HMC554A [ADI]

10 GHz to 20 GHz, GaAs, MMIC, Double-Balanced Mixer;
HMC554A
型号: HMC554A
厂家: ADI    ADI
描述:

10 GHz to 20 GHz, GaAs, MMIC, Double-Balanced Mixer

文件: 总28页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 GHz to 20 GHz, GaAs, MMIC,  
Double-Balanced Mixer  
HMC554ACHIPS  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Conversion loss of up to 8.5 dB (typical)  
LO to RF Isolation: 38 dB (typical)  
Input IP3 of up to 20 dBm (typical)  
RoHS compliant, 7-pad, bare die CHIP  
HMC554ACHIPS  
LO  
RF  
APPLICATIONS  
Microwave and very small aperture terminal (VSAT) radios  
Test equipment  
GND  
GND  
Military electronic warfare (EW), electronic countermeasure  
(ECM), and command, control, communications and  
intelligence (C3I)  
GND  
IF  
GND  
Figure 1.  
GENERAL DESCRIPTION  
The HMC554ACHIPS is a general-purpose, double-balanced  
mixer that can be used as an upconverter or a downconverter  
between 10 GHz and 20 GHz. This mixer is fabricated in a  
gallium arsenide (GaAs), metal semiconductor field effect  
transistor (MESFET) process and requires no external  
components or matching circuitry. The HMC554ACHIPS  
optimized balun structures provide high local oscillator (LO) to  
RF isolation and LO to intermediate frequency (IF) isolation,  
38 dB and 52 dB, respectively.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC554ACHIPS  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Isolation and Return Loss ......................................................... 19  
IF Bandwidth—Downconverter............................................... 21  
Spurious and Harmonics Performance ................................... 23  
Theory of Operation ...................................................................... 24  
Applications Information.............................................................. 25  
Typical Application Circuit....................................................... 25  
Mounting and Bonding Techniques ........................................ 26  
Handling Precautions ................................................................ 26  
Mounting..................................................................................... 26  
Wire Bonding.............................................................................. 26  
Assembly Diagram..................................................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
Typical Performance Characteristics ............................................. 6  
Downconverter Performance, IF = 100 MHz........................... 6  
Downconverter Performance, IF = 3000 MHz .......................... 10  
Upconverter Performance, IF = 100 MHz .............................. 13  
Upconverter Performance, IF = 3000 MHz............................ 16  
REVISION HISTORY  
10/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
Data Sheet  
HMC554ACHIPS  
SPECIFICATIONS  
TA = 25°C, IF = 100 MHz, and LO = 13 dBm for upper sideband. All measurements were performed as a downconverter, unless otherwise  
noted, on the evaluation printed circuit board (PCB).  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY  
RF Pad  
IF Pad  
LO Pad  
10  
DC  
10  
9
20  
6
20  
15  
GHz  
GHz  
GHz  
dBm  
LO AMPLITUDE  
10 GHz to 20 GHz PERFORMANCE  
Downconverter  
Conversion Loss  
Single Sideband Noise Figure  
Input Third-Order Intercept (IP3)  
Input 1 dB Compression Point (P1dB)  
Input Second-Order Intercept (IP2)  
Upconverter  
13  
8.5  
8.5  
20  
12  
57  
10  
dB  
dB  
dBm  
dBm  
dBm  
Measurement taken with external LO amplifier  
1 MHz separation between inputs  
17  
1 MHz separation between inputs  
1 MHz separation between inputs  
Conversion Loss  
Input IP3  
Input P1dB  
7.5  
19  
8.5  
dB  
dBm  
dBm  
Isolation  
RF to IF  
LO to RF  
LO to IF  
28  
30  
32  
40  
38  
52  
dB  
dB  
dB  
12 GHz to 16 GHz PERFORMANCE  
Downconverter  
Conversion Loss  
Single Sideband Noise Figure  
Input IP3  
Input P1dB  
Input IP2  
Upconverter  
Conversion Loss  
Input IP3  
8
8
20  
11  
57  
9
dB  
dB  
dBm  
dBm  
dBm  
Measurement taken with external LO amplifier  
1 MHz separation between inputs  
18  
1 MHz separation between inputs  
1 MHz separation between inputs  
7
18.5  
9
dB  
dBm  
dBm  
Input P1dB  
Isolation  
RF to IF  
LO to RF  
LO to IF  
38  
33  
45  
43  
38  
62  
dB  
dB  
dB  
Rev. 0 | Page 3 of 28  
 
HMC554ACHIPS  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
RF Input Power  
LO Input Power  
IF Input Power  
IF Source/Sink Current  
Reflow Temperature  
Junction Temperature  
25 dBm  
26 dBm  
25 dBm  
3 mA  
260 °C  
175°C  
ESD CAUTION  
Continuous Power Dissipation (PDISS  
)
333 mW  
(TA = 85°C, Derate 3.7 mW/°C Above 85°C)  
Operating Temperature Range  
−40°C to +85°C  
Storage Temperature Range  
−65°C to  
+150°C  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Field Induced Charged Device Model (FICDM)  
250 V, Class 1A  
1250 V, Class IV  
Rev. 0 | Page 4 of 28  
 
 
Data Sheet  
HMC554ACHIPS  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
LO  
2
3
4
RF  
HMC554ACHIPS  
TOP VIEW  
(Not to Scale)  
GND  
1
GND  
7
6
5
GND  
IF  
GND  
Figure 2. Pad Configuration  
Table 3. Pad Function Descriptions  
Pad No.  
Mnemonic Description  
1, 4, 5, 7  
GND  
LO  
RF  
Ground. These pads must be connected to RF and dc ground.  
LO Port. This pad is ac-coupled and matched to 50 Ω.  
RF Port. This pad is ac-coupled and matched to 50 Ω.  
IF Port. This pad is dc-coupled. For applications not requiring operation to dc, dc block this port  
externally using a series capacitor of a value chosen to pass the necessary IF frequency range. For  
operation to dc, this pad must not source or sink more than 3 mA of current because die malfunction  
and possible die failure may result.  
2
3
6
IF  
Die Bottom  
GND  
Ground. The die bottom must be attached directly to the ground plane eutectically or with conductive epoxy.  
INTERFACE SCHEMATICS  
GND  
IF  
Figure 5. IF Interface Schematic  
Figure 3. GND Interface Schematic  
RF  
LO  
Figure 4. LO Interface Schematic  
Figure 6. RF Interface Schematic  
Rev. 0 | Page 5 of 28  
 
 
HMC554ACHIPS  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER PERFORMANCE, IF = 100 MHz  
Upper Sideband (Low-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
25  
20  
15  
10  
5
LO = 15dBm  
20  
15  
10  
5
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
20  
15  
10  
5
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Noise Figure vs. RF Frequency at Various Temperatures,  
LO = 13 dBm, Measurement Taken with External LO Amplifier  
Figure 12. Noise Figure vs. RF Frequency at Various LO Power Levels,  
TA = 25°C, Measurement Taken with External LO Amplifier  
Rev. 0 | Page 6 of 28  
 
 
Data Sheet  
HMC554ACHIPS  
20  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 15. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
80  
80  
LO = 9dBm  
LO = 11dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
70  
60  
50  
40  
30  
20  
10  
0
LO = 13dBm  
LO = 15dBm  
60  
50  
40  
30  
20  
10  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 14. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Rev. 0 | Page 7 of 28  
HMC554ACHIPS  
Data Sheet  
Lower Sideband (High-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 20. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 18. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 21. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 22. Noise Figure vs. RF Frequency at Various LO Power Levels,  
TA = 25°C, Measurement Taken with External LO Amplifier  
Figure 19. Noise Figure vs. RF Frequency at Various Temperatures,  
LO = 13 dBm, Measurement Taken with External LO Amplifier  
Rev. 0 | Page 8 of 28  
Data Sheet  
HMC554ACHIPS  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 24. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 9 of 28  
HMC554ACHIPS  
Data Sheet  
DOWNCONVERTER PERFORMANCE, IF = 3000 MHz  
Upper Sideband (Low-Side LO)  
0
0
–5  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 28. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
LO = 9dBm  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 26. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 29. Input IP3 vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
20  
15  
10  
5
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 27. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 30. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 10 of 28  
Data Sheet  
HMC554ACHIPS  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 31. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 32. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 11 of 28  
HMC554ACHIPS  
Data Sheet  
Lower Sideband (High-Side LO)  
0
–5  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 33. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 36. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 34. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 37. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
LO = 13dBm  
LO = 15dBm  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 35. Input IP2 vs. RF Frequency at Various LO Power Levels,  
LO = 13 dBm  
Figure 38. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 12 of 28  
Data Sheet  
HMC554ACHIPS  
UPCONVERTER PERFORMANCE, IF = 100 MHz  
Upper Sideband (Low-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 42. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
A
A
A
25  
20  
15  
10  
5
25  
20  
15  
10  
5
LO = 15dBm  
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 40. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 43. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
15  
10  
5
15  
10  
5
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 41. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 44. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 13 of 28  
HMC554ACHIPS  
Data Sheet  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 45. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 46. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 14 of 28  
Data Sheet  
HMC554ACHIPS  
Lower Sideband (High-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 50. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
10  
5
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 51. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 48. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
80  
70  
60  
50  
40  
30  
80  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
20  
LO = 9dBm  
LO = 11dBm  
10  
LO = 13dBm  
LO = 15dBm  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 52. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 49. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Rev. 0 | Page 15 of 28  
HMC554ACHIPS  
Data Sheet  
UPCONVERTER PERFORMANCE, IF = 3000 MHz  
Upper Sideband (Low-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 53. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 56. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
25  
20  
15  
10  
5
LO = 15dBm  
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 54. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 57. Input IP3 vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
20  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
15  
10  
5
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 55. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 58. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 16 of 28  
Data Sheet  
HMC554ACHIPS  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 59. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 60. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 17 of 28  
HMC554ACHIPS  
Data Sheet  
Lower Sideband (High-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 61. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 64. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
25  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 62. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 65. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
80  
80  
LO = 9dBm  
LO = 11dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
LO = 13dBm  
LO = 15dBm  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 63. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 66. Input IP2 vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. 0 | Page 18 of 28  
Data Sheet  
HMC554ACHIPS  
ISOLATION AND RETURN LOSS  
60  
50  
40  
30  
20  
10  
0
60  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
50  
40  
30  
20  
10  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 70. LO to RF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 67. LO to RF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
100  
100  
LO = 9dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
80  
80  
60  
40  
20  
0
60  
40  
20  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 71. LO to IF Isolation vs. RF Frequency at Various LO Power Levels,  
Figure 68. LO to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
TA = 25°C  
60  
50  
40  
30  
20  
10  
0
60  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
50  
40  
30  
20  
10  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 72. RF to IF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 69. RF to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Rev. 0 | Page 19 of 28  
HMC554ACHIPS  
Data Sheet  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
0
1
2
3
4
5
6
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 73. LO Return Loss vs. LO Frequency at LO = 13 dBm,  
TA = 25°C  
Figure 75. IF Return Loss vs. IF Frequency at Various LO Power Levels,  
TA = 25°C, LO = 15 GHz  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–5  
–10  
–15  
–20  
–25  
–30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF FREQUENCY (GHz)  
Figure 74. RF Return Loss vs. RF Frequency at Various LO Power Levels,  
TA = 25°C, LO = 15 GHz  
Rev. 0 | Page 20 of 28  
Data Sheet  
HMC554ACHIPS  
IF BANDWIDTH—DOWNCONVERTER  
Upper Sideband, LO Frequency = 12 GHz  
0
0
–5  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
IF FREQUENCY (GHz)  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
IF FREQUENCY (GHz)  
Figure 76. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 78. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
20  
15  
10  
5
25  
20  
15  
10  
5
LO = 15dBm  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
IF FREQUENCY (GHz)  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
IF FREQUENCY (GHz)  
Figure 77. Input IP3 vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 79. Input IP3 vs. IF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. 0 | Page 21 of 28  
HMC554ACHIPS  
Data Sheet  
Lower Sideband, LO Frequency = 19 GHz  
0
–5  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
IF FREQUENCY (GHz)  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
IF FREQUENCY (GHz)  
Figure 80. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 82. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
A = 25°C  
T
30  
30  
25  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
20  
15  
10  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 81. Input IP3 vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 83. Input IP3 vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 22 of 28  
Data Sheet  
HMC554ACHIPS  
M × N Spurious Outputs  
SPURIOUS AND HARMONICS PERFORMANCE  
Downconverter, Upper Sideband  
Mixer spurious products are measured in dBc from the IF output  
power level. N/A means not applicable.  
Spur values are (M × RF) − (N × LO).  
LO Harmonics  
RF = 15.1 GHz at −10 dBm, and LO = 15 GHz at +13 dBm.  
LO = 13 dBm, all values in dBc are below the input LO level and  
are measured at the RF port.  
N × LO  
0
1
2
3
4
5
N/A  
33  
24  
0
36  
54  
60  
83  
71  
23  
57  
81  
72  
81  
74  
N/A  
52  
73  
83  
>90  
81  
N/A  
N/A  
62  
0
1
2
3
4
5
Table 4. LO Harmonics at RF  
N × LO Spur at RF Port  
72  
81  
73  
62  
LO Frequency (GHz)  
1
2
3
4
M × RF  
60  
71  
12  
13  
15  
16  
18  
19  
21  
34  
35  
32  
32  
30  
32  
33  
36  
44  
43  
50  
55  
45  
41  
68  
53  
48  
47  
N/A  
N/A  
N/A  
48  
N/A  
N/A  
78  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A 61  
>90  
Upconverter, Upper Sideband  
Spur values are (M × IF) + (N × LO).  
IF = 100 MHz at −10 dBm, and LO = 15 GHz at +13 dBm.  
N × LO  
LO = 13 dBm, all values in dBc are below the input LO level and  
are measured at the IF port.  
0
1
2
3
>90  
>90  
79  
89  
83  
52  
67  
0
77  
77  
67  
65  
30  
20  
30  
66  
67  
79  
76  
67  
68  
53  
50  
12  
24  
11  
48  
50  
64  
63  
−5  
−4  
−3  
−2  
−1  
0
Table 5. LO Harmonics at IF  
N × LO Spur at IF Port  
LO Frequency (GHz)  
1
2
3
4
87  
12  
13  
15  
16  
18  
19  
21  
55  
58  
50  
46  
31  
37  
45  
64  
61  
63  
67  
62  
58  
56  
57  
55  
51  
50  
N/A  
N/A  
N/A  
76  
33  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
33  
14  
0
M × IF  
+1  
+2  
+3  
+4  
+5  
85  
55  
52  
86  
87  
78  
>90  
>90  
Rev. 0 | Page 23 of 28  
HMC554ACHIPS  
Data Sheet  
THEORY OF OPERATION  
The HMC554ACHIPS is a general-purpose, double balanced  
mixer that can be used as an upconverter or a downconverter  
from 10 GHz to 20 GHz.  
When used as an upconverter, the mixer upconverts IF between dc  
and 6 GHz to RF between 10 GHz and 20 GHz.  
When used as a downconverter, the HMC554ACHIPS  
downconverts RF between 10 GHz and 20 GHz to IF between dc  
and 6 GHz.  
Rev. 0 | Page 24 of 28  
Data Sheet  
HMC554ACHIPS  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
HMC554ACHIPS  
Figure 84 shows the typical application circuit for the  
LO  
RF  
LO  
RF  
HMC554ACHIPS. The HMC554ACHIPS is a passive device  
that does not require any external components. The IF pad  
is internally dc-coupled, and the RF and LO pads are internally  
ac-coupled. When IF operation to dc is not required, it is  
recommended to use an external series capacitor of a value chosen  
to pass the necessary IF frequency range. When IF operation  
to dc is required, do not exceed the IF source and sink current  
rating specified in the Absolute Maximum Ratings section.  
GND  
GND  
GND  
IF  
GND  
DIE  
BOTTOM  
IF  
Figure 84. Typical Application Circuit  
Rev. 0 | Page 25 of 28  
 
HMC554ACHIPS  
Data Sheet  
MOUNTING AND BONDING TECHNIQUES  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy. To bring RF to and from the chip, 50 Ω  
microstrip transmission lines on 0.127 mm (0.005”) thick,  
alumina thin film substrates are recommended (see Figure 85).  
If using 0.254 mm (0.010”) thick, alumina thin film substrates,  
raise the die 0.150 mm (0.006”) so that the surface of the die is  
coplanar with the surface of the substrate. A way to accomplish  
this is to attach the 0.102 mm (0.004”) thick die to a 0.150 mm  
(0.006”) thick molybdenum heat spreader (moly tab) which is  
then attached to the ground plane (see Figure 86). Place microstrip  
substrates as close to the die as possible to minimize bond wire  
length. Typical die to substrate spacing is 0.076 mm (0.003”).  
Cleanliness  
Handle the chips in a clean environment. Do not attempt to  
clean the chips using liquid cleaning systems.  
Static Sensitivity  
Follow ESD precautions to protect against ESD strikes.  
Transients  
Suppress instrument and bias supply transients while bias is  
applied. Use shielded signal and bias cables to minimize  
inductive pickup.  
General Handling  
Handle the chip along the edges with a vacuum collet or with a  
sharp pair of bent tweezers. The surface of the chip has fragile  
air bridges and must not be touched with a vacuum collet,  
tweezers, or fingers.  
0.102mm (0.004") THICK GaAs MMIC  
WIRE BOND  
0.076mm  
(0.003")  
MOUNTING  
The chip is back metallized and can be die mounted either with  
gold (Au)/tin (Sn) eutectic preforms or with electrically  
conductive epoxy. The mounting surface must be clean and flat.  
RF GROUND PLANE  
Eutectic Die Attach  
0.127mm (0.005") THICK ALUMINA  
THIN FILM SUBSTRATE  
An 80/20 gold and tin preform is recommended with a work  
surface temperature of 255°C and a tool temperature of 265°C.  
When hot 90/10 nitrogen (N)/hydrogen (H) gas is applied, the  
tool tip temperature must be 290°C. Do not expose the chip to a  
temperature greater than 320°C for more than 20 seconds. No  
more than 3 seconds of scrubbing is required for attachment.  
Figure 85. Bonding RF Pads to 0.127 mm Substrate  
0.102mm (0.004") THICK GaAs MMIC  
WIRE BOND  
0.076mm  
(0.003")  
Epoxy Die Attach  
Apply a minimum amount of epoxy to the mounting surface so  
that a thin epoxy fillet is observed around the perimeter of the  
chip when the chip is placed into position. Cure epoxy per the  
schedule of the manufacturer.  
RF GROUND PLANE  
0.150mm  
(0.006") THICK  
MOLY TAB  
0.254mm (0.010") THICK ALUMINA  
THIN FILM SUBSTRATE  
WIRE BONDING  
Figure 86. Bonding RF Pads to 0.254 mm Substrate  
Ball or wedge bond with 0.025 mm (0.00098”) diameter, pure  
gold wire is recommended. Thermosonic wire bonding with a  
nominal stage temperature of 150°C, and either a ball bonding  
force of 40 grams to 50 grams or a wedge bonding force of  
18 grams to 22 grams is recommended. Use the minimum level  
of ultrasonic energy to achieve reliable wire bonds. Wire bonds  
must start on the chip and terminate on the package or  
substrate. All bonds must be as short as possible at <0.31 mm  
(0.01220”).  
HANDLING PRECAUTIONS  
Follow the precautions in the Storage section, the Cleanliness  
section, the Static Sensitivity section, the Transients section, and  
the General Handling section to avoid permanent damage to  
the HMC554ACHIPS.  
Storage  
All bare dice are placed in either waffle-based or gel-based, ESD  
protective containers and then sealed in an ESD protective bag  
for shipment. Once the sealed ESD protective bag is open, store  
all dies in a dry nitrogen environment.  
Rev. 0 | Page 26 of 28  
 
 
 
 
 
 
 
Data Sheet  
HMC554ACHIPS  
ASSEMBLY DIAGRAM  
The assembly diagram of the HMC554ACHIPS is shown in Figure 87.  
50  
TRANSMISSION  
LINE  
0.003mm  
NOMINAL  
GAP  
0.025mm  
GOLD WIRE  
Figure 87. Evaluation PCB Top Layer  
Rev. 0 | Page 27 of 28  
 
HMC554ACHIPS  
Data Sheet  
OUTLINE DIMENSIONS  
1.004  
0.148  
0.161  
0.088 × 0.220  
(Pads 2 and 3)  
0.102  
0.099  
2
3
0.580  
0.210  
0.210  
1
0.080 × 0.100  
5
4
0.098  
0.080  
0.185  
7
6
TOP VIEW  
(CIRCUIT SIDE)  
SIDE VIEW  
0.088 × 0.100  
(Pads 1, 4, 5 and 7)  
*
AIR BRIDGE  
AREA  
0.084  
0.194  
0.160  
0.160  
0.322  
*
This die utilizes fragile air bridges. Any pickup tools used must not contact this area.  
Figure 88. 7-Pad Bare Die [CHIP]  
(C-7-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
C-7-11  
C-7-11  
HMC554A  
HMC554A-SX  
−40°C to +85°C  
−40°C to +85°C  
7-Pad Bare Die [CHIP]  
7-Pad Bare Die [CHIP]  
1 The HMC554A and HMC554A-SX are RoHS compliant parts.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D22421-0-10/19(0)  
Rev. 0 | Page 28 of 28  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY