HMC1126ACEZ-R7 [ADI]

GaAs, pHEMT, Low Noise Amplifier, 400 MHz to 52 GHz;
HMC1126ACEZ-R7
型号: HMC1126ACEZ-R7
厂家: ADI    ADI
描述:

GaAs, pHEMT, Low Noise Amplifier, 400 MHz to 52 GHz

文件: 总21页 (文件大小:577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GaAs, pHEMT, Low Noise Amplifier,  
400 MHz to 52 GHz  
Data Sheet  
HMC1126ACEZ  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Gain: 12 dB typical at 10 GHz to 26 GHz  
Input return loss: 14 dB typical at 10 GHz to 26 GHz  
Output return loss: 16 dB typical at 10 GHz to 40 GHz  
OP1dB: 17.5 dB typical at 10 GHz to 26 GHz  
GND  
GND  
GND  
RFIN  
GND  
GND  
1
2
3
4
5
6
18 GND  
17 GND  
16  
15  
14  
RFOUT  
GND  
PSAT: 21 dBm typical at 10 GHz to 26 GHz  
OIP3: 28.5 dBm typical at 10 GHz to 26 GHz  
Noise figure: 3.5 dB typical at 10 GHz to 26 GHz  
5 V supply voltage at 85 mA  
GND  
13 GND  
50 Ω matched input and output  
No external passive components required  
5.00 mm × 5.00 mm, 24-terminal LGA_CAV package  
Figure 1.  
APPLICATIONS  
Test instrumentation  
Military and space  
GENERAL DESCRIPTION  
The HMC1126ACEZ is a gallium arsenide (GaAs),  
external passive components for operation (ac coupling capacitors  
and power supply decoupling capacitors) are integrated, which  
facilitates a small and compact printed circuit board (PCB)  
footprint.  
pseudomorphic high electron mobility transfer (pHEMT), low  
noise amplifier that operates from 400 MHz to 52 GHz. The  
HMC1126ACEZ provides 12 dB of typical gain, 28.5 dBm typical  
output third-order intercept (OIP3), 17.5 dBm typical output  
power at 1 dB gain compression (OP1dB), and a 3.5 dB typical  
noise figure at 10 GHz to 26 GHz. The HMC1126ACEZ  
requires 85 mA from a 5 V supply. All of the typically required  
The HMC1126ACEZ is housed in a 5.00 mm × 5.00 mm,  
24-terminal chip array small outline no lead cavity (LGA_CAV)  
package.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the propertyoftheir respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2021 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC1126ACEZ  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Pin Configuration and Function Descriptions .............................6  
Interface Schematics .....................................................................6  
Typical Performance Characteristics .............................................7  
Theory of Operation ...................................................................... 15  
Applications Information ............................................................. 16  
Power-Up and Power-Down Sequencing............................... 16  
Biasing the HMC1126ACEZ with the HMC920LP5E.......... 17  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Electrical Specifications ................................................................... 3  
400 MHz to 10 GHz Frequency Range ..................................... 3  
10 GHz to 26 GHz Frequency Range ........................................ 3  
26 GHz to 40 GHz Frequency Range ........................................ 4  
40 GHz to 52 GHz Frequency Range ........................................ 4  
Absolute Maximum Ratings ........................................................... 5  
Thermal Resistance...................................................................... 5  
Electrostatic Discharge (ESD) Ratings...................................... 5  
ESD Caution.................................................................................. 5  
Constant Drain Current Biasing vs. Constant Gate Voltage  
Biasing.......................................................................................... 19  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
REVISION HISTORY  
11/2021—Revision 0: Initial Version  
Rev. 0 | Page 2 of 21  
 
Data Sheet  
HMC1126ACEZ  
ELECTRICAL SPECIFICATIONS  
400 MHz TO 10 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, VGG2 = 1 V, and supply current (IDQ) = 85 mA, unless otherwise stated. Adjust VGG1 between −2 V and 0 V to  
achieve IDQ = 85 mA typical.  
Table 1.  
Parameter  
Min Typ  
0.4  
Max Unit  
Test Conditions/Comments  
FREQUENCY RANGE  
10  
GHz  
dB  
GAIN  
10.5 12.5  
0.003  
Gain Variation over Temperature  
dB/°C  
RETURN LOSS  
Input  
Output  
11.5  
13  
dB  
dB  
OUTPUT  
OP1dB  
Saturated Output Power (PSAT  
15  
17.5  
20  
29  
dBm  
dBm  
dBm  
dBm  
dB  
)
OIP3  
Output power (POUT) per tone = 0 dBm with 1 MHz tone spacing  
POUT per tone = 0 dBm with 1 MHz tone spacing  
Second-Order Intercept (OIP2)  
31  
NOISE FIGURE  
4.0  
SUPPLY  
IDQ  
VDD  
85  
5
mA  
V
Adjust VGG1 to achieve IDQ = 85 mA typical  
3.3  
10 GHz TO 26 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, VGG2 = 1 V, and IDQ = 85 mA, unless otherwise stated. Adjust VGG1 between −2 V and 0 V to achieve IDQ = 85 mA typical.  
Table 2.  
Parameter  
Min  
10  
Typ  
Max  
Unit  
GHz  
dB  
Test Conditions/Comments  
FREQUENCY RANGE  
26  
GAIN  
10  
12  
Gain Variation over Temperature  
0.006  
dB/°C  
RETURN LOSS  
Input  
Output  
OUTPUT  
OP1dB  
PSAT  
14  
16  
dB  
dB  
17.5  
21  
28.5  
28  
dBm  
dBm  
dBm  
dBm  
dB  
OIP3  
OIP2  
POUT per tone = 0 dBm with 1 MHz tone spacing  
POUT per tone = 0 dBm with 1 MHz tone spacing  
NOISE FIGURE  
SUPPLY  
IDQ  
3.5  
85  
5
mA  
V
Adjust VGG1 to achieve IDQ = 85 mA typical  
VDD  
3.3  
Rev. 0 | Page 3 of 21  
 
 
 
HMC1126ACEZ  
Data Sheet  
26 GHz TO 40 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, VGG2 = 1 V, and IDQ = 85 mA, unless otherwise stated. Adjust VGG1 between −2 V and 0 V to achieve IDQ = 85 mA typical.  
Table 3.  
Parameter  
Min  
26  
Typ  
Max  
Unit  
GHz  
dB  
Test Conditions/Comments  
FREQUENCY RANGE  
40  
GAIN  
10.5  
12.5  
Gain Variation over Temperature  
0.007  
dB/°C  
RETURN LOSS  
Input  
Output  
OUTPUT  
OP1dB  
PSAT  
13.5  
16  
dB  
dB  
16  
20  
27  
4.5  
dBm  
dBm  
dBm  
dB  
OIP3  
POUT per tone = 0 dBm with 1 MHz tone spacing  
Adjust VGG1 to achieve IDQ = 85 mA typical  
NOISE FIGURE  
SUPPLY  
IDQ  
85  
5
mA  
V
VDD  
3.3  
40 GHz TO 52 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, VGG2 = 1 V, and IDQ = 85 mA, unless otherwise stated. Adjust VGG1 between −2 V and 0 V to achieve IDQ = 85 mA typical.  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
GHz  
dB  
Test Conditions/Comments  
FREQUENCY RANGE  
40  
52  
GAIN  
12  
Gain Variation over Temperature  
0.01  
dB/°C  
RETURN LOSS  
Input  
Output  
OUTPUT  
OP1dB  
PSAT  
7.5  
15  
dB  
dB  
12.5  
17.5  
23.5  
6
dBm  
dBm  
dBm  
dB  
OIP3  
POUT per tone = 0 dBm with 1 MHz tone spacing  
Adjust VGG1 to achieve IDQ = 85 mA typical  
NOISE FIGURE  
SUPPLY  
IDQ  
85  
5
mA  
V
VDD  
3.3  
Rev. 0 | Page 4 of 21  
 
 
Data Sheet  
HMC1126ACEZ  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
Thermal performance is directly linked to system design and  
operating environment. Careful attention to the PCB thermal  
design is required.  
Parameter  
Rating  
VDD  
6 V  
Gate Bias Voltage  
VGG1  
VGG2  
For VDD = 3.3 V  
For VDD = 4 V  
For VDD = 5 V  
RFIN Power  
−3 V to 0 V  
θJC is the channel to case thermal resistance, channel to bottom  
of die using die attach epoxy.  
0.5 V to 2.5 V  
0.5 V to 3 V  
1.0 V to 4 V  
22 dBm  
Table 6. Thermal Resistance  
Package Type  
θJC  
Unit  
CE-24-21  
54.3  
°C/W  
Continuous Power Dissipation (PDISS), TA = 85°C  
(Derate 18.4 mW/°C Above 85°C)  
Temperature  
Channel  
Peak Reflow (Moisture Sensitivity Level  
(MSL) 3)1  
Storage Range  
Operating Range  
Junction to Maintain 1,000,000 Hours  
Mean Time to Failure (MTTF)  
Nominal Junction (TA = 85°C, VDD = 5 V,  
IDQ = 85 mA)  
1.66 W  
1 θJC was determined by simulation under the following conditions: the heat  
transfer is due solely to thermal conduction from the channel, through the  
ground paddle, to the PCB, and the ground pad is held constant at the  
operating temperature of 85°C.  
175°C  
260°C  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
−40°C to +150°C  
−40°C to +85°C  
175  
Human body model (HBM) per ANSI/ESDA/JEDDEC JS-001.  
Table 7. HMC1126ACEZ, 24-Terminal LGA_CAV  
108  
ESD Model  
Withstand Threshold (V)  
Class  
HBM  
250  
1A  
1 See the Ordering Guide for more information.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 5 of 21  
 
 
 
 
 
 
HMC1126ACEZ  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
18 GND  
GND  
GND  
GND  
17  
16  
GND  
RFOUT  
HMC1126ACEZ  
TOP VIEW  
15 GND  
14  
RFIN 4  
(Not to Scale)  
5
6
GND  
GND  
GND  
13 GND  
NOTES  
1. EXPOSED PAD. CONNECT THE EXPOSED PAD  
TO A GROUND PLANE WITH LOW THERMAL  
AND ELECTRICAL IMPEDENCE.  
Figure 2. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 2, 3, 5, 6, 7, 9, 11 to 15, GND  
17, 18, 19, 21 to 24  
Ground. All the ground pins must be connected to a low impedance ground plane. See Figure 7 for  
the interface schematic.  
4
8
RFIN  
VGG1  
RF Input. RFIN is ac-coupled and matched to 50 Ω. See Figure 3 for the interface schematic.  
Gate Control 1 for the Amplifier. Adjust VGG1 to achieve IDQ = 85 mA. See Figure 6 for the interface  
schematic.  
10  
VGG2  
Gate Control 2 for the Amplifier. For nominal operation, apply 1 V to VGG2. See Figure 5 for the  
interface schematic.  
16  
20  
RFOUT  
VDD  
RF Output. RFOUT is ac-coupled and matched to 50 Ω. See Figure 4 for the interface schematic.  
Drain Supply Voltage with Integrated RF Choke. Connect the dc bias to VDD to provide IDQ. See Figure 4  
for the interface schematic.  
EPAD  
Exposed Pad. Connect the exposed pad to a ground plane with low thermal and electrical  
impedance.  
INTERFACE SCHEMATICS  
1
V
GG  
RFIN  
Figure 3. RFIN Interface Schematic  
Figure 6. VGG1 Interface Schematic  
V
DD  
RFOUT  
GND  
Figure 4. VDD and RFOUT Interface Schematic  
Figure 7. GND Interface Schematic  
2
V
GG  
Figure 5. VGG2 Interface Schematic  
Rev. 0 | Page 6 of 21  
 
 
 
 
 
 
Data Sheet  
HMC1126ACEZ  
TYPICAL PERFORMANCE CHARACTERISTICS  
IDQ is the drain current without the RF signal applied, and IDD is the drain current with the RF signal applied.  
15  
15  
10  
10  
S22  
S21  
S11  
5
5
0
S22  
S21  
S11  
0
–5  
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Low Frequency Gain and Return Loss vs. Frequency, VDD = 5 V,  
IDQ = 85 mA, VGG2 = 1 V (S22 Is the Output Return Loss, S21 Is the Gain, and  
S11 Is the Input Return Loss)  
Figure 11. Gain and Return Loss vs. Frequency,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
16  
14  
12  
10  
8
0
–5  
+85°C  
+25°C  
–40°C  
–10  
–15  
–20  
–25  
6
+85°C  
+25°C  
–40°C  
4
2
0
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9.Gain vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 12. Output Return Loss vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
0
–5  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
–10  
–15  
–20  
6
5.0V  
4.0V  
3.3V  
4
2
0
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Input Return Loss vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 13. Gain vs. Frequency at Various VDD Voltages,  
IDQ = 85 mA, VGG2 = 1 V  
Rev. 0 | Page 7 of 21  
 
HMC1126ACEZ  
Data Sheet  
0
0
–5  
1.4V  
1.0V  
5.0V  
4.0V  
3.3V  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. Input Return Loss vs. Frequency at Various VDD Voltages,  
IDQ = 85 mA, VGG2 = 1 V  
Figure 17. Input Return Loss vs. Frequency at Various VGG2 Voltages,  
VDD = 5 V, IDQ = 85 mA  
0
0
5.0V  
4.0V  
3.3V  
1.4V  
1.0V  
–5  
–10  
–15  
–20  
–25  
–5  
–10  
–15  
–20  
–25  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Output Return Loss vs. Frequency at Various VDD Voltages,  
IDQ = 85 mA, VGG2 = 1 V  
Figure 18. Output Return Loss vs. Frequency at Various VGG2 Voltages,  
VDD = 5 V, IDQ = 85 mA  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
1.4V  
1.0V  
85mA  
75mA  
65mA  
4
2
0
4
2
0
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. Gain vs. Frequency at Various VGG2 Voltages,  
VDD = 5 V, IDQ = 85 mA  
Figure 19. Gain vs. Frequency at Various IDQ Currents,  
VDD = 5 V, VGG2 = 1 V  
Rev. 0 | Page 8 of 21  
Data Sheet  
HMC1126ACEZ  
0
22  
20  
18  
16  
14  
12  
10  
8
85mA  
75mA  
65mA  
–5  
–10  
–15  
–20  
5.0V  
4.0V  
3.3V  
6
4
2
0
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 20. Input Return Loss vs. Frequency at Various IDQ Currents,  
VDD = 5 V, VGG2 = 1 V  
Figure 23. OP1dB vs. Frequency at Various VDD Voltages,  
IDQ = 85 mA, VGG2 = 1 V  
0
22  
20  
18  
16  
14  
12  
10  
8
85mA  
75mA  
65mA  
–5  
–10  
–15  
–20  
–25  
1.4V  
1.0V  
6
4
2
0
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 21. Output Return Loss vs. Frequency at Various IDQ Currents,  
VDD = 5 V, VGG2 = 1 V  
Figure 24. OP1dB vs. Frequency at Various VGG2 Voltages,  
VDD = 5 V, IDQ = 85 mA  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
6
4
2
0
6
4
2
0
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 22. Low Frequency OP1dB vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 25. OP1dB vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Rev. 0 | Page 9 of 21  
HMC1126ACEZ  
Data Sheet  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
1.4V  
1.0V  
85mA  
75mA  
65mA  
6
4
2
0
6
4
2
0
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
2
2
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
52  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 26. OP1dB vs. Frequency at Various IDQ Currents,  
VDD = 5 V, VGG2 = 1 V  
Figure 29. PSAT vs. Frequency at Various VGG2 Voltages,  
VDD = 5 V, IDQ = 85 mA  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
5.0V  
4.0V  
3.3V  
85mA  
75mA  
65mA  
6
6
4
4
2
2
0
0
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
7
12  
17  
22  
27  
32  
37  
42  
47  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 27. PSAT vs. Frequency at Various VDD Voltages,  
IDQ = 85 mA, VGG2 = 1 V  
Figure 30. PSAT vs. Frequency at Various IDQ Currents,  
VDD = 5 V, VGG2 = 1 V  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
6
6
4
4
2
2
0
0
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
7
12  
17  
22  
27  
32  
37  
42  
47  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 28. Low Frequency PSAT vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 31. PSAT vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Rev. 0 | Page 10 of 21  
Data Sheet  
HMC1126ACEZ  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
25  
130  
120  
110  
100  
90  
50GHz  
46GHz  
40GHz  
36GHz  
30GHz  
26GHz  
20GHz  
16GHz  
10GHz  
6GHz  
P
GAIN  
PAE  
OUT  
20  
15  
10  
5
I
DD  
2GHz  
0
–10  
80  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
–5  
0
5
10  
INPUT POWER AT 85°C (dBm)  
INPUT POWER (dBm)  
Figure 35. PDISS vs. Input Power at 85°C for Various Frequencies,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 32. POUT, Gain, Power Added Efficiency (PAE), and IDD vs. Input Power at  
2 GHz, VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
200  
150  
100  
50  
25  
20  
15  
10  
5
130  
120  
110  
100  
90  
P
GAIN  
PAE  
OUT  
I
DD  
0
–50  
0
80  
–10  
–5  
0
5
10  
15  
INPUT POWER (dBm)  
GATE VOLTAGE (V)  
Figure 33. POUT, Gain, PAE, and IDD vs. Input Power at 26 GHz,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 36. Drain Current vs. Gate Voltage,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
25  
20  
15  
10  
5
130  
32  
30  
28  
26  
24  
22  
20  
18  
P
GAIN  
PAE  
OUT  
120  
110  
100  
90  
I
DD  
5.0V  
4.0V  
3.3V  
16  
14  
12  
10  
0
–10  
80  
10  
–5  
0
5
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 34. POUT, Gain, PAE, and IDD vs. Input Power at 50 GHz,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 37. OIP3 vs. Frequency at Various VDD Voltages,  
IDQ = 85 mA, VGG2 = 1 V  
Rev. 0 | Page 11 of 21  
HMC1126ACEZ  
Data Sheet  
32  
30  
28  
26  
24  
22  
20  
18  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
16  
14  
12  
10  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 41. OIP3 vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 38. Low Frequency OIP3 vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
80  
70  
60  
50  
40  
30  
20  
10  
32  
30  
28  
26  
24  
22  
20  
18  
16  
52GHz  
50GHz  
46GHz  
42GHz  
38GHz  
34GHz  
30GHz  
26GHz  
22GHz  
18GHz  
14GHz  
10GHz  
6GHz  
2GHz  
1.4V  
14  
1.0V  
12  
10  
–5  
0
5
10  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
P
PER TONE (dBm)  
OUT  
FREQUENCY (GHz)  
Figure 42. Third-Order Intermodulation (IM3) vs. POUT per Tone at Various  
Frequencies, VDD = 3.3 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 39. OIP3 vs. Frequency at Various VGG2 Voltages,  
VDD = 5 V, IDQ = 85 mA  
80  
52GHz  
50GHz  
46GHz  
42GHz  
38GHz  
34GHz  
30GHz  
26GHz  
22GHz  
18GHz  
14GHz  
10GHz  
6GHz  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
70  
60  
50  
40  
30  
20  
10  
2GHz  
85mA  
75mA  
65mA  
–5  
0
5
10  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
P
PER TONE (dBm)  
OUT  
FREQUENCY (GHz)  
Figure 43. IM3 vs. POUT per Tone at Various Frequencies,  
VDD = 4 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 40. OIP3 vs. Frequency at Various IDQ Currents,  
VDD = 5 V, VGG2 = 1 V  
Rev. 0 | Page 12 of 21  
Data Sheet  
HMC1126ACEZ  
80  
70  
60  
50  
40  
30  
20  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
52GHz  
50GHz  
46GHz  
42GHz  
38GHz  
34GHz  
30GHz  
26GHz  
22GHz  
18GHz  
14GHz  
10GHz  
6GHz  
2GHz  
1.4V  
1.0V  
10  
–5  
0
5
10  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
24  
24  
P
PER TONE (dBm)  
FREQUENCY (GHz)  
OUT  
Figure 47. OIP2 vs. Frequency at Various VGG2 Voltages,  
VDD = 5 V, IDQ = 85 mA  
Figure 44. IM3 vs. POUT per Tone at Various Frequencies,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
85mA  
75mA  
65mA  
5.0V  
4.0V  
3.3V  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 48. OIP2 vs. Frequency at Various IDQ Currents,  
VDD = 5 V, VGG2 = 1 V  
Figure 45. OIP2 vs. Frequency at Various VDD Voltages,  
IDQ = 85 mA, VGG2 = 1 V  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 49. OIP2 vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 46. Low Frequency OIP2 vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Rev. 0 | Page 13 of 21  
HMC1126ACEZ  
Data Sheet  
12  
11  
12  
11  
10  
9
5.0V  
4.0V  
3.3V  
85mA  
75mA  
65mA  
10  
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
2
6
10 14 18 22 26 30 34 38 42 46 50  
FREQUENCY (GHz)  
2
6
10 14 18 22 26 30 34 38 42 46 50  
FREQUENCY (GHz)  
Figure 50. Noise Figure vs. Frequency at Various VDD Voltages,  
IDQ = 85 mA, VGG2 = 1 V  
Figure 53. Noise Figure vs. Frequency at Various IDQ Currents,  
VDD = 5 V, VGG2 = 1 V  
15  
12  
14  
13  
12  
11  
10  
9
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
11  
10  
9
8
7
8
6
7
5
6
5
4
4
3
3
2
2
1
1
0
0.25  
0
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
2
6
10 14 18 22 26 30 34 38 42 46 50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 51. Low Frequency Noise Figure vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Figure 54. Noise Figure vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
12  
0
11  
1.4V  
1.0V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
+85°C  
+25°C  
–40°C  
10  
9
8
7
6
5
4
3
2
1
0
2
6
10 14 18 22 26 30 34 38 42 46 50  
FREQUENCY (GHz)  
2
7
12  
17  
22  
27  
32  
37  
42  
47  
52  
FREQUENCY (GHz)  
Figure 52. Noise Figure vs. Frequency at VGG2 Voltages,  
VDD = 5 V, IDQ = 85 mA  
Figure 55. Reverse Isolation vs. Frequency at Various Temperatures,  
VDD = 5 V, IDQ = 85 mA, VGG2 = 1 V  
Rev. 0 | Page 14 of 21  
Data Sheet  
HMC1126ACEZ  
THEORY OF OPERATION  
V
2
V
DD  
GG  
The HMC1126ACEZ is a GaAs, pHEMT, low noise amplifier.  
The low noise amplifier uses a fundamental cell of two field  
effect transistors (FETs), as shown in Figure 56. This  
fundamental cell is duplicated a number of times, thereby  
increasing the operational bandwidth.  
0.1µF  
0.1µF  
100pF  
100pF  
RFOUT  
The negative VGG1 sets the supply current, and the voltage on  
V
GG2 ensures that there are approximately equal dc voltages  
GND  
RFIN  
across the top and bottom FETs. The RFIN and RFOUT pins  
are ac-coupled and matched to 50 Ω. VDD is applied through an  
integrated choke. The 0.1 μF and 100 pF decoupling capacitors  
are integrated. As a result, no external passive components are  
required for operation.  
V
1
GG  
100pF  
0.1µF  
GND  
GND  
Figure 56. Simplified Block Diagram  
Rev. 0 | Page 15 of 21  
 
 
HMC1126ACEZ  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 57 shows the basic connections for operating the  
HMC1126ACEZ. Because the RFIN and RFOUT pins are  
internally ac-coupled, no external ac coupling is required.  
Because VDD, VGG1, and VGG2 are internally decoupled, no  
external components are required on these pins. Figure 57 shows  
the configuration used to characterize and qualify the device.  
Power-Up  
The following power-up sequencing is recommended:  
1. Connect GND to ground.  
2. Set VGG1 to −2 V.  
3. Set VDD to 5 V.  
4. Set VGG2 to 1 V.  
5. Increase VGG1 to achieve an IDQ = 85 mA.  
6. Apply the RF signal.  
See the HMC1126-EVALZ user guide for information on using  
the evaluation board.  
POWER-UP AND POWER-DOWN SEQUENCING  
Power-Down  
To avoid damaging the device, careful attention must be paid to  
the power-up and power-down sequencing of the RF input, the  
gate bias voltages, and the drain bias voltage.  
The following power-down sequencing is recommended:  
1. Turn off the RF signal.  
2. Decrease VGG1 to −2 V to achieve an IDQ = 0 mA.  
3. Decrease VGG2 to 0 V.  
4. Decrease VDD to 0 V.  
5. Increase VGG1 to 0 V.  
V
DD  
(5V)  
1
2
3
18  
17  
16  
15  
14  
13  
GND RFOUT  
RFIN  
GND  
4
5
6
GND  
GND  
V
1
V
2
GG  
GG  
(–2V TO 0V)  
(1V)  
Figure 57. Basic Connections  
Rev. 0 | Page 16 of 21  
 
 
 
Data Sheet  
HMC1126ACEZ  
The target drain current must first be determined and set. This  
current must be set based on the maximum drain current  
required during operation, including when the device is  
generating the maximum expected output power. In this case, a  
target drain current of 120 mA was chosen. Set the target value  
by attaching a 2.05 kΩ ground referenced resistor to the ISENSE  
pin (Pin 25) on the HMC920LP5E.  
BIASING THE HMC1126ACEZ WITH THE  
HMC920LP5E  
The HMC920LP5E (see Figure 58) is designed to provide active  
bias control for enhancement mode and depletion mode  
amplifiers, such as the HMC1126ACEZ. The HMC920LP5E  
measures and regulates drain current to compensate for  
temperature changes and part to part variations.  
To ensure adequate headroom, the supply voltage for the  
HMC920LP5E must be set higher than the target drain voltage to  
the HMC1126ACEZ (5 V). Accordingly, VDD1 and VDD2 on the  
HMC920LP5E are set to 5.3 V.  
VDD1  
VDD1  
TRGOUT  
VDRAIN  
VDRAIN  
VGATE  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
DRAIN  
LDO  
The voltage on the LDOCC pin (Pin 29) on the HMC920LP5E  
drives the VDRAIN pins which in turn drive the V  
DD pin of the  
DIGITAL  
LDO  
HMC1126ACEZ. Because the LDOCC output is connected to the  
VDRAIN output through an internal metal-oxide semiconductor  
field effect transistor (MOSFET) switch with an on resistance of  
0.5 Ω, the LDOCC voltage (VLDOCC) must be set slightly higher  
than the target drain voltage to the HMC1126ACEZ. To  
determine the required LDOCC voltage, use the following  
equation:  
VDIG  
GATE  
CONTROL  
VDIGFB  
PORCAP  
BGCAP  
EN  
CONTROL  
BLOCK  
VGATEFB  
VNEGIN  
VNEGFB  
AGND  
BANDGAP  
NEGATIVE VOLTAGE  
REGULATOR  
V
LDOCC = VDRAIN + IDRAIN × 0.5  
CURALM  
HMC920LP5E  
Therefore, VLDOCC = 5 V+ (0.12 × 0.5) = 5.06 V.  
PACKAGE  
BASE  
To set VLDOCC to 5.06 V, use the following equation with R5 set  
to 10 kΩ:  
R10 = (R5/2) × (VLDOCC − 2)  
Figure 58. Functional Diagram of the HMC920LP5E  
Therefore, R10 = (10000/2) × (5.06 – 2) = 15.3 kΩ.  
Additionally, the HMC920LP5E properly sequences gate and drain  
voltages to ensure safe on and off operation and offers circuit  
self protection in the event of a short circuit. The active bias  
controller contains an internal charge pump that generates the  
negative voltage needed to drive the VGG1 pin on the  
HMC1126ACEZ. Alternatively, an external negative voltage can be  
provided.  
Setting VGG1 and VGG  
2
The VGG2 fixed bias voltage is set to 1 V using a resistor divider that  
is derived from VDD1 and VDD2 on the HMC920LP5E. Because  
the current into the VGG2 pin is low (<1 mA), large resistor  
values in the kΩ range can be used to set the VGG2 voltage and save  
on overall current usage.  
The recommended minimum voltage for VGG1 into the  
HMC1126ACEZ is −2 V, which is also the default value for the  
VNEGIN pin on the HMC920LP5E. As a result, there is no need to  
adjust the VNEGIN and VGATE voltages.  
For more information regarding the use of the HMC920LP5E,  
refer to the HMC920LP5E data sheet and the AN-1363  
Application Note.  
Application Circuit Setup  
Refer to the HMC920LP5E data sheet for the detailed schematic.  
Figure 59 shows the application circuit for bias control of the  
HMC1126ACEZ using the HMC920LP5E. The current through  
the HMC920LP5E is measured, and the VGATE output voltage  
serves until the setpoint drain current is achieved. The various  
external components around the HMC920LP5E are set as follows  
in this section.  
Rev. 0 | Page 17 of 21  
 
 
HMC1126ACEZ  
Data Sheet  
V
LDOCC  
5.06V  
R5  
10kΩ  
R10  
15.3kΩ  
+
C9  
10µF  
R16  
1.69kΩ  
C24  
100pF  
R15  
3.32kΩ  
R14  
1kΩ  
R4  
2.05Ω  
V
DD  
V
DD  
5.3V  
VDD1  
TRGOUT  
VDRAIN  
VDRAIN  
VGATE  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
VDRAIN = 5V  
IDRAIN = 120mA  
C6  
4.7µF  
C19  
22µF  
VDD1  
C22  
0.1µF  
RFOUT  
VDIG  
HMC1126ACEZ  
RFIN  
VDIGFB  
PORCAP  
BGCAP  
EN  
C21  
10µF  
HMC920LP5E  
VGATEFB  
VNEGIN  
VNEGFB  
AGND  
V
1
V
2
GG  
GG  
CURALM  
R2  
4kΩ  
R1  
1kΩ  
C6  
4.7µF  
Figure 59. Application Circuit Using the HMC920LP5E with the HMC1126ACEZ (Additional Circuitry Omitted for Clarity)  
VGATE initially drops to −2 V, and VDRAIN rises to 5 V. Then,  
VGATE and VGG1 increase until IDRAIN equals 120 mA. The  
closed control loop then regulates IDRAIN to 120 mA. When the  
EN pin goes low, VGATE and VGG1 drop back to −2 V and  
VDRAIN drops to 0 V.  
HMC920LP5E Bias Sequence  
When the HMC920LP5E bias control circuit is set up, the  
HMC1126ACEZ bias can be toggled on and off by applying 3.5 V  
(high) or 0 V (low) to the EN pin of the HMC920LP5E. If EN is  
left floating, the pin floats high. When EN is set to 3.5 V,  
Rev. 0 | Page 18 of 21  
 
Data Sheet  
HMC1126ACEZ  
The current and temperature limit of IDD under the constant  
current operation is usually set by the thermal limitations  
detailed in the Absolute Maximum Ratings section (see the  
continuous power dissipation specification in Table 5).  
Increasing IDD does not indefinitely increase OP1dB. Therefore,  
consider the trade-off between the power dissipation and OP1dB  
performance when using a constant drain current bias.  
CONSTANT DRAIN CURRENT BIASING vs.  
CONSTANT GATE VOLTAGE BIASING  
Voltage Biasing  
The HMC920LP5E uses closed loop feedback to continuously  
adjust VGATE to maintain a constant drain current bias over the  
dc supply variation, temperature, and part to part variations.  
Constant drain current bias is an ideal method for reducing  
time in calibration procedures and maintaining consistent  
performance over time.  
The performance of the constant drain current circuit is  
summarized in Figure 60 to Figure 67. These figures include  
comparisons with a constant gate voltage bias. Note that Figure 60  
indicates a current consumption of 140 mA, which includes the  
complete current consumption of the circuit, that is, 120 mA drain  
current for the HMC1126ACEZ and an additional 20 mA of  
quiescent current in the HMC920LP5E. Using 140 mA as the  
current consumption also results in lower PAE compared to a  
constant gate voltage bias.  
In comparison to a constant gate voltage bias, where the current  
increases dynamically when the RF power is applied, a constant  
drain current bias results in constant power consumption.  
The OP1dB performance for the constant drain current bias  
can be varied by varying the bias setpoint. By increasing the bias  
current, OP1dB increases, as shown in Figure 66. The trade-off  
with a constant drain current is that this higher drain current is  
present for all RF input and output power levels.  
180  
14  
CONSTANT DRAIN CURRENT BIAS  
CONSTANT GATE VOLTAGE BIAS  
170  
CONSTANT DRAIN CURRENT BIAS  
CONSTANT GATE VOLTAGE BIAS  
12  
160  
150  
140  
130  
120  
110  
100  
90  
10  
8
6
4
2
80  
–10  
0
–10  
–5  
0
5
10  
15  
–5  
0
5
10  
15  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 60. IDD vs. Input Power, VDD = 5 V, Frequency = 26 GHz, Constant Drain  
Current Bias (IDD = 140 mA) and Constant Gate Voltage Bias  
Figure 62. PAE vs. Input Power, VDD = 5 V, Frequency = 26 GHz,  
Constant Drain Current Bias (IDD = 140 mA) and Constant Gate Voltage Bias  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
CONSTANT DRAIN CURRENT BIAS  
CONSTANT GATE VOLTAGE BIAS  
6
6
4
2
0
CONSTANT DRAIN CURRENT BIAS  
CONSTANT GATE VOLTAGE BIAS  
4
2
0
–10  
–5  
0
5
10  
15  
2
6
10  
14  
18  
22  
26  
30  
34  
38  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 61. Output Power vs. Input Power, VDD = 5 V, Frequency = 26 GHz,  
Constant Drain Current Bias (IDD = 140 mA) and Constant Gate Voltage Bias  
Figure 63. OP1dB vs. Frequency, VDD =5 V, Constant Drain Current Bias (IDD  
140 mA) and Constant Gate Voltage Bias  
=
Rev. 0 | Page 19 of 21  
 
 
HMC1126ACEZ  
Data Sheet  
22  
20  
18  
16  
14  
12  
10  
22  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
8
6
4
2
0
160mA  
140mA  
130mA  
120mA  
6
4
2
0
2
6
10  
14  
18  
22  
26  
30  
34  
38  
2
6
10  
14  
18  
22  
26  
30  
34  
38  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 64. OP1dB vs. Frequency for Various Temperatures, Data Measured  
with Constant Drain Current  
Figure 66. OP1dB vs. Frequency for Various Drain Currents,  
Data Measured with Constant Drain Current Bias  
24  
22  
20  
18  
16  
14  
12  
24  
22  
20  
18  
16  
14  
12  
10  
8
10  
+85°C  
+25°C  
8
160mA  
140mA  
130mA  
120mA  
–40°C  
6
6
4
2
0
4
2
0
2
6
10  
14  
18  
22  
26  
30  
34  
38  
2
6
10  
14  
18  
22  
26  
30  
34  
38  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 65. PSAT vs. Frequency for Various Temperatures,  
Data Measured with Constant Drain Current  
Figure 67. PSAT vs. Frequency for Various Drain Currents,  
Data Measured with Constant Drain Current Bias  
Rev. 0 | Page 20 of 21  
 
 
Data Sheet  
HMC1126ACEZ  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.35  
0.30  
0.25  
0.10  
BSC  
PIN 1  
CORNER  
PIN 1 CORNER  
OR  
INDICAT  
19  
24  
18  
1
3.25  
REF  
2.90 BSC  
SQ  
13  
6
7
12  
0.65  
BSC  
0.50  
0.45  
0.40  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.18  
0.15  
0.12  
Ø
1.70  
1.60  
1.50  
1.35 REF  
(Vent Hole)  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.29  
0.25  
0.21  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 68. 24-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
5.00 mm × 5.00 mm Body and 1.60 mm Package Height  
(CE-24-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
MSL  
Model1, 2  
Temperature Range Rating3  
Package Description  
Package Option  
HMC1126ACEZ  
HMC1126ACEZ-R7 −40°C to +85°C  
HMC1126-EVALZ  
−40°C to +85°C  
MSL3  
MSL3  
24-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV] CE-24-2  
24-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV] CE-24-2  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 When ordering the evaluation board only, reference the model number, HMC1126-EVALZ.  
3 See the Absolute Maximum Ratings section for additional information.  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D25048-11/21(0)  
Rev. 0 | Page 21 of 21  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY