HMC6505A [ADI]

5.5 GHz to 8.6 GHz, GaAs, MMIC, I/Q Upconverter;
HMC6505A
型号: HMC6505A
厂家: ADI    ADI
描述:

5.5 GHz to 8.6 GHz, GaAs, MMIC, I/Q Upconverter

文件: 总30页 (文件大小:755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5.5 GHz to 8.6 GHz,  
GaAs, MMIC, I/Q Upconverter  
Data Sheet  
HMC6505A  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Conversion gain: 15 dB typical  
Sideband rejection: 22 dBc typical  
Output P1dB compression at maximum gain: 22 dBm typical  
Output IP3 at maximum gain: 35 dBm typical  
LO to RF isolation: 4 dB typical  
VDD1  
LO to IF isolation: 9 dB typical  
VDD2  
VDD3  
RF return loss: 20 dB typical  
LO return loss: 10 dB typical  
LOIN  
GND  
HMC6505A  
EPAD  
IF return loss: 20 dB typical  
Exposed paddle, 5 mm × 5 mm, 32-terminal, leadless chip  
carrier package  
Figure 1.  
APPLICATIONS  
Point to point and point to multipoint radios  
Military radars, electronic warfare (EW), and electronic  
intelligence (ELINT)  
Satellite communications  
Sensors  
GENERAL DESCRIPTION  
The HMC6505A is a compact gallium arsenide (GaAs),  
pseudomorphic (pHEMT), monolithic microwave integrated  
circuit (MMIC) upconverter in a RoHS compliant package that  
operates from 5.5 GHz to 8.6 GHz. This device provides a small  
signal conversion gain of 15 dB with 22 dBc of sideband  
rejection. The HMC6505A uses a variable gain amplifier (VGA)  
preceded by an in-phase and quadrature (I/Q) mixer that is  
driven by an active local oscillator (LO). The IF1 and IF2 mixer  
inputs are provided, and an external 90° hybrid is needed to  
select the required sideband. The I/Q mixer topology reduces  
the need for filtering of unwanted sideband. The HMC6505A  
is a smaller alternative to hybrid style single sideband (SSB)  
upconverter assemblies, and it eliminates the need for wire  
bonding by allowing the use of surface-mount manufacturing  
techniques.  
The HMC6505A is available in 5 mm × 5 mm, 32-terminal  
leadless chip carrier (LCC) package and operates over a −40°C  
to +85°C temperature range. An evaluation board for the  
HMC6505A is also available upon request.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC6505A  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
IF = 350 MHz, IF Input Power = −6 dBm, Upper Sideband  
(Low-Side LO) ............................................................................ 14  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 6  
Typical Performance Characteristics ............................................. 7  
IF = 1000 MHz, IF Input Power = −6 dBm, Upper Sideband  
(Low-Side LO) ............................................................................ 16  
IF= 2500 MHz, IF Input Power = −6 dBm, Upper Sideband  
(Low-Side LO) ............................................................................ 18  
Isolation and Return Loss ......................................................... 20  
IF Bandwidth Performance: Lower Sideband (High-Side LO) . 23  
Spurious Performance ............................................................... 24  
Theory of Operation ...................................................................... 26  
Applications Information .............................................................. 27  
Typical Application Circuit....................................................... 27  
Evaluation Board Information.................................................. 28  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
IF = 350 MHz, IF Input Power = −6 dBm, Lower Sideband  
(High-Side LO) ............................................................................. 7  
IF = 1000 MHz, IF Input Power = −6 dBm, Lower Sideband  
(High-Side LO) ............................................................................. 9  
IF= 2500 MHz, IF Input Power = −6 dBm, Lower Sideband  
(High-Side LO) ........................................................................... 11  
REVISION HISTORY  
8/2017—Revision 0: Initial Version  
Rev. 0 | Page 2 of 30  
 
Data Sheet  
HMC6505A  
SPECIFICATIONS  
TA = 25°C, IF = 350 MHz, VDDx = 5 V, VCTRL = −4 V, LO power = 4 dBm. Measurements performed with lower sideband selected and  
external 90° hybrid at the IF ports, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
Frequency Range  
Radio Frequency  
Local Oscillator  
Intermediate Frequency  
Control Voltage Range  
RF  
LO  
IF  
VCTRL  
5.5  
2.5  
DC  
−4  
−2  
8.6  
11.6  
3
0
+6  
GHz  
GHz  
GHz  
V
LO Drive Range  
+4  
dBm  
PERFORMANCE  
Conversion Gain  
Dynamic Range  
Sideband Rejection  
Output Power for 1 dB Compression at Maximum Gain  
Output Third-Order Intercept at Maximum Gain  
Isolation  
LO to RF  
12  
20  
18  
15  
25  
22  
22  
35  
dB  
dB  
dBc  
dBm  
dBm  
OP1dB  
OIP3  
31  
−1  
+4  
9
15  
dB  
dB  
dB  
LO to IF  
Noise Figure  
Return Loss  
RF  
LO  
IF  
NF  
20  
10  
20  
dB  
dB  
dB  
POWER SUPPLY  
Total Supply Current  
LO Amplifier  
RF Amplifier  
IDD1  
IDD2, IDD3  
125  
120  
mA  
mA  
Rev. 0 | Page 3 of 30  
 
HMC6505A  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Drain Bias Voltage (VDD1, VDD2, and VDD3)  
Gate Bias Voltage  
5.5 V  
VGG  
VCTRL  
Input Power  
LO  
−3 V to 0 V  
−5 V to +0.3 V  
Table 3. Thermal Resistance  
Package Type  
E-32-11  
θJA  
θJC  
Unit  
66.7  
54.6  
°C/W  
10 dBm  
1 Thermal impedance simulated values are based on JEDEC 2S2P test board  
with 5 × 5 thermal vias. Refer to JDEC standard JESD51-2 for additional  
information.  
IF  
20 dBm  
MSL3  
175°C  
−65°C to +150°C  
−40°C to +85°C  
260°C  
Moisture Sensitivity Level (MSL) Rating1  
Maximum Junction Temperature  
Storage Temperature Range  
Operating Temperature Range  
Reflow Temperature  
Electrostatic Discharge Sensitivity  
Human Body Model (HBM)  
ESD CAUTION  
500 V  
750 V  
Field Induced Charged Device Model  
(FICDM)  
1 See the Ordering Guide.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 4 of 30  
 
 
 
Data Sheet  
HMC6505A  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NIC  
NIC  
NIC  
1
2
3
4
5
6
7
NIC  
VDD2  
22 NIC  
NIC  
NIC  
NIC  
18 VDD3  
NIC  
24  
23  
HMC6505A  
21  
20  
19  
NIC  
VDD1  
NIC  
LOIN  
GND 8  
TOP VIEW  
(Not to Scale)  
17  
NOTES  
1. NOT INTERNALLY CONNECTED. THESE PINS  
ARE NOT CONNECTED INTERNALLY. HOWEVER,  
PINS MAY BE CONNECTED TO RF/DC GROUND  
WITHOUT AFFECTING PERFORMANCE.  
2. EXPOSED PAD. CONNECT TO A LOW IMPEDANCE  
THERMAL AND ELECTRICAL GROUND PLANE.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1 to 4, 6, 9 to 11, 16, NIC  
17, 19 to 22, 24,  
25, 32  
Not Internally Connected. These pins are not connected internally. However, pins may be connected  
to RF/dc ground without affecting performance.  
5
VDD1  
Power Supply Voltage for LO Amplifier. See Figure 3 for the interface schematic. Refer to the typical  
application circuit (see Figure 103) for the required external components.  
7
LOIN  
Local Oscillator Input. See Figure 4 for the interface schematic. This pin is ac-coupled and matched  
to 50 Ω.  
8, 13, 15, 27, 29, 31 GND  
Ground Connect. See Figure 5 for the interface schematic. These pins and package bottom must be  
connected to RF/dc ground.  
12  
VGG  
Gate Voltage for the Variable Gain Amplifier. See Figure 6 for the interface schematic. Refer to the  
typical application circuit (see Figure 103) for the required external components.  
14  
RFOUT  
Radio Frequency Output. See Figure 7 for the interface schematic. This pin is ac-coupled and  
matched to 50 Ω.  
18, 23  
VDD3, VDD2  
Power Supply Voltage for the Variable Gain Amplifier. See Figure 8 for the interface schematic. Refer  
to the typical application circuit (see Figure 103) for the required external components.  
26  
VCTRL  
IF1, IF2  
Gain Control Voltage for the Variable Gain Amplifier. See Figure 9 for the interface schematic. Refer to  
the typical application circuit (see Figure 103) for the required external components.  
Quadrature Intermediate Frequency Inputs. See Figure 10 for the interface schematic. For applications  
not requiring operation to dc, use an off chip dc blocking capacitor. For operation to dc, these pins  
must not source or sink more than 3 mA of current or device malfunction and failure can result.  
28, 30  
EPAD  
Exposed Pad. Connect to a low impedance thermal and electrical ground plane.  
Rev. 0 | Page 5 of 30  
 
