5/PWM2L/PLAI[13]  
General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable  
Logic Array Input Element 13.  
P0.7/ECLK/XCLK/SPM8/PLAO[4] Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External  
Clock Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array  
Output Element 4.  
F1  
F2  
TDI  
JTAG Test Port Input, Test Data In. Debug and download access.  
P0.6/T1/MRST/PLAO[3]  
Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/  
Power-On Reset Output/Programmable Logic Array Output Element 3.  
F3  
F4  
IOGND  
Ground for GPIO (see Table 78). Typically connected to DGND.  
P3.1/PWM0L/PLAI[9]  
General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable  
Logic Array Input Element 9.  
F5  
P3.0/PWM0H/PLAI[8]  
General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable  
Logic Array Input Element 8.  
F6  
F7  
RST  
Reset Input, Active Low.  
P2.0/SPM9/PLAO[5]/CONVSTART  
Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable  
Logic Array Output Element 5/Start Conversion Input Signal for ADC.  
G1  
G2  
G3  
TCK  
TDO  
LVDD  
JTAG Test Port Input, Test Clock. Debug and download access.  
JTAG Test Port Output, Test Data Out. Debug and download access.  
2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 µF  
capacitor to DGND only.  
G4  
G5  
DGND  
Ground for Core Logic.  
P0.3/TRST/ADCBUSY  
General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADCBUSY Signal  
Output.  
G6  
G7  
IRQ0/P0.4/PWMTRIP/PLAO[1]  
IRQ1/P0.5/ADCBUSY/PLAO[2]  
Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and  
Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.  
Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and  
Output Port 0.5/ADCBUSY Signal Output/Programmable Logic Array Output Element 2.  
Rev. F | Page 34 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
fS = 774kSPS  
0.8  
fS = 774kSPS  
0.8  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
ADC CODES  
ADC CODES  
Figure 28. Typical INL Error, fS = 774 kSPS  
Figure 31. Typical DNL Error, fS = 774 kSPS  
1.0  
0.8  
1.0  
0.8  
fS = 1MSPS  
fS = 1MSPS  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
ADC CODES  
ADC CODES  
Figure 29. Typical INL Error, fS = 1 MSPS  
Figure 32. Typical DNL Error, fS = 1 MSPS  
1.0  
0
–0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
–0.2  
–0.3  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
WCN  
WCP  
WCP  
WCN  
1.0  
1.5  
2.0  
2.5  
3.0  
1.0  
1.5  
2.0  
2.5  
3.0  
EXTERNAL REFERENCE (V)  
EXTERNAL REFERENCE (V)  
Figure 30. Typical Worst-Case (Positive (WCP) and Negative (WCN))  
INL Error vs. VREF, fS = 774 kSPS  
Figure 33. Typical Worst-Case (Positive (WCP )and Negative (WCN))  
DNL Error vs. VREF, fS = 774 kSPS  
Rev. F | Page 35 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
75  
70  
65  
60  
55  
50  
45  
40  
–76  
–78  
–80  
–82  
–84  
–86  
SNR  
THD  
–88  
3.0  
1161  
1162  
BIN  
1163  
1.0  
1.5  
2.0  
2.5  
EXTERNAL REFERENCE (V)  
Figure 34. Code Histogram Plot, fs = 774 kSPS, VIN = 0.7 V  
Figure 37. Typical Dynamic Performance vs. VREF  
0
1500  
1450  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
fS = 774kSPS,  
SNR = 69.3dB,  
THD = –80.8dB,  
PHSN = –83.4dB  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
0
100  
200  
–50  
0
50  
100  
150  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 35. Dynamic Performance, fS = 774 kSPS  
Figure 38. On-Chip Temperature Sensor Voltage Output vs. Temperature  
20  
0
39.8  
39.7  
39.6  
39.5  
39.4  
39.3  
39.2  
39.1  
39.0  
38.9  
fS = 1MSPS,  
SNR = 70.4dB,  
THD = –77.2dB,  
PHSN = –78.9dB  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
0
50  
100  
150  
200  
–40  
0
25  
85  
125  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 36. Dynamic Performance, fS = 1 MSPS  
Figure 39. Current Consumption vs. Temperature @ CD = 0  
Rev. F | Page 36 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
12.05  
12.00  
11.95  
11.90  
11.85  
11.80  
11.75  
11.70  
11.65  
11.60  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
11.55  
–40  
0
25  
85  
125  
–40  
0
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 40. Current Consumption vs. Temperature @ CD = 3  
Figure 42. Current Consumption vs. Temperature in Sleep Mode  
7.85  
37.4  
37.2  
37.0  
36.8  
36.6  
36.4  
36.2  
7.80  
7.75  
7.70  
7.65  
7.60  
7.55  
7.50  
7.45  
7.40  
–40  
0
25  
85  
125  
62.25  
125.00  
250.00  
500.00  
1000.00  
TEMPERATURE (°C)  
SAMPLING FREQUENCY (kSPS)  
Figure 41. Current Consumption vs. Temperature @ CD = 7  
Figure 43. Current Consumption vs. Sampling Frequency  
Rev. F | Page 37 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
TERMINOLOGY  
The ratio is dependent upon the number of quantization levels  
in the digitization process; the more levels, the smaller the  
quantization noise.  
ADC SPECIFICATIONS  
Integral Nonlinearity (INL)  
The maximum deviation of any code from a straight line  
passing through the endpoints of the ADC transfer function.  
The endpoints of the transfer function are zero scale, a point  
½ LSB below the first code transition, and full scale, a point  
½ LSB above the last code transition.  
The theoretical signal to (noise + distortion) ratio for an ideal  
N-bit converter with a sine wave input is given by  
Signal to (Noise + Distortion) = (6.02 N + 1.76) dB  
Thus, for a 12-bit converter, this is 74 dB.  
Differential Nonlinearity (DNL)  
The difference between the measured and the ideal 1 LSB  
change between any two adjacent codes in the ADC.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the harmonics to the fundamental.  
DAC SPECIFICATIONS  
Offset Error  
The deviation of the first code transition (0000 . . . 000) to  
(0000 . . . 001) from the ideal, that is, +½ LSB.  
Relative Accuracy  
Otherwise known as endpoint linearity, relative accuracy is a  
measure of the maximum deviation from a straight line passing  
through the endpoints of the DAC transfer function. It is  
measured after adjusting for zero error and full-scale error.  
Gain Error  
The deviation of the last code transition from the ideal AIN  
voltage (full scale − 1.5 LSB) after the offset error has been  
adjusted out.  
Voltage Output Settling Time  
The amount of time it takes the output to settle to within a  
1 LSB level for a full-scale input change.  
Signal to (Noise + Distortion) Ratio (SINAD)  
The measured ratio of signal to (noise + distortion) at the  
output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the rms sum of all nonfundamental  
signals up to half the sampling frequency (fS/2), excluding dc.  
Rev. F | Page 38 of 104  
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
OVERVIEW OF THE ARM7TDMI CORE  
The ARM7® core is a 32-bit reduced instruction set computer  
(RISC). It uses a single 32-bit bus for instruction and data. The  
length of the data can be eight bits, 16 bits, or 32 bits. The  
length of the instruction word is 32 bits.  
EXCEPTIONS  
ARM supports five types of exceptions and a privileged  
processing mode for each type. The five types of exceptions are  
Normal interrupt or IRQ, which is provided to service  
general-purpose interrupt handling of internal and  
external events.  
The ARM7TDMI is an ARM7 core with four additional features.  
T support for the thumb (16-bit) instruction set.  
D support for debug.  
M support for long multiplications.  
I includes the EmbeddedICE module to support embedded  
system debugging.  
Fast interrupt or FIQ, which is provided to service data  
transfers or communication channels with low latency.  
FIQ has priority over IRQ.  
Memory abort.  
Attempted execution of an undefined instruction.  
Software interrupt instruction (SWI), which can be used  
to make a call to an operating system.  
THUMB MODE (T)  
An ARM instruction is 32 bits long. The ARM7TDMI processor  
supports a second instruction set that is compressed into 16 bits,  
called the thumb instruction set. Faster execution from 16-bit  
memory and greater code density can usually be achieved by  
using the thumb instruction set instead of the ARM instruction  
set, which makes the ARM7TDMI core particularly suitable for  
embedded applications.  
Typically, the programmer defines interrupt as IRQ, but for  
higher priority interrupt, that is, faster response time, the  
programmer can define interrupt as FIQ.  
ARM REGISTERS  
ARM7TDMI has a total of 37 registers: 31 general-purpose  
registers and six status registers. Each operating mode has  
dedicated banked registers.  
However, the thumb mode has two limitations.  
Thumb code typically requires more instructions for the  
same job. As a result, ARM code is usually best for  
maximizing the performance of time-critical code.  
The thumb instruction set does not include some of the  
instructions needed for exception handling, which  
automatically switches the core to ARM code for exception  
handling.  
When writing user-level programs, 15 general-purpose 32-bit  
registers (R0 to R14), the program counter (R15), and the  
current program status register (CPSR) are usable. The  
remaining registers are used for system-level programming and  
exception handling only.  
When an exception occurs, some of the standard registers are  
replaced with registers specific to the exception mode. All excep-  
tion modes have replacement banked registers for the stack  
pointer (R13) and the link register (R14), as represented in  
Figure 44. The fast interrupt mode has more registers (R8 to R12)  
for fast interrupt processing. This means that interrupt processing  
can begin without the need to save or restore these registers  
and, thus, save critical time in the interrupt handling process.  
See the ARM7TDMI user guide for details on the core  
architecture, the programming model, and both the ARM  
and ARM thumb instruction sets.  
LONG MULTIPLY (M)  
The ARM7TDMI instruction set includes four extra instruc-  
tions that perform 32-bit by 32-bit multiplication with a 64-bit  
result, and 32-bit by 32-bit multiplication-accumulation (MAC)  
with a 64-bit result. These results are achieved in fewer cycles  
than required on a standard ARM7 core.  
R0  
USABLE IN USER MODE  
R1  
SYSTEM MODES ONLY  
R2  
R3  
R4  
EmbeddedICE (I)  
R5  
EmbeddedICE provides integrated on-chip support for the core.  
The EmbeddedICE module contains the breakpoint and watch-  
point registers that allow code to be halted for debugging purposes.  
These registers are controlled through the JTAG test port.  
R6  
R7  
R8_FIQ  
R9_FIQ  
R8  
R9  
R10_FIQ  
R11_FIQ  
R12_FIQ  
R13_FIQ  
R14_FIQ  
R10  
R11  
R12  
R13  
R14  
R15 (PC)  
R13_UND  
R13_IRQ  
When a breakpoint or watchpoint is encountered, the processor  
halts and enters debug state. Once in a debug state, the  
processor registers can be inspected as well as the Flash/EE,  
SRAM, and memory mapped registers.  
R13_ABT  
R14_ABT  
R14_UND  
R14_IRQ  
R13_SVC  
R14_SVC  
SPSR_UND  
SPSR_IRQ  
SPSR_ABT  
SPSR_SVC  
CPSR  
SPSR_FIQ  
FIQ  
MODE  
SVC  
MODE  
ABORT  
MODE  
IRQ  
MODE  
UNDEFINED  
MODE  
USER MODE  
Figure 44. Register Organization  
Rev. F | Page 39 of 104  
 
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
More information relative to the programmer’s model and the  
ARM7TDMI core architecture can be found in the following  
materials from ARM:  
At the end of this time, the ARM7TDMI executes the instruc-  
tion at 0x1C (FIQ interrupt vector address). The maximum  
total time is 50 processor cycles, which is just under 1.2 µs in a  
system using a continuous 41.78 MHz processor clock.  
DDI0029G, ARM7TDMI Technical Reference Manual  
DDI-0100, ARM Architecture Reference Manual  
The maximum interrupt request (IRQ) latency calculation is  
similar but must allow for the fact that FIQ has higher priority  
and may delay entry into the IRQ handling routine for an  
arbitrary length of time. This time can be reduced to 42 cycles if  
the LDM command is not used. Some compilers have an option  
to compile without using this command. Another option is to run  
the part in thumb mode where the time is reduced to 22 cycles.  
INTERRUPT LATENCY  
The worst-case latency for a fast interrupt request (FIQ)  
consists of the following:  
The longest time the request can take to pass through the  
synchronizer  
The minimum latency for FIQ or IRQ interrupts is a total of  
five cycles, which consist of the shortest time the request can  
take through the synchronizer plus the time to enter the  
exception mode.  
The time for the longest instruction to complete (the  
longest instruction is an LDM) that loads all the registers  
including the PC  
The time for the data abort entry  
The time for FIQ entry  
Note that the ARM7TDMI always runs in ARM (32-bit) mode  
when in privileged modes, for example, when executing  
interrupt service routines.  
Rev. F | Page 40 of 104  
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
MEMORY ORGANIZATION  
The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate two  
separate blocks of memory: 8 kB of SRAM and 64 kB of on-chip  
Flash/EE memory. The 62 kB of on-chip Flash/EE memory is  
available to the user, and the remaining 2 kB are reserved for  
the factory-configured boot page. These two blocks are mapped  
as shown in Figure 45.  
FLASH/EE MEMORY  
The total 64 kB of Flash/EE memory is organized as 32 k × 16 bits;  
31 k × 16 bits is user space and 1 k × 16 bits is reserved for the  
on-chip kernel. The page size of this Flash/EE memory is 512 bytes.  
Sixty-two kilobytes of Flash/EE memory are available to the  
user as code and nonvolatile data memory. There is no  
distinction between data and program because ARM code  
shares the same space. The real width of the Flash/EE memory  
is 16 bits, which means that in ARM mode (32-bit instruction),  
two accesses to the Flash/EE are necessary for each instruction  
fetch. It is therefore recommended to use thumb mode when  
executing from Flash/EE memory for optimum access speed.  
The maximum access speed for the Flash/EE memory is  
41.78 MHz in thumb mode and 20.89 MHz in full ARM mode.  
More details about Flash/EE access time are outlined in the  
Execution Time from SRAM and Flash/EE section.  
0xFFFFFFFF  
0xFFFF0000  
MMRs  
RESERVED  
0x40000FFFF  
EXTERNAL MEMORY REGION 3  
0x40000000  
RESERVED  
0x30000FFFF  
EXTERNAL MEMORY REGION 2  
0x30000000  
RESERVED  
0x20000FFFF  
EXTERNAL MEMORY REGION 1  
0x20000000  
RESERVED  
0x10000FFFF  
EXTERNAL MEMORY REGION 0  
0x10000000  
RESERVED  
0x0008FFFF  
SRAM  
FLASH/EE  
0x00080000  
Eight kilobytes of SRAM are available to the user, organized as  
2 k × 32 bits, that is, two words. ARM code can run directly  
from SRAM at 41.78 MHz, given that the SRAM array is  
configured as a 32-bit wide memory array. More details about  
SRAM access time are outlined in the Execution Time from  
SRAM and Flash/EE section.  
RESERVED  
0x00011FFF  
SRAM  
0x00010000  
0x0000FFFF REMAPPABLE MEMORY SPACE  
0x00000000  
(FLASH/EE OR SRAM)  
Figure 45. Physical Memory Map  
Note that by default, after a reset, the Flash/EE memory is  
mirrored at Address 0x00000000. It is possible to remap the  
SRAM at Address 0x00000000 by clearing Bit 0 of the REMAP  
MMR. This remap function is described in more detail in the  
Flash/EE Memory section.  
MEMORY MAPPED REGISTERS  
The memory mapped register (MMR) space is mapped into the  
upper two pages of the memory array and accessed by indirect  
addressing through the ARM7 banked registers.  
MEMORY ACCESS  
The MMR space provides an interface between the CPU and all  
on-chip peripherals. All registers, except the core registers, reside  
in the MMR area. All shaded locations shown in Figure 47 are  
unoccupied or reserved locations and should not be accessed by  
user software. Table 16 shows the full MMR memory map.  
The ARM7 core sees memory as a linear array of a 232 byte  
location where the different blocks of memory are mapped as  
outlined in Figure 45.  
The ADuC7019/20/21/22/24/25/26/27/28/29 memory organiza-  
tions are configured in little endian format, which means that  
the least significant byte is located in the lowest byte address,  
and the most significant byte is in the highest byte address.  
The access time for reading from or writing to an MMR  
depends on the advanced microcontroller bus architecture  
(AMBA) bus used to access the peripheral. The processor has  
two AMBA buses: the advanced high performance bus (AHB)  
used for system modules and the advanced peripheral bus  
(APB) used for lower performance peripheral. Access to the  
AHB is one cycle, and access to the APB is two cycles. All  
peripherals on the ADuC7019/20/21/22/24/25/26/27/28/29 are  
on the APB except the Flash/EE memory, the GPIOs (see  
Table 78), and the PWM.  
BIT 31  
BIT 0  
BYTE 3 BYTE 2 BYTE 1 BYTE 0  
.
.
.
.
.
.
.
.
.
.
.
.
0xFFFFFFFF  
B
7
3
A
6
2
9
5
1
8
4
0
0x00000004  
0x00000000  
32 BITS  
Figure 46. Little Endian Format  
Rev. F | Page 41 of 104  
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
0xFFFFFFFF  
0xFFFFFC3C  
Table 16. Complete MMR List  
Access  
Byte Type  
Default  
Value  
PWM  
0xFFFFFC00  
Address Name  
Page  
0xFFFFF820  
IRQ Address Base = 0xFFFF0000  
FLASH CONTROL  
INTERFACE  
0x0000  
0x0004  
0x0008  
0x000C  
0x0010  
0x0100  
0x0104  
0x0108  
0x010C  
IRQSTA  
IRQSIG1  
IRQEN  
IRQCLR  
SWICFG  
FIQSTA  
FIQSIG1  
FIQEN  
4
4
4
4
4
4
4
4
4
R
R
R/W  
W
W
R
R
R/W  
W
0x00000000  
0x00XXX000 83  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00XXX000 84  
0x00000000  
0x00000000  
83  
0xFFFFF800  
0xFFFFF46C  
GPIO  
83  
83  
84  
84  
0xFFFFF400  
0xFFFF0B54  
PLA  
0xFFFF0B00  
0xFFFF0A14  
SPI  
0xFFFF0A00  
84  
84  
FIQCLR  
0xFFFF0948  
I2C1  
1 Depends on the level on the external interrupt pins (P0.4, P0.5, P1.4, and P1.5).  
0xFFFF0900  
0xFFFF0848  
I2C0  
System Control Address Base = 0xFFFF0200  
0xFFFF0800  
0x0220  
0x0230  
0x0234  
REMAP  
RSTSTA  
RSTCLR  
1
1
1
R/W  
R/W  
W
0xXX1  
0x01  
0x00  
55  
55  
55  
0xFFFF0730  
UART  
0xFFFF0700  
0xFFFF0620  
1 Depends on the model.  
DAC  
0xFFFF0600  
Timer Address Base = 0xFFFF0300  
0xFFFF0538  
ADC  
0x0300  
0x0304  
0x0308  
0x030C  
0x0320  
0x0324  
0x0328  
0x032C  
0x0330  
0x0340  
0x0344  
0x0348  
0x034C  
0x0360  
0x0364  
0x0368  
0x036C  
T0LD  
2
2
2
1
4
4
2
1
4
4
4
2
1
2
2
2
1
R/W  
R
R/W  
W
R/W  
R
R/W  
W
R/W  
R/W  
R
R/W  
W
R/W  
R
R/W  
W
0x0000  
0xFFFF  
0x0000  
0xFF  
0x00000000  
0xFFFFFFFF  
0x0000  
85  
85  
85  
85  
86  
86  
86  
87  
87  
87  
87  
87  
88  
88  
88  
88  
89  
0xFFFF0500  
T0VAL  
T0CON  
T0CLRI  
T1LD  
T1VAL  
T1CON  
T1CLRI  
T1CAP  
T2LD  
T2VAL  
T2CON  
T2CLRI  
T3LD  
T3VAL  
T3CON  
T3CLRI  
0xFFFF0490  
BAND GAP  
REFERENCE  
0xFFFF048C  
0xFFFF0448  
POWER SUPPLY  
MONITOR  
0xFFFF0440  
0xFFFF0420  
PLL AND  
OSCILLATOR CONTROL  
0xFF  
0xFFFF0404  
0x00000000  
0x00000000  
0xFFFFFFFF  
0x0000  
0xFF  
0x0000  
0xFFFF  
0x0000  
0x00  
0xFFFF0370  
WATCHDOG  
TIMER  
0xFFFF0360  
0xFFFF0350  
WAKE-UP  
TIMER  
0xFFFF0340  
0xFFFF0334  
GENERAL-PURPOSE  
TIMER  
0xFFFF0320  
0xFFFF0310  
TIMER 0  
0xFFFF0300  
0xFFFF0238  
REMAP AND  
SYSTEM CONTROL  
PLL Base Address = 0xFFFF0400  
0xFFFF0220  
0x0404  
0x0408  
0x040C  
0x0410  
0x0414  
0x0418  
POWKEY1  
POWCON  
POWKEY2  
PLLKEY1  
PLLCON  
2
2
2
2
1
2
W
R/W  
W
W
R/W  
W
0x0000  
0x0003  
0x0000  
0x0000  
0x21  
60  
60  
60  
60  
60  
60  
0xFFFF0110  
INTERRUPT  
CONTROLLER  
0xFFFF0000  
Figure 47. Memory Mapped Registers  
PLLKEY2  
0x0000  
PSM Address Base = 0xFFFF0440  
0x0440  
0x0444  
PSMCON  
CMPCON  
2
2
R/W  
R/W  
0x0008  
0x0000  
57  
58  
Rev. F | Page 42 of 104  
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Access  
Byte Type  
Default  
Value  
Access  
Byte Type  
Default  
Value  
Address Name  
Page  
Address Name  
Page  
Reference Address Base = 0xFFFF0480  
I2C0 Base Address = 0xFFFF0800  
0x048C  
REFCON  
1
R/W  
0x00  
50  
0x0800  
0x0804  
0x0808  
0x080C  
0x0810  
0x0814  
0x0818  
0x081C  
0x0824  
0x0828  
0x082C  
0x0830  
0x0838  
0x083C  
0x0840  
0x0844  
0x0848  
0x084C  
I2C0MSTA  
I2C0SSTA  
I2C0SRX  
I2C0STX  
I2C0MRX  
I2C0MTX  
I2C0CNT  
I2C0ADR  
I2C0BYTE  
I2C0ALT  
I2C0CFG  
I2C0DIV  
I2C0ID0  
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
2
R/W  
R
R
W
R
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x1F1F  
0x00  
0x00  
0x00  
0x00  
0x01  
0x0000  
76  
76  
77  
77  
77  
77  
77  
77  
77  
78  
78  
79  
79  
79  
79  
79  
79  
79  
ADC Address Base = 0xFFFF0500  
0x0500  
0x0504  
0x0508  
0x050C  
0x0510  
0x0514  
0x0530  
0x0534  
ADCCON  
ADCCP  
2
1
1
1
4
1
2
2
R/W  
R/W  
R/W  
R
0x0600  
0x00  
0x01  
0x00  
0x00000000  
0x00  
46  
47  
47  
48  
48  
48  
48  
48  
W
ADCCN  
ADCSTA  
ADCDAT  
ADCRST  
ADCGN  
ADCOF  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
0x0200  
0x0200  
DAC Address Base = 0xFFFF0600  
I2C0ID1  
I2C0ID2  
I2C0ID3  
I2C0CCNT  
I2C0FSTA  
0x0600  
0x0604  
0x0608  
0x060C  
0x0610  
0x0614  
0x0618  
0x061C  
DAC0CON  
DAC0DAT  
DAC1CON  
DAC1DAT  
DAC2CON  
DAC2DAT  
DAC3CON  
DAC3DAT  
1
4
1
4
1
4
1
4
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00  
0x00000000  
0x00  
0x00000000  
0x00  
0x00000000  
0x00  
56  
56  
56  
56  
56  
56  
56  
56  
I2C1 Base Address = 0xFFFF0900  
0x0900  
0x0904  
0x0908  
0x090C  
0x0910  
0x0914  
0x0918  
0x091C  
0x0924  
0x0928  
0x092C  
0x0930  
0x0938  
0x093C  
0x0940  
0x0944  
0x0948  
0x094C  
I2C1MSTA  
I2C1SSTA  
I2C1SRX  
I2C1STX  
I2C1MRX  
I2C1MTX  
I2C1CNT  
I2C1ADR  
I2C1BYTE  
I2C1ALT  
I2C1CFG  
I2C1DIV  
I2C1ID0  
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
2
R/W  
R
R
W
R
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x1F1F  
0x00  
0x00  
0x00  
0x00  
0x01  
0x0000  
76  
76  
77  
77  
77  
77  
77  
77  
77  
78  
78  
79  
79  
79  
79  
79  
79  
79  
0x00000000  
UART Base Address = 0xFFFF0700  
0x0700  
COMTX  
COMRX  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
R/W  
R
R/W  
R/W  
R/W  
R
R/W  
R/W  
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x00  
0x00  
0x60  
0x00  
0x00  
0x04  
0x01  
0xAA  
0x0000  
71  
71  
71  
71  
72  
72  
72  
72  
72  
73  
73  
73  
73  
74  
73  
W
COMDIV0  
COMIEN0  
COMDIV1  
COMIID0  
COMCON0  
COMCON1  
COMSTA0  
COMSTA1  
COMSCR  
COMIEN1  
COMIID1  
COMADR  
COMDIV2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0704  
0x0708  
0x070C  
0x0710  
0x0714  
0x0718  
0x071C  
0x0720  
0x0724  
0x0728  
0x072C  
R
I2C1ID1  
I2C1ID2  
I2C1ID3  
I2C1CCNT  
I2C1FSTA  
R/W  
R/W  
R
R/W  
R/W  
SPI Base Address = 0xFFFF0A00  
0x0A00  
0x0A04  
0x0A08  
0x0A0C  
0x0A10  
SPISTA  
SPIRX  
SPITX  
SPIDIV  
SPICON  
1
1
1
1
2
R
R
W
R/W  
R/W  
0x00  
0x00  
0x00  
0x1B  
0x0000  
75  
75  
75  
75  
75  
Rev. F | Page 43 of 104  
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Access  
Byte Type  
Default  
Value  
Access  
Byte Type  
Default  
Value  
Address Name  
Page  
Address Name  
Page  
PLA Base Address = 0xFFFF0B00  
GPIO Base Address = 0xFFFFF400  
0x0B00  
0x0B04  
0x0B08  
0x0B0C  
0x0B10  
0x0B14  
0x0B18  
0x0B1C  
0x0B20  
0x0B24  
0x0B28  
0x0B2C  
0x0B30  
0x0B34  
0x0B38  
0x0B3C  
0x0B40  
0x0B44  
0x0B48  
0x0B4C  
0x0B50  
0x0B54  
PLAELM0  
PLAELM1  
PLAELM2  
PLAELM3  
PLAELM4  
PLAELM5  
PLAELM6  
PLAELM7  
PLAELM8  
PLAELM9  
PLAELM10  
PLAELM11  
PLAELM12  
PLAELM13  
PLAELM14  
PLAELM15  
PLACLK  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
4
4
4
4
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x00  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
81  
81  
82  
82  
82  
82  
0xF400  
0xF404  
0xF408  
0xF40C  
0xF410  
0xF420  
0xF424  
0xF428  
0xF42C  
0xF430  
0xF434  
0xF438  
0xF43C  
0xF440  
0xF444  
0xF448  
0xF450  
0xF454  
0xF458  
0xF460  
0xF464  
0xF468  
GP0CON  
GP1CON  
GP2CON  
GP3CON  
GP4CON  
GP0DAT  
GP0SET  
GP0CLR  
GP0PAR  
GP1DAT  
GP1SET  
GP1CLR  
GP1PAR  
GP2DAT  
GP2SET  
GP2CLR  
GP3DAT  
GP3SET  
GP3CLR  
GP4DAT  
GP4SET  
GP4CLR  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x000000XX1 70  
0x000000XX1 70  
0x000000XX1 70  
68  
68  
68  
68  
68  
W
R/W  
R/W  
W
0x20000000  
68  
0x000000XX1 69  
0x000000XX1 70  
0x000000XX1 70  
W
R/W  
R/W  
W
W
R/W  
W
W
R/W  
W
0x00000000  
68  
0x000000XX1 69  
0x000000XX1 70  
0x000000XX1 70  
0x000000XX1 69  
0x000000XX1 70  
0x000000XX1 70  
0x000000XX1 69  
0x000000XX1 70  
0x000000XX1 70  
PLAIRQ  
PLAADC  
PLADIN  
PLADOUT  
PLALCK  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00  
W
W
1 X = 0, 1, 2, or 3.  
External Memory Base Address = 0xFFFFF000  
Flash/EE Base Address = 0xFFFFF800  
0xF000  
0xF010  
0xF014  
0xF018  
0xF01C  
0xF020  
0xF024  
0xF028  
0xF02C  
XMCFG  
1
1
1
1
1
2
2
2
2
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
90  
90  
90  
90  
90  
90  
90  
90  
90  
0xF800  
0xF804  
0xF808  
0xF80C  
0xF810  
0xF818  
0xF81C  
0xF820  
FEESTA  
1
2
1
2
2
3
4
4
R
0x20  
0x0000  
0x07  
0xXXXX1  
52  
52  
53  
53  
53  
53  
53  
53  
XM0CON  
XM1CON  
XM2CON  
XM3CON  
XM0PAR  
XM1PAR  
XM2PAR  
XM3PAR  
FEEMOD  
FEECON  
FEEDAT  
FEEADR  
FEESIGN  
FEEPRO  
FEEHIDE  
R/W  
R/W  
R/W  
R/W  
R
0x00  
0x0000  
0x70FF  
0x70FF  
0x70FF  
0x70FF  
0xFFFFFF  
0x00000000  
0xFFFFFFFF  
R/W  
R/W  
1 X = 0, 1, 2, or 3.  
PWM Base Address = 0xFFFFFC00  
0xFC00  
0xFC04  
0xFC08  
0xFC0C  
0xFC10  
0xFC14  
0xFC18  
0xFC1C  
0xFC20  
0xFC24  
PWMCON  
PWMSTA  
PWMDAT0  
PWMDAT1  
PWMCFG  
PWMCH0  
PWMCH1  
PWMCH2  
PWMEN  
2
2
2
2
2
2
2
2
2
2
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
66  
66  
67  
67  
67  
67  
67  
67  
67  
67  
PWMDAT2  
Rev. F | Page 44 of 104  
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
ADC CIRCUIT OVERVIEW  
The ideal code transitions occur midway between successive  
integer LSB values (that is, 1/2 LSB, 3/2 LSB, 5/2 LSB, … ,  
FS − 3/2 LSB). The ideal input/output transfer characteristic  
is shown in Figure 49.  
The analog-to-digital converter (ADC) incorporates a fast,  
multichannel, 12-bit ADC. It can operate from 2.7 V to 3.6 V  
supplies and is capable of providing a throughput of up to  
1 MSPS when the clock source is 41.78 MHz. This block  
provides the user with a multichannel multiplexer, a differential  
track-and-hold, an on-chip reference, and an ADC.  
1111 1111 1111  
1111 1111 1110  
1111 1111 1101  
The ADC consists of a 12-bit successive approximation converter  
based around two capacitor DACs. Depending on the input  
signal configuration, the ADC can operate in one of three modes.  
1111 1111 1100  
FS  
1LSB =  
4096  
Fully differential mode, for small and balanced signals  
Single-ended mode, for any single-ended signals  
Pseudo differential mode, for any single-ended signals,  
taking advantage of the common-mode rejection offered  
by the pseudo differential input  
0000 0000 0011  
0000 0000 0010  
0000 0000 0001  
0000 0000 0000  
0V 1LSB  
+FS – 1LSB  
The converter accepts an analog input range of 0 V to VREF when  
operating in single-ended or pseudo differential mode. In fully  
differential mode, the input signal must be balanced around a  
common-mode voltage (VCM) in the 0 V to AVDD range with a  
maximum amplitude of 2 VREF (see Figure 48).  
VOLTAGE INPUT  
Figure 49. ADC Transfer Function in Pseudo Differential or Single-Ended Mode  
Fully Differential Mode  
The amplitude of the differential signal is the difference between  
the signals applied to the VIN+ and VIN– input voltage pins (that  
is, VIN+ − VIN–). The maximum amplitude of the differential  
signal is, therefore, –VREF to +VREF p-p (that is, 2 × VREF). This is  
regardless of the common mode (CM). The common mode is  
the average of the two signals, for example, (VIN+ + VIN–)/2, and  
is, therefore, the voltage that the two inputs are centered on.  
This results in the span of each input being CM VREF/2. This  
voltage has to be set up externally, and its range varies with VREF  
(see the Driving the Analog Inputs section).  
AV  
DD  
V
2V  
CM  
REF  
V
CM  
2V  
REF  
V
2V  
CM  
REF  
0
Figure 48. Examples of Balanced Signals in Fully Differential Mode  
A high precision, low drift, factory calibrated, 2.5 V reference is  
provided on-chip. An external reference can also be connected as  
described in the Band Gap Reference section.  
The output coding is twos complement in fully differential mode  
with 1 LSB = 2 VREF/4096 or 2 × 2.5 V/4096 = 1.22 mV when  
VREF = 2.5 V. The output result is 11 bits, but this is shifted by 1  
to the right. This allows the result in ADCDAT to be declared as a  
signed integer when writing C code. The designed code  
transitions occur midway between successive integer LSB values  
(that is, 1/2 LSB, 3/2 LSB, 5/2 LSB, … , FS − 3/2 LSB). e ideal  
input/output transfer characteristic is shown in Figure 50.  
Single or continuous conversion modes can be initiated in the  
CONVSTART  
software. An external  
pin, an output generated from  
the on-chip PLA, or a Timer0 or Timer1 overflow can also be  
used to generate a repetitive trigger for ADC conversions.  
A voltage output from an on-chip band gap reference propor-  
tional to absolute temperature can also be routed through the  
front-end ADC multiplexer, effectively an additional ADC channel  
input. This facilitates an internal temperature sensor channel  
that measures die temperature to an accuracy of 3°C.  
SIGN  
BIT  
0
0
0
1111 1111 1110  
1111 1111 1100  
1111 1111 1010  
2 × V  
4096  
REF  
1LSB =  
0
0
1
0000 0000 0010  
0000 0000 0000  
1111 1111 1110  
TRANSFER FUNCTION  
Pseudo Differential and Single-Ended Modes  
In pseudo differential or single-ended mode, the input range  
is 0 V to VREF. The output coding is straight binary in pseudo  
differential and single-ended modes with  
1
1
1
0000 0000 0100  
0000 0000 0010  
0000 0000 0000  
1 LSB = FS/4096, or  
–V  
+ 1LSB  
0LSB  
+V  
– 1LSB  
REF  
REF  
2.5 V/4096 = 0.61 mV, or  
610 μV when VREF = 2.5 V  
VOLTAGE INPUT (V + – V –)  
IN  
IN  
Figure 50. ADC Transfer Function in Differential Mode  
Rev. F | Page 45 of 104  
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
ACQ  
BIT TRIAL  
WRITE  
TYPICAL OPERATION  
Once configured via the ADC control and channel selection  
registers, the ADC converts the analog input and provides a  
12-bit result in the ADC data register.  
ADC CLOCK  
CONV  
START  
The top four bits are the sign bits. The 12-bit result is placed  
from Bit 16 to Bit 27, as shown in Figure 51. Again, it should be  
noted that, in fully differential mode, the result is represented in  
twos complement format. In pseudo differential and single-  
ended modes, the result is represented in straight binary format.  
ADC  
BUSY  
DATA  
ADCDAT  
31  
27  
16 15  
0
ADCSTA = 0  
ADCSTA = 1  
ADC INTERRUPT  
SIGN BITS  
12-BIT ADC RESULT  
Figure 51. ADC Result Format  
Figure 52. ADC Timing  
The same format is used in DACxDAT, simplifying the software.  
ADuC7019  
Current Consumption  
The ADuC7019 is identical to the ADuC7020 except for one  
buffered ADC channel, ADC3, and it has only three DACs. The  
output buffer of the fourth DAC is internally connected to the  
ADC3 channel as shown in Figure 53.  
The ADC in standby mode, that is, powered up but not  
converting, typically consumes 640 μA. The internal reference  
adds 140 μA. During conversion, the extra current is 0.3 μA  
multiplied by the sampling frequency (in kilohertz (kHz)).  
Figure 43 shows the current consumption vs. the sampling  
frequency of the ADC.  
ADuC7019  
1MSPS  
12-BIT ADC  
12-BIT  
DAC  
MUX  
Timing  
ADC3  
DAC3  
Figure 52 gives details of the ADC timing. Users control the  
ADC clock speed and the number of acquisition clocks in the  
ADCCON MMR. By default, the acquisition time is eight clocks  
and the clock divider is 2. The number of extra clocks (such as  
bit trial or write) is set to 19, which gives a sampling rate of  
774 kSPS. For conversion on the temperature sensor, the ADC  
acquisition time is automatically set to 16 clocks, and the ADC  
clock divider is set to 32. When using multiple channels,  
including the temperature sensor, the timing settings revert to  
the user-defined settings after reading the temperature sensor  
channel.  
ADC15  
Figure 53. ADC3 Buffered Input  
Note that the DAC3 output pin must be connected to a 10 nF  
capacitor to AGND. This channel should be used to measure dc  
voltages only. ADC calibration may be necessary on this channel.  
MMRS INTERFACE  
The ADC is controlled and configured via the eight MMRs  
described in this section.  
Table 17. ADCCON Register  
Name  
Address  
Default Value  
Access  
ADCCON  
0xFFFF0500  
0x0600  
R/W  
ADCCON is an ADC control register that allows the programmer  
to enable the ADC peripheral, select the mode of operation of  
the ADC (in single-ended mode, pseudo differential mode, or  
fully differential mode), and select the conversion type. This  
MMR is described in Table 18.  
Rev. F | Page 46 of 104  
 
