HMC553AG [ADI]

6 GHz to 14 GHz, GaAs, MMIC, Double-Balanced Mixer;
HMC553AG
型号: HMC553AG
厂家: ADI    ADI
描述:

6 GHz to 14 GHz, GaAs, MMIC, Double-Balanced Mixer

文件: 总27页 (文件大小:488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6 GHz to 14 GHz, GaAs, MMIC,  
Double-Balanced Mixer  
HMC553ACHIPS  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Passive: no dc bias required  
Conversion loss: 10 dB maximum  
Input IP3 up to 21 dBm typical  
HMC553ACHIPS  
LO  
RF  
LO to RF isolation: 37 dB typical  
Wide IF bandwidth: dc to 5 GHz  
7-pad, 0.950 mm × 0.750 mm, RoHS compliant, bare die  
GND  
GND  
APPLICATIONS  
Microwave and very small aperture terminal (VSAT) radios  
Test equipment  
GND  
IF  
GND  
Point to point radios  
Figure 1.  
Military electronic warfare (EW), electronic countermeasure  
(ECM), and command, control, communications and  
intelligence (C3I)  
GENERAL DESCRIPTION  
The HMC553ACHIPS is a general-purpose, double balanced,  
monolithic microwave integrated circuit (MMIC) mixer that  
can be used as an upconverter or a downconverter between  
6 GHz and 14 GHz. This mixer is fabricated in a gallium  
arsenide (GaAs), metal semiconductor field effect transistor  
(MESFET) process and requires no external components or  
matching circuitry.  
The HMC553ACHIPS provides high local oscillator (LO) to RF  
and LO to intermediate frequency (IF) suppression due to  
optimized balun structures for as low as 32 dB and 28 dB,  
respectively. The mixer operates with LO drive levels from  
9 dBm to 15 dBm.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed byAnalog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarksandregisteredtrademarksare the property oftheir respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC553ACHIPS  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
IF Bandwidth .............................................................................. 20  
Spurious and Harmonics Performance ................................... 22  
Theory of Operation ...................................................................... 23  
Applications Information.............................................................. 24  
Typical Application Circuit ....................................................... 24  
Mounting and Bonding Techniques ........................................ 25  
Handling Precautions ................................................................ 25  
Mounting..................................................................................... 25  
Wire Bonding.............................................................................. 25  
Assembly Diagram..................................................................... 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics .................................................................... 5  
Typical Performance Characteristics ............................................. 6  
Downconverter Performance...................................................... 6  
Upconverter Performance......................................................... 14  
Isolation and Return Loss.......................................................... 18  
REVISION HISTORY  
12/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 27  
 
Data Sheet  
HMC553ACHIPS  
SPECIFICATIONS  
TA = 25°C, IF = 100 MHz, RF = −10 dBm, and LO = +13 dBm, upper sideband. All measurements performed as a downconverter, unless  
otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
RF  
LO  
6
6
DC  
9
14  
14  
5
GHz  
GHz  
GHz  
dBm  
IF  
LO DRIVE LEVELS  
6 GHz to 11 GHz PERFORMANCE  
Downconverter  
Conversion Loss  
Noise Figure  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Input Second-Order Intercept  
Upconverter  
Conversion Loss  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Isolation  
13  
15  
7.5  
7.5  
17.5  
9.5  
40  
9
dB  
dB  
dBm  
dBm  
dBm  
Taken with external LO amplifier  
1 MHz separation between inputs  
IP3  
P1dB  
IP2  
15  
1 MHz separation between inputs  
1 MHz separation between inputs  
6
17  
8
dB  
dBm  
dBm  
IP3  
P1dB  
RF to IF  
LO to RF  
LO to IF  
19  
32  
30  
30  
37  
33  
dB  
dB  
dB  
Return Loss  
RF  
LO  
LO frequency = 10 GHz  
LO power = 11 dBm  
12  
10  
dB  
dB  
11 GHz to 14 GHz PERFORMANCE  
Downconverter  
Conversion Loss  
Noise Figure  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Input Second-Order Intercept  
Upconverter  
Conversion Loss  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Isolation  
8
8
21  
10.5  
44  
10  
dB  
dB  
dBm  
dBm  
dBm  
Taken with external LO amplifier  
1 MHz separation between inputs  
IP3  
P1dB  
IP2  
20  
1 MHz separation between inputs  
1 MHz separation between inputs  
7
17  
7.5  
dB  
dBm  
dBm  
IP3  
P1dB  
RF to IF  
LO to RF  
LO to IF  
20  
32  
28  
25  
37  
35  
dB  
dB  
dB  
Return Loss  
RF  
LO  
LO frequency = 10 GHz  
LO power = 11 dBm  
15  
11  
dB  
dB  
Rev. 0 | Page 3 of 27  
 
HMC553ACHIPS  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Input Power  
RF  
LO  
Rating  
25 dBm  
25 dBm  
25 dBm  
3 mA  
IF  
IF Source and Sink Current  
Continuous Power Dissipation, PDISS  
414 mW  
(TA = 85°C, Derate 4.6 mW/°C Above 85°C)  
Temperature  
ESD CAUTION  
Reflow  
260°C  
Junction  
175°C  
Operating Range  
Storage Range  
−40°C to +85°C  
−65°C to +150°C  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
1000 V  
1250 V  
Rev. 0 | Page 4 of 27  
 
 
Data Sheet  
HMC553ACHIPS  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
LO  
2
1
3
4
RF  
HMC553ACHIPS  
TOP VIEW  
(Not to Scale)  
GND  
GND  
7
6
5
GND  
IF  
GND  
Figure 2. Pad Configuration  
Table 3. Pad Function Descriptions  
Pad No.  
Mnemonic Description  
1, 4, 5, 7  
GND  
LO  
RF  
Ground. These GND pads must be connected to RF and dc ground.  
LO Port. The LO pad is ac-coupled and matched to 50 Ω.  
RF Port. The RF pad is ac-coupled and matched to 50 Ω.  
IF Port. The IF pad is dc-coupled. For applications not requiring operation to dc, dc block the IF pad externally  
using a series capacitor of a value chosen to pass the necessary IF frequency range. For operation to dc, the IF  
pad must not source or sink more than 3 mA of current because die malfunction and possible die failure may result.  
2
3
6
IF  
Die Bottom GND  
Ground. The die bottom must be attached directly to the ground plane eutectically or with conductive epoxy.  
INTERFACE SCHEMATICS  
GND  
IF  
Figure 3. GND Interface Schematic  
Figure 5. IF Interface Schematic  
RF  
LO  
Figure 4. LO Interface Schematic  
Figure 6. RF Interface Schematic  
Rev. 0 | Page 5 of 27  
 
 
HMC553ACHIPS  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER PERFORMANCE  
IF = 100 MHz, Upper Sideband (Low-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
25  
LO = 15dBm  
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
Figure 9. Noise Figure vs. RF Frequency at Various Temperatures,  
LO = 13 dBm, Measurement Taken with an External LO Amplifier  
Rev. 0 | Page 6 of 27  
 
 
Data Sheet  
HMC553ACHIPS  
Input P1dB and Input IP2, Upper Sideband (Low-Side LO)  
20  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 12. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 14. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
80  
80  
LO = 9dBm  
LO = 11dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
LO = 13dBm  
LO = 15dBm  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 15. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 7 of 27  
HMC553ACHIPS  
Data Sheet  
IF = 100 MHz, Lower Sideband (High-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 19. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
LO = 15dBm  
25  
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 20. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 17. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
Figure 18. Noise Figure vs. RF Frequency at Various Temperatures,  
LO = 13 dBm, Measurement Taken with an External LO Amplifier  
Rev. 0 | Page 8 of 27  
Data Sheet  
HMC553ACHIPS  
Input P1dB and Input IP2, Lower Sideband (High-Side LO)  
20  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 21. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 23. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
80  
80  
LO = 9dBm  
LO = 11dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
LO = 13dBm  
LO = 15dBm  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 22. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 24. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 9 of 27  
HMC553ACHIPS  
Data Sheet  
IF = 4000 MHz, Upper Sideband (Low-Side LO)  
0
0
–5  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 27. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
25  
20  
15  
10  
5
25  
LO = 15dBm  
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 26. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 28. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 10 of 27  
Data Sheet  
HMC553ACHIPS  
Input P1dB and Input IP2, Upper Sideband (Low-Side LO)  
20  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 31. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
80  
80  
LO = 9dBm  
LO = 11dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
LO = 13dBm  
LO = 15dBm  
70  
60  
50  
40  
30  
20  
10  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 32. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 11 of 27  
HMC553ACHIPS  
Data Sheet  
IF = 4000 MHz, Lower Sideband (High-Side LO)  
0
–5  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 35. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 33. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
30  
25  
20  
15  
10  
30  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
LO = 9dBm  
5
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 36. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 34. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Rev. 0 | Page 12 of 27  
Data Sheet  
HMC553ACHIPS  
Input P1dB and Input IP2, Lower Sideband (High-Side LO)  
20  
15  
10  
5
20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 37. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
20  
20  
LO = 9dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 11dBm  
10  
10  
0
LO = 13dBm  
LO = 15dBm  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 40. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 38. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Rev. 0 | Page 13 of 27  
HMC553ACHIPS  
Data Sheet  
UPCONVERTER PERFORMANCE  
Input IF (IFIN) = 100 MHz, Upper Sideband (Low-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 41. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 44. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
LO = 15dBm  
25  
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 42. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 45. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 43. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 46. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 14 of 27  
 
Data Sheet  
HMC553ACHIPS  
IFIN = 100 MHz, Lower Sideband (High-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 50. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 48. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 51. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
15  
10  
5
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 49. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 52. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 15 of 27  
HMC553ACHIPS  
Data Sheet  
IFIN = 4000 MHz, Upper Sideband (Low-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 53. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 56. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
25  
20  
15  
10  
5
LO = 15dBm  
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 54. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 57. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 55. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 58. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 16 of 27  
Data Sheet  
HMC553ACHIPS  
IFIN = 4000 MHz, Lower Sideband (High-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 59. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 62. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
LO = 15dBm  
25  
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 60. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 63. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 61. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 64. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 17 of 27  
HMC553ACHIPS  
Data Sheet  
ISOLATION AND RETURN LOSS  
Downconverter Performance at IF = 100 MHz, Upper Sideband (Low-Side LO)  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 68. LO to RF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 65. LO to RF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
60  
60  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 15dBm  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 69. LO to IF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 66. LO to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
60  
60  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
LO = 15dBm  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 70. RF to IF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 67. RF to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Rev. 0 | Page 18 of 27  
 
Data Sheet  
HMC553ACHIPS  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
1
2
3
4
5
6
7
8
5
6
7
8
9
10  
11  
12  
13  
14  
15  
IF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 71. LO Return Loss vs. LO Frequency at Various Temperatures,  
LO = 11 dBm, TA = 25°C  
Figure 73. IF Return Loss vs. IF Frequency at LO Power Levels,  
TA = 25°C, LO = 10 GHz  
0
–5  
–10  
–15  
–20  
–25  
–30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–35  
–40  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
Figure 72. RF Return Loss vs. RF Frequency at LO Power Levels,  
TA = 25°C, LO = 10 GHz  
Rev. 0 | Page 19 of 27  
HMC553ACHIPS  
Data Sheet  
IF BANDWIDTH  
Downconverter, Upper Sideband, LO Frequency = 8 GHz  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 74. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 76. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
25  
20  
15  
10  
5
LO = 15dBm  
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 77. Input IP3 vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 75. Input IP3 vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Rev. 0 | Page 20 of 27  
 
Data Sheet  
HMC553ACHIPS  
Downconverter, Lower Sideband, LO Frequency = 13 GHz  
0
0
–5  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 78. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 80. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
LO = 15dBm  
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 79. Input IP3 vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 81. Input IP3 vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 21 of 27  
HMC553ACHIPS  
Data Sheet  
Downconversion, Lower Sideband  
SPURIOUS AND HARMONICS PERFORMANCE  
Spur values are (M × RF) − (N × LO). RF = 14 GHz, LO =  
14.1 GHz, RF power = −10 dBm, and LO power = +13 dBm.  
Mixer spurious products are measured in dBc from the IF  
output power level. N/A means not applicable.  
LO Harmonics  
LO = 13 dBm, and all values in dBc are below the input LO level  
and measured at the RF port. N/A means not applicable.  
Table 4. LO Harmonics at RF  
N × LO  
NLO Spur at RF Port (dBc)  
0
1
2
3
4
LO Frequency (GHz)  
6
8
9
10  
12  
14  
1
2
3
4
0
5
22  
34  
62  
80  
71  
N/A  
61  
78  
73  
79  
N/A  
N/A  
70  
0
1
2
3
4
35  
38  
37  
37  
38  
39  
31  
31  
36  
41  
47  
59  
64  
56  
61  
63  
39  
41  
57  
50  
46  
46  
50  
N/A  
13  
67  
N/A  
N/A  
0
78  
71  
N/A  
M × RF  
79  
>90  
Upconversion, Upper Sideband  
Spur values are (M × IFIN) + (N × LO). IFIN = 0.1 GHz, LO =  
10 GHz, IFIN power = −10 dBm, and LO power = +13 dBm.  
Mixer spurious products are measured in dBc from the RF  
output power level.  
LO = 13 dBm, and all values in dBc are below the input LO level  
and measured at the IF port. N/A means not applicable.  
Table 5. LO Harmonics at IF  
N × LO  
NLO Spur at IF Port (dBc)  
0
1
2
3
4
LO Frequency (GHz)  
1
2
3
4
>90  
>90  
>90  
76  
83  
83  
65  
46  
0
80  
79  
78  
58  
36  
11  
37  
58  
78  
77  
78  
73  
74  
73  
67  
25  
34  
26  
71  
73  
75  
74  
66  
67  
64  
55  
36  
15  
36  
55  
68  
67  
67  
−5  
−4  
−3  
−2  
−1  
0
6
8
9
10  
12  
14  
30  
32  
33  
33  
34  
36  
49  
45  
49  
50  
57  
54  
50  
47  
46  
42  
33  
33  
68  
71  
62  
63  
61  
N/A  
35  
0
6
M × IFIN  
36  
0
+1  
+2  
+3  
+4  
+5  
M × N Spurious Outputs  
76  
48  
64  
83  
82  
Downconversion, Upper Sideband  
>90  
>90  
>90  
Spur values are (M × RF) − (N × LO). RF = 10.1 GHz, LO =  
10 GHz, RF power = −10 dBm, and LO power = +13 dBm.  
Mixer spurious products are measured in dBc from the IF  
output power level. N/A means not applicable.  
Upconversion, Lower Sideband  
Spur values are (M × IFIN) + (N × LO). IFIN = 0.1 GHz, LO =  
14.1 GHz, IFIN power = −10 dBm, and LO power = +13 dBm.  
Mixer spurious products are measured in dBc from the RF  
output power level. N/A means not applicable.  
N × LO  
0
0
1
3
2
3
4
N/A  
56  
21  
40  
57  
80  
76  
12  
51  
74  
70  
81  
0
1
2
3
4
19  
63  
73  
N/A  
0
N × LO  
68  
78  
73  
77  
M × RF  
0
1
2
3
4
82  
>90  
>90  
88  
81  
79  
62  
46  
0
73  
71  
73  
74  
34  
28  
34  
72  
73  
73  
74  
65  
65  
63  
58  
21  
10  
20  
57  
64  
64  
63  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−5  
−4  
−3  
−2  
−1  
0
>90  
70  
33  
0
7
M × IFIN  
33  
0
+1  
+2  
+3  
+4  
+5  
73  
49  
63  
80  
79  
87  
>90  
>90  
Rev. 0 | Page 22 of 27  
 
Data Sheet  
HMC553ACHIPS  
THEORY OF OPERATION  
The HMC553ACHIPS is a general-purpose, double balanced  
mixer that can be used as an upconverter or a downconverter  
from 6 GHz to 14 GHz.  
When used as an upconverter, the mixer up converts IF  
between dc and 5 GHz to RF between 6 GHz and 14 GHz.  
When used a downconverter, the HMC553ACHIPS down  
converts RF between 6 GHz and 14 GHz to intermediate  
frequencies between dc and 5 GHz.  
Rev. 0 | Page 23 of 27  
 
HMC553ACHIPS  
Data Sheet  
APPLICATIONS INFORMATION  
external series capacitor is recommended of a value chosen to  
pass the necessary IF frequency range. When IF operation to dc  
is required, do not exceed the IF source and sink current rating  
specified in the Absolute Maximum Ratings section.  
TYPICAL APPLICATION CIRCUIT  
Figure 82 shows the typical application circuit for the  
HMC553ACHIPS. The HMC553ACHIPS is a passive device  
and does not require any external components. The LO and  
RF pads are internally ac-coupled. The IF pad is internally dc-  
coupled. When IF operation to dc is not required, use of an  
HMC553ACHIPS  
LO  
SOURCE  
RF  
LO  
RF  
GND  
GND  
GND  
IF  
GND  
DIE  
BOTTOM  
IF  
Figure 82. Typical Application Circuit  
Rev. 0 | Page 24 of 27  
 
 
 
Data Sheet  
HMC553ACHIPS  
Cleanliness  
MOUNTING AND BONDING TECHNIQUES  
Handle the chips in a clean environment. Do not attempt to  
clean the chips using liquid cleaning systems.  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy. To bring RF to and from the chip, 50 Ω  
microstrip transmission lines on 0.127 mm (0.005”) thick,  
alumina thin film substrates are recommended (see Figure 83).  
If using 0.254 mm (0.010”) thick, alumina thin film substrates,  
raise the die 0.150 mm (0.006”) so that the surface of the die is  
coplanar with the surface of the substrate. A way to accomplish  
this is to attach the 0.102 mm (0.004”) thick die to a 0.150 mm  
(0.006”) thick molybdenum heat spreader (moly tab) that is  
then attached to the ground plane (see Figure 84). Place microstrip  
substrates as close to the die as possible to minimize bond wire  
length. Typical die to substrate spacing is 0.076 mm (0.003”).  
Static Sensitivity  
Follow ESD precautions to protect against ESD strikes.  
Transients  
Suppress instrument and bias supply transients while bias is  
applied. Use shielded signal and bias cables to minimize  
inductive pickup.  
General Handling  
Handle the chip along the edges with a vacuum collet or with a  
sharp pair of bent tweezers. The surface of the chip has fragile  
air bridges and must not be touched with a vacuum collet,  
tweezers, or fingers.  
0.102mm (0.004") THICK GaAs MMIC  
MOUNTING  
WIRE BOND  
0.076mm  
(0.003")  
The chip is back metallized and can be die mounted either with  
gold (Au)/tin (Sn) eutectic preforms or with electrically conductive  
epoxy. The mounting surface must be clean and flat.  
RF GROUND PLANE  
Eutectic Die Attach  
0.127mm (0.005") THICK ALUMINA  
THIN FILM SUBSTRATE  
An 80/20 gold and tin preform is recommended with a work  
surface temperature of 255°C and a tool temperature of 265°C.  
When hot 90/10 nitrogen (N)/hydrogen (H) gas is applied, the  
tool tip temperature must be 290°C. Do not expose the chip to a  
temperature greater than 320°C for more than 20 seconds. No  
more than 3 seconds of scrubbing is required for attachment.  
Figure 83. Bonding RF Pads to 0.127 mm Substrate  
0.102mm (0.004") THICK GaAs MMIC  
WIRE BOND  
0.076mm  
(0.003")  
Epoxy Die Attach  
Apply a minimum amount of epoxy to the mounting surface so  
that a thin epoxy fillet is observed around the perimeter of the  
chip when the chip is placed into position. Cure epoxy per the  
schedule of the manufacturer.  
RF GROUND PLANE  
0.150mm  
0.254mm (0.010") THICK ALUMINA  
(0.006") THICK  
WIRE BONDING  
THIN FILM SUBSTRATE  
MOLY TAB  
Ball or wedge bond with 0.025 mm (0.00098”) diameter, pure  
gold wire is recommended. Thermosonic wire bonding with a  
nominal stage temperature of 150°C, and either a ball bonding  
force of 40 grams to 50 grams or a wedge bonding force of  
18 grams to 22 grams, is recommended. Use the minimum level  
of ultrasonic energy to achieve reliable wire bonds. Wire bonds  
must start on the chip and terminate on the package or substrate.  
All bonds must be as short as possible at <0.31 mm (0.01220”).  
Figure 84. Bonding RF Pads to 0.254 mm Substrate  
HANDLING PRECAUTIONS  
Follow the precautions in the Storage section, the Cleanliness  
section, the Static Sensitivity section, the Transients section, and  
the General Handling section to avoid permanent damage to  
the HMC553ACHIPS.  
Storage  
All bare dice are placed in either waffle-based or gel-based, ESD  
protective containers and then sealed in an ESD protective bag  
for shipment. Once the sealed ESD protective bag is open, store  
all dies in a dry nitrogen environment.  
Rev. 0 | Page 25 of 27  
 
 
 
 
 
 
 
 
 
 
 
 
HMC553ACHIPS  
Data Sheet  
ASSEMBLY DIAGRAM  
The assembly diagram of the HMC553ACHIPS is shown in Figure 85.  
50Ω  
TRANSMISSION  
LINE  
0.003mm  
NOMINAL  
GAP  
0.025mm  
GOLD WIRE  
Figure 85. Evaluation Printed Circuit Board Top Layer  
Rev. 0 | Page 26 of 27  
 
Data Sheet  
HMC553ACHIPS  
OUTLINE DIMENSIONS  
0.950  
0.102  
0.092  
0.163  
0.089 × 0.150  
(Pads 2 and 3)  
0.127  
2
3
0.265  
0.750  
0.100 × 0.100  
(Pads 1, 6 and 7)  
1
4
0.100 × 0.086  
0.200  
0.105  
0.076 × 0.097  
7
6
5
0.098  
TOP VIEW  
(CIRCUIT SIDE)  
SIDE VIEW  
*
AIR BRIDGE  
AREA  
0.103  
0.159  
0.153  
0.165  
0.263  
0.005  
0.007  
*
This die utilizes fragile air bridges. Any pickup tools used must not contact this area.  
Figure 86. 7-Pad Bare Die [CHIP]  
(C-7-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
7-Pad Bare Die [CHIP]  
7-Pad Bare Die [CHIP]  
Package Option  
C-7-12  
C-7-12  
HMC553AG  
HMC553AG-SX  
−40°C to +85°C  
−40°C to +85°C  
1 The HMC553AG and HMC553AG-SX are RoHS compliant parts.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D22727-0-12/19(0)  
Rev. 0 | Page 27 of 27  
 
 

相关型号:

HMC553AG-SX

6 GHz to 14 GHz, GaAs, MMIC, Double-Balanced Mixer
ADI

HMC553ALC3B

HMC553ALC3B
ADI

HMC553ALC3BTR

6 GHz to 14 GHz, GaAs, MMIC, Double-Balanced Mixer
ADI

HMC553ALC3BTR-R5

6 GHz to 14 GHz, GaAs, MMIC, Double-Balanced Mixer
ADI

HMC553LC3B

GaAs MMIC FUNDAMENTAL MIXER, 7 - 14 GHz
HITTITE

HMC553LC3B

HMC553LC3B
ADI

HMC553LC3BTR

Telecom Circuit, 1-Func, CBCC12, 3 X 3 MM, ROHS COMPLIANT, CERAMIC, SMT-12
HITTITE

HMC553LC3BTR

HMC553LC3BTR
ADI

HMC553LC3B_09

GaAs MMIC FUNDAMENTAL MIXER, 7 - 14 GHz
HITTITE

HMC553_09

GaAs MMIC FUNDAMENTAL MIXER, 7 - 14 GHz
HITTITE

HMC554

GaAs MMIC FUNDAMENTAL MIXER, 11 - 20 GHz
HITTITE

HMC554A

10 GHz to 20 GHz, GaAs, MMIC, Double-Balanced Mixer
ADI