FIDO1100BGA208IR1 [ADI]

Micro Peripheral IC;
FIDO1100BGA208IR1
型号: FIDO1100BGA208IR1
厂家: ADI    ADI
描述:

Micro Peripheral IC

时钟 外围集成电路
文件: 总83页 (文件大小:1470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
®
fido1100 Data Sheet  
32-Bit Real-Time Communications Controller  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 1 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Copyright 2012 by Innovasic, Inc.  
Published by Innovasic, Inc.  
5635 Jefferson St. NE, Suite A, Albuquerque, New Mexico 87109 USA  
fido®, fido1100®, and SPIDERare trademarks of Innovasic, Inc.  
I2C™ Bus is a trademark of Philips Electronics N.V.  
Motorolais a registered trademark of Motorola, Inc.  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 2 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
TABLE OF CONTENTS  
List of Figures..................................................................................................................................5  
List of Tables ...................................................................................................................................6  
1.  
2.  
Overview.................................................................................................................................7  
Features...................................................................................................................................9  
2.1 Core CPU ....................................................................................................................10  
2.2 JTAG...........................................................................................................................10  
2.3 Internal Memory and Memory Management ..............................................................11  
2.4 External Bus Interface.................................................................................................12  
2.5 PMU/UIC/CPU DMA.................................................................................................12  
2.6 Internal Peripherals .....................................................................................................13  
2.6.1 Timer Counter Units (TCU) ...........................................................................13  
2.6.2 Analog-to-Digital Converter (ADC)...............................................................14  
2.6.3 Timers .............................................................................................................14  
2.7 Power Control .............................................................................................................14  
Libraries and Support Tools .................................................................................................15  
Packaging, Pin Descriptions, and Physical Dimensions.......................................................16  
4.1 PQFP Package.............................................................................................................17  
4.1.1 PQFP Pinout ...................................................................................................17  
4.1.2 PQFP Physical Dimensions............................................................................24  
4.2 BGA 10- by 10-mm Package ......................................................................................25  
4.2.1 BGA 10- by 10-mm Pinout.............................................................................25  
4.2.2 BGA 10- by 10-mm Physical Package Dimensions.......................................33  
4.3 BGA 15- by 15-mm Package ......................................................................................34  
4.3.1 BGA 15- by 15-mm Pinout.............................................................................34  
4.3.2 BGA 15- by 15-mm Physical Package Dimensions.......................................42  
4.3.3 BGA 15- by 15-mm Signal Routing...............................................................43  
4.4 Power and Ground Signals..........................................................................................45  
Electrical Characteristics ......................................................................................................47  
Thermal Characteristics........................................................................................................49  
Reset .....................................................................................................................................52  
7.1 Overview .....................................................................................................................52  
7.2 Signal Considerations and Reset Timing ....................................................................52  
7.3 Clock Signals...............................................................................................................54  
7.4 Typical Clock Source Implementations ......................................................................54  
7.4.1 Normal or Driven Clock Source.....................................................................54  
7.4.2 Using an External Crystal...............................................................................54  
7.5 Off-Chip Component Value........................................................................................56  
Signals...................................................................................................................................57  
8.1 External Bus Operation ...............................................................................................57  
8.1.1 Overview.........................................................................................................57  
3.  
4.  
5.  
6.  
7.  
8.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 3 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
8.2 General Setup and Hold Timing..................................................................................57  
8.3 External Bus Timing ...................................................................................................58  
Setup and Hold Timing.........................................................................................................59  
9.1.1 External Bus Timing for a 32-Bit Transfer (without RDY_N) ......................61  
9.1.2 External Bus Timing for a 32-Bit Transfer (with RDY_N) ...........................62  
9.1.3 External Bus Timing for 8-Bit/16-Bit Transfer (without RDY_N)................64  
9.1.4 External Bus Timing for 8-Bit/16-Bit Transfer (with RDY_N).....................65  
9.2 SDRAM Timing..........................................................................................................66  
9.2.1 SDRAM CAS Timing.....................................................................................66  
9.2.2 SDRAM Row Activation Timing...................................................................67  
9.2.3 SDRAM Read Operation Timing...................................................................69  
9.2.4 SDRAM Read Burst Timing ..........................................................................69  
9.2.5 SDRAM Write Operation, Write Burst, Write-to-Write, and Write-to-  
9.  
Precharge Timing............................................................................................70  
10. JTAG.....................................................................................................................................74  
10.1 JTAG Scan Chain Debug Functionality......................................................................75  
11. Ordering Information............................................................................................................77  
12. Errata.....................................................................................................................................78  
12.1 Summary .....................................................................................................................78  
12.2 Detail ...........................................................................................................................78  
13. Revision History...................................................................................................................82  
14. For Additional Information...................................................................................................83  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 4 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
LIST OF FIGURES  
Figure 1. Block Diagram for the fido1100......................................................................................8  
Figure 2. PQFP Package Diagram ................................................................................................17  
Figure 3. PQFP Physical Package Dimensions.............................................................................24  
Figure 4. BGA 10- by 10-mm Package Diagram .........................................................................26  
Figure 5. BGA 10- by 10-mm Physical Package Dimensions......................................................33  
Figure 6. BGA 15- by 15-mm Package Diagram .........................................................................35  
Figure 7. BGA 15- by 15-mm Physical Package Dimensions......................................................42  
Figure 8. BGA 15- by 15-mm Signal Routing..............................................................................44  
Figure 9. Thermal Performance of PQFP/BGA Under Forced Convection .................................50  
Figure 10. Reset Timing ...............................................................................................................53  
Figure 11. Extended Reset Timing ...............................................................................................53  
Figure 12. Driven Clock Source ...................................................................................................55  
Figure 13. Crystal Oscillator Third Overtone Off-Chip Components.........................................55  
Figure 14. Crystal Oscillator Fundamental Overtone Off-Chip Components..............................55  
Figure 15. Propagation Delay .......................................................................................................59  
Figure 16. Setup Time...................................................................................................................59  
Figure 17. Hold Time....................................................................................................................60  
Figure 18. Recovery Time ............................................................................................................60  
Figure 19. Removal Time .............................................................................................................60  
Figure 20. Minimum Pulse Width ................................................................................................61  
Figure 21. External Bus Timing for a Single, 32-Bit Cycle (without RDY_N) ...........................62  
Figure 22. External Bus Timing for a 32-Bit Transfer (with RDY_N) ........................................63  
Figure 23. External Bus Timing for 8-Bit/16-Bit Transfer (without RDY_N).............................64  
Figure 24. External Bus Timing for 8-Bit/16-Bit Transfer (with RDY_N)..................................65  
Figure 25. SDRAM CAS Timing .................................................................................................67  
Figure 25. Specific Row Activation Timing.................................................................................68  
Figure 27. Meeting tRCD (min) When 2 < tRCD (min)/tCK ≤ 3 ................................................68  
Figure 28. SDRAM Read Operation Timing................................................................................69  
Figure 29. SDRAM Read Burst Timing .......................................................................................70  
Figure 30. SDRAM Write Operation Timing...............................................................................71  
Figure 31. SDRAM Write Burst Timing ......................................................................................72  
Figure 32. SDRAM Write-to-Write Timing.................................................................................72  
Figure 33. SDRAM Write-to-Precharge Timing ..........................................................................73  
Figure 34. JTAG State Machine ...................................................................................................74  
Figure 35. JTAG Port Register Interface ......................................................................................75  
Figure 36. Timing of JTAG Signals .............................................................................................75  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 5 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
LIST OF TABLES  
Table 1. Key Features .....................................................................................................................7  
Table 2. Test Pin Descriptions......................................................................................................11  
Table 3. PQFP Pin Listing ............................................................................................................18  
Table 4. BGA 10- by 10-mm Package Pin Listing.......................................................................27  
Table 5. BGA 15- by 15-mm Package Pin Listing.......................................................................36  
Table 6. Analog Power and Ground Signals.................................................................................45  
Table 7. Crystal Oscillator Power and Ground Signals................................................................45  
Table 8. 2.5 VDC Digital Core Power Signals .............................................................................45  
Table 9. 3.3 VDC Digital IO Power Signals.................................................................................46  
Table 10. Digital Ground Signals .................................................................................................46  
Table 11. Absolute Maximum Ratings .........................................................................................47  
Table 12. ESD and Latch-Up Characteristics ...............................................................................47  
Table 13. Recommended Operating Conditions ...........................................................................47  
Table 14. DC Characteristics ........................................................................................................48  
Table 15. Input Impedance............................................................................................................48  
Table 16. Physical Properties and Simulation Conditions............................................................49  
Table 17. Maximum Power Dissipation of PQFP/BGA Under Forced Convection.....................50  
Table 18. AC Characteristics of Crystal Oscillator.......................................................................50  
Table 19. Analog-to-Digital Converter Characteristics ................................................................51  
Table 20. Power Consumption......................................................................................................51  
Table 21. Hardware Signals Involved When Asserting Reset ......................................................52  
Table 22. Suggested Off-Chip Component Values .......................................................................56  
Table 23. Debug Scan Chain Commands Supported by the JTAG TAP......................................76  
Table 24. Part Numbers by Package Types ..................................................................................77  
Table 25. Summary of Errata........................................................................................................78  
Table 26. Revision History ...........................................................................................................82  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 6 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
1.  
Overview  
Innovasic Semiconductor’s fido1100 is the first product in the fidofamily of real-time  
communication controllers. The fido communication controller architecture is uniquely  
optimized for solving memory bottlenecks, and is designed from the ground up for deterministic  
processing. Critical timing parameters, such as context switching and interrupt latency, are  
precisely predictable for real-time tasks. The fido1100 also incorporates the Universal I/O  
Controller (UIC) that is configurable to support various communication protocols across  
multiple platforms. This flexibility relieves the designer of the task of searching product  
matrices to find the set of peripherals that most closely match the system interface needs. The  
Software Profiling and Integrated Debug EnviRonment (SPIDER) has extensive real-time code  
debug capabilities without the burden of code instrumentation (see Table 1).  
Figure 1 illustrates the top-level blocks of the fido1100 architecture.  
Table 1. Key Features  
Feature  
Benefit  
Programmable UIC  
Provides the ability to customize peripherals to match user application.  
Single chip can solve multiple end-product demands.  
Reduces costs through optimized inventory management.  
Five Hardware  
Contexts  
Runs tight-control loops in separate contexts while RTOS manages high-level  
tasks in another context.  
Provides context isolation with robust time-and-space partitioning.  
Low-Jitter  
Execution  
Performs tasks at much lower clock rates (66MHz versus >200MHz), reducing  
power budget and simplifying board design.  
SPIDER  
Reduces system integration and debug time through in-system, “what-if” testing  
without code changes.  
Reduces firmware development time thus cutting costs.  
Up to 1Mbyte of trace buffer.  
Long-Life-Cycle  
Support  
Fulfills Innovasic’s corporate policy of supporting products for the customer’s  
entire life-cycle, eliminating product obsolescence concerns.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 7 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
T0IN  
T1IN  
RREM and  
MPU  
T0IC[3:0]  
Timer  
T1IC[3:0]  
T0OC[3:0]  
T1OC[3:0]  
Counter Unit  
DMA[1:0]_ACK  
DMA[1:0]_REQ  
INT[7:0]  
SPIDER™  
Debug  
CPU  
DMA  
Context  
Manager  
A[30:0]  
D[15:0]  
Core  
CPU  
CS[7:0]_N  
RW_N  
External Bus  
Interface  
SRAM  
Priority  
Control  
RDY_N  
Timers  
HLDREQ_N  
HLDGNT_N  
BE[1:0]_N  
OE_N  
Execution Unit  
TDI  
JTAG  
TDO  
TCK  
TMS  
Debug  
MEMCLK  
BA[1:0]  
CAS_N  
RAS_N  
CKE  
Peripheral Management Unit  
SDRAM  
Controller  
and  
Frame Buffers  
10-Bit  
8-Channel  
ADC  
AN[7:0]  
VRH  
VRL  
UIC_0  
UIC_1  
UIC_2  
UIC_3  
UIC0[17:0]  
UIC1[17:0]  
UIC2[17:0]  
UIC3[17:0]  
Figure 1. Block Diagram for the fido1100  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 8 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
2.  
Features  
The fido1100 communication controller’s features include:  
32-bit Core CPU  
CISC architecture optimized for real time  
CPU32+ (Motorola® 68000) instruction-set compatible  
Five hardware contexts, each with its own register set and interrupt vector table  
An 8- or 16-bit external bus interface with programmable chip selects  
24 Kbytes of high-speed internal user SRAM  
32 Kbytes of high-speed internal user-mappable Relocatable Rapid Execution Memory  
(RREM)  
A Memory Protection Unit (MPU)  
An SDRAM controller  
Flat, contiguous memory space  
Non-aligned memory access support  
Dedicated Peripheral Management Unit (PMU)  
Four Universal I/O Controllers (UICs) capable of supporting the following protocols:  
GPIO  
10/100 Ethernet with flexible MAC Address Filtering schemes  
EIA-232  
CAN  
SPI  
I2CBus  
SMBus  
HDLC  
Two channels of full-featured direct memory access (DMA) with deterministic arbitration  
Two Timer/Counter Units (TCU)  
A Watchdog timer, system timer, and context timers  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 9 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
JTAG emulation and debug interface  
Available in a 208-pin PQFP, BGA 10- by 10-mm package, and BGA 15- by 15-mm  
package  
3.3V operation with 5V-tolerant I/O  
Industrial temperature grade  
Software development supported by libraries and tools including UIC firmware for  
various interface protocols and formats, as well as a customized GNU tool set.  
2.1  
Core CPU  
The fido1100 core is based on the CPU32 architecture, and is compatible with the CPU32  
instruction set. The fido1100 incorporates five independent hardware contexts. While all  
contexts share the same Execution Unit, each of the five hardware contexts in the fido1100 has  
its own register set, execution priority and exception vector table. From an application’s view,  
this unique feature of the fido1100 allows it to operate as five independent machines in one:  
32-bit address and data paths on-chip  
66-MHz operation  
Instruction execution from external memory or fast internal memory.  
Each hardware context has its own copy of:  
Eight 32-bit User Data Registers (D0-D7)  
Seven 32-bit Address Registers (A0-A6)  
Two 32-bit Stack Pointers (A7 and A7')  
One 32-bit Program Counter  
One 16-bit Status Register (SR)  
One 32-bit Vector Base Register (VBR)  
2.2  
JTAG  
The fido1100 is fully compliant with the IEEE 1149.1 Test Access Port and Boundary-Scan  
architecture (see Table 2). The fido1100 architecture is equipped with the TAP (Test Access  
Port) interface, TAP controller, instruction register, instruction decoder, boundary-scan register,  
and by-pass register.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 10 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 2. Test Pin Descriptions  
Pin  
TDO  
Direction  
In  
Description  
Test Data OutputThe tri-state test data output changing on the falling edge of the  
TCK input. This is actively driven only in the shift-DR and shift-IR controller states.  
TDI  
TMS  
In  
In  
Test Data InputThe test data input sampled on the rising edge of the TCK input.  
Test Mode Select InputThe test mode select input used to sequence the TAP  
controller state machine. If TMS is a 1 for 5 clock cycles, it sends the TAP controller  
into reset. If TMS is 0, the TAP controller goes to IDLE.  
TCK  
In  
Test Clock InputAll JTAG commands and serial data are synchronized by this  
signal.  
The JTAG Interface is used for controlling the SPIDER Debug Features of the fido1100.  
BreakpointsEight hardware context-aware breakpoints that can be chained to set up  
if/then triggering conditions.  
Hardware breakpoints are enabled in software or over JTAG  
WatchpointsEight hardware watchpoints.  
TraceFollow program execution with trace buffers.  
Single address, single buffer, and circular buffer trace modes  
Trace buffer can be written anywhere in the address space or to a peripheral  
Debug ControlHardware single-step and context status control.  
Access to all memory and registers that are accessible to software  
Byte, word, and long-word access in full-address mode or offset mode  
Invalid address access (keystroke errors) over JTAG will not kill the session  
Direct programming of FLASH on the evaluation board without target software  
support  
Built-in hardware support to halt contexts and execute single instructions without  
software  
JTAG access to registers, stack space, etc., even if the processor is halted  
Statistical ProfilingSPIDER provides statistical software profiling to identify critical  
pieces of code.  
2.3  
Internal Memory and Memory Management  
User SRAMInternal 24-Kbyte memory that can be used by applications for general  
purpose data needs or as trace buffers.  
Relocatable Rapid Execution Memory (RREM)Internal 32-Kbyte memory that can be  
used as an instruction source for code that requires maximum execution speed.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 11 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Memory Protection Unit (MPU)Access-control method for 16 user-configurable blocks  
of internal or external memory on a context basis. A block of memory may be  
inaccessible, read only or read/write accessible to a selectable set of contexts. The MPU  
provides the space partitioning needed in deterministic, real-time systems.  
2.4  
External Bus Interface  
The interface to all external memory. It handles memory interface timing and arbitration of  
external bus requests. The external bus interfaces provide all address, data, and control line to  
implement either an 8- or 16-bit microcontroller system bus.  
Address/data bus  
31-bit address bus to access up to 2 Gbytes of memory space  
8- or 16-bit data bus  
Zero-overhead Endian conversion  
Chip SelectsEight programmable chip selects with programmable size, data width, and  
timing.  
SDRAM ControllerSupports 8- or 16-bit data interfaces to SDRAM and provides the  
necessary control signals to interface to external SDRAM. The interface to the external  
SDRAM uses the 16-bit-wide data bus and 13 bits of the address bus of the External Bus  
Interface. The dedicated clock signal for this interface (MEMCLK) operates at the same  
frequency as the internal master clock.  
Operates at a maximum clock rate of 66 MHz  
Executes read, write, pre-charge, auto refresh, power down, and initialize SDRAM  
modes  
Fixed, 4-word bursts to/from SDRAM interface  
Periodically issues auto refresh command to prevent SDRAM data loss  
External Bus ArbitrationThe fido1100 provides signals to allow it to operate in a multi-  
bus master environment.  
2.5  
PMU/UIC/CPU DMA  
The PMU, UIC, and CPU DMA work together as a fast data transport scheme that requires  
minimal Core CPU overhead or intervention.  
Peripheral Management Unit (PMU)A set of user-configurable buffers for data  
transmission and reception via the UICs.  
Universal Input/Output Controller (UIC)Programmable protocol engine.  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 12 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
The UIC is a very flexible hardware solution designed to support numerous interface  
requirements. When working in concert with the on-board Peripheral Management Unit (PMU)  
and on-board data buffers, the operation of the interfaces requires little core processor  
intervention. This allows the processor to use its bus bandwidth for more important functions  
than managing data traffic. The UIC design can support complex protocols such as Ethernet or  
GPIO functions.  
Four software-configurable UICs  
Each supports 10/100 Ethernet, CAN, UART, SPI, I2C, HDLC, or GPIO functionality  
Software libraries are provided for various interface protocols and formats  
User-programmable integrated 256-location MAC address filter  
Dedicated PMU offloads main CPU bus traffic  
Large 1K 32 transmit buffer and 2K 32 receive buffers  
At a minimum, each UIC can support 1 Ethernet port (MII), 2 UARTs, or 18 GPIO  
CPU DMATwo independent channels of DMA for data transfer  
Internal Peripherals  
2.6  
The fido1100 incorporates the following set of internal peripherals:  
2.6.1 Timer Counter Units (TCU)  
Two Timer Counter Units (TCU)The fido1100 is equipped with two Timer Counter  
Units.  
Four channels per timer; any channel can be either input capture or output compare.  
Input captures can be either rising or falling edge.  
External signal clocking can be rising edge, falling edge, or both edges of input  
signal.  
Output compare can be assert high, assert low, or toggle mode.  
Underflow, overflow, input-capture, or output-compare conditions can trigger an  
interrupt.  
Timers can be programmed for auto-stop or auto-reload.  
Timer can generate an internal interrupt to wake up the processor from sleep mode.  
Timer periods in excess of 50 seconds are achievable.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 13 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
2.6.2 Analog-to-Digital Converter (ADC)  
8-channel, 10-bit ADC  
Maximum throughput rate of 200 Kbps  
High- and low-reference voltage pins ensure accuracy and temperature compensation  
Very low 5-mW power consumption and includes a built-in power-down mode  
Single- or multiple-channel conversion scan modes  
Interrupt generated at the end of conversion is assigned a priority and a context  
Interrupts from the analog-to-digital converter can be disabled  
2.6.3 Timers  
System Timer.  
Provides five periodic System Timer interrupts.  
o 16-bit counter with 16-bit prescale allows a range of System Timer interrupts  
from 80 nS to 50 seconds with a 66-MHz system clock.  
o These interrupts can be assigned to the fast-context switching hardware providing  
a zero overhead system executive or the System Timer interrupts can simply  
produce a traditional vectored interrupt request to provide a system with basic  
timing needs.  
Watchdog Timer  
16-bit counter with an 11-bit prescaler  
Context Timers  
Each hardware context has a set of timing registers that can track, specify, and limit  
execution time.  
2.7  
Power Control  
All internal peripherals can be put into a low-power consumption mode.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 14 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
3.  
Libraries and Support Tools  
Full library support  
UIC libraries  
Embedded communication stacks  
TCP/IP  
GPIO sample programs  
Customized GNU tool set  
Eclipse IDE  
Sourcery G++ from Code Sourcery  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 15 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
4.  
Packaging, Pin Descriptions, and Physical Dimensions  
Information on the packages and pin descriptions for the fido1100 communication controller  
PQFP, BGA 10- by 10-mm package, and BGA 15- by 15-mm package is provided individually.  
Refer to sections, figures, and tables for information on the device of interest.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 16 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
4.1  
PQFP Package  
4.1.1 PQFP Pinout  
The pinout for the fido1100 communication controller PQFP package is as shown in Figure 2.  
The corresponding pinout is provided in Table 3.  
Figure 2. PQFP Package Diagram  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 17 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 3. PQFP Pin Listing  
Pin  
1
2
3
4
5
6
7
8
Signal Name  
AN_7  
AN_6  
AN_5  
AN_4  
AN_3  
AN_2  
AN_1  
AN_0  
VRL  
Type  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Power  
Ground  
Input  
Input  
Input  
Power  
Input  
Description  
Analog-to-digital converter input channel 7  
Analog-to-digital converter input channel 6  
Analog-to-digital converter input channel 5  
Analog-to-digital converter input channel 4  
Analog-to-digital converter input channel 3  
Analog-to-digital converter input channel 2  
Analog-to-digital converter input channel 1  
Analog-to-digital converter input channel 0  
Analog-to-digital converter low-input reference  
Analog-to-digital converter high-input reference  
Analog supply voltage (+3.3VDC)  
Analog ground  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
VRH  
VDDA  
GNDA  
INT0  
INT1  
INT2  
Interrupt_0  
Interrupt_1  
Interrupt_2  
Digital core supply voltage (+2.5VDC)  
Interrupt_3  
VDDC  
INT3  
INT4_DMA0_ Bidirectional Muxed pin, Interrupt_4 or DMA channel 0 acknowledge  
ACK  
19  
20  
21  
INT5_DMA1_ Bidirectional Muxed pin, Interrupt_5 or DMA channel 1 acknowledge  
ACK  
INT6_DMA0_  
REQ  
INT7_DMA1_  
REQ  
Input  
Muxed pin, Interrupt_6 or DMA channel 0 request  
Muxed pin, Interrupt_7 or DMA channel 1 request  
Digital I/O supply voltage (+3.3VDC)  
Input  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
VDDIO  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Power  
Bidirectional External Bus Interface data Bit [0]  
Bidirectional External Bus Interface data Bit [1]  
Bidirectional External Bus Interface data Bit [2]  
Bidirectional External Bus Interface data Bit [3]  
Bidirectional External Bus Interface data Bit [4]  
Bidirectional External Bus Interface data Bit [5]  
Bidirectional External Bus Interface data Bit [6]  
Bidirectional External Bus Interface data Bit [7]  
GND  
D8  
D9  
D10  
D11  
Ground  
Digital ground  
Bidirectional External Bus Interface data Bit [8]  
Bidirectional External Bus Interface data Bit [9]  
Bidirectional External Bus Interface data Bit [10]  
Bidirectional External Bus Interface data Bit [11]  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 18 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 3. PQFP Pin Listing (Continued)  
Pin  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
Signal Name  
D12  
Type  
Bidirectional External Bus Interface data Bit [12]  
Power Digital I/O supply voltage (+3.3VDC)  
Bidirectional External Bus Interface data Bit [13]  
Bidirectional External Bus Interface data Bit [14]  
Bidirectional External Bus Interface data Bit [15]  
Description  
VDDIO  
D13  
D14  
D15  
RDY_N  
GND  
Input  
Ground  
Output  
Ground  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Output  
Input  
External Bus Interface External Ready Indication  
Digital ground  
Memory clock used by external memory  
Digital ground  
Byte enable 0, active low  
Byte enable 1, active low  
Output enable, active low  
Digital core supply voltage (+2.5VDC)  
Read or write control (active low write)  
Bank Enable 0  
Bank Enable 1  
Column activate signal, active low  
Digital Ground  
MEMCLK  
GND  
BE0_N  
BE1_N  
OE_N  
VDDC  
RW_N  
BA_0  
BA_1  
CAS_N  
GND  
RAS_N  
CKE  
Row activate signal, active low  
Clock enable to be used in conjunction with MEMCLK  
External Bus hold request, active low  
External Bus grant request, active low  
Reset input  
HOLDREQ_N  
HOLDGNT_N  
RESET_N  
RESET_OUT_N  
GND  
Output  
Input  
Output  
Ground  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Output  
Output  
Output  
Reset output  
Digital ground  
A0  
A1  
A2  
A3  
VDDIO  
A4  
A5  
A6  
A7  
GND  
A8  
A9  
A10  
External Bus Interface address Bit [0]  
External Bus Interface address Bit [1]  
External Bus Interface address Bit [2]  
External Bus Interface address Bit [3]  
Digital I/O supply voltage (+3.3VDC)  
External Bus Interface address Bit [4]  
External Bus Interface address Bit [5]  
External Bus Interface address Bit [6]  
External Bus Interface address Bit [7]  
Digital ground  
External Bus Interface address Bit [8]  
External Bus Interface address Bit [9]  
External Bus Interface address Bit [10]  
External Bus Interface address Bit [11]  
A11  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 19 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 3. PQFP Pin Listing (Continued)  
Pin  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
Signal Name  
VDDC  
A12  
Type  
Power  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Description  
Digital core supply voltage (+2.5VDC)  
External Bus Interface address Bit [12]  
External Bus Interface address Bit [13]  
External Bus Interface address Bit [14]  
External Bus Interface address Bit [15]  
Digital core supply voltage (+2.5VDC)  
External Bus Interface address Bit [16]  
External Bus Interface address Bit [17]  
External Bus Interface address Bit [18]  
External Bus Interface address Bit [19]  
Digital I/O supply voltage (+3.3VDC)  
External Bus Interface address Bit [20]  
External Bus Interface address Bit [21]  
External Bus Interface address Bit [22]  
External Bus Interface address Bit [23]  
Digital ground  
A13  
A14  
A15  
VDDC  
A16  
A17  
A18  
A19  
VDDIO  
A20  
A21  
A22  
A23  
GND  
A24  
External Bus Interface address Bit [24]  
Muxed pin, External Bus Interface address Bit [25] or POR  
counter bypass  
A25_RESET_  
DELAY  
Internal  
Pull-up  
93  
94  
95  
96  
97  
A26_SIZE  
A27_CS7_N  
A28_CS6_N  
A29_CS5_N  
A30_CS4_N  
Internal  
Pull-up  
Muxed pin, External Bus Interface address Bit [26] or data bus  
size select (0 = 8-Bit, 1= 16=Bit)  
Muxed pin, External Bus Interface address Bit [27] or Chip select  
7 (chip select active low)  
Muxed pin, External Bus Interface address Bit [28] or Chip select  
6 (chip select active low)  
Muxed pin, External Bus Interface address Bit [29] or Chip select  
5 (chip select active low)  
Output  
Output  
Output  
Output  
Muxed pin, External Bus Interface address Bit [30] or Chip select  
4 (chip select active low)  
98  
99  
CS0_N  
CS1_N  
CS2_N  
CS3_N  
TDI  
TDO  
TCK  
TMS  
Output  
Output  
Output  
Output  
Input  
Output  
Input  
Input  
Chip select 0 (chip select active low)  
Chip select 1 (chip select active low)  
Chip select 2 (chip select active low)  
Chip select 3 (chip select active low)  
JTAG data input  
JTAG data output  
JTAG clock input  
JTAG control signal  
Digital core supply voltage (+2.5VDC)  
100  
101  
102  
103  
104  
105  
106  
107  
108  
VDDC  
UIC0_0  
UIC0_1  
Power  
Bidirectional Universal I/O Controller 0, pin 0  
Bidirectional Universal I/O Controller 0, pin 1  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 20 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 3. PQFP Pin Listing (Continued)  
Pin  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
Signal Name  
UIC0_2  
UIC0_3  
GND  
UIC0_4  
UIC0_5  
UIC0_6  
UIC0_7  
UIC0_8  
VDDCLK  
XTAL0  
Type  
Description  
Bidirectional Universal I/O Controller 0, pin 2  
Bidirectional Universal I/O Controller 0, pin 3  
Ground  
Digital ground  
Bidirectional Universal I/O Controller 0, pin 4  
Bidirectional Universal I/O Controller 0, pin 5  
Bidirectional Universal I/O Controller 0, pin 6  
Bidirectional Universal I/O Controller 0, pin 7  
Bidirectional Universal I/O Controller 0, pin 8  
Power supply Power Supply for the Crystal Oscillator (+2.5VDC)  
Clock  
Clock  
Ground  
Crystal input pin 0 (Osc. In)  
Crystal input/output pin 1 (Osc. Out)  
Digital ground  
XTAL1  
GNDCLK  
UIC0_9  
UIC0_10  
UIC0_11  
UIC0_12  
UIC0_13  
UIC0_14  
UIC0_15  
UIC0_16  
UIC0_17  
GND  
UIC1_0  
UIC1_1  
UIC1_2  
UIC1_3  
VDDIO  
UIC1_4  
UIC1_5  
UIC1_6  
UIC1_7  
UIC1_8  
UIC1_9  
VDDC  
UIC1_10  
UIC1_11  
UIC1_12  
UIC1_13  
UIC1_14  
Bidirectional Universal I/O Controller 0, pin 9  
Bidirectional Universal I/O Controller 0, pin 10  
Bidirectional Universal I/O Controller 0, pin 11  
Bidirectional Universal I/O Controller 0, pin 12  
Bidirectional Universal I/O Controller 0, pin 13  
Bidirectional Universal I/O Controller 0, pin 14  
Bidirectional Universal I/O Controller 0, pin 15  
Bidirectional Universal I/O Controller 0, pin 16  
Bidirectional Universal I/O Controller 0, pin 17  
Ground  
Digital ground  
Bidirectional Universal I/O Controller 1, pin 0  
Bidirectional Universal I/O Controller 1, pin 1  
Bidirectional Universal I/O Controller 1, pin 2  
Bidirectional Universal I/O Controller 1, pin 3  
Power  
Digital I/O supply voltage (+3.3VDC)  
Bidirectional Universal I/O Controller 1, pin 4  
Bidirectional Universal I/O Controller 1, pin 5  
Bidirectional Universal I/O Controller 1, pin 6  
Bidirectional Universal I/O Controller 1, pin 7  
Bidirectional Universal I/O Controller 1, pin 8  
Bidirectional Universal I/O Controller 1, pin 9  
Power  
Digital core supply voltage (+2.5VDC)  
Bidirectional Universal I/O Controller 1, pin 10  
Bidirectional Universal I/O Controller 1, pin 11  
Bidirectional Universal I/O Controller 1, pin 12  
Bidirectional Universal I/O Controller 1, pin 13  
Bidirectional Universal I/O Controller 1, pin 14  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 21 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 3. PQFP Pin Listing (Continued)  
Pin  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
Signal Name  
GND  
Type  
Ground  
Description  
Digital ground  
UIC1_15  
UIC1_16  
UIC1_17  
VDDIO  
UIC2_0  
UIC2_1  
UIC2_2  
UIC2_3  
VDDC  
UIC2_4  
UIC2_5  
UIC2_6  
UIC2_7  
GND  
UIC2_8  
UIC2_9  
UIC2_10  
UIC2_11  
VDDIO  
UIC2_12  
UIC2_13  
UIC2_14  
UIC2_15  
GND  
UIC2_16  
UIC2_17  
UIC3_0  
UIC3_1  
VDDC  
Bidirectional Universal I/O Controller 1, pin 15  
Bidirectional Universal I/O Controller 1, pin 16  
Bidirectional Universal I/O Controller 1, pin 17  
Power  
Digital I/O supply voltage (+3.3VDC)  
Bidirectional Universal I/O Controller 2, pin 0  
Bidirectional Universal I/O Controller 2, pin 1  
Bidirectional Universal I/O Controller 2, pin 2  
Bidirectional Universal I/O Controller 2, pin 3  
Power  
Digital core supply voltage (+2.5VDC)  
Bidirectional Universal I/O Controller 2, pin 4  
Bidirectional Universal I/O Controller 2, pin 5  
Bidirectional Universal I/O Controller 2, pin 6  
Bidirectional Universal I/O Controller 2, pin 7  
Ground  
Digital ground  
Bidirectional Universal I/O Controller 2, pin 8  
Bidirectional Universal I/O Controller 2, pin 9  
Bidirectional Universal I/O Controller 2, pin 10  
Bidirectional Universal I/O Controller 2, pin 11  
Power  
Digital I/O supply voltage (+3.3VDC)  
Bidirectional Universal I/O Controller 2, pin 12  
Bidirectional Universal I/O Controller 2, pin 13  
Bidirectional Universal I/O Controller 2, pin 14  
Bidirectional Universal I/O Controller 2, pin 15  
Ground  
Digital ground  
Bidirectional Universal I/O Controller 2, pin 16  
Bidirectional Universal I/O Controller 2, pin 17  
Bidirectional Universal I/O Controller 3 pin 0  
Bidirectional Universal I/O Controller 3 pin 1  
Power  
Digital core supply voltage (+2.5VDC)  
UIC3_2  
UIC3_3  
UIC3_4  
UIC3_5  
GND  
UIC3_6  
UIC3_7  
UIC3_8  
UIC3_9  
Bidirectional Universal I/O Controller 3 pin 2  
Bidirectional Universal I/O Controller 3 pin 3  
Bidirectional Universal I/O Controller 3 pin 4  
Bidirectional Universal I/O Controller 3 pin 5  
Ground  
Digital ground  
Bidirectional Universal I/O Controller 3 pin 6  
Bidirectional Universal I/O Controller 3 pin 7  
Bidirectional Universal I/O Controller 3 pin 8  
Bidirectional Universal I/O Controller 3 pin 9  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 22 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 3. PQFP Pin Listing (Continued)  
Pin  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
Signal Name  
VDDIO  
Type  
Power  
Description  
Digital I/O supply voltage (+3.3VDC)  
UIC3_10  
UIC3_11  
UIC3_12  
UIC3_13  
GND  
UIC3_14  
UIC3_15  
UIC3_16  
UIC3_17  
Bidirectional Universal I/O Controller 3 pin 10  
Bidirectional Universal I/O Controller 3 pin 11  
Bidirectional Universal I/O Controller 3 pin 12  
Bidirectional Universal I/O Controller 3 pin 13  
Ground  
Digital Ground  
Bidirectional Universal I/O Controller 3 pin 14  
Bidirectional Universal I/O Controller 3 pin 15  
Bidirectional Universal I/O Controller 3 pin 16  
Bidirectional Universal I/O Controller 3 pin 17  
197 T0IC0_T0OC0 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 0 or output  
compare 0  
198 T0IC1_T0OC1 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 1 or output  
compare 1  
199 T0IC2_T0OC2 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 2 or output  
compare 2  
200 T0IC3_T0OC3 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 3 or output  
compare 3  
201  
GND  
Ground  
Digital ground  
202 T1IC0_T1OC0 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 0 or output  
compare 0  
203 T1IC1_T1OC1 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 1 or output  
compare 1  
204 T1IC2_T1OC2 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 2 or output  
compare 2  
205 T1IC3_T1OC3 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 3 or output  
compare 3  
206  
207  
208  
VDDC  
T0IN  
T1IN  
Power  
Input  
Input  
Digital core supply voltage (+2.5VDC)  
Timer Counter Unit 0 external clock source  
Timer Counter Unit 1 external clock source  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 23 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
4.1.2 PQFP Physical Dimensions  
The physical dimensions for the 208-pin PQFP package are as shown in Figure 3.  
Legend:  
Dimension in mm  
Dimension in Inches  
Symbol  
Min Nom  
Max  
4.07  
Min Nom  
Max  
0.160  
A
A1  
A2  
b
0.25  
0.010  
3.15 3.23  
3.30 0.124 0.127 0.130  
0.28 0.007  
0.23 0.005  
0.18  
0.13  
0.011  
0.009  
c
D
E
27.90 28.00 28.10 1.098 1.102 1.106  
27.90 28.00 28.10 1.098 1.102 1.106  
e
0.50 BSC  
0.020 BSC  
HD  
HE  
L
L1  
y
30.35 30.60 30.85 1.195 1.205 1.215  
30.35 30.60 30.85 1.195 1.205 1.215  
0.35 0.50  
1.30 REF  
0.65 0.014 0.020 0.026  
0.051 REF  
0°  
0.19  
7°  
0°  
0.004  
7°  
Θ
Notes:  
1. Dimension D & E do not include interlead flash.  
2. Dimension B does not include damper protrusion/intrusion.  
3. Controlling dimension: mm  
4. General appearance spec. should be based on visual inspection spec.  
Figure 3. PQFP Physical Package Dimensions  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 24 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
4.2  
BGA 10- by 10-mm Package  
4.2.1 BGA 10- by 10-mm Pinout  
The pinout for the fido1100communication controller BGA 10- by 10-mm package is as  
shown in Figure 4. The corresponding pinout is provided in Table 4.  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 25 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25,2012  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
T1IC2_ T0IC3_ T0IC0_  
T1OC2 T0OC3 T0OC0  
A
B
C
D
E
F
T1IN  
T0IN  
UIC3_16 GND UIC3_11 UIC3_8 UIC3_5 UIC3_2  
UIC2_17 UIC2_14 UIC2_11 UIC2_8 UIC2_4  
A
T1IC1_ T0IC2_  
T1OC1 T0OC2  
AN_7  
AN_5  
AN_3  
AN_0  
INT0  
AN_6  
AN_4  
AN_1  
VRH  
T1IC3_T1OC3  
AN_2  
UIC3_17 UIC3_15 UIC3_13 UIC3_10 UIC3_6 UIC3_4 UIC3_1  
UIC3_14 UIC3_12 UIC3_9 UIC3_7 UIC3_3 UIC3_0 UIC2_15  
UIC2_16 UIC2_13 UIC2_9  
UIC2_12 UIC2_10 UIC2_7  
UIC2_6 UIC2_5 UIC2_3 B  
UIC2_0 UIC2_1 UIC2_2 C  
UIC1_13 UIC1_16 UIC1_17 D  
UIC1_10 UIC1_15 UIC1_14 E  
UIC1_7 UIC1_12 UIC1_11 F  
UIC1_4 UIC1_9 UIC1_8 G  
UIC1_1 UIC1_6 UIC1_5 H  
UIC0_16 UIC1_3 UIC1_2 J  
UIC0_15 UIC1_0 UIC0_17 K  
UIC0_12 UIC0_13 UIC0_14 L  
VDDIO UIC0_10 UIC0_11 M  
UIC0_8 UIC0_9 XTAL1 N  
T1IC0_ T0IC1_  
T1OC0 T0OC1  
VRL  
INT1  
INT4_DMA0_  
ACK  
INT2  
INT6_DMA0_ INT7_DMA1_  
G
H
J
INT3  
VDDA VDDC VDDIO VDDC VDDC VDDIO  
REQ  
REQ  
INT5_DMA1_  
ACK  
D1  
D2  
GNDA  
VDDC  
VDDIO  
VDDC  
VDDIO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDC  
VDDC  
VDDIO  
D0  
D3  
D4  
D5  
D8  
K
L
D7  
D6  
D10  
D11  
GND  
GND GNDCLK VDDCLK  
M
N
P
R
T
D9  
D13  
D14  
GND VDDC VDDC  
VDDC  
D12  
RDY_N  
BE0_N  
RW_N  
CAS_N  
RAS_N  
GND  
D15  
BE1_N  
BA_0  
UIC0_5 UIC0_7 XTAL0 P  
MEMCLK  
OE_N  
BA_1  
UIC0_2 UIC0_4 UIC0_6 R  
A30_CS4_N TDI UIC0_1 UIC0_3 T  
RESET_  
A2  
A29_  
CS5_N  
HOLDREQ_N  
HOLDGNT_N  
A5  
A6  
A8  
A9  
A11  
A12  
A14  
A15  
A17  
A18  
A20  
A21  
A23  
A24  
A26_SIZE  
OUT_N  
U
V
A0  
A3  
A27_CS7_N CS1_N  
CS2_N  
TDO  
TMS UIC0_0 U  
A25_RESET_ A28_  
GND  
2
CKE  
3
RESET_N A1  
A4  
6
A7  
7
A10  
8
A13  
9
A16  
10  
A19  
11  
A22  
12  
CS0_N  
15  
CS3_N  
16  
TCK  
17  
V
DELAY  
13  
CS6_N  
14  
1
4
5
18  
= Signals.  
= Indicates power.  
= Indicates ground.  
Figure 4. BGA 10- by 10-mm Package Diagram  
IA211080807-08  
http://www.innovasic.com  
Customer Support:  
UNCONTROLLED WHEN PRINTED OR COPIED  
Page 26 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 4. BGA 10- by 10-mm Package Pin Listing  
Pin  
B1  
B2  
C1  
C2  
D1  
C3  
D2  
E1  
D3  
E2  
G7  
H7  
F1  
E3  
F2  
G8  
G1  
F3  
Signal Name  
AN_7  
AN_6  
AN_5  
AN_4  
AN_3  
AN_2  
AN_1  
AN_0  
VRL  
Type  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Power  
Ground  
Input  
Input  
Input  
Power  
Input  
Description  
Analog-to-digital converter input channel 7  
Analog-to-digital converter input channel 6  
Analog-to-digital converter input channel 5  
Analog-to-digital converter input channel 4  
Analog-to-digital converter input channel 3  
Analog-to-digital converter input channel 2  
Analog-to-digital converter input channel 1  
Analog-to-digital converter input channel 0  
Analog-to-digital converter low-input reference  
Analog-to-digital converter high-input reference  
Analog supply voltage (+3.3VDC)  
Analog ground  
VRH  
VDDA  
GNDA  
INT0  
INT1  
INT2  
Interrupt_0  
Interrupt_1  
Interrupt_2  
Digital core supply voltage (+2.5VDC)  
Interrupt_3  
VDDC  
INT3  
INT4_DMA0_ Bidirectional Muxed pin, Interrupt_4 or DMA channel 0 acknowledge  
ACK  
H1  
G2  
G3  
INT5_DMA1_ Bidirectional Muxed pin, Interrupt_5 or DMA channel 1 acknowledge  
ACK  
INT6_DMA0_  
REQ  
INT7_DMA1_  
REQ  
Input  
Muxed pin, Interrupt_6 or DMA channel 0 request  
Muxed pin, Interrupt_7 or DMA channel 1 request  
Digital I/O supply voltage (+3.3VDC)  
Input  
G9  
J1  
H2  
H3  
K1  
J2  
VDDIO  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Power  
Bidirectional External Bus Interface data Bit [0]  
Bidirectional External Bus Interface data Bit [1]  
Bidirectional External Bus Interface data Bit [2]  
Bidirectional External Bus Interface data Bit [3]  
Bidirectional External Bus Interface data Bit [4]  
Bidirectional External Bus Interface data Bit [5]  
Bidirectional External Bus Interface data Bit [6]  
Bidirectional External Bus Interface data Bit [7]  
J3  
L1  
K2  
H8  
K3  
M1  
L2  
L3  
GND  
D8  
D9  
D10  
D11  
Ground  
Digital ground  
Bidirectional External Bus Interface data Bit [8]  
Bidirectional External Bus Interface data Bit [9]  
Bidirectional External Bus Interface data Bit [10]  
Bidirectional External Bus Interface data Bit [11]  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 27 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 4. BGA 10- by 10-mm Pin Listing (Continued)  
Pin  
N1  
G12  
M2  
M3  
P1  
N2  
N3  
R1  
H9  
P2  
P3  
T1  
G10  
R2  
R3  
U1  
T2  
V2  
U2  
V3  
T3  
U3  
V4  
T4  
H10  
U4  
V5  
T5  
U5  
K7  
V6  
T6  
U6  
V7  
H11  
T7  
Signal Name  
D12  
Type  
Bidirectional External Bus Interface data Bit [12]  
Power Digital I/O supply voltage (+3.3VDC)  
Bidirectional External Bus Interface data Bit [13]  
Bidirectional External Bus Interface data Bit [14]  
Bidirectional External Bus Interface data Bit [15]  
Description  
VDDIO  
D13  
D14  
D15  
RDY_N  
GND  
Input  
Ground  
Output  
Ground  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Output  
Input  
External Bus Interface External Ready Indication  
Digital ground  
Memory clock used by external memory  
Digital ground  
Byte enable 0, active low  
Byte enable 1, active low  
Output enable, active low  
Digital core supply voltage (+2.5VDC)  
Read or write control (active low write)  
Bank Enable 0  
Bank Enable 1  
Column activate signal, active low  
Digital Ground  
MEMCLK  
GND  
BE0_N  
BE1_N  
OE_N  
VDDC  
RW_N  
BA_0  
BA_1  
CAS_N  
GND  
RAS_N  
CKE  
Row activate signal, active low  
Clock enable to be used in conjunction with MEMCLK  
External Bus hold request, active low  
External Bus grant request, active low  
Reset input  
HOLDREQ_N  
HOLDGNT_N  
RESET_N  
RESET_OUT_N  
GND  
Output  
Input  
Output  
Ground  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Output  
Output  
Reset output  
Digital ground  
A0  
A1  
A2  
A3  
VDDIO  
A4  
A5  
A6  
A7  
GND  
A8  
A9  
A10  
External Bus Interface address Bit [0]  
External Bus Interface address Bit [1]  
External Bus Interface address Bit [2]  
External Bus Interface address Bit [3]  
Digital I/O supply voltage (+3.3VDC)  
External Bus Interface address Bit [4]  
External Bus Interface address Bit [5]  
External Bus Interface address Bit [6]  
External Bus Interface address Bit [7]  
Digital ground  
External Bus Interface address Bit [8]  
External Bus Interface address Bit [9]  
External Bus Interface address Bit [10]  
U7  
V8  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 28 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 4. BGA 10- by 10-mm Pin Listing (Continued)  
Pin  
T8  
G11  
U8  
V9  
T9  
Signal Name  
A11  
Type  
Output  
Power  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Description  
External Bus Interface address Bit [11]  
Digital core supply voltage (+2.5VDC)  
External Bus Interface address Bit [12]  
External Bus Interface address Bit [13]  
External Bus Interface address Bit [14]  
External Bus Interface address Bit [15]  
Digital core supply voltage (+2.5VDC)  
External Bus Interface address Bit [16]  
External Bus Interface address Bit [17]  
External Bus Interface address Bit [18]  
External Bus Interface address Bit [19]  
Digital I/O supply voltage (+3.3VDC)  
External Bus Interface address Bit [20]  
External Bus Interface address Bit [21]  
External Bus Interface address Bit [22]  
External Bus Interface address Bit [23]  
Digital ground  
VDDC  
A12  
A13  
A14  
A15  
VDDC  
A16  
A17  
A18  
A19  
VDDIO  
A20  
A21  
A22  
A23  
U9  
H12  
V10  
T10  
U10  
V11  
K12  
T11  
U11  
V12  
T12  
J8  
GND  
A24  
U12  
External Bus Interface address Bit [24]  
V13 A_25_RESET_  
DELAY  
Internal  
Pull-up  
Muxed pin, External Bus Interface address Bit [25] or POR  
counter bypass  
T13  
U13  
V14  
T14  
T15  
A_26_SIZE  
A27_CS7_N  
A28_CS6_N  
A29_CS5_N  
A30_CS4_N  
Internal  
Pull-up  
Muxed pin, External Bus Interface address Bit [26] or data bus  
size select (0 = 8-Bit, 1= 16=Bit)  
Muxed pin, External Bus Interface address Bit [27] or Chip  
select 7 (chip select active low)  
Muxed pin, External Bus Interface address Bit [28] or Chip  
select 6 (chip select active low)  
Muxed pin, External Bus Interface address Bit [29] or Chip  
select 5 (chip select active low)  
Output  
Output  
Output  
Output  
Muxed pin, External Bus Interface address Bit [30] or Chip  
select 4 (chip select active low)  
V15  
U14  
U15  
V16  
T16  
U16  
V17  
U17  
J12  
CS0_N  
CS1_N  
CS2_N  
CS3_N  
TDI  
TDO  
TCK  
TMS  
VDDC  
Output  
Output  
Output  
Output  
Input  
Output  
Input  
Input  
Chip select 0 (chip select active low)  
Chip select 1 (chip select active low)  
Chip select 2 (chip select active low)  
Chip select 3 (chip select active low)  
JTAG data input  
JTAG data output  
JTAG clock input  
JTAG control signal  
Digital core supply voltage (+2.5VDC)  
Power  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 29 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 4. BGA 10- by 10-mm Pin Listing (Continued)  
Pin  
U18  
T17  
R16  
T18  
K8  
Signal Name  
UIC0_0  
UIC0_1  
UIC0_2  
UIC0_3  
GND  
Type  
Description  
Bidirectional Universal I/O Controller 0, pin 0  
Bidirectional Universal I/O Controller 0, pin 1  
Bidirectional Universal I/O Controller 0, pin 2  
Bidirectional Universal I/O Controller 0, pin 3  
Ground  
Digital ground  
R17  
P16  
R18  
P17  
N16  
L12  
P18  
N18  
L11  
N17  
M17  
M18  
L16  
L17  
L18  
K16  
J16  
K18  
K11  
K17  
H16  
J18  
J17  
M7  
UIC0_4  
UIC0_5  
UIC0_6  
UIC0_7  
UIC0_8  
VDDCLK  
XTAL0  
Bidirectional Universal I/O Controller 0, pin 4  
Bidirectional Universal I/O Controller 0, pin 5  
Bidirectional Universal I/O Controller 0, pin 6  
Bidirectional Universal I/O Controller 0, pin 7  
Bidirectional Universal I/O Controller 0, pin 8  
Power supply Power Supply for the Crystal Oscillator (+2.5VDC)  
Clock  
Clock  
Ground  
Crystal input pin 0 (Osc. In)  
Crystal input/output pin 1 (Osc. Out)  
Digital ground  
XTAL1  
GNDCLK  
UIC0_9  
UIC0_10  
UIC0_11  
UIC0_12  
UIC0_13  
UIC0_14  
UIC0_15  
UIC0_16  
UIC0_17  
GND  
UIC1_0  
UIC1_1  
UIC1_2  
UIC1_3  
VDDIO  
Bidirectional Universal I/O Controller 0, pin 9  
Bidirectional Universal I/O Controller 0, pin 10  
Bidirectional Universal I/O Controller 0, pin 11  
Bidirectional Universal I/O Controller 0, pin 12  
Bidirectional Universal I/O Controller 0, pin 13  
Bidirectional Universal I/O Controller 0, pin 14  
Bidirectional Universal I/O Controller 0, pin 15  
Bidirectional Universal I/O Controller 0, pin 16  
Bidirectional Universal I/O Controller 0, pin 17  
Ground  
Digital ground  
Bidirectional Universal I/O Controller 1, pin 0  
Bidirectional Universal I/O Controller 1, pin 1  
Bidirectional Universal I/O Controller 1, pin 2  
Bidirectional Universal I/O Controller 1, pin 3  
Power  
Digital I/O supply voltage (+3.3VDC)  
G16  
H18  
H17  
F16  
G18  
G17  
M12  
E16  
F18  
UIC1_4  
UIC1_5  
UIC1_6  
UIC1_7  
UIC1_8  
UIC1_9  
VDDC  
Bidirectional Universal I/O Controller 1, pin 4  
Bidirectional Universal I/O Controller 1, pin 5  
Bidirectional Universal I/O Controller 1, pin 6  
Bidirectional Universal I/O Controller 1, pin 7  
Bidirectional Universal I/O Controller 1, pin 8  
Bidirectional Universal I/O Controller 1, pin 9  
Power  
Digital core supply voltage (+2.5VDC)  
UIC1_10  
UIC1_11  
Bidirectional Universal I/O Controller 1, pin 10  
Bidirectional Universal I/O Controller 1, pin 11  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 30 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 4. BGA 10- by 10-mm Pin Listing (Continued)  
Pin  
F17  
D16  
E18  
L8  
Signal Name  
UIC1_12  
UIC1_13  
UIC1_14  
GND  
Type  
Description  
Bidirectional Universal I/O Controller 1, pin 12  
Bidirectional Universal I/O Controller 1, pin 13  
Bidirectional Universal I/O Controller 1, pin 14  
Ground  
Digital ground  
E17  
D17  
D18  
M16  
C16  
C17  
C18  
B18  
M11  
A17  
B17  
B16  
C15  
L9  
UIC1_15  
UIC1_16  
UIC1_17  
VDDIO  
UIC2_0  
UIC2_1  
UIC2_2  
UIC2_3  
VDDC  
UIC2_4  
UIC2_5  
UIC2_6  
UIC2_7  
GND  
Bidirectional Universal I/O Controller 1, pin 15  
Bidirectional Universal I/O Controller 1, pin 16  
Bidirectional Universal I/O Controller 1, pin 17  
Power  
Digital I/O supply voltage (+3.3VDC)  
Bidirectional Universal I/O Controller 2, pin 0  
Bidirectional Universal I/O Controller 2, pin 1  
Bidirectional Universal I/O Controller 2, pin 2  
Bidirectional Universal I/O Controller 2, pin 3  
Power  
Digital core supply voltage (+2.5VDC)  
Bidirectional Universal I/O Controller 2, pin 4  
Bidirectional Universal I/O Controller 2, pin 5  
Bidirectional Universal I/O Controller 2, pin 6  
Bidirectional Universal I/O Controller 2, pin 7  
Ground  
Digital ground  
A16  
B15  
C14  
A15  
C13  
B14  
A14  
C12  
L10  
B13  
A13  
C11  
B12  
M10  
A12  
C10  
B11  
A11  
J11  
UIC2_8  
UIC2_9  
UIC2_10  
UIC2_11  
UIC2_12  
UIC2_13  
UIC2_14  
UIC2_15  
GND  
UIC2_16  
UIC2_17  
UIC3_0  
UIC3_1  
VDDC  
Bidirectional Universal I/O Controller 2, pin 8  
Bidirectional Universal I/O Controller 2, pin 9  
Bidirectional Universal I/O Controller 2, pin 10  
Bidirectional Universal I/O Controller 2, pin 11  
Bidirectional Universal I/O Controller 2, pin 12  
Bidirectional Universal I/O Controller 2, pin 13  
Bidirectional Universal I/O Controller 2, pin 14  
Bidirectional Universal I/O Controller 2, pin 15  
Ground  
Digital ground  
Bidirectional Universal I/O Controller 2, pin 16  
Bidirectional Universal I/O Controller 2, pin 17  
Bidirectional Universal I/O Controller 3 pin 0  
Bidirectional Universal I/O Controller 3 pin 1  
Power  
Digital core supply voltage (+2.5VDC)  
UIC3_2  
UIC3_3  
UIC3_4  
UIC3_5  
GND  
Bidirectional Universal I/O Controller 3 pin 2  
Bidirectional Universal I/O Controller 3 pin 3  
Bidirectional Universal I/O Controller 3 pin 4  
Bidirectional Universal I/O Controller 3 pin 5  
Ground  
Digital ground  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 31 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 4. BGA 10- by 10-mm Pin Listing (Continued)  
Pin  
B10  
C9  
A10  
C8  
B9  
A9  
C7  
B8  
A8  
C6  
B7  
A7  
B6  
A6  
Signal Name  
UIC3_6  
Type  
Description  
Bidirectional Universal I/O Controller 3 pin 6  
Bidirectional Universal I/O Controller 3 pin 7  
Bidirectional Universal I/O Controller 3 pin 8  
Bidirectional Universal I/O Controller 3 pin 9  
Bidirectional Universal I/O Controller 3 pin 10  
Bidirectional Universal I/O Controller 3 pin 11  
Bidirectional Universal I/O Controller 3 pin 12  
Bidirectional Universal I/O Controller 3 pin 13  
UIC3_7  
UIC3_8  
UIC3_9  
UIC3_10  
UIC3_11  
UIC3_12  
UIC3_13  
GND  
UIC3_14  
UIC3_15  
UIC3_16  
UIC3_17  
Ground  
Digital Ground  
Bidirectional Universal I/O Controller 3 pin 14  
Bidirectional Universal I/O Controller 3 pin 15  
Bidirectional Universal I/O Controller 3 pin 16  
Bidirectional Universal I/O Controller 3 pin 17  
T0IC0_T0OC0 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 0 or output  
compare 0  
C5  
B5  
A5  
T0IC1_T0OC1 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 1 or output  
compare 1  
T0IC2_T0OC2 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 2 or output  
compare 2  
T0IC3_T0OC3 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 3 or output  
compare 3  
M8  
C4  
GND  
Ground  
Digital ground  
T1IC0_T1OC0 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 0 or output  
compare 0  
B4  
A4  
B3  
T1IC1_T1OC1 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 1 or output  
compare 1  
T1IC2_T1OC2 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 2 or output  
compare 2  
T1IC3_T1OC3 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 3 or output  
compare 3  
L7  
A3  
A2  
M9  
J7  
VDDC  
T0IN  
T1IN  
GND  
VDDC  
Power  
Input  
Input  
Ground  
Power  
Digital core supply voltage (+2.5VDC)  
Timer Counter Unit 0 external clock source  
Timer Counter Unit 1 external clock source  
Digital Ground  
Digital core supply voltage (+2.5VDC)  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 32 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
4.2.2 BGA 10- by 10-mm Physical Package Dimensions  
The physical dimensions for the BGA 10- by 10-mm package are as shown in Figure 5.  
Notes:  
1. Controlling dimension:  
Millimeter.  
. Primary datum C and seating  
plane are defined by the spherical  
crowns of the solder balls.  
. Dimension b is measured at the  
maximum solder ball diameter,  
parallel to primary datum C.  
4. There shall be a minimum  
clearance of 0.25mm between the  
edge of the solder ball and the  
body edge.  
5. Special Characteristics C Class:  
bbb ddd.  
. The pattern of pin 1 fiducial is  
for reference only.  
Legend:  
Dimension in mm  
NOM  
Dimension in Inches  
Symbol  
A
A1  
A2  
c
D
E
D1  
E1  
e
MIN  
MAX  
1.20  
0.26  
0.94  
0.4  
MIN  
NOM  
MAX  
0.047  
0.16  
0.84  
0.32  
9.90  
9.90  
0.25  
0.21  
0.89  
0.36  
0.006  
0.033  
0.013  
0.008  
0.035  
0.014  
0.394  
0.394  
0.335  
0.335  
0.020  
0.012  
0.004  
0.004  
0.003  
0.006  
0.002  
18/18  
0.010  
0.037  
0.016  
0.398  
0.398  
10.00  
10.00  
8.50  
10.10 0.390  
10.10 0.390  
0.35  
8.50  
0.50  
0.30  
0.10  
0.10  
0.08  
0.15  
0.05  
b
0.010  
0.014  
aaa  
bbb  
ddd  
eee  
fff  
MD/ME  
18/18  
Figure 5. BGA 10- by 10-mm Physical Package Dimensions  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 33 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
4.3  
BGA 15- by 15-mm Package  
4.3.1 BGA 15- by 15-mm Pinout  
The pinout for the fido1100communication controller BGA 15- by 15-mm package is as  
shown in Figure 6. The corresponding pinout is provided in Table 5.  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 34 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
A
T1IC1_  
T1OC1  
T0IC2_  
T0OC2  
T0IC0_  
T0OC0  
A
B
C
D
E
F
UIC3_15 UIC3_13 UIC3_12 UIC3_9 UIC3_7 UIC3_4 UIC3_1 UIC3_0 UIC2_15  
UIC2_13  
UIC2_10 UIC2_7 UIC2_6 UIC1_17  
T1IC2_  
T1OC2  
T1IC0_ T0IC1_  
T1OC0 T0OC1  
AN_2  
AN_0  
VDDA  
GNDA  
INT2  
UIC3_16  
GND  
UIC3_11 UIC3_8 UIC3_5 UIC3_2 UIC2_17 UIC2_14  
UIC2_11  
UIC2_9  
GND  
UIC2_8  
UIC2_4  
GND  
UIC2_5 UIC2_0 UIC1_14 B  
UIC2_1 UIC1_16 UIC1_12 C  
UIC2_2 UIC1_13 UIC1_9 D  
UIC1_15 UIC1_10 UIC1_6 E  
UIC1_11 UIC1_8 UIC1_5 F  
T1IC3_  
T0IN  
T0IC3_  
T0OC3  
AN_5  
AN_1  
VRH  
INT0  
UIC3_17 UIC3_14 UIC3_10 UIC3_6 UIC3_3 UIC2_16 UIC2_12  
T1OC3  
AN_6  
AN_3  
VRL  
GND  
GND  
AN_7  
GND  
T1IN  
VDDC  
VDDC VDDC VDDIO VDDIO  
VDDIO  
GND  
UIC2_3  
INT4_  
DMA0_  
ACK  
INT7_  
DMA1_  
REQ  
G
H
INT3  
INT1  
AN_4  
VDDIO  
VDDIO  
UIC1_7 UIC1_4 UIC1_2 G  
UIC1_3 UIC1_1 UIC1_0 H  
INT6_  
DMA0_  
REQ  
INT5_  
DMA1_ VDDC  
ACK  
J
K
L
D0  
D3  
D1  
D4  
D2  
D6  
VDDIO  
VDDIO  
OE_N  
VDDIO  
VDDC  
VDDC  
UIC0_17 UIC0_16 UIC0_15 J  
UIC0_14 UIC0_13 UIC0_12 K  
UIC0_10 UIC0_9 UIC0_11 L  
D5  
D7  
D11  
M
N
P
R
T
D8  
D10  
D15 CAS_N  
BE1_N GND  
GNDCLK VDDCLK UIC0_8 XTAL1  
M
N
D9  
D13  
GND  
GND  
UIC0_5 UIC0_7 XTAL0  
D12  
D14  
GND  
RDY_N  
BE0_N  
RW_N  
BA_1  
GND  
GND  
GND RESET_N VDDIO VDDC VDDC  
A21  
A26_SIZE  
GND  
UIC0_0 UIC0_4 UIC0_6 P  
CS2_N UIC0_2 UIC0_3 R  
BA_0 RAS_N HOLDGNT_N  
RESET_  
A3  
A5  
A6  
A8  
A10  
A11  
A15  
A14  
A18  
A17  
A22 A27_CS7_N A29_CS5_N  
CS3_N  
CS0_N  
CKE  
A2  
A20  
A24  
A28_CS6_N  
CS1_N  
TCK  
UIC0_1 T  
OUT_N  
A25_RESET_  
DELAY  
U MEMCLK HOLDREQ_N A0  
A1  
4
A4  
5
A7  
6
A9  
7
A12  
8
A13  
9
A16  
10  
A19  
11  
A23  
12  
A30_CS4_N  
14  
TDI  
15  
TDO  
16  
TMS  
17  
U
1
2
3
13  
= Signals.  
= Indicates power.  
= Indicates ground.  
Figure 6. BGA 15- by 15-mm Package Diagram  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 35 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 5. BGA 15- by 15-mm Package Pin Listing  
Pin  
F4  
D3  
C2  
G4  
E3  
B1  
D2  
C1  
F3  
E2  
D1  
E1  
F2  
G3  
F1  
D7  
G2  
G1  
Signal Name  
AN_7  
AN_6  
AN_5  
AN_4  
AN_3  
AN_2  
AN_1  
AN_0  
VRL  
Type  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Power  
Ground  
Input  
Input  
Input  
Power  
Input  
Description  
Analog-to-digital converter input channel 7  
Analog-to-digital converter input channel 6  
Analog-to-digital converter input channel 5  
Analog-to-digital converter input channel 4  
Analog-to-digital converter input channel 3  
Analog-to-digital converter input channel 2  
Analog-to-digital converter input channel 1  
Analog-to-digital converter input channel 0  
Analog-to-digital converter low-input reference  
Analog-to-digital converter high-input reference  
Analog supply voltage (+3.3VDC)  
Analog ground  
VRH  
VDDA  
GNDA  
INT0  
INT1  
INT2  
Interrupt_0  
Interrupt_1  
Interrupt_2  
Digital core supply voltage (+2.5VDC)  
Interrupt_3  
VDDC  
INT3  
INT4_DMA0_ Bidirectional Muxed pin, Interrupt_4 or DMA channel 0 acknowledge  
ACK  
H3  
H2  
H1  
INT5_DMA1_ Bidirectional Muxed pin, Interrupt_5 or DMA channel 1 acknowledge  
ACK  
INT6_DMA0_  
REQ  
INT7_DMA1_  
REQ  
Input  
Muxed pin, Interrupt_6 or DMA channel 0 request  
Muxed pin, Interrupt_7 or DMA channel 1 request  
Digital I/O supply voltage (+3.3VDC)  
Input  
D10  
J1  
J2  
VDDIO  
D0  
Power  
Bidirectional External Bus Interface data Bit [0]  
Bidirectional External Bus Interface data Bit [1]  
Bidirectional External Bus Interface data Bit [2]  
Bidirectional External Bus Interface data Bit [3]  
Bidirectional External Bus Interface data Bit [4]  
Bidirectional External Bus Interface data Bit [5]  
Bidirectional External Bus Interface data Bit [6]  
Bidirectional External Bus Interface data Bit [7]  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
J3  
K1  
K2  
L1  
K3  
L2  
D4  
M1  
N1  
M2  
L3  
GND  
D8  
D9  
D10  
D11  
Ground  
Digital ground  
Bidirectional External Bus Interface data Bit [8]  
Bidirectional External Bus Interface data Bit [9]  
Bidirectional External Bus Interface data Bit [10]  
Bidirectional External Bus Interface data Bit [11]  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 36 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 5. BGA 15- by 15-mm Package Pin Listing (Continued)  
Pin  
P1  
D11  
N2  
R1  
M3  
P2  
T1  
U1  
D5  
R2  
N3  
L4  
Signal Name  
D12  
Type  
Bidirectional External Bus Interface data Bit [12]  
Power Digital I/O supply voltage (+3.3VDC)  
Bidirectional External Bus Interface data Bit [13]  
Bidirectional External Bus Interface data Bit [14]  
Bidirectional External Bus Interface data Bit [15]  
Description  
VDDIO  
D13  
D14  
D15  
RDY_N  
GND  
Input  
Ground  
Output  
Ground  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Output  
Input  
External Bus Interface External Ready Indication  
Digital ground  
Memory clock used by external memory  
Digital ground  
Byte enable 0, active low  
Byte enable 1, active low  
Output enable, active low  
Digital core supply voltage (+2.5VDC)  
Read or write control (active low write)  
Bank Enable 0  
Bank Enable 1  
Column activate signal, active low  
Digital Ground  
MEMCLK  
GND  
BE0_N  
BE1_N  
OE_N  
VDDC  
RW_N  
BA_0  
BA_1  
CAS_N  
GND  
D8  
T2  
R3  
P3  
M4  
P6  
R4  
T3  
U2  
R5  
P7  
T4  
D13  
U3  
U4  
T5  
R6  
D12  
U5  
T6  
RAS_N  
CKE  
Row activate signal, active low  
Clock enable to be used in conjunction with MEMCLK  
External Bus hold request, active low  
External Bus grant request, active low  
Reset input  
HOLDREQ_N  
HOLDGNT_N  
RESET_N  
RESET_OUT_N  
GND  
Output  
Input  
Output  
Ground  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Output  
Output  
Reset output  
Digital ground  
A0  
A1  
A2  
A3  
VDDIO  
A4  
A5  
A6  
A7  
GND  
A8  
A9  
A10  
External Bus Interface address Bit [0]  
External Bus Interface address Bit [1]  
External Bus Interface address Bit [2]  
External Bus Interface address Bit [3]  
Digital I/O supply voltage (+3.3VDC)  
External Bus Interface address Bit [4]  
External Bus Interface address Bit [5]  
External Bus Interface address Bit [6]  
External Bus Interface address Bit [7]  
Digital ground  
R7  
U6  
D14  
T7  
U7  
R8  
External Bus Interface address Bit [8]  
External Bus Interface address Bit [9]  
External Bus Interface address Bit [10]  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 37 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 5. BGA 15- by 15-mm Package Pin Listing (Continued)  
Pin  
T8  
D9  
U8  
U9  
T9  
R9  
H4  
U10  
T10  
R10  
U11  
G14  
T11  
P11  
R11  
U12  
E4  
Signal Name  
A11  
Type  
Output  
Power  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Description  
External Bus Interface address Bit [11]  
Digital core supply voltage (+2.5VDC)  
External Bus Interface address Bit [12]  
External Bus Interface address Bit [13]  
External Bus Interface address Bit [14]  
External Bus Interface address Bit [15]  
Digital core supply voltage (+2.5VDC)  
External Bus Interface address Bit [16]  
External Bus Interface address Bit [17]  
External Bus Interface address Bit [18]  
External Bus Interface address Bit [19]  
Digital I/O supply voltage (+3.3VDC)  
External Bus Interface address Bit [20]  
External Bus Interface address Bit [21]  
External Bus Interface address Bit [22]  
External Bus Interface address Bit [23]  
Digital ground  
VDDC  
A12  
A13  
A14  
A15  
VDDC  
A16  
A17  
A18  
A19  
VDDIO  
A20  
A21  
A22  
A23  
GND  
A24  
T12  
External Bus Interface address Bit [24]  
U13 A_25_RESET_  
DELAY  
Internal  
Pull-up  
Muxed pin, External Bus Interface address Bit [25] or POR  
counter bypass  
P12  
R12  
T13  
R13  
U14  
A_26_SIZE  
A27_CS7_N  
A28_CS6_N  
A29_CS5_N  
A30_CS4_N  
Internal  
Pull-up  
Muxed pin, External Bus Interface address Bit [26] or data bus  
size select (0 = 8-Bit, 1= 16=Bit)  
Muxed pin, External Bus Interface address Bit [27] or Chip  
select 7 (chip select active low)  
Muxed pin, External Bus Interface address Bit [28] or Chip  
select 6 (chip select active low)  
Muxed pin, External Bus Interface address Bit [29] or Chip  
select 5 (chip select active low)  
Output  
Output  
Output  
Output  
Muxed pin, External Bus Interface address Bit [30] or Chip  
select 4 (chip select active low)  
T14  
T15  
R15  
R14  
U15  
U16  
T16  
U17  
K14  
CS0_N  
CS1_N  
CS2_N  
CS3_N  
TDI  
TDO  
TCK  
TMS  
VDDC  
Output  
Output  
Output  
Output  
Input  
Output  
Input  
Input  
Chip select 0 (chip select active low)  
Chip select 1 (chip select active low)  
Chip select 2 (chip select active low)  
Chip select 3 (chip select active low)  
JTAG data input  
JTAG data output  
JTAG clock input  
JTAG control signal  
Digital core supply voltage (+2.5VDC)  
Power  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 38 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 5. BGA 15- by 15-mm Package Pin Listing (Continued)  
Pin  
P15  
T17  
R16  
R17  
E14  
P16  
N15  
P17  
N16  
M16  
M15  
N17  
M17  
M14  
L16  
L15  
L17  
K17  
K16  
K15  
J17  
J16  
J15  
N4  
Signal Name  
UIC0_0  
UIC0_1  
UIC0_2  
UIC0_3  
GND  
UIC0_4  
UIC0_5  
UIC0_6  
UIC0_7  
UIC0_8  
VDDCLK  
XTAL0  
Type  
Description  
Bidirectional Universal I/O Controller 0, pin 0  
Bidirectional Universal I/O Controller 0, pin 1  
Bidirectional Universal I/O Controller 0, pin 2  
Bidirectional Universal I/O Controller 0, pin 3  
Ground  
Digital ground  
Bidirectional Universal I/O Controller 0, pin 4  
Bidirectional Universal I/O Controller 0, pin 5  
Bidirectional Universal I/O Controller 0, pin 6  
Bidirectional Universal I/O Controller 0, pin 7  
Bidirectional Universal I/O Controller 0, pin 8  
Power supply Power Supply for the Crystal Oscillator (+2.5VDC)  
Clock  
Clock  
Ground  
Crystal input pin 0 (Osc. In)  
Crystal input/output pin 1 (Osc. Out)  
Digital ground  
XTAL1  
GNDCLK  
UIC0_9  
UIC0_10  
UIC0_11  
UIC0_12  
UIC0_13  
UIC0_14  
UIC0_15  
UIC0_16  
UIC0_17  
GND  
Bidirectional Universal I/O Controller 0, pin 9  
Bidirectional Universal I/O Controller 0, pin 10  
Bidirectional Universal I/O Controller 0, pin 11  
Bidirectional Universal I/O Controller 0, pin 12  
Bidirectional Universal I/O Controller 0, pin 13  
Bidirectional Universal I/O Controller 0, pin 14  
Bidirectional Universal I/O Controller 0, pin 15  
Bidirectional Universal I/O Controller 0, pin 16  
Bidirectional Universal I/O Controller 0, pin 17  
Ground  
Digital ground  
H17  
H16  
G17  
H15  
J4  
UIC1_0  
UIC1_1  
UIC1_2  
UIC1_3  
VDDIO  
Bidirectional Universal I/O Controller 1, pin 0  
Bidirectional Universal I/O Controller 1, pin 1  
Bidirectional Universal I/O Controller 1, pin 2  
Bidirectional Universal I/O Controller 1, pin 3  
Power  
Digital I/O supply voltage (+3.3VDC)  
G16  
F17  
E17  
G15  
F16  
D17  
L14  
E16  
F15  
UIC1_4  
UIC1_5  
UIC1_6  
UIC1_7  
UIC1_8  
UIC1_9  
VDDC  
Bidirectional Universal I/O Controller 1, pin 4  
Bidirectional Universal I/O Controller 1, pin 5  
Bidirectional Universal I/O Controller 1, pin 6  
Bidirectional Universal I/O Controller 1, pin 7  
Bidirectional Universal I/O Controller 1, pin 8  
Bidirectional Universal I/O Controller 1, pin 9  
Power  
Digital core supply voltage (+2.5VDC)  
UIC1_10  
UIC1_11  
Bidirectional Universal I/O Controller 1, pin 10  
Bidirectional Universal I/O Controller 1, pin 11  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 39 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 5. BGA 15- by 15-mm Package Pin Listing (Continued)  
Pin  
C17  
D16  
B17  
N14  
E15  
C16  
A17  
J14  
B16  
C15  
D15  
F14  
P9  
Signal Name  
UIC1_12  
UIC1_13  
UIC1_14  
GND  
UIC1_15  
UIC1_16  
UIC1_17  
VDDIO  
Type  
Description  
Bidirectional Universal I/O Controller 1, pin 12  
Bidirectional Universal I/O Controller 1, pin 13  
Bidirectional Universal I/O Controller 1, pin 14  
Ground  
Digital ground  
Bidirectional Universal I/O Controller 1, pin 15  
Bidirectional Universal I/O Controller 1, pin 16  
Bidirectional Universal I/O Controller 1, pin 17  
Power  
Digital I/O supply voltage (+3.3VDC)  
UIC2_0  
UIC2_1  
UIC2_2  
UIC2_3  
VDDC  
Bidirectional Universal I/O Controller 2, pin 0  
Bidirectional Universal I/O Controller 2, pin 1  
Bidirectional Universal I/O Controller 2, pin 2  
Bidirectional Universal I/O Controller 2, pin 3  
Power  
Digital core supply voltage (+2.5VDC)  
C14  
B15  
A16  
A15  
P4  
UIC2_4  
UIC2_5  
UIC2_6  
UIC2_7  
GND  
Bidirectional Universal I/O Controller 2, pin 4  
Bidirectional Universal I/O Controller 2, pin 5  
Bidirectional Universal I/O Controller 2, pin 6  
Bidirectional Universal I/O Controller 2, pin 7  
Ground  
Digital ground  
B14  
C13  
A14  
B13  
K4  
UIC2_8  
UIC2_9  
UIC2_10  
UIC2_11  
VDDIO  
Bidirectional Universal I/O Controller 2, pin 8  
Bidirectional Universal I/O Controller 2, pin 9  
Bidirectional Universal I/O Controller 2, pin 10  
Bidirectional Universal I/O Controller 2, pin 11  
Power  
Digital I/O supply voltage (+3.3VDC)  
C12  
A13  
B12  
A12  
P5  
UIC2_12  
UIC2_13  
UIC2_14  
UIC2_15  
GND  
Bidirectional Universal I/O Controller 2, pin 12  
Bidirectional Universal I/O Controller 2, pin 13  
Bidirectional Universal I/O Controller 2, pin 14  
Bidirectional Universal I/O Controller 2, pin 15  
Ground  
Digital ground  
C11  
B11  
A11  
A10  
P10  
B10  
C10  
A9  
UIC2_16  
UIC2_17  
UIC3_0  
UIC3_1  
VDDC  
UIC3_2  
UIC3_3  
UIC3_4  
UIC3_5  
Bidirectional Universal I/O Controller 2, pin 16  
Bidirectional Universal I/O Controller 2, pin 17  
Bidirectional Universal I/O Controller 3 pin 0  
Bidirectional Universal I/O Controller 3 pin 1  
Power  
Digital core supply voltage (+2.5VDC)  
Bidirectional Universal I/O Controller 3 pin 2  
Bidirectional Universal I/O Controller 3 pin 3  
Bidirectional Universal I/O Controller 3 pin 4  
Bidirectional Universal I/O Controller 3 pin 5  
B9  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 40 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 5. BGA 15- by 15-mm Package Pin Listing (Continued)  
Pin  
C9  
A8  
B8  
A7  
P8  
C8  
B7  
A6  
A5  
B6  
C7  
A4  
B5  
C6  
A3  
Signal Name  
UIC3_6  
Type  
Description  
Bidirectional Universal I/O Controller 3 pin 6  
Bidirectional Universal I/O Controller 3 pin 7  
Bidirectional Universal I/O Controller 3 pin 8  
Bidirectional Universal I/O Controller 3 pin 9  
UIC3_7  
UIC3_8  
UIC3_9  
VDDIO  
UIC3_10  
UIC3_11  
UIC3_12  
UIC3_13  
GND  
UIC3_14  
UIC3_15  
UIC3_16  
UIC3_17  
Power  
Digital I/O supply voltage (+3.3VDC)  
Bidirectional Universal I/O Controller 3 pin 10  
Bidirectional Universal I/O Controller 3 pin 11  
Bidirectional Universal I/O Controller 3 pin 12  
Bidirectional Universal I/O Controller 3 pin 13  
Ground  
Digital Ground  
Bidirectional Universal I/O Controller 3 pin 14  
Bidirectional Universal I/O Controller 3 pin 15  
Bidirectional Universal I/O Controller 3 pin 16  
Bidirectional Universal I/O Controller 3 pin 17  
T0IC0_T0OC0 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 0 or output  
compare 0  
B4  
A2  
C5  
T0IC1_T0OC1 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 1 or output  
compare 1  
T0IC2_T0OC2 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 2 or output  
compare 2  
T0IC3_T0OC3 Bidirectional Muxed pin, Timer Counter Unit 0 input capture 3 or output  
compare 3  
P13  
B3  
GND  
Ground  
Digital ground  
T1IC0_T1OC0 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 0 or output  
compare 0  
A1  
B2  
C4  
T1IC1_T1OC1 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 1 or output  
compare 1  
T1IC2_T1OC2 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 2 or output  
compare 2  
T1IC3_T1OC3 Bidirectional Muxed pin, Timer Counter Unit 1 input capture 3 or output  
compare 3  
C3  
D6  
P14  
H14  
T0IN  
T1IN  
GND  
Input  
Input  
Ground  
Power  
Timer Counter Unit 0 external clock source  
Timer Counter Unit 1 external clock source  
Digital Ground  
VDDIO  
Digital I/O supply voltage (+3.3VDC)  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 41 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
4.3.2 BGA 15- by 15-mm Physical Package Dimensions  
The physical dimensions for the BGA 15- by 15-mm package are as shown in Figure 7.  
Notes:  
1. Controlling dimension:  
Millimeter.  
. Primary datum C and seating  
plane are defined by the spherical  
crowns of the solder balls.  
. Dimension b is measured at the  
maximum solder-ball diameter,  
parallel to primary datum C.  
4. There will be a minimum  
clearance of 0.25 mm between the  
edge of the solder ball and the  
body edge.  
5. Special Characteristics C Class:  
bbb ddd.  
. The pattern of Pin 1 fiducial is  
for reference only.  
Legend:  
Dimension in mm  
Dimension in Inches  
Symbol  
A
A1  
A2  
c
D
E
D1  
E1  
e
MIN  
NOM  
MAX  
MIN  
0.006 0.008  
0.033 0.035  
0.013 0.014  
NOM  
MAX  
0.047  
0.010  
0.037  
0.016  
0.594  
0.594  
0.16  
0.84  
0.32  
14.90  
14.90  
0.25  
1.20  
0.26  
0.94  
0.40  
0.21  
0.89  
0.36  
15.00  
15.00  
12.80  
12.80  
0.80  
0.30  
0.10  
0.10  
0.12  
0.15  
0.08  
17/17  
15.10 0.587 0.591  
15.10 0.587 0.591  
0.35  
0.504  
0.504  
0.031  
b
0.010 0.012  
0.004  
0.014  
aaa  
bbb  
ddd  
eee  
fff  
0.004  
0.005  
0.006  
0.003  
MD/ME  
17/17  
Figure 7. BGA 15- by 15-mm Physical Package Dimensions  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 42 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
4.3.3 BGA 15- by 15-mm Signal Routing  
The 15- by15-mm BGA can be easily routed using economical and readily available PCB  
fabrication design rules. In order to route all signals from the fido1100 BGA, 2 layers in addition  
to power and ground are required, using 0.1mm trace/space technology. Since 0.1mm =  
3.937mil, most PCB fabricators will consider this 4mil trace/space.  
The PCB land pattern for the BGA should use 0.3mm round pads. Since the BGA pitch is  
0.8mm, this leaves 0.5mm of space between pads. Using 0.1mm trace/space, 2 signals may be  
routed between each pair of pads (2 traces + 3spaces = 0.5mm). Figure 8 shows how this is  
accomplished.  
Referring to Figure 8, signal layer 1 is shown in black, signal layer 2 is shown in red, and the  
vias are shown in blue. Signal layer 1 is the top side with the BGA pads, while signal layer 2  
may be any other layer, but is typically the bottom side. All vias with no trace routed out from  
the BGA are power or ground.  
Note that the innermost row of pads is all power and ground, except for 9 pads which are signals.  
Three of these signals are easily routed on signal layer 1, but 6 of them require the use of vias  
and signal layer 2. If all of the signals are not required for a given design, it may be possible to  
route all of the used signals on signal layer 1.  
It may be beneficial to place more vias and to route more signals on layers other than signal layer  
1. This could produce a better PCB layout, but care should be exercised to not include an  
excessive number of vias. The use of too many vias can lead to inadequate copper on the  
power/ground plane layers surrounding the center area of the BGA, resulting in relative isolation  
of the BGA power/ground via connections.  
Note the open space between pads M17 and N17 (A1 is upper left corner). These signals are  
XTAL1 and XTAL0. It is best not to route other signals between these pads, especially if a  
crystal is used for the clock source.  
The power connections to the inner ring of pads have 4 vias for +3.3V and 4 vias for +2.5V. The  
use of a single bypass capacitor for each via, and alternating 0.1uF and 0.01uF values on each  
supply, provide reasonable bypass capacitance for the fido1100. Using 8 capacitors in this  
manner allows the use of capacitors in the 0603 package for economical PCB assembly.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 43 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Figure 8. BGA 15- by 15-mm Signal Routing  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 44 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
4.4  
Power and Ground Signals  
Tables 6, 7, 8, 9, and 10 provide analog power and ground signals, crystal oscillator power and  
ground signals, 2.5 VDC digital core power signals, 3.3 VDC digital IO power signals, and  
digital ground signals, respectively.  
The recommended bypass capacitors for the fido1100 are:  
Use a mix of 0.1 µf and 0.01 µf capacitors.  
Bypass capacitors should be located as close as possible to power pins they are  
connected to.  
Table 6. Analog Power and Ground Signals  
BGA  
BGA  
PQFP 10 x 10 15 x 15 Signal Name  
Type  
Power  
Ground  
Description  
Analog supply voltage (+3.3VDC)  
Analog ground  
11  
12  
G7  
H7  
D1  
E1  
VDDA  
GNDA  
Table 7. Crystal Oscillator Power and Ground Signals  
BGA  
BGA  
Signal  
Name  
PQFP 10 x 10 15 x 15  
Type  
Description  
117  
120  
L12  
L11  
M15  
M14  
VDDCLK Power supply Power Supply for the Crystal Oscillator (+2.5VDC)  
GNDCLK Ground Digital ground  
Table 8. 2.5 VDC Digital Core Power Signals  
BGA  
BGA  
PQFP 10 x 10 15 x 15 Signal Name  
Type  
Description  
16  
48  
75  
G8  
G10  
G11  
H12  
J12  
M12  
M11  
M10  
L7  
D7  
D8  
D9  
H4  
K14  
L14  
P9  
P10  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Digital core supply voltage (+2.5VDC)  
Digital core supply voltage (+2.5VDC)  
Digital core supply voltage (+2.5VDC)  
Digital core supply voltage (+2.5VDC)  
Digital core supply voltage (+2.5VDC)  
Digital core supply voltage (+2.5VDC)  
Digital core supply voltage (+2.5VDC)  
Digital core supply voltage (+2.5VDC)  
Digital core supply voltage (+2.5VDC)  
Digital core supply voltage (+2.5VDC)  
80  
106  
142  
157  
177  
206  
J7  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 45 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 9. 3.3 VDC Digital IO Power Signals  
BGA  
BGA  
15 x 15  
PQFP 10 x 10  
Signal Name  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
Type  
Description  
22  
37  
65  
G9  
G12  
K7  
K12  
M7  
M16  
D10  
D11  
D12  
G14  
J4  
J14  
K4  
P8  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Digital I/O supply voltage (+3.3VDC)  
Digital I/O supply voltage (+3.3VDC)  
Digital I/O supply voltage (+3.3VDC)  
Digital I/O supply voltage (+3.3VDC)  
Digital I/O supply voltage (+3.3VDC)  
Digital I/O supply voltage (+3.3VDC)  
Digital I/O supply voltage (+3.3VDC)  
Digital I/O supply voltage (+3.3VDC)  
Digital I/O supply voltage (+3.3VDC)  
85  
135  
152  
167  
187  
H14  
Table 10. Digital Ground Signals  
BGA  
BGA  
PQFP 10 x 10 15 x 15 Signal Name  
Type  
Description  
Digital ground  
Digital ground  
Digital ground  
Digital Ground  
Digital ground  
Digital ground  
Digital ground  
Digital ground  
Digital ground  
Digital ground  
Digital ground  
Digital ground  
Digital ground  
Digital Ground  
Digital ground  
Digital Ground  
31  
42  
H8  
N3  
D4  
T1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
44  
H9  
D5  
53  
V2  
P6  
60  
70  
90  
H10  
H11  
J8  
D13  
D14  
E4  
111  
130  
148  
162  
172  
182  
192  
201  
K8  
K11  
L8  
E14  
N4  
N14  
P4  
P5  
B6  
P13  
P14  
L9  
L10  
J11  
A8  
M8  
M9  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 46 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
5.  
Electrical Characteristics  
Tables 11, 12, 13, 14, and 15 show the absolute maximum ratings, ESD and latch-up  
characteristics, recommended operating conditions, DC characteristics, and input impedance,  
respectively.  
Table 11. Absolute Maximum Ratings  
Symbol  
VDDC  
VDDIO  
VAIN  
Parameter Name  
Digital core supply voltage  
Digital I/O supply voltage  
Analog input voltage with respect to ground  
Ambient temperature  
Conditions Min Typ Max Units  
-0.3  
-0.3  
-0.3  
-40  
3.05  
5.5  
3.9  
+85  
+150  
V
V
V
TA  
TS  
oC  
oC  
Storage temperature  
-55  
Note: Operation of the fido1100 outside of maximum operating ratings may result in failure of the device.  
Table 12. ESD and Latch-Up Characteristics  
Symbol  
VHBM  
VMM  
ILATP  
ILATN  
Parameter Name  
Human body model  
Machine model  
Positive latch-up current  
Negative latch-up current  
Conditions Min Typ Max Units  
2000  
200  
50  
-50  
V
V
µA  
µA  
Table 13. Recommended Operating Conditions  
Symbol  
VDDC  
VDDIO  
fXTAL  
TA  
VDDA  
VRH  
VRL  
Parameter Name  
Digital core supply voltage  
Digital I/O supply voltage  
Crystal frequency  
Conditions Min Typ Max Units  
2.25 2.5 2.75  
V
V
MHz  
oC  
V
3.0  
-40  
3.0  
3.3  
3.3  
3.0  
0
3.6  
66  
+85  
3.6  
Ambient temperature  
Analog supply voltage  
ADC reference voltagehigh  
ADC reference voltagelow  
V
V
CL  
Digital output load capacitance See note  
3.1  
pF  
Note: This parameter is guaranteed by design and not tested in production.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 47 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 14. DC Characteristics  
TA = 40oC and +85oC;  
VDDC = 2.5V ± 10%;  
VDDIO = 3.3V ± 10%;  
FCLK = 66MHz  
Max Units  
Symbol  
VIH  
Parameter Name Conditions  
Input high voltage  
Min  
2.0  
Typ  
0.8  
10  
V
V
µA  
pF  
V
VIL  
Input low voltage  
ILKG  
CIN  
Input leakage current  
Input capacitance  
-10  
2.4  
1
3.6  
VOH  
VOL  
IOZ  
Output high voltage  
Output low voltage  
Tri-state leakage  
|IOH| = 8 mA  
|IOL| = 8 mA  
0.4  
10  
V
µA  
pF  
-10  
1
3.6  
COUT  
Package output capacitance  
Table 15. Input Impedance  
Input leakage current:  
Tristate leakage current:  
± 10 µA with no pull-up/pull-down  
± 10 µA  
Pin capacitance (input or output): ~3.5 pF not including package contribution  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 48 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
6.  
Thermal Characteristics  
Thermal resistance represents the capability of an IC package to carry out the heat inside an IC  
chip. It is a complex function of package structure, material property, input power, and  
environment variables such as airflow speed and PCB layers that can be analyzed by finite  
element modeling (FEM) techniques. In the simulations used to generate information for this  
data sheet, a commercial Finite Element Analysis (FEA) program, ANSYS, was used to create  
the 3D thermal model stacked by brick elements. Considering the package structure symmetry,  
only the quarter package structure was modeled to save CPU calculating time. All the materials  
were assumed isotropic with constant physical property and all material interfaces are also  
assumed perfect joined. The heat flux was applied on the top surface of the die to simulate  
heating power and constant convection coefficients were applied on the exterior surface of this  
model. The physical properties and simulation conditions are summarized in Table 16.  
Table 16. Physical Properties and Simulation Conditions  
Input Power  
1.0W  
Test Board (PCB) Four Layer (2S2P)  
Control Condition Air flow = 0,1,2, and 3 M/S  
The thermal characteristic listed in this data sheet address both the 28- by 28-mm PQFP and the  
BGA 10- by 10-mm package mounted on four layers of PCB using the Finite Element Modeling  
(FEM) method. The junction-to-ambient thermal resistance is used to evaluate thermal  
performance for this package and then to predict the power dissipation capability by given  
ambient and maximum junction temperatures.  
The results shown in Figure 8 are generated using the input power (P) and ambient temperature  
(TA), to calculate the thermal resistance of θJA according to θJA = (TJ TA)/P, assuming ambient  
temperature of 65°C, maximum junction temperature of 125°C, and input power of 1 watt. The  
maximum power dissipation of the PQFP and BGA packages is:  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 49 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
47  
45  
43  
41  
39  
37  
35  
33  
31  
PQFP Package  
BGA 10 x 10  
BGA 15 x 15  
0
1
2
3
AirFlow (m/s)  
PQFP Package  
35.8  
47.6  
47  
33.3  
42.2  
42.2  
32.1  
39.8  
39.7  
31.3  
38.2  
38.2  
BGA 10 x 10  
BGA 15 x 15  
Figure 9. Thermal Performance of PQFP/BGA Under Forced Convection  
Tables 17, 18, 19, and 20 present the maximum power dissipation of PQFP/BGA under forced  
convection, the AC characteristics of crystal oscillator, the analog-to-digital converter  
characteristics, and power consumption, respectively.  
Table 17. Maximum Power Dissipation of PQFP/BGA Under Forced Convection  
Air Flow in Meters/Second  
Maximum Power PQFP  
Dissipation (Watts)  
0
1
2
3
1.68 1.8 1.87 1.92  
BGA10 x 10 1.26 1.42 1.51 1.57  
BGA 15 x 15 0.85 0.95 1.01 1.05  
Table 18. AC Characteristics of Crystal Oscillator  
Symbol  
fOSC  
Parameter  
Crystal oscillator range TA = 25ºC  
Startup time TA = 25ºC  
Conditions Typ Max Units  
66  
MHz  
tST  
20  
µs  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 50 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 19. Analog-to-Digital Converter Characteristics  
Symbol  
VINA  
CINA  
Res  
INL  
Parameter Name  
Input voltage range  
Input capacitance  
Resolution  
Integral non-linearity  
Differential non-linearity  
Conditions  
Min  
0.1VDDA  
Typ  
-
Max  
0.9VDDA  
Units  
V
pF  
Bits  
Lsb  
Lsb  
dB  
MHz  
mW  
Ksps  
0.5  
20  
10  
± 2  
± 1  
54  
2.6  
200  
DNL  
guaranteed no missing codes  
SINAD Signal to noise plus distortion  
FSMPL Sample clock frequency  
PD  
SMP  
Fin = 10 KHz  
TA = 25ºC  
Power dissipation  
Sample rate  
5
Notes:  
1. The ADC in the fido1100 uses its own VDD (VDDA) and GND (GNDA) connections along with  
VREF High (VRH) and VREF Low (VRL) signals.  
2. VRH must be less than or equal to VDDA.  
3. VRL must be greater than or equal to GNDA.  
4. To ensure maximum conversion accuracy, VDDA, GNDA, VRH, and VRL should be as clean and  
free of noise as possible.  
Table 20. Power Consumption  
Core Voltage 2.5 VDC  
I/O Voltage 3.3 VDC  
Total  
Conditions  
Current  
Power  
Current  
Power  
Power  
Halted after a Reset  
109.240 mA  
273.100 mW 2.500 mA  
535.000 mW 7.700 mA  
8.25 mW  
281.35 mW  
560.41 mW  
623.60 mW  
320.90 mW  
302.91 mW  
8.68 mW  
Light Processing Load  
Heavy Processing Load  
Sleep Mode  
214.000 mA  
227.000 mA  
25.41 mW  
567.500 mW 17.000 mA 56.1 mW  
Stop Mode  
Low Power Stop Mode (LPSTOP)  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 51 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
7.  
Reset  
7.1  
Overview  
This section describes the reset signal considerations and the reset timing. The Power On Reset  
Register has a control bit to determine whether Major Reset or Minor Reset processing is  
performed after reset is asserted. The section below presents the hardware signal characteristics.  
See The fido1100 User Guide for more details on the Power On Reset Control Register.  
7.2  
Signal Considerations and Reset Timing  
The fido1100 requires the RESET_N signal to be asserted LOW for a minimum of 100 µS after  
VDDIO and VDDC are at their nominal values and stable. The RESET_N signal must have a  
rise time of less than 100 nS. Table 21 presents the hardware signals involved or affected and  
should be considered when asserting reset.  
Table 21. Hardware Signals Involved When Asserting Reset  
Signal Name  
RESET_N  
Type  
Input  
Description  
Reset input  
RESET_OUT_N  
A_25_RESET_DELAY  
Output  
Muxed, Internal  
Pull-up  
Reset output  
Muxed pin, External Bus Interface address Bit [25] or  
POR counter bypass  
A_26_SIZE  
A27_CS7_N  
A28_CS6_N  
A29_CS5_N  
A30_CS4_N  
CS0_N  
Muxed, Internal  
Pull-up  
Muxed pin, External Bus Interface address Bit [26] or data  
bus size select (0 = 8-bit, 1 = 16-bit)  
Muxed pin, External Bus Interface address Bit [27] or  
Chip select 7 (chip select active low)  
Muxed pin, External Bus Interface address Bit [28] or  
Chip select 6 (chip select active low)  
Muxed pin, External Bus Interface address Bit [29] or  
Chip select 5 (chip select active low)  
Muxed  
Muxed  
Muxed  
Muxed  
Output  
Muxed pin, External Bus Interface address Bit [30] or  
Chip select 4 (chip select active low)  
Chip select 0 (chip select active low)  
When RESET_N is asserted, the following sequence occurs:  
The A25_Reset_Delay signal is sampled to determine the length of the reset clock delay  
Low—reset clock delay → 100 µsecs  
High—reset clock delay → 20 msecs  
Note: After this delay, the part performs major or minor reset processing and is  
released to run.  
The A_26_SIZE pin is sampled for the external bus interface size  
Low8-bit width  
High16-bit width  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 52 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
The RESET_OUT_N signal is driven low for the determined clock delay  
Figures 9 and 10 present the reset timing and extended reset timing diagrams, respectively. The  
A_26_SIZE signal is not shown, but it is sampled.  
CLK  
Clock Running  
| <--- Clock Stable  
RESET_N  
RESET_OUT_N  
(ADDR 25)  
RESET_DELAY  
ADDR 24:0  
0x000000  
0x000000  
DATA 15:0  
CS0  
100uS  
Power On Reset  
100uS  
Hardware Reset  
TimeGen  
Figure 10. Reset Timing  
CLK  
Clock Running  
| <--- Clock Stable  
RESET_N  
RESET_OUT_N  
RESET_DELAY
(ADDR 25)  
ADDR 24:0  
0x000000  
0x000000  
DATA 15:0  
CS0  
20mS  
Power On Reset  
20mS  
Hardware Reset  
TimeGen  
Figure 11. Extended Reset Timing  
Note: If A25_RESET_DELAY is high at the rising edge of RESET_N,  
internal reset and RESET_OUT_N are extended from 100 µs to 20 mS.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 53 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
The following multiplexed signals are tri-stated during reset and should be pulled high if being  
used as chip selects or pulled low if being used as address lines (the fido1100 boots at address  
0x00000000). If not being used, they can be pulled either high or low.  
A27_CS7_N  
A28_CS6_N  
A29_CS5_N  
A30_CS4_N  
At Reset, the CS0_N signal defaults to low for external memory access, supporting the boot  
sequence from address 0x00000000.  
7.3  
7.4  
Clock Signals  
Typical Clock Source Implementations  
The fido1100 can operate in one of two modes: (1) Normal or driven clock source input or  
(2) using an external crystal to set the operating frequency of the internal oscillator.  
Note: VDDCLK and GNDCLK must be connected even when not using an  
external crystal.  
7.4.1 Normal or Driven Clock Source  
System configurationDrive external clock source into XTAL0 (see Figure 11). XTAL1 is left  
unconnected. XTAL0 is effectively a Schmitt trigger input. Target frequency should have a  
duty cycle of approximately 40% to 60%.  
7.4.2 Using an External Crystal  
System Configuration (third overtone)Crystal across XTAL0/XTAL1 (see Figure 12),  
36 pF load caps to ground, 0.1-µF cap, and 0.33-µH inductor in series from XTAL1 to  
ground.  
System Configuration (fundamental tone)Crystal across XTAL0/XTAL1 (see  
Figure 13) and 20-pF load caps to ground.  
Note: Load capacitor and inductor values may be different based on crystal  
used. Please consult with your crystal supplier for more information.  
Third overtone configuration is recommended for 24- to 66-MHz operation and fundamental  
tone configuration is recommended for 1- to 24-MHz operation.  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 54 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
GNDCLK  
GNDCLK  
XTAL1  
L1  
C3  
C2  
XTAL1  
XTAL0  
Not Connected  
Crystal  
fido1100  
fido1100  
C1  
External Clock  
Source  
XTAL0  
2.5V  
2.5V  
VDDCLK  
VDDCLK  
Figure 12. Driven Clock Source  
Figure 13. Crystal Oscillator Third  
Overtone Off-Chip Components  
GNDCLK  
C2  
XTAL1  
Crystal  
fido1100  
C1  
XTAL0  
2.5V  
VDDCLK  
Figure 14. Crystal Oscillator  
Fundamental Overtone Off-Chip  
Components  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 55 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
7.5  
Off-Chip Component Value  
Table 22 shows the suggested off-chip component values:  
Table 22. Suggested Off-Chip Component Values  
Operating frequency C1 C2  
C3  
36pF 36pF 0.1µF 330nH  
20pF 20pF NA NA  
L1  
66MHz  
20 MHZ  
Notes:  
1. Different C1, C2 values lead to different oscillation characteristics and should be selected based on  
system (board) level considerations.  
2. Using C1 = C2 is recommended.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 56 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
8.  
Signals  
8.1  
External Bus Operation  
8.1.1 Overview  
The fido1100 interfaces to external memory and peripherals through a set of programmable chip-  
select and bus-timing registers. It also has a built-in SDRAM controller to interface to SDRAM.  
This chapter provides timing diagrams for hardware considerations.  
For definitions of registers that control external bus timing and the SDRAM timing, please see  
The fido1100 User Guide.  
The external address bus of the fido1100 is 31-bit, and the external data bus is configurable to  
support either an 8- or 16-bit bus. In this section, timing diagrams are provided for the  
following:  
General Setup and Hold Timing  
External Bus Timing  
32-bit transfer without external ready (RDY_N)  
32-bit transfer with external ready (RDY_N)  
8-bit/16-bit single cycle without external ready (RDY_N)  
8-bit/16-bit cycle with external ready (RDY_N)  
SDRAM Timing  
SDRAM CAS Timing  
SDRAM Row Activation Timing  
SDRAM Read Operation Timing  
SDRAM Read Burst Timing  
SDRAM Write Operation, Write Burst, Write-to-Write Operation, and Write-to-  
Precharge Timing  
8.2  
General Setup and Hold Timing  
All timing delays are characterized at the 50% to 50% point. This includes propagation delay  
times through combinatorial functions as well as setup, hold time, and release-time definitions  
for sequential elements (see Chapter 9, Setup and Hold Timing, for diagrams).  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 57 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
8.3  
Signals listed on the External Bus Timing diagrams are described below.  
TwWAIT  
External Bus Timing  
If RDY_ENABLE=0, specifies the width of the chip select active period for the non-  
burst-mode write cycle. The allowed range is 031, resulting in a wait time of 132  
clocks.  
If RDY_ENABLE=1, specifies the wait time before the RDY_N line is first sampled  
for the write cycle. This provides a max wait time of 484 nS at 66 MHz. Anything  
greater than this will require the external RDY_N line and external logic.  
TrWAIT  
If RDY_ENABLE=0, specifies the width of the chip select active period for the non-  
burst-mode read cycle. The allowed range is 031, resulting in a wait time of 132  
clocks.  
If RDY_ENABLE=1, specifies the wait time before the RDY_N line is first sampled  
for the read cycle. This provides a max wait time of 484 nS at 66 MHz. Anything  
greater than this will require the external RDY_N line and external logic.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 58 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
9.  
Setup and Hold Timing  
All timing delays are characterized at the 50% to 50% point. This includes propagation delay  
times through combinatorial functions as well as setup, hold-time, and release-time definitions  
for sequential elements.  
Propagation DelayTime between an input signal transition and the resultant output  
signal transition (see Figure 14).  
Tplh = 14ns.  
Tphl = 14ns.  
Figure 15. Propagation Delay  
Setup TimeThe minimum time that input data must remain unchanged prior to an  
active clock transition (see Figure 15).  
Setup = 2ns.  
Figure 16. Setup Time  
IA211080807-08  
http://www.innovasic.com  
UNCONTROLLED WHEN PRINTED OR COPIED  
Customer Support:  
Page 59 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Hold TimeThe minimum time that input data must remain unchanged subsequent to an  
active clock transition (see Figure 16).  
Hold = 2ns.  
Figure 17. Hold Time  
Recovery TimeThe minimum time that the Set or Reset input must remain unactivated  
prior to an active clock transition (see Figure 17).  
Recovery = 3ns.  
Figure 18. Recovery Time  
Removal TimeThe minimum time that the Set or Reset input must remain activated  
subsequent to an active clock transition (see Figure 18).  
Removal = 3ns.  
Figure 19. Removal Time  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 60 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Minimum Pulse WidthThe minimum length of time between the leading and trailing  
edges of a pulse (see Figure 19).  
Timings are based on a 66-MHz clock yielding 15-ns cycles.  
MPW_H = 7ns.  
MPW_L = 7ns.  
Figure 20. Minimum Pulse Width  
THLDSpecifies the time between when the CSn_N and BEn_N signals go inactive (hi)  
and the address is removed, 07 clocks.  
TCSSpecifies the time between when the address bus is driven and the CSn_N and  
BEn_N signals go active (low), 03 clocks.  
TOESpecifies the time between when the CSn_N and BEn_N signals go active (low)  
and the OE signal goes active (low), 03 clocks.  
TWEFSpecifies the time between when the CSn_N and BEn_N signals go active (low)  
and the WE_N signal goes active (low), 03 clocks.  
TWERSpecifies the time between when the WE_N signal goes inactive (hi) and the  
CSn_N and BEn_N signals go inactive (hi), 03 clocks.  
9.1.1 External Bus Timing for a 32-Bit Transfer (without RDY_N)  
This timing is programmable via the External Bus Chip Select Timing Register (see Figure 20).  
All timing is relative to the rising edge of the clock.  
The chip-select and byte-enable signals (CSn_N and BEn_N) go active (low) 03 clocks  
(TCS) after the address bus is driven.  
The chip-select, output-enable, and byte-enable signals (CSn_N, BEn_N, and OE_N) go  
inactive (hi) 07 clocks (THLD) before the address is removed (on the last cycle).  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 61 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Figure 21. External Bus Timing for a Single, 32-Bit Cycle (without RDY_N)  
The write-cycle timing is controlled by TwWAIT setting (shown as TxWAIT in the  
diagram), 116 clocks.  
The read-cycle timing is controlled by TrWAIT setting (shown as TxWAIT in the  
diagram), 116 clocks.  
The output-enable signal (OE_N) goes active (low) 03 clocks (TOE) after the chip  
select.  
The output-enable signal (OE_N) goes inactive (hi) coincident with the chip select.  
The write-enable signal (WE_N) goes active (low) 03 clocks (TWEF) after the chip  
select (first cycle only). For subsequent cycles, the WE_N line will go active (low) 03  
clocks (TWEF) after the address bus changes.  
The write-enable signal (WE_N) goes inactive (hi) 03 clocks (TWER) before the end of  
the wait time and hence before the address bus changes (subsequent cycles). This is  
when the data is considered “written.”  
9.1.2 External Bus Timing for a 32-Bit Transfer (with RDY_N)  
This timing is programmable via the External Bus Chip Select Timing Register (see Figure 21).  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 62 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Figure 22. External Bus Timing for a 32-Bit Transfer (with RDY_N)  
The TxWAIT setting determines when first to start sampling the low active RDY_N line  
(labeled with an arrow marked “1” in the diagram).  
In the case of a write transfer after the low active RDY_N line is first sampled low  
(labeled with an arrow marked “2” in the diagram), the write cycle will complete on the  
next rising edge of the clock as shown (labeled with an arrow marked “3” in the  
diagram).  
In the case of a read transfer once the low active RDY_N line is first sampled low  
(labeled with an arrow marked “2” in the diagram), the read data will be sampled on the  
second rising edge of the clock.  
The write-cycle timing is controlled by TwWAIT setting (shown as TxWAIT in the  
diagram), 116 clocks.  
The read-cycle timing is controlled by TrWAIT setting (shown as TxWAIT in the  
diagram), 116 clocks.  
If the RDY_N line never goes low, the cycle will end (as a bus error) after a timeout of  
TxWAIT + 256 clocks.  
If the RDY_N line is unused (tied low via an internal pull down) or goes low  
immediately, the cycle will be controlled by TxWAIT as described above.  
In the case of a write transfer, the write-enable signal (WE_N) goes active (low) 03  
clocks after the CS_N goes low.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 63 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
The write-enable signal (WE_N) goes inactive (hi) 03 clocks (TWER) before the end of  
the chip-select time.  
9.1.3 External Bus Timing for 8-Bit/16-Bit Transfer (without RDY_N)  
This timing is programmable via the External Bus Chip Select Control Register (see Figure 22).  
Figure 23. External Bus Timing for 8-Bit/16-Bit Transfer (without RDY_N)  
All timing is relative to the rising edge of the clock.  
The chip-select and byte-enable signals (CSn_N and BEn_N) go active (low) 03 clocks  
(TCS) after the address bus is driven.  
The chip-select and byte-enable signals (CSn_N and BEn_N) go inactive (hi) 07 clocks  
(THLD) before the address is changed.  
The write-cycle timing is controlled by TwWAIT setting (shown as TxWAIT in the  
diagram), 116 clocks.  
The read-cycle timing is controlled by TrWAIT setting (shown as TxWAIT in the  
diagram), 116 clocks.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 64 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
The output-enable signal (OE_N) goes active (low) 03 clocks (TOE) after the chip  
select.  
The output-enable signal (OE_N) goes inactive (hi) coincident with the chip select. This  
is also when the read data is sampled.  
The write-enable signal (WE_N) goes active (low) 03 clocks (TWEF) after the chip  
select.  
The write-enable signal (WE_N) goes inactive (hi) 03 clocks (TWER) before the end of  
the cycle (CSn_N is removed).  
9.1.4 External Bus Timing for 8-Bit/16-Bit Transfer (with RDY_N)  
This timing is programmable via the External Bus Chip Select Control Register (see Figure 23).  
Figure 24. External Bus Timing for 8-Bit/16-Bit Transfer (with RDY_N)  
The write-cycle timing is controlled by TwWAIT setting (shown as TxWAIT in the  
diagram), 116 clocks.  
The read-cycle timing is controlled by TrWAIT setting (shown as TxWAIT in the  
diagram), 116 clocks.  
The TxWAIT setting determines when first to start sampling the low active RDY_N line  
(labeled with an arrow marked “1” in the diagram).  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 65 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
In the case of a write transfer, once the low active RDY_N line is first sampled low  
(labeled with an arrow marked “2” in the diagram), the write cycle will complete on the  
next rising edge of the clock as shown (labeled with an arrow marked “3” in the  
diagram).  
In the case of a read transfer, once the low active RDY_N line is first sampled low  
(labeled with an arrow marked “2” in the diagram), the read data will be sampled on the  
second rising edge of the clock.  
If the RDY_N line never goes low, the cycle will end (as a bus error) after a timeout of  
TxWAIT + 256 clocks.  
If the RDY_N line is unused (tied low via an internal pull down) or goes low  
immediately, the cycle will be controlled by TxWAIT as shown above.  
In the case of a write transfer, the write enable signal (WE_N) goes active (low) 03  
clocks after the CS_N goes low.  
The write enable signal (WE_N) goes inactive (hi) 03 clocks (TWER) before the end of  
the chip-select time.  
Note: This timing picture also reflects the default bus timing for all memory  
addresses not decoded by the internal chip-select unit. In this case, the  
timing is controlled by the External Bus Default Timing Register.  
9.2  
SDRAM Timing  
9.2.1 SDRAM CAS Timing  
The CAS latency is the delay, in clock cycles, between the registration of a READ command and  
the availability of the first piece of output data. The latency can be set to two or three clocks. If  
a READ command is registered at clock edge n, and the latency is m clocks, the data will be  
available by clock edge n + m. The DQs will start driving because of the clock edge one cycle  
earlier (n + m 1) and, provided the relevant access times are met, the data will be valid by  
clock edge n + m. For example, assuming the clock cycle time is such that all relevant access  
times are met, if a READ command is registered at T0 and the latency is programmed to two  
clocks, the DQs will start driving after T1 and the data will be valid by T2, as shown in  
Figure 24.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 66 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Figure 25. SDRAM CAS Timing  
9.2.2 SDRAM Row Activation Timing  
Before any READ or WRITE commands can be issued to a bank within the SDRAM, a row in  
that bank must be “opened.” This is accomplished via the ACTIVE command, which selects  
both the bank and the row to be activated (see Figure 25). After opening a row (issuing an  
ACTIVE command), a READ or WRITE command may be issued to that row, subject to the  
tRCD specification. The tRCD (MIN) should be divided by the clock period and rounded up to  
the next whole number to determine the earliest clock edge after the ACTIVE command on  
which a READ or WRITE command can be entered. For example, a tRCD specification of 20ns  
with a 125-MHz clock (8-ns period) results in 2.5 clocks, rounded to 3. This is reflected in  
Figure 26, which covers any case where 2 < tRCD (MIN)/tCK ≤ 3. (The same procedure is used  
to convert other specification limits from time units to clock cycles.)  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 67 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Figure 26. Specific Row Activation Timing  
Figure 27. Meeting tRCD (min) When 2 < tRCD (min)/tCK ≤ 3  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 68 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
9.2.3 SDRAM Read Operation Timing  
READ bursts are initiated with a READ command.  
The starting column and bank addresses are provided with the READ command, and auto  
precharge is either enabled or disabled for that burst access. If auto precharge is enabled, the  
row being accessed is precharged at the completion of the burst. For the generic READ  
commands used in the following illustrations, auto precharge is disabled (see Figure 27).  
Figure 28. SDRAM Read Operation Timing  
During READ bursts, the valid data-out element from the starting column address will be  
available following the CAS latency after the READ command. Each subsequent data-out  
element will be valid by the next positive clock edge.  
Upon completion of a burst, assuming no other commands have been initiated, the DQs will go  
high, and full-page burst will continue until terminated. (At end of the page, it will wrap to  
column 0 and continue.)  
9.2.4 SDRAM Read Burst Timing  
Data from any READ burst may be truncated with subsequent READ command, and data from a  
fixed-length READ burst may be immediately followed by data from a READ command. In  
either case, a continuous flow of data can be maintained. The first data element from the new  
burst follows either the last element of a completed burst or the last desired data element of a  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 69 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
longer burst that is being truncated. The new READ command should be issued x cycles before  
the clock edge at which the last desired data element is valid, where x equals the CAS latency  
minus one (see Figure 28). For CAS latencies of two and three, data element n + 3 is either the  
last of a burst of four or the last desired of a longer burst. The 64 Mbyte SDRAM uses a  
pipelined architecture and therefore does not require the 2n rule associated with a prefetch  
architecture. A READ command can be initiated on any clock cycle following a previous READ  
command. Full-speed random read accesses can be performed to the same bank, as shown in  
Figure 16 or each subsequent READ may be performed to a different bank.  
Figure 29. SDRAM Read Burst Timing  
9.2.5 SDRAM Write Operation, Write Burst, Write-to-Write, and Write-to-Precharge  
Timing  
WRITE bursts are initiated with a WRITE command.  
The starting column and bank addresses are provided with the WRITE command, and auto  
precharge is either enabled or disabled for that access. If auto precharge is enabled, the row  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 70 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
being accessed is precharged at the completion of the burst. For the generic WRITE commands  
used in the following illustrations, auto precharge is disabled.  
During WRITE bursts, the first valid data-in element will be registered coincident with the  
WRITE command. Subsequent data elements will be registered on each successive positive  
clock edge. Upon completion of a fixed-length burst, assuming no other commands have been  
initiated, the DQs will remain High-Z, and any additional input data will be ignored. A full-page  
burst will continue until terminated. (At the end of the page, it will wrap to column 0 and  
continue.)  
Data for any WRITE burst may be truncated with a subsequent WRITE command, and data for a  
fixed length WRITE burst may be immediately followed by data for a WRITE command. The  
new WRITE command can be issued on any clock following the previous WRITE command,  
and the data provided coincident with the new command applies to the new command (see  
Figures 29, 30, 31, and 32).  
Figure 30. SDRAM Write Operation Timing  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 71 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Figure 31. SDRAM Write Burst Timing  
Figure 32. SDRAM Write-to-Write Timing  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 72 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Figure 33. SDRAM Write-to-Precharge Timing  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 73 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
10. JTAG  
The TAP controller is a synchronous Finite State Machine and responds to changes in the TMS  
and TCK signals. States transition occurs on the rising edge of TCK. Values shown to the side  
of each state represent the state of TMS at the time of the rising edge of TCK (see Figure 33).  
There are two paths through the state machine. The instruction path captures and loads the  
JTAG instructions into the instruction register. The data path captures and loads data into the  
other three registers. The TAP controller executes the last instruction decode until a new  
instruction is entered at the Update-IR state or until a reset is sent to the controller.  
1
Test-Logic-Reset  
1
0
Run-Test/Idle  
1
1
Select-DR-Scan  
0
Select-IR-Scan  
0
0
Capture-DR  
0
Capture-IR  
0
1
1
Shift-DR  
1
Shift-IR  
1
0
0
0
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
1
1
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Figure 34. JTAG State Machine  
The JTAG port has four Read/Write registers. An ID register, By-Pass Register, Boundary Scan,  
and Instruction Register (see Figure 34).  
The TDO pin remains in the high impedance state except during a shift-DR or shift-IR controller  
state. In the shift-DR and shift-IR controller states, TDO is updated on the falling edge of TCK.  
TMS and TDI are sampled on the rising edge of TCK.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 74 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Input Mux  
Output Mux  
ID Register  
By-Pass Register  
Boundary Scan  
TDI  
Instruction Register  
Instruction Decode  
Tap Controller  
TMS  
TCK  
TDO  
Figure 35. JTAG Port Register Interface  
The timing of the JTAG signals is shown in Figure 35. The TDO pin remains in the high  
impedance state except during a shift-DR or shift-IR controller state. In the shift-DR and  
shift-IR controller states, TDO is updated on the falling edge of TCK. TMS and TDI are  
sampled on the rising edge of TCK.  
Figure 36. Timing of JTAG Signals  
10.1 JTAG Scan Chain Debug Functionality  
The JTAG port contains an 8-bit-wide instruction register. Instructions are transferred to this  
register during the shift-IR state of the TAP state machine and are decoded by entering the  
Update-IR state of the TAP. The JTAG controller executes the last decoded instruction until  
another new one is entered and decoded. The instructions and data are entered serially through  
the TDI pin, LSB first.  
The JTAG Test Access Port (TAP) instruction shift register will support the debug scan chain  
commands shown in Table 23.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 75 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
Table 23. Debug Scan Chain Commands Supported by the JTAG TAP  
Scan  
Chain  
Length  
Scan Chain  
Reference  
Number  
JTAG  
Instruction  
Public or  
Private  
Scan Chain Function  
00010000  
READWRITEADDRCMD (Read/Write  
37 bits  
1
Private  
Memory/Registers Address and Command)  
00010001  
00010010  
00010011  
READDATA (Read Memory/Registers Data)  
WRITEDATA (Write Memory/Registers Data)  
READPC_ANDCONTEXT (Read Program  
Counter and Active context)  
32 bits  
32 bits  
37 bits  
2
7
4
Private  
Private  
Private  
00010100  
READWRITEDRBUGREG (Read/Write Debug  
Control Register)  
IDCODE (Read Device ID Register)  
EXTEST (IO Boundary Scan)  
15 bits  
32 bits  
5
Private  
11111110  
11111000  
3
6
Public  
Public  
n bits  
(I/O Pins)  
11111010  
SAMPLE/PRELOAD (Sample Boundary Scan  
chain on “Capture-DR” state, Load Boundary  
Scan chain on ‘Update-DR’ state)  
N bits  
(I/O Pins)  
6
Public  
11111111  
00000111  
00001111  
BYPASS (Use TDI/TDO Bypass Register)  
RUNBIST (Run Built in Self Test)  
ENABLEATPG (Enable ATPG Mode for  
Manufacturing Test)  
1 bit  
16 bits  
N/A  
9
8
N/A  
Public  
Public  
Private  
Notes:  
1. The boundary-scan scan chain is selected via the EXETEST, SAMPLE, and PRELOAD  
instructions.  
2. The SAMPLE and PRELOAD instructions have the SAME binary code. (They are identified as  
separate instructions in the JTAG Spec, but are allowed to have the same binary code for  
backwards compatibility with previous version of spec.)  
3. Any undefined bit pattern that is shifted into the Instruction Register will perform the same  
function as the BYPASS instruction.  
4. On Power-on Reset, or when the JTAG state machine enters the “Test Logic Reset” the  
instruction register will reset its value to operate as the IDCODE Instruction (per JTAG Spec).  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 76 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
11. Ordering Information  
The packages (part numbers) currently available are listed in Table 24.  
Table 24. Part Numbers by Package Types  
Innovasic Part Number  
Package Type  
208-Lead QFP  
Temperature Grade  
fido1100PQF208IR1  
Industrial  
Lead-free (RoHS-compliant)  
28- by 28-mm Package  
fido1100BGA208IR1  
208-Ball BGA, .5mm pitch  
10- by 10-mm Package  
Industrial  
Industrial  
Lead-free (RoHS-compliant)  
fido1100BGB208IR1  
208-Ball BGA, .8mm pitch  
15- by 15-mm Package  
Lead-free (RoHS-compliant)  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 77 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
12. Errata  
This chapter addresses issues discovered by our internal testing organization that may affect the  
implementation of the fido1100. This information should be used in conjunction with The  
fido1100 User Guide and The fido1100 Instruction Set Reference Guide to circumvent problems  
during the design process and is not intended as a standalone design guide. Although  
fido1100-specific terms are clearly described, in the interest of conciseness, many terms already  
familiar to designers and developers are left undefined.  
12.1 Summary  
Table 25 presents a summary of errata.  
Table 25. Summary of Errata  
Errata  
No.  
Problem  
Ver. 1  
1
ADC Start Register Bit 0 (START) does not self clear when non-scanning  
mode conversion for single channel or multi-channel is selected.  
Exists  
2
3
Fatal fault recovery sequence can be disturbed by interrupts.  
Exists  
Exists  
The vectors are reversed when a trapx instruction is executed coincident  
with an interrupt to a higher priority context.  
4
5
When using the RDY_N signal to insert wait states (chip select timing  
register RDY_ENABLE bit = 1), the Address bus timing is incorrect.  
Exists  
Exists  
When using a JMP or JSR instruction in PC indirect with base displacement  
addressing mode in assembly code projects, the CPU does not execute the  
instruction correctly.  
12.2 Detail  
Errata No. 1  
Problem: ADC Start Register Bit 0 (START) does not self clear when non-scanning mode  
conversion for single channel or multi-channel is selected.  
Description:  
Scanning mode is controlled by ADC Control Register Bit 6 (SCAN).  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 78 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
ADC Control Register Bit 4 (CD-Conversion Done) will correctly indicate that  
conversion(s) are done.  
An ADC interrupt will be issued if ADC interrupts are enabled. ADC interrupts are  
enabled by setting ADC Control Register Bit 3 (IRQ_En) to 1.  
ADC Data Available Register will correctly indicate which channels have updated results  
in their Data Registers.  
Workaround: When using non-scanning mode conversions, enable the ADC between each  
commanded conversion (single channel or multi-channel):  
Clear ADC Control Register Bit 7 (EN) to 0.  
Set ADC Control Register Bit 7 (EN) to 1.  
Set ADC Start Register Bit 0 (START) to 1 to start the conversion process.  
ADC Conversion complete will be indicated by:  
An ADC interrupt, if ADC Control Register Bit 3 (IRQ_En) is set to 1.  
ADC Control Register Bit 4 (CD-Conversion Done) will set to indicate that  
conversion(s) are done.  
Errata No. 2  
Problem: Fatal fault recovery sequence can be disturbed by interrupts.  
Description:  
Context Fatal Faults can occur if a context's stack pointer becomes corrupted. It is a feature of  
the hardware to detect this "Fatal Fault" and allow a graceful recovery by directing an exception  
to the Master Context. This operation can be disturbed if, by chance, an interrupt is triggered  
during a bus cycle leading to a Fatal Fault. This problem occurs no matter which context the  
interrupt is directed to. It need not be the faulting context. Furthermore, since neither interrupt  
timing nor fatal faults are predictable, there is no way to guarantee this cannot happen. The effect  
of this error depends on the interrupt mode of the context to which the interrupt is directed. If the  
interrupted context is running in Fast Single Threaded mode, when an interrupt targeted to it  
occurs during a faulting bus cycle (caused by another context) the CPU will lock up after the  
faulting bus cycle completes. If the interrupted context is in Standard or Fast Vectored mode the  
CPU will not lock up but the normal fault handling process will be disrupted. The effect is:  
Both the interrupted and the faulting context will be set to Halted.  
The fatal fault exception will be directed to the interrupted context rather than the Master.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 79 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
The expected interrupt will be directed (queued behind the fatal fault exception) to the  
interrupted context.  
The Master context will be moved to the ready state, with no modification of its program  
counter, thus it will start running from where it left off previously.  
All other contexts are unaffected.  
Errata No. 3  
Problem: The vectors are reversed when a trapx instruction is executed coincident with an  
interrupt to a higher priority context.  
Description: Given a low priority context currently executing and the master context and a  
higher priority context sleeping, if an interrupt comes in for the higher priority context  
simultaneously with the execution of a trapx instruction in the low priority context, it can happen  
that the interrupt handler is executed by the master context (even though intended for the higher  
priority context), while the trapx handler is executed by the higher priority context.  
Workaround:  
The workaround involves several issues:  
1. Any interrupt handlers intended for other than the lowest priority context should  
be executable by the master context.  
2. The master context must have a valid vector to the appropriate interrupt handlers.  
Either the master context and the other contexts share a vector table or the vectors  
are duplicated on the master context's table. If the master context is executed in a  
different mode than the other contexts (e.g. master in standard mode, other  
context in fast-vectored mode), then a second interrupt handler must be coded that  
is compatible with the master context's operating mode.  
3. Trapx handlers should verify that they are being executed in the master context.  
This assumes that they are performing some action that can only be executed in  
the master context, and if so, then they should execute and set a flag to alert the  
caller that they executed. If not, then they should return without setting the flag.  
Also, trapx handlers must be present (in the appropriate execution mode) on all  
vector tables.  
4. The routine executing a trapx instruction should check the handshake flag from  
the trapx handler after execution of the instruction. If it is not set appropriately,  
the trapx should be executed again.  
The approach given in 3 and 4 above, while more complex than simply having the trapx  
handler issue a trapx instruction if not executed in the master context, avoids the issue of  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 80 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
trapx handlers that rely on the Faulted Context register to determine what specific action to  
take.  
Errata No. 4  
Problem: When using the RDY_N signal to insert wait states (chip select timing register  
RDY_ENABLE bit = 1), the Address bus timing is incorrect.  
Description: When used in this way, the Address bus will change states coincident with, or in  
some cases, before the end of the bus cycle. This can cause data corruption in memory.  
Workaround: There is no work around for this problem. It is recommended to avoid use of the  
RDY_N signal and the RDY_ENABLE bit of the chip select timing registers.  
Errata No. 5  
Problem: When using a JMP or JSR instruction in PC indirect with base displacement  
addressing mode in assembly code projects, the CPU does not execute the instruction correctly.  
Description: Instead of jumping indirectly to the location pointed to by the effective address,  
execution jumps to the effective address directly.  
Workaround: There is no workaround for this problem. For assembly code projects, avoiding  
use of the PC indirect addressing with base displacement mode is recommended.  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 81 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
13. Revision History  
Table 26 presents the sequence of revisions to document IA211080807.  
Table 26. Revision History  
Date  
Revision Description  
Page(s)  
August 8,  
2007  
First edition released.  
00  
01  
NA  
Reformatted to meet publication standards. Technical data  
updated. Errata added.  
September  
11, 2008  
NA  
17, 19, 26,  
28, 35, 37,  
50, 51  
Changed “RESET” to “RESET_N” and “RESET_OUT” to  
“RESET_OUT_N” in text, figures, and tables.  
In Table 5, changed pin numbers in data row 14 from “F3” to  
“G3”and in data row 19 from “G3” to “H3.”  
36  
In Table 5, changed pin numbers in data row 11 from “M14”  
to “M15” and in data row 14 from “M15” to “M14.”  
Deleted last row of Table 5 (duplicate).  
In Table 7, changed numbers in data row 1 from “M14” to  
“M15” and in data row 2 from “M15” to “M14.”  
39  
40  
43  
October 9,  
2008  
02  
In Table 10, changed numbers in data rows 13, 14, 15, and  
16 to “B6,” “P13,” “P14,” and “–,” from “P5,” “B6,” “P13,” and 44  
“P14,” respectively, for column labeled “BGA 15 x 15.”  
Added 2 new sentences at beginning of Section 7.2, “Signal  
Considerations and Reset Timing.”  
50  
Changed “CLKVDD” to “VDDCLK” and “CLKGND” to  
“GNDCLK” in note and Figures 11, 12, and 13.  
52, 53  
76 through  
87  
Updated errata chapter to reflect errata for Version 01.  
To conform to publication standards, removed illustration  
from cover. Changed Table 24, “Part Numbers by Package  
Types,” to reflect Version 01 part numbers.  
October 10,  
2008  
03  
04  
1, 75  
Revised ordering information package information; Added  
Errata 2.  
March 12,  
2009  
75 - 78  
Revised description of when bus cycle terminates in a Read 61, 64, 76,  
July 28, 2009 05  
cycle; Added two errata.  
78, 79  
November  
06  
Updated LPSTOP power consumption.  
49  
20, 2009  
April 15,  
07  
Added BGA signal routing guidance.  
Added Errata 5  
43, 44  
81  
2010  
April 25,  
08  
2012  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 82 of 83  
1-888-824-4184  
®
Flexible Input Deterministic Output (fido )  
Data Sheet  
32-Bit Real-Time Communications Controller  
April 25, 2012  
14. For Additional Information  
Innovasic’s fido1100 is the first product in the fidofamily of real-time communication  
controllers. The fido communication controller architecture is uniquely optimized for solving  
memory bottlenecks, and is designed from the ground up for deterministic processing. Critical  
timing parameters, such as context switching and interrupt latency, are precisely predictable for  
real-time tasks. The fido1100 also incorporates the Universal I/O Controller (UIC) that is  
configurable to support various communication protocols across multiple platforms. This  
flexibility relieves the designer of the task of searching product matrices to find the set of  
peripherals that most closely match the system interface needs. The Software Profiling and  
Integrated Debug EnviRonment (SPIDER) has extensive real-time code debug capabilities  
without the burden of code instrumentation.  
The fido1100 User Guide and The fido1100 Instruction Set Reference Guide as well as other  
helpful tools and files are available. For example, the GDB debugger supports both profiling and  
tracing of executing code.  
The Innovasic Support Team is continually planning and creating tools for your use. Visit  
http://www.innovasic.com for up-to-date documentation and software. Our goal is to provide  
timely, complete, accurate, useful, and easy-to-understand information. Please feel free to  
contact our experts at Innovasic at any time with suggestions, comments, or questions.  
Innovasic Support Team  
5635 Jefferson St. NE, Suite A  
Albuquerque, NM 87109 USA  
(505) 883-5263  
Fax: (505) 883-5477  
Toll Free: (888) 824-4184  
E-mail: support@innovasic.com  
Website: http://www.Innovasic.com  
IA211080807-08  
UNCONTROLLED WHEN PRINTED OR COPIED  
http://www.innovasic.com  
Customer Support:  
Page 83 of 83  
1-888-824-4184  

相关型号:

FIDO1100BGB208IR1

FIDO1100BGB208IR1
ADI

FIDO2100

fido2100 3-Port Industrial Ethernet DLR Switch with IEEE 1588
INNOVASIC

FIDO2100BGA128IR0

FIDO2100BGA128IR0
ADI

FIDO5100

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5100BBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5100CBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5110BBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5110CBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5200

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5200BBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5200CBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI

FIDO5210BBCZ

Real-Time Ethernet Multiprotocol (REM) Switch
ADI