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 18. ADCCON MMR Bit Designations  
Table 19. ADCCP Register  
Bit  
Value Description  
Name  
Address  
Default Value  
Access  
15:13  
12:10  
Reserved.  
ADC clock speed.  
ADCCP  
0xFFFF0504  
0x00  
R/W  
ADCCP is an ADC positive channel selection register. This  
MMR is described in Table 20.  
000  
fADC/1. This divider is provided to obtain  
1 MSPS ADC with an external clock <41.78 MHz.  
001  
010  
011  
100  
101  
fADC/2 (default value).  
fADC/4.  
fADC/8.  
fADC/16.  
fADC/32.  
ADC acquisition time.  
Two clocks.  
Four clocks.  
Eight clocks (default value).  
16 clocks.  
Enable start conversion.  
Table 20. ADCCP1 MMR Bit Designation  
Bit  
7:5  
4:0  
Value  
Description  
Reserved.  
Positive channel selection bits.  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
ADC0.  
ADC1.  
ADC2.  
ADC3.  
ADC4.  
ADC5.  
ADC6.  
ADC7.  
ADC8.  
ADC9.  
ADC10.  
ADC11.  
DAC0/ADC12.  
DAC1/ADC13.  
DAC2/ADC14.  
DAC3/ADC15.  
9:8  
7
00  
01  
10  
11  
Set by the user to start any type of conversion  
command. Cleared by the user to disable a  
start conversion (clearing this bit does not  
stop the ADC when continuously converting).  
6
5
Reserved.  
ADC power control.  
Set by the user to place the ADC in normal  
mode (the ADC must be powered up for at least  
5 μs before it converts correctly). Cleared by the  
user to place the ADC in power-down mode.  
Conversion mode.  
Single-ended mode.  
Differential mode.  
Pseudo differential mode.  
Reserved.  
Temperature sensor.  
AGND (self-diagnostic feature).  
Internal reference (self-diagnostic feature).  
AVDD/2.  
4:3  
2:0  
00  
01  
10  
11  
Others Reserved.  
1 ADC and DAC channel availability depends on the part model. See Ordering  
Guide for details.  
Conversion type.  
000  
001  
010  
011  
Enable CONVSTART pin as a conversion input.  
Enable Timer1 as a conversion input.  
Enable Timer0 as a conversion input.  
Single software conversion. Sets to 000 after  
conversion (note that Bit 7 of ADCCON MMR  
should be cleared after starting a single  
software conversion to avoid further  
Table 21. ADCCN Register  
Name  
Address  
Default Value  
Access  
ADCCN  
0xFFFF0508  
0x01  
R/W  
ADCCN is an ADC negative channel selection register. This  
MMR is described in Table 22.  
conversions triggered by the CONVSTART pin).  
100  
101  
Continuous software conversion.  
PLA conversion.  
Other Reserved.  
Rev. F | Page 47 of 104  
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Table 27. ADCOF Register  
Table 22. ADCCN MMR Bit Designation  
Name  
Address  
Default Value  
0x0200  
Access  
Bit  
7:5  
4:0  
Value  
Description  
ADCOF  
0xFFFF0534  
R/W  
Reserved.  
Negative channel selection bits.  
ADCOF is a 10-bit offset calibration register.  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
ADC0.  
ADC1.  
ADC2.  
ADC3.  
ADC4.  
ADC5.  
ADC6.  
ADC7.  
ADC8.  
ADC9.  
ADC10.  
ADC11.  
DAC0/ADC12.  
DAC1/ADC13.  
DAC2/ADC14.  
DAC3/ADC15.  
CONVERTER OPERATION  
The ADC incorporates a successive approximation (SAR)  
architecture involving a charge-sampled input stage. This  
architecture can operate in three modes: differential, pseudo  
differential, and single-ended.  
Differential Mode  
The ADuC7019/20/21/22/24/25/26/27/28/29 each contain a  
successive approximation ADC based on two capacitive DACs.  
Figure 54 and Figure 55 show simplified schematics of the ADC  
in acquisition and conversion phase, respectively. The ADC  
comprises control logic, a SAR, and two capacitive DACs. In  
Figure 54 (the acquisition phase), SW3 is closed and SW1 and  
SW2 are in Position A. The comparator is held in a balanced  
condition, and the sampling capacitor arrays acquire the  
differential signal on the input.  
Internal reference (self-diagnostic feature).  
Others Reserved.  
CAPACITIVE  
DAC  
COMPARATOR  
Table 23. ADCSTA Register  
C
C
B
A
S
S
CHANNEL+  
CHANNEL–  
AIN0  
Name  
Address  
Default Value  
Access  
SW1  
SW2  
CONTROL  
LOGIC  
MUX  
SW3  
ADCSTA  
0xFFFF050C  
0x00  
R
A
B
AIN11  
ADCSTA is an ADC status register that indicates when an ADC  
conversion result is ready. The ADCSTA register contains only  
one bit, ADCReady (Bit 0), representing the status of the ADC.  
This bit is set at the end of an ADC conversion, generating an  
ADC interrupt. It is cleared automatically by reading the  
ADCDAT MMR. When the ADC is performing a conversion,  
the status of the ADC can be read externally via the ADCBUSY  
pin. This pin is high during a conversion. When the conversion  
is finished, ADCBUSY goes back low. This information can be  
available on P0.5 (see the General-Purpose Input/Output  
section) if enabled in the ADCCON register.  
V
REF  
CAPACITIVE  
DAC  
Figure 54. ADC Acquisition Phase  
When the ADC starts a conversion, as shown in Figure 55, SW3  
opens, and then SW1 and SW2 move to Position B. This causes  
the comparator to become unbalanced. Both inputs are discon-  
nected once the conversion begins. The control logic and the  
charge redistribution DACs are used to add and subtract fixed  
amounts of charge from the sampling capacitor arrays to bring  
the comparator back into a balanced condition. When the  
comparator is rebalanced, the conversion is complete. The  
control logic generates the ADC output code. The output  
impedances of the sources driving the VIN+ and VIN– input  
voltage pins must be matched; otherwise, the two inputs have  
different settling times, resulting in errors.  
Table 24. ADCDAT Register  
Name  
Address  
Default Value  
Access  
ADCDAT  
0xFFFF0510  
0x00000000  
R
ADCDAT is an ADC data result register. It holds the 12-bit  
ADC result as shown in Figure 51.  
CAPACITIVE  
DAC  
Table 25. ADCRST Register  
Name  
Address  
Default Value  
Access  
COMPARATOR  
C
C
B
A
S
S
CHANNEL+  
CHANNEL–  
AIN0  
ADCRST  
0xFFFF0514  
0x00  
R/W  
SW1  
SW2  
CONTROL  
LOGIC  
MUX  
SW3  
ADCRST resets the digital interface of the ADC. Writing any value  
to this register resets all the ADC registers to their default values.  
A
B
AIN11  
V
REF  
Table 26. ADCGN Register  
CAPACITIVE  
DAC  
Name  
Address  
Default Value  
Access  
Figure 55. ADC Conversion Phase  
ADCGN  
0xFFFF0530  
0x0200  
R/W  
ADCGN is a 10-bit gain calibration register.  
Rev. F | Page 48 of 104  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
AV  
DD  
Pseudo Differential Mode  
In pseudo differential mode, Channel− is linked to the VIN− pin  
of the ADuC7019/20/21/22/24/25/26/27/28/29. SW2 switches  
between A (Channel−) and B (VREF). The VIN− pin must be  
connected to ground or a low voltage. The input signal on VIN+  
can then vary from VIN− to VREF + VIN−. Note that VIN− must be  
chosen so that VREF + VIN− does not exceed AVDD.  
D
C2  
R1  
C1  
D
AV  
DD  
D
D
C2  
R1  
CAPACITIVE  
DAC  
C1  
COMPARATOR  
C
C
B
A
S
S
CHANNEL+  
AIN0  
SW1  
SW2  
CONTROL  
LOGIC  
MUX  
SW3  
Figure 58. Equivalent Analog Input Circuit Conversion Phase: Switches Open,  
Track Phase: Switches Closed  
A
B
AIN11  
V
For ac applications, removing high frequency components from  
the analog input signal is recommended by using an RC low-  
pass filter on the relevant analog input pins. In applications  
where harmonic distortion and signal-to-noise ratio are critical,  
the analog input should be driven from a low impedance  
source. Large source impedances significantly affect the ac  
performance of the ADC. This can necessitate the use of an  
input buffer amplifier. The choice of the op amp is a function of  
the particular application. Figure 59 and Figure 60 give an  
example of an ADC front end.  
REF  
CAPACITIVE  
DAC  
V
IN–  
CHANNEL–  
Figure 56. ADC in Pseudo Differential Mode  
Single-Ended Mode  
In single-ended mode, SW2 is always connected internally to  
ground. The VIN− pin can be floating. The input signal range on  
VIN+ is 0 V to VREF.  
CAPACITIVE  
DAC  
COMPARATOR  
C
C
B
A
S
S
CHANNEL+  
AIN0  
ADuC7019/  
ADuC702x  
SW1  
CONTROL  
LOGIC  
MUX  
SW3  
10  
ADC0  
CHANNEL–  
AIN11  
0.01µF  
CAPACITIVE  
DAC  
Figure 59. Buffering Single-Ended/Pseudo Differential Input  
Figure 57. ADC in Single-Ended Mode  
ADuC7019/  
ADuC702x  
Analog Input Structure  
ADC0  
V
REF  
Figure 58 shows the equivalent circuit of the analog input structure  
of the ADC. The four diodes provide ESD protection for the analog  
inputs. Care must be taken to ensure that the analog input  
signals never exceed the supply rails by more than 300 mV;  
exceeding 300 mV causes these diodes to become forward-  
biased and start conducting into the substrate. These diodes can  
conduct up to 10 mA without causing irreversible damage to  
the part.  
ADC1  
Figure 60. Buffering Differential Inputs  
When no amplifier is used to drive the analog input, the source  
impedance should be limited to values lower than 1 kΩ. The  
maximum source impedance depends on the amount of total  
harmonic distortion (THD) that can be tolerated. The THD  
increases as the source impedance increases and the performance  
degrades.  
The C1 capacitors in Figure 58 are typically 4 pF and can be  
primarily attributed to pin capacitance. The resistors are  
lumped components made up of the on resistance of the  
switches. The value of these resistors is typically about 100 Ω.  
The C2 capacitors are the ADC’s sampling capacitors and  
typically have a capacitance of 16 pF.  
DRIVING THE ANALOG INPUTS  
Internal or external references can be used for the ADC. In  
the differential mode of operation, there are restrictions on the  
common-mode input signal (VCM), which is dependent upon  
the reference value and supply voltage used to ensure that the  
signal remains within the supply rails. Table 28 gives some  
calculated VCM minimum and VCM maximum values.  
Rev. F | Page 49 of 104  
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
ADCCP = 0x10; // Select Temperature  
Sensor as an // input to the ADC  
Table 28. VCM Ranges  
AVDD VREF  
VCM Min VCM Max Signal Peak-to-Peak  
REFCON = 0x01; // connect internal 2.5V  
reference // to Vref pin  
3.3 V 2.5 V  
1.25 V  
2.05 V  
2.276 V  
2.55 V  
1.75 V  
1.976 V  
2.25 V  
2.5 V  
2.048 V 1.024 V  
2.048 V  
1.25 V  
2.5 V  
2.048 V  
1.25 V  
ADCCON = 0xE4; // continuous conversion  
1.25 V  
0.75 V  
1.25 V  
while(1)  
{
3.0 V 2.5 V  
2.048 V 1.024 V  
while (!ADCSTA){};  
// wait for end of conversion  
1.25 V  
0.75 V  
CALIBRATION  
b = (ADCDAT >> 16);  
By default, the factory-set values written to the ADC offset  
(ADCOF) and gain coefficient registers (ADCGN) yield  
optimum performance in terms of end-point errors and  
linearity for standalone operation of the part (see the  
Specifications section). If system calibration is required, it is  
possible to modify the default offset and gain coefficients to  
improve end-point errors, but note that any modification to the  
factory-set ADCOF and ADCGN values can degrade ADC  
linearity performance.  
// To calculate temperature in °C, use  
the formula:  
a = 0x525 - b;  
// ((Temperature = 0x525 - Sensor  
Voltage) / 1.3)  
a /= 1.3;  
b = floor(a);  
printf("Temperature: %d  
oC\n",b);  
For system offset error correction, the ADC channel input stage  
must be tied to AGND. A continuous software ADC conversion  
loop must be implemented by modifying the value in ADCOF until  
the ADC result (ADCDAT) reads Code 0 to Code 1. If the  
ADCDAT value is greater than 1, ADCOF should be decremented  
until ADCDAT reads 0 to 1. Offset error correction is done  
digitally and has a resolution of 0.25 LSB and a range of  
}
return 0;  
}
BAND GAP REFERENCE  
Each ADuC7019/20/21/22/24/25/26/27/28/29 provides an on-  
chip band gap reference of 2.5 V, which can be used for the ADC  
and DAC. This internal reference also appears on the VREF pin.  
When using the internal reference, a 0.47 µF capacitor must be  
connected from the external VREF pin to AGND to ensure stability  
and fast response during ADC conversions. This reference can  
also be connected to an external pin (VREF) and used as a refer-  
ence for other circuits in the system. An external buffer is required  
because of the low drive capability of the VREF output. A program-  
mable option also allows an external reference input on the VREF  
pin. Note that it is not possible to disable the internal reference.  
Therefore, the external reference source must be capable of  
overdriving the internal reference source.  
3.125% of VREF  
.
For system gain error correction, the ADC channel input stage  
must be tied to VREF. A continuous software ADC conversion  
loop must be implemented to modify the value in ADCGN  
until the ADC result (ADCDAT) reads Code 4094 to Code 4095.  
If the ADCDAT value is less than 4094, ADCGN should be  
incremented until ADCDAT reads 4094 to 4095. Similar to the  
offset calibration, the gain calibration resolution is 0.25 LSB  
with a range of 3% of VREF  
.
TEMPERATURE SENSOR  
The ADuC7019/20/21/22/24/25/26/27/28/29 provide voltage  
output from on-chip band gap references proportional to  
absolute temperature. This voltage output can also be routed  
through the front-end ADC multiplexer (effectively an additional  
ADC channel input) facilitating an internal temperature sensor  
channel, measuring die temperature to an accuracy of ±3°C.  
Table 29. REFCON Register  
Name  
Address  
Default Value  
Access  
REFCON  
0xFFFF048C  
0x00  
R/W  
The band gap reference interface consists of an 8-bit MMR  
REFCON, described in Table 30.  
The following is an example routine showing how to use the  
internal temperature sensor:  
Table 30. REFCON MMR Bit Designations  
Bit  
7:1  
0
Description  
int main(void)  
{
Reserved.  
Internal reference output enable. Set by user to  
connect the internal 2.5 V reference to the VREF pin.  
The reference can be used for an external component  
but must be buffered. Cleared by user to disconnect  
the reference from the VREF pin.  
float a = 0;  
short b;  
ADCCON = 0x20;  
delay(2000);  
// power-on the ADC  
Rev. F | Page 50 of 104  
 
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
NONVOLATILE FLASH/EE MEMORY  
The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate  
Flash/EE memory technology on-chip to provide the user with  
nonvolatile, in-circuit reprogrammable memory space.  
Retention quantifies the ability of the Flash/EE memory to  
retain its programmed data over time. Again, the parts are  
qualified in accordance with the formal JEDEC Retention  
Lifetime Specification (A117) at a specific junction temperature  
(TJ = 85°C). As part of this qualification procedure, the  
Flash/EE memory is cycled to its specified endurance limit,  
described in Table 1, before data retention is characterized. This  
means that the Flash/EE memory is guaranteed to retain its data  
for its fully specified retention lifetime every time the Flash/EE  
memory is reprogrammed. In addition, note that retention  
lifetime, based on an activation energy of 0.6 eV, derates with TJ  
as shown in Figure 61.  
Like EEPROM, flash memory can be programmed in-system  
at a byte level, although it must first be erased. The erase is  
performed in page blocks. As a result, flash memory is often  
and more correctly referred to as Flash/EE memory.  
Overall, Flash/EE memory represents a step closer to the  
ideal memory device that includes nonvolatility, in-circuit  
programmability, high density, and low cost. Incorporated in  
the ADuC7019/20/21/22/24/25/26/27/28/29, Flash/EE memory  
technology allows the user to update program code space in-  
circuit, without the need to replace one-time programmable  
(OTP) devices at remote operating nodes.  
600  
Each part contains a 64 kB array of Flash/EE memory. The  
lower 62 kB is available to the user and the upper 2 kB contain  
permanently embedded firmware, allowing in-circuit serial  
download. These 2 kB of embedded firmware also contain a  
power-on configuration routine that downloads factory-  
calibrated coefficients to the various calibrated peripherals  
(such as ADC, temperature sensor, and band gap references).  
This 2 kB embedded firmware is hidden from user code.  
450  
300  
150  
0
Flash/EE Memory Reliability  
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
The Flash/EE memory arrays on the parts are fully qualified for  
two key Flash/EE memory characteristics: Flash/EE memory  
cycling endurance and Flash/EE memory data retention.  
Figure 61. Flash/EE Memory Data Retention  
PROGRAMMING  
Endurance quantifies the ability of the Flash/EE memory to be  
cycled through many program, read, and erase cycles. A single  
endurance cycle is composed of four independent, sequential  
events, defined as  
The 62 kB of Flash/EE memory can be programmed in-circuit,  
using the serial download mode or the provided JTAG mode.  
Serial Downloading (In-Circuit Programming)  
1. Initial page erase sequence  
2. Read/verify sequence (single Flash/EE)  
3. Byte program sequence memory  
The ADuC7019/20/21/22/24/25/26/27/28/29 facilitate code  
download via the standard UART serial port or via the I2C port.  
The parts enter serial download mode after a reset or power  
cycle if the BM pin is pulled low through an external 1 kΩ  
resistor. After a part is in serial download mode, the user can  
download code to the full 62 kB of Flash/EE memory while  
the device is in-circuit in its target application hardware. An  
executable PC serial download is provided as part of the  
development system for serial downloading via the UART.  
The AN-806 Application Note describes the protocol for  
serial downloading via the I2C.  
4. Second read/verify sequence (endurance cycle)  
In reliability qualification, every half word (16-bit wide)  
location of the three pages (top, middle, and bottom) in the  
Flash/EE memory is cycled 10,000 times from 0x0000 to  
0xFFFF. As indicated in Table 1, the Flash/EE memory  
endurance qualification is carried out in accordance with  
JEDEC Retention Lifetime Specification A117 over the  
industrial temperature range of −40° to +125°C. The results  
allow the specification of a minimum endurance figure over a  
supply temperature of 10,000 cycles.  
JTAG Access  
The JTAG protocol uses the on-chip JTAG interface to facilitate  
code download and debug.  
Rev. F | Page 51 of 104  
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
SECURITY  
FLASH/EE CONTROL INTERFACE  
The 62 kB of Flash/EE memory available to the user can be read  
and write protected.  
Serial and JTAG programming use the Flash/EE control interface,  
which includes the eight MMRs outlined in this section.  
Bit 31 of the FEEPRO/FEEHIDE MMR (see Table 42) protects  
the 62 kB from being read through JTAG programming mode.  
The other 31 bits of this register protect writing to the flash  
memory. Each bit protects four pages, that is, 2 kB. Write  
protection is activated for all types of access.  
Table 31. FEESTA Register  
Name  
Address  
Default Value  
Access  
FEESTA  
0xFFFFF800  
0x20  
R
FEESTA is a read-only register that reflects the status of the  
flash control interface as described in Table 32.  
Three Levels of Protection  
Table 32. FEESTA MMR Bit Designations  
Protection can be set and removed by writing directly into  
FEEHIDE MMR. This protection does not remain after reset.  
Protection can be set by writing into the FEEPRO MMR. It  
takes effect only after a save protection command (0x0C)  
and a reset. The FEEPRO MMR is protected by a key to  
avoid direct access. The key is saved once and must be  
entered again to modify FEEPRO. A mass erase sets the  
key back to 0xFFFF but also erases all the user code.  
Flash can be permanently protected by using the FEEPRO  
MMR and a particular value of key: 0xDEADDEAD.  
Entering the key again to modify the FEEPRO register  
is not allowed.  
Bit  
15:6  
5
Description  
Reserved.  
Reserved.  
Reserved.  
4
3
Flash interrupt status bit. Set automatically when an  
interrupt occurs, that is, when a command is complete  
and the Flash/EE interrupt enable bit in the FEEMOD  
register is set. Cleared when reading the FEESTA register.  
2
1
0
Flash/EE controller busy. Set automatically when the  
controller is busy. Cleared automatically when the  
controller is not busy.  
Command fail. Set automatically when a command  
completes unsuccessfully. Cleared automatically when  
reading the FEESTA register.  
Command pass. Set by the MicroConverter when a  
command completes successfully. Cleared automatic-  
ally when reading the FEESTA register.  
Sequence to Write the Key  
1. Write the bit in FEEPRO corresponding to the page to be  
protected.  
2. Enable key protection by setting Bit 6 of FEEMOD (Bit 5  
must equal 0).  
Table 33. FEEMOD Register  
3. Write a 32-bit key in FEEADR and FEEDAT.  
4. Run the write key command 0x0C in FEECON; wait for  
the read to be successful by monitoring FEESTA.  
5. Reset the part.  
Name  
Address  
Default Value  
Access  
FEEMOD  
0xFFFFF804  
0x0000  
R/W  
FEEMOD sets the operating mode of the flash control interface.  
Table 34 shows FEEMOD MMR bit designations.  
To remove or modify the protection, the same sequence is used  
with a modified value of FEEPRO. If the key chosen is the value  
0xDEAD, the memory protection cannot be removed. Only a mass  
erase unprotects the part, but it also erases all user code.  
Table 34. FEEMOD MMR Bit Designations  
Bit  
15:9  
8
Description  
Reserved.  
Reserved. This bit should always be set to 0.  
The sequence to write the key is illustrated in the following  
example (this protects writing Page 4 to Page 7 of the Flash):  
7:5  
Reserved. These bits should always be set to 0 except  
when writing keys. See the Sequence to Write the Key  
section.  
FEEPRO=0xFFFFFFFD;  
FEEMOD=0x48;  
FEEADR=0x1234;  
FEEDAT=0x5678;  
FEECON= 0x0C;  
//Protect pages 4 to 7  
//Write key enable  
//16 bit key value  
//16 bit key value  
// Write key command  
4
Flash/EE interrupt enable. Set by user to enable the  
Flash/EE interrupt. The interrupt occurs when a  
command is complete. Cleared by user to disable  
the Flash/EE interrupt.  
3
Erase/write command protection. Set by user to  
enable the erase and write commands. Cleared to  
protect the Flash against the erase/write command.  
The same sequence should be followed to protect the part  
permanently with FEEADR = 0xDEAD and FEEDAT = 0xDEAD.  
2:0  
Reserved. These bits should always be set to 0.  
Rev. F | Page 52 of 104  
 