HMC6505A  
Data Sheet  
INTERFACE SCHEMATICS  
VDD1  
RFOUT  
Figure 3. VDD1 Interface  
Figure 7. RFOUT Interface  
VDD2, VDD3  
LOIN  
Figure 4. LOIN Interface  
Figure 8. VDD2, VDD3 Interface  
GND  
VCTRL  
Figure 5. GND Interface  
Figure 9. VCTRL Interface  
IF1, IF2  
VGG  
Figure 6. VGG Interface  
Figure 10. IF1, IF2 Interface  
Rev. 0 | Page 6 of 30  
 
 
 
 
 
 
 
 
 
Data Sheet  
HMC6505A  
TYPICAL PERFORMANCE CHARACTERISTICS  
IF = 350 MHz, IF INPUT POWER = −6 dBm, LOWER SIDEBAND (HIGH-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
6
4
2
0
0
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 11. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 14. Sideband Rejection vs. RF Frequency over Temperatures,  
Voltage Control = −4 V  
20  
40  
–2dBm  
–2dBm  
0dBm  
0dBm  
18  
+2dBm  
+2dBm  
+4dBm  
+6dBm  
35  
30  
25  
20  
15  
10  
5
+4dBm  
16  
14  
12  
10  
8
+6dBm  
6
4
2
0
5.5  
0
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 12. Conversion Gain vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
Figure 15. Sideband Rejection vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
20  
15  
10  
5
25  
20  
15  
10  
5
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
0
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
–5  
–10  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
VOLTAGE CONTROL (V)  
Figure 13. Conversion Gain vs. Voltage Control over RF,  
Figure 16. Sideband Rejection vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
TA = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 7 of 30  
 
 
HMC6505A  
Data Sheet  
50  
30  
28  
26  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
45  
24  
22  
20  
18  
16  
14  
12  
10  
40  
35  
30  
25  
20  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Output IP3 vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 20. Output P1dB vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
50  
30  
–2dBm  
0dBm  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+2dBm  
+4dBm  
+6dBm  
45  
40  
35  
30  
25  
20  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 18. Output IP3 vs. RF Frequency over LO Powers  
A = 25°C, Voltage Control = −4 V  
Figure 21. Output P1dB vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 19. Output IP3 vs. Voltage Control over RF Frequencies,  
A = 25°C, LO Power = 4 dBm  
T
Rev. 0 | Page 8 of 30  
Data Sheet  
HMC6505A  
IF = 1000 MHz, IF INPUT POWER = −6 dBm, LOWER SIDEBAND (HIGH-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
6
4
2
0
0
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 22. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 25. Sideband Rejection vs. RF Frequency over Temperatures,  
Voltage Control = −4 V  
20  
40  
35  
30  
25  
20  
15  
–2dBm  
0dBm  
18  
16  
14  
12  
10  
8
+2dBm  
+4dBm  
+6dBm  
6
10  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
4
5
2
0
5.5  
0
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. Conversion Gain vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
Figure 26. Sideband Rejection vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
–5  
–10  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
VOLTAGE CONTROL (V)  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 24. Conversion Gain vs. Voltage Control over RF,  
Figure 27. Sideband Rejection vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
TA = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 9 of 30  
 
HMC6505A  
Data Sheet  
50  
30  
28  
26  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
45  
24  
22  
20  
18  
16  
14  
12  
10  
40  
35  
30  
25  
20  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Output IP3 vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 31. Output P1dB vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
50  
30  
–2dBm  
0dBm  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+2dBm  
+4dBm  
+6dBm  
45  
40  
35  
30  
25  
20  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Output IP3 vs. RF Frequency over LO Powers  
A = 25°C, Voltage Control = −4 V  
Figure 32. Output P1dB vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 30. Output IP3 vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 10 of 30  
Data Sheet  
HMC6505A  
IF= 2500 MHz, IF INPUT POWER = −6 dBm, LOWER SIDEBAND (HIGH-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
6
4
2
0
0
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 33. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 36. Sideband Rejection vs. RF Frequency over Temperatures,  
Voltage Control = −4 V  
20  
40  
–2dBm  
–2dBm  
0dBm  
+2dBm  
+4dBm  
0dBm  
18  
+2dBm  
+4dBm  
+6dBm  
35  
16  
14  
30  
25  
20  
15  
10  
5
+6dBm  
12  
10  
8
6
4
2
0
5.5  
0
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 34. Conversion Gain vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
Figure 37. Sideband Rejection vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
–5  
–10  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
VOLTAGE CONTROL (V)  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 35. Conversion Gain vs. Voltage Control over RF,  
Figure 38. Sideband Rejection vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
TA = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 11 of 30  
 
HMC6505A  
Data Sheet  
50  
30  
28  
26  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
45  
40  
35  
30  
25  
20  
24  
22  
20  
18  
16  
14  
12  
10  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Output IP3 vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 42. Output P1dB vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
50  
30  
–2dBm  
0dBm  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+2dBm  
+4dBm  
+6dBm  
45  
40  
35  
30  
25  
20  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 40. Output IP3 vs. RF Frequency over LO Powers  
A = 25°C, Voltage Control = −4 V  
Figure 43. Output P1dB vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 41. Output IP3 vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 12 of 30  
Data Sheet  
HMC6505A  
20  
20  
18  
16  
14  
12  
10  
8
–40°C  
+25°C  
18  
+85°C  
16  
14  
12  
10  
8
6
6
–2dBm  
0dBm  
4
4
+2dBm  
+4dBm  
+6dBm  
2
2
0
5.5  
0
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 44. Noise Figure vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 45. Noise Figure vs. RF Frequency over LO Powers  
A = 25°C, Voltage Control = −4 V  
T
Rev. 0 | Page 13 of 30  
HMC6505A  
Data Sheet  
IF = 350 MHz, IF INPUT POWER = −6 dBm, UPPER SIDEBAND (LOW-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
6
4
2
0
0
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 46. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 49. Sideband Rejection vs. RF Frequency over Temperatures,  
Voltage Control = −4 V  
20  
18  
16  
14  
12  
10  
8
40  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
35  
30  
25  
20  
15  
10  
5
6
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
4
2
0
0
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Conversion Gain vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
Figure 50. Sideband Rejection vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
0
–5  
–10  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
VOLTAGE CONTROL (V)  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 48. Conversion Gain vs. Voltage Control over RF,  
Figure 51. Sideband Rejection vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
TA = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 14 of 30  
 
Data Sheet  
HMC6505A  
50  
30  
28  
26  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
45  
24  
22  
20  
18  
16  
14  
12  
10  
40  
35  
30  
25  
20  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 52. Output IP3 vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 55. Output P1dB vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
50  
30  
–2dBm  
0dBm  
–2dBm  
0dBm  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+2dBm  
+4dBm  
+6dBm  
+2dBm  
+4dBm  
+6dBm  
45  
40  
35  
30  
25  
20  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 53. Output IP3 vs. RF Frequency over LO Powers  
A = 25°C, Voltage Control = −4 V  
Figure 56. Output P1dB vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 54. Output IP3 vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 15 of 30  
HMC6505A  
Data Sheet  
IF = 1000 MHz, IF INPUT POWER = −6 dBm, UPPER SIDEBAND (LOW-SIDE LO)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
6
4
2
0
0
5.5  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 57. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 60. Sideband Rejection vs. RF Frequency over Temperatures,  
Voltage Control = −4 V  
20  
50  
–2dBm  
–2dBm  
0dBm  
18  
45  
0dBm  
+2dBm  
+2dBm  
+4dBm  
+6dBm  
+4dBm  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
+6dBm  
6
4
2
0
5.5  
0
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 58. Conversion Gain vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
Figure 61. Sideband Rejection vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
0
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
–5  
–10  
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
VOLTAGE CONTROL (V)  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 59. Conversion Gain vs. Voltage Control over RF,  
Figure 62. Sideband Rejection vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
T
A = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 16 of 30  
 
Data Sheet  
HMC6505A  
50  
30  
28  
26  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
45  
24  
22  
20  
18  
16  
14  
12  
10  
40  
35  
30  
25  
20  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 63. Output IP3 vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 66. Output P1dB vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
50  
30  
–2dBm  
0dBm  
–2dBm  
0dBm  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+2dBm  
+4dBm  
+6dBm  
+2dBm  
+4dBm  
+6dBm  
45  
40  
35  
30  
25  
20  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 64. Output IP3 vs. RF Frequency over LO Powers  
A = 25°C, Voltage Control = −4 V  
Figure 67. Output P1dB vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 5.5GHz  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 65. Output IP3 vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 17 of 30  
HMC6505A  
Data Sheet  
IF= 2500 MHz, IF INPUT POWER = −6 dBm, UPPER SIDEBAND (LOW-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
6
4
2
0
20  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 68. Conversion Gain vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 71. Sideband Rejection vs. RF Frequency over Temperatures,  
Voltage Control = −4 V  
20  
70  
–2dBm  
–2dBm  
18  
16  
14  
12  
10  
8
0dBm  
0dBm  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
+2dBm  
+4dBm  
+6dBm  
+2dBm  
+4dBm  
+6dBm  
6
4
2
0
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 69. Conversion Gain vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
Figure 72. Sideband Rejection vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
20  
15  
10  
5
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
0
–5  
–10  
–15  
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
VOLTAGE CONTROL (V)  
Figure 73. Sideband Rejection vs. Voltage Control over RF,  
Figure 70. Conversion Gain vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
T
A = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 18 of 30  
 
Data Sheet  
HMC6505A  
50  
45  
40  
35  
30  
25  
20  
15  
30  
28  
26  
24  
22  
20  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
10  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 74. Output IP3 vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 77. Output P1dB vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
50  
30  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
–2dBm  
0dBm  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
45  
40  
35  
30  
25  
20  
15  
10  
+2dBm  
+4dBm  
+6dBm  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 75. Output IP3 vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
Figure 78. Output P1dB vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
T
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RF = 8.5GHz  
RF = 7.5GHz  
RF = 6.5GHz  
0
–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
VOLTAGE CONTROL (V)  
Figure 76. Output IP3 vs. Voltage Control over RF,  
T
A = 25°C, LO Power = 4 dBm  
Rev. 0 | Page 19 of 30  
HMC6505A  
Data Sheet  
ISOLATION AND RETURN LOSS  
20  
20  
18  
16  
14  
12  
10  
8
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
5.0  
0
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5 10.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5 10.0  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 79. LO to IF1 Isolation vs. LO Frequency over Temperatures,  
IF = 350 MHz, LO Power = 4 dBm, Voltage Control = −4 V  
Figure 82. LO to IF1 Isolation vs. LO Frequency over LO Powers, TA = 25°C,  
Voltage Control = −4 V  
20  
20  
–2dBm  
+85°C  
+25°C  
–40°C  
0dBm  
18  
16  
14  
12  
10  
8
18  
+2dBm  
+4dBm  
+6dBm  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
5.0  
0
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5 10.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5 10.0  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 80. LO to IF2 Isolation vs. LO Frequency over Temperatures,  
IF = 350 MHz, LO Power = 4 dBm, Voltage Control = −4 V  
Figure 83. LO to IF2 Isolation vs. LO Frequency over LO Powers, TA = 25°C,  
Voltage Control = −4 V  
25  
25  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+85°C  
+25°C  
–40°C  
20  
15  
10  
5
20  
+6dBm  
15  
10  
5
0
5.0  
0
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 81. LO to RF Isolation vs. LO Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 84. LO to RF Isolation vs. LO Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
Rev. 0 | Page 20 of 30  
 
Data Sheet  
HMC6505A  
90  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
–40°C  
+25°C  
+85°C  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
80  
70  
60  
50  
40  
30  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 85. IF1 to RF Isolation vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 88. IF1 to RF Isolation vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
80  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
70  
60  
50  
40  
30  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 86. IF2 to RF Isolation vs. RF Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 89. IF2 to RF Isolation vs. RF Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
0
0
+85°C  
+25°C  
–40°C  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
–5  
–10  
–15  
–20  
–25  
–5  
–10  
–15  
–20  
–25  
5.0  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 87. LO Return Loss vs. LO Frequency over Temperatures,  
LO Power = 4 dBm, Voltage Control = −4 V  
Figure 90. LO Return Loss vs. LO Frequency over LO Powers,  
A = 25°C, Voltage Control = −4 V  
T
Rev. 0 | Page 21 of 30  
HMC6505A  
Data Sheet  
0
0
–5  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 91. RF Return Loss vs. RF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 4 dBm, Voltage Control = −4 V  
Figure 94. IF2 Return Loss vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 4 dBm, Voltage Control = −4 V  
0
0
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–5  
–10  
–15  
–20  
–25  
–30  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 92. RF Return Loss vs. RF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C, Voltage Control = −4 V  
Figure 95. IF1 Return Loss vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C, Voltage Control = −4 V  
0
0
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 93. IF1 Return Loss vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 4 dBm, Voltage Control = −4 V  
Figure 96. IF2 Return Loss vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C, Voltage Control = −4 V  
Rev. 0 | Page 22 of 30  
Data Sheet  
HMC6505A  
IF BANDWIDTH PERFORMANCE: LOWER SIDEBAND (HIGH-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
+85°C  
+25°C  
–40°C  
6
6
4
4
2
2
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 97. Conversion Gain vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 4 dBm, Voltage Control = −4 V  
Figure 100. Conversion Gain vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C, Voltage Control = −4 V  
40  
35  
30  
25  
20  
15  
10  
40  
35  
30  
25  
20  
15  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
10  
5
+85°C  
5
+25°C  
–40°C  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 98. Sideband Rejection vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 4 dBm, Voltage Control = −4 V  
Figure 101. Sideband Rejection vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C, Voltage Control = −4 V  
40  
35  
30  
25  
20  
15  
10  
40  
35  
30  
25  
20  
15  
–2dBm  
0dBm  
+2dBm  
+4dBm  
+6dBm  
10  
5
+85°C  
5
+25°C  
–40°C  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 99. Output IP3 vs. IF Frequency over Temperatures,  
LO Frequency = 7 GHz, LO Power = 4 dBm, Voltage Control = −4 V  
Figure 102. Output IP3 vs. IF Frequency over LO Powers,  
LO Frequency = 7 GHz, TA = 25°C, Voltage Control = −4 V  
Rev. 0 | Page 23 of 30  
 
HMC6505A  
Data Sheet  
M × N Spurious Output, IF = 1000 MHz  
SPURIOUS PERFORMANCE  
RF = 5500 MHz, LO frequency = 6500 MHz at LO input power =  
4 dBm, IF input power = −6 dBm.  
Mixer spurious products are measured in dBc from the RF  
output power level. Spur values are (M × IF) − (N × LO). N/A  
means not applicable.  
N × LO  
M × N Spurious Outputs, IF = 350 MHz  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
49  
63  
83  
95  
112  
7
8
57  
39  
60  
65  
97  
113  
43  
66  
66  
84  
91  
108  
59  
72  
90  
90  
104  
108  
RF = 5500 MHz, LO frequency = 5850 MHz at LO input power =  
4 dBm, IF input power = −6 dBm.  
0
37  
33  
69  
100  
109  
55  
82  
120  
121  
N × LO  
M × IF  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
75  
11  
0
3
18  
36  
61  
60  
94  
98  
41  
50  
60  
87  
86  
111  
53  
62  
81  
81  
111  
101  
38  
34  
78  
80  
108  
79  
51  
73  
88  
102  
M × IF  
100  
101  
121  
RF = 7000 MHz, LO frequency = 8000 MHz at LO input power =  
4 dBm, IF input power = −6 dBm.  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
50  
66  
88  
80  
85  
7
11  
40  
35  
71  
81  
79  
43  
43  
68  
67  
100  
101  
59  
74  
73  
98  
96  
113  
71  
79  
91  
92  
104  
107  
RF = 7000 MHz, LO frequency = 7350 MHz at LO input power =  
4 dBm, IF input power = −6 dBm.  
0
44  
85  
80  
88  
N × LO  
M × IF  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
79  
13  
0
8
44  
39  
73  
65  
105  
111  
51  
73  
67  
98  
93  
108  
57  
75  
94  
87  
103  
105  
43  
34  
86  
96  
107  
78  
51  
72  
82  
91  
M × IF  
105  
118  
122  
RF = 8500 MHz, LO frequency = 9500 MHz at LO input power =  
4 dBm, IF input power = −6 dBm. N/A is not applicable.  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
50  
8
41  
31  
38  
74  
108  
112  
63  
77  
63  
72  
107  
109  
66  
88  
81  
93  
102  
107  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
RF = 8500 MHz, LO frequency = 8850 MHz at LO input power =  
4 dBm, IF input power = −6 dBm. N/A is not applicable.  
0
66  
44  
82  
105  
118  
N × LO  
M × IF  
101  
105  
120  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
76  
8
21  
27  
36  
79  
101  
111  
53  
56  
61  
71  
105  
108  
53  
68  
83  
92  
99  
103  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
81  
50  
95  
83  
92  
M × IF  
104  
114  
120  
Rev. 0 | Page 24 of 30  
 
Data Sheet  
HMC6505A  
M × N Spurious Outputs, IF = 2500 MHz  
RF = 8500 MHz, LO frequency = 11000 MHz at LO input  
power = 4 dBm, IF input power = −6 dBm. N/A is not  
applicable.  
RF = 5500 MHz, LO frequency = 8000 MHz at LO input power =  
4 dBm, IF input power = −6 dBm.  
N × LO  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
47  
7
59  
39  
40  
83  
105  
115  
46  
80  
73  
77  
108  
109  
N/A  
N/A  
97  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
1
2
3
4
5
N/A  
43  
57  
76  
97  
116  
6
10  
34  
34  
80  
94  
119  
41  
42  
64  
65  
96  
112  
57  
70  
78  
87  
94  
110  
70  
79  
93  
92  
107  
113  
0
0
50  
54  
83  
120  
120  
64  
113  
115  
115  
M × IF  
M × IF  
92  
98  
109  
113  
104  
104  
RF = 7000 MHz, LO frequency = 9500 MHz at LO input power =  
4 dBm, IF input power = −6 dBm. N/A is not applicable.  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
46  
7
41  
36  
37  
83  
101  
118  
62  
73  
63  
69  
112  
112  
67  
N/A  
N/A  
N/A  
101  
101  
106  
0
84  
57  
56  
87  
122  
121  
103  
104  
101  
111  
M × IF  
108  
100  
115  
Rev. 0 | Page 25 of 30  
HMC6505A  
Data Sheet  
THEORY OF OPERATION  
The HMC6505A is a GaAs, pHEMT, MMIC I/Q upconverter  
with an integrated LO buffer that upconverts IF between dc to  
3 GHz to RF between 5.5 GHz and 8.6 GHz. LO buffer  
amplifiers are included on chip to allow LO drive range of up  
to 6 dBm for full performance. The LO path feeds a quadrature  
splitter followed by on-chip baluns that drive the I and Q singly  
balanced cores of the passive mixers. The RF output of the I and  
Q mixers are then summed through an on-chip Wilkinson power  
combiner and relatively matched to provide a single-ended, 50 Ω  
output signal that is amplified by the RF amplifiers to produce a  
dc-coupled and 50 Ω matched RF output signal at the RFOUT  
port. A voltage attenuator precedes the RF amplifiers for desired  
gain control.  
Rev. 0 | Page 26 of 30  
 
Data Sheet  
HMC6505A  
APPLICATIONS INFORMATION  
To select the upper sideband, connect the IF1 pin to the 90°  
TYPICAL APPLICATION CIRCUIT  
port of the hybrid and the IF2 pin to the 0° port of the hybrid.  
To select the lower sideband, connect the IF1 pin to the 0° port  
of the hybrid and the IF2 pin to the 90° port of the hybrid.  
Figure 103 shows the typical application circuit for the  
HMC6505A. To select the appropriate sideband, an external 90°  
hybrid is required. For applications not requiring operation to  
dc, use an off chip dc blocking capacitor. For applications that  
require the LO signal at the output to be suppressed, use a bias  
tee or RF feed. Ensure that the source or sink current used for  
LO suppression is <3 mA for each IF port to prevent damage to  
the device. The common-mode voltage for each IF port is 0 V.  
HMC6505A  
Figure 103. Typical Application Circuit  
Rev. 0 | Page 27 of 30  
 
 
 
HMC6505A  
Data Sheet  
Layout  
EVALUATION BOARD INFORMATION  
Solder the exposed pad on the underside of the HMC6505A to a  
low thermal and electrical impedance ground plane. This pad is  
typically soldered to an exposed opening in the solder mask on  
the evaluation board. Connect these ground vias to all other  
ground layers on the evaluation board to maximize heat  
dissipation from the device package. Figure 104 and Figure 105  
show the printed circuit board land pattern footprint for the  
HMC6505A and the solder paste stencil for the HMC6505A  
The circuit board used in the application must use RF circuit  
design techniques. Signal lines must have 50 Ω impedance and  
connect the package ground leads and exposed pad directly to  
the ground plane similarly to that shown in Figure 104. Use a  
sufficient number of via holes to connect the top and bottom  
ground planes. The evaluation board shown in Figure 106 is  
available from Analog Devices upon request.  
EV1HMC6505ALC5 Power-On Sequence  
evaluation board.  
To set up the EV1HMC6505ALC5, take the following steps:  
0.217" SQUARE  
0.004" MASK/METAL OVERLAP  
SOLDERMASK  
0.010" MIN MASK WIDTH  
1. Power up VGG with a −2 V supply.  
2. Power up VDD1 with a 5 V supply.  
3. Power up VDD2 and VDD3 with another 5 V supply.  
4. Power up VCTRL with a −4 V supply (for maximum  
conversion gain).  
GROUND PAD  
PAD SIZE  
0.026" × 0.010"  
PIN 1  
0.197"  
[0.50]  
5. Adjust the VGG supply between −2 V to 0 V until the total  
RF supply current (IDD2 + IDD3) = 120 mA.  
6. Connect LOIN to the LO signal generator with an LO  
power of 4 dBm.  
0.156"  
MASK  
OPENING  
ø.034"  
TYPICAL  
VIA SPACING  
7. Apply the IF1 and IF2 signals.  
ø.010"  
TYPICAL VIA  
EV1HMC6505ALC5 Power Off Sequence  
To turn off the EV1HMC6505ALC5, take the following steps:  
0.010" REF  
0.138" SQUARE MASK OPENING  
0.02 ×45° CHAMFER FOR PIN1  
0.030"  
MASK OPENING  
1. Turn off the LO and IF signals.  
2. Set VGG to −2 V.  
3. Set VCTRL to 0 V.  
0.146" SQUARE  
GROUND PAD  
Figure 104. Printed Circuit Board Land Pattern Footprint  
4. Set the VDD1, VDD2, and VDD3 supplies to 0 V and then  
turn them off.  
0.017  
5. Turn off the VGG supply.  
0.0197  
TYP  
0.219  
SQUARE  
0.132  
SQUARE  
0.017  
0.027  
TYP  
R0.0040 TYP  
132 PLCS  
0.010  
TYP  
Figure 105. Solder Paste Stencil  
Rev. 0 | Page 28 of 30  
 
 
 
Data Sheet  
HMC6505A  
Figure 106. HMC6505A Evaluation Board Top Layer  
Table 5. Bill of Materials for the EV1HMC6505ALC5 Evaluation Board PCB  
Reference  
Designator  
Quantity  
Description  
Manufacturer  
Part Number  
1
Not applicable PCB, EV1HMC6505ALC5; circuit board  
material: Rogers 4350  
Analog Devices supplied  
125487  
1
2
4
Not applicable MCH, evaluation heatsink, aluminum  
Analog Devices supplied  
Johnson Components  
Molex  
104635  
142-0701-851  
87832-0420  
J1, J2  
Johnson SMA connectors  
J5, J6, J8, J9  
2 mm, four vertical position connector  
headers  
2
5
J3, J4  
C1, C3, C4,  
C13, C16  
SRI K connectors  
Ceramic capacitors, 100 pF, 5%, 50 V, C0G,  
0402  
SRI Connector Gage Company  
Murata Manufacturing  
25-146-1000-92  
GRM188R71H102KA01D  
5
5
1
C5, C7, C8,  
C14, C17  
C9, C11, C12,  
C15, C18  
Ceramic capacitors, 1000 pF, 50 V, 10%,  
X7R, 0603  
Tantalum capacitors, 2.2 μF, 25 V, 10%,  
SMD, Case A  
Keystone Electronics Corporation  
5019  
AVX  
TAJA225K025R  
HMC6505A  
HMC6505A  
Device under test (DUT)  
Analog Devices  
Rev. 0 | Page 29 of 30  
 
HMC6505A  
Data Sheet  
OUTLINE DIMENSIONS  
5.05  
4.90 SQ  
4.75  
0.36  
0.30  
0.24  
PIN 1  
0.08  
REF  
INDICATOR  
PIN 1  
32  
25  
24  
1
0.50  
BSC  
3.60  
3.50 SQ  
3.40  
EXPOSED  
PAD  
17  
8
16  
9
0.38  
0.32  
0.26  
0.20 MIN  
BOTTOM VIEW  
3.50 REF  
TOP VIEW  
SIDE VIEW  
1.10  
1.00  
0.90  
4.10 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 107. 32-Terminal Ceramic Leadless Chip Carrier [LCC],  
(E-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package Body  
Material  
Package  
Description  
MSL  
Package Package  
Model1  
Lead Finish  
Rating2 Option  
Marking3  
HMC6505ALC5  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Alumina Ceramic  
Alumina Ceramic  
Alumina Ceramic  
Gold over Nickel  
32-Terminal LCC  
32-Terminal LCC  
32-Terminal LCC  
MSL3  
MSL3  
MSL3  
E-32-1  
H6505A  
XXXX  
H6505A  
XXXX  
H6505A  
XXXX  
HMC6505ALC5TR  
HMC6505ALC5TR-R5  
EV1HMC6505ALC5  
Gold over Nickel  
Gold over Nickel  
E-32-1  
E-32-1  
Evaluation PCB  
Assembly  
1 The HMC6505ALC5, the HMC6505ALC5TR, and HMC6505ALC5TR-R5 are RoHS Compliant Parts.  
2 See the Absolute Maximum Ratings section.  
3 The HMC6505ALC5, the HMC6505ALC5TR, and HMC6505ALC5TR-R5 have a four-digit lot number.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13900-0-8/17(0)  
Rev. 0 | Page 30 of 30  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY