HMC1144 [ADI]

GaAs, pHEMT, MMIC, Medium Power Amplifier;
HMC1144
型号: HMC1144
厂家: ADI    ADI
描述:

GaAs, pHEMT, MMIC, Medium Power Amplifier

文件: 总16页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
35 GHz to 70 GHz, GaAs, pHEMT, MMIC,  
Medium Power Amplifier  
Data Sheet  
HMC1144  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Output power for 1 dB compression (P1dB): 21 dBm typical  
Saturated output power (PSAT): 22 dBm typical  
Gain: 19 dB typical  
2
3
4
5
6
Output third-order intercept (IP3): 28 dBm typical  
Supply voltage: 4 V at 320 mA  
50 Ω matched input/output  
7
RFOUT  
Die size: 2.3 mm × 1.8 mm × 0.05 mm  
HMC1144  
APPLICATIONS  
Test instrumentation  
1
RFIN  
Microwave radios and very small aperture terminals (VSATs)  
Military and space  
Telecommunications infrastructure  
Fiber optics  
12  
11  
10  
9
8
Figure 1.  
GENERAL DESCRIPTION  
The HMC1144 is a gallium arsenide (GaAs), pseudomorphic  
high electron mobility transfer (pHEMT), monolithic microwave  
integrated circuit (MMIC), distributed power amplifier that  
operates from 35 GHz to 70 GHz. In the lower band of 35 GHz  
to 50 GHz, the HMC1144 provides 19 dB (typical) of gain,  
28 dBm output IP3, and 19 dBm and 19.5 dBm, respectively, of  
output P1dB gain compression. In the upper band of 50 GHz to  
70 GHz, the HMC1144 provides 19 dB (typical) of gain, 32 dBm  
output IP3, and 21 dBm of output power at 1 dB gain  
compression. The HMC1144 requires 320 mA from a 4 V  
supply. The HMC1144 amplifier inputs/outputs are internally  
matched to 50 Ω, facilitating integration into multichip modules  
(MCMs). All data is taken with the chip connected via two  
0.025 mm (1 mil) wire bonds of 0.076 mm (3 mil) minimal  
length.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC1144  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 11  
Applications Information.............................................................. 12  
Alternate Biasing Configuration .............................................. 12  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Electrical Specifications................................................................... 3  
35 GHz to 40 GHz Frequency Range......................................... 3  
40 GHz to 50 GHz Frequency Range......................................... 3  
50 GHz to 70 GHz Frequency Range......................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Mounting and Bonding Techniques for Millimeterwave GaAs  
MMICs......................................................................................... 13  
Typical Application Circuit........................................................... 14  
Assembly Diagram ..................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
7/2017—Rev. B to Rev. C  
Changes to Title and General Description Section...................... 1  
Added Table 1; Renumbered Sequentially .................................... 3  
Changes to Figure 10 to Figure 15.................................................. 7  
Changes to Figure 16 to Figure 21.................................................. 8  
Changes to Figure 22 to Figure 27.................................................. 9  
Added Figure 28; Renumbered Sequentially .............................. 10  
Changes to Figure 32...................................................................... 10  
10/2016—Rev. A to Rev. B  
Change to Features Section ............................................................. 1  
Changes to Mounting and Bonding Techniques for  
Millimeterwave GaAs MMICs Section, Figure 35,  
and Figure 36................................................................................... 12  
Updated Outline Dimensions ....................................................... 15  
Changes to Ordering Guide .......................................................... 15  
1/2016—Rev. 0 to Rev. A  
Changes to Table 3............................................................................ 4  
Added Figure 28 to Figure 32; Renumbered Sequentially .......... 8  
10/2015—Revision 0: Initial Version  
Rev. C | Page 2 of 16  
 
Data Sheet  
HMC1144  
ELECTRICAL SPECIFICATIONS  
35 GHz TO 40 GHz FREQUENCY RANGE  
TA = 25°C, VDD = VDD1A = VDD2A = VDD3A = VDD4A = 4 V, IDD = IDD1A + IDD2A + IDD3A + IDD4A = 320 mA, unless otherwise stated. Adjust  
GG1B from −2 V to 0 V to achieve IDD = 320 mA typical.  
V
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
35  
40  
19  
Gain Variation Over Temperature  
RETURN LOSS  
0.022  
dB/°C  
Input  
Output  
33  
16  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
IDD = 290 mA  
P1dB  
PSAT  
IP3  
19  
21  
28  
dBm  
dBm  
dBm  
Measurement taken at POUT/tone = 10 dBm  
IDD  
320  
mA  
4
4
4
V
V
V
IDD = 320 mA  
IDD = 350 mA  
40 GHz TO 50 GHz FREQUENCY RANGE  
TA = 25°C, VDD = VDD1A = VDD2A = VDD3A = VDD4A = 4 V, IDD = IDD1A + IDD2A + IDD3A + IDD4A = 320 mA, unless otherwise stated. Adjust  
GG1B from −2 V to 0 V to achieve IDD = 320 mA typical.  
V
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
40  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
50  
17  
19  
Gain Variation Over Temperature  
RETURN LOSS  
0.023  
dB/°C  
Input  
Output  
35  
16  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
IDD = 290 mA  
P1dB  
PSAT  
IP3  
17  
19.5  
21.5  
28  
dBm  
dBm  
dBm  
Measurement taken at POUT/tone = 10 dBm  
IDD  
320  
mA  
4
4
4
V
V
V
IDD = 320 mA  
IDD = 350 mA  
Rev. C | Page 3 of 16  
 
 
 
HMC1144  
Data Sheet  
50 GHz TO 70 GHz FREQUENCY RANGE  
TA = 25°C, VDD = VDD1A = VDD2A = VDD3A = VDD4A = 4 V, IDD = IDD1A + IDD2A + IDD3A + IDD4A = 320 mA, unless otherwise stated. Adjust  
GG1B from −2 V to 0 V to achieve IDD = 320 mA typical.  
V
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
50  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
70  
17  
19  
Gain Variation Over Temperature  
RETURN LOSS  
0.016  
dB/°C  
Input  
Output  
22  
25  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
IDD = 290 mA  
P1dB  
PSAT  
IP3  
19  
21  
22  
32  
dBm  
dBm  
dBm  
Measurement taken at POUT/tone = 10 dBm  
IDD  
320  
mA  
4
4
4
V
V
V
IDD = 320 mA  
IDD = 350 mA  
Rev. C | Page 4 of 16  
 
Data Sheet  
HMC1144  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Drain Bias Voltage (VDD1A to VDD4A)  
Gate Bias Voltage (VGG1B)  
RF Input Power (RFIN)  
Channel Temperature  
Continuous Power Dissipation (PDISS),  
TA = 85°C (Derate 19.2 mW/°C Above 85°C)  
4.5 V  
−2 V to 0 V dc  
22 dBm  
175°C  
1.770 W  
ESD CAUTION  
Thermal Resistance, θJA (Channel to  
Bottom Die)  
50.83°C/W  
Storage Temperature Range  
Operating Temperature Range  
ESD Sensitivity, Human Body Model (HBM)  
−65°C to +150°C  
−55°C to +85°C  
125 V, Class 0B  
Rev. C | Page 5 of 16  
 
 
HMC1144  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1A  
V
1A V 2A  
V
3A  
V
4A  
GG  
DD  
DD  
DD  
DD  
2
3
4
5
6
RFOUT  
7
HMC1144  
TOP VIEW  
(Not to Scale)  
RFIN  
1
12  
11  
10  
9
8
V
1B  
V
1B V 2B  
V
3B  
V
4B  
DD  
GG  
DD  
DD  
DD  
Figure 2. Pad Configuration  
Table 5. Pad Function Descriptions  
Pad No.  
Mnemonic  
Description  
1
2
RFIN  
VGG1A  
RF Input. This pad is ac-coupled and matched to 50 Ω. See Figure 3 for the interface schematic.  
Gate Control Pad for Alternate Bias Configuration. See Figure 4 for the interface schematic..  
3 to 6  
VDD1A to VDD4A Drain Bias Voltage Pads for the Amplifier. External bypass capacitors of 100 pF and 0.1 µF are required.  
See Figure 5 for the interface schematic.  
7
RFOUT  
RF Output. This pad is ac-coupled and matched to 50 Ω. See Figure 6 for the interface schematic.  
8 to 11  
VDD4B to VDD1B Drain Bias Voltage Pads for Alternate Bias Configuration. External bypass capacitors of 100 pF and 0.1 µF  
are required for decoupling. See Figure 7 for the interface schematic.  
12  
VGG1B  
Gate Control Pad for the Amplifier. External bypass capacitors of 100 pF and 0.1 µF are required. See Figure 8  
for the interface schematic.  
Die Bottom GND  
Die bottom must be connected to RF/dc ground. See Figure 9 for the interface schematic.  
INTERFACE SCHEMATICS  
V
1B TO V 4B  
DD  
DD  
RFIN  
Figure 3. RFIN Interface Schematic  
Figure 7. VDD1B to VDD4B Interface Schematic  
V
1A  
V
1B  
GG  
GG  
Figure 4. VGG1A Interface Schematic  
Figure 8. VGG1B Interface Schematic  
V
1A TO V 4A  
DD  
DD  
GND  
Figure 5. VDD1A to VDD4A Interface Schematic  
Figure 9. GND Interface Schematic  
RFOUT  
Figure 6. RFOUT Interface Schematic  
Rev. C | Page 6 of 16  
 
 
 
 
 
 
 
 
 
Data Sheet  
HMC1144  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
–5  
S11  
S21  
–10  
S22  
–15  
–20  
–25  
2.5V  
3.0V  
3.5V  
4.0V  
0
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
72  
72  
30  
36  
42  
48  
54  
60  
66  
72  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Response Gain and Return Loss vs. Frequency  
Figure 13. Gain vs. Frequency for Various VDD at IDD = 250 mA  
25  
0
+85°C  
+25°C  
–55°C  
20  
15  
10  
5
–5  
–10  
–15  
–20  
–25  
+85°C  
+25°C  
–55°C  
0
30  
36  
42  
48  
54  
60  
66  
30  
36  
42  
48  
54  
60  
66  
72  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 11. Gain vs. Frequency at Various Temperatures  
Figure 14. Input Return Loss vs. Frequency at Various Temperatures  
25  
20  
15  
10  
5
0
200mA  
250mA  
320mA  
–5  
–10  
–15  
–20  
–25  
150mA  
200mA  
250mA  
290mA  
320mA  
350mA  
0
30  
36  
42  
48  
54  
60  
66  
30  
36  
42  
48  
54  
60  
66  
72  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Gain vs. Frequency for Various IDD at VDD = 4 V  
Figure 15. Input Return Loss vs. Frequency for Various IDD at VDD = 4 V  
Rev. C | Page 7 of 16  
 
HMC1144  
Data Sheet  
0
0
–5  
2.5V  
3.0V  
3.5V  
4.0V  
2.5V  
3.0V  
3.5V  
4.0V  
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
30  
36  
42  
48  
54  
60  
66  
72  
30  
36  
42  
48  
54  
60  
66  
72  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. Input Return Loss vs. Frequency for Various VDD at IDD = 250 mA  
Figure 19. Output Return Loss vs. Frequency for Various VDD at IDD = 250 mA  
0
0
+85°C  
+25°C  
–55°C  
+85°C  
+25°C  
–55°C  
–10  
–5  
–10  
–15  
–20  
–25  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
30  
36  
42  
48  
54  
60  
66  
72  
30  
36  
42  
48  
54  
60  
66  
72  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 17. Output Return Loss vs. Frequency at Various Temperatures  
Figure 20. Reverse Isolation vs. Frequency at Various Temperatures  
0
24  
20  
16  
12  
8
200mA  
250mA  
320mA  
–5  
–10  
–15  
–20  
–25  
4
+85°C  
+25°C  
–55°C  
0
30  
36  
42  
48  
54  
60  
66  
72  
30  
36  
42  
48  
54  
60  
66  
72  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 18. Output Return Loss vs. Frequency for Various IDD at VDD = 4 V  
Figure 21. P1dB vs. Frequency at Various Temperatures  
Rev. C | Page 8 of 16  
Data Sheet  
HMC1144  
24  
20  
16  
12  
8
40  
35  
30  
25  
20  
15  
10  
+85°C  
+25°C  
–55°C  
4
290mA  
320mA  
350mA  
0
30  
36  
42  
48  
54  
60  
66  
72  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 25. Output IP3 vs. Frequency for Various Temperatures at  
POUT = 10 dBm/Tone  
Figure 22. P1dB vs. Frequency for Various IDD at VDD = 4 V  
40  
24  
290mA  
320mA  
350mA  
35  
20  
16  
12  
8
30  
25  
20  
15  
10  
4
+85°C  
+25°C  
–55°C  
0
30  
36  
42  
48  
54  
60  
66  
72  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 23. PSAT vs. Frequency at Various Temperatures  
Figure 26. Output IP3 vs. Frequency for Various IDD at POUT = 10 dBm/tone  
24  
20  
16  
12  
8
55  
50  
45  
40  
35  
30GHz  
35GHz  
40GHz  
45GHz  
50GHz  
55GHz  
60GHz  
65GHz  
70GHz  
30  
25  
20  
4
290mA  
320mA  
350mA  
0
30  
36  
42  
48  
54  
60  
66  
72  
6
8
10  
12  
14  
FREQUENCY (GHz)  
P
/TONE (dBm)  
OUT  
Figure 24. PSAT vs. Frequency for Various IDD at VDD = 4 V  
Figure 27. Output Third-Order Intermodulation (IMD3) vs. POUT/Tone for  
Various Frequencies at VDD = 4 V, IDD = 320 mA  
Rev. C | Page 9 of 16  
HMC1144  
Data Sheet  
25  
520  
470  
420  
370  
320  
270  
25  
20  
15  
10  
5
520  
P
OUT  
GAIN  
PAE  
I
DD  
20  
15  
10  
5
470  
420  
370  
GAIN  
320  
270  
P
OUT  
PAE  
I
DD  
0
–10  
0
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
–8  
–6  
–4  
–2  
0
2
4
6
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 28. POUT, Gain, PAE, and IDD vs. Input Power at 35 GHz  
Figure 31. POUT, Gain, PAE, and IDD vs. Input Power at 65 GHz  
25  
20  
15  
10  
5
520  
1.8  
1.7  
65GHz  
55GHz  
45GHz  
35GHz  
470  
420  
370  
320  
270  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
GAIN  
P
OUT  
PAE  
I
DD  
0
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 32. Power Dissipation (PDISS) vs. Input Power at 85°C  
for Various Frequencies  
Figure 29. POUT, Gain, PAE, and IDD vs. Input Power at 45 GHz  
10  
25  
20  
15  
10  
5
520  
9
8
7
6
5
4
3
2
1
0
470  
420  
370  
320  
270  
GAIN  
P
OUT  
PAE  
I
25°C  
DD  
0
–10  
50  
55  
60  
65  
70  
75  
–8  
–6  
–4  
–2  
0
2
4
6
FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 33. Noise Figure vs. Frequency at 25°C  
Figure 30. POUT, Gain, PAE, and IDD vs. Input Power at 55 GHz  
Rev. C | Page 10 of 16  
Data Sheet  
HMC1144  
THEORY OF OPERATION  
The architecture of the HMC1144 power amplifier is shown in  
Figure 34. The HMC1144 uses two cascaded, four-stage amplifiers  
operating in quadrature between two 90° hybrids. This balanced  
amplifier approach forms an amplifier with a combined gain of  
19 dB and a saturated output power (PSAT) of 22 dBm. The 90°  
hybrids ensure that the input and output return losses are greater  
than 15 dB. See the application circuits shown in Figure 38 and  
Figure 39 for further details on biasing the various blocks.  
RFOUT  
RFIN  
Figure 34. HMC1144 Architecture  
Rev. C | Page 11 of 16  
 
 
HMC1144  
Data Sheet  
APPLICATIONS INFORMATION  
The HMC1144 is a GaAs, pHEMT, MMIC power amplifier.  
Capacitive bypassing is required for VDD1A through VDD4A and  
The VDD = 4 V and IDD = 320 mA bias conditions are the operating  
points recommended to optimize the overall performance. Unless  
otherwise noted, the data shown was taken using the recomm-  
ended bias condition. Operation of the HMC1144 at different  
bias conditions may provide performance that differs from what  
is shown in the Typical Performance Characteristics section.  
Biasing the HMC1144 for higher drain current typically results  
in higher P1dB, output IP3, and gain, but at the expense of  
increased power consumption.  
VDD1B through VDD4B (see Figure 38). VGG1B is the gate bias  
pad for all four gain stages. Apply a gate bias voltage to VGG1B  
and use capacitive bypassing as shown in Figure 38.  
All measurements for this device were taken using the typical  
application circuit (see Figure 38) and configured as shown in  
the assembly diagram (see Figure 40).  
The following is the recommended bias sequence during  
power-up:  
ALTERNATE BIASING CONFIGURATION  
It is possible to bias the gate from the north (instead of the  
south) and bias the drain from the south (instead of the north).  
Although this alternate bias configuration was not measured  
during production testing and was evaluated minimally during  
product validation, it does offer flexibility in cases where it is  
more convenient to have the gate and drain bias approach the  
die from a different direction (see Figure 39).  
1. Connect to ground.  
2. Set the gate bias voltage to −2 V.  
3. Set all the drain bias voltages, VDD = 4 V.  
4. Increase the gate bias voltage to achieve a quiescent  
current, IDD = 320 mA.  
5. Apply the RF signal.  
The following is the recommended bias sequence during  
power-down:  
In the alternate bias configuration, capacitive bypassing is  
required for the VGG1A pad to which the bias voltage is applied,  
as well as for all eight VDDxA/VDDxB pads.  
1. Turn off the RF signal.  
2. Decrease the gate bias voltage to −2 V to achieve  
IDD = 0 mA (approximately).  
3. Decrease all of the drain bias voltages to 0 V.  
4. Increase the gate bias voltage to 0 V.  
V
1A  
V
2A  
V
3A  
V
4A  
DD  
DD  
DD  
DD  
V
1B  
V
2B  
V
3B  
V
4B  
DD  
DD  
DD  
DD  
RFIN  
RFOUT  
1A  
1B  
2A  
2B  
3A  
3B  
4A  
4B  
V
V
1A  
1B  
GG  
GG  
Figure 35. Simplified Block Diagram  
Rev. C | Page 12 of 16  
 
 
Data Sheet  
HMC1144  
Handling Precautions  
MOUNTING AND BONDING TECHNIQUES FOR  
MILLIMETERWAVE GaAs MMICS  
To avoid permanent damage, follow these storage, cleanliness,  
static sensitivity, transient, and general handling precautions:  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy (see the Handling Precautions section, the  
Mounting section, and the Wire Bonding section).  
Place all bare die in either waffle or gel-based ESD  
protective containers and then seal the die in an ESD  
protective bag for shipment. After the sealed ESD  
protective bag is opened, store all die in a dry nitrogen  
environment.  
Microstrip, 50 Ω, transmission lines on 0.127 mm (5 mil) thick  
alumina, thin film substrates are recommended for bringing the  
radio frequency to and from the chip (see Figure 36). When using  
0.254 mm (10 mil) thick alumina, thin film substrates, raise the  
die 0.150 mm (6 mil) to ensure that the surface of the die is  
coplanar with the surface of the substrate. One way to accomplish  
this is to attach the 0.05 mm (2 mil) thick die to a 0.150 mm  
(6 mil) thick, molybdenum (Mo) heat spreader (moly tab),  
which can then be attached to the ground plane (see Figure 37).  
Handle the chips in a clean environment. Do not attempt  
to clean the chip using liquid cleaning systems.  
Follow ESD precautions to protect against ESD strikes.  
While bias is applied, suppress instrument and bias supply  
transients. Use shielded signal and bias cables to minimize  
inductive pickup.  
Handle the chip along the edges with a vacuum collet or  
with a sharp pair of bent tweezers. The surface of the chip  
may have fragile air bridges and must not be touched with  
vacuum collet, tweezers, or fingers.  
0.05mm (0.002") THICK GaAs MMIC  
WIRE BOND  
0.076mm  
(0.003")  
Mounting  
The chip is back metallized and can be die mounted with gold  
(Au) and tin (Sn) eutectic preforms or with electrically  
conductive epoxy. Ensure that the mounting surface is clean  
and flat.  
RF GROUND PLANE  
0.127mm (0.005") THICK ALUMINA  
THIN FILM SUBSTRATE  
When a eutectic die is attached, an 80% gold/20% tin preform is  
recommended with a work surface temperature of 255°C and a  
tool temperature of 265°C. When hot 90% nitrogen/10% hydrogen  
gas is applied, ensure that the tool tip temperature is 290°C. Do  
not expose the chip to a temperature greater than 320°C for  
more than 20 sec. For attachment, no more than 3 sec of  
scrubbing is required.  
Figure 36. Routing RF Signals  
0.05mm (0.002") THICK GaAs MMIC  
WIRE BOND  
0.076mm  
(0.003")  
When an epoxy die is attached, apply a minimum amount of  
epoxy to the mounting surface so that a thin epoxy fillet is  
observed around the perimeter of the chip after it is placed into  
position. Cure the epoxy per the schedule of the manufacturer.  
RF GROUND PLANE  
0.150mm (0.005") THICK  
Wire Bonding  
MOLY TAB  
0.254mm (0.010") THICK ALUMINA  
THIN FILM SUBSTRATE  
RF bonds made with two 1 mil wires are recommended. Ensure  
that these bonds are thermosonically bonded with a force of 40 g to  
60 g. DC bonds of 0.001˝ (0.025 mm) in diameter, thermosonically  
bonded, are recommended. Create ball bonds with a force of  
40 g to 50 g and wedge bonds with a force of 18 g to 22 g. Create  
all bonds with a nominal stage temperature of 150°C. Apply a  
minimum amount of ultrasonic energy to achieve reliable bonds.  
Keep all bonds as short as possible, less than 12 mil (0.31 mm).  
Figure 37. Routing RF Signals Using Moly Tab  
Place microstrip substrates as close to the die as possible to  
minimize bond wire length. Typical die to substrate spacing is  
0.076 mm to 0.152 mm (3 mil to 6 mil).  
Rev. C | Page 13 of 16  
 
 
 
 
 
 
HMC1144  
Data Sheet  
TYPICAL APPLICATION CIRCUIT  
V
DD  
0.1µF  
0.1µF  
100pF  
100pF  
100pF  
100pF  
3
4
5
6
RFIN  
0.1µF  
100pF  
RFOUT  
1
7
8
9
10  
11  
12  
100pF  
100pF  
100pF  
100pF  
V
1B  
GG  
100pF  
0.1µF  
0.1µF  
THESE CAPACITORS ARE FOR DECOUPLING ONLY.  
NO DC BIAS APPLIED.  
Figure 38. Typical Application Circuit  
THESE CAPACITORS ARE FOR DECOUPLING ONLY.  
NO DC BIAS APPLIED.  
0.1µF  
0.1µF  
V
1A  
GG  
0.1µF  
100pF  
100pF  
100pF  
100pF  
2
3
4
5
9
6
8
RFIN  
RFOUT  
1
7
10  
11  
100pF  
100pF  
100pF  
100pF  
V
1 TO V 4A  
DD  
DD  
0.1µF  
0.1µF  
Figure 39. Alternate Bias Application Circuit  
Rev. C | Page 14 of 16  
 
 
 
Data Sheet  
HMC1144  
ASSEMBLY DIAGRAM  
TO V SUPPLY  
DD  
0.1µF  
0.1µF  
ALL BOND WIRES ARE  
1mil DIAMETER  
100pF  
100pF  
100pF  
100pF  
3mil NOMINAL GAP  
50Ω TRANSMISSION LINE  
100pF  
0.1µF  
100pF  
100pF  
100pF  
100pF  
0.1µF  
0.1µF  
TO V 1B SUPPLY  
GG  
Figure 40. Assembly Diagram  
Rev. C | Page 15 of 16  
 
 
HMC1144  
Data Sheet  
OUTLINE DIMENSIONS  
2.300  
0.093  
0.206  
0.201  
0.201  
0.200  
0.400  
0.200  
0.203  
0.199  
0.199  
0.051  
2
3
4
5
6
0.130  
0.130  
0.888  
7
0.130  
0.130  
1.800  
1
0.902  
0.447  
12  
11  
10  
9
8
0.102  
SIDE VIEW  
TOP VIEW  
(CIRCUIT SIDE)  
0.093  
0.043  
0.203  
0.199  
0.199  
0.201  
0.206  
0.201  
0.200  
0.400  
0.200  
Figure 41. 12-Pad Bare Die [CHIP]  
(C-12-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
HMC1144  
Temperature Range  
−55°C to +85°C  
Package Description  
12-Pad Bare Die [CHIP]  
12-Pad Bare Die [CHIP]  
Package Option  
C-12-2  
C-12-2  
HMC1144-SX  
−55°C to +85°C  
©2015–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13143-0-7/17(C)  
Rev. C | Page 16 of 16  
 
 

相关型号:

HMC1144-SX

GaAs, pHEMT, MMIC, Medium Power Amplifier
ADI

HMC115

GaAs DOUBLE-BALANCED 2 TO 6 GHz MIXER
HITTITE

HMC1161

Dual output frequency range
ADI

HMC1161LP5E

Dual output frequency range
ADI

HMC1161LP5ETR

Dual output frequency range
ADI

HMC1163

9.65 GHz to 10.41 GHz MMIC VCO with Half Frequency Output
ADI

HMC1163LP5E

9.65 GHz to 10.41 GHz MMIC VCO with Half Frequency Output
ADI

HMC1163LP5ETR

9.65 GHz to 10.41 GHz MMIC VCO with Half Frequency Output
ADI

HMC1164LP5E

10.38 GHz to 11.30 GHz MMIC VCO with Half Frequency Output
ADI

HMC1165

Dual output frequency range
ADI

HMC1165LP5E

Dual output frequency range
ADI

HMC1165LP5ETR

MMIC VCO HALF FREQ 32-LFCSP
ADI