 
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 35. FEECON Register  
Table 37. FEEDAT Register  
Name  
Address  
Default Value  
Access  
Name  
Address  
Default Value  
Access  
FEECON  
0xFFFFF808  
0x07  
R/W  
FEEDAT  
0xFFFFF80C  
0xXXXX1  
R/W  
1 X = 0, 1, 2, or 3.  
FEECON is an 8-bit command register. The commands are  
described in Table 36.  
FEEDAT is a 16-bit data register.  
Table 36. Command Codes in FEECON  
Table 38. FEEADR Register  
Code Command  
0x001 Null  
0x011 Single read  
Description  
Name  
Address  
Default Value  
Access  
Idle state.  
FEEADR  
0xFFFFF810  
0x0000  
R/W  
Load FEEDAT with the 16-bit data.  
Indexed by FEEADR.  
FEEADR is another 16-bit address register.  
0x021 Single write  
0x031 Erase/write  
Write FEEDAT at the address pointed to  
by FEEADR. This operation takes 50 µs.  
Erase the page indexed by FEEADR and  
write FEEDAT at the location pointed by  
FEEADR. This operation takes approxi-  
mately 24 ms.  
Table 39. FEESIGN Register  
Name  
Address  
Default Value  
Access  
FEESIGN  
0xFFFFF818  
0xFFFFFF  
R
FEESIGN is a 24-bit code signature.  
0x041 Single verify Compare the contents of the location  
pointed by FEEADR to the data in  
Table 40. FEEPRO Register  
Name  
Address  
Default Value  
Access  
FEEDAT. The result of the comparison is  
returned in FEESTA, Bit 1.  
FEEPRO  
0xFFFFF81C  
0x00000000  
R/W  
0x051 Single erase  
0x061 Mass erase  
Erase the page indexed by FEEADR.  
FEEPRO MMR provides protection following a subsequent  
reset of the MMR. It requires a software key (see Table 42).  
Erase 62 kB of user space. The 2 kB of  
kernel are protected. This operation  
takes 2.48 sec. To prevent accidental  
execution, a command sequence is  
required to execute this instruction.  
See the Command Sequence for  
Executing a Mass Erase section.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Table 41. FEEHIDE Register  
Name  
Address  
Default Value  
Access  
FEEHIDE  
0xFFFFF820  
0xFFFFFFFF  
R/W  
FEEHIDE MMR provides immediate protection. It does not  
require any software key. Note that the protection settings in  
FEEHIDE are cleared by a reset (see Table 42).  
0x07  
0x08  
0x09  
Reserved  
Reserved  
Reserved  
Table 42. FEEPRO and FEEHIDE MMR Bit Designations  
0x0A Reserved  
0x0B Signature  
Bit  
Description  
Give a signature of the 64 kB of Flash/EE  
in the 24-bit FEESIGN MMR. This  
operation takes 32,778 clock cycles.  
31  
Read protection. Cleared by user to protect all code.  
Set by user to allow reading the code.  
0x0C Protect  
This command can run only once. The  
value of FEEPRO is saved and removed  
only with a mass erase (0x06) of the key.  
30:0  
Write protection for Page 123 to Page 120, Page 119  
to Page 116, and Page 0 to Page 3. Cleared by user to  
protect the pages from writing. Set by user to allow  
writing the pages.  
0x0D Reserved  
Reserved.  
0x0E  
0x0F  
Reserved  
Ping  
Reserved.  
No operation; interrupt generated.  
Command Sequence for Executing a Mass Erase  
FEEDAT=0x3CFF;  
FEEADR = 0xFFC3;  
FEEMOD= FEEMOD|0x8;  
1 The FEECON register always reads 0x07 immediately after execution of any  
of these commands.  
//Erase key enable  
FEECON=0x06;  
//Mass erase command  
Rev. F | Page 53 of 104  
 
 
 
 
 
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
RESET AND REMAP  
EXECUTION TIME FROM SRAM AND FLASH/EE  
The ARM exception vectors are all situated at the bottom of the  
memory array, from Address 0x00000000 to Address 0x00000020,  
as shown in Figure 62.  
Execution from SRAM  
Fetching instructions from SRAM takes one clock cycle; the  
access time of the SRAM is 2 ns, and a clock cycle is 22 ns  
minimum. However, if the instruction involves reading or  
writing data to memory, one extra cycle must be added if the  
data is in SRAM (or three cycles if the data is in Flash/EE): one  
cycle to execute the instruction, and two cycles to get the 32-bit  
data from Flash/EE. A control flow instruction (a branch  
instruction, for example) takes one cycle to fetch but also takes  
two cycles to fill the pipeline with the new instructions.  
0xFFFFFFFF  
KERNEL  
0x0008FFFF  
0x00011FFF  
FLASH/EE  
INTERRUPT  
SERVICE ROUTINES  
0x00080000  
0x00010000  
Execution from Flash/EE  
Because the Flash/EE width is 16 bits and access time for 16-bit  
words is 22 ns, execution from Flash/EE cannot be done in  
one cycle (as can be done from SRAM when the CD Bit = 0).  
Also, some dead times are needed before accessing data for any  
value of the CD bit.  
SRAM  
INTERRUPT  
SERVICE ROUTINES  
MIRROR SPACE  
0x00000020  
ARM EXCEPTION  
In ARM mode, where instructions are 32 bits, two cycles are  
needed to fetch any instruction when CD = 0. In thumb mode,  
where instructions are 16 bits, one cycle is needed to fetch any  
instruction.  
VECTOR ADDRESSES 0x00000000 0x00000000  
Figure 62. Remap for Exception Execution  
By default, and after any reset, the Flash/EE is mirrored at the  
bottom of the memory array. The remap function allows the  
programmer to mirror the SRAM at the bottom of the memory  
array, which facilitates execution of exception routines from  
SRAM instead of from Flash/EE. This means exceptions are  
executed twice as fast, being executed in 32-bit ARM mode with  
32-bit wide SRAM instead of 16-bit wide Flash/EE memory.  
Timing is identical in both modes when executing instructions  
that involve using the Flash/EE for data memory. If the instruction  
to be executed is a control flow instruction, an extra cycle is  
needed to decode the new address of the program counter, and  
then four cycles are needed to fill the pipeline. A data-processing  
instruction involving only the core register does not require any  
extra clock cycles. However, if it involves data in Flash/EE, an  
extra clock cycle is needed to decode the address of the data,  
and two cycles are needed to get the 32-bit data from Flash/EE.  
An extra cycle must also be added before fetching another  
instruction. Data transfer instructions are more complex and  
are summarized in Table 43.  
Remap Operation  
When a reset occurs on the ADuC7019/20/21/22/24/25/26/27/  
28/29, execution automatically starts in the factory-programmed,  
internal configuration code. This kernel is hidden and cannot  
be accessed by user code. If the part is in normal mode (the BM  
pin is high), it executes the power-on configuration routine of  
the kernel and then jumps to the reset vector address,  
Table 43. Execution Cycles in ARM/Thumb Mode  
Fetch  
Instructions Cycles  
0x00000000, to execute the users reset exception routine.  
Dead  
Time  
Dead  
Time  
Because the Flash/EE is mirrored at the bottom of the memory  
array at reset, the reset interrupt routine must always be written  
in Flash/EE.  
Data Access  
LD1  
LDH  
LDM/PUSH  
STR1  
STRH  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
1
1
N2  
1
1
N1  
2
1
1
1
N1  
1
1
N1  
2 × N2  
2 × 20 ns  
20 ns  
The remap is done from Flash/EE by setting Bit 0 of the REMAP  
register. Caution must be taken to execute this command from  
Flash/EE, above Address 0x00080020, and not from the bottom  
of the array because this is replaced by the SRAM.  
STRM/POP  
2 × N × 20 ns1  
1 The SWAP instruction combines an LD and STR instruction with only one  
fetch, giving a total of eight cycles + 40 ns.  
This operation is reversible. The Flash/EE can be remapped at  
Address 0x00000000 by clearing Bit 0 of the REMAP MMR.  
Caution must again be taken to execute the remap function  
from outside the mirrored area. Any type of reset remaps the  
Flash/EE memory at the bottom of the array.  
2 N is the amount of data to load or store in the multiple load/store instruction  
(1 < N ≤ 16).  
Rev. F | Page 54 of 104  
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Reset Operation  
Table 46. RSTSTA Register  
There are four kinds of reset: external, power-on, watchdog  
expiration, and software force. The RSTSTA register indicates  
the source of the last reset, and RSTCLR allows clearing of the  
RSTSTA register. These registers can be used during a reset  
exception service routine to identify the source of the reset.  
If RSTSTA is null, the reset is external.  
Name  
Address  
Default Value  
Access  
RSTSTA  
0xFFFF0230  
0x01  
R/W  
Table 47. RSTSTA MMR Bit Designations  
Bit  
7:3  
2
Description  
Reserved.  
Software reset. Set by user to force a software reset.  
Cleared by setting the corresponding bit in RSTCLR.  
Table 44. REMAP Register  
Name  
Address  
Default Value  
0xXX1  
Access  
1
0
Watchdog timeout. Set automatically when a watchdog  
timeout occurs. Cleared by setting the corresponding  
bit in RSTCLR.  
Power-on reset. Set automatically when a power-on  
reset occurs. Cleared by setting the corresponding bit  
in RSTCLR.  
REMAP  
1 Depends on the model.  
0xFFFF0220  
R/W  
Table 45. REMAP MMR Bit Designations  
Bit  
Name  
Description  
4
Read-only bit. Indicates the size of the Flash/EE  
memory available. If this bit is set, only 32 kB of  
Flash/EE memory is available.  
Read-only bit. Indicates the size of the SRAM  
memory available. If this bit is set, only 4 kB of  
SRAM is available.  
Table 48. RSTCLR Register  
Name  
Address  
Default Value  
Access  
RSTCLR  
0xFFFF0234  
0x00  
W
3
Note that to clear the RSTSTA register, the user must write 0x07  
to the RSTCLR register.  
2:1  
0
Reserved.  
Remap Remap bit. Set by user to remap the SRAM to  
Address 0x00000000. Cleared automatically  
after reset to remap the Flash/EE memory to  
Address 0x00000000.  
Rev. F | Page 55 of 104  
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
OTHER ANALOG PERIPHERALS  
DAC  
Table 51. DACxDAT Registers  
Name  
Address  
Default Value  
Access  
R/W  
The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate two,  
three, or four 12-bit voltage output DACs on-chip, depending on  
the model. Each DAC has a rail-to-rail voltage output buffer  
capable of driving 5 kΩ/100 pF.  
DAC0DAT  
DAC1DAT  
DAC2DAT  
DAC3DAT  
0xFFFF0604  
0xFFFF060C  
0xFFFF0614  
0xFFFF061C  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
R/W  
R/W  
R/W  
Each DAC has three selectable ranges: 0 V to VREF (internal  
band gap 2.5 V reference), 0 V to DACREF, and 0 V to AVDD.  
DACREF is equivalent to an external reference for the DAC.  
The signal range is 0 V to AVDD.  
Table 52. DAC0DAT MMR Bit Designations  
Bit  
Description  
31:28  
27:16  
15:0  
Reserved.  
12-bit data for DAC0.  
Reserved.  
MMRs Interface  
Each DAC is independently configurable through a control  
register and a data register. These two registers are identical for  
the four DACs. Only DAC0CON (see Table 50) and DAC0DAT  
(see Table 52) are described in detail in this section.  
Using the DACs  
The on-chip DAC architecture consists of a resistor string DAC  
followed by an output buffer amplifier. The functional equivalent  
is shown in Figure 63.  
Table 49. DACxCON Registers  
Name  
Address  
Default Value  
0x00  
Access  
R/W  
AV  
DD  
REF  
REF  
DAC0CON  
DAC1CON  
DAC2CON  
DAC3CON  
0xFFFF0600  
0xFFFF0608  
0xFFFF0610  
0xFFFF0618  
V
DAC  
0x00  
R/W  
R
R
R
0x00  
R/W  
0x00  
R/W  
DAC0  
Table 50. DAC0CON MMR Bit Designations  
Bit Name  
Value  
Description  
7:6  
Reserved.  
5
DACCLK  
DACCLR  
DAC update rate. Set by user to  
update the DAC using Timer1.  
Cleared by user to update the DAC  
using HCLK (core clock).  
DAC clear bit. Set by user to enable  
normal DAC operation. Cleared by  
user to reset data register of the DAC  
to 0.  
Reserved. This bit should be left at 0.  
Reserved. This bit should be left at 0.  
DAC range bits.  
Power-down mode. The DAC output is  
in three-state.  
R
R
4
Figure 63. DAC Structure  
As illustrated in Figure 63, the reference source for each DAC is  
user-selectable in software. It can be AVDD, VREF, or DACREF. In  
0-to-AVDD mode, the DAC output transfer function spans from  
0 V to the voltage at the AVDD pin. In 0-to-DACREF mode, the  
DAC output transfer function spans from 0 V to the voltage at the  
DACREF pin. In 0-to-VREF mode, the DAC output transfer function  
3
2
1:0  
00  
01  
10  
11  
0 V to DACREF range.  
0 V to VREF (2.5 V) range.  
0 V to AVDD range.  
spans from 0 V to the internal 2.5 V reference, VREF  
.
The DAC output buffer amplifier features a true, rail-to-rail  
output stage implementation. This means that when unloaded,  
each output is capable of swinging to within less than 5 mV of  
both AVDD and ground. Moreover, the DAC’s linearity specification  
(when driving a 5 kꢀ resistive load to ground) is guaranteed  
through the full transfer function, except Code 0 to Code 100,  
and, in 0-to-AVDD mode only, Code 3995 to Code 4095.  
Rev. F | Page 56 of 104  
 
 
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Linearity degradation near ground and AVDD is caused by satu-  
ration of the output amplifier, and a general representation of its  
effects (neglecting offset and gain error) is illustrated in Figure 64.  
The dotted line in Figure 64 indicates the ideal transfer function,  
and the solid line represents what the transfer function may  
look like with endpoint nonlinearities due to saturation of the  
output amplifier. Note that Figure 64 represents a transfer function  
in 0-to-AVDD mode only. In 0-to-VREF or 0-to-DACREF mode  
(with VREF < AVDD or DACREF < AVDD), the lower nonlinearity is  
similar. However, the upper portion of the transfer function  
follows the ideal line right to the end (VREF in this case, not AVDD),  
showing no signs of endpoint linearity errors.  
Table 54. PSMCON MMR Bit Descriptions  
Bit Name  
Description  
3
CMP  
Comparator bit. This is a read-only bit that  
directly reflects the state of the comparator.  
Read 1 indicates that the IOVDD supply is above  
its selected trip point or that the PSM is in  
power-down mode. Read 0 indicates that the  
IOVDD supply is below its selected trip point. This  
bit should be set before leaving the interrupt  
service routine.  
2
1
TP  
Trip point selection bit. 0 = 2.79 V, 1 = 3.07 V.  
PSMEN Power supply monitor enable bit. Set to 1 to  
enable the power supply monitor circuit. Cleared  
to 0 to disable the power supply monitor circuit.  
AV  
DD  
0
PSMI  
Power supply monitor interrupt bit. This bit is set  
high by the MicroConverter after CMP goes low,  
indicating low I/O supply. The PSMI bit can be  
used to interrupt the processor. After CMP  
returns high, the PSMI bit can be cleared by  
writing a 1 to this location. A 0 write has no  
effect. There is no timeout delay; PSMI can be  
immediately cleared after CMP goes high.  
AV – 100mV  
DD  
COMPARATOR  
100mV  
The ADuC7019/20/21/22/24/25/26/27/28/29 integrate voltage  
comparators. The positive input is multiplexed with ADC2, and  
the negative input has two options: ADC3 and DAC0. The output  
of the comparator can be configured to generate a system inter-  
rupt, be routed directly to the programmable logic array, start  
an ADC conversion, or be on an external pin, CMPOUT, as  
shown in Figure 65.  
0x00000000  
0x0FFF0000  
Figure 64. Endpoint Nonlinearities Due to Amplifier Saturation  
The endpoint nonlinearities conceptually illustrated in  
Figure 64 get worse as a function of output loading. Most  
of the ADuC7019/20/21/22/24/25/26/27/28/29 data sheet  
specifications assume a 5 kΩ resistive load to ground at the  
DAC output. As the output is forced to source or sink more  
current, the nonlinear regions at the top or bottom (respectively)  
of Figure 64 become larger. With larger current demands, this  
can significantly limit output voltage swing.  
IRQ  
ADC2/CMP0  
MUX  
ADC3/CMP1  
MUX  
DAC0  
POWER SUPPLY MONITOR  
P0.0/CMP  
OUT  
The power supply monitor regulates the IOVDD supply on the  
ADuC7019/20/21/22/24/25/26/27/28/29. It indicates when the  
IOVDD supply pin drops below one of two supply trip points.  
The monitor function is controlled via the PSMCON register.  
If enabled in the IRQEN or FIQEN register, the monitor  
interrupts the core using the PSMI bit in the PSMCON MMR.  
This bit is immediately cleared after CMP goes high.  
Figure 65. Comparator  
Note that because the ADuC7022, ADuC7025, and ADu7027  
parts do not support a DAC0 output, it is not possible to use  
DAC0 as a comparator input on these parts.  
Hysteresis  
This monitor function allows the user to save working registers  
to avoid possible data loss due to low supply or brown-out  
conditions. It also ensures that normal code execution does  
not resume until a safe supply level is established.  
Figure 66 shows how the input offset voltage and hysteresis  
terms are defined.  
CMP  
OUT  
V
V
H
H
Table 53. PSMCON Register  
Name  
Address  
Default Value  
Access  
PSMCON  
0xFFFF0440  
0x0008  
R/W  
CMP0  
V
OS  
Figure 66. Comparator Hysteresis Transfer Function  
Rev. F | Page 57 of 104  
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Input offset voltage (VOS) is the difference between the center of  
the hysteresis range and the ground level. This can either be  
positive or negative. The hysteresis voltage (VH) is one-half the  
width of the hysteresis range.  
OSCILLATOR AND PLL—POWER CONTROL  
Clocking System  
Each ADuC7019/20/21/22/24/25/26/27/28/29 integrates a  
32.768 kHz ±3% oscillator, a clock divider, and a PLL. The PLL  
locks onto a multiple (1275) of the internal oscillator or an external  
32.768 kHz crystal to provide a stable 41.78 MHz clock (UCLK) for  
the system. To allow power saving, the core can operate at this  
frequency, or at binary submultiples of it. The actual core oper-  
ating frequency, UCLK/2CD, is refered to as HCLK. The default  
core clock is the PLL clock divided by 8 (CD = 3) or 5.22 MHz.  
The core clock frequency can also come from an external clock  
on the ECLK pin as described in Figure 67. The core clock can  
be outputted on ECLK when using an internal oscillator or  
external crystal.  
Comparator Interface  
The comparator interface consists of a 16-bit MMR, CMPCON,  
which is described in Table 56.  
Table 55. CMPCON Register  
Name  
Address  
Default Value  
Access  
CMPCON  
0xFFFF0444  
0x0000  
R/W  
Table 56. CMPCON MMR Bit Descriptions  
Bit  
Name  
Value Description  
15:11  
10  
Reserved.  
Note that when the ECLK pin is used to output the core clock,  
the output signal is not buffered and is not suitable for use as a  
clock source to an external device without an external buffer.  
CMPEN  
Comparator enable bit. Set by user  
to enable the comparator. Cleared  
by user to disable the comparator.  
9:8  
7:6  
5
CMPIN  
CMPOC  
CMPOL  
Comparator negative input  
select bits.  
AVDD/2.  
ADC3 input.  
DAC0 output.  
Reserved.  
Comparator output configuration  
bits.  
XCLKO  
XCLKI  
WATCHDOG  
TIMER  
INT. 32kHz*  
OSCILLATOR  
CRYSTAL  
OSCILLATOR  
00  
01  
10  
11  
OCLK  
WAKE-UP  
TIMER  
AT POWER-UP  
32.768kHz  
41.78MHz  
00  
01  
10  
11  
Reserved.  
Reserved.  
PLL  
P0.7/XCLK  
MDCLK  
Output on CMPOUT  
IRQ.  
.
UCLK  
ANALOG  
PERIPHERALS  
2
I C  
Comparator output logic state bit.  
When low, the comparator output  
is high if the positive input (CMP0)  
is above the negative input (CMP1).  
When high, the comparator output  
is high if the positive input is below  
the negative input.  
CD  
/2  
CD  
CORE  
HCLK  
*32.768kHz ±3%  
P0.7/ECLK  
Figure 67. Clocking System  
4:3  
CMPRES  
Response time.  
The selection of the clock source is in the PLLCON register. By  
default, the part uses the internal oscillator feeding the PLL.  
00  
11  
5 µs response time is typical for  
large signals (2.5 V differential).  
17 µs response time is typical for  
small signals (0.65 mV differential).  
External Crystal Selection  
To switch to an external crystal, the user must do the following:  
3 µs typical.  
1. Enable the Timer2 interrupt and configure it for a timeout  
period of >120 µs.  
2. Follow the write sequence to the PLLCON register, setting  
the MDCLK bits to 01 and clearing the OSEL bit.  
3. Force the part into NAP mode by following the correct  
write sequence to the POWCON register.  
01/10 Reserved.  
Comparator hysteresis bit. Set by  
2
1
CMPHYST  
CMPORI  
user to have a hysteresis of about  
7.5 mV. Cleared by user to have no  
hysteresis.  
Comparator output rising edge  
interrupt. Set automatically when a  
rising edge occurs on the moni-  
tored voltage (CMP0). Cleared by  
user by writing a 1 to this bit.  
When the part is interrupted from NAP mode by the  
Timer2 interrupt source, the clock source has switched to  
the external clock.  
0
CMPOFI  
Comparator output falling edge  
interrupt. Set automatically when a  
falling edge occurs on the monitored  
voltage (CMP0). Cleared by user.  
Rev. F | Page 58 of 104  
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Example source code  
Example source code  
t2val_old= T2VAL;  
T2LD = 5;  
t2val_old= T2VAL;  
T2LD = 5;  
TCON = 0x480;  
TCON = 0x480;  
while ((T2VAL == t2val_old) || (T2VAL >  
3)) //ensures timer value loaded  
while ((T2VAL == t2val_old) || (T2VAL  
> 3)) //ensures timer value loaded  
IRQEN = 0x10;  
//enable T2 interrupt  
IRQEN = 0x10;  
//enable T2 interrupt  
PLLKEY1 = 0xAA;  
PLLCON = 0x01;  
PLLKEY2 = 0x55;  
PLLKEY1 = 0xAA;  
PLLCON = 0x03; //Select external clock  
PLLKEY2 = 0x55;  
POWKEY1 = 0x01;  
POWCON = 0x27;  
// Set Core into Nap mode  
POWKEY1 = 0x01;  
POWCON = 0x27;  
// Set Core into Nap mode  
POWKEY2 = 0xF4;  
POWKEY2 = 0xF4;  
In noisy environments, noise can couple to the external crystal  
pins, and PLL may lose lock momentarily. A PLL interrupt is  
provided in the interrupt controller. The core clock is immediately  
halted, and this interrupt is only serviced when the lock is restored.  
Power Control System  
A choice of operating modes is available on the ADuC7019/20/  
21/22/24/25/26/27/28/29. Table 57 describes what part is powered  
on in the different modes and indicates the power-up time.  
In case of crystal loss, the watchdog timer should be used. During  
initialization, a test on the RSTSTA register can determine if the  
reset came from the watchdog timer.  
Table 58 gives some typical values of the total current consump-  
tion (analog + digital supply currents) in the different modes,  
depending on the clock divider bits. The ADC is turned off. Note  
that these values also include current consumption of the  
regulator and other parts on the test board where these values  
are measured.  
External Clock Selection  
To switch to an external clock on P0.7, configure P0.7 in  
Mode 1. The external clock can be up to 44 MHz, providing  
the tolerance is 1%.  
Table 57. Operating Modes1  
Mode  
Active  
Pause  
Nap  
Sleep  
Stop  
Core  
Peripherals  
PLL  
X
X
XTAL/T2/T3  
IRQ0 to IRQ3  
Start-Up/Power-On Time  
130 ms at CD = 0  
24 ns at CD = 0; 3 µs at CD = 7  
24 ns at CD = 0; 3 µs at CD = 7  
1.58 ms  
X
X
X
X
X
X
X
X
X
X
X
X
X
1.7 ms  
1 X indicates that the part is powered on.  
Table 58. Typical Current Consumption at 25°C in Milliamperes  
PC[2:0]  
Mode  
Active  
Pause  
Nap  
CD = 0  
33.1  
22.7  
3.8  
CD = 1  
21.2  
13.3  
3.8  
CD = 2  
13.8  
8.5  
CD = 3  
10  
6.1  
CD = 4  
8.1  
4.9  
CD = 5  
7.2  
4.3  
CD = 6  
6.7  
4
CD = 7  
6.45  
3.85  
3.8  
000  
001  
010  
3.8  
3.8  
3.8  
3.8  
3.8  
011  
100  
Sleep  
Stop  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
Rev. F | Page 59 of 104  
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
MMRs and Keys  
Table 63. POWCON Register  
Name  
Address  
Default Value  
0x0003  
Access  
The operating mode, clocking mode, and programmable clock  
divider are controlled via two MMRs: PLLCON (see Table 61)  
and POWCON (see Table 64). PLLCON controls the operating  
mode of the clock system, whereas POWCON controls the core  
clock frequency and the power-down mode.  
POWCON  
0xFFFF0408  
R/W  
Table 64. POWCON MMR Bit Designations  
Bit Name Value  
7
Description  
Reserved.  
To prevent accidental programming, a certain sequence (see  
Table 65) must be followed to write to the PLLCON and  
POWCON registers.  
6:4 PC  
000  
Operating modes.  
Active mode.  
Pause mode.  
Nap.  
Sleep mode. IRQ0 to IRQ3 and Timer2  
can wake up the part.  
001  
010  
011  
Table 59. PLLKEYx Registers  
Name  
Address  
Default Value  
0x0000  
Access  
W
PLLKEY1  
PLLKEY2  
0xFFFF0410  
0xFFFF0418  
100  
Stop mode. IRQ0 to IRQ3 can wake up  
the part.  
0x0000  
W
Others  
Reserved.  
Reserved.  
Table 60. PLLCON Register  
3
Name  
Address  
Default Value  
Access  
2:0 CD  
000  
001  
010  
011  
100  
101  
110  
111  
CPU clock divider bits.  
41.78 MHz.  
20.89 MHz.  
10.44 MHz.  
5.22 MHz.  
2.61 MHz.  
1.31 MHz.  
653 kHz.  
326 kHz.  
PLLCON  
0xFFFF0414  
0x21  
R/W  
Table 61. PLLCON MMR Bit Designations  
Bit  
7:6  
5
Name  
Value Description  
Reserved.  
32 kHz PLL input selection. Set by  
user to select the internal 32 kHz  
oscillator. Set by default. Cleared by  
user to select the external 32 kHz crystal.  
OSEL  
4:2  
1:0  
Reserved.  
Clocking modes.  
Reserved.  
PLL. Default configuration.  
Reserved.  
External clock on the P0.7 pin.  
Table 65. PLLCON and POWCON Write Sequence  
MDCLK  
PLLCON  
POWCON  
00  
01  
10  
11  
PLLKEY1 = 0xAA  
PLLCON = 0x01  
PLLKEY2 = 0x55  
POWKEY1 = 0x01  
POWCON = user value  
POWKEY2 = 0xF4  
Table 62. POWKEYx Registers  
Name  
Address  
Default Value  
0x0000  
Access  
W
POWKEY1  
POWKEY2  
0xFFFF0404  
0xFFFF040C  
0x0000  
W
Rev. F | Page 60 of 104  
 
 
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
DIGITAL PERIPHERALS  
an internal synchronization pulse, PWMSYNC, is produced at  
the start of each PWM period. In double update mode, an  
additional PWMSYNC pulse is produced at the midpoint of  
each PWM period.  
3-PHASE PWM  
Each ADuC7019/20/21/22/24/25/26/27/28/29 provides a flexible  
and programmable, 3-phase pulse-width modulation (PWM)  
waveform generator. It can be programmed to generate the  
required switching patterns to drive a 3-phase voltage source  
inverter for ac induction motor control (ACIM). Note that only  
active high patterns can be produced.  
The PWM block can also provide an internal synchronization  
pulse on the PWM  
SYNC pin that is synchronized to the PWM  
switching frequency. In single update mode, a pulse is produced  
at the start of each PWM period. In double update mode, an  
additional pulse is produced at the mid-point of each PWM period.  
The width of the pulse is programmable through the PWMDAT2  
register. The PWM block can also accept an external synchro-  
nization pulse on the PWMSYNC pin. The selection of external  
synchronization or internal synchronization is in the PWMCON  
register. The SYNC input timing can be synchronized to the  
internal peripheral clock, which is selected in the PWMCON  
register. If the external synchronization pulse from the chip pin is  
asynchronous to the internal peripheral clock (typical case), the  
external PWMSYNC is considered asynchronous and should be  
synchronized. The synchronization logic adds latency and jitter  
from the external pulse to the actual PWM outputs. The size of  
the pulse on the PWMSYNC pin must be greater than two core  
clock periods.  
The PWM generator produces three pairs of PWM signals on  
the six PWM output pins (PWM0H, PWM0L, PWM1H, PWM1L,  
PWM2H, and PWM2L). The six PWM output signals consist of  
three high-side drive signals and three low-side drive signals.  
The switching frequency and dead time of the generated PWM  
patterns are programmable using the PWMDAT0 and PWMDAT1  
MMRs. In addition, three duty-cycle control registers (PWMCH0,  
PWMCH1, and PWMCH2) directly control the duty cycles of  
the three pairs of PWM signals.  
Each of the six PWM output signals can be enabled or disabled  
by separate output enable bits of the PWMEN register. In addition,  
three control bits of the PWMEN register permit crossover of  
the two signals of a PWM pair. In crossover mode, the PWM  
signal destined for the high-side switch is diverted to the comple-  
mentary low-side output. The signal destined for the low-side  
switch is diverted to the corresponding high-side output signal.  
The PWM signals produced by the ADuC7019/20/21/22/24/25/  
26/27/28/29 can be shut off via a dedicated asynchronous PWM  
shutdown pin, PWMTRIP. When brought low, PWMTRIP instanta-  
neously places all six PWM outputs in the off state (high). This  
hardware shutdown mechanism is asynchronous so that the  
associated PWM disable circuitry does not go through any  
clocked logic. This ensures correct PWM shutdown even in  
the event of a core clock loss.  
In many applications, there is a need to provide an isolation  
barrier in the gate-drive circuits that turn on the inverter power  
devices. In general, there are two common isolation techniques:  
optical isolation using optocouplers and transformer isolation  
using pulse transformers. The PWM controller permits mixing  
of the output PWM signals with a high frequency chopping signal  
to permit easy interface to such pulse transformers. The features  
of this gate-drive chopping mode can be controlled by the  
PWMCFG register. An 8-bit value within the PWMCFG  
register directly controls the chopping frequency. High  
frequency chopping can be independently enabled for the high-  
side and low-side outputs using separate control bits in the  
PWMCFG register.  
Status information about the PWM system is available to the user  
in the PWMSTA register. In particular, the state of the PWMTRIP  
pin is available, as well as a status bit that indicates whether oper-  
ation is in the first half or the second half of the PWM period.  
40-Pin Package Devices  
On the 40-pin package devices, the PWM outputs are not  
directly accessible, as described in the General-Purpose  
Input/Output section. One channel can be brought out on a  
GPIO (see Table 78) via the PLA as shown in the following  
example:  
The PWM generator can operate in one of two distinct modes:  
single update mode or double update mode. In single update  
mode, the duty cycle values are programmable only once per  
PWM period so that the resulting PWM patterns are symmetrical  
about the midpoint of the PWM period. In the double update  
mode, a second updating of the PWM duty cycle values is  
implemented at the midpoint of the PWM period.  
PWMCON = 0x1;  
// enables PWM o/p  
PWMDAT0 = 0x055F;  
// PWM switching freq  
// Configure Port Pins  
GP4CON = 0x300;  
GP3CON = 0x1;  
// P4.2 as PLA output  
// P3.0 configured as  
// output of PWM0  
//(internally)  
In double update mode, it is also possible to produce asymmetrical  
PWM patterns that produce lower harmonic distortion in 3-phase  
PWM inverters. This technique permits closed-loop controllers  
to change the average voltage applied to the machine windings  
at a faster rate. As a result, faster closed-loop bandwidths are  
achieved. The operating mode of the PWM block is selected by  
a control bit in the PWMCON register. In single update mode,  
// PWM0 onto P4.2  
PLAELM8 = 0x0035;  
// P3.0 (PWM output)  
// input of element 8  
// PWM from element 8  
PLAELM10 = 0x0059;  
Rev. F | Page 61 of 104  
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Therefore, for a 41.78 MHz fCORE, the fundamental time increment  
is 24 ns. The value written to the PWMDAT0 register is effectively  
the number of fCORE clock increments in one-half a PWM  
period. The required PWMDAT0 value is a function of the  
desired PWM switching frequency (fPWN) and is given by  
DESCRIPTION OF THE PWM BLOCK  
A functional block diagram of the PWM controller is shown in  
Figure 68. The generation of the six output PWM signals on  
Pin PWM0H to Pin PWM2L is controlled by the following four  
important blocks:  
PWMDAT0 = fCORE/(2 × fPWM  
)
The 3-phase PWM timing unit. The core of the PWM  
controller, this block generates three pairs of complemented  
and dead-time-adjusted, center-based PWM signals. This  
unit also generates the internal synchronization pulse,  
PWMSYNC. It also controls whether the external PWMSYNC  
pin is used.  
The output control unit. This block can redirect the  
outputs of the 3-phase timing unit for each channel to  
either the high-side or low-side output. In addition, the  
output control unit allows individual enabling/disabling  
of each of the six PWM output signals.  
The gate drive unit. This block can generate the high  
frequency chopping and its subsequent mixing with the  
PWM signals.  
The PWM shutdown controller. This block controls the  
PWM shutdown via the PWMTRIP pin and generates the  
correct reset signal for the timing unit.  
Therefore, the PWM switching period, tS, can be written as  
tS = 2 × PWMDAT0 × tCORE  
The largest value that can be written to the 16-bit PWMDAT0  
MMR is 0xFFFF = 65,535, which corresponds to a minimum  
PWM switching frequency of  
f
PWM(min) = 41.78 × 106/(2 × 65,535) = 318.75 Hz  
Note that PWMDAT0 values of 0 and 1 are not defined and  
should not be used.  
PWM Switching Dead Time (PWMDAT1 MMR)  
The second important parameter that must be set up in the initial  
configuration of the PWM block is the switching dead time. This  
is a short delay time introduced between turning off one PWM  
signal (0H, for example) and turning on the complementary  
signal (0L). This short time delay is introduced to permit the  
power switch to be turned off (in this case, 0H) to completely  
recover its blocking capability before the complementary switch is  
turned on. This time delay prevents a potentially destructive  
short-circuit condition from developing across the dc link  
capacitor of a typical voltage source inverter.  
The PWM controller is driven by the ADuC7019/20/21/22/24/  
25/26/27/28/29 core clock frequency and is capable of generating  
two interrupts to the ARM core. One interrupt is generated on  
the occurrence of a PWMSYNC pulse, and the other is  
generated on the occurrence of any PWM shutdown action.  
The dead time is controlled by the 10-bit, read/write PWMDAT1  
register. There is only one dead-time register that controls the dead  
time inserted into all three pairs of PWM output signals. The dead  
time, tD, is related to the value in the PWMDAT1 register by  
3-Phase Timing Unit  
PWM Switching Frequency (PWMDAT0 MMR)  
The PWM switching frequency is controlled by the PWM  
period register, PWMDAT0. The fundamental timing unit  
of the PWM controller is  
tD = PWMDAT1 × 2 × tCORE  
Therefore, a PWMDAT1 value of 0x00A (= 10), introduces  
a 426 ns delay between the turn-off on any PWM signal (0H,  
for example) and the turn-on of its complementary signal (0L).  
The amount of the dead time can, therefore, be programmed in  
increments of 2tCORE (or 49 ns for a 41.78 MHz core clock).  
tCORE = 1/fCORE  
where fCORE is the core frequency of the MicroConverter.  
CONFIGURATION  
REGISTERS  
DUTY CYCLE  
REGISTERS  
PWMCON  
PWMDAT0  
PWMDAT1  
PWMDAT2  
PWMCH0  
PWMCH1  
PWMCH2  
PWMEN  
PWMCFG  
PWM0  
PWM0  
PWM1  
PWM1  
PWM2  
PWM2  
H
L
H
L
H
L
3-PHASE  
PWM TIMING  
UNIT  
OUTPUT  
CONTROL  
UNIT  
GATE  
DRIVE  
UNIT  
PWM  
SHUTDOWN  
CONTROLLER  
CORE CLOCK  
SYNC  
PWM  
PWM  
SYNC  
TO INTERRUPT  
CONTROLLER  
TRIP  
Figure 68. Overview of the PWM Controller  
Rev. F | Page 62 of 104  
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
The PWMDAT1 register is a 10-bit register with a maximum  
value of 0x3FF (= 1023), which corresponds to a maximum  
programmed dead time of  
The advantage of double update mode is that lower harmonic  
voltages can be produced by the PWM process, and faster  
control bandwidths are possible. However, for a given PWM  
switching frequency, the PWMSYNC pulses occur at twice the  
rate in the double update mode. Because new duty cycle values  
must be computed in each PWMSYNC interrupt service  
routine, there is a larger computational burden on the ARM  
core in double update mode.  
t
D(max) = 1023 × 2 × tCORE = 1023 × 2 × 24 ×10–9 = 48.97 μs  
for a core clock of 41.78 MHz.  
The dead time can be programmed to be zero by writing 0 to  
the PWMDAT1 register.  
PWM Operating Mode (PWMCON and PWMSTA MMRs)  
PWM Duty Cycles (PWMCH0, PWMCH1, and  
PWMCH2 MMRs)  
As discussed in the 3-Phase PWM section, the PWM controller  
of the ADuC7019/20/21/22/24/25/26/27/28/29 can operate in  
two distinct modes: single update mode and double update  
mode. The operating mode of the PWM controller is  
determined by the state of Bit 2 of the PWMCON register.  
If this bit is cleared, the PWM operates in the single update  
mode. Setting Bit 2 places the PWM in the double update  
mode. The default operating mode is single update mode.  
The duty cycles of the six PWM output signals on Pin PWM0H  
to Pin PWM2L are controlled by the three 16-bit read/write duty  
cycle registers, PWMCH0, PWMCH1, and PWMCH2. The  
duty cycle registers are programmed in integer counts of the  
fundamental time unit, tCORE. They define the desired on time of  
the high-side PWM signal produced by the 3-phase timing unit  
over half the PWM period. The switching signals produced by  
the 3-phase timing unit are also adjusted to incorporate the  
programmed dead time value in the PWMDAT1 register. The  
3-phase timing unit produces active high signals so that a high  
level corresponds to a command to turn on the associated  
power device.  
In single update mode, a single PWMSYNC pulse is produced  
in each PWM period. The rising edge of this signal marks the  
start of a new PWM cycle and is used to latch new values from  
the PWM configuration registers (PWMDAT0 and PWMDAT1)  
and the PWM duty cycle registers (PWMCH0, PWMCH1, and  
PWMCH2) into the 3-phase timing unit. In addition, the  
PWMEN register is latched into the output control unit on the  
rising edge of the PWMSYNC pulse. In effect, this means that  
the characteristics and resulting duty cycles of the PWM signals  
can be updated only once per PWM period at the start of each  
cycle. The result is symmetrical PWM patterns about the  
midpoint of the switching period.  
Figure 69 shows a typical pair of PWM outputs (in this case,  
0H and 0L) from the timing unit in single update mode. All  
illustrated time values indicate the integer value in the  
associated register and can be converted to time by simply  
multiplying by the fundamental time increment, tCORE. Note  
that the switching patterns are perfectly symmetrical about the  
midpoint of the switching period in this mode because the same  
values of PWMCH0, PWMDAT0, and PWMDAT1 are used to  
define the signals in both half cycles of the period.  
In double update mode, there is an additional PWMSYNC  
pulse produced at the midpoint of each PWM period. The  
rising edge of this new PWMSYNC pulse is again used to latch  
new values of the PWM configuration registers, duty cycle  
registers, and the PWMEN register. As a result, it is possible to  
alter both the characteristics (switching frequency and dead  
time) as well as the output duty cycles at the midpoint of each  
PWM cycle. Consequently, it is also possible to produce PWM  
switching patterns that are no longer symmetrical about the  
midpoint of the period (asymmetrical PWM patterns). In  
double update mode, it could be necessary to know whether  
operation at any point in time is in either the first half or the  
second half of the PWM cycle. This information is provided by  
Bit 0 of the PWMSTA register, which is cleared during operation  
in the first half of each PWM period (between the rising edge of  
the original PWMSYNC pulse and the rising edge of the new  
PWMSYNC pulse introduced in double update mode). Bit 0 of  
the PWMSTA register is set during operation in the second half  
of each PWM period. This status bit allows the user to make a  
determination of the particular half cycle during implementation  
of the PWMSYNC interrupt service routine, if required.  
Figure 69 also demonstrates how the programmed duty cycles  
are adjusted to incorporate the desired dead time into the  
resulting pair of PWM signals. The dead time is incorporated  
by moving the switching instants of both PWM signals (0H and  
0L) away from the instant set by the PWMCH0 register.  
–PWMDAT0 ÷ 2  
0
+PWMDAT0 ÷ 2  
0
–PWMDAT0 ÷ 2  
PWMCH0  
PWMCH0  
0H  
2 × PWMDAT1  
2 × PWMDAT1  
0L  
PWMDAT2 + 1  
PWMSYNC  
PWMSTA (0)  
PWMDAT0  
PWMDAT0  
Figure 69. Typical PWM Outputs of the 3-Phase Timing Unit  
(Single Update Mode)  
Rev. F | Page 63 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Both switching edges are moved by an equal amount  
(PWMDAT1 × tCORE) to preserve the symmetrical output  
patterns.  
In general, the on times of the PWM signals in double update  
mode can be defined as follows:  
On the high side  
Also shown are the PWMSYNC pulse and Bit 0 of the  
PWMSTA register, which indicates whether operation is in the  
first or second half cycle of the PWM period.  
t0HH = (PWMDAT01/2 + PWMDAT02/2 + PWMCH01 +  
PWMCH02 PWMDAT11 PWMDAT12) × tCORE  
t
0HL = (PWMDAT01/2 + PWMDAT02/2 PWMCH01 −  
The resulting on times of the PWM signals over the full PWM  
period (two half periods) produced by the timing unit can be  
written as follows:  
PWMCH02 + PWMDAT11 + PWMDAT12) × tCORE  
where Subscript 1 refers to the value of that register during the  
first half cycle, and Subscript 2 refers to the value during the  
second half cycle.  
On the high side  
t
t
0HH = PWMDAT0 + 2(PWMCH0 PWMDAT1) × tCORE  
0HL = PWMDAT0 − 2(PWMCH0 PWMDAT1) × tCORE  
The corresponding duty cycles (d) are  
d0H = t0HH/tS = (PWMDAT01/2 + PWMDAT02/2 +  
and the corresponding duty cycles (d)  
0H = t0HH/tS = ½ + (PWMCH0 PWMDAT1)/PWMDAT0  
and on the low side  
PWMCH01 + PWMCH02 PWMDAT11 PWMDAT12)/  
(PWMDAT01 + PWMDAT02)  
d
On the low side  
t0LH = (PWMDAT01/2 + PWMDAT02/2 + PWMCH01 +  
PWMCH02 + PWMDAT11 + PWMDAT12) × tCORE  
t
t
0LH = PWMDAT0 − 2(PWMCH0 + PWMDAT1) × tCORE  
0LL = PWMDAT0 + 2(PWMCH0 + PWMDAT1) × tCORE  
t
0LL = (PWMDAT01/2 + PWMDAT02/2 PWMCH01 −  
and the corresponding duty cycles (d)  
OL = t0LH/tS = ½ − (PWMCH0 + PWMDAT1)/PWMDAT0  
PWMCH02 PWMDAT11 PWMDAT12) × tCORE  
d
where Subscript 1 refers to the value of that register during the  
first half cycle, and Subscript 2 refers to the value during the  
second half cycle.  
The minimum permissible t0H and t0L values are zero,  
corresponding to a 0% duty cycle. In a similar fashion, the  
maximum value is tS, corresponding to a 100% duty cycle.  
The corresponding duty cycles (d) are  
Figure 70 shows the output signals from the timing unit for  
operation in double update mode. It illustrates a general case  
where the switching frequency, dead time, and duty cycle are all  
changed in the second half of the PWM period. The same value  
for any or all of these quantities can be used in both halves of the  
PWM cycle. However, there is no guarantee that symmetrical  
PWM signals are produced by the timing unit in double update  
mode. Figure 70 also shows that the dead time insertions into  
the PWM signals are done in the same way as in single update  
mode.  
d0L = t0LH/tS = (PWMDAT01/2 + PWMDAT02/2 +  
PWMCH01 + PWMCH02 + PWMDAT11 +  
PWMDAT12)/(PWMDAT01 + PWMDAT02)  
For the completely general case in double update mode  
(see Figure 70), the switching period is given by  
tS = (PWMDAT01 + PWMDAT02) × tCORE  
Again, the values of t0H and t0L are constrained to lie between  
zero and tS.  
PWM signals similar to those illustrated in Figure 69 and  
Figure 70 can be produced on the 1H, 1L, 2H, and 2L outputs by  
programming the PWMCH1 and PWMCH2 registers in a manner  
identical to that described for PWMCH0. The PWM controller  
does not produce any PWM outputs until all of the PWMDAT0,  
PWMCH0, PWMCH1, and PWMCH2 registers have been written  
to at least once. When these registers are written, internal  
counting of the timers in the 3-phase timing unit is enabled.  
–PWMDAT0 ÷ 2  
2
+PWMDAT0 ÷ 2  
2
–PWMDAT0 ÷ 2  
1
0
+PWMDAT0 ÷ 2  
1
0
PWMCH0  
PWMCH0  
2
1
0H  
2 × PWMDAT1  
2
2 × PWMDAT1  
1
0L  
Writing to the PWMDAT0 register starts the internal timing of  
the main PWM timer. Provided that the PWMDAT0 register is  
written to prior to the PWMCH0, PWMCH1, and PWMCH2  
registers in the initialization, the first PWMSYNC pulse and  
interrupt (if enabled) appear 1.5 × tCORE × PWMDAT0 seconds  
after the initial write to the PWMDAT0 register in single update  
mode. In double update mode, the first PWMSYNC pulse  
appears after PWMDAT0 × tCORE seconds.  
PWMSYNC  
PWMDAT2 + 1  
PWMDAT2 + 1  
2
1
PWMSTA (0)  
PWMDAT0  
PWMDAT0  
2
1
Figure 70. Typical PWM Outputs of the 3-Phase Timing Unit  
(Double Update Mode)  
Rev. F | Page 64 of 104  
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
PWMCH0 = PWMCH0 =  
PWMCH1 PWMCH1  
Output Control Unit  
The operation of the output control unit is controlled by the  
9-bit read/write PWMEN register. This register controls two  
distinct features of the output control unit that are directly  
useful in the control of electronic counter measures (ECM) or  
binary decimal counter measures (BDCM). The PWMEN  
register contains three crossover bits, one for each pair of PWM  
outputs. Setting Bit 8 of the PWMEN register enables the  
crossover mode for the 0H/0L pair of PWM signals, setting  
Bit 7 enables crossover on the 1H/1L pair of PWM signals, and  
setting Bit 6 enables crossover on the 2H/2L pair of PWM  
signals. If crossover mode is enabled for any pair of PWM  
signals, the high-side PWM signal from the timing unit (0H, for  
example) is diverted to the associated low-side output of the  
output control unit so that the signal ultimately appears at the  
PWM0L pin. Of course, the corresponding low-side output of  
the timing unit is also diverted to the complementary high-side  
output of the output control unit so that the signal appears at  
the PWM0H pin. Following a reset, the three crossover bits are  
cleared, and the crossover mode is disabled on all three pairs of  
PWM signals. The PWMEN register also contains six bits (Bit 0  
to Bit 5) that can be used to individually enable or disable each  
of the six PWM outputs. If the associated bit of the PWMEN  
register is set, the corresponding PWM output is disabled  
regardless of the corresponding value of the duty cycle register.  
This PWM output signal remains in the off state as long as the  
corresponding enable/disable bit of the PWMEN register is set.  
The implementation of this output enable function is imple-  
mented after the crossover function.  
0H  
2 × PWMDAT1  
2 × PWMDAT1  
0L  
1H  
1L  
2H  
2L  
PWMDAT0  
PWMDAT0  
Figure 71. Active Low PWM Signals Suitable for ECM Control,  
PWMCH0 = PWMCH1, Crossover 1H/1L Pair and Disable  
0L, 1H, 2H, and 2L Outputs in Single Update Mode.  
In addition, the other four signals (0L, 1H, 2H, and 2L) have  
been disabled by setting the appropriate enable/disable bits of  
the PWMEN register. In Figure 71, the appropriate value for  
the PWMEN register is 0x00A7. In normal ECM operation,  
each inverter leg is disabled for certain periods of time to  
change the PWMEN register based on the position of the rotor  
shaft (motor commutation).  
Gate Drive Unit  
The gate drive unit of the PWM controller adds features that  
simplify the design of isolated gate-drive circuits for PWM  
inverters. If a transformer-coupled, power device, gate-drive  
amplifier is used, the active PWM signal must be chopped at a  
high frequency. The 16-bit read/write PWMCFG register  
programs this high frequency chopping mode. The chopped  
active PWM signals can be required for the high-side drivers  
only, the low-side drivers only, or both the high-side and low-  
side switches. Therefore, independent control of this mode for  
both high-side and low-side switches is included with two  
separate control bits in the PWMCFG register.  
Following a reset, all six enable bits of the PWMEN register are  
cleared, and all PWM outputs are enabled by default. In a manner  
identical to the duty cycle registers, the PWMEN is latched on  
the rising edge of the PWMSYNC signal. As a result, changes to  
this register become effective only at the start of each PWM cycle  
in single update mode. In double update mode, the PWMEN  
register can also be updated at the midpoint of the PWM cycle.  
In the control of an ECM, only two inverter legs are switched at  
any time, and often the high-side device in one leg must be  
switched on at the same time as the low-side driver in a second  
leg. Therefore, by programming identical duty cycle values for  
two PWM channels (for example, PWMCH0 = PWMCH1) and  
setting Bit 7 of the PWMEN register to cross over the 1H/1L  
pair of PWM signals, it is possible to turn on the high-side  
switch of Phase A and the low-side switch of Phase B at the  
same time. In the control of ECM, it is usual for the third  
inverter leg (Phase C in this example) to be disabled for a  
number of PWM cycles. This function is implemented by  
disabling both the 2H and 2L PWM outputs by setting Bit 0  
and Bit 1 of the PWMEN register.  
Typical PWM output signals with high frequency chopping  
enabled on both high-side and low-side signals are shown in  
Figure 72. Chopping of the high-side PWM outputs (0H, 1H,  
and 2H) is enabled by setting Bit 8 of the PWMCFG register.  
Chopping of the low-side PWM outputs (0L, 1L, and 2L) is  
enabled by setting Bit 9 of the PWMCFG register. The high  
chopping frequency is controlled by the 8-bit word (GDCLK)  
placed in Bit 0 to Bit 7 of the PWMCFG register. The period of  
this high frequency carrier is  
t
CHOP = (4 × (GDCLK + 1)) × tCORE  
The chopping frequency is, therefore, an integral subdivision of  
the MicroConverter core frequency  
f
CHOP = fCORE/(4 × (GDCLK + 1))  
This situation is illustrated in Figure 71, where it can be seen  
that both the 0H and 1L signals are identical because  
PWMCH0 = PWMCH1 and the crossover bit for Phase B is set.  
Rev. F | Page 65 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
The GDCLK value can range from 0 to 255, corresponding to a  
programmable chopping frequency rate of 40.8 kHz to 10.44 MHz  
for a 41.78 MHz core frequency. The gate drive features must be  
programmed before operation of the PWM controller and are  
typically not changed during normal operation of the PWM  
controller. Following a reset, all bits of the PWMCFG register  
are cleared so that high frequency chopping is disabled, by default.  
PWM MMRs Interface  
The PWM block is controlled via the MMRs described in  
this section.  
Table 66. PWMCON Register  
Name  
Address  
Default Value  
Access  
PWMCON  
0xFFFFFC00  
0x0000  
R/W  
PWMCH0  
PWMCH0  
PWMCON is a control register that enables the PWM and  
chooses the update rate.  
0L  
0H  
Table 67. PWMCON MMR Bit Descriptions  
2 × PWMDAT1  
2 × PWMDAT1  
Bit  
7:5  
4
Name  
Description  
Reserved.  
External sync select. Set to use external  
sync. Cleared to use internal sync.  
External sync select. Set to select  
external synchronous sync signal.  
Cleared for asynchronous sync signal.  
Double update mode. Set to 1 by user  
to enable double update mode.  
Cleared to 0 by the user to enable  
single update mode.  
PWM_SYNCSEL  
PWM_EXTSYNC  
4 × (GDCLK + 1) × tCORE  
PWMDAT0  
PWMDAT0  
3
2
Figure 72. Typical PWM Signals with High Frequency Gate Chopping  
Enabled on Both High-Side and Low-Side Switches  
PWMDBL  
PWM Shutdown  
In the event of external fault conditions, it is essential that the  
PWM system be instantaneously shut down in a safe fashion. A  
low level on the PWMTRIP pin provides an instantaneous,  
asynchronous (independent of the MicroConverter core clock)  
shutdown of the PWM controller. All six PWM outputs are  
placed in the off state, that is, in low state. In addition, the  
PWMSYNC pulse is disabled. The PWMTRIP pin has an internal  
pull-down resistor to disable the PWM if the pin becomes  
disconnected. The state of the PWMTRIP pin can be read from  
Bit 3 of the PWMSTA register.  
1
0
PWM_SYNC_EN  
PWMEN  
PWM synchronization enable. Set by  
user to enable synchronization. Cleared  
by user to disable synchronization.  
PWM enable bit. Set to 1 by user to  
enable the PWM. Cleared to 0 by user  
to disable the PWM. Also cleared  
automatically with PWMTRIP  
(PWMSTA MMR).  
Table 68. PWMSTA Register  
If a PWM shutdown command occurs, a PWMTRIP interrupt is  
generated, and internal timing of the 3-phase timing unit of the  
PWM controller is stopped. Following a PWM shutdown, the  
PWM can be reenabled (in a PWMTRIP interrupt service  
routine, for example) only by writing to all of the PWMDAT0,  
PWMCH0, PWMCH1, and PWMCH2 registers. Provided that  
the external fault is cleared and the PWMTRIP is returned to a  
high level, the internal timing of the 3-phase timing unit  
resumes, and new duty-cycle values are latched on the next  
PWMSYNC boundary.  
Name  
Address  
Default Value  
Access  
PWMSTA  
0xFFFFFC04  
0x0000  
R/W  
PWMSTA reflects the status of the PWM.  
Table 69. PWMSTA MMR Bit Descriptions  
Bit  
15:10  
9
Name  
Description  
Reserved.  
PWMSYNCINT PWM sync interrupt bit. Writing a 1 to  
this bit clears this interrupt.  
PWMTRIPINT PWM trip interrupt bit. Writing a 1 to  
this bit clears this interrupt.  
8
Note that the PWMTRIP interrupt is available in IRQ only,  
and the PWMSYNC interrupt is available in FIQ only. Both  
interrupts share the same bit in the interrupt controller.  
Therefore, only one of the interrupts can be used at a time.  
See the Interrupt System section for further details.  
3
2:1  
0
PWMTRIP  
Raw signal from the PWMTRIP pin.  
Reserved.  
PWM phase bit. Set to 1 by the Micro-  
Converter when the timer is counting  
down (first half). Cleared to 0 by the  
MicroConverter when the timer is  
counting up (second half).  
PWMPHASE  
Rev. F | Page 66 of 104  
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 70. PWMCFG Register  
Table 74. PWMDAT0 Register  
Name  
Address  
Default Value  
Access  
Name  
Address  
Default Value  
Access  
PWMCFG  
0xFFFFFC10  
0x0000  
R/W  
PWMDAT0  
0xFFFFFC08  
0x0000  
R/W  
PWMCFG is a gate chopping register.  
PWMDAT0 is an unsigned 16-bit register for switching period.  
Table 71. PWMCFG MMR Bit Descriptions  
Table 75. PWMDAT1 Register  
Bit  
15:10  
9
8
7:0  
Name  
Description  
Name  
Address  
Default Value  
Access  
Reserved.  
PWMDAT1  
0xFFFFFC0C  
0x0000  
R/W  
CHOPLO  
CHOPHI  
GDCLK  
Low-side gate chopping enable bit.  
High-side gate chopping enable bit.  
PWM gate chopping period (unsigned).  
PWMDAT1 is an unsigned 10-bit register for dead time.  
Table 76. PWMCHx Registers  
Name  
Address  
Default Value  
0x0000  
Access  
R/W  
Table 72. PWMEN Register  
PWMCH0  
PWMCH1  
PWMCH2  
0xFFFFFC14  
0xFFFFFC18  
0xFFFFFC1C  
Name  
Address  
Default Value  
Access  
0x0000  
R/W  
PWMEN  
0xFFFFFC20  
0x0000  
R/W  
0x0000  
R/W  
PWMEN allows enabling of channel outputs and crossover. See  
its bit definitions in Table 73.  
PWMCH0, PWMCH1, and PWMCH2 are channel duty cycles  
for the three phases.  
Table 73. PWMEN MMR Bit Descriptions  
Table 77. PWMDAT2 Register  
Bit Name  
Description  
Name  
Address  
Default Value  
Access  
8
7
6
0H0L_XOVR Channel 0 output crossover enable bit.  
Set to 1 by user to enable Channel 0 output  
crossover. Cleared to 0 by user to disable  
Channel 0 output crossover.  
1H1L_XOVR Channel 1 output crossover enable bit.  
Set to 1 by user to enable Channel 1 output  
crossover. Cleared to 0 by user to disable  
Channel 1 output crossover.  
2H2L_XOVR Channel 2 output crossover enable bit.  
Set to 1 by user to enable Channel 2 output  
crossover. Cleared to 0 by user to disable  
Channel 2 output crossover.  
PWMDAT2  
0xFFFFFC24  
0x0000  
R/W  
PWMDAT2 is an unsigned 10-bit register for PWM sync  
pulse width.  
GENERAL-PURPOSE INPUT/OUTPUT  
The ADuC7019/20/21/22/24/25/26/27/28/29 provide 40 general-  
purpose, bidirectional I/O (GPIO) pins. All I/O pins are 5 V  
tolerant, meaning the GPIOs support an input voltage of 5 V.  
In general, many of the GPIO pins have multiple functions (see  
Table 78 for the pin function definitions). By default, the GPIO  
pins are configured in GPIO mode.  
5
4
3
2
1
0
0L_EN  
0H_EN  
1L_EN  
1H_EN  
2L_EN  
2H_EN  
0L output enable bit. Set to 1 by user to  
disable the 0L output of the PWM. Cleared to 0  
by user to enable the 0L output of the PWM.  
0H output enable bit. Set to 1 by user to  
disable the 0H output of the PWM. Cleared to  
0 by user to enable the 0H output of the PWM.  
1L output enable bit. Set to 1 by user to  
disable the 1L output of the PWM. Cleared to 0  
by user to enable the 1L output of the PWM.  
1H Output Enable Bit. Set to 1 by user to  
disable the 1H output of the PWM. Cleared to  
0 by user to enable the 1H output of the PWM.  
2L output enable bit. Set to 1 by user to  
disable the 2L output of the PWM. Cleared to 0  
by user to enable the 2L output of the PWM.  
2H output enable bit. Set to 1 by user to  
disable the 2H output of the PWM. Cleared to  
0 by user to enable the 2H output of the PWM.  
All GPIO pins have an internal pull-up resistor (of about  
100 kΩ), and their drive capability is 1.6 mA. Note that a  
maximum of 20 GPIOs can drive 1.6 mA at the same time.  
Using the GPxPAR registers, it is possible to enable/disable  
the pull-up resistors for the following ports: P0.0, P0.4, P0.5,  
P0.6, P0.7, and the eight GPIOs of P1.  
The 40 GPIOs are grouped in five ports, Port 0 to Port 4 (Port x).  
Each port is controlled by four or five MMRs.  
Note that the kernel changes P0.6 from its default configuration  
at reset (MRST) to GPIO mode. If MRST is used for external  
circuitry, an external pull-up resistor should be used to ensure  
that the level on P0.6 does not drop when the kernel switches  
mode. Otherwise, P0.6 goes low for the reset period. For  
example, if MRST is required for power-down, it can be  
reconfigured in GP0CON MMR.  
The input level of any GPIO can be read at any time in the  
GPxDAT MMR, even when the pin is configured in a mode  
other than GPIO. The PLA input is always active.  
When the ADuC7019/20/21/22/24/25/26/27/28/29 part enters a  
power-saving mode, the GPIO pins retain their state.  
Rev. F | Page 67 of 104  
 
 
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
GPxCON are the Port x control registers, which select the  
function of each pin of Port x as described in Table 80.  
Table 78. GPIO Pin Function Descriptions  
Configuration  
Port Pin  
00  
01  
10  
11  
Table 80. GPxCON MMR Bit Descriptions  
0
1
2
P0.0 GPIO  
P0.1 GPIO  
P0.2 GPIO  
P0.3 GPIO  
P0.4 GPIO/IRQ0 PWMTRIP  
P0.5 GPIO/IRQ1 ADCBUSY  
P0.6 GPIO/T1  
P0.7 GPIO  
P1.0 GPIO/T1  
P1.1 GPIO  
P1.2 GPIO  
P1.3 GPIO  
CMP  
MS0  
BLE  
BHE  
A16  
MS1  
MS2  
PLAI[7]  
Bit  
Description  
PWM2H  
PWM2L  
TRST  
31:30  
29:28  
27:26  
25:24  
23:22  
21:20  
19:18  
17:16  
15:14  
13:12  
11:10  
9:8  
Reserved.  
Select function of the Px.7 pin.  
Reserved.  
Select function of the Px.6 pin.  
Reserved.  
Select function of the Px.5 pin.  
Reserved.  
Select function of the Px.4 pin.  
Reserved.  
Select function of the Px.3 pin.  
Reserved.  
Select function of the Px.2 pin.  
Reserved.  
ADCBUSY  
PLAO[1]  
PLAO[2]  
PLAO[3]  
PLAO[4]  
PLAI[0]  
PLAI[1]  
PLAI[2]  
PLAI[3]  
PLAI[4]  
PLAI[5]  
PLAI[6]  
PLAO[0]  
MRST  
ECLK/XCLK1  
SIN  
SOUT  
RTS  
SIN  
SCL0  
SDA0  
SCL1  
SDA1  
SCLK  
MISO  
MOSI  
CS  
CTS  
P1.4 GPIO/IRQ2 RI  
P1.5 GPIO/IRQ3 DCD  
P1.6 GPIO  
P1.7 GPIO  
7:6  
DSR  
DTR  
5:4  
3:2  
Select function of the Px.1 pin.  
Reserved.  
2
1:0  
Select function of the Px.0 pin.  
P2.0 GPIO  
P2.1 GPIO  
P2.2 GPIO  
P2.3 GPIO  
P2.4 GPIO  
P2.5 GPIO  
P2.6 GPIO  
P2.7 GPIO  
P3.0 GPIO  
P3.1 GPIO  
P3.2 GPIO  
P3.3 GPIO  
P3.4 GPIO  
P3.5 GPIO  
P3.6 GPIO  
P3.7 GPIO  
P4.0 GPIO  
P4.1 GPIO  
P4.2 GPIO  
P4.3 GPIO  
P4.4 GPIO  
P4.5 GPIO  
P4.6 GPIO  
P4.7 GPIO  
CONVSTART  
PWM0H  
PWM0L  
SOUT  
WS  
PLAO[5]  
PLAO[6]  
PLAO[7]  
Table 81. GPxPAR Registers  
RS  
Name  
Address  
Default Value  
0x20000000  
0x00000000  
Access  
R/W  
AE  
GP0PAR  
GP1PAR  
0xFFFFF42C  
0xFFFFF43C  
PWM0H  
PWM0L  
PWM1H  
PWM1L  
PWM0H  
PWM0L  
PWM1H  
PWM1L  
PWM2H  
PWM2L  
PWMTRIP  
PWMSYNC  
MS0  
MS1  
MS2  
MS3  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
R/W  
GPxPAR program the parameters for Port 0 and Port 1. Note that  
the GPxDAT MMR must always be written after changing the  
GPxPAR MMR.  
3
PLAI[8]  
PLAI[9]  
Table 82. GPxPAR MMR Bit Descriptions  
PLAI[10]  
PLAI[11]  
PLAI[12]  
PLAI[13]  
PLAI[14]  
PLAI[15]  
PLAO[8]  
PLAO[9]  
PLAO[10]  
PLAO[11]  
PLAO[12]  
PLAO[13]  
PLAO[14]  
PLAO[15]  
Bit  
Description  
31  
Reserved.  
30:29  
28  
27  
Drive strength Px.7.  
Pull-Up Disable Px.7.  
Reserved.  
26:25  
24  
23  
Drive strength Px.6.  
Pull-Up Disable Px.6.  
Reserved.  
4
22:21  
20  
19  
Drive strength Px.5.  
Pull-Up Disable Px.5.  
Reserved.  
18:17  
16  
15  
Drive strength Px.4.  
Pull-Up Disable Px.4.  
Reserved.  
14:13  
12  
11  
Drive strength Px.3.  
Pull-Up Disable Px.3.  
Reserved.  
1 When configured in Mode 1, P0.7 is ECLK by default, or core clock output. To  
configure it as a clock input, the MDCLK bits in PLLCON must be set to 11.  
2
CONVSTART signal is active in all modes of P2.0.  
The  
10:9  
8
7
Drive strength Px.2.  
Pull-Up Disable Px.2.  
Reserved.  
Table 79. GPxCON Registers  
Name  
Address  
Default Value  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
Access  
R/W  
R/W  
R/W  
R/W  
6:5  
4
3
Drive strength Px.1.  
Pull-Up Disable Px.1.  
Reserved.  
GP0CON  
GP1CON  
GP2CON  
GP3CON  
GP4CON  
0xFFFFF400  
0xFFFFF404  
0xFFFFF408  
0xFFFFF40C  
0xFFFFF410  
2:1  
0
Drive strength Px.0.  
Pull-Up Disable Px.0.  
R/W  
Rev. F | Page 68 of 104  
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 83. GPIO Drive Strength Control Bits Descriptions  
Table 84. GPxPAR Control Bits Access Descriptions  
Control Bits Value  
Description  
Bit  
GP0PAR  
Reserved  
R/W  
R/W  
Reserved  
R/W  
R/W  
Reserved  
R/W  
GP1PAR  
Reserved  
R/W  
R/W  
Reserved  
R/W  
00  
01  
1x  
3.6  
Medium drive strength.  
Low drive strength.  
High drive strength.  
31  
30 to 29  
28  
27  
26 to 25  
24  
23  
22 to 21  
20  
19  
18 to 17  
16  
15  
14 to 13  
12  
11  
3.4  
3.2  
3.0  
2.8  
R/W  
Reserved  
R (b00)  
R/W  
Reserved  
R (b00)  
R/W  
Reserved  
R (b00)  
R/W  
Reserved  
R (b00)  
R/W  
Reserved  
R (b00)  
R/W  
Reserved  
R (b00)  
R/W  
R/W  
Reserved  
R (b00)  
R/W  
Reserved  
R (b00)  
R/W  
Reserved  
R (b00)  
R/W  
Reserved  
R (b00)  
R/W  
2.6  
2.4  
2.2  
2.0  
HIGH DRIVE STRENGTH  
MEDIUM DRIVE STRENGTH  
LOW DRIVE STRENGTH  
–24  
–18  
–12  
–6  
0
6
12  
18  
24  
LOAD CURRENT (mA)  
10 to 9  
8
7
6 to 5  
4
3
Figure 73. Programmable Strength for High Level  
(Typical Values)  
0.5  
0.4  
0.3  
Reserved  
R (b00)  
R/W  
2 to 1  
0
0.2  
0.1  
0
–0.1  
–0.2  
HIGH DRIVE STRENGTH  
MEDIUM DRIVE STRENGTH  
LOW DRIVE STRENGTH  
–0.3  
–0.4  
–24  
–18  
–12  
–6  
0
6
12  
18  
24  
LOAD CURRENT (mA)  
Figure 74. Programmable Strength for Low Level  
(Typical Values)  
The drive strength bits can be written to one time only after  
reset. More writing to related bits has no effect on changing  
drive strength. The GPIO drive strength and pull-up disable is  
not always adjustable for the GPIO port. Some control bits  
cannot be changed (see Table 84).  
Rev. F | Page 69 of 104  
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Table 90. GPxCLR MMR Bit Descriptions  
Table 85. GPxDAT Registers  
Bit  
Description  
Name  
Address  
Default Value1  
0x000000XX  
0x000000XX  
0x000000XX  
0x000000XX  
0x000000XX  
Access  
R/W  
31:24  
23:16  
Reserved.  
GP0DAT  
GP1DAT  
GP2DAT  
GP3DAT  
GP4DAT  
1 X = 0, 1, 2, or 3.  
0xFFFFF420  
0xFFFFF430  
0xFFFFF440  
0xFFFFF450  
0xFFFFF460  
Data Port x clear bit. Set to 1 by user to clear bit on  
Port x; also clears the corresponding bit in the GPxDAT  
MMR. Cleared to 0 by user; does not affect the data out.  
R/W  
R/W  
R/W  
15:0  
Reserved.  
R/W  
SERIAL PORT MUX  
The serial port mux multiplexes the serial port peripherals  
(an SPI, UART, and two I2Cs) and the programmable logic array  
(PLA) to a set of 10 GPIO pins. Each pin must be configured to  
one of its specific I/O functions as described in Table 91.  
GPxDAT are Port x configuration and data registers. They  
configure the direction of the GPIO pins of Port x, set the  
output value for the pins configured as output, and store the  
input value of the pins configured as input.  
Table 91. SPM Configuration  
Table 86. GPxDAT MMR Bit Descriptions  
GPIO  
(00)  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P0.7  
P2.0  
UART  
(01)  
UART/I2C/SPI PLA  
Bit  
Description  
SPMMUX  
SPM0  
SPM1  
SPM2  
SPM3  
SPM4  
SPM5  
SPM6  
SPM7  
SPM8  
SPM9  
(10)  
(11)  
31:24  
Direction of the data. Set to 1 by user to configure  
the GPIO pin as an output. Cleared to 0 by user to  
configure the GPIO pin as an input.  
SIN  
SOUT  
RTS  
CTS  
RI  
DCD  
DSR  
DTR  
I2C0SCL  
I2C0SDA  
I2C1SCL  
I2C1SDA  
SCLK  
MISO  
MOSI  
CS  
PLAI[0]  
PLAI[1]  
PLAI[2]  
PLAI[3]  
PLAI[4]  
PLAI[5]  
PLAI[6]  
PLAO[0]  
PLAO[4]  
PLAO[5]  
23:16  
15:8  
7:0  
Port x data output.  
Reflect the state of Port x pins at reset (read only).  
Port x data input (read only).  
Table 87. GPxSET Registers  
Name  
Address  
Default Value1  
0x000000XX  
0x000000XX  
0x000000XX  
0x000000XX  
0x000000XX  
Access  
GP0SET  
GP1SET  
GP2SET  
GP3SET  
GP4SET  
1 X = 0, 1, 2, or 3.  
0xFFFFF424  
0xFFFFF434  
0xFFFFF444  
0xFFFFF454  
0xFFFFF464  
W
W
W
W
W
ECLK/XCLK  
CONV  
SIN  
SOUT  
Table 91 also details the mode for each of the SPMMUX pins.  
This configuration must be done via the GP0CON, GP1CON,  
and GP2CON MMRs. By default, these 10 pins are configured  
as GPIOs.  
GPxSET are data set Port x registers.  
UART SERIAL INTERFACE  
Table 88. GPxSET MMR Bit Descriptions  
The UART peripheral is a full-duplex, universal, asynchronous  
receiver/transmitter. It is fully compatible with the 16,450 serial  
port standard. The UART performs serial-to-parallel conversions  
on data characters received from a peripheral device or modem,  
and parallel-to-serial conversions on data characters received  
from the CPU. The UART includes a fractional divider for baud  
rate generation and has a network addressable mode. The UART  
function is made available on the 10 pins of the ADuC7019/20/  
21/22/24/25/26/27/28/29 (see Table 92).  
Bit  
Description  
31:24  
23:16  
Reserved.  
Data Port x set bit. Set to 1 by user to set bit on Port x;  
also sets the corresponding bit in the GPxDAT MMR.  
Cleared to 0 by user; does not affect the data out.  
15:0  
Reserved.  
Table 89. GPxCLR Registers  
Name  
Address  
Default Value1  
0x000000XX  
0x000000XX  
0x000000XX  
0x000000XX  
0x000000XX  
Access  
GP0CLR  
GP1CLR  
GP2CLR  
GP3CLR  
GP4CLR  
1 X = 0, 1, 2, or 3.  
0xFFFFF428  
0xFFFFF438  
0xFFFFF448  
0xFFFFF458  
0xFFFFF468  
W
W
W
W
W
Table 92. UART Signal Description  
Pin  
Signal  
Description  
SPM0 (Mode 1)  
SPM1 (Mode 1)  
SPM2 (Mode 1)  
SPM3 (Mode 1)  
SPM4 (Mode 1)  
SPM5 (Mode 1)  
SPM6 (Mode 1)  
SPM7 (Mode 1)  
SPM8 (Mode 2)  
SPM9 (Mode 2)  
SIN  
SOUT  
RTS  
CTS  
RI  
DCD  
DSR  
DTR  
SIN  
Serial receive data.  
Serial transmit data.  
Request to send.  
Clear to send.  
Ring indicator.  
Data carrier detect.  
Data set ready.  
Data terminal ready.  
Serial receive data.  
Serial transmit data.  
GPxCLR are data clear Port x registers.  
SOUT  
Rev. F | Page 70 of 104  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
41.78MHz  
The serial communication adopts an asynchronous protocol,  
which supports various word lengths, stop bits, and parity  
generation options selectable in the configuration register.  
BaudRate =  
128  
23 ×16×8×2×  
2048  
Baud Rate Generation  
where:  
Baud Rate = 19,200 bps  
There are two ways of generating the UART baud rate, normal  
450 UART baud rate generation and the fractional divider.  
Error = 0%, compared to 6.25% with the normal baud rate  
generator.  
Normal 450 UART Baud Rate Generation  
UART Register Definitions  
The baud rate is a divided version of the core clock using the values  
in the COMDIV0 and COMDIV1 MMRs (16-bit value, DL).  
The UART interface consists of 12 registers: COMTX, COMRX,  
COMDIV0, COMIEN0, COMDIV1, COMIID0, COMCON0,  
COMCON1, COMSTA0, COMSTA1, COMSCR, and  
COMDIV2.  
41.78MHz  
Baud Rate =  
2CD - 16 × 2 × DL  
Table 93 gives some common baud rate values.  
Table 94. COMTX Register  
Table 93. Baud Rate Using the Normal Baud Rate Generator  
Name  
Address  
Default Value  
Access  
Baud Rate  
CD  
DL  
Actual Baud Rate  
% Error  
COMTX  
0xFFFF0700  
0x00  
R/W  
9600  
0
0
0
3
3
3
0x88  
0x44  
0x0B  
0x11  
0x08  
0x01  
9600  
19,200  
118,691  
9600  
20,400  
0
0
3
0
COMTX is an 8-bit transmit register.  
19,200  
115,200  
9600  
19,200  
115,200  
Table 95. COMRX Register  
Name  
Address  
Default Value  
Access  
6.25  
41.67  
COMRX  
0xFFFF0700  
0x00  
R
163,200  
COMRX is an 8-bit receive register.  
Fractional Divider  
Table 96. COMDIV0 Register  
The fractional divider, combined with the normal baud rate  
generator, produces a wider range of more accurate baud rates.  
Name  
Address  
Default Value  
Access  
COMDIV0  
0xFFFF0700  
0x00  
R/W  
FBEN  
CORE  
CLOCK  
/2  
COMDIV0 is a low byte divisor latch. COMTX, COMRX,  
and COMDIV0 share the same address location. COMTX  
and COMRX can be accessed when Bit 7 in the COMCON0  
register is cleared. COMDIV0 can be accessed when Bit 7  
of COMCON0 is set.  
/16DL  
UART  
/(M+N/2048)  
Figure 75. Baud Rate Generation Options  
Calculation of the baud rate using fractional divider is as follows:  
Table 97. COMIEN0 Register  
41.78 MHz  
Baud Rate =  
Name  
Address  
Default Value  
Access  
N
2048  
2
CD ×16×DL×2× M +  
COMIEN0  
0xFFFF0704  
0x00  
R/W  
COMIEN0 is the interrupt enable register.  
41.78MHz  
N
M+  
=
2048 Baud Rate × 2CD × 16 ×DL×2  
Table 98. COMIEN0 MMR Bit Descriptions  
Bit  
7:4  
3
Name  
Description  
For example, generation of 19,200 baud with CD bits = 3  
(Table 93 gives DL = 0x08) is  
N/A  
EDSSI  
Reserved.  
Modem status interrupt enable bit. Set by  
user to enable generation of an interrupt if  
any of COMSTA1[3:1] is set. Cleared by user.  
Rx status interrupt enable bit. Set by user to  
enable generation of an interrupt if any of  
COMSTA0[4:1] is set. Cleared by user.  
Enable transmit buffer empty interrupt. Set  
by user to enable interrupt when buffer is  
empty during a transmission. Cleared by user.  
Enable receive buffer full interrupt. Set by  
user to enable interrupt when buffer is full  
during a reception. Cleared by user.  
41.78 MHz  
N
M +  
M +  
=
2048 19200 ×23 ×16×8×2  
2
1
0
ELSI  
N
=1.06  
2048  
ETBEI  
ERBFI  
where:  
M = 1  
N = 0.06 × 2048 = 128  
Rev. F | Page 71 of 104  
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Table 99. COMDIV1 Register  
Table 104. COMCON1 Register  
Name  
Address  
Default Value  
Access  
Name  
Address  
Default Value  
0x00  
Access  
COMDIV1  
0xFFFF0704  
0x00  
R/W  
COMCON1  
0xFFFF0710  
R/W  
COMDIV1 is a divisor latch (high byte) register.  
COMCON1 is the modem control register.  
Table 100. COMIID0 Register  
Table 105. COMCON1 MMR Bit Descriptions  
Name  
Address  
Default Value  
Access  
Bit Name  
Description  
COMIID0  
0xFFFF0708  
0x01  
R
7:5  
Reserved.  
4
LOOPBACK Loopback. Set by user to enable loopback  
mode. In loopback mode, SOUT (see Table 78)  
is forced high. The modem signals are also  
directly connected to the status inputs (RTS  
to CTS and DTR to DSR). Cleared by user to  
be in normal mode.  
COMIID0 is the interrupt identification register.  
Table 101. COMIID0 MMR Bit Descriptions  
Bit 2:1  
Status Bits NINT Priority  
Bit 0  
Clearing  
Operation  
Definition  
00  
11  
1
0
N/A  
No interrupt N/A  
3
2
PEN  
Parity enable bit. Set by user to transmit and  
check the parity bit. Cleared by user for no  
parity transmission or checking.  
1 (Highest) Receive line  
status  
Read  
COMSTA0  
interrupt  
STOP  
Stop bit. Set by user to transmit 1.5 stop bits  
if the word length is five bits, or 2 stop bits if  
the word length is six bits, seven bits, or  
eight bits. The receiver checks the first stop  
bit only, regardless of the number of stop bits  
selected. Cleared by user to generate 1 stop  
bit in the transmitted data.  
10  
01  
0
0
2
3
Receive  
buffer full  
interrupt  
Transmit  
buffer  
Read  
COMRX  
Write data to  
COMTX or  
read  
empty  
interrupt  
4 (Lowest) Modem  
status  
COMIID0  
Read  
COMSTA1  
1
0
RTS  
DTR  
Request to send. Set by user to force the RTS  
output to 0. Cleared by user to force the RTS  
output to 1.  
Data terminal ready. Set by user to force the  
DTR output to 0. Cleared by user to force the  
DTR output to 1.  
00  
0
interrupt  
Table 102. COMCON0 Register  
Name  
Address  
Default Value  
Access  
Table 106. COMSTA0 Register  
COMCON0  
0xFFFF070C  
0x00  
R/W  
Name  
Address  
Default Value  
Access  
COMCON0 is the line control register.  
COMSTA0  
0xFFFF0714  
0x60  
R
Table 103. COMCON0 MMR Bit Descriptions  
COMSTA0 is the line status register.  
Bit  
Name  
Description  
Table 107. COMSTA0 MMR Bit Descriptions  
Bit Name Description  
7
DLAB  
Divisor latch access. Set by user to enable access  
to the COMDIV0 and COMDIV1 registers. Cleared  
by user to disable access to COMDIV0 and  
COMDIV1 and enable access to COMRX and  
COMTX.  
Set break. Set by user to force SOUT to 0. Cleared  
to operate in normal mode.  
Stick parity. Set by user to force parity to defined  
values: 1 if EPS = 1 and PEN = 1,  
0 if EPS = 0 and PEN = 1.  
Even parity select bit. Set for even parity. Cleared  
for odd parity.  
Parity enable bit. Set by user to transmit and  
check the parity bit. Cleared by user for no parity  
transmission or checking.  
Stop bit. Set by user to transmit 1.5 stop bits if the  
word length is five bits or 2 stop bits if the word  
length is six bits, seven bits, or eight bits. The  
receiver checks the first stop bit only, regardless  
of the number of stop bits selected. Cleared by user  
to generate 1 stop bit in the transmitted data.  
7
6
Reserved.  
TEMT  
THRE  
COMTX and shift register empty status bit. Set  
automatically if COMTX and shift register are  
empty. Cleared automatically when writing to  
COMTX.  
COMTX empty. Set automatically if COMTX is  
empty. Cleared automatically when writing to  
COMTX.  
6
5
BRK  
SP  
5
4
3
EPS  
4
3
2
1
0
BI  
Break error. Set when SIN is held low for more than  
the maximum word length. Cleared automatically.  
Framing error. Set when an invalid stop bit occurs.  
Cleared automatically.  
Parity error. Set when a parity error occurs.  
Cleared automatically.  
Overrun error. Set automatically if data is over-  
written before being read. Cleared automatically.  
PEN  
FE  
PE  
OE  
DR  
2
STOP  
WLS  
Data ready. Set automatically when COMRX is full.  
Cleared by reading COMRX.  
1:0  
Word length select:  
00 = five bits, 01 = six bits, 10 = seven bits,  
11 = eight bits.  
Rev. F | Page 72 of 104  
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 108. COMSTA1 Register  
Network Addressable UART Register Definitions  
Name  
Address  
Default Value  
Access  
Four additional registers, COMIEN0, COMIEN1, COMIID1, and  
COMADR are used in network addressable UART mode only.  
COMSTA1  
0xFFFF0718  
0x00  
R
COMSTA1 is a modem status register.  
In network address mode, the least significant bit of the COMIEN1  
register is the transmitted network address control bit. If set to  
1, the device is transmitting an address. If cleared to 0, the  
device is transmitting data. For example, the following master-  
based code transmits the slaves address followed by the data:  
Table 109. COMSTA1 MMR Bit Descriptions  
Bit Name Description  
7
6
5
4
3
DCD  
RI  
DSR  
CTS  
Data carrier detect.  
Ring indicator.  
Data set ready.  
Clear to send.  
COMIEN1 = 0xE7;  
//Setting ENAM,  
E9BT, E9BR, ETD, NABP  
COMTX = 0xA0; // Slave address is 0xA0  
DDCD Delta DCD. Set automatically if DCD changed  
state since last COMSTA1 read. Cleared automati-  
cally by reading COMSTA1.  
while(!(0x020==(COMSTA0 & 0x020))){} //  
wait for adr tx to finish.  
2
1
0
TERI  
Trailing edge RI. Set if RI changed from 0 to 1  
since COMSTA1 was last read. Cleared  
automatically by reading COMSTA1.  
COMIEN1 = 0xE6;  
to indicate Data is coming  
// Clear NAB bit  
COMTX = 0x55; // Tx data to slave: 0x55  
DDSR Delta DSR. Set automatically if DSR changed state  
since COMSTA1 was last read. Cleared  
Table 113. COMIEN1 Register  
automatically by reading COMSTA1.  
Name  
Address  
Default Value  
Access  
DCTS  
Delta CTS. Set automatically if CTS changed state  
since COMSTA1 was last read. Cleared  
automatically by reading COMSTA1.  
COMIEN1  
0xFFFF0720  
0x04  
R/W  
COMIEN1 is an 8-bit network enable register.  
Table 110. COMSCR Register  
Table 114. COMIEN1 MMR Bit Descriptions  
Name  
Address  
Default Value  
Access  
Bit Name Description  
COMSCR  
0xFFFF071C  
0x00  
R/W  
7
6
5
ENAM Network address mode enable bit. Set by user to  
enable network address mode. Cleared by user to  
disable network address mode.  
COMSCR is an 8-bit scratch register used for temporary  
storage. It is also used in network addressable UART mode.  
E9BT  
9-bit transmit enable bit. Set by user to enable  
9-bit transmit. ENAM must be set. Cleared by user  
to disable 9-bit transmit.  
Table 111. COMDIV2 Register  
Name  
Address  
Default Value  
Access  
E9BR  
9-bit receive enable bit. Set by user to enable  
9-bit receive. ENAM must be set. Cleared by user  
to disable 9-bit receive.  
COMDIV2  
0xFFFF072C  
0x0000  
R/W  
COMDIV2 is a 16-bit fractional baud divide register.  
4
3
ENI  
Network interrupt enable bit.  
E9BD  
Word length. Set for 9-bit data. E9BT has to be  
cleared. Cleared for 8-bit data.  
Table 112. COMDIV2 MMR Bit Descriptions  
Bit  
Name  
Description  
2
ETD  
Transmitter pin driver enable bit. Set by user to  
enable SOUT pin as an output in slave mode or  
multimaster mode. Cleared by user; SOUT is  
three-state.  
15  
FBEN  
Fractional baud rate generator enable bit.  
Set by user to enable the fractional baud  
rate generator. Cleared by user to generate  
baud rate using the standard 450 UART  
baud rate generator.  
1
0
NABP Network address bit. Interrupt polarity bit.  
NAB  
Network address bit (if NABP = 1). Set by user to  
transmit the slave address. Cleared by user to  
transmit data.  
14:13  
12:11  
Reserved.  
FBM[1:0]  
M if FBM = 0, M = 4 (see the Fractional  
Divider section).  
10:0  
FBN[10:0] N (see the Fractional Divider section).  
Table 115. COMIID1 Register  
Name  
Address  
Default Value  
Access  
Network Addressable UART Mode  
COMIID1  
0xFFFF0724  
0x01  
R
This mode connects the MicroConverter to a 256-node serial  
network, either as a hardware single master or via software in a  
multimaster network. Bit 7 (ENAM) of the COMIEN1 register  
must be set to enable UART in network addressable mode (see  
Table 114). Note that there is no parity check in this mode.  
COMIID1 is an 8-bit network interrupt register. Bit 7 to Bit 4  
are reserved (see Table 116).  
Rev. F | Page 73 of 104  
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
MISO (Master In, Slave Out) Pin  
Table 116. COMIID1 MMR Bit Descriptions  
The MISO pin is configured as an input line in master mode  
and an output line in slave mode. The MISO line on the master  
(data in) should be connected to the MISO line in the slave  
device (data out). The data is transferred as byte wide (8-bit)  
serial data, MSB first.  
Bit 3:1  
Status  
Bits  
Bit 0  
Clearing  
Operation  
NINT Priority Definition  
000  
110  
1
0
No interrupt  
2
3
Matching network Read COMRX  
address  
MOSI (Master Out, Slave In) Pin  
101  
0
Address  
transmitted,  
buffer empty  
Write data to  
COMTX or  
read COMIID0  
The MOSI pin is configured as an output line in master mode  
and an input line in slave mode. The MOSI line on the master  
(data out) should be connected to the MOSI line in the slave  
device (data in). The data is transferred as byte wide (8-bit)  
serial data, MSB first.  
011  
010  
001  
0
0
0
1
2
3
Receive line status Read  
interrupt  
COMSTA0  
Receive buffer full Read COMRX  
interrupt  
SCLK (Serial Clock I/O) Pin  
Transmit buffer  
empty interrupt  
Write data to  
COMTX or  
read COMIID0  
Read  
COMSTA1  
The master serial clock (SCLK) is used to synchronize the data  
being transmitted and received through the MOSI SCLK  
period. Therefore, a byte is transmitted/received after eight SCLK  
periods. The SCLK pin is configured as an output in master  
mode and as an input in slave mode.  
000  
0
4
Modem status  
interrupt  
Note that to receive a network address interrupt, the slave must  
ensure that Bit 0 of COMIEN0 (enable receive buffer full interrupt)  
is set to 1.  
In master mode, the polarity and phase of the clock are  
controlled by the SPICON register, and the bit rate is defined  
in the SPIDIV register as follows:  
Table 117. COMADR Register  
Name  
Address  
Default Value  
Access  
fUCLK  
2×(1+ SPIDIV)  
fSERIAL CLOCK  
=
COMADR  
0xFFFF0728  
0xAA  
R/W  
COMADR is an 8-bit, read/write network address register that  
holds the address checked for by the network addressable  
UART. Upon receiving this address, the device interrupts the  
processor and/or sets the appropriate status bit in COMIID1.  
The maximum speed of the SPI clock is dependent on the clock  
divider bits and is summarized in Table 118.  
Table 118. SPI Speed vs. Clock Divider Bits in Master Mode  
CD Bits  
0
1
2
3
4
5
SERIAL PERIPHERAL INTERFACE  
SPIDIV in Hex 0x05  
0x0B  
0x17  
0x2F  
0x5F  
0xBF  
The ADuC7019/20/21/22/24/25/26/27/28/29 integrate a complete  
hardware serial peripheral interface (SPI) on-chip. SPI is an  
industry standard, synchronous serial interface that allows eight  
bits of data to be synchronously transmitted and simultaneously  
received, that is, full duplex up to a maximum bit rate of 3.48 Mb,  
as shown in Table 118. The SPI interface is not operational with  
core clock divider (CD) bits. POWCON[2:0] = 6 or 7 in master  
mode.  
SPI dpeed  
in MHz  
3.482 1.741 0.870 0.435 0.218 0.109  
In slave mode, the SPICON register must be configured with  
the phase and polarity of the expected input clock. The slave  
accepts data from an external master up to 10.4 Mb at CD = 0.  
The formula to determine the maximum speed is as follows:  
fHCLK  
4
fSERIAL CLOCK  
=
The SPI port can be configured for master or slave operation.  
and typically consists of four pins: MISO (P1.5), MOSI (P1.6),  
In both master and slave modes, data is transmitted on one edge  
of the SCL signal and sampled on the other. Therefore, it is  
important that the polarity and phase be configured the same  
for the master and slave devices.  
CS  
SCLK (P1.4), and  
(P1.7).  
On the transmit side, the SPITX register (and a TX shift register  
outside it) loads data onto the transmit pin (in slave mode,  
MISO; in master mode, MOSI). The transmit status bit, Bit 0,  
in SPISTA indicates whether there is valid data in the SPITX  
register.  
Chip Select ( Input) Pin  
CS  
CS  
In SPI slave mode, a transfer is initiated by the assertion of  
which is an active low input signal. The SPI port then transmits  
and receives 8-bit data until the transfer is concluded by  
,
Similarly, the receive data path consists of the SPIRX register  
(and an RX shift register). SPISTA, Bit 3 indicates whether there  
is valid data in the SPIRX register. If valid data in the SPIRX  
register is overwritten or if valid data in the RX shift register is  
discarded, SPISTA, Bit 5 (the overflow bit) is set.  
CS  
CS  
deassertion of . In slave mode,  
is always an input.  
Rev. F | Page 74 of 104  
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
SPI Registers  
Table 121. SPIRX Register  
Name  
Address  
Default Value  
Access  
The following MMR registers are used to control the SPI  
interface: SPISTA, SPIRX, SPITX, SPIDIV, and SPICON.  
SPIRX  
0xFFFF0A04  
0x00  
R
SPIRX is an 8-bit, read-only receive register.  
Table 119. SPISTA Register  
Name  
Address  
Default Value  
Access  
Table 122. SPITX Register  
SPISTA  
0xFFFF0A00  
0x00  
R
Name  
Address  
Default Value  
Access  
SPITX  
0xFFFF0A08  
0x00  
W
SPISTA is an 8-bit read-only status register. Only Bit 1 or Bit 4  
of this register generates an interrupt. Bit 6 of the SPICON  
register determines which bit generates the interrupt.  
SPITX is an 8-bit, write-only transmit register.  
Table 123. SPIDIV Register  
Name  
Table 120. SPISTA MMR Bit Descriptions  
Address  
Default Value  
Access  
Bit  
7:6  
5
Description  
SPIDIV  
0xFFFF0A0C  
0x1B  
R/W  
Reserved.  
SPIDIV is an 8-bit, serial clock divider register.  
SPIRX data register overflow status bit. Set if SPIRX is  
overflowing. Cleared by reading the SPIRX register.  
Table 124. SPICON Register  
Name  
4
3
SPIRX data register IRQ. Set automatically if Bit 3 or Bit 5  
is set. Cleared by reading the SPIRX register.  
SPIRX data register full status bit. Set automatically if a  
valid data is present in the SPIRX register. Cleared by  
reading the SPIRX register.  
Address  
Default Value  
Access  
SPICON  
0xFFFF0A10  
0x0000  
R/W  
SPICON is a 16-bit control register.  
2
1
0
SPITX data register underflow status bit. Set auto-  
matically if SPITX is underflowing. Cleared by writing in  
the SPITX register.  
SPITX data register IRQ. Set automatically if Bit 0 is clear  
or Bit 2 is set. Cleared by writing in the SPITX register or if  
finished transmission disabling the SPI.  
SPITX data register empty status bit. Set by writing to  
SPITX to send data. This bit is set during transmission of  
data. Cleared when SPITX is empty.  
Table 125. SPICON MMR Bit Descriptions  
Bit  
Description  
Function  
15:13  
12  
Reserved  
Continuous transfer enable  
N/A  
Set by user to enable continuous transfer. In master mode, the transfer continues until no valid data is  
CS  
available in the TX register. is asserted and remains asserted for the duration of each 8-bit serial transfer  
until TX is empty. Cleared by user to disable continuous transfer. Each transfer consists of a single 8-bit  
serial transfer. If valid data exists in the SPITX register, then a new transfer is initiated after a stall period.  
11  
10  
Loop back enable  
Slave MISO output enable  
Set by user to connect MISO to MOSI and test software. Cleared by user to be in normal mode.  
Set this bit to disable the output driver on the MISO pin. The MISO pin becomes open drain when this bit is  
set. Clear this bit for MISO to operate as normal.  
9
Clip select output enable  
Set by user in master mode to disable the chip select output. cleared by user to enable the chip select  
output.  
CS  
P1.7 should be configured as before SPICON is configured as a master when the chip select output  
enabled is also selected.  
8
SPIRX overflow overwrite enable  
Set by user, the valid data in the RX register is overwritten by the new serial byte received. Cleared by user,  
the new serial byte received is discarded.  
7
6
SPITX underflow mode  
Transfer and interrupt mode  
Set by user to transmit 0. Cleared by user to transmit the previous data.  
Set by user to initiate transfer with a write to the SPITX register. Interrupt occurs only when TX is empty.  
Cleared by user to initiate transfer with a read of the SPIRX register. Interrupt occurs only when RX is full.  
5
4
3
2
LSB first transfer enable bit  
Reserved  
Serial clock polarity mode bit  
Serial clock phase mode bit  
Set by user, the LSB is transmitted first. Cleared by user, the MSB is transmitted first.  
Set by user, the serial clock idles high. Cleared by user, the serial clock idles low.  
Set by user, the serial clock pulses at the beginning of each serial bit transfer. Cleared by user, the serial  
clock pulses at the end of each serial bit transfer.  
1
0
Master mode enable bit  
SPI enable bit  
Set by user to enable master mode. Cleared by user to enable slave mode.  
Set by user to enable the SPI. Cleared by user to disable the SPI.  
Rev. F | Page 75 of 104  
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
I2C-COMPATIBLE INTERFACES  
Slave Addresses  
The registers I2C0ID0, I2C0ID1, I2C0ID2, and I2C0ID3 contain  
the device IDs. The device compares the four I2C0IDx registers  
to the address byte. To be correctly addressed, the seven MSBs of  
either ID register must be identical to that of the seven MSBs of  
the first received address byte. The LSB of the ID registers (the  
transfer direction bit) is ignored in the process of address  
recognition.  
The ADuC7019/20/21/22/24/25/26/27/28/29 support two licensed  
I2C interfaces. The I2C interfaces are both implemented as a hard-  
ware master and a full slave interface. Because the two I2C inter-  
faces are identical, this data sheet describes only I2C0 in detail.  
Note that the two masters and one of the slaves have individual  
interrupts (see the Interrupt System section).  
Note that when configured as an I2C master device, the  
ADuC7019/20/21/22/24/25/26/27/28/29 cannot generate a  
repeated start condition.  
I2C Registers  
The I2C peripheral interface consists of 18 MMRs, which are  
discussed in this section.  
The two GPIO pins used for data transfer, SDAx and SCLx, are  
configured in a wired-AND format that allows arbitration in a  
multimaster system. These pins require external pull-up resistors.  
Typical pull-up values are 10 kΩ.  
The I2C bus peripheral address in the I2C bus system is pro-  
grammed by the user. This ID can be modified any time a  
transfer is not in progress. The user can configure the interface  
to respond to four slave addresses.  
Table 126. I2CxMSTA Registers  
Name  
Address  
Default Value  
Access  
R/W  
I2C0MSTA  
I2C1MSTA  
0xFFFF0800  
0xFFFF0900  
0x00  
0x00  
R/W  
I2CxMSTA are status registers for the master channel.  
Table 127. I2C0MSTA MMR Bit Descriptions  
The transfer sequence of an I2C system consists of a master  
device initiating a transfer by generating a start condition while  
the bus is idle. The master transmits the slave device address  
and the direction of the data transfer during the initial address  
transfer. If the master does not lose arbitration and the slave  
acknowledges, the data transfer is initiated. This continues until  
the master issues a stop condition and the bus becomes idle.  
The I2C peripheral can be configured only as a master or slave  
at any given time. The same I2C channel cannot simultaneously  
support master and slave modes.  
Access  
Bit Type  
Description  
7
R/W  
Master transmit FIFO flush. Set by user to flush  
the master Tx FIFO. Cleared automatically after  
the master Tx FIFO is flushed. This bit also  
flushes the slave receive FIFO.  
Master busy. Set automatically if the master is  
busy. Cleared automatically.  
Arbitration loss. Set in multimaster mode if  
another master has the bus. Cleared when the  
bus becomes available.  
No ACK. Set automatically if there is no  
acknowledge of the address by the slave  
device. Cleared automatically by reading the  
I2C0MSTA register.  
Master receive IRQ. Set after receiving data.  
Cleared automatically by reading the I2C0MRX  
register.  
Master transmit IRQ. Set at the end of a  
transmission. Cleared automatically by writing  
to the I2C0MTX register.  
Master transmit FIFO underflow. Set  
automatically if the master transmit FIFO is  
underflowing. Cleared automatically by  
writing to the I2C0MTX register.  
Master TX FIFO not full. Set automatically if the  
slave transmit FIFO is not full. Cleared automati-  
cally by writing twice to the I2C0STX register.  
6
5
R
R
4
R
Serial Clock Generation  
The I2C master in the system generates the serial clock for a  
transfer. The master channel can be configured to operate in  
fast mode (400 kHz) or standard mode (100 kHz).  
3
2
1
R
R
R
The bit rate is defined in the I2C0DIV MMR as follows:  
fUCLK  
fSERIAL CLOCK  
=
(2 + DIVH) + (2 + DIVL)  
where:  
UCLK = clock before the clock divider.  
f
DIVH = the high period of the clock.  
DIVL = the low period of the clock.  
0
R
Thus, for 100 kHz operation,  
DIVH = DIVL = 0xCF  
Table 128. I2CxSSTA Registers  
and for 400 kHz,  
Name  
Address  
Default Value  
0x01  
Access  
DIVH = 0x28, DIVL = 0x3C  
The I2CxDIV registers correspond to DIVH:DIVL.  
I2C0SSTA  
I2C1SSTA  
0xFFFF0804  
0xFFFF0904  
R
R
0x01  
I2CxSSTA are status registers for the slave channel.  
Rev. F | Page 76 of 104  
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 130. I2CxSRX Registers  
Table 129. I2C0SSTA MMR Bit Descriptions  
Name  
Address  
Default Value  
0x00  
Access  
Bit  
Value Description  
I2C0SRX  
I2C1SRX  
0xFFFF0808  
0xFFFF0908  
R
R
31:15  
14  
Reserved. These bits should be written as 0.  
0x00  
Start decode bit. Set by hardware if the device  
receives a valid start plus matching address.  
Cleared by an I2C stop condition or an I2C  
general call reset.  
I2CxSRX are receive registers for the slave channel.  
Table 131. I2CxSTX Registers  
13  
Repeated start decode bit. Set by hardware  
if the device receives a valid repeated start and  
matching address. Cleared by an I2C stop condi-  
tion, a read of the I2CSSTA register, or an I2C  
general call reset.  
Name  
Address  
Default Value  
0x00  
Access  
W
I2C0STX  
I2C1STX  
0xFFFF080C  
0xFFFF090C  
0x00  
W
I2CxSTX are transmit registers for the slave channel.  
12:11  
ID decode bits.  
Table 132. I2CxMRX Registers  
Name  
00  
01  
10  
11  
Received Address Matched ID Register 0.  
Received Address Matched ID Register 1.  
Received Address Matched ID Register 2.  
Received Address Matched ID Register 3.  
Address  
Default Value  
0x00  
Access  
I2C0MRX  
I2C1MRX  
0xFFFF0810  
0xFFFF0910  
R
R
0x00  
10  
Stop after start and matching address interrupt.  
Set by hardware if the slave device receives an  
I2C stop condition after a previous I2C start  
condition and matching address. Cleared by a  
read of the I2C0SSTA register.  
General call ID.  
No general call.  
General call reset and program address.  
General call program address.  
General call matching alternative ID.  
General call interrupt. Set if the slave device  
receives a general call of any type. Cleared by  
setting Bit 8 of the I2CxCFG register. If it is a  
general call reset, all registers are at their  
default values. If it is a hardware general call,  
the Rx FIFO holds the second byte of the  
general call. This is similar to the I2C0ALT  
register (unless it is a general call to reprogram  
the device address). For more details, see the I2C  
bus specification, Version 2.1, January 2000.  
Slave busy. Set automatically if the slave is busy.  
Cleared automatically.  
No ACK. Set if master asking for data and no  
data is available. Cleared automatically by  
reading the I2C0SSTA register.  
I2CxMRX are receive registers for the master channel.  
Table 133. I2CxMTX Registers  
Name  
Address  
Default Value  
0x00  
Access  
W
I2C0MTX  
I2C1MTX  
0xFFFF0814  
0xFFFF0914  
9:8  
0x00  
W
00  
01  
10  
11  
I2CxMTX are transmit registers for the master channel.  
Table 134. I2CxCNT Registers  
Name  
Address  
Default Value  
0x00  
Access  
R/W  
7
I2C0CNT  
I2C1CNT  
0xFFFF0818  
0xFFFF0918  
0x00  
R/W  
I2CxCNT are 3-bit, master receive, data count registers. If a master  
read transfer sequence is initiated, the I2CxCNT registers denote  
the number of bytes (−1) to be read from the slave device. By  
default, this counter is 0, which corresponds to the one byte  
expected.  
Table 135. I2CxADR Registers  
6
5
Name  
Address  
Default Value  
0x00  
Access  
R/W  
I2C0ADR  
I2C1ADR  
0xFFFF081C  
0xFFFF091C  
0x00  
R/W  
I2CxADR are master address byte registers. The I2CxADR  
value is the device address that the master wants to commun-  
icate with. It automatically transmits at the start of a master  
transfer sequence if there is no valid data in the I2CxMTX  
register when the master enable bit is set.  
4
3
2
1
0
Slave receive FIFO overflow. Set automatically if  
the slave receive FIFO is overflowing. Cleared  
automatically by reading the I2C0SSTA register.  
Slave receive IRQ. Set after receiving data.  
Cleared automatically by reading the I2C0SRX  
register or flushing the FIFO.  
Slave transmit IRQ. Set at the end of a trans-  
mission. Cleared automatically by writing to the  
I2C0STX register.  
Slave transmit FIFO underflow. Set automatically if  
the slave transmit FIFO is underflowing. Cleared  
automatically by writing to the I2C0SSTA register.  
Table 136. I2CxBYTE Registers  
Name  
Address  
Default Value  
0x00  
Access  
R/W  
I2C0BYTE  
I2C1BYTE  
0xFFFF0824  
0xFFFF0924  
0x00  
R/W  
I2CxBYTE are broadcast byte registers. Data written to these  
registers does not go through the TxFIFO. This data is transmitted  
at the start of a transfer sequence before the address. After the  
byte is transmitted and acknowledged, the I2C expects another  
byte written in I2CxBYTE or an address written to the address  
register.  
Slave transmit FIFO not full. Set automatically if  
the slave transmit FIFO is not full. Cleared auto-  
matically by writing twice to the I2C0STX register.  
Rev. F | Page 77 of 104  
 
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Table 137. I2CxALT Registers  
Table 138. I2CxCFG Registers  
Name  
Address  
Default Value  
0x00  
Access  
R/W  
Name  
Address  
Default Value  
Access  
R/W  
I2C0ALT  
I2C1ALT  
0xFFFF0828  
0xFFFF0928  
I2C0CFG  
I2C1CFG  
0xFFFF082C  
0xFFFF092C  
0x00  
0x00  
0x00  
R/W  
R/W  
I2CxALT are hardware general call ID registers used in slave mode.  
I2CxCFG are configuration registers.  
Table 139. I2C0CFG MMR Bit Descriptions  
Bit  
Description  
31:5 Reserved. These bits should be written by the user as 0.  
14  
Enable stop interrupt. Set by the user to generate an interrupt upon receiving a stop condition and after receiving a valid start  
condition and matching address. Cleared by the user to disable the generation of an interrupt upon receiving a stop condition.  
13  
12  
11  
10  
9
Reserved.  
Reserved.  
Enable stretch SCL (holds SCL low). Set by the user to stretch the SCL line. Cleared by the user to disable stretching of the SCL line.  
Reserved.  
Slave Tx FIFO request interrupt enable. Set by the user to disable the slave Tx FIFO request interrupt. Cleared by the user to generate  
an interrupt request just after the negative edge of the clock for the R/W bit. This allows the user to input data into the slave Tx FIFO if  
it is empty. At 400 ksps and the core clock running at 41.78 MHz, the user has 45 clock cycles to take appropriate action, taking  
interrupt latency into account.  
8
7
6
5
4
General call status bit clear. Set by the user to clear the general call status bits. Cleared automatically by hardware after the general  
call status bits are cleared.  
Master serial clock enable bit. Set by user to enable generation of the serial clock in master mode. Cleared by user to disable serial  
clock in master mode.  
Loopback enable bit. Set by user to internally connect the transition to the reception to test user software. Cleared by user to operate  
in normal mode.  
Start backoff disable bit. Set by user in multimaster mode. If losing arbitration, the master immediately tries to retransmit. Cleared by  
user to enable start backoff. After losing arbitration, the master waits before trying to retransmit.  
Hardware general call enable. When this bit and Bit 3 are set and have received a general call (Address 0x00) and a data byte, the  
device checks the contents of I2C0ALT against the receive register. If the contents match, the device has received a hardware general  
call. This is used if a device needs urgent attention from a master device without knowing which master it needs to turn to. This is a  
“to whom it may concern” call. The ADuC7019/20/21/22/24/25/26/27/28/29 watch for these addresses. The device that requires  
attention embeds its own address into the message. All masters listen, and the one that can handle the device contacts its slave and  
acts appropriately. The LSB of the I2C0ALT register should always be written to 1, as indicated in The I2C-Bus Specification, January  
2000, from NXP.  
3
General call enable bit. This bit is set by the user to enable the slave device to acknowledge (ACK) an I2C general call, Address 0x00  
(write). The device then recognizes a data bit. If it receives a 0x06 (reset and write programmable part of slave address by hardware)  
as the data byte, the I2C interface resets as as indicated in The I2C-Bus Specification, January 2000, from NXP. This command can be  
used to reset an entire I2C system. The general call interrupt status bit sets on any general call. The user must take corrective action by  
setting up the I2C interface after a reset. If it receives a 0x04 (write programmable part of slave address by hardware) as the data byte,  
the general call interrupt status bit sets on any general call. The user must take corrective action by reprogramming the device address.  
2
1
0
Reserved.  
Master enable bit. Set by user to enable the master I2C channel. Cleared by user to disable the master I2C channel.  
Slave enable bit. Set by user to enable the slave I2C channel. A slave transfer sequence is monitored for the device address in I2C0ID0,  
I2C0ID1, I2C0ID2, and I2C0ID3. At 400 kSPs, the core clock should run at 41.78 MHz because the interrupt latency could be up to 45  
clock cycles alone. After the I2C read bit, the user has 0.5 of an I2C clock cycle to load the Tx FIFO. AT 400 kSPS, this is 1.26 μs, the  
interrupt latency.  
Rev. F | Page 78 of 104  
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 140. I2CxDIV Registers  
Table 144. I2C0FSTA MMR Bit Descriptions  
Name  
Address  
Default Value  
0x1F1F  
Access  
R/W  
Access  
Type  
Bit  
15:10  
9
Value Description  
I2C0DIV  
I2C1DIV  
0xFFFF0830  
0xFFFF0930  
Reserved.  
Master transmit FIFO flush. Set by the  
0x1F1F  
R/W  
R/W  
I2CxDIV are the clock divider registers.  
user to flush the master Tx FIFO.  
Cleared automatically when the  
master Tx FIFO is flushed. This bit  
also flushes the slave receive FIFO.  
Slave transmit FIFO flush. Set by the  
user to flush the slave Tx FIFO. Cleared  
automatically after the slave Tx FIFO  
is flushed.  
Master Rx FIFO status bits.  
FIFO empty.  
Byte written to FIFO.  
One byte in FIFO.  
FIFO full.  
Table 141. I2CxIDx Registers  
Name  
Address  
Default Value  
0x00  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
I2C0ID0  
I2C0ID1  
I2C0ID2  
I2C0ID3  
I2C1ID0  
I2C1ID1  
I2C1ID2  
I2C1ID3  
0xFFFF0838  
0xFFFF083C  
0xFFFF0840  
0xFFFF0844  
0xFFFF0938  
0xFFFF093C  
0xFFFF0940  
0xFFFF0944  
8
R/W  
R
0x00  
0x00  
0x00  
7:6  
0x00  
00  
01  
10  
11  
0x00  
0x00  
0x00  
5:4  
3:2  
1:0  
R
R
R
Master Tx FIFO status bits.  
FIFO empty.  
Byte written to FIFO.  
One byte in FIFO.  
FIFO full.  
Slave Rx FIFO status bits.  
FIFO empty.  
Byte written to FIFO.  
One byte in FIFO.  
FIFO full.  
Slave Tx FIFO status bits.  
FIFO empty.  
Byte written to FIFO.  
One byte in FIFO.  
FIFO full.  
I2CxID0, I2CxID1, I2CxID2, and I2CxID3 are slave address  
device ID registers of I2Cx.  
00  
01  
10  
11  
Table 142. I2CxCCNT Registers  
Name  
Address  
Default Value  
Access  
R/W  
I2C0CCNT  
I2C1CCNT  
0xFFFF0848  
0xFFFF0948  
0x01  
0x01  
R/W  
00  
01  
10  
11  
I2CxCCNT are 8-bit start/stop generation counters. They hold  
off SDA low for start and stop conditions.  
Table 143. I2CxFSTA Registers  
Name  
Address  
Default Value  
0x0000  
Access  
R/W  
00  
01  
10  
11  
I2C0FSTA  
I2C1FSTA  
0xFFFF084C  
0xFFFF094C  
0x0000  
R/W  
I2CxFSTA are FIFO status registers.  
Rev. F | Page 79 of 104  
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
PROGRAMMABLE LOGIC ARRAY (PLA)  
Table 146. PLAELMx Registers  
Every ADuC7019/20/21/22/24/25/26/27/28/29 integrates a  
fully programmable logic array (PLA) that consists of two  
independent but interconnected PLA blocks. Each block  
consists of eight PLA elements, giving each part a total of  
16 PLA elements.  
Name  
Address  
Default Value  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PLAELM0  
PLAELM1  
PLAELM2  
PLAELM3  
PLAELM4  
PLAELM5  
PLAELM6  
PLAELM7  
PLAELM8  
PLAELM9  
PLAELM10  
PLAELM11  
PLAELM12  
PLAELM13  
PLAELM14  
PLAELM15  
0xFFFF0B00  
0xFFFF0B04  
0xFFFF0B08  
0xFFFF0B0C  
0xFFFF0B10  
0xFFFF0B14  
0xFFFF0B18  
0xFFFF0B1C  
0xFFFF0B20  
0xFFFF0B24  
0xFFFF0B28  
0xFFFF0B2C  
0xFFFF0B30  
0xFFFF0B34  
0xFFFF0B38  
0xFFFF0B3C  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Each PLA element contains a two-input lookup table that can  
be configured to generate any logic output function based on  
two inputs and a flip-flop. This is represented in Figure 76.  
0
4
A
2
LOOKUP  
TABLE  
B
3
1
Figure 76. PLA Element  
PLAELMx are Element 0 to Element 15 control registers. They  
configure the input and output mux of each element, select the  
function in the lookup table, and bypass/use the flip-flop. See  
Table 147 and Table 152.  
In total, 30 GPIO pins are available on each ADuC7019/20/21/  
22/24/25/26/27/28/29 for the PLA. These include 16 input pins  
and 14 output pins, which msut be configured in the GPxCON  
register as PLA pins before using the PLA. Note that the  
comparator output is also included as one of the 16 input pins.  
Table 147. PLAELMx MMR Bit Descriptions  
The PLA is configured via a set of user MMRs. The output(s) of  
the PLA can be routed to the internal interrupt system, to the  
Bit  
Value Description  
31:11  
10:9  
8:7  
Reserved.  
Mux 0 control (see Table 152).  
Mux 1 control (see Table 152).  
CONVSTART  
signal of the ADC, to an MMR, or to any of the 16  
PLA output pins.  
6
Mux 2 control. Set by user to select the output  
of Mux 0. Cleared by user to select the bit value  
from PLADIN.  
Mux 3 control. Set by user to select the input  
pin of the particular element. Cleared by user to  
select the output of Mux 1.  
The two blocks can be interconnected as follows:  
Output of Element 15 (Block 1) can be fed back to Input 0  
of Mux 0 of Element 0 (Block 0).  
5
Output of Element 7 (Block 0) can be fed back to the Input 0  
of Mux 0 of Element 8 (Block 1).  
4:1  
Lookup table control.  
Table 145. Element Input/Output  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.  
NOR.  
PLA Block 0  
PLA Block 1  
Input  
P3.0  
B AND NOT A.  
NOT A.  
A AND NOT B.  
NOT B.  
EXOR.  
NAND.  
AND.  
EXNOR.  
B.  
NOT A OR B.  
A.  
A OR NOT B.  
OR.  
Element Input  
Output  
P1.7  
P0.4  
P0.5  
P0.6  
P0.7  
P2.0  
P2.1  
P2.2  
Element  
Output  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
0
1
2
3
4
5
6
7
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P0.0  
8
9
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
10  
11  
12  
13  
14  
15  
PLA MMRs Interface  
The PLA peripheral interface consists of the 22 MMRs  
described in this section.  
1.  
0
Mux 4 control. Set by user to bypass the flip-  
flop. Cleared by user to select the flip-flop  
(cleared by default).  
Rev. F | Page 80 of 104  
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 148. PLACLK Register  
Table 150. PLAIRQ Register  
Name  
Address  
Default Value  
Access  
Name  
Address  
Default Value  
Access  
PLACLK  
0xFFFF0B40  
0x00  
R/W  
PLAIRQ  
0xFFFF0B44  
0x00000000  
R/W  
PLACLK is the clock selection for the flip-flops of Block 0 and  
Block 1. Note that the maximum frequency when using the  
GPIO pins as the clock input for the PLA blocks is 44 MHz.  
PLAIRQ enables IRQ0 and/or IRQ1 and selects the source  
of the IRQ.  
Table 151. PLAIRQ MMR Bit Descriptions  
Table 149. PLACLK MMR Bit Descriptions  
Bit  
Value  
Description  
Bit  
Value  
Description  
15:13  
12  
Reserved.  
7
Reserved.  
PLA IRQ1 enable bit. Set by user to enable  
IRQ1 output from PLA. Cleared by user to  
disable IRQ1 output from PLA.  
6:4  
Block 1 clock source selection.  
GPIO clock on P0.5.  
GPIO clock on P0.0.  
GPIO clock on P0.7.  
HCLK.  
OCLK (32.768 kHz) external crystal only.  
Timer1 overflow.  
Reserved.  
000  
001  
010  
011  
100  
101  
Other  
11:8  
PLA IRQ1 source.  
PLA Element 0.  
PLA Element 1.  
PLA Element 15.  
Reserved.  
PLA IRQ0 enable bit. Set by user to enable  
IRQ0 output from PLA. Cleared by user to  
disable IRQ0 output from PLA.  
0000  
0001  
1111  
7:5  
4
3
Reserved.  
2:0  
Block 0 clock source selection.  
GPIO clock on P0.5.  
GPIO clock on P0.0.  
GPIO clock on P0.7.  
HCLK.  
OCLK (32.768 kHz) external crystal only.  
Timer1 overflow.  
Reserved.  
000  
001  
010  
011  
100  
101  
Other  
3:0  
PLA IRQ0 source.  
PLA Element 0.  
PLA Element 1.  
PLA Element 15.  
0000  
0001  
1111  
Table 152. Feedback Configuration  
Bit  
Value  
PLAELM0  
Element 15  
Element 2  
Element 4  
Element 6  
Element 1  
Element 3  
Element 5  
Element 7  
PLAELM1 to PLAELM7  
Element 0  
Element 2  
Element 4  
Element 6  
Element 1  
Element 3  
Element 5  
Element 7  
PLAELM8  
Element 7  
Element 10  
Element 12  
Element 14  
Element 9  
Element 11  
Element 13  
Element 15  
PLAELM9 to PLAELM15  
Element 8  
Element 10  
Element 12  
Element 14  
Element 9  
Element 11  
Element 13  
Element 15  
10:9  
00  
01  
10  
11  
00  
01  
10  
11  
8:7  
Rev. F | Page 81 of 104  
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Table 153. PLAADC Register  
Table 156. PLADIN MMR Bit Descriptions  
Name  
Address  
Default Value  
Access  
Bit  
Description  
PLAADC  
0xFFFF0B48  
0x00000000  
R/W  
31:16  
15:0  
Reserved.  
Input bit to Element 15 to Element 0.  
PLAADC is the PLA source for the ADC start conversion signal.  
Table 157. PLADOUT Register  
Table 154. PLAADC MMR Bit Descriptions  
Name  
Address  
Default Value  
Access  
Bit  
31:5  
4
Value Description  
PLADOUT  
0xFFFF0B50  
0x00000000  
R
Reserved.  
ADC start conversion enable bit. Set by user  
PLADOUT is a data output MMR for PLA. This register is  
always updated.  
to enable ADC start conversion from PLA.  
Cleared by user to disable ADC start  
conversion from PLA.  
Table 158. PLADOUT MMR Bit Descriptions  
3:0  
ADC start conversion source.  
PLA Element 0.  
PLA Element 1.  
Bit  
Description  
0000  
0001  
1111  
31:16  
15:0  
Reserved.  
Output bit from Element 15 to Element 0.  
PLA Element 15.  
Table 159. PLALCK Register  
Table 155. PLADIN Register  
Name  
Address  
Default Value  
Access  
Name  
Address  
Default Value  
Access  
PLALCK  
0xFFFF0B54  
0x00  
W
PLADIN  
0xFFFF0B4C  
0x00000000  
R/W  
PLALCK is a PLA lock option. Bit 0 is written only once. When  
set, it does not allow modifying any of the PLA MMRs, except  
PLADIN. A PLA tool is provided in the development system to  
easily configure the PLA.  
PLADIN is a data input MMR for PLA.  
Rev. F | Page 82 of 104  
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
PROCESSOR REFERENCE PERIPHERALS  
INTERRUPT SYSTEM  
IRQ  
The interrupt request (IRQ) is the exception signal to enter the  
IRQ mode of the processor. It is used to service general-purpose  
interrupt handling of internal and external events.  
There are 23 interrupt sources on the ADuC7019/20/21/22/  
24/25/26/27/28/29 that are controlled by the interrupt  
controller. Most interrupts are generated from the on-chip  
peripherals, such as ADC and UART. Four additional interrupt  
sources are generated from external interrupt request pins,  
IRQ0, IRQ1, IRQ2, and IRQ3. The ARM7TDMI CPU core only  
recognizes interrupts as one of two types: a normal interrupt  
request IRQ or a fast interrupt request FIQ. All the interrupts  
can be masked separately.  
The four 32-bit registers dedicated to IRQ are IRQSTA,  
IRQSIG, IRQEN, and IRQCLR.  
Table 161. IRQSTA Register  
Name  
Address  
Default Value  
Access  
IRQSTA  
0xFFFF0000  
0x00000000  
R
IRQSTA (read-only register) provides the current-enabled IRQ  
source status. When set to 1, that source should generate an  
active IRQ request to the ARM7TDMI core. There is no priority  
encoder or interrupt vector generation. This function is  
implemented in software in a common interrupt handler  
routine. All 32 bits are logically ORed to create the IRQ signal  
to the ARM7TDMI core.  
The control and configuration of the interrupt system are  
managed through nine interrupt-related registers, four  
dedicated to IRQ, and four dedicated to FIQ. An additional  
MMR is used to select the programmed interrupt source. The  
bits in each IRQ and FIQ register (except for Bit 23) represent  
the same interrupt source as described in Table 160.  
Table 160. IRQ/FIQ MMRs Bit Description  
Table 162. IRQSIG Register  
Bit  
Description  
All interrupts OR’ed (FIQ only)  
SWI  
Name  
Address  
Default Value  
0x00XXX0001  
Access  
0
1
IRQSIG  
0xFFFF0004  
R
1 X indicates an undefined value.  
2
Timer0  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Timer1  
IRQSIG reflects the status of the different IRQ sources. If a periph-  
eral generates an IRQ signal, the corresponding bit in the IRQSIG  
is set; otherwise, it is cleared. The IRQSIG bits are cleared when  
the interrupt in the particular peripheral is cleared. All IRQ  
sources can be masked in the IRQEN MMR. IRQSIG is read only.  
Wake-up timer (Timer2)  
Watchdog timer (Timer3)  
Flash control  
ADC channel  
PLL lock  
I2C0 slave  
I2C0 master  
I2C1 master  
SPI slave  
Table 163. IRQEN Register  
Name  
Address  
Default Value  
Access  
IRQEN  
0xFFFF0008  
0x00000000  
R/W  
IRQEN provides the value of the current enable mask. When  
each bit is set to 1, the source request is enabled to create an  
IRQ exception. When each bit is set to 0, the source request is  
disabled or masked, which does not create an IRQ exception.  
SPI master  
UART  
External IRQ0  
Comparator  
PSM  
External IRQ1  
PLA IRQ0  
Note that to clear an already enabled interrupt source, the user  
must set the appropriate bit in the IRQCLR register. Clearing an  
interrupt’s IRQEN bit does not disable the interrupt.  
PLA IRQ1  
Table 164. IRQCLR Register  
External IRQ2  
External IRQ3  
PWM trip (IRQ only)/PWM sync (FIQ only)  
Name  
Address  
Default Value  
Access  
IRQCLR  
0xFFFF000C  
0x00000000  
W
IRQCLR (write-only register) clears the IRQEN register in  
order to mask an interrupt source. Each bit set to 1 clears the  
corresponding bit in the IRQEN register without affecting the  
remaining bits. The pair of registers, IRQEN and IRQCLR,  
independently manipulates the enable mask without requiring  
an atomic read-modify-write.  
Rev. F | Page 83 of 104  
 
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
FIQ  
Table 170. SWICFG MMR Bit Descriptions  
The fast interrupt request (FIQ) is the exception signal to enter  
the FIQ mode of the processor. It is provided to service data  
transfer or communication channel tasks with low latency. The  
FIQ interface is identical to the IRQ interface providing the  
second-level interrupt (highest priority). Four 32-bit registers  
are dedicated to FIQ: FIQSIG, FIQEN, FIQCLR, and FIQSTA.  
Bit  
31:3  
2
Description  
Reserved.  
Programmed interrupt (FIQ). Setting/clearing this bit  
corresponds with setting/clearing Bit 1 of FIQSTA  
and FIQSIG.  
1
Programmed interrupt (IRQ). Setting/clearing this bit  
corresponds with setting/clearing Bit 1 of IRQSTA  
and IRQSIG.  
Table 165. FIQSTA Register  
Name  
Address  
Default Value  
Access  
0
Reserved.  
FIQSTA  
0xFFFF0100  
0x00000000  
R
Note that any interrupt signal must be active for at least the  
equivalent of the interrupt latency time, which is detected by  
the interrupt controller and by the user in the IRQSTA/FIQSTA  
register.  
Table 166. FIQSIG Register  
Name  
Address  
Default Value  
0x00XXX0001  
Access  
FIQSIG  
0xFFFF0104  
R
1 X indicates an undefined value.  
TIMERS  
The ADuC7019/20/21/22/24/25/26/27/28/29 have four general-  
purpose timer/counters.  
Table 167. FIQEN Register  
Name  
Address  
Default Value  
Access  
FIQEN  
0xFFFF0108  
0x00000000  
R/W  
Timer0  
Timer1  
Timer2 or wake-up timer  
Timer3 or watchdog timer  
Table 168. FIQCLR Register  
Name  
Address  
Default Value  
Access  
FIQCLR  
0xFFFF010C  
0x00000000  
W
These four timers in their normal mode of operation can be  
either free running or periodic.  
Bit 31 to Bit 1 of FIQSTA are logically ORd to create the FIQ  
signal to the core and to Bit 0 of both the FIQ and IRQ registers  
(FIQ source).  
In free-running mode, the counter decreases from the  
maximum value until zero scale and starts again at the  
minimum value. (It also increases from the minimum value  
until full scale and starts again at the maximum value.)  
The logic for FIQEN and IRQEN does not allow an interrupt  
source to be enabled in both IRQ and FIQ masks. A bit set to 1  
in FIQEN does, as a side effect, clear the same bit in IRQEN.  
Also, a bit set to 1 in IRQEN does, as a side effect, clear the  
same bit in FIQEN. An interrupt source can be disabled in both  
the IRQEN and FIQEN masks.  
In periodic mode, the counter decrements/increments from the  
value in the load register (TxLD MMR) until zero/full scale and  
starts again at the value stored in the load register.  
The timer interval is calculated as follows:  
Note that to clear an already enabled FIQ source, the user must  
set the appropriate bit in the FIQCLR register. Clearing an  
interrupt’s FIQEN bit does not disable the interrupt.  
If the timer is set to count down then  
(
TxLD  
)
×Prescaler  
Programmed Interrupts  
Interval =  
SourceClock  
Because the programmed interrupts are nonmaskable, they are  
controlled by another register, SWICFG, which simultaneously  
writes into the IRQSTA and IRQSIG registers and/or the  
FIQSTA and FIQSIG registers. The 32-bit SWICFG register is  
dedicated to software interrupts(see Table 170). This MMR  
allows the control of a programmed source interrupt.  
If the timer is set to count up, then  
Fs TxLD × Prescaler  
SourceClock  
(
)
Interval =  
The value of a counter can be read at any time by accessing its  
value register (TxVAL). Note that when a timer is being clocked  
from a clock other than core clock, an incorrect value may be  
read (due to an asynchronous clock system). In this configur-  
ation, TxVAL should always be read twice. If the two readings  
are different, it should be read a third time to get the correct  
value.  
Table 169. SWICFG Register  
Name  
Address  
Default Value  
Access  
SWICFG  
0xFFFF0010  
0x00000000  
W
Timers are started by writing in the control register of the  
corresponding timer (TxCON).  
Rev. F | Page 84 of 104  
 
 
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
In normal mode, an IRQ is generated each time the value of the  
counter reaches zero when counting down. It is also generated  
each time the counter value reaches full scale when counting  
up. An IRQ can be cleared by writing any value to clear the  
register of that particular timer (TxCLRI).  
The Timer0 interface consists of four MMRs: T0LD, T0VAL,  
T0CON, and T0CLRI.  
Table 172. T0LD Register  
Name  
Address  
Default Value  
Access  
T0LD  
0xFFFF0300  
0x0000  
R/W  
When using an asynchronous clock-to-clock timer, the  
interrupt in the timer block may take more time to clear  
than the time it takes for the code in the interrupt routine to  
execute. Ensure that the interrupt signal is cleared before  
leaving the interrupt service routine. This can be done by  
checking the IRQSTA MMR.  
T0LD is a 16-bit load register.  
Table 173. T0VAL Register  
Name  
Address  
Default Value  
Access  
T0VAL  
0xFFFF0304  
0xFFFF  
R
T0VAL is a 16-bit read-only register representing the current  
state of the counter.  
Hour:Minute:Second:1/128 Format  
To use the timer in hour:minute:second:hundredths format,  
select the 32,768 kHz clock and prescaler of 256. The hun-  
dredths field does not represent milliseconds but 1/128 of  
a second (256/32,768). The bits representing the hour,  
minute, and second are not consecutive in the register.  
This arrangement applies to TxLD and TxVAL when using  
the hour:minute:second:hundredths format as set in  
TxCON[5:4]. See Table 171 for additional details.  
Table 174. T0CON Register  
Name  
Address  
Default Value  
Access  
T0CON  
0xFFFF0308  
0x0000  
R/W  
T0CON is the configuration MMR described in Table 175.  
Table 175. T0CON MMR Bit Descriptions  
Bit  
15:8  
7
Value Description  
Reserved.  
Timer0 enable bit. Set by user to enable Timer0.  
Table 171. Hour:Minnute:Second:Hundredths Format  
Cleared by user to disable Timer0 by default.  
Bit  
Value  
Description  
6
Timer0 mode. Set by user to operate in  
periodic mode. Cleared by user to operate  
in free-running mode. Default mode.  
Reserved.  
Prescale.  
Core Clock/1. Default value.  
Core Clock/16.  
Core Clock/256.  
Undefined. Equivalent to 00.  
Reserved.  
31:24  
23:22  
21:16  
15:14  
13.8  
7
0 to 23 or 0 to 255  
0
0 to 59  
0
0 to 59  
0
Hours  
Reserved  
Minutes  
Reserved  
Seconds  
Reserved  
1/128 second  
5:4  
3:2  
00  
01  
10  
11  
6:0  
0 to 127  
Timer0 (RTOS Timer)  
1:0  
Timer0 is a general-purpose, 16-bit timer (count down) with a  
programmable prescaler (see Figure 77). The prescaler source is  
the core clock frequency (HCLK) and can be scaled by factors  
of 1, 16, or 256.  
Table 176. T0CLRI Register  
Name  
Address  
Default Value  
Access  
T0CLRI  
0xFFFF030C  
0xFF  
W
T0CLRI is an 8-bit register. Writing any value to this register  
clears the interrupt.  
Timer0 can be used to start ADC conversions as shown in the  
block diagram in Figure 77.  
16-BIT  
LOAD  
16-BIT  
PRESCALER  
/1, 16 OR 256  
TIMER0 IRQ  
DOWN  
HCLK  
COUNTER  
ADC CONVERSION  
TIMER0  
VALUE  
Figure 77. Timer0 Block Diagram  
Rev. F | Page 85 of 104  
 
 
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
Timer1 (General-Purpose Timer)  
The Timer1 interface consists of five MMRs: T1LD, T1VAL,  
T1CON, T1CLRI, and T1CAP.  
Timer1 is a general-purpose, 32-bit timer (count down or count  
up) with a programmable prescaler. The source can be the  
32 kHz external crystal, the core clock frequency, or an external  
GPIO (P1.0 or P0.6). The maximum frequency of the clock  
input is 44 Mhz). This source can be scaled by a factor of 1, 16,  
256, or 32,768.  
Table 177. T1LD Register  
Name  
Address  
Default Value  
Access  
T1LD  
0xFFFF0320  
0x00000000  
R/W  
T1LD is a 32-bit load register.  
The counter can be formatted as a standard 32-bit value or as  
hours: minutes: seconds: hundredths.  
Table 178. T1VAL Register  
Name  
Address  
Default Value  
Access  
T1VAL  
0xFFFF0324  
0xFFFFFFFF  
R
Timer1 has a capture register (T1CAP) that can be triggered by  
a selected IRQ source initial assertion. This feature can be used  
to determine the assertion of an event more accurately than the  
precision allowed by the RTOS timer when the IRQ is serviced.  
T1VAL is a 32-bit read-only register that represents the current  
state of the counter.  
Table 179. T1CON Register  
Timer1 can be used to start ADC conversions as shown in the  
block diagram in Figure 78.  
Name  
Address  
Default Value  
Access  
T1CON  
0xFFFF0328  
0x0000  
R/W  
T1CON is the configuration MMR described in Table 180.  
32-BIT  
LOAD  
32kHz OSCILLATOR  
PRESCALER  
/1, 16, 256  
OR 32,768  
32-BIT  
UP/DOWN  
COUNTER  
HCLK  
P0.6  
P1.0  
TIMER1 IRQ  
ADC CONVERSION  
TIMER1  
VALUE  
CAPTURE  
IRQ[31:0]  
Figure 78. Timer1 Block Diagram  
Rev. F | Page 86 of 104  
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
Table 180. T1CON MMR Bit Descriptions  
Table 182. T1CAP Register  
Bit  
Value  
Description  
Name  
Address  
Default Value  
Access  
31:18  
17  
Reserved.  
T1CAP  
0xFFFF0330  
0x00000000  
R/W  
Event select bit. Set by user to enable time  
capture of an event. Cleared by user to  
disable time capture of an event.  
Event select range, 0 to 31. These events are  
as described in Table 160. All events are  
offset by two; that is, Event 2 in Table 160  
becomes Event 0 for the purposes of  
Timer1.  
T1CAP is a 32-bit register. It holds the value contained in  
T1VAL when a particular event occurs. This event must be  
selected in T1CON.  
16:12  
11:9  
Timer2 (Wake-Up Timer)  
Timer2 is a 32-bit wake-up timer (count down or count up)  
with a programmable prescaler. The source can be the 32 kHz  
external crystal, the core clock frequency, or the internal 32 kHz  
oscillator. The clock source can be scaled by a factor of 1, 16,  
256, or 32,768. The wake-up timer continues to run when the  
core clock is disabled.  
Clock select.  
Core clock (HCLK).  
000  
001  
010  
011  
External 32.768 kHz crystal.  
P1.0 rising edge triggered.  
P0.6 rising edge triggered.  
Count up. Set by user for Timer1 to count  
up. Cleared by user for Timer1 to count  
down by default.  
The counter can be formatted as plain 32-bit value or as  
hours: minutes: seconds: hundredths.  
8
32-BIT  
LOAD  
7
Timer1 enable bit. Set by user to enable  
Timer1. Cleared by user to disable Timer1 by  
default.  
INTERNAL  
OSCILLATOR  
PRESCALER  
/1, 16, 256  
OR 32,768  
32-BIT  
UP/DOWN  
COUNTER  
EXTERNAL  
CRYSTAL  
TIMER2 IRQ  
6
Timer1 mode. Set by user to operate in  
periodic mode. Cleared by user to operate in  
free-running mode. Default mode.  
HCLK  
TIMER2  
VALUE  
5:4  
Format.  
Figure 79. Timer2 Block Diagram  
00  
01  
10  
11  
Binary.  
Reserved.  
The Timer2 interface consists of four MMRs: T2LD, T2VAL,  
T2CON, and T2CLRI.  
Hr: min: sec: hundredths (23 hours to 0 hour).  
Hr: min: sec: hundredths (255 hours to 0  
hour).  
Table 183. T2LD Register  
Name  
Address  
Default Value  
Access  
3:0  
Prescale.  
T2LD  
0xFFFF0340  
0x00000000  
R/W  
0000  
0100  
1000  
1111  
Source Clock/1.  
Source Clock/16.  
Source Clock/256.  
Source Clock/32,768.  
T2LD is a 32-bit register load register.  
Table 184. T2VAL Register  
Name  
Address  
Default Value  
Access  
T2VAL  
0xFFFF0344  
0xFFFFFFFF  
R
Table 181. T1CLRI Register  
Name  
Address  
Default Value  
Access  
T2VAL is a 32-bit read-only register that represents the current  
state of the counter.  
T1CLRI  
0xFFFF032C  
0xFF  
W
T1CLRI is an 8-bit register. Writing any value to this register  
clears the Timer1 interrupt.  
Table 185. T2CON Register  
Name  
Address  
Default Value  
Access  
T2CON  
0xFFFF0348  
0x0000  
R/W  
T2CON is the configuration MMR described in Table 186.  
Rev. F | Page 87 of 104  
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
16-BIT  
LOAD  
Table 186. T2CON MMR Bit Descriptions  
Bit  
Value Description  
WATCHDOG  
16-BIT  
UP/DOWN  
COUNTER  
31:11  
10:9  
Reserved.  
Clock source.  
RESET  
PRESCALER  
/1, 16 OR 256  
32.768kHz  
TIMER3 IRQ  
00  
01  
10  
11  
External crystal.  
External crystal.  
Internal oscillator.  
Core clock (41 MHz/2CD).  
TIMER3  
VALUE  
Figure 80. Timer3 Block Diagram  
Watchdog Mode  
8
Count up. Set by user for Timer2 to count up.  
Cleared by user for Timer2 to count down by  
default.  
Watchdog mode is entered by setting Bit 5 in the T3CON MMR.  
Timer3 decreases from the value present in the T3LD register to 0.  
T3LD is used as the timeout. The maximum timeout can be  
512 sec, using the prescaler/256, and full scale in T3LD. Timer3  
is clocked by the internal 32 kHz crystal when operating in  
watchdog mode. Note that to enter watchdog mode success-  
fully, Bit 5 in the T3CON MMR must be set after writing to the  
T3LD MMR.  
7
6
Timer2 enable bit. Set by user to enable Timer2.  
Cleared by user to disable Timer2 by default.  
Timer2 mode. Set by user to operate in  
periodic mode. Cleared by user to operate in  
free-running mode. Default mode.  
Format.  
Binary.  
5:4  
00  
01  
10  
11  
Reserved.  
If the timer reaches 0, a reset or an interrupt occurs, depending  
on Bit 1 in the T3CON register. To avoid reset or interrupt, any  
value must be written to T3CLRI before the expiration period.  
This reloads the counter with T3LD and begins a new timeout  
period.  
Hr: min: sec: Hundredths (23 hours to 0 hour).  
Hr: min: sec: Hundredths (255 hours to 0 hour).  
Prescale.  
Source Clock/1 by default.  
Source Clock/16.  
Source Clock/256 expected for Format 2 and  
Format 3.  
Source Clock/32,768.  
3:0  
0000  
0100  
1000  
When watchdog mode is entered, T3LD and T3CON are write-  
protected. These two registers cannot be modified until a reset  
clears the watchdog enable bit, which causes Timer3 to exit  
watchdog mode.  
1111  
Table 187. T2CLRI Register  
Name  
The Timer3 interface consists of four MMRs: T3LD, T3VAL,  
T3CON, and T3CLRI.  
Address  
Default Value  
Access  
T2CLRI  
0xFFFF034C  
0xFF  
W
Table 188. T3LD Register  
T2CLRI is an 8-bit register. Writing any value to this register  
clears the Timer2 interrupt.  
Name  
Address  
Default Value  
Access  
T3LD  
0xFFFF0360  
0x0000  
R/W  
Timer3 (Watchdog Timer)  
T3LD is a 16-bit register load register.  
Timer3 has two modes of operation: normal mode and  
watchdog mode. The watchdog timer is used to recover from  
an illegal software state. Once enabled, it requires periodic  
servicing to prevent it from forcing a processor reset.  
Table 189. T3VAL Register  
Name  
Address  
Default Value  
Access  
T3VAL  
0xFFFF0364  
0xFFFF  
R
Normal Mode  
T3VAL is a 16-bit read-only register that represents the current  
state of the counter.  
Timer3 in normal mode is identical to Timer0, except for the  
clock source and the count-up functionality. The clock source  
is 32 kHz from the PLL and can be scaled by a factor of 1, 16,  
or 256 (see Figure 80).  
Table 190. T3CON Register  
Name  
Address  
Default Value  
Access  
T3CON  
0xFFFF0368  
0x0000  
R/W  
T3CON is the configuration MMR described in Table 191.  
Rev. F | Page 88 of 104  
 
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
The value 0x00 should not be used as an initial seed due to  
the properties of the polynomial. The value 0x00 is always  
guaranteed to force an immediate reset. The value of the LFSR  
cannot be read; it must be tracked/generated in software.  
Table 191. T3CON MMR Bit Descriptions  
Bit  
15:9  
8
Value  
Description  
Reserved.  
Count up. Set by user for Timer3 to count up.  
Cleared by user for Timer3 to count down by  
default.  
The following is an example of a sequence:  
1. Enter initial seed, 0xAA, in T3CLRI before starting Timer3  
in watchdog mode.  
2. Enter 0xAA in T3CLRI; Timer3 is reloaded.  
3. Enter 0x37 in T3CLRI; Timer3 is reloaded.  
4. Enter 0x6E in T3CLRI; Timer3 is reloaded.  
5. Enter 0x66. 0xDC was expected; the watchdog resets the chip.  
7
6
Timer3 enable bit. Set by user to enable Timer3.  
Cleared by user to disable Timer3 by default.  
Timer3 mode. Set by user to operate in  
periodic mode. Cleared by user to operate  
in free-running mode. Default mode.  
5
Watchdog mode enable bit. Set by user to  
enable watchdog mode. Cleared by user to  
disable watchdog mode by default.  
EXTERNAL MEMORY INTERFACING  
4
Secure clear bit. Set by user to use the secure  
clear option. Cleared by user to disable the  
secure clear option by default.  
Prescale.  
Source Clock/1 by default.  
Source Clock/16.  
The ADuC7026 and ADuC7027 are the only models in their  
series that feature an external memory interface. The external  
memory interface requires a larger number of pins. This is why  
it is only available on larger pin count packages. The XMCFG  
MMR must be set to 1 to use the external port.  
3:2  
00  
01  
10  
11  
Although 32-bit addresses are supported internally, only the  
lower 16 bits of the address are on external pins.  
Source Clock/256.  
Undefined. Equivalent to 00.  
1
0
Watchdog IRQ option bit. Set by user to  
produce an IRQ instead of a reset when  
the watchdog reaches 0. Cleared by user to  
disable the IRQ option.  
The memory interface can address up to four 128 kB blocks of  
asynchronous memory (SRAM or/and EEPROM).  
The pins required for interfacing to an external memory are  
shown in Table 193.  
Reserved.  
Table 193. External Memory Interfacing Pins  
Table 192. T3CLRI Register  
Pin  
Function  
Name  
Address  
Default Value  
Access  
AD[16:1]  
A16  
MS[3:0]  
WS  
Address/data bus  
Extended addressing for 8-bit memory only  
Memory select  
T3CLRI  
0xFFFF036C  
0x00  
W
T3CLRI is an 8-bit register. Writing any value to this register on  
successive occassions clears the Timer3 interrupt in normal  
mode or resets a new timeout period in watchdog mode.  
Write strobe  
RS  
Read strobe  
Note that the user must perform successive writes to this  
register to ensure resetting the timeout period.  
AE  
BHE, BLE  
Address latch enable  
Byte write capability  
Secure Clear Bit (Watchdog Mode Only)  
There are four external memory regions available, as described  
in Table 194. Associated with each region are the MS[3:0] pins.  
These signals allow access to the particular region of external  
memory. The size of each memory region can be 128 kB maxi-  
mum, 64 k × 16 or 128 k × 8. To access 128 k with an 8-bit  
memory, an extra address line (A16) is provided (see the example  
in Figure 82). The four regions are configured independently.  
The secure clear bit is provided for a higher level of protection.  
When set, a specific sequential value must be written to T3CLRI  
to avoid a watchdog reset. The value is a sequence generated  
by the 8-bit linear feedback shift register (LFSR) polynomial =  
X8 + X6 + X5 + X + 1, as shown in Figure 81.  
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q D  
0
Table 194. Memory Regions  
7
6
5
4
3
2
1
Address Start  
0x10000000  
0x20000000  
0x30000000  
0x40000000  
Address End  
0x1000FFFF  
0x2000FFFF  
0x3000FFFF  
0x4000FFFF  
Contents  
CLOCK  
External Memory 0  
External Memory 1  
External Memory 2  
External Memory 3  
Figure 81. 8-Bit LFSR  
The initial value or seed is written to T3CLRI before entering  
watchdog mode. After entering watchdog mode, a write to  
T3CLRI must match this expected value. If it matches, the LFSR  
is advanced to the next state when the counter reload occurs. If  
it fails to match the expected state, a reset is immediately  
generated, even if the count has not yet expired.  
Each external memory region can be controlled through three  
MMRs: XMCFG, XMxCON, and XMxPAR.  
Rev. F | Page 89 of 104  
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
EEPROM  
64k × 16-BIT  
ADuC7026/  
ADuC7027  
Table 198. XMxPAR Registers  
A16  
Name  
Address  
Default Value  
Access  
R/W  
AD15:AD0  
D0:D15  
A0:A15  
XM0PAR  
XM1PAR  
XM2PAR  
XM3PAR  
0xFFFFF020  
0xFFFFF024  
0xFFFFF028  
0xFFFFF02C  
0x70FF  
0x70FF  
0x70FF  
0x70FF  
R/W  
LATCH  
R/W  
AE  
R/W  
MS0  
MS1  
CS  
XMxPAR are registers that define the protocol used for  
accessing the external memory for each memory region.  
WS  
RS  
WE  
OE  
Table 199. XMxPAR MMR Bit Descriptions  
RAM  
128k × 8-BIT  
Bit  
Description  
D0:D7  
15  
Enable byte write strobe. This bit is used only for two,  
8-bit memory devices sharing the same memory region.  
Set by the user to gate the A0 output with the WS  
output. This allows byte write capability without using  
BHE and BLE signals. Cleared by user to use BHE and BLE  
signals.  
A16  
A0:A15  
CS  
WE  
OE  
Figure 82. Interfacing to External EEPROM/RAM  
14:12 Number of wait states on the address latch enable STROBE.  
11  
10  
Reserved.  
Table 195. XMCFG Register  
Extra address hold time. Set by user to disable extra hold  
time. Cleared by user to enable one clock cycle of hold  
on the address in read and write.  
Name  
Address  
Default Value  
Access  
XMCFG  
0xFFFFF000  
0x00  
R/W  
9
Extra bus transition time on read. Set by user to disable  
extra bus transition time. Cleared by user to enable one  
extra clock before and after the read strobe (RS).  
XMCFG is set to 1 to enable external memory access. This must  
be set to 1 before any port pins function as external memory  
access pins. The port pins must also be individually enabled via  
the GPxCON MMR.  
8
Extra bus transition time on write. Set by user to disable  
extra bus transition time. Cleared by user to enable one  
extra clock before and after the write strobe (WS).  
Table 196. XMxCON Registers  
7:4  
3:0  
Number of write wait states. Select the number of wait  
states added to the length of the WS pulse. 0x0 is 1 clock;  
0xF is 16 clock cycles (default value).  
Number of read wait states. Select the number of wait  
states added to the length of the RS pulse. 0x0 is 1 clock;  
0xF is 16 clock cycles (default value).  
Name  
Address  
Default Value  
0x00  
Access  
R/W  
XM0CON  
XM1CON  
XM2CON  
XM3CON  
0xFFFFF010  
0xFFFFF014  
0xFFFFF018  
0xFFFFF01C  
0x00  
R/W  
0x00  
R/W  
0x00  
R/W  
XMxCON are the control registers for each memory region.  
They allow the enabling/disabling of a memory region and  
control the data bus width of the memory region.  
Figure 83, Figure 84, Figure 85, and Figure 86 show the timing  
for a read cycle, a read cycle with address hold and bus turn  
cycles, a write cycle with address and write hold cycles, and a  
write cycle with wait sates, respectively.  
Table 197. XMxCON MMR Bit Descriptions  
Bit Description  
1
Selects data bus width. Set by user to select a 16-bit data  
bus. Cleared by user to select an 8-bit data bus.  
0
Enables memory region. Set by user to enable the memory  
region. Cleared by user to disable the memory region.  
Rev. F | Page 90 of 104  
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
UCLK  
AD[16:0]  
MSx  
ADDRESS  
DATA  
AE  
RS  
Figure 83. External Memory Read Cycle  
UCLK  
AD[16:0]  
ADDRESS  
DATA  
EXTRA ADDRESS  
HOLD TIME  
XMxPAR (BIT 10)  
MSx  
AE  
RS  
BUS TURN OUT CYCLE  
(BIT 9)  
BUS TURN OUT CYCLE  
(BIT 9)  
Figure 84. External Memory Read Cycle with Address Hold and Bus Turn Cycles  
Rev. F | Page 91 of 104  
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
UCLK  
AD[16:0]  
ADDRESS  
DATA  
EXTRA ADDRESS  
HOLD TIME  
(BIT 10)  
MSx  
AE  
WS  
WRITE HOLD ADDRESS  
AND DATA CYCLES  
(BIT 8)  
WRITE HOLD ADDRESS  
AND DATA CYCLES  
(BIT 8)  
Figure 85. External Memory Write Cycle with Address and Write Hold Cycles  
UCLK  
AD[16:0]  
ADDRESS  
DATA  
MSx  
AE  
1 ADDRESS WAIT STATE  
(BIT 14 TO BIT 12)  
WS  
1 WRITE STROBE WAIT STATE  
(BIT 7 TO BIT 4)  
Figure 86. External Memory Write Cycle with Wait States  
Rev. F | Page 92 of 104  
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
HARDWARE DESIGN CONSIDERATIONS  
Finally, note that the analog and digital ground pins on the  
ADuC7019/20/21/22/24/25/26/27/28/29 must be referenced to  
the same system ground reference point at all times.  
POWER SUPPLIES  
The ADuC7019/20/21/22/24/25/26/27/28/29 operational power  
supply voltage range is 2.7 V to 3.6 V. Separate analog and  
digital power supply pins (AVDD and IOVDD, respectively) allow  
AVDD to be kept relatively free of noisy digital signals often  
present on the system IOVDD line. In this mode, the part can  
also operate with split supplies; that is, it can use different  
voltage levels for each supply. For example, the system can  
be designed to operate with an IOVDD voltage level of 3.3 V  
whereas the AVDD level can be at 3 V or vice versa. A typical  
split supply configuration is shown in Figure 87.  
IOVDD Supply Sensitivity  
The IOVDD supply is sensitive to high frequency noise because it  
is the supply source for the internal oscillator and PLL circuits.  
When the internal PLL loses lock, the clock source is removed  
by a gating circuit from the CPU, and the ARM7TDMI core  
stops executing code until the PLL regains lock. This feature  
ensures that no flash interface timings or ARM7TDMI timings  
are violated.  
DIGITAL  
SUPPLY  
ANALOG  
SUPPLY  
Typically, frequency noise greater than 50 kHz and 50 mV p-p  
on top of the supply causes the core to stop working.  
+
+
10µF  
10µF  
If decoupling values recommended in the Power Supplies  
section do not sufficiently dampen all noise sources below  
50 mV on IOVDD, a filter such as the one shown in Figure 89  
is recommended.  
ADuC7026  
73  
74  
75  
AV  
DD  
26  
54  
IOV  
DD  
DACV  
DD  
0.1µF  
0.1µF  
8
GND  
REF  
70  
71  
67  
DACGND  
AGND  
ADuC7026  
1µH  
25  
53  
26  
IOGND  
IOV  
DD  
REFGND  
10µF  
54  
DIGITAL  
SUPPLY  
+
Figure 87. External Dual Supply Connections  
0.1µF  
As an alternative to providing two separate power supplies, the  
user can reduce noise on AVDD by placing a small series resistor  
and/or ferrite bead between AVDD and IOVDD and then decoupling  
AVDD separately to ground. An example of this configuration is  
shown in Figure 88. With this configuration, other analog circuitry  
(such as op amps and voltage reference) can be powered from  
the AVDD supply line as well.  
25  
53  
IOGND  
Figure 89. Recommended IOVDD Supply Filter  
Linear Voltage Regulator  
Each ADuC7019/20/21/22/24/25/26/27/28/29 requires a single  
3.3 V supply, but the core logic requires a 2.6 V supply. An on-  
chip linear regulator generates the 2.6 V from IOVDD for the  
core logic. The LVDD pin is the 2.6 V supply for the core logic.  
An external compensation capacitor of 0.47 µF must be  
connected between LVDD and DGND (as close as possible to  
these pins) to act as a tank of charge as shown in Figure 90.  
BEAD  
DIGITAL SUPPLY  
1.6Ω  
10µF  
10µF  
+
ADuC7026  
73  
AV  
DD  
74  
75  
26  
54  
IOV  
DD  
DACV  
DD  
0.1µF  
0.1µF  
8
GND  
REF  
ADuC7026  
70  
71  
67  
DACGND  
AGND  
25  
53  
27  
LV  
DD  
IOGND  
REFGND  
0.47mF  
28  
DGND  
Figure 88. External Single Supply Connections  
Note that in both Figure 87 and Figure 88, a large value (10 µF)  
reservoir capacitor sits on IOVDD, and a separate 10 µF capacitor  
sits on AVDD. In addition, local small-value (0.1 µF) capacitors are  
located at each AVDD and IOVDD pin of the chip. As per standard  
design practice, be sure to include all of these capacitors and ensure  
that the smaller capacitors are close to each AVDD pin with trace  
lengths as short as possible. Connect the ground terminal of  
each of these capacitors directly to the underlying ground plane.  
Figure 90. Voltage Regulator Connections  
The LVDD pin should not be used for any other chip. It is also  
recommended to use excellent power supply decoupling on  
IOVDD to help improve line regulation performance of the on-  
chip voltage regulator.  
Rev. F | Page 93 of 104  
 
 
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
For example, do not power components on the analog side (as  
seen in Figure 91b) with IOVDD because that forces return  
currents from IOVDD to flow through AGND. Avoid digital  
currents flowing under analog circuitry, which can occur if a  
noisy digital chip is placed on the left half of the board (shown  
in Figure 91c). If possible, avoid large discontinuities in the  
ground plane(s) such as those formed by a long trace on the same  
layer because they force return signals to travel a longer path.  
In addition, make all connections to the ground plane directly,  
with little or no trace separating the pin from its via to ground.  
GROUNDING AND BOARD LAYOUT  
RECOMMENDATIONS  
As with all high resolution data converters, special attention  
must be paid to grounding and PC board layout of the  
ADuC7019/20/21/22/24/25/26/27/28/29-based designs to  
achieve optimum performance from the ADCs and DAC.  
Although the parts have separate pins for analog and digital  
ground (AGND and IOGND), the user must not tie these to  
two separate ground planes unless the two ground planes are  
connected very close to the part. This is illustrated in the  
simplified example shown in Figure 91a. In systems where  
digital and analog ground planes are connected together  
somewhere else (at the system power supply, for example), the  
planes cannot be reconnected near the part because a ground  
loop results. In these cases, tie all the ADuC7019/20/21/  
22/24/25/26/27/28/29 AGND and IOGND pins to the analog  
ground plane, as illustrated in Figure 91b. In systems with only  
one ground plane, ensure that the digital and analog components  
are physically separated onto separate halves of the board so  
that digital return currents do not flow near analog circuitry  
(and vice versa).  
When connecting fast logic signals (rise/fall time < 5 ns) to any of  
the ADuC7019/20/21/22/24/25/26/27/28/29 digital inputs, add a  
series resistor to each relevant line to keep rise and fall times  
longer than 5 ns at the parts input pins. A value of 100 Ω or  
200 Ω is usually sufficient to prevent high speed signals from  
coupling capacitively into the part and affecting the accuracy  
of ADC conversions.  
CLOCK OSCILLATOR  
The clock source for the ADuC7019/20/21/22/24/25/26/27/28/29  
can be generated by the internal PLL or by an external clock  
input. To use the internal PLL, connect a 32.768 kHz parallel  
resonant crystal between XCLKI and XCLKO, and connect a  
capacitor from each pin to ground as shown in Figure 92. The  
crystal allows the PLL to lock correctly to give a frequency of  
41.78 MHz. If no external crystal is present, the internal  
oscillator is used to give a typical frequency of 41.78 MHz 3%.  
The ADuC7019/20/21/22/24/25/26/27/28/29 can then be  
placed between the digital and analog sections, as illustrated in  
Figure 91c.  
PLACE ANALOG  
COMPONENTS HERE  
PLACE DIGITAL  
COMPONENTS HERE  
ADuC7026  
a.  
XCLKI  
45  
12pF  
AGND  
DGND  
32.768kHz  
TO  
INTERNAL  
PLL  
44  
12pF  
XCLKO  
Figure 92. External Parallel Resonant Crystal Connections  
PLACE ANALOG  
COMPONENTS  
HERE  
PLACE DIGITAL  
To use an external source clock input instead of the PLL (see  
Figure 93), Bit 1 and Bit 0 of PLLCON must be modified.The  
external clock uses P0.7 and XCLK.  
COMPONENTS HERE  
b.  
AGND  
DGND  
ADuC7026  
XCLKO  
XCLKI  
EXTERNAL  
CLOCK  
SOURCE  
TO  
PLACE ANALOG  
COMPONENTS HERE  
PLACE DIGITAL  
COMPONENTS HERE  
FREQUENCY  
DIVIDER  
c.  
XCLK  
Figure 93. Connecting an External Clock Source  
DGND  
Using an external clock source, the ADuC7019/20/21/22/24/  
25/26/27/28/29-specified operational clock speed range is  
50 kHz to 44 MHz 1%, which ensures correct operation of  
the analog peripherals and Flash/EE.  
Figure 91. System Grounding Schemes  
In all of these scenarios, and in more complicated real-life  
applications, the user should pay particular attention to the flow  
of current from the supplies and back to ground. Make sure the  
return paths for all currents are as close as possible to the paths  
the currents took to reach their destinations.  
Rev. F | Page 94 of 104  
 
 
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
3.3V  
POWER-ON RESET OPERATION  
IOV  
DD  
An internal power-on reset (POR) is implemented on the  
ADuC7019/20/21/22/24/25/26/27/28/29. For LVDD below 2.35 V  
typical, the internal POR holds the part in reset. As LVDD rises  
above 2.35 V, an internal timer times out for, typically, 128 ms  
before the part is released from reset. The user must ensure that  
the power supply IOVDD reaches a stable 2.7 V minimum level  
by this time. Likewise, on power-down, the internal POR holds  
the part in reset until LVDD drops below 2.35 V.  
2.6V  
2.35V TYP  
2.35V TYP  
LV  
DD  
128ms TYP  
POR  
Figure 94 illustrates the operation of the internal POR in detail.  
0.12ms TYP  
TYPICAL SYSTEM CONFIGURATION  
MRST  
A typical ADuC7020 configuration is shown in Figure 95. It  
summarizes some of the hardware considerations discussed in  
the previous sections. The bottom of the CSP package has an  
exposed pad that must be soldered to a metal plate on the board  
for mechanical reasons. The metal plate of the board can be  
connected to ground.  
Figure 94. Internal Power-On Reset Operation  
+
10  
0.01µF  
RS232 INTERFACE*  
0.47µF  
AV  
DD  
STANDARD D-TYPE  
SERIAL COMMS  
40 39 38 37 36 35 34 33 32 31  
DV  
DD  
ADM3202  
CONNECTOR TO  
PC HOST  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
3
4
5
6
7
8
C1+  
V
16  
CC  
1
2
3
4
5
6
7
8
9
V+  
GND 15  
3
GND  
REF  
C1–  
C2+  
C2–  
V–  
T1  
14  
13  
12  
11  
10  
9
OUT  
4
DAC0  
R1  
IN  
5
R1  
OUT  
ADuC7020  
6
XCLKI  
T1  
T2  
IN  
IN  
7
XCLKO  
T2  
OUT  
8
TMS  
TDI  
32.768kHz  
R2  
R2  
OUT  
IN  
9
10  
P0.0  
1kΩ  
DV  
DD  
11 12 13 14 15 16 17 18 19 20  
* EXTERNAL UART TRANSCEIVER INTEGRATED IN SYSTEM OR AS  
PART OF AN EXTERNAL DONGLE AS DESCRIBED IN uC006.  
DV  
DD  
1kΩ  
0.47µF  
DV  
DD  
DV  
DD  
AV  
1
2
3
DD  
DV  
DD  
ADP3333-3.3  
TRST  
1.5Ω  
OUT IN  
4
5
6
7
8
9
TDI  
270Ω  
GND SD  
TMS  
TCK  
10µF  
10µF  
0.1µF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
TDO  
NOT CONNECTED IN THIS EXAMPLE  
Figure 95. Typical System Configuration  
Rev. F | Page 95 of 104  
 
 
 
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
DEVELOPMENT TOOLS  
PC-BASED TOOLS  
Software  
Integrated development environment, incorporating  
assembler, compiler, and nonintrusive JTAG-based  
debugger  
Serial downloader software  
Example code  
Four types of development systems are available for the  
ADuC7019/20/21/22/24/25/26/27/28/29 family.  
The ADuC7026 QuickStart Plus is intended for new users  
who want to have a comprehensive hardware development  
environment. Because the ADuC7026 contains the superset  
of functions available on the ADuC7019/20/21/22/24/25/  
26/27/28/29, it is suitable for users who wish to develop on  
any of the parts in this family. All parts are fully code  
compatible.  
Miscellaneous  
CD-ROM documentation  
IN-CIRCUIT SERIAL DOWNLOADER  
The serial downloader is a Windows application that allows the  
user to serially download an assembled program to the on-chip  
program Flash/EE memory via the serial port on a standard PC.  
The ADuC7020, ADuC7024, and ADuC7026 QuickStart  
systems are intended for users who already have an emulator.  
These systems consist of the following PC-based (Windows®  
compatible) hardware and software development tools.  
The UART-based serial downloader is included in all the  
development systems and is usable with the ADuC7019/20/21/  
22/24/25/26/27/28/29 parts that do not contain the I suffix in  
the Ordering Guide.  
An I2C based serial downloader and a USB-to-I2C adaptor  
board, USB-EA-CONVZ, are also available at www.analog.com.  
The I2C-based serial downloader is only usable with the part  
models containing the I suffix (see Ordering Guide).  
Hardware  
ADuC7019/20/21/22/24/25/26/27/28/29 evaluation board  
Serial port programming cable  
RDI-compliant JTAG emulator (included in the  
ADuC7026 QuickStart Plus only)  
Rev. F | Page 96 of 104  
 
 
 
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
30  
40  
1
5.85  
5.75 SQ  
5.65  
0.50  
BSC  
PIN 1  
INDICATOR  
4.25  
4.10 SQ  
3.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
21  
20  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
4.50 REF  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 96. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm Body, Very Thin Quad  
(CP-40-1)  
Dimensions shown in millimeters  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
4.25  
4.10 SQ  
3.95  
EXPOSED  
PAD  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 97. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 x 6 mm Body, Very Very Thin Quad  
(CP-40-9)  
Dimensions shown in millimeters  
Rev. F | Page 97 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
9.10  
9.00 SQ  
8.90  
0.60 MAX  
0.60  
MAX  
PIN 1  
INDICATOR  
49  
48  
64  
1
PIN 1  
INDICATOR  
8.85  
8.75 SQ  
8.65  
*
EXPOSED  
PAD  
0.50  
BSC  
4.85  
4.70 SQ  
4.55  
0.50  
0.40  
0.30  
33  
32  
16  
17  
0.25 MIN  
BOTTOM VIEW  
7.50 REF  
TOP VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 98. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm x 9 mm Body, Very Thin Quad  
(CP-64-1)  
Dimensions shown in millimeters  
12.20  
12.00 SQ  
0.75  
11.80  
0.60  
0.45  
1.60  
MAX  
64  
49  
1
48  
PIN 1  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08  
COPLANARITY  
16  
33  
0.15  
0.05  
SEATING  
PLANE  
17  
32  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCD  
Figure 99. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
Rev. F | Page 98 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
14.20  
14.00 SQ  
13.80  
0.75  
0.60  
0.45  
1.60  
MAX  
80  
61  
60  
1
PIN  
1
12.20  
12.00 SQ  
11.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
20  
41  
0.15  
0.05  
21  
40  
SEATING  
PLANE  
0.08  
COPLANARITY  
VIEW A  
0.50  
BSC  
0.27  
0.22  
0.17  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BDD  
Figure 100. 80-Lead Low Profile Quad Flat Package [LQFP]  
(ST-80-1)  
Dimensions shown in millimeters  
6.10  
6.00 SQ  
5.90  
A1 CORNER  
INDEX AREA  
8
7
6
5
4
3
2
1
A
B
C
D
E
F
1.50  
SQ  
BALL A1  
4.55 SQ  
PAD CORNER  
TOP VIEW  
0.65  
G
H
BOTTOM VIEW  
DETAIL A  
DETAIL A  
*
1.40 MAX  
0.65 MIN  
0.15 MIN  
COPLANARITY  
0.10  
0.45  
0.40  
0.35  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT TO JEDEC STANDARDS MO-225  
WITH THE EXCEPTION TO PACKAGE HEIGHT.  
Figure 101. 64-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-64-4)  
Dimensions shown in millimeters  
Rev. F | Page 99 of 104  
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
5.05  
5.00 SQ  
4.95  
A1 CORNER  
INDEX AREA  
7
6
5
4
3
2
1
A
B
C
D
E
F
BALL A1  
INDICATOR  
3.90  
BSC SQ  
TOP VIEW  
G
BOTTOM  
VIEW  
0.65  
BSC  
0.55  
BSC  
DETAIL A  
1.20 MAX  
1.00 MAX  
0.85 MIN  
DETAIL A  
0.35  
0.20  
COPLANARITY  
0.05 MAX  
0.45  
0.40  
0.35  
SEATING  
PLANE  
BALL DIAMETER  
Figure 102. 49-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-49-1)  
Dimensions shown in millimeters  
Rev. F | Page 100 of 104  
Data Sheet  
ADuC7019/20/21/22/24/25/26/27/28/29  
ORDERING GUIDE  
ADC  
DAC  
FLASH/  
RAM  
Down- Temperature  
Package  
Description  
Package Ordering  
Model1, 2  
Channels3 Channels  
GPIO loader  
Range  
Option  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-9  
CP-40-9  
CP-40-9  
CP-40-9  
CP-40-9  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-64-1  
CP-64-1  
CP-64-1  
CP-64-1  
ST-64-2  
ST-64-2  
CP-64-1  
CP-64-1  
CP-64-1  
CP-64-1  
ST-64-2  
ST-64-2  
ST-80-1  
ST-80-1  
ST-80-1  
ST-80-1  
ST-80-1  
ST-80-1  
ST-80-1  
ST-80-1  
BC-64-4  
BC-64-4  
BC-49-1  
BC-49-1  
BC-49-1  
BC-49-1  
Quantity  
ADuC7019BCPZ62I  
ADuC7019BCPZ62I-RL  
ADuC7019BCPZ62IRL7  
ADuC7020BCPZ62  
ADuC7020BCPZ62-RL7  
ADuC7020BCPZ62I  
ADuC7020BCPZ62I-RL  
ADuC7020BCPZ62IRL7  
ADuC7021BCPZ62  
ADuC7021BCPZ62-RL  
ADuC7021BCPZ62-RL7  
ADuC7021BCPZ62I  
ADuC7021BCPZ62I-RL  
ADuC7021BCPZ32  
ADuC7021BCPZ32-RL7  
ADuC7022BCPZ62  
ADuC7022BCPZ62-RL7  
ADuC7022BCPZ32  
ADuC7022BCPZ32-RL  
ADuC7024BCPZ62  
ADuC7024BCPZ62-RL7  
ADuC7024BCPZ62I  
ADuC7024BCPZ62I-RL  
ADuC7024BSTZ62  
ADuC7024BSTZ62-RL  
ADuC7025BCPZ62  
ADuC7025BCPZ62-RL  
ADuC7025BCPZ32  
ADuC7025BCPZ32-RL  
ADuC7025BSTZ62  
ADuC7025BSTZ62-RL  
ADuC7026BSTZ62  
ADuC7026BSTZ62-RL  
ADuC7026BSTZ62I  
ADuC7026BSTZ62I-RL  
ADuC7027BSTZ62  
5
5
5
3
3
3
4
4
4
4
4
2
2
2
2
2
2
2
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
32 kB/4 kB  
32 kB/4 kB  
62 kB/8 kB  
62 kB/8 kB  
32 kB/4 kB  
32 kB/4 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
32 kB/4 kB  
32 kB/4 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
62 kB/8 kB  
14  
14  
14  
14  
14  
14  
14  
14  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
40  
40  
40  
40  
40  
40  
40  
40  
30  
30  
22  
22  
22  
22  
I2C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_WQ  
40-Lead LFCSP_WQ  
40-Lead LFCSP_WQ  
40-Lead LFCSP_WQ  
40-Lead LFCSP_WQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LQFP  
I2C  
I2C  
2,500  
750  
5
5
5
UART  
UART  
I2C  
750  
5
5
I2C  
2,500  
750  
I2C  
8
8
8
8
8
8
8
UART  
UART  
UART  
I2C  
2,500  
750  
I2C  
2,500  
750  
UART  
UART  
UART  
UART  
UART  
UART  
UART  
UART  
I2C  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
16  
16  
16  
16  
8
750  
2,500  
750  
2
2
2
2
2
2
I2C  
2,500  
1,500  
2,500  
2,500  
1,000  
1,000  
1,000  
1,000  
1,000  
2,500  
4,000  
4,000  
UART  
UART  
UART  
UART  
UART  
UART  
UART  
UART  
UART  
UART  
I2C  
64-Lead LQFP  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LFCSP_VQ  
64-Lead LQFP  
64-Lead LQFP  
4
4
4
4
80-Lead LQFP  
80-Lead LQFP  
80-Lead LQFP  
80-Lead LQFP  
I2C  
UART  
UART  
I2C  
80-Lead LQFP  
80-Lead LQFP  
80-Lead LQFP  
80-Lead LQFP  
ADuC7027BSTZ62-RL  
ADuC7027BSTZ62I  
ADuC7027BSTZ62I-RL  
ADuC7028BBCZ62  
ADuC7028BBCZ62-RL  
ADuC7029BBCZ62  
ADuC7029BBCZ62-RL  
ADuC7029BBCZ62I  
ADuC7029BBCZ62I-RL  
I2C  
4
4
4
4
4
4
UART  
UART  
UART  
UART  
I2C  
64-Ball CSP_BGA  
64-Ball CSP_BGA  
49-Ball CSP_BGA  
49-Ball CSP_BGA  
49-Ball CSP_BGA  
49-Ball CSP_BGA  
8
7
7
7
7
I2C  
Rev. F | Page 101 of 104  
 
ADuC7019/20/21/22/24/25/26/27/28/29  
Data Sheet  
ADC  
DAC  
FLASH/  
RAM  
Down- Temperature  
GPIO loader  
Range  
Package  
Description  
Package Ordering  
Model1, 2  
Channels3 Channels  
Option  
Quantity  
EVAL-ADuC7020MKZ  
EVAL-ADuC7020QSZ  
ADuC7020 MiniKit  
ADuC7020 QuickStart  
Development System  
EVAL-ADuC7020QSPZ  
EVAL-ADuC7024QSZ  
EVAL-ADuC7026QSZ  
EVAL-ADuC7026QSPZ  
EVAL-ADuC7028QSZ  
EVAL-ADUC7029QSZ  
ADuC7020 QuickStart  
Development System  
ADuC7024 QuickStart  
Development System  
ADuC7026 QuickStar  
Development System  
ADuC7026 QuickStart Plus  
Development System  
ADuC7028 QuickStart  
Development System  
ADuC7029 QuickStart  
Development System  
1 Z = RoHS Compliant Part.  
2 Models ADuC7026 and ADuC7027 include an external memory interface.  
3 One of the ADC channels is internally buffered for ADuC7019 models.  
Rev. F | Page 102 of 104  
 
Data Sheet  
NOTES  
ADuC7019/20/21/22/24/25/26/27/28/29  
Rev. F | Page 103 of 104  
ADuC7019/20/21/22/24/25/26/27/28/29  
NOTES  
I2C refers to a communications protocol originally developed by Phillips Semiconductors (now NXP Semiconductors).  
©2005-2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04955-0-5/13(F)  
Rev. F | Page 104 of 104  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY