HMC7044LP10BE [ADI]

High Performance, 3.2 GHz, 14-Output Jitter Attenuator with JESD204B / JESD204C;
HMC7044LP10BE
型号: HMC7044LP10BE
厂家: ADI    ADI
描述:

High Performance, 3.2 GHz, 14-Output Jitter Attenuator with JESD204B / JESD204C

衰减器 PC 电信 电信集成电路
文件: 总73页 (文件大小:1631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance, 3.2 GHz, 14-Output  
Jitter Attenuator with JESD204B  
Data Sheet  
HMC7044  
FEATURES  
APPLICATIONS  
Ultralow rms jitter: 44 fs typical (12 kHz to 20 MHz) at  
2457.6 MHz  
Noise floor: −156 dBc/Hz at 2457.6 MHz  
JESD204B clock generation  
Cellular infrastructure (multicarrier GSM, LTE, W-CDMA)  
Data converter clocking  
Low phase noise: −141.7 dBc/Hz at 800 kHz, 983.04 MHz output  
Up to 14 LVDS, LVPECL, or CML type device clocks (DCLKs)  
from PLL2  
Microwave baseband cards  
Phase array reference distribution  
GENERAL DESCRIPTION  
Maximum CLKOUTx/  
CLKOUTx  
and SCLKOUTx/  
SCLKOUTx  
The HMC7044 is a high performance, dual-loop, integer-N  
jitter attenuator capable of performing reference selection and  
generation of ultralow phase noise frequencies for high speed data  
converters with either parallel or serial (JESD204B type) interfaces.  
The HMC7044 features two integer mode PLLs and overlapping  
on-chip VCOs that are SPI-selectable with wide tuning ranges  
around 2.5 GHz and 3 GHz, respectively. The device is designed  
to meet the requirements of GSM and LTE base station designs,  
and offers a wide range of clock management and distribution  
features to simplify baseband and radio card clock tree designs.  
The HMC7044 provides 14 low noise and configurable outputs  
to offer flexibility in interfacing with many different compo-  
nents including data converters, field-programmable gate arrays  
(FPGAs), and mixer local oscillators (LOs).  
frequency up to 3200 MHz  
JESD204B-compatible system reference (SYSREF) pulses  
25 ps analog, and ½ VCO cycle digital delay independently  
programmable on each of 14 clock output channels  
SPI-programmable phase noise vs. power consumption  
SYSREF valid interrupt to simplify JESD204B synchronization  
Narrow-band, dual core VCOs  
Up to 2 buffered voltage controlled oscillator (VCXO) outputs  
Up to 4 input clocks in LVDS, LVPECL, CMOS, and CML modes  
Frequency holdover mode to maintain output frequency  
Loss of signal (LOS) detection and hitless reference switching  
4× GPIOs alarms/status indicators to determine the health of  
the system  
External VCO input to support up to 6000 MHz  
On-board regulators for excellent PSRR  
68-lead, 10 mm × 10 mm LFCSP package  
The DCLK and SYSREF clock outputs of the HMC7044 can be  
configured to support signaling standards, such as CML, LVDS,  
LVPECL, and LVCMOS, and different bias settings to offset  
varying board insertion losses.  
FUNCTIONAL BLOCK DIAGRAM  
OSCIN  
CPOUT1 OSCIN  
CPOUT2 OSCOUT1 OSCOUT1  
CLKOUT0  
CLKOUT0  
SCLKOUT1  
SCLKOUT1  
CLKOUT2  
CLKOUT2  
SCLKOUT3  
SCLKOUT3  
CLKIN0/RFSYNCIN  
CLKIN0/RFSYNCIN  
CLKIN1/FIN  
÷
CLKIN1/FIN  
PLL1  
PLL2  
CLKIN2/OSCOUT0  
CLKIN2/OSCOUT0  
CLKIN3  
CLKIN3  
CLKOUT12  
CLKOUT12  
SCLKOUT13  
SCLKOUT13  
÷
SYSREF  
CONTROL  
SYNC  
14-CLOCK  
DISTRIBUTION  
SPI  
CONTROL  
INTERFACE  
SDATA  
SLEN SCLK  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC7044* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
HMC7044 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
Quality And Reliability  
HMC7044 Evaluation Kit  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all HMC7044 EngineerZone Discussions.  
HMC7044: High Performance, 3.2 GHz, 14-Output Jitter  
Attenuator with JESD204B Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
User Guides  
UG-826: Evaluating the HMC7044 Dual Loop Clock Jitter  
Cleaner  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
TOOLS AND SIMULATIONS  
HMC7044 IBIS Model  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
REFERENCE MATERIALS  
Press  
Analog Devices Clock Jitter Attenuator Optimizes  
JESD204B Serial Interface Functionality in Base Station  
Designs  
Technical Articles  
Synchronizing Sample Clocks of a Data Converter Array  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
HMC7044  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 23  
Detailed Block Diagram ............................................................ 24  
Dual PLL Overview.................................................................... 25  
Component Blocks—Input PLL (PLL1).................................. 25  
Component Blocks—Output PLL (PLL2) .............................. 30  
Clock Output Network .............................................................. 31  
Reference Buffer Details............................................................ 38  
Typical Programming Sequence............................................... 38  
Power Supply Considerations................................................... 39  
SeriaL Control Port ........................................................................ 42  
Serial Port Interface (SPI) Control........................................... 42  
Applications Information .............................................................. 43  
PLL1 Noise Calculations ........................................................... 43  
PLL2 Noise Calculations ........................................................... 43  
Phase Noise Floor and Jitter...................................................... 43  
Control Registers............................................................................ 44  
Control Register Map ................................................................ 44  
Control Register Map Bit Descriptions ................................... 52  
Evaluation PCB Schematic............................................................ 69  
Evaluation PCB........................................................................... 69  
Outline Dimensions....................................................................... 71  
Ordering Guide .......................................................................... 71  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Table of Contents .............................................................................. 2  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Conditions..................................................................................... 3  
Supply Current.............................................................................. 3  
Digital Input/Output (I/O) Electrical Specifications............... 4  
PLL1 Characteristics .................................................................... 5  
PLL2 Characteristics .................................................................... 7  
VCO Characteristics .................................................................... 8  
Clock Output Distribution Characteristics............................... 9  
Spur Characteristics ................................................................... 10  
Noise and Jitter Characteristics ................................................ 10  
Clock Output Driver Characteristics....................................... 11  
Absolute Maximum Ratings.......................................................... 13  
ESD Caution................................................................................ 13  
Pin Configuration and Function Descriptions........................... 14  
Typical Performance Characteristics ........................................... 17  
Typical Application Circuits.......................................................... 21  
Terminology .................................................................................... 22  
REVISION HISTORY  
11/2016—Rev. A to Rev. B  
5/2016—Rev. 0 to Rev. A  
Changes to Table 1 and Endnote 4, Table 2................................... 3  
Changes to Reliable Signal Swing Parameter, Table 4.................. 5  
Change to PLL2 VCXO Input Parameter, Table 5........................ 7  
Changes to Table 7 ............................................................................ 9  
Added Figure 13; Renumbered Sequentially .............................. 18  
Added Figure 20.............................................................................. 19  
Added Figure 21, Figure 22, and Figure 23................................. 20  
Changes to Figure 34...................................................................... 21  
Changes to Table 15 and Table 17 ................................................ 34  
Changes to Figure 47...................................................................... 37  
Changes to Table 23........................................................................ 41  
Changes to Table 25........................................................................ 46  
Changes to Table 49........................................................................ 57  
Change to Table 75 ......................................................................... 68  
Changes to Table 3.............................................................................4  
Changes to Current Range (ICP2) Parameter, Table 5....................8  
Changes to Table 9.......................................................................... 11  
Changes to Table 10 ....................................................................... 13  
Changes to LDOBYP5 Pin Description ...................................... 15  
Changes to Figure 13...................................................................... 19  
Changes to Figure 30...................................................................... 25  
Changes to Evaluation PCB Section ............................................ 69  
Added Figure 46; Renumbered Sequentially .............................. 69  
Added Figure 50 ............................................................................. 71  
Updated Outline Dimensions....................................................... 71  
9/2015—Revision 0: Initial Version  
Rev. B | Page 2 of 72  
 
 
Data Sheet  
HMC7044  
SPECIFICATIONS  
Unless otherwise noted, fVCXO = 122.88 MHz single-ended; CLKIN0/  
, CLKIN1/ , CLKIN2/ , and CLKIN3/  
CLKIN0 CLKIN1 CLKIN2 CLKIN3  
differential at 122.88 MHz; fVCO = 2949.12 MHz; doubler is on; typical value is given for VCC = 3.3 V; and TA = 25°C. Minimum and maximum  
values are given over the full VCC and TA (−40°C to +85°C) variation, as listed in Table 1. Note that multifunction pins, such as  
CLKIN0/RFSYNCIN, are referred to either by the entire pin name or by a single function of the pin, for example, CLKIN0, when only  
that function is relevant.  
CONDITIONS  
Table 1.  
Parameter  
Min  
Typ Max  
Unit Test Conditions/Comments  
SUPPLY VOLTAGE, VCC  
VCC1_VCO  
VCC2_OUT  
3.135 3.3  
3.135 3.3  
3.465  
3.465  
V
V
3.3 V 5%, supply voltage for VCO and VCO distribution  
3.3 V 5%, supply voltage for Output Channel 2 and Output  
Channel 3  
VCC3_SYSREF  
VCC4_OUT  
3.135 3.3  
3.135 3.3  
3.465  
3.465  
V
V
3.3 V 5%, supply voltage for common SYSREF divider  
3.3 V 5%, supply voltage for Output Channel 4, Output  
Channel 5, Output Channel 6, Output Channel 7  
VCC5_PLL1  
VCC6_OSCOUT  
VCC7_PLL2  
VCC8_OUT  
3.135 3.3  
3.135 3.3  
3.135 3.3  
3.135 3.3  
3.465  
3.465  
3.465  
3.465  
V
V
V
V
3.3 V 5%, supply voltage for the LDO used in PLL1  
3.3 V 5%, supply voltage for oscillator output path  
3.3 V 5%, supply voltage for the LDO used in PLL2  
3.3 V 5%, supply voltage for Output Channel 8, Output  
Channel 9, Output Channel 10, and Output Channel 11  
VCC9_OUT  
3.135 3.3  
3.465  
V
3.3 V 5%, supply voltage for Output Channel 0, Output  
Channel 1, Output Channel 12, and Output Channel 13  
TEMPERATURE  
Ambient Temperature Range, TA  
−40  
+25 +85  
°C  
SUPPLY CURRENT  
For detailed test conditions, see Table 22 and Table 23.  
Table 2.  
Parameter1, 2  
CURRENT CONSUMPTION3  
VCC1_VCO  
Min Typ  
Max Unit Test Conditions/Comments  
157  
65  
12  
225  
250  
37  
mA  
mA  
mA  
mA  
VCC2_OUT4  
Typical value is given at TA = 25°C with two LVDS clocks at divide by 8  
VCC3_SYSREF  
VCC4_OUT4  
78  
500  
Typical value is given at 25°C with two LVPECL high performance clocks,  
fundamental frequency of internal VCO (fO), 2 SYSREF clocks (off)  
VCC5_PLL1  
VCC6_OSCOUT  
VCC7_PLL2  
VCC8_OUT4  
39  
0
46  
124  
125  
80  
80  
mA  
mA  
mA  
mA  
500  
Typical value is given at 25°C with two LVPECL high performance clocks at  
divide by 2, 2 SYSREF clocks (off)  
Typical value is given at 25°C with two LVDS clocks at divide by 8, 2 SYSREF  
clocks (off)  
VCC9_OUT4  
65  
500  
mA  
mA  
Total Current  
586  
1Maximum values are guaranteed by design and characterization.  
2 Currents include LVPECL termination currents.  
3 Maximum values are for all circuits enabled in their worst case power consumption mode, PVT variations, and accounting for peak current draw during temporary  
synchronization events.  
4 Typical specification applies to a normal usage profile (Profile 1 in Table 23), where PLL1 and PLL2 are locked, but very low duty cycle currents (sync events) and some  
optional features are disabled. This specification assumes output configurations as described in the test conditions/comments column.  
Rev. B | Page 3 of 72  
 
 
 
 
HMC7044  
Data Sheet  
DIGITAL INPUT/OUTPUT (I/O) ELECTRICAL SPECIFICATIONS  
Table 3.  
Parameter  
Min Typ  
Max Unit Test Conditions/Comments  
DIGITAL INPUT SIGNALS (RESET, SYNC, SLEN, SCLK)  
Safe Input Voltage Range1  
Input Load  
−0.1  
0.3  
+3.6  
V
pF  
Input Voltage  
Input Logic High (VIH)  
Input Logic Low (VIL)  
SPI Bus Frequency  
1.2  
0
VCC  
0.5  
10  
V
V
MHz  
DIGITAL BIDIRECTIONAL SIGNALS CONFIGURED AS  
INPUTS (SDATA, GPIO4, GPIO3, GPIO2, GPIO1)  
Safe Input Voltage Range1  
Input Capacitance  
Input Resistance  
−0.1  
0.4  
+3.6  
V
pF  
50G  
Input Voltage  
Input Logic High (VIH)  
Input Logic Low (VIL)  
Input Hysteresis  
1.22  
0
VCC  
0.24  
V
V
V
0.2  
Occurs around 0.85 V  
Does not include tDGPO  
GPIO1 TO GPIO4 ALARM MUXING/DELAY  
Delay from Internal Alarm/Signal to General-Purpose  
Output (GPO) Driver  
2
ns  
DIGITAL BIDIRECTIONAL SIGNALS CONFIGURED AS  
OUTPUTS (SDATA, GPIO4, GPIO3, GPIO2, GPIO1)  
CMOS MODE  
Logic 1 Level  
Logic 0 Level  
1.6  
1.9  
0
2.2  
0.1  
V
V
Output Drive Resistance (RDRIVE  
Output Driver Delay (tDGPO  
)
50  
1.5 + 42 ×  
CLOAD  
ns  
)
Approximately 1.5 ns + 0.69 × RDRIVE × CLOAD  
(CLOAD in nF)  
Maximum Supported DC Current1  
OPEN-DRAIN MODE1  
0.6  
mA  
External 1 kΩ pull-up resistor  
Logic 1 Level  
3.6  
V
V
3.6 V maximum permitted; specifications  
set by external supply  
Against a 1 kΩ external pull-up resistor to  
3.3 V  
Logic 0 Level  
0.13  
60  
0.28  
Pull-Down Impedance  
Maximum Supported Sink Current  
5
mA  
1 Guaranteed by design and characterization.  
Rev. B | Page 4 of 72  
 
Data Sheet  
HMC7044  
PLL1 CHARACTERISTICS  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PLL1 REFERENCE INPUTS  
(CLKIN0/CLKIN0, CLKIN1/CLKIN1,  
CLKIN2/CLKIN2, CLKIN3/CLKIN3)  
Reliable Signal Swing  
Differential  
0.375  
0.375  
0.4  
1.4  
1.4  
2.4  
V p-p  
V p-p  
V
Differential, keep signal at reference input pin  
<2.8 V, measured at 800 MHz  
<250 MHz; keep signal at reference input pin  
<2.8 V  
If user supplied, on-chip VCM is approximately  
2.1 V  
Single-Ended1  
Common-Mode Range  
Input Impedance  
Return Loss  
100 to 2000  
−12  
dB  
User selectable; differential  
When terminated with 100 Ω differentially  
PLL1 REFERENCE DIVIDER  
8-Bit Lowest Common Multiple  
(LCM) Dividers  
16-Bit R Divider (R1)  
1
1
255  
65,535  
PLL1 FEEDBACK DIVIDER  
16-Bit N Divider (N1)  
1
65,535  
800  
PLL1 FREQUENCY LIMITATIONS  
PLL1 REF Input Frequency (fREF  
)
0.00015  
MHz  
Minimum specification set by Phase Detector 1  
(PD1) low limit  
Digital LOS/LCM Frequency (fLCM  
)
0.00015  
0.00015  
123  
50  
MHz  
MHz  
Typically run at about 38.4 MHz  
Minimum specification = VCXO minimum  
frequency ÷ 65,535; 9.76 MHz typical  
PD1 Frequency (fPD1  
PLL1 CHARGE PUMP  
)
Charge Pump Current Range (ICP1  
)
120 to 1920  
15  
μA  
%
ICP1 from 0 to 15, VCXO control voltage (VTUNE) =  
1.4 V  
VTUNE = 1.4 V  
ICP1 Variation over Process Voltage  
Temperature (PVT)  
Source/Sink Current Mismatch  
Charge Pump Current Step Size  
Charge Pump Compliance Range1  
2
120  
0.4 to 2.5  
0.1 to 2.7  
%
μA  
V
Source/sink mismatch at 1.4 V  
ICP variation less than 10%  
Maintain lock in test environment  
V
PLL1 NOISE PROFILE1  
Floor Figure of Merit (FOM)  
Flicker FOM  
Flicker Noise  
Noise Floor  
−222  
−252  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Normalized to 1 Hz  
Normalized to 1 Hz  
At fOUT, fOFFSET  
Determined by formula2  
Determined by formula3  
Determined by formula4  
At fOUT, fPD1  
Total Phase Noise (Unfiltered)  
PLL1 BANDWIDTH AND  
ACQUISITION TIMES1  
Supported Loop Bandwidths  
fLCM/225  
fPD1/10  
Hz  
Typically PLL1 low BW is set by the application  
and ranges between 5 Hz and 2 kHz  
(PLL1_BW)5  
PLL1 Slew Time6  
N1/  
fDELTA_VCXO  
sec  
sec  
ns  
N1 = 10 (typical) and fDELTA_VCXO = 10 kHz (typical)  
results in 1 ms of slew time  
When VCXO has stopped slewing to steady  
state (within 5°)  
PLL1 Linear Acquisition Time  
5/PLL1_BW  
2.9  
PLL1 Phase Error at PD1  
Invalidates Lock  
PLL1 Lock Detect Timer Period  
4 to 226  
tLCM  
User-selectable low phase error counts to  
declare lock  
7
(tLKD  
)
Rev. B | Page 5 of 72  
 
 
HMC7044  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PLL1 BEHAVIOR ON REFERENCE  
FAILURE1  
LOS Assertion Delay7  
Erroneously Active ICP1 Time on  
Reference Failure8  
2 + tDGPO  
0
3 + tDGPO  
8
tLCM  
ns  
From missing signal edge to alarm on GPO  
Temporary Frequency Glitch Due  
to Reference Failure  
Integrated Frequency Error Due to  
Reference Failure  
Signal Valid Time to Clear LOS9  
0.03  
ppm  
ppm  
tLOSVAL  
ICP1 = 1 mA, C12 = 4.6 nF, Crystek CVPD-952  
VCXO  
ICP1 = 1 mA, C13 = 1 μF, Crystek CVPD-952 VCXO  
0.016  
2
3
PLL1 VTUNE LEAKAGE SOURCES  
Charge Pump Tristate Leakage  
Current  
0.2  
nA  
Board Level XTAL Tune Input Port  
Board Level Loop Filter  
Components  
0.5  
2
nA  
nA  
Crystek CVPD-952 VCXO  
C12 = 4.6 nF, C13 = 1 μF, R9 = 11 kΩ, C15 =  
unpopulated  
HOLDOVER CHARACTERISTICS  
VTUNE Drift Over 1 sec in Tristate  
Mode  
Holdover  
Analog-to-Digital Converter  
(ADC)/Digital-to-Analog  
Converter (DAC) Resolution  
2
mV  
mV  
C12 = 4.6 nF, C13 = 1 μF, R9 = 11 kΩ,  
CVPD-950 VCXO  
19  
7-bit, monotonic, no missing code  
ADC/DAC Code 0 Voltage  
ADC/DAC Code 127 Voltage  
DAC Temperature Stability  
ADC/DAC Integral Nonlinearity  
(INL)  
Holdoff Timer Period1, 10  
0.28  
2.71  
0.07  
−0.11  
V
V
mV/°C  
LSBs  
At maximum code  
Worst case across codes  
1
226  
tLCM  
HOLDOVER EXIT—INITIAL PHASE  
OFFSETS1  
Exit Criteria = Wait for Low Phase  
Error  
The phase offset to make up after a transition  
from holdover to acquisition when using this  
feature  
Exit Action = None  
Exit Criteria = Any11  
4
ns  
Exit Action = Reset Dividers  
1
2
tVCXO  
Assumes N2 > 3 and dividers are reset upon  
exit; note that VCXO lags at start; value applies  
as the starting phase error if DAC assisted  
release is used  
Exit Action = None  
N1  
tVCXO  
Dividers are not reset upon exit  
HOLDOVER EXIT CHARACTERISTICS1, 12  
DAC Assisted Release Period per  
1/2  
1/16  
9
tLKD  
Based on lock detect timer setpoint  
Step (tDACASSIST  
)
DAC Assisted Release Time  
tDACASSIST  
Time from decision to leave holdover until in  
fully natural acquisition; assumes no  
interruption by LOS or user  
Delay of Exit Criteria13 = Wait for  
Low Phase Error14  
N1/fERR_VCXO sec  
Rev. B | Page 6 of 72  
Data Sheet  
HMC7044  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
HOLDOVER EXIT—FREQUENCY  
TRANSIENTS vs. MODE  
Peak Frequency Transient  
DAC Assisted Release  
2
ppm  
Only available if using DAC-based holdover  
1 Guaranteed by design and characterization.  
2 See the PLL1 Noise Calculations section for more information on how to calculate the flicker noise for PLL1.  
3 See the PLL1 Noise Calculations section for more information on how to calculate the noise floor for PLL1.  
4 See the PLL1 Noise Calculations section for more information on how to calculate the total phase noise (unfiltered) for PLL1.  
5 Set by external components. Set the lock detect thresholds (PLL1 Lock Detect Timer[4:0] in Register 0x0028) appropriately in the SPI.  
6 Depends on initial phase offset (worst case is proportional to N1) and VCXO excess tuning range available over the target (fDELTA_VCXO). For PFD rates typical of PLL1,  
cycle slipping is normally insignificant.  
7 tLCM is the least common multiple (LCM) of PLL1 clock input frequencies. The specification is given in multiples of tLCM  
.
8 If LOS triggers before the PFD edge is normally detected (more likely with high R1 values), the charge pump is more likely to disable before the next invalid  
comparison occurs. Otherwise, the fast tristate circuit disables the charge pump after about 4 ns (8 ns worst case) of phase error.  
9 tLOSVAL is a register value that is programmable from 1, 2, 4, …, 64 tLCM  
.
10 If the holdoff timer is used, the finite state machine (FSM) stays in holdover after LOS of the active reference before switching clocks, giving the original clock a chance  
to return.  
11  
t
is the VCXO clock period.  
VCXO  
12 See the PLL1 Holdover Exit section.  
13 The time required for the phases to intersect is inversely proportional to the holdover frequency error. Note that the frequency error during holdover is expected to  
be much smaller than is available from the tuning range of the VCXO.  
14  
f
is the error frequency of the VCXO.  
ERR_VCXO  
PLL2 CHARACTERISTICS  
Table 5.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PLL2 VCXO INPUT  
Recommended Swing  
Differential  
Single-Ended (<250 MHz)1  
Common-Mode Range  
VCXO Input Slew Rate  
0.2  
0.2  
1.6  
300  
1.4  
1.4  
2.4  
V p-p  
V p-p  
V
Differential, keep signal at OSCIN and OSCIN pins < 2.8 V  
Keep signal at OSCIN and OSCIN pins < 2.8 V  
2.1  
If user supplied, on-chip VCM is approximately 2.1 V  
Slew rates as low as 100 mV/ns are functional, but can  
degrade the phase noise plateau by about 3 dB  
mV/ns  
Input Capacitance  
Differential Input Resistance  
Return Loss  
1.5  
100 to 1000  
−12  
pF  
dB  
Per side; 3 pF differential  
User selectable  
When terminated with 100 Ω differential  
PLL2 EXTERNAL VCO INPUT  
Recommended Input  
Power, AC-Coupled  
Differential  
−6  
−6  
6
6
dBm  
dBm  
dB  
Single-Ended1  
Return Loss  
External VCO Frequency1  
−12  
2.1  
When terminated with 100 Ω differential  
Fundamental mode; if < 1 GHz, set the low frequency  
external VCO path bit (Register 0x0064, Bit 0)  
400  
3200  
MHz  
400  
1.6  
6000  
2.2  
MHz  
V
Using external VCO ÷ 2  
Common-Mode Range1  
PLL2 DIVIDERS  
12-Bit Reference Divider  
Range (R2)  
16-Bit Feedback Divider  
Range (N2)  
1
8
4095  
65,535  
PLL2 FREQUENCY LIMITATIONS  
VCXO Frequency (fVCXO  
VCXO Duty Cycle  
Using Doubler1  
)
10  
40  
500  
60  
MHz  
%
122.88 MHz or 155 MHz are typical  
Distortion can lead to a spur at fPD/2 offset, note that  
minimum pulse width > 3 ns  
Rev. B | Page 7 of 72  
 
 
HMC7044  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Reference Doubler Input  
Frequency  
10  
175  
MHz  
R2 Input Frequency  
PD2 Frequency (fPD2  
10  
0.00015  
500  
250  
MHz  
MHz  
)
Recommended at high end of the range for best phase  
noise; typically 122.88 MHz × 2  
PLL2 CHARGE PUMP  
Current Range (ICP2  
ICP2 Variation over PVT  
Source/Sink Current  
Mismatch  
)
160 to 2560  
25  
2
μA  
%
%
ICP2 setting from 0 to 15 with 160 μA step size, VTUNE = 1.4 V  
VTUNE = 1.4 V  
Source/sink mismatch at 1.4 V  
Current Step Size  
Compliance Range  
PLL2 NOISE PROFILE  
Floor FOM  
160  
0.3 to 2.45  
μA  
V
ICP variation less than 10%  
−232  
−266  
3
dBc/Hz Normalized to 1 Hz  
dBc/Hz Normalized to 1 Hz  
dB  
Flicker FOM  
FOM Variation vs. PVT  
FOM Degradation  
PLL2 Flicker Noise  
PLL2 Noise Floor  
PLL2 Total Phase Noise  
(Unfiltered)  
3
dB  
At minimum VCXO slew rate  
Determined by formula2  
Determined by formula3  
Determined by formula4  
dBc/Hz At fOUT, fOFFSET  
dBc/Hz At fOUT, fPD2  
dBc/Hz  
PLL2 BANDWIDTH AND  
ACQUISITION TIMES  
Supported Loop  
Bandwidths (PLL2_BW)  
VCO Automatic Gain  
Control (AGC) Settling  
Time1  
VCO Calibration Time5  
10 to 700  
kHz  
ms  
Set by external components  
10  
20  
Time from power-up of VCO before initiating calibration;  
this applies to the 100 nF/1 μF configuration of external  
decoupling capacitors on the VCO supply network  
N2 from 8 to 31  
N2 from 32 to 256  
N2 from 256 to 4095  
N2 > 4095  
Maintains lock from any temperature to any temperature  
2694  
779  
214  
139  
tPD2  
tPD2  
tPD2  
tPD2  
°C  
Temperature Range  
Postcalibration1  
−40  
+85  
PLL2 Linear Acquisition  
Time  
PLL2 Lock Detect Timer  
Period5  
5/PLL2_BW  
512  
sec  
tPD2  
After VCXO has stopped slewing to steady state  
Low phase error counts to declare lock  
1 Guaranteed by design and characterization.  
2 See the PLL2 Noise Calculations section for more information on how to calculate the flicker noise for PLL2.  
3 See the PLL2 Noise Calculations section for more information on how to calculate the noise floor for PLL2.  
4 See the PLL2 Noise Calculations section for more information on how to calculate the total phase noise (unfiltered) for PLL2.  
5 tPD2 is the period of Phase Detector 2.  
VCO CHARACTERISTICS  
Table 6.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VOLTAGE CONTROLLED OSCILLATOR (VCO)  
Frequency Tuning Range, On-Board VCOs1 2150  
2880  
3550  
3200  
MHz  
MHz  
MHz  
MHz/V  
MHz/V  
Low VCO typical coverage  
High VCO typical coverage  
Guaranteed frequency coverage2  
Low frequency VCO at 2457.6 MHz  
High frequency VCO at 2949.12 MHz  
2650  
2400  
Tuning Sensitivity  
38 to 44  
35 to 40  
Rev. B | Page 8 of 72  
 
Data Sheet  
HMC7044  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
OPEN-LOOP VCO PHASE NOISE  
fOUT = 2457.6 MHz  
fOFFSET = 100 kHz  
−109  
dBc/Hz  
High performance mode, does not include  
floor contribution due to output network  
fOFFSET = 800 kHz  
fOFFSET = 1 MHz  
fOFFSET = 10 MHz  
Normalized Phase Noise Variation vs.  
Frequency  
−134  
−136  
−156  
2
dBc/Hz  
dBc/Hz  
dBc/Hz  
dB  
Sweep across both VCOs, all bands;  
normalize to 2457.6 MHz  
Phase Noise Variation vs. Temperature  
Phase Noise Degradation in Low  
Performance Mode  
2
2
dB  
dB  
1 Guaranteed by design and characterization.  
2 Although the device covers this range without any gaps, for frequencies between ~2700 Hz and 2900 Hz, using a different VCO core to synthesize the frequency can  
be required as process parameters shift. Features are built into the HMC7044 to determine which core is selected for a given frequency that can fall in this range, but it  
can require software to configure these circuits appropriately.  
CLOCK OUTPUT DISTRIBUTION CHARACTERISTICS  
Table 7.  
Parameter  
Min Typ  
Max Unit  
Test Conditions/Comments  
CLOCK OUTPUT SKEW  
CLKOUTx/CLKOUTx to SCLKOUTx/SCLKOUTx  
Skew within One Clock Output Pair  
Any CLKOUTx/CLKOUTx to Any  
SCLKOUTx/SCLKOUTx  
15  
30  
|ps|  
|ps|  
Same pair, same type termination and  
configuration  
Any pair, same type termination and configuration  
CLOCK OUTPUT DIVIDER  
12-Bit Divider Range  
1
1
4094  
4094  
1, 3, 5, and all even numbers up to 4094  
SYSREF CLOCK OUTPUT DIVIDER  
12-Bit Divider Range  
1, 3, 5 and all even numbers up to 4094; pulse  
generator behavior is only supported for divide  
ratios ≥ 32  
CLOCK OUTPUT ANALOG FINE DELAY  
Analog Fine Delay  
Adjustment Range1  
Resolution  
Maximum Analog Fine Delay Frequency1  
135  
25  
670  
17  
ps  
ps  
MHz  
24 delay steps, fCLKOUT = 983.04 MHz  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
3200  
CLOCK OUTPUT COARSE DELAY (FLIP FLOP  
BASED)  
Coarse Delay Adjustment Range  
0
½ VCO  
period  
ps  
17 delay steps in ½ VCO period  
fVCO = 2949.12 MHz  
Coarse Delay Resolution  
Maximum Frequency Coarse Delay1  
CLOCK OUTPUT COARSE DELAY (SLIP BASED)  
Coarse Delay  
169.54  
3200  
MHz  
Adjustment Range  
Resolution  
Maximum Frequency Coarse Delay  
1 to ∞  
339.08  
1600  
VCO period  
ps  
MHz  
fVCO = 2949.12 MHz  
1 Guaranteed by design and characterization.  
Rev. B | Page 9 of 72  
 
 
HMC7044  
Data Sheet  
SPUR CHARACTERISTICS  
Table 8.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFERENCE SPUR PERFORMANCE  
At 122.88 MHz and Its Harmonics  
−70  
dBc  
NOISE AND JITTER CHARACTERISTICS  
Table 9.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CLOSED-LOOP PHASE NOISE—WIDE LOOP FILTER  
SSB Phase Noise  
For best integrated noise  
At 2457.6 MHz1  
−98.0  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
Offset = 100 Hz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 300 kHz  
Offset = 1 MHz  
−111.1  
−119.8  
−125.2  
−126.9  
−131.3  
−150.0  
−154.0  
−156.3  
44.0  
Offset = 5 MHz  
Offset = 10 MHz  
Offset = 100 MHz  
Integrated jitter = 12 kHz to 20 MHz  
At 614.4 MHz1  
−110.4  
−122.8  
−131.3  
−136.6  
−138.3  
−142.7  
−157.6  
−158.8  
−159.2  
50.0  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
Offset = 100 Hz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 300 kHz  
Offset = 1 MHz  
Offset = 5 MHz  
Offset = 10 MHz  
Offset = 100 MHz  
Integrated jitter = 12 kHz to 20 MHz  
For best 800 kHz offset  
CLOSED-LOOP PHASE NOISE—NARROW LOOP FILTER  
SSB Phase Noise  
At 2949.12 MHz2  
−100.9  
−103.8  
−106.9  
−109.9  
−132.3  
−134.5  
−152  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
Offset = 100 Hz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 800 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 100 MHz  
Integrated jitter = 12 kHz to 20 MHz  
−155.3  
108  
At 983.04 MHz2  
−110.4  
−113.3  
−116.4  
−119.4  
−141.7  
−143.7  
−157.1  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Offset = 100 Hz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 800 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Rev. B | Page 10 of 72  
 
 
 
Data Sheet  
HMC7044  
Parameter  
Min  
Typ  
Max  
Unit  
dBc/Hz  
fs  
Test Conditions/Comments  
−157.1  
102  
Offset = 100 MHz  
Integrated jitter 12 kHz to 20 MHz  
OUTPUT NETWORK FLOOR FOM  
CML with 100 Ω Internal Termination (CML100)  
Fundamental Mode  
Divide by 1 to Divide by N  
Divide by 1 to Divide by N  
LVPECL  
−250  
−248  
−247  
dBc/Hz  
dBc/Hz  
dBc/Hz  
High performance  
High performance  
Low power (4 dB less power)  
Fundamental Mode  
Divide by 1 to Divide by N  
LVDS  
−250  
−247  
dBc/Hz  
dBc/Hz  
Divide by 1 to Divide by N  
Divide by 1 to Divide by N  
PHASE NOISE DEGREDATION DUE TO HARMONICS3  
Fundamental Only  
−244  
−243  
dBc/Hz  
dBc/Hz  
High performance  
Low power (4 dB less power)  
0.00  
0.25  
0.40  
0.50  
0.53  
0.64  
dB  
dB  
dB  
dB  
dB  
dB  
Third Harmonic  
Third and Fifth Harmonics  
Third, Fifth, and Seventh Harmonics  
Third, Fifth, Seventh, and Ninth Harmonics  
Third Through 61st Harmonics  
PHASE NOISE FLOOR AND JITTER  
Phase Noise Floor at fOUT  
Determined by formula4 dBc/Hz  
Determined by formula5 sec/√Hz  
Determined by formula6 sec  
Jitter Density of Floor at fOUT  
RMS Additive Jitter Due to Floor  
From fOUT and output channel FOM  
1 PLL2 locked at 122.88 MHz × 2 × 10, wide (600 kHz) loop filter for best 12 kHz to 20 MHz jitter, CML100 high performance output buffer.  
2 PLL2 locked at 122.88 MHz × 2 × 12, narrow loop for best 800 Hz offset, CML100 high performance output buffer.  
3 When the harmonics of the signal are captured in the measurement bandwidth of the receiving instrument/circuit, the noise power of those harmonics can fold and  
influence the overall noise. Their presence causes a decibel for decibel influence. For example, if the third harmonic is at −10 dBc, there is an additional noise  
contributor of 10 dB lower than the fundamental at all offsets that folds in-band and causes a 0.2 dB hit overall. The influence of the harmonics factoring into the  
degradation is primarily a function of the frequency of the buffer bandwidth relative to the third, fifth, and seventh harmonics. As the output frequency reduces, more  
harmonics fall into the observation bandwidth, and the degradation worsens, but only slightly. This effect produces a penalty of 0.65 dB maximum if harmonics up to  
the 61st harmonic is included.  
4 See the Phase Noise Floor and Jitter section for more information on how to calculate the phase noise floor.  
5 See the Phase Noise Floor and Jitter section for more information on how to calculate the jitter density of floor.  
6 See the Phase Noise Floor and Jitter section for more information on how to calculate the rms additive jitter due to floor.  
CLOCK OUTPUT DRIVER CHARACTERISTICS  
Table 10.  
Parameter  
Min Typ  
Max Unit  
Test Conditions/Comments  
CML MODE (LOW POWER)  
−3 dB Bandwidth  
Output Rise Time  
RL = 100 Ω, 9.6 mA  
1950  
175  
145  
185  
145  
MHz  
ps  
ps  
ps  
ps  
Differential output voltage = 980 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
RL = 100 Ω, 14.5 mA  
Differential output voltage = 1410 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
Output Fall Time  
Output Duty Cycle1  
Differential Output Voltage Magnitude  
47.5 50  
1390  
52.5  
%
mV p-p diff  
mV p-p diff  
V
1360  
VCC − 1.05  
Common-Mode Output Voltage  
CML MODE (HIGH POWER)  
3 dB Bandwidth  
1400  
250  
165  
255  
170  
MHz  
ps  
ps  
ps  
ps  
Output Rise Time  
Output Fall Time  
Rev. B | Page 11 of 72  
 
 
HMC7044  
Data Sheet  
Parameter  
Output Duty Cycle1  
Differential Output Voltage Magnitude  
Min Typ  
47.5 50  
2000  
Max Unit  
Test Conditions/Comments  
52.5  
52.5  
52.5  
%
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
RL = 150 Ω, 4.8 mA  
Differential output voltage = 1240 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
1.75 mA  
Differential output voltage = 400 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
3.5 mA  
Differential output voltage = 650 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
mV p-p diff  
mV p-p diff  
V
1800  
VCC − 1.6  
Common-Mode Output Voltage  
LVPECL MODE  
3 dB Bandwidth  
2400  
135  
130  
135  
130  
MHz  
ps  
ps  
ps  
ps  
%
mV p-p diff  
mV p-p diff  
V
Output Rise Time  
Output Fall Time  
Output Duty Cycle1  
Differential Output Voltage Magnitude  
47.5 50  
1760  
1850  
VCC − 1.3  
Common-Mode Output Voltage  
LVDS MODE (LOW POWER)  
Maximum Operating Frequency  
Output Rise Time  
600  
135  
100  
135  
95  
MHz  
ps  
ps  
ps  
ps  
%
Output Fall Time  
Output Duty Cycle1  
47.5 50  
Differential Output Voltage Magnitude  
Common-Mode Output Voltage  
LVDS MODE (HIGH POWER)  
Maximum Operating Frequency  
Output Rise Time  
390  
1.1  
mV p-p diff  
V
1700  
145  
105  
145  
100  
MHz  
ps  
ps  
ps  
Output Fall Time  
ps  
Output Duty Cycle1  
Differential Output Voltage Magnitude  
47.5 50  
52.5  
%
750  
730  
1.1  
mV p-p diff  
mV p-p diff  
V
Common-Mode Output Voltage  
CMOS MODE  
Maximum Operating Frequency  
Output Rise Time  
Output Fall Time  
Output Duty Cycle1  
600  
425  
420  
MHz  
ps  
ps  
Single-ended output voltage = 940 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
47.5 50  
52.5  
%
fCLKOUT = 1075 MHz (2150 MHz/2)  
Output Voltage  
High  
VCC − 0.07  
VCC − 0.5  
0.07  
V
V
V
V
Load current = 1 mA  
Load current = 10 mA  
Load current = 1 mA  
Load current = 10 mA  
Output  
0.5  
1 Guaranteed by design and characterization.  
Rev. B | Page 12 of 72  
 
Data Sheet  
HMC7044  
ABSOLUTE MAXIMUM RATINGS  
Table 11.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
VCC1_VCO, VCC2_OUT, VCC3_SYSREF,  
VCC4_OUT, VCC5_PLL1, VCC6_OSCOUT,  
VCC7_PLL2, VCC8_OUT, VCC9_OUT  
Maximum Junction Temperature (TJ)  
Maximum Peak Reflow Temperature  
−0.3 V to +3.6 V  
125°C  
260°C  
7°C/W  
Thermal Resistance (Channel to Ground  
Paddle)  
ESD CAUTION  
Storage Temperature Range  
Operating Temperature Range  
ESD Sensitivity Level  
−65°C to +150°C  
−40°C to +85°C  
Human Body Model  
Charged Device Model1  
Class 1C  
Class 3  
1 Per JESD22-C101-F (CDM) standard.  
Rev. B | Page 13 of 72  
 
 
 
 
 
HMC7044  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLKOUT0  
CLKOUT0  
SCLKOUT1  
SCLKOUT1  
RESET  
1
2
3
4
5
6
7
8
9
51 VCC7_PLL2  
50 CPOUT2  
49 LDOBYP7  
48 OSCIN  
47 OSCIN  
SYNC  
46 LDOBYP6  
45 OSCOUT1  
BGABYP1  
LDOBYP2  
LDOBYP3  
44 OSCOUT1  
HMC7044  
TOP VIEW  
(Not to Scale)  
43 CLKIN2/OSCOUT0  
42 CLKIN2/OSCOUT0  
41 VCC6_OSCOUT  
40 CLKIN0/RFSYNCIN  
39 CLKIN0/RFSYNCIN  
38 VCC5_PLL1  
37 CLKIN1/FIN  
36 CLKIN1/FIN  
35 RSV  
VCC1_VCO 10  
LDOBYP4 11  
LDOBYP5 12  
SCLKOUT3 13  
SCLKOUT3 14  
CLKOUT2 15  
CLKOUT2 16  
VCC2_OUT 17  
NOTES  
1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO A HIGH QUALITY RF/DC GROUND.  
Figure 2. Pin Configuration  
Table 12. Pin Function Descriptions  
Pin No. Mnemonic  
Type1 Description  
1
2
3
4
5
6
7
CLKOUT0  
CLKOUT0  
SCLKOUT1  
SCLKOUT1  
RESET  
O
O
O
O
I
True Clock Output Channel 0. Default DCLK profile.  
Complementary Clock Output Channel 0. Default DCLK profile.  
True Clock Output Channel 1. Default SYSREF profile.  
Complementary Clock Output Channel 1. Default SYSREF profile.  
Device Reset Input. Active high. For normal operation, set RESET to 0.  
Synchronization Input. This pin is used for multichip synchronization. If not used, set SYNC to 0.  
SYNC  
BGABYP1  
I
Band Gap Bypass Capacitor Connection. Connect a 4.7 µF capacitor to ground. This pin affects all  
internally regulated supplies.  
8
9
LDOBYP2  
LDOBYP3  
LDO Bypass 2. Connect a 4.7 µF capacitor to ground. The internal digital supply is 1.8 V. This pin is  
the LDO bypass for the PLL1, PLL2, and SYSREF sections.  
LDO Bypass 3. Connect a 4.7 µF capacitor to ground. This pin is the 2.8 V supply to PLL1, Phase  
Frequency Detector 1 (PFD1), Charge Pump 1 (CP1), RF synchronization (RFSYNC), and Pin 36  
buffers.  
10  
11  
VCC1_VCO  
LDOBYP4  
P
3.3 V Supply for VCO and VCO Distribution.  
LDO Bypass 4. Connect a 1 µF capacitor to ground. This pin is the first stage regulator for the VCO  
supply.  
12  
13  
14  
15  
16  
17  
LDOBYP5  
SCLKOUT3  
SCLKOUT3  
CLKOUT2  
CLKOUT2  
VCC2_OUT  
LDO Bypass 5. Connect a 100 nF capacitor to LDOBYP4. This pin is the VCO core supply voltage.  
True Clock Output Channel 3. Default SYSREF profile.  
Complementary Clock Output Channel 3. Default SYSREF profile.  
True Clock Output Channel 2. Default DCLK profile.  
O
O
O
O
P
Complementary Clock Output Channel 2. Default DCLK profile.  
Power Supply for Clock Group 1 (Southwest)—Channel 2 and Channel 3. See the Clock Grouping,  
Skew, and Crosstalk section.  
18  
SLEN  
I
SPI Latch Enable.  
Rev. B | Page 14 of 72  
 
 
Data Sheet  
HMC7044  
Pin No. Mnemonic  
Type1 Description  
19  
20  
21  
22  
23  
24  
25  
26  
SCLK  
SDATA  
I
SPI Clock.  
SPI Data.  
I/O  
P
VCC3_SYSREF  
SCLKOUT5  
SCLKOUT5  
CLKOUT4  
CLKOUT4  
VCC4_OUT  
Power Supply for Common SYSREF Divider.  
True Clock Output Channel 5. Default SYSREF profile.  
Complementary Clock Output Channel 5. Default SYSREF profile.  
True Clock Output Channel 4. Default DCLK profile.  
Complementary Clock Output Channel 4. Default DCLK profile.  
O
O
O
O
P
Power Supply for Clock Group 2 (South)—Channel 4, Channel 5, Channel 6, and Channel 7. See the  
Clock Grouping, Skew, and Crosstalk section.  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
CLKOUT6  
CLKOUT6  
SCLKOUT7  
SCLKOUT7  
GPIO1  
CPOUT1  
CLKIN3  
CLKIN3  
O
O
O
O
I/O  
O
I
True Clock Output Channel 6. Default DCLK profile.  
Complementary Clock Output Channel 6. Default DCLK profile.  
True Clock Output Channel 7. Default SYSREF profile.  
Complementary Clock Output Channel 7. Default SYSREF profile.  
Programmable General-Purpose Input/Output 1.  
PLL1 Charge Pump Output.  
True Reference Clock Input 3 of PLL1.  
Complementary Reference Clock Input 3 of PLL1.  
Reserved Pin. This pin must be tied to ground.  
I
RSV  
CLKIN1/FIN  
CLKIN1/FIN  
R
I
I
True Reference Clock Input 1 of PLL1/External VCO Input for External VCO Mode.  
Complementary Reference Clock Input 1 of PLL1/Complementary External VCO Input for External  
VCO Mode.  
38  
39  
40  
VCC5_PLL1  
CLKIN0/RFSYNCIN  
CLKIN0/RFSYNCIN  
P
I
I
Power Supply for LDO, Used for PLL1.  
True Reference Clock Input 0 of PLL1/RF Synchronization Input with Deterministic Delay.  
Complementary Reference Clock Input 0 of PLL1/Complementary RF Synchronization Input with  
Deterministic Delay.  
41  
42  
43  
VCC6_OSCOUT  
CLKIN2/OSCOUT0 I/O  
CLKIN2/OSCOUT0 I/O  
P
Power Supply for Oscillator Output Path.  
True Reference Clock Input 2 (Bidirectional Pin) of PLL1/Buffered Output 0 of Oscillator Input.  
Complementary Reference Clock Input 2 (Bidirectional Pin) of PLL1/Complementary Buffered  
Output 0 of Oscillator Input.  
44  
45  
46  
OSCOUT1  
OSCOUT1  
LDOBYP6  
O
O
True Buffered Output 1 of Oscillator Input.  
Complementary Buffered Output 1 of Oscillator Input.  
LDO Bypass, Connect a 4.7 µF capacitor to ground. This pin is the LDO bypass for R2, N2, Phase  
Frequency Detector 2 (PFD2), Charge Pump 2 (CP2), and the PLL2 loop filter.  
47  
48  
49  
OSCIN  
OSCIN  
I
I
True Feedback Input to PLL1. This pin is a reference input to PLL2.  
Complementary Feedback Input to PLL1. This pin is a reference input to PLL2.  
LDOBYP7  
LDO Bypass. Connect a 4.7 µF capacitor to ground. This pin is the LDO bypass for the VCXO buffer  
and frequency doubler oscillator output divider.  
50  
51  
52  
53  
54  
55  
56  
57  
CPOUT2  
VCC7_PLL2  
GPIO2  
SCLKOUT9  
SCLKOUT9  
CLKOUT8  
CLKOUT8  
VCC8_OUT  
I/O  
P
I/O  
O
PLL2 Charge Pump Output.  
Power Supply for LDO for PLL2.  
Programmable General-Purpose Input/Output 2.  
True Clock Output Channel 9. Default SYSREF profile.  
Complementary Clock Output Channel 9. Default SYSREF profile.  
True Clock Output Channel 8. Default DCLK profile.  
Complementary Clock Output Channel 8. Default DCLK profile.  
O
O
O
P
Power Supply for Clock Group 3 (North)—Channel 8, Channel 9, Channel 10, and Channel 11. See  
the Clock Grouping, Skew, and Crosstalk section.  
58  
59  
60  
61  
62  
63  
64  
CLKOUT10  
CLKOUT10  
SCLKOUT11  
SCLKOUT11  
GPIO3  
O
O
True Clock Output Channel 10. Default DCLK profile.  
Complementary Clock Output Channel 10. Default DCLK profile.  
True Clock Output Channel 11. Default SYSREF profile.  
Complementary Clock Output Channel 11. Default SYSREF profile.  
Programmable General-Purpose Input/Output 3. Sleep input by default.  
Programmable General-Purpose Input/Output 4. Pulse generator request by default.  
True Clock Output Channel 13. Default SYSREF profile.  
O
O
I/O  
I/O  
O
GPIO4  
SCLKOUT13  
Rev. B | Page 15 of 72  
 
HMC7044  
Data Sheet  
Pin No. Mnemonic  
Type1 Description  
65  
66  
67  
68  
SCLKOUT13  
CLKOUT12  
CLKOUT12  
VCC9_OUT  
O
O
O
P
Complementary Clock Output Channel 13. Default SYSREF profile.  
True Clock Output Channel 12. Default DCLK profile.  
Complementary Clock Output Channel 12. Default DCLK profile.  
Power Supply for Clock Group 0 (Northwest)—Channel 0, Channel 1, Channel 12, and Channel 13.  
See the Clock Grouping, Skew, and Crosstalk section.  
EP  
Exposed Pad. Connect the exposed pad to a high quality RF/dc ground.  
1 O is output, I is input, P is power, and I/O is input/output.  
Rev. B | Page 16 of 72  
Data Sheet  
HMC7044  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, PFD PLL1 = 7.68 MHz, PFD PLL2 = 122.88 MHz × 2; ICP1 = 1.92 mA, ICP2 = 2.56 mA (wide loop), ICP2 = 1.12 mA  
(narrow loop), PLL1 loop BW ~ 70 Hz, PLL2 wide loop BW ≈ 650 kHz, PLL2 narrow loop BW ≈ 215 kHz, PLL2 narrow loop filter =  
1.1 nF | 160 Ω × 33 nF; PLL2 wide loop filter = 150 pF | 430 Ω × 4.7 nF; PLL1 loop filter = 4.7 nF | 10 µF × 1.2 kΩ.  
–60  
–40  
–50  
1: 1kHz, –107.8dBc/Hz  
2: 10kHz, –119.5dBc/Hz  
3: 100kHz, –124.7dBc/Hz  
4: 1MHz, –131.5Bc/Hz  
5: 10MHz, –153.1dBc/Hz  
6: 20MHz, –154.4dBc/Hz  
7: 20MHz, –154.4dBc/Hz  
x: START 12kHz  
–70  
–60  
TOTAL PLL1 NOISE (SIMULATED)  
PFD/CP NOISE (SIMULATED)  
WENZEL REF (SIMULATED)  
VCXO (SIMULATED)  
–80  
–70  
–80  
–90  
STOP 20MHz  
CENTER 10MHz  
SPAN 20MHz  
TOTAL PLL1 NOISE (MEASURED)  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
1
2
PLL1  
3
CASCADED PLL1 + PLL2  
4
NOISE:  
ANALYSIS RANGE X: BAND MARKER  
ANALYSIS RANGE Y: BAND MARKER  
INTG NOISE: –66dBc/20MHz  
RMS NOISE: 696µrad  
6
7
5
0.004°  
RMS JITTER: 45fs  
RESIDUAL FM: 1.6kHz  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 3. Cascaded Phase Noise at 2457.6 MHz, PLL2 Wide Loop Bandwidth  
Figure 6. Closed-Loop Phase Noise at 122.88 MHz, PLL1 Measurement vs.  
Simulated, Clean Reference Source, ~70 Hz Loop Bandwidth 80° Phase Margin  
–60  
–70  
TOTAL PLL1 OUTPUT (SIMULATED)  
1: 1kHz, –105.3dBc/Hz  
2: 10kHz, –108.5dBc/Hz  
PFD/CP NOISE (SIMULATED)  
–70  
–80  
NOISY SOURCE (SIMULATED)  
3: 100kHz, –111.4dBc/Hz  
4: 800kHz, –134.2dBc/Hz  
5: 1MHz, –136.5dBc/Hz  
VCXO (SIMULATED)  
NOISY SOURCE, OPEN LOOP (MEASURED)  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
6: 10MHz, –153.3dBc/Hz  
7: 20MHz, –154.6dBc/Hz  
x: START 12kHz  
STOP 20MHz  
TOTAL PLL1 NOISE (MEASURED)  
–90  
1
2
CENTER 10MHz  
SPAN 20MHz  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
3
WIDE LOOP  
NARROW LOOP  
4
5
NOISE:  
ANALYSIS RANGE X: BAND MARKER  
ANALYSIS RANGE Y: BAND MARKER  
INTG NOISE: –56.9dBc/20MHz  
RMS NOISE: 2.0µrad  
6
7
.116°  
RMS JITTER: 131fs  
RESIDUAL FM: 1.5kHz  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4. Phase Noise at 2457.6 MHz, Narrow vs. PLL2 Wide Loop  
Bandwidth  
Figure 7. Closed-Loop Phase Noise at 122.88 MHz, PLL1 Measurement vs.  
Simulated, Noisy Reference Source, ~70 Hz Loop Bandwidth, 80° Phase Margin  
–120  
–125  
–130  
–135  
–70  
1: 1kHz, –110.4dBc/Hz  
2: 10kHz, –120.0dBc/Hz  
–80  
–90  
3: 100kHz, –124.9dBc/Hz  
4: 1MHz, –131.2dBc/Hz  
5: 10MHz, –153.2dBc/Hz  
6: 20MHz, –154.5dBc/Hz  
7: 20MHz, –154.5dBc/Hz  
x: START 12kHz  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
STOP 20MHz  
CENTER 10MHz  
1
SPAN 20MHz  
–140  
2
20×LOG (800kHz WIDE LOOP)  
20×LOG (800kHz NARROW LOOP)  
800kHz WIDE LOOP  
800kHz NARROW LOOP  
–145  
3
4
CRYSTEK VCXO  
WENZEL VCXO  
–150  
–155  
–160  
–165  
–170  
NOISE:  
ANALYSIS RANGE X: BAND MARKER  
ANALYSIS RANGE Y: BAND MARKER  
INTG NOISE: –66.1dBc/20.0MHz  
RMS NOISE: 702µrad  
6
7
5
.040°  
RMS JITTER: 45fs  
RESIDUAL FM: 1.6kHz  
100  
600  
1100  
1600  
2100  
2600  
3100  
3600  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 5. PLL2 Phase Noise vs. Frequency, VCXO Quality at 2457.6 MHz,  
Wide Loop Bandwidth  
Figure 8. Phase Noise vs. Frequency at Common Output Frequencies  
Rev. B | Page 17 of 72  
 
HMC7044  
Data Sheet  
160  
140  
120  
100  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
JITTER WIDE LOOP  
JITTER NARROW LOOP  
LOW VCO –40°C  
LOW VCO +25°C  
LOW VCO +85°C  
HIGH VCO –40°C  
HIGH VCO +25°C  
HIGH VCO +85°C  
60  
40  
20  
0
100  
600  
1100  
1600  
2100  
2600  
3100  
3600  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. 12 kHz to 20 MHz Jitter vs. Frequency, Wide Loop and Narrow  
Loop at Common Output Frequencies  
Figure 12. VCO VTUNE vs. Frequency  
–90  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
8: 100Hz, –99.8dBc/Hz  
1: 1kHz, –111.1dBc/Hz  
–95  
LVPECL  
2: 10kHz, –119.8dBc/Hz  
CML100 HIGH  
3: 100kHz, –125.2dBc/Hz  
–100  
7: 300kHz, –126.9dBc/Hz  
CML100 LOW  
8
4: 1MHz, –131.3Bc/Hz  
–105  
LVDS HIGH  
5: 10MHz, –153.1dBc/Hz  
CMOS (NOT IN  
DIFFERENTIAL MODE)  
6: 32.8MHz, –156.3dBc/Hz  
–110  
x: START 12kHz  
STOP 20MHz  
CENTER 10MHz  
SPAN 20MHz  
1
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
2
3
7
4
NOISE:  
ANALYSIS RANGE X: BAND MARKER  
ANALYSIS RANGE Y: BAND MARKER  
INTG NOISE: –66.4dBc/20MHz  
RMS NOISE: 678µrad  
6
.039°  
RMS JITTER: 44fs  
RESIDUAL FM: 1.5kHz  
5
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
3G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CLKOUTx  
Figure 10. Phase Noise, CLKOUTx/  
Figure 13. Differential Output Voltage vs. Frequency at Different Modes  
= 2457.6 MHz, Optimized for Best  
Integrated Jitter (12 kHz to 20 MHz)  
2.25  
2.10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LVPECL  
1.95  
1.80  
1.65  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0
CML100 HIGH  
CML100 LOW  
LVDS HIGH  
2865.72MHz  
3511.86MHz  
2115.38MHz  
2627.755 MHz  
CAP = 0 LOW VCO  
CAP = 0 HIGH VCO  
CAP = 31 LOW VCO  
CAP = 31 HIGH VCO  
0
0.5  
1.0  
1.5  
VCO V  
2.0  
2.5  
3.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
FREQUENCY (GHz)  
(V)  
TUNE  
Figure 14. Differential Output Voltage vs. Frequency at Different Modes  
Figure 11. VCO Gain (KVCO) vs. VCO VTUNE  
Rev. B | Page 18 of 72  
Data Sheet  
HMC7044  
2.5  
2.0  
1.5  
1.0  
0.5  
30  
25  
20  
15  
10  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
100M  
1G  
3G  
FREQUENCY (Hz)  
DELAY STEP  
Figure 15. LVPECL Differential Output Voltage vs. Frequency at Different  
Temperatures  
Figure 18. Analog Delay Step Size vs. Delay Step over Temperature, LVPECL  
at 1474.56 MHz  
0.4  
0.3  
800  
700  
600  
0.2  
500  
–40°C  
+25°C  
+85°C  
0.1  
400  
300  
200  
100  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
FUND: FUNDAMENTAL MODE AT 2949MHz  
DIS: ANALOG DELAY IS DISABLED AT 1474MHz  
–100  
–200  
0
0.4  
0.8  
1.2  
TIME (ns)  
1.6  
2.0  
DELAY SETTING  
Figure 19. Analog Delay vs. Delay Setting over Temperature, LVPECL  
at 1474.56 MHz  
CLKOUT0  
Figure 16. Differential CLKOUT0/  
at 2457 MHz, LVPECL  
30  
25  
20  
15  
10  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40°C  
+25°C  
+85°C  
5
0
0
1
2
3
4
5
6
7
8
9
10  
TIME (ns)  
DELAY STEP  
Figure 20. Analog Delay Step Size vs Delay Step over Temperature, LVPECL  
at 3072 MHz with Digital Delay = 0  
CLKOUT0  
Figure 17. Differential CLKOUT0/  
Voltage at 614.4 MHz, LVPECL  
Rev. B | Page 19 of 72  
 
 
 
HMC7044  
Data Sheet  
700  
600  
500  
400  
300  
200  
100  
0
0.6  
0.4  
2.5  
2.0  
1.5  
1.0  
0.5  
0
CLKOUT0  
CLKOUT2  
VALID PHASE ALARM  
0.2  
0
–40°C  
+25°C  
+85°C  
–0.2  
–0.4  
–0.6  
–0.5  
0
200  
400  
600  
TIME (ns)  
800  
1000  
DELAY SETTING  
Figure 24. Output Channel Synchronization Before and After Rephase  
Figure 21. Analog Delay vs. Delay Setting over Temperature, LVPECL at  
3072 MHz with Digital Delay = 0  
30  
0.6  
0.4  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–40°C  
+25°C  
+85°C  
CLKOUT0  
25  
20  
15  
CLKOUT2  
VALID PHASE ALARM  
0.2  
0
–0.2  
–0.4  
–0.6  
10  
–0.5  
330  
335  
340  
345  
350  
TIME (ns)  
DELAY STEP  
Figure 22. Analog Delay Step Size vs Delay Step over Temperature, LVPECL  
at 3072 MHz with Digital Delay = 1  
Figure 25. Output Channel Synchronization Before Rephase  
800  
700  
600  
500  
0.6  
0.4  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.2  
400  
0
–40°C  
+25°C  
+85°C  
300  
200  
100  
0
–0.2  
–0.4  
–0.6  
CLKOUT0  
CLKOUT2  
VALID PHASE ALARM  
–0.5  
715  
695  
700  
705  
710  
TIME (ns)  
DELAY SETTING  
Figure 26. Output Channel Synchronization After Rephase  
Figure 23. Analog Delay vs. Delay Setting over Temperature, LVPECL at  
3072 MHz with Digital Delay = 1  
Rev. B | Page 20 of 72  
Data Sheet  
HMC7044  
TYPICAL APPLICATION CIRCUITS  
HMC7044  
0.1µF  
HMC7044  
HIGH  
100Ω IMPEDANCE  
HIGH  
IMPEDANCE  
INPUT  
LVDS  
OUTPUT  
LVDS  
OUTPUT  
DOWNSTREAM  
DEVICE  
DOWNSTREAM  
DEVICE  
100Ω  
INPUT  
0.1µF  
Figure 27. AC-Coupled LVDS Output Driver  
Figure 31. DC-Coupled LVDS Output Driver  
VCC  
HMC7044  
100Ω  
100Ω  
LVPECL-  
COMPATIBLE  
OUTPUT  
DOWNSTREAM  
DEVICE  
(LVPECL)  
0.1µF  
HMC7044  
HIGH  
IMPEDANCE  
INPUT  
DOWNSTREAM  
DEVICE  
100Ω  
50Ω  
50Ω  
CML  
OUTPUT  
0.1µF  
50Ω  
GND  
Figure 32. DC-Coupled LVPECL Output Driver  
Figure 28. AC-Coupled CML (Configured High-Z) Output Driver  
0.1µF  
HMC7044  
HMC7044  
DOWNSTREAM  
DEVICE  
(CML)  
100Ω  
100Ω  
HIGH  
IMPEDANCE  
INPUT  
DOWNSTREAM  
DEVICE  
VCCx_OUT  
VCCx_OUT  
100Ω  
100Ω  
100Ω  
CML  
OUTPUT  
CML  
OUTPUT  
0.1µF  
Figure 33. DC-Coupled CML (Internal) Output Driver  
Figure 29. AC-Coupled CML (Internal) Output Driver  
0.1µF  
HMC7044  
HMC7044  
3.3V  
DRIVER  
47Ω  
SELF BIASED  
REF, VCXO  
INPUTS  
0.1µF  
0.1µF  
CLKIN0  
OSCIN  
and OSCIN/  
CLKIN1  
Input, Differential Mode  
CLKIN2  
CLKIN3  
Figure 34. CLKIN0, CLKIN1, CLKIN2, CLKIN3, and OSCIN Input,  
Single-Ended Mode  
Figure 30. CLKIN0/ , CLKIN1/  
, CLKIN2/  
, CLKIN3/  
,
Rev. B | Page 21 of 72  
 
HMC7044  
Data Sheet  
TERMINOLOGY  
Phase Jitter  
a sine wave, the time of successive zero crossings varies. In a square  
wave, the time jitter is a displacement of the edges from their  
ideal (regular) times of occurrence. In both cases, the variations in  
timing from the ideal are the time jitter. Because these variations  
are random in nature, the time jitter is specified in seconds root  
mean square (rms) or 1 sigma of the Gaussian distribution.  
An ideal sine wave can be thought of as having a continuous  
and even progression of phase with time from 0° to 360° for  
each cycle. Actual signals, however, display a certain amount  
of variation from ideal phase progression over time. This  
phenomenon is phase jitter. Although many causes can  
contribute to phase jitter, one major cause is random noise,  
which is characterized statistically as being Gaussian (normal)  
in distribution.  
Time jitter that occurs on a sampling clock for a DAC or an  
ADC decreases the signal-to-noise ratio (SNR) and dynamic  
range of the converter. A sampling clock with the lowest possible  
jitter provides the highest performance from a given converter.  
This phase jitter leads to the energy of the sine wave in the  
frequency domain spreading out, producing a continuous  
power spectrum. This power spectrum is usually reported as  
a series of values whose units are dBc/Hz at a given offset in  
frequency from the sine wave (carrier). The value is a ratio  
(expressed in decibels) of the power contained within a 1 Hz  
bandwidth with respect to the power at the carrier frequency.  
For each measurement, the offset from the carrier frequency is  
also given.  
Additive Phase Noise  
Additive phase noise is the amount of phase noise that is  
attributable to the device or subsystem being measured.  
The phase noise of any external oscillators or clock sources is  
subtracted, which makes it possible to predict the degree to  
which the device impacts the total system phase noise when  
used in conjunction with the various oscillators and clock  
sources, each of which contributes its own phase noise to the  
total. In many cases, the phase noise of one element dominates  
the system phase noise. When there are multiple contributors to  
phase noise, the total is the square root of the sum of squares of  
the individual contributors.  
Phase Noise  
It is meaningful to integrate the total power contained within  
some interval of offset frequencies (for example, 10 kHz to  
10 MHz). This is the integrated phase noise over that frequency  
offset interval and can be readily related to the time jitter due to  
the phase noise within that offset frequency interval.  
Additive Time Jitter  
Additive time jitter is the amount of time jitter that is attributable to  
the device or subsystem being measured. The time jitter of any  
external oscillators or clock sources is subtracted, which makes  
it possible to predict the degree to which the device impacts the  
total system time jitter when used in conjunction with the various  
oscillators and clock sources, each of which contributes its own  
time jitter to the total. In many cases, the time jitter of the external  
oscillators and clock sources dominates the system time jitter.  
Phase noise has a detrimental effect on the performance of ADCs,  
DACs, and RF mixers. It lowers the achievable dynamic range of  
the converters and mixers, although they are affected in somewhat  
different ways.  
Time Jitter  
Phase noise is a frequency domain phenomenon. In the time  
domain, the same effect is exhibited as time jitter. When observing  
Rev. B | Page 22 of 72  
 
Data Sheet  
HMC7044  
THEORY OF OPERATION  
programmed to have a different phase offset. The phase  
The HMC7044 is a high performance, dual-loop, integer N  
jitter attenuator capable of performing frequency translation,  
reference selection, and generation of ultralow phase noise  
references for high speed data converters with either parallel or  
serial (JESD204B type) interfaces. The device is designed to  
meet the requirements of demanding base station designs, and  
offers a wide range of clock management and distribution  
features to simplify baseband and radio card clock tree designs.  
adjustment capability allows the designer to offset board flight  
time delay variations, data converter sample window matching,  
and meet JESD204B synchronization challenges. The output  
signal path design of the HMC7044 is implemented to ensure  
both linear phase adjustment steps and minimal noise  
perturbation when phase adjustment circuits are turned on.  
One of the key challenges in JESD204B system design is  
ensuring the synchronization of data converter frame alignment  
across the system, from the FPGA or DFE to ADCs and DACs  
through a large clock tree that can comprise multiple clock  
generation and distribution ICs. The HMC7044 is specifically  
designed to offer features to address this challenge. Using the  
SYSREF valid interrupt feature, the wait time latency can be  
reduced in the FPGAs. The HMC7044 raises this flag through  
its GPO port when all counters are set and outputs are at the  
desired phases. Additionally, an external reference-based  
synchronization feature (SYNC via PLL2 or RF SYNC only in  
fanout mode) synchronizes multiple devices, that is, it ensures  
that all clock outputs start with same rising edge. This operation  
is achieved by rephasing the SYSREF control unit deterministi-  
cally, and then restarting the output dividers with this new  
desired phase.  
The HMC7044 uses a dual-loop architecture, where two integer  
mode PLLs are connected in series to form a jitter attenuating  
clock multiplier unit. The high performance dual-loop topology  
of the HMC7044 enables the wireless/RF system designer to  
attenuate the incoming jitter of a primary system reference  
clock (for example, Common Public Radio Interface™ (CPRI)  
source) and generate low phase noise, high frequency clocks to  
drive data converter sample clock inputs. The HMC7044 provides  
14 low noise and configurable outputs to offer flexibility in  
interfacing with many different components in an RF trans-  
ceiver system, such as data converters, local oscillators,  
transmit/receive modules, FPGAs, and digital front-end (DFE)  
ASICs.  
The first PLL in the HMC7044 is designed for low bandwidth  
configuration using appropriately selected external loop filter  
components, and internal charge pump bias settings to achieve  
less than a few hundred Hz bandwidth, typically. The exact  
bandwidth roll-off points depend on the frequency spectrum of  
noise that must be attenuated in the system. The first PLL locks  
an external VCXO and provides the clock holdover functions  
and the reference frequency to the high performance second  
PLL loop. The combination of the loops provides an excellent  
clock generation unit with the capability to attenuate incoming  
reference clock jitter. The second PLL loop features two  
overlapping on-chip VCOs that are SPI selectable with center  
frequencies at 2.5 GHz and 3 GHz, respectively. Both VCOs are  
designed to have wide tuning ranges for broad output frequency  
coverage. The desired output frequency is set by the chosen  
VCXO frequency, VCO core (higher or lower frequency core),  
and the programmed second PLL feedback divider and output  
channel divider values.  
Offering excellent crosstalk, frequency isolation, and spurious  
performance, the device generates independent frequencies in  
both single-ended and differential formats. The four input  
reference options allows up to three backup frequency sources,  
with hitless switching and holdover capabilities, supporting  
system redundancy and uninterrupted operation on reference  
data and clock failures. The device also features dedicated  
oscillator fanout mode for best clock isolation, which generates  
multiple copies of the VCXO clock to be distributed across the  
board with excellent frequency isolation.  
Both the DCLK and SYSREF clock outputs can be configured to  
support different signaling standards, including CML, LVDS,  
LVPECL, and LVCMOS, and different bias conditions to offset  
varying board insertion losses. The outputs can also be  
programmed for ac or dc coupling and 50 Ω or 100 Ω internal  
and external termination options.  
The HMC7044 generates up to seven DCLK and SYSREF clock  
pairs per the JESD204B interface requirements. The system  
designer can generate a lower number of DCLK and SYSREF  
pairs, and configure the remaining output signal paths as  
desired, either as DCLKs or additional SYSREFs or other  
reference clocks with independent phase and frequency  
adjustment. Frequency adjustment can be accomplished by  
selecting the appropriate output divider values. One of the  
unique features of the HMC7044 is the independent flexible  
phase management of each of the 14 channels. Using a  
combination of divider slip-based, digital/coarse and  
analog/fine delay adjustments, each channel can be  
The HMC7044 is programmed via a 3-wire serial port interface  
(SPI) and powers up with a default configuration that generates  
valid output frequencies within the VCO tuning ranges regardless  
of whether a reference clock exists.  
The HMC7044 is offered in a 68-lead, 10 mm ×10 mm, LFCSP  
package with the exposed pad to ground.  
Note that, throughout this data sheet, multifunction pins, such  
as CLKIN0/RFSYNCIN, are referred to either by the entire pin  
name or by a single function of the pin, for example, CLKIN0,  
when only that function is relevant.  
Rev. B | Page 23 of 72  
 
Data Sheet  
HMC7044  
DETAILED BLOCK DIAGRAM  
RFSYNCIN/  
RFSYNCIN  
CLKIN0/RFSYNCIN  
CLKIN0/RFSYNCIN  
IN0 PRESCALER  
(1 TO 255)  
FIN/  
FIN  
LOS  
DETECT  
HOLDOVER  
CLKIN1/FIN  
CLKIN1/FIN  
IN1 PRESCALER  
(1 TO 255)  
CLKIN3  
CLKIN3  
IN3 PRESCALER  
(1 TO 255)  
R1 DIVIDER  
(1 TO 65535)  
REF  
MUX  
PHASE DETECTOR  
CHARGE PUMP  
PLL1  
VCO1 ~ 2500MHz  
VCO2 ~ 3000MHz  
CPOUT1  
CLKIN2/OSCOUT0  
CLKIN2/OSCOUT0  
IN2 PRESCALER  
(1 TO 255)  
N1 DIVIDER  
(1 TO 65535)  
SPI  
CPOUT2  
VCXO PRESCALER  
(1 TO 255)  
PARTIALLY  
INTEGRATED INTERNAL  
LOOP  
FILTER  
VCO  
×2  
2×  
2×  
MUX  
R2 DIVIDER  
(1 TO 4095)  
PHASE DETECTOR  
CHARGE PUMP  
PLL2  
OSCOUT1  
OSCOUT1  
OSC DIVIDER  
÷1, ÷2, ÷4, ÷8  
N2 DIVIDER  
(8 TO 4095)  
OSCIN  
OSCIN  
OSCINBUF  
CLK DISTRIBUTION PATH  
VCO  
MUX  
EXT VCO  
DIVIDER  
÷1, ÷2  
FIN/FIN  
COARSE  
DIGITAL  
DELAY  
CYCLE  
DIVIDER  
(1 TO 4094)  
SLIP/  
SYNC  
FSM  
SYNC  
CLKOUT0  
CLKOUT0  
ANALOG  
MUX  
MUX  
DELAY  
SYSREF TIMER  
FUNDAMENTAL MODE  
RFSYNCIN/  
RFSYNCIN  
GPI  
SPI  
SYNC/PULSOR  
CONTROL  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
SCLKOUT1  
SCLKOUT1  
ANALOG  
DELAY  
FUNDAMENTAL MODE  
TO LEAF DIVIDERS  
CYCLE  
OSCINBUF  
COARSE  
DIGITAL  
DELAY  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIVIDER  
(1 TO 4094)  
SLIP/  
SYNC  
CLKOUT2  
CLKOUT2  
ANALOG  
DELAY  
ANALOG  
DELAY  
CLKOUT8  
CLKOUT8  
MUX  
MUX  
MUX  
MUX  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
SCLKOUT3  
SCLKOUT3  
SCLKOUT9  
SCLKOUT9  
DELAY  
ANALOG  
DELAY  
ANALOG  
DELAY  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
DELAY  
CLKOUT4  
CLKOUT4  
ANALOG  
DELAY  
ANALOG  
DELAY  
CLKOUT10  
CLKOUT10  
MUX  
MUX  
MUX  
MUX  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
SCLKOUT5  
SCLKOUT5  
SCLKOUT11  
SCLKOUT11  
DELAY  
ANALOG  
DELAY  
ANALOG  
DELAY  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
DELAY  
CLKOUT6  
CLKOUT6  
ANALOG  
DELAY  
ANALOG  
DELAY  
CLKOUT12  
CLKOUT12  
MUX  
MUX  
MUX  
MUX  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
SCLKOUT13  
SCLKOUT13  
SCLKOUT7  
SCLKOUT7  
DELAY  
ANALOG  
DELAY  
ANALOG  
DELAY  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
DEVICE  
CONTROL  
LDOs  
SPI  
ALARM GENERATION  
BGA LDO LDO LDO LDO LDO LDO SDATA SCLK SLEN  
BYP1 BYP2 BYP3 BYP4 BYP5 BYP6 BYP7  
GPIO1 GPIO2 GPIO3 GPIO4  
SYNC RESET  
Figure 35. Top Level Diagram  
Rev. B | Page 24 of 72  
 
 
Data Sheet  
HMC7044  
In addition, PLL1 monitors its active reference for failure and  
smoothly takes appropriate action, switching to a redundant  
reference or going into holdover as appropriate. Figure 36 shows  
the architecture of PLL1 with a typical frequency configuration.  
DUAL PLL OVERVIEW  
The HMC7044 uses a cascade of two PLLs, referred to as a dual  
loop topology. The term dual loop sometimes refers to other  
architectures as well; therefore, always refer to the block diagram  
shown in Figure 35 to remove any ambiguity. In this architecture,  
the first PLL (PLL1) normally operates as a jitter attenuator. PLL1  
locks a clean local VCXO to a relatively noisy reference using a  
very narrow loop bandwidth. The loop bandwidth preserves the  
average frequency of the reference signal (which is normally  
correct), while rejecting the majority of its noise. The second  
PLL takes this low noise VCXO and multiplies it up to the VCO  
frequency (in the 2 GHz to 3 GHz range) with very little additive  
noise. The architecture provides the benefits of an output frequency  
locked to an input reference signal, while being insensitive to its  
noise profile.  
Jitter Attenuation  
For the purpose of jitter attenuation, PLL1 consists of all the  
usual components in a PLL: a phase/frequency detector (PFD1),  
charge pump (CP1), reference divider (R1), and feedback  
divider (N1). The loop filter is external to provide maximum  
flexibility, and the loop bandwidth (BW) is normally configured  
very narrow (20 Hz to 500 Hz) to filter any jitter and spurious  
tones coming in from relatively poor references.  
The noise profile of PLL1 is typically dependent on the loop  
bandwidth, input reference noise, and the VCXO characteristic.  
The inherent noise sources of PLL1 (the PFD, dividers, and  
charge pump) are not normally observable in an application,  
and are significantly more relaxed compared with PLL2.  
In ICs such as the HMC7044, the VCO is then connected to an  
array of output channels, each with an optional RF divider and  
phase control. The key feature that distinguishes an IC with  
JESD204B support is the ability to ensure that all of the outputs  
with their associated dividers have a user defined phase relationship  
each and every time, regardless of process, voltage, or temperature.  
This ability is necessary to support the JESD204B SERDES  
standard for data converters, but it is also an immensely useful  
feature in other applications as well, in all forms of arrayed systems  
and in many test and measurement scenarios.  
Note that the loop filter components on the board are typically  
configured to produce a certain loop bandwidth, given a fixed  
PFD rate, charge pump current, and VCXO characteristic.  
Adjusting any of these parameters from their nominal positions  
affects the loop dynamics, which can be to the advantage of the  
user (for example, to scale loop BW with charge pump current),  
but it must not be performed without an analysis of the stability  
of the loop. Analog Devices, Inc., provides a variety of software  
tools to design the loop filter and model the effects of any  
change in parameters. Contact Analog Devices for the latest  
recommendation.  
COMPONENT BLOCKS—INPUT PLL (PLL1)  
PLL1 General Description (Jitter Attenuator)  
A variety of local clocks, particularly in synchronous networks,  
derive their timing from a remote node in the network. These  
reference signals can arrive via a GPS or clock data recovery  
(CDR) receiver, or from a variety of other sources. Often, these  
derived references are relatively poor quality, in terms of spurious  
content, noise, and reliability.  
The lock time of PLL1 typically takes the longest duration in the  
clock network, and, aside from any nonlinear slewing, takes  
approximately 5/PLL1_BW (for example, 5 ms for a 1 kHz loop  
BW). Fortunately, there are no requirements that PLL1 must be  
locked before proceeding with PLL2, output calibration, and  
phasing, which normally allows system configuration to  
continue in parallel while PLL1 is settling.  
The function of PLL1 is to lock a clean VCXO to the average  
frequency of one of these references and feed it to PLL2 to  
generate a high quality clock for local use.  
Rev. B | Page 25 of 72  
 
 
HMC7044  
Data Sheet  
FORCE  
V
TUNE  
LOCKDET  
PLL1  
FSM  
DAC  
CYCLESLIP  
ADC/DAC  
CONTROL  
FORCE V  
TUNE  
LOS  
MAINTAIN_HOLDOVER  
RESET  
61.44MHz  
COMPARATOR  
122.88MHz  
38.4MHz  
61.44MHz  
9.76MHz  
÷R1  
TO FSMI LOCKDET  
UP  
RST  
SET  
PHASE  
ERROR  
>~4ns?  
TRISTATE  
CP1  
PFD1  
0
D Q  
LOCKDET  
MAINTAIN  
HOLDOVER  
RST  
÷N1  
LCM  
DIVIDERS  
LOOP  
FILTER  
DOWN  
CYCLE SLIP  
DETECTED  
(TO PLL1 FSM)  
VCXO  
122.88MHz  
TO PLL2  
Figure 36. PLL1 Architecture with a Typical Frequency Configuration  
Lock Detect  
PLL1 can operate in manual or automode (via the automode  
reference switching bit). In manual mode, the user selects the  
active reference using Manual Mode Reference Switching[1:0]  
in Register 0x0029 and determines whether to go into holdover  
(via the force holdover bit). In automode, the PLL1 FSM uses  
the loss of signal (LOS) information, phase error data, lock  
detect, and configuration data from the SPI to determine how  
to handle reference interruptions. In either mode, all status  
indicators are available, but PLL1 only takes evasive action in  
automode. Figure 37 shows a simplified state diagram of the  
PLL1 FSM.  
The lock detect circuit in both PLL1 and PLL2 function the  
same way. They count the number of consecutive clock cycles in  
which the phase error at the PFD is below a threshold. Any phase  
error above this threshold resets the counter, and the count is  
restarted. When the count reaches its programmed limit, the  
lock detect signal is issued and the clock of the counter is gated  
off to reduce power/coupling until a large phase error restarts  
the process.  
Although the PLL2 loop BW is relatively well defined, the PLL1  
loop BW can vary widely in any given application. The SPI word,  
PLL1 Lock Detect Timer[4:0] in Register 0x0028, configures the  
PLL1 lock detect timer and looks for 2PLL1 Lock Detect Timer[4:0]  
consecutive LCM clock cycles with a phase-error <~4 ns to  
issue the lock detect. Because the loop BW of PLL1 can vary  
drastically depending on the application, the user must set up  
the threshold such that 2PLL1 Lock Detect Timer[4:0] LCM periods is on  
the order of 2× to 4× the loop time constant. For example, for  
During reset, PLL1 is held in the initialization (INIT) state. When  
reset is deasserted, during the preload state, the enabled reference  
paths, the reference priority table, and LOS indicators are examined  
to select the best reference, and, on the next cycle, it attempts to  
lock. After the requisite number of counts has elapsed with low  
phase error, lock detect is asserted and PLL1 transitions to the  
locked state. When PLL1 is locked, a loss of lock, LOS on the active  
reference, or a reference switch event initiated by a priority clash  
transitions the FSM to enter holdover, where it tristates the CP and  
potentially forces VTUNE with the holdover DAC. When a stable  
clock is available and other optional conditions are met, the FSM  
exits holdover. Exiting holdover is handled in one of a few different  
ways, designed to minimize phase/frequency hits during the  
transition. Figure 37 shows a simplification of the PLL1 FSM. In  
the actual implementation, the holdover state is broken into a  
number of subsections corresponding to holdover entry, stable  
holdover conditions, and holdover exit. The state of the PLL1  
FSM is always available for a read via the SPI (PLL1 FSM State[2:0]  
bits in Register 0x0082).  
fLCM = 61.44 MHz, and a loop BW of 200 Hz, set PLL1 Lock Detect  
Timer[4:0] = 19 or 20. If the value is set much higher, the lock  
detect circuit takes an unnecessary length of time to indicate  
lock after the phases stabilize. If the value is set much lower (for  
example, much less than a loop time constant), it can improperly  
indicate lock during acquisition, which can cause the PLL1  
finite state machine (FSM) to improperly fall in and out of  
holdover mode.  
Holdover/Reference Switching Overview  
When switching between redundant references, or when all  
references are gone and the PLL1 is left open loop, there are  
often requirements to prevent frequency deviations that can  
cause downstream circuits and traffic links to overrun FIFOs  
and/or lose lock themselves.  
Rev. B | Page 26 of 72  
 
Data Sheet  
HMC7044  
RESET  
INIT  
PLL1 LOS Detection  
The HMC7044 checks the validity of a reference by comparing  
its approximate frequency vs. the VCXO. The HMC7044 supports  
references at different frequencies. The first step is to divide the  
available references and the VCXO to the lowest common multiple  
frequency (fLCM). These divider settings are available via the SPI  
PRELOAD  
LOCKING  
control bits (CLKINx/  
Input Prescaler[7:0] and OSCIN/  
CLKINx  
OSCIN  
Input Prescaler[7:0]). In the example shown in Figure 36,  
LCM = 61.44 MHz. The VCXO derived clock at fLCM is the main  
f
LOCKDET  
clock to the PLL1 FSM controlling the FSM, lock detect timer,  
and ADC/DAC filtering and holdover circuits. Although not  
required, using the VCXO clock allows the LOS detection and  
PLL1 FSM to operate at a higher rate than the PFD, allowing it to  
recognize a reference failure early and enter holdover, sometimes  
before a failing reference that has started to drift in either phase  
or frequency (or both) can influence the PFD or CP.  
LOCKED  
REVERTIVE  
AND HIGHER PRIORITY  
CLOCK IS AVAILABLE  
NOT LOCKDET  
LOS ACTIVE REF  
HOLDOVER  
The dividers in the LOS block, and to some extent, R1, pose a  
few challenges. The input frequencies are up to 800 MHz, with a  
wide divider range. Furthermore, they are designed to tolerate  
glitchy clocks without catastrophic results, because a reset phase  
is not always available after an issue is detected.  
AT LEAST ONE REFERENCE OK AND BEST  
AVAILABLE REFERENCE IS SELECTED  
[AND PHASES CROSSED ZERO (OPTIONAL)]  
[AND DAC ASSISTED RELEASE COMPLETE (OPTIONAL)]  
OR  
JUST ENTERED HOLDOVER (<HOLDOFF TIMER[7:0])  
AND PREVIOUS CLOCK RECOVERS  
[AND DAC ASSISTED RELEASE COMPLETE (OPTIONAL)]  
When all the references are divided to the same frequency, they  
are compared relative to the VCXO derived path, and thus each  
other. This comparison is performed by a circuit that looks for  
three edges of a clock within one period of the other. If it appears  
that a reference signal is too slow, its LOS flag is asserted and, in  
automode, PLL1 uses this information to disqualify and/or  
abandon a reference. Conversely, if it appears that the VCXO is  
too slow according to any of the active references, a warning is  
generated (available as one of the configurable options for the  
GPO, or readable on the SPI) but no automated action occurs.  
Figure 37. PLL1 FSM Simplified State Diagram—  
Autorevertive Reference Switching = 1  
PLL1 Reference Inputs  
PLL1 accepts up to four candidate references on CLKIN3/  
CLKIN3  
CLKIN0  
to CLKIN0/  
. If all references appear valid, according to  
the LOS, PLL1 uses a reference priority table to select the best  
candidate. Using the PLL1 reference priority control bits, program  
CLKIN0  
CLKIN2  
the highest priority clock (CLKIN0/ , CLKIN1/  
,
CLKIN2 CLKIN3  
), and then second  
CLKIN2/  
, or CLKIN3/  
The HMC7044 monitors reference signals for three edges of a clock  
within one period of the other, instead of the more intuitive two  
edges, to avoid false LOS flags as clocks that are slightly out of  
frequency cross each other in phase in the presence of interference,  
noise, and circuit offsets. The result is that the LOS triggers when  
the failing reference clock frequency is approximately an octave  
from the intended frequency.  
priority clock, and so on. It is not necessary to include unused  
reference inputs in the reference priority table. Instead, specify  
the same useful clock in multiple positions. In automode, reference  
switching occurs in the preload state (see Figure 37) as PLL1  
exits reset, or while PLL1 is in the holdover state.  
The reference clock input pins (Pin 36, Pin 37, Pin 39, Pin 40,  
Pin 42, and Pin 43) have dual functions; therefore, SPI configura-  
tion is important for proper functionality. See the PLL1  
Programming Considerations section for more information  
about the relevant control bits, and the Reference Buffer Details  
section for interface recommendations.  
After a reference signal returns and its frequency is within an  
octave of the VCXO, two to three cycles of the LOS validation  
timer must expire before the LOS flag is deasserted and the  
reference is considered for potential use. The LOS validation  
timer is programmable between 0 LCM cycles (no hysteresis),  
and 64 LCM cycles via LOS Validation Timer[2:0] in  
Register 0x0015, Bits[2:0].  
When a reference fails, the sourcing circuit recognizes a fault  
and disables either the clock or the buffer driving the signal to  
the HMC7044. For this reason, hysteresis in the input buffers  
prevents internal toggling for signal swings <~75 mV p-p  
differential, which allows further elements in the PLL1 architecture  
to cleanly recognize the interruption and prevent unwanted  
transients in the frequency.  
Rev. B | Page 27 of 72  
 
HMC7044  
Data Sheet  
PLL1 Holdover Entry Shortcut  
The recommended methods are as follows:  
When a reference fails, the LOS circuit takes a number of LCM  
clock cycles to recognize the problem and to request the PLL1  
FSM enter holdover and tristate the CP. By that time, if one of  
the missing edges is needed to trigger the R divider output, the  
PFD and CP have already saturated, pulling current out of the  
loop filter for these cycles, and disturbing the holdover frequency.  
The probability of this happening decreases as the PFD rate  
decreases relative to fLCM, but it is not eliminated. The HMC7044  
includes a unique feature to prevent this type of frequency  
runaway.  
Wait for zero phase error (no divider reset): wait for LOS =  
0 and low phase error at PFD (Holdover Exit Criteria[1:0] = 1,  
Holdover Exit Action[1:0] = 1)  
Resetting the dividers: wait for LOS = 0 and reset the  
R1/N2 dividers (Holdover Exit Criteria[1:0] = 0, Holdover  
Exit Action[1:0] = 0)  
DAC assisted release: wait for LOS = 0, reset R1/N2, and  
configure for DAC assisted release (Holdover Exit  
Criteria[1:0] = 0, Holdover Exit Action[1:0] = 3)  
Wait for Zero Phase Error  
A sensor watches the up/down pulses from the PFD (see  
Figure 35). When locked, the pulse width is small, based on any  
small signal error, PFD/CP offset, and the reset delay of the PFD. If  
the device is in the locked state and has a phase error that is larger  
than expected (~4 ns), it is a sign that the reference has failed, and  
the device immediately tristates the pump, reducing the amount  
of time charge can be extracted from the loop from about five  
LCM cycles (162 ns at 30.72 MHz) to <4 ns. This error indication  
also invalidates the lock detect. When the FSM acknowledges  
the issue, it holds the CP in tristate. When using the optional  
DAC-based holdover, the FSM instructs the ADC/DAC that is  
tracking the VTUNE voltage to switch from sense mode to force  
mode, holding it steady to within 1 LSB (about 20 mV or 0.4 ppm)  
until the HMC7044 senses a stable reference and transitions out  
of holdover.  
While the CP is still in tristate, the FSM monitors the PDF for a  
cycle slip indication as the candidate reference and VCXO signal  
cross each other. The crossing of the reference and VCXO phases  
eventually occurs but can take a long time, as determined by the  
inherent frequency error due to an imperfect holdover. Just after a  
cycle slip event, the phase error at the PFD is at its minimum  
value, and there is minimal glitch as the PLL reacquires. Figure 38  
shows an example where the reference is removed and PLL1  
goes into tristate-based holdover. After approximately 7 sec, the  
reference is restored and, about a second later, the phases cross  
and the PLL reacquires, all with less than 0.15 ppm of deviation  
from the original frequency value.  
1.0  
0.8  
0.6  
0.4  
PLL1 Holdover Steady State  
When in the holdover state, the user has the following two  
options:  
TRISTATE HOLDOVER MODE ≈ 8 SECONDS  
0.2  
0
Tristate the CP  
Tristate the CP and engage the holdover DAC  
–0.2  
ENABLE REFERENCE AND LOCK  
–0.4  
When in tristate mode, the HMC7044 has a very high  
impedance charge pump output (~10 GΩ). This output is  
normally an insignificant contributor to PLL1 VTUNE leakage,  
which is determined primarily by the on-board loop filter  
components and the VCXO tuning port. This mode allows the  
tuning voltage to maintain itself for significant periods while in  
holdover.  
–0.6  
–0.8  
–1.0  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
Figure 38. Frequency Deviation from Nominal vs. Time of Tristate Holdover  
Entry and Exit When the Phases Cross Zero  
To accommodate indefinite periods in holdover, or to ensure  
This first method of uncontrolled release suffers from an  
indeterminate amount of time for the phases to cross and exit  
holdover. However, if it takes 1 sec for the phases to cross, the  
frequencies are off by only 1 Hz. If it takes 10 sec to cross, the  
error is 0.1 Hz. If the error is so low that it takes a long time to  
exit holdover, the device is effectively frequency locked. In some  
applications, being open-loop for this long of a duration can be  
acceptable, considering the very small frequency errors. Although  
this method of holdover exit is very smooth, it can take a very  
long time to occur.  
V
TUNE is driven and not susceptible to drift, the second option  
(set via the holdover uses DAC bit in Register 0x0029, Bit 2)  
forces the VTUNE voltage to its time averaged value, obtained by  
low-pass filtering the ADC value while the PLL is reporting  
lock. The holdover sensing ADC and the driving DAC are seven  
bits each, and have an LSB of approximately 19 mV.  
PLL1 Holdover Exit  
The transition out of holdover can happen in three ways and is  
controlled by the Holdover Exit Criteria[1:0] bits and the Holdover  
Exit Action[1:0] bits in Register 0x0016 (see the Control Register  
Map Bit Descriptions section for details), which describes the  
steps that the FSM takes as the HMC7044 exits holdover and  
acquires lock.  
Rev. B | Page 28 of 72  
 
 
Data Sheet  
HMC7044  
20  
16  
12  
8
Resetting the Dividers  
If using tristate-based holdover, the second holdover exit  
method is recommended. When a reference appears available  
(LOS = 0), the FSM resets the R and N dividers and allows them  
to restart immediately. This approach limits the maximum phase  
error coming out of holdover to two VCXO cycles (about 8 ns  
for typical VCXO frequencies). There is no need to wait an  
undetermined amount of time (as in the first method of  
uncontrolled release) to initiate the switch.  
DAC RELEASE  
4
0
–4  
–8  
–12  
–16  
–20  
DAC Assisted Release  
If using DAC-based holdover, the DAC and CP can set VTUNE  
concurrently as the devices exits holdover. With the DAC output  
impedance at a relatively low setting (for example, 5 Ω), the device  
resets the dividers as in the second method, and then the CP  
attempts to influence VTUNE. The CP fails, with the DAC sinking  
the current it is trying to inject into the VTUNE node. Gradually,  
the device increases the output impedance of the DAC, and the  
CP gains more influence to manipulate VTUNE, pulling the phases  
into alignment. Using this DAC assisted CP release method  
limits the holdover exit transients to within ~1 ppm.  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
TIME (ms)  
Figure 40. DAC Assisted Release  
20  
16  
12  
8
DO NOTHING  
4
0
Figure 39 to Figure 41 compare the holdover release methods:  
resetting the dividers vs. DAC assisted release, and uncontrolled  
release (which starts with a phase error of up to one PFD  
period) as the device exits holdover and reacquires to a  
reference signal.  
–4  
–8  
–12  
–16  
–20  
20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
16  
TIME (ms)  
12  
Figure 41. Wait for Zero Phase Error (No Divider Reset)  
RESET DIVS  
8
PLL1 Programming Considerations  
4
0
Configuring Reference Inputs for PLL1 vs. Other Uses  
To use the four reference clocks for PLL1, the input buffer must  
be enabled and selected as a relevant path for PLL1.  
–4  
–8  
Table 13. Input Buffer and Reference Path Settings  
–12  
–16  
–20  
Bit Name  
Description  
Buffer Enable  
Enable the input buffer (where x = 0,  
1, 2, 3, or V for VCXO) via  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Register 0x000A to Register 0x000E  
TIME (ms)  
PLL1 Reference Path  
Enable[3:0]  
Select one of four available reference  
paths for PLL1  
Figure 39. Resetting the Dividers  
CLKIN0 RFSYNCIN  
,
Because the CLKIN0/RFSYNCIN,  
/
CLKIN1 FIN  
pins can be configured for  
CLKIN1/FIN, and  
output network purposes, and the CLKIN2/OSCOUT0 and  
CLKIN2 OSCOUT0  
/
/
pins can function as oscillator outputs, the  
SPI bits in Table 14 must be configured accordingly.  
Rev. B | Page 29 of 72  
 
 
 
HMC7044  
Data Sheet  
Table 14. Reference Clock Input Bit Settings  
PLL2 has the following features:  
Bit Name  
CLKIN0/CLKIN0 In RF SYNC 0 = CLKIN0/CLKIN0 does not  
Input Mode function as an RF sync input  
CLKIN1/CLKIN1 in External 0 = CLKIN1/CLKIN1 does not  
Description  
Lock detect  
Frequency doubler  
Partially integrated loop filter  
VCO selection, external VCO use  
VCO calibration  
VCO Input Mode  
/FIN  
function as external VCO (FIN/  
)
OSCOUT0/OSCOUT0  
Driver Enable  
1 = OSCOUT0/OSCOUT0 buffer  
does not drive CLKIN2/CLKIN2 pins  
Multichip synchronization via PLL2  
Lock Detect  
Choosing fPD1  
The lock detect function of PLL2 behaves the same way as in  
PLL1. It counts the number of consecutive PFD clock cycles  
that occur with a low phase error. When it reaches a count of  
512, it declares lock. The threshold of 512 is adjustable, but  
because the PLL2 loop BW does not vary as much as PLL1, it is  
expected that the user never needs to change this threshold.  
Although PLL1 supports a wide range of PFD frequencies,  
there are trade-offs with setting the frequency too high or too  
low. A few megahertz is high enough to allow the comparison  
frequency to stay at an offset outside of the PLL2 loop BW and  
thus suppress any coupling that manages to bypass the PLL1  
loop filter.  
Frequency Doubler  
Choosing fLCM  
The user can engage a frequency doubler after the VCXO buffer  
and before the reference divider (see Figure 35). The frequency  
doubler assumes an approximate 50% input duty cycle, where  
any duty cycle distortion can result in a spur, at fPD2/2, sup-  
pressed by the PLL2 loop filter. Use of the frequency doubler is  
highly recommended to achieve the best spectral performance,  
provided the PFD is kept under its 250 MHz frequency limit.  
At a minimum, fLCM must be a common submultiple of all  
available references. Typical frequencies include 122.88 MHz,  
61.44 MHz, 38.4 MHz, 30.72 MHz, 3.84 MHz, and 1.92 MHz.  
This fLCM clock is the main clock for the PLL1 digital logic. This  
clock rate also scales the PLL1 lock detect timer speeds/thresholds,  
holdover ADC averaging times, and LOS assertion and revalidation  
delays. Higher frequencies slightly improve the response times to  
reference interruptions, whereas lower frequencies can slightly  
reduce current consumption of the device by up to ~10 mA.  
Values in the 30 MHz to 70 MHz range are recommended.  
Partially Integrated Loop Filter  
Although the large components for the PLL2 loop filter are off  
chip, there is a small on-chip resister/capacitor (RC) section  
formed with R = 80 Ω and C = 4.7 pF in series. This RC section  
forms a higher order pole at ~420 MHz. For practical condi-  
tions, this filter segment does not affect the stability of the loop.  
Program the PLL1 lock detect timer threshold based on the  
PLL1 loop BW and fLCM of the user.  
OFF-CHIP  
There are reserved registers, as described in the Control Register  
Map Bit Descriptions section, that must be reprogrammed from  
their default values. For example, Register 0x00A5 must be set  
from 0x00 to 0x06.  
80Ω  
VCO  
CP  
4.7pF  
COMPONENT BLOCKS—OUTPUT PLL (PLL2)  
Figure 42. On-Chip RC Circuit  
PLL2 Overview  
Figure 43 shows the VCO input network. Depending on the  
frequency band of interest (2.5 GHz or 3.0 GHz), the user must  
specify which VCO to enable via the VCO Selection[1:0] SPI  
PLL2 is a very low noise integer PLL designed to multiply the  
frequency from the VCXO to the VCO. It typically operates  
with a loop BW of 10 kHz to 700 kHz. Use bandwidths on the  
lower end of the range to preserve the inherent VCO phase  
noise at 800 kHz offset (useful in GSM-based systems), where  
bandwidths on the upper end can provide the best integrated  
phase noise/jitter values.  
CLKIN1 FIN  
word. To use the  
/
pin as an external VCO signal,  
CLKIN1  
program this word to 0, and set the CLKIN1/  
VCO input mode bit.  
in external  
Internally, PLL2 has a number of features that allow it to  
efficiently achieve a Banerjee floor FOM of −232 dBc and a  
flicker FOM of −266 dBc. The combination of the on-board  
VCO, an internal VCXO doubler, a low N2 minimum divide  
ratio, and the ability to clock the PFD at up to 250 MHz results  
in an integrated jitter (at 12 kHz to 20 MHz) of 44.0 fs typical.  
Rev. B | Page 30 of 72  
 
 
Data Sheet  
HMC7044  
VCO Selection, External VCO Use  
Apply the SYNC input rising edge only once. After sensing the  
rising edge on the VCXO domain, the SYNC input is ignored  
for the next 16 × 6 tPD2 periods as the FSM processes the event.  
After this period expires, the FSM becomes sensitive again to  
the SYNC pin. If the SYNC is applied periodically, the first edge  
initializes the synchronization process, and then the subsequent  
edges may or may not be recognized depending on their  
~2.5GHz  
VCO  
VCO ENABLE[1:0] = 10  
TO PLL2  
N2 DIVIDER  
AUTOCAL  
~3.0GHz  
VCO  
VCO ENABLE[1:0] = 01  
width/repetition rate with respect to 16 × 6 tPD2  
Note that the SYNC rising edge must be provided cleanly with  
OSCIN  
.
TO  
OUTPUT  
NETWORK  
respect to the HMC7044 VCXO input pin (OSCIN/  
CLKINx  
).  
pins of  
CLKIN1/CLKIN1  
IN EXTERNAL VCO  
INPUT MODE = 1  
The user normally has access to the CLKINx/  
PLL1, and not to the VCXO signal directly. When PLL1 is locked,  
however, the VCXO rising edge is roughly aligned to the PLL1  
active reference, and, therefore, the user has indirect knowledge  
of the phase of the VCXO. The VCXO is also available as an  
output of the HMC7044, if the user wants to retime the SYNC  
signal more directly.  
÷2  
DIVIDE BY 2 ON  
EXTERNAL VCO ENABLE  
Figure 43. VCO Input Network  
The phase offset of the PLL1 active reference with respect to the  
VCXO is a function of the internal delay of each path. This base  
delay offset is a function of deterministic conditions (LCM, R1,  
N1 divider setpoints, termination setups, and slew rates), but is also  
subject to PVT variations that compress or exaggerate this offset.  
VCO Calibration  
The on-board VCOs contain an AGC loop that regulates the  
core voltage of the oscillator to achieve the desired swing and  
thus the trade-off between phase-noise and power consump-  
tion. This AGC loop uses large external bypass capacitors to  
eliminate the noise impact of the AGC loop, and therefore takes  
time to settle after power-up, sleep, or after changing the VCO  
Selection[1:0] setting. With the 100 nF/1 μF configuration,  
settling time takes approximately 10 ms (typical).  
For most practical purposes, the multichip synchronization  
feature is limited to PLL1 reference rates <200 MHz.  
CLOCK OUTPUT NETWORK  
In the HMC7044, PLL1 is responsible for frequency cleanup,  
redundancy, and hitless switching. PLL2 and the VCOs handle  
integrated jitter and performance at an 800 kHz offset. Although  
the PLL1/PLL2 and VCXO components are important, much of  
the uniqueness of a JESD204B clock generation chip relates to  
its array of output channels.  
Each of the VCOs in the HMC7044 has 32 frequency bands.  
Normally, three or more subbands can synthesize any particular  
frequency, and an on-board autotune algorithm selects the solution  
that provides tuning margin for temperature fluctuations. Temp-  
erature compensation is applied inside to ensure the device can  
be calibrated at any frequency and maintain lock as the frequency is  
carried to any other frequency in the operating range.  
In a device such as the HMC7044, some of the output network  
requirements include the following:  
Very good phase noise floor of the DCLK channels that can  
be connected to critical data converter sample clock inputs  
A large number of DCLK and SYSREF channels  
Deterministic phase alignment between all output channels  
relative to one another  
Fine phase control of synchronization channels with  
respect to the DCLK channel  
Frequency coverage to satisfy typical clock rates in  
expectant systems  
Skew between SYSREF and DCLK channels that is much  
less than a DCLK period  
Spur and crosstalk performance that does not impact  
system budgets  
The autotune is triggered by toggling the restart dividers/FSMs  
bit in Register 0x0001, Bit 1, after R2 and N2 are programmed,  
the VCXO is applied, and the VCO peak detector loop has settled.  
When the VCXO is applied to the system and the R2 and N2  
divide ratios are programmed, the autotune algorithm has the  
information needed to find the appropriate band of the VCO.  
Multichip Synchronization via PLL2  
To synchronize multiple HMC7044 devices together, it is recom-  
mended to use the SYNC input pin. If the SYNC pin transitions  
from 0 to 1 with sufficient setup/hold margin with respect to the  
VCXO, this synchronization event is deterministically carried  
through PLL2, up the timing chain through the N2 divider, and  
then to the master SYSREF timer (see the Clock Output Network  
section for more information). This mechanism of deterministic  
phase adjustment allows synchronization of the SYSREF timer  
and output phases of multiple HMC7044 devices.  
Rev. B | Page 31 of 72  
 
 
HMC7044  
Data Sheet  
The HMC7044 output network also supports the following  
recommended features, which are sometimes critical in user  
applications:  
Each of the 14 output channels are logically identical. The only  
distinction between the SYSREF and DCLK channels is in the  
SPI configuration and in how they are used. Each channel  
contains independent dividers, phase adjustment, and analog  
delay circuits. This combination provides the ultimate flexibility,  
cleanly accommodating nonJESD204B devices in the system.  
Deterministic synchronization of the output channels with  
respect to an external signal, which allows multichip  
synchronization and clean expansion to larger systems  
Pulse generator behavior to temporarily generate a  
synchronization pulse stream at user request  
Flexibility to define unused JESD204B SYSREF and DCLK  
channels for other purposes  
In addition to the 14 output channel dividers, there is an internal  
SYSREF timer that continually operates, and the synchronization  
of the output channel dividers occurs deterministically with respect  
to this timer, which can be rephased externally by the user.  
Glitchless phase control of signals relative to each other  
50% duty cycle clocks with odd division ratios  
Multimode output buffers with a variety of swings and  
termination options  
Skew between all channels that is much less than a DCLK  
period  
Adjustable performance vs. power consumption for less  
sensitive clock channels  
Flexibility to use an external VCO for very high  
The pulse generator functionality of the JESD204B standard  
involves temporarily generating SYSREF output pulses, with  
appropriate phasing, to downstream devices. The centralized  
SYSREF timer and its associated SYNC/pulse generator control  
manage the process of enabling the intended SYSREF channels,  
phasing them, and then disabling them for signal integrity and  
power saving advantages.  
performance application requirements  
SYSREF INPUT NETWORK  
SYNC FROM PLL2 N DIVIDER  
(DUE TO SYNC PIN EVENT)  
RF SYNC  
D
Q
RESET  
SYSREF  
TIMER  
VCO PATH  
SYNC/  
PULSE GENERATOR  
CONTROL  
PULSE GENERATOR REQUEST (FROM SPI, GPI, OR SYNC PIN)  
SYNC REQUEST (FROM SPI OR GPI)  
SYNC_FSM_STATE  
OUTPUT CHANNEL × 14  
LEAF  
CONTROLLER  
CLOCK  
GATING  
DIGITAL DELAY  
AND RETIME  
DIVIDER  
Figure 44. Clock Output Network Simplified Diagram  
Rev. B | Page 32 of 72  
 
Data Sheet  
HMC7044  
Basic Output Divider Channel  
System wide broadcast signals can be triggered from the SPI or  
general-purpose input (GPI) port to issue a SYNC command  
(to align dividers to the system internal SYSREF timer), issue a  
pulse generator stream, (temporarily exporting SYSREF signals to  
receivers), or to cause the dividers to slip a number of VCO  
cycles to adjust their phases.  
Each of the 14 output channels are logically identical, and support  
divide ratios from 1 to 4094. The supported odd divide ratios  
(1, 3, 5) have 50.0% duty cycle. The only distinction between a  
SYSREF channel and a DCLK channel is in the SPI configura-  
tion and the typical usage of a given channel.  
Individual dividers can be made sensitive to these events by  
adjusting their slip enable, SYNC enable, and Start-Up Mode[1:0]  
configuration, as described in Table 16.  
For basic functionality and phase control, each output path  
consists of the following:  
Divider—generates the logic signal of the appropriate  
frequency and phase  
Digital phase adjust—adjusts the phase of each channel in  
increments of ½ VCO cycles  
Retimer—a low noise flip flop to retime the channel,  
removing any accumulated jitter  
When output buffers are configured in CMOS mode and phase  
alignment is required among the outputs, additional multislip  
delays must be issued for Channel 0, Channel 3, Channel 5,  
Channel 6, Channel 9, Channel 10, and Channel 13. The value  
of the delay must be as large as half of the selected divider ratio.  
Note that this requirement of having additional multislip delays  
is not needed when channels are used in LVPECL, CML or  
LVDS mode.  
Analog fine delay—provides a number of ~25 ps delay steps  
Selection mux—selects the fundamental, divider, or analog  
delay, or an alternate path  
If a channel is configured to behave as a pulse generator, to  
temporarily power up and power down according to GPI, SPI,  
or SYNC pin pulse generator commands, it has additional  
controls to define its behavior outside of the pulse generator  
chain (see Table 17).  
Multimode output buffer—low noise LVDS, CML, CMOS,  
or LVPECL  
The digital phase adjuster and retimer launch on either clock  
phase of the VCO, depending on the digital phase adjust setpoint  
(Coarse Digital Delay[4:0]).  
Each divider has an additional phase offset register that adjusts  
its start phase, or to influence the behavior of slip events sent  
via the SPI (see Table 18).  
To support divider synchronization, arbitrary phase slips, and  
pulse generator modes, the following blocks are included:  
A clock gating stage pauses the clock for synchronization  
or slip operations  
An output channel leaf (×14) controller manages slip,  
synchronization, and pulse generators with information  
from the SYSREF FSM  
Table 19 outlines the typical configuration combinations for a  
DCLK channel relative to a SYSREF synchronization channel.  
Note that other combinations are possible. Synchronization of  
downstream devices can be managed manually, or by using the  
pulse generator functionality of the HMC7044. See the Typical  
Programming Sequence section for more information about the  
differences between the two methods.  
Each channel has an array of control signals. Some of the controls  
are described in Table 15.  
Rev. B | Page 33 of 72  
HMC7044  
Data Sheet  
Table 15. Basic Divider Controls  
Bit Name  
Description  
Channel Enable  
Channel enable. If 0, the channel is disabled. If 1, the channel can be enabled depending on the settings of  
Start-Up Mode[1:0], Seven Pairs of 14-Channel Outputs Enable[6:0], and sleep mode.  
12-Bit Channel Divider[11:0] Divide ratio.12-bit divide ratio, split across two words (MSB and LSB). Set to 0 if not using the channel divider  
(Output Mux Selection[1:0] = 2 or 3).  
High Performance Mode  
High performance mode. Adjusts divider and buffer bias to slightly improve swing/phase noise at the  
expense of power. The performance advantage is about 1 dB, and the current penalty depends on whether  
the divider is enabled.  
Coarse Digital Delay[4:0]  
Fine Analog Delay[4:0]  
Digital delay. Adjusts the phase of the divider signal by up to 17 ½ cycles of the VCO. This circuit is practically  
noiseless; however, note that a low amount of additional current is consumed.  
Analog delay. Adjusts the delay of the divider signal in increments of ~25 ps. Set Output Mux Selection[1:0] =  
1 to expose this channel. Causes phase noise degradation of up to 12 dB; therefore, do not use on noise sensitive  
DCLK channels.  
Output Mux Selection[1:0]  
Output mux selection. 00 = divider channel, 01 = analog delay, 10 = other channel of pair, 11 = input VCO  
clock. Fundamental mode can be generated with the divider (12-Bit Channel Divider[11:0] = 1), or via Output  
Mux Selection[1:0] = 10 and 12-Bit Channel Divider[11:0] = 0. Because the divider path consumes power and  
degrades phase noise slightly, the fundamental mux path is recommended, but at a cost of a deterministic  
skew vs. a path that is divider based. Such skew can be compensated for with delay (digital and analog) on  
the divider-based path.  
Table 16. Channel Features  
Bit Name  
Description  
Slip Enable  
Slip enable. A channel processes slip requests broadcast from the SPI or GPI (or, if multislip enable = 1, initiated  
following a recognized SYNC or pulse generator startup).  
SYNC Enable  
SYNC enable. A channel processes synchronization events broadcast from the SPI or GPI or due to SYNC/RF SYNC (via  
the SYSREF FSM) to reset its phase. This signal can be safely toggled on and off to adjust SYNC sensitivity without  
risking the state of the divider.  
Start-Up Mode[1:0] 00 = asynchronous (normal mode). The divider starts with uncontrolled phase. It is rephased by SYNC events if SYNC  
enable = 1.  
11 = dynamic (pulse generator mode). The divider monitors pulse generator events broadcast from the SYSREF  
controller. It is powered up just before a pulse generator chain, rephased at the start, and powered down after the  
pulse generator chain. This is only supported for divide ratios > 31.  
Table 17. Pulse Generator Mode Behavior Options  
Bit Name  
Description  
Dynamic Driver Enable Dynamic output buffer enable (pulse generator mode only).  
0 = the output buffer is simply enabled/disabled with the main channel enable.  
1 = the output buffer enable is controlled together with the channel divider, which allows it to dynamically power  
down outside pulse generator events.  
Force Mute[1:0]  
Force mute for dynamic mode. If 10, and the channel enable is true (channel enable = 1), the signal just before the  
output buffer is asynchronously forced to Logic 0 when not generating pulses. Otherwise, if 00, outputs are forced  
to float naturally to VCM. To see the effect of this, the output buffer must be enabled, which is dependent on the  
dynamic driver enable and Start-Up Mode[1:0] controls. Logic 0 is supported for CML, LVPECL and CMOS driver modes.  
Rev. B | Page 34 of 72  
 
 
 
Data Sheet  
HMC7044  
Table 18. Multislip Configuration  
Bit Name  
Description  
Multislip Enable  
Allow multislip. This bit determines whether the 12-Bit Multislip Digital Delay[11:0] parameter is used for multislip  
operations. Note that a multislip operation is automatically started following a SYNC or pulse generator initiation if  
multislip enable = 1.  
Multislip amount. If multislip enable = 1, any slip events (caused by GPI, SPI, SYNC, or pulse generator events) repeat the  
number of times set by 12-Bit Multislip Digital Delay[11:0] to adjust the phase by the multislip amount × VCO cycles. A  
value of 0 is not supported if multislip enable = 1. Note that phase slips are free from a noise and current perspective,  
that is, no additional power is needed and with no noise degradation, but they take some time to occur. Each slip  
operation takes a number of nanoseconds to complete, and thus the phases do not necessarily stabilize immediately. An  
alarm is available for the user to indicate when all phase operations are complete.  
12-Bit Multislip Digital  
Delay[11:0]  
Table 19. Typical Configuration Combinations  
Pulse Generator  
SYSREF  
Bit Name  
DCLK  
Manual SYSREF  
Big  
NonJESD204B  
Any  
Normal  
12-Bit Channel Divider[11:0]  
Start-Up Mode Bit  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
Slip Enable  
Multislip Enable  
High Performance Mode  
Sync Enable  
Small  
Normal  
Off  
Optional  
Optional  
Optional  
Optional  
On  
Big  
Pulse generator  
Normal  
Optional  
Optional  
Optional  
Optional  
Off  
On  
Don’t care  
Don’t care  
Optional  
Optional  
Optional  
Off  
Off  
On  
Off  
Optional  
Optional  
Optional  
Optional  
Optional  
Don’t care  
Don’t care  
Dynamic Driver Enable  
Force Mute[1:0]  
Don’t care  
Don’t care  
On  
On  
Synchronization FSM/Pulse Generator Timing  
Figure 46 shows the start-up behavior of an example divider  
that is configured as a pulse generator, with a period matching  
the internal SYSREF period.  
The block diagram showing the interface of the SYNC/pulse  
generator control to the divider channels and the internal  
SYSREF timer is shown in Figure 44.  
The startup of the pulse stream occurs a fixed number of VCO  
cycles after the FSM transitions to the start phase. Disabling the  
pulse generator stream where the logic path is forced to zero  
comes from a combinational path, directly from the FSM.  
The SYSREF timer counts in periods defined by SYSREF  
Timer[11:0], a 12-bit setting from the SPI. It sequences the enable,  
reset, and startup, and disables the downstream dividers in the  
event of SYNC or pulse generator requests. Program the SYSREF  
timer count to a submultiple of the lowest output frequency in  
the clock network, and not faster than 4 MHz. To synchronize  
divider channels, it is recommended, though not required, that  
the SYSREF Timer[11:0] bits be set to a related frequency that is  
either a factor or multiple of other frequencies on the IC.  
Because the divider has the option for nearly arbitrary phase  
adjustment, it provides the opportunity for the stop condition  
to arrive when the pulse stream is a Logic 1, and creates a runt  
pulse.  
For phase offsets of zero to 50% − 8 VCO cycles, and VCO  
frequencies <3 GHz, this condition is met naturally within the  
design. For fanout only mode >3 GHz, it is recommended to  
use digital delay or slip offsets to increase the natural phase  
offset and avoid the stress condition.  
The pulse generator is defined with respect to the periods of  
this SYSREF timer, not with respect to the output period. This  
leads to timing constraint that must be considered to prevent  
any runt pulses from affecting the pulse generator stream.  
The situation is avoided by never applying phase offset more  
than 50% − 8 VCO cycles to an output channel configured as a  
pulse generator.  
Rev. B | Page 35 of 72  
 
 
HMC7044  
Data Sheet  
RF_SYNC OR PLL2 SYNC  
RESET  
NOTIFY CHANNEL FSM  
WHAT TYPE OF EVENT  
IS COMING  
PULSE  
GENERATOR  
SETUP  
SYNC  
SETUP  
POWER DIVIDERS/SYNC BLOCKS,  
PAUSE BLOCKS, RESET LATCHES  
CLEAR  
REMOVE LATCH RESET,  
PREPARE TO START CLOCKS  
WAIT  
SYNC  
REQUEST  
START CLOCKS,  
STARTUP  
WITH CLEAN TIMING,  
SMALL PIPELINE DELAY  
PULSE  
GENERATOR  
TIMEOUT?  
WAIT UNTIL THE NUMBER OF  
PULSE GENERATOR CYCLES  
EXPIRES  
DONE  
REMOVE POWER  
PULSE  
GENERATOR  
REQUEST  
Figure 45. Synchronization FSM Flowchart  
FSM STATE  
STARTUP  
PULSE GENERATOR = 2  
DONE  
DIVIDER CHANNEL  
IF MUTE SIGNAL ARRIVES QUICKLY  
RELATIVE TO SIGNAL TRAIN,  
NO RUNT PULSE  
FIXED NUMBER OF VCO CYCLES  
FROM STATE CHANGE TO STARTUP, AND  
ANY INTENTIONAL DIGITAL/ANALOG OFFSET  
FSM STATE  
STARTUP  
PULSE GENERATOR = 2  
DONE  
DIVIDER CHANNEL  
IF CONTROL IS TOO LATE  
RELATIVE TO SIGNAL TRAIN,  
THERE IS A RUNT PULSE  
Figure 46. Start-Up Behavior of an Example Divider Configured as a Pulse Generator  
Clock Grouping, Skew, and Crosstalk  
As the output channels are more tightly coupled (by sharing a  
clock group, or by sharing a supply pin), the skew is minimized.  
However, the isolation between those channels suffers. Table 20  
shows the clock grouping, and Table 21 show the typical skew  
and isolation that can be expected and how it scales with distance  
between output channels.  
Although the output channels are logically independent, for  
physical reasons, they are first grouped into pairs called clock  
groups. Each clock group shares a reference, an input buffer,  
and a sync retime flip flop originating from the VCO  
distribution network.  
Isolation improves as either the aggressor or affected frequencies  
decreases. Nevertheless, for particularly important clock channels  
where spurious tones must be minimized, carefully consider  
their frequency and channel configurations to isolate continu-  
ously running frequencies onto different supply domains.  
Channels configured as pulse generators are normally not an  
issue, because they are disabled during normal operation.  
The second level of grouping is according to the supply pin.  
Clock Group 1 (Channel 2 and Channel 3) are on an independ-  
ent supply, and the other supply pins are each responsible for  
two clock groups.  
Rev. B | Page 36 of 72  
 
 
Data Sheet  
HMC7044  
NORTHWEST  
NORTH  
Table 20. Supply Pin Clock Grouping by Location  
Supply Pin  
Location  
Clock Group  
Channel  
VCC2_OUT  
Southwest  
1
2
3
CLKOUT0,  
CLKOUT0  
VCC7_PLL2  
CPOUT2  
VCC4_OUT  
VCC8_OUT  
VCC9_OUT  
South  
2
3
4
5
6
0
4
SCLKOUT1,  
SCLKOUT1  
5
LDOBYP7  
RESET AND SYNC  
BGABYP1  
6
7
OSCIN, OSCIN  
LDOBYP6  
LDOBYP2  
OSCOUT1,  
OSCOUT1  
North  
8
LDOBYB3  
9
CLKIN2/OSCOUT0,  
CLKIN2/OSCOUT0  
VCC1_VCO  
LDOBYP4  
10  
11  
12  
13  
0
VCC6_OSCOUT  
CLKIN0/RFSYNCIN,  
CLKIN0/RFSYNCIN  
LDOBYP5  
Northwest  
SCLKOUT3,  
SCLKOUT3  
CLKOUT2,  
CLKOUT2  
VCC5_PLL1  
CLKIN1/FIN,  
CLKIN1/FIN  
VCC2_OUT  
1
Table 21. Typical Skew and Isolation vs. Distance  
SOUTH  
Typical  
1 GHz Isolation  
SOUTHWEST  
Distance  
Skew (ps)  
Differential (dB)  
90 to 100  
70  
Figure 47. Clock Grouping  
Distant Supply Group  
Closest Neighbor on  
20  
15  
SYSREF Valid Interrupt  
One of the challenges in a JESD204B system is to control and  
minimize the latency from the primary system controller IC,  
typically an ASIC or FPGA, to the data converters. To estimate  
the correct amount of latency in the system, the designer must  
know how long it takes for a master clock generator like the  
HMC7044 to provide the correct output phases at each output  
channel after receiving the synchronization request. Typically, a  
period of time is required on the device to implement the  
change requests on the outputs due to internal state machine  
cycles, data transfers, and any propagation delays. The SYSREF  
valid interrupt is a function to notify the user that the correct  
output settings and phase relationships are established, allowing  
the user to identify quickly that the desired SYSREF and device  
clock states are presented at the outputs of the HMC7044.  
Different Supply Group  
Shared Supply  
Same Clock Group  
10  
10  
60  
45  
Output Buffer Details  
Figure 47 shows the clock groups by supply pin location on the  
package. With appropriate supply pin bypassing, spurious noise  
of the outputs is improved. Table 20 describes how the supply  
pins of each of the 14 clock channels are connected within the  
seven clock groups. Clock channels that are closest to each  
other have the best channel to channel skew performance, but  
they also have the lowest isolation from each other. Select  
critical signals that require high isolation from each other from  
groups with distant supply pin locations. An example of the  
expected isolation and channel to channel skew performance of  
the HMC7044 at 1 GHz is provided in Table 21.  
The user has the flexibility to assign the SYSREF valid interrupt  
to a GPO pin or to use a software flag, set via Register 0x007D,  
Bit 2, which the user can poll as necessary. The flag notifies the  
user when the system is configured and operating in the desired  
state, or conversely when it is not ready.  
Rev. B | Page 37 of 72  
 
 
 
HMC7044  
Data Sheet  
Single-Ended Operation  
REFERENCE BUFFER DETAILS  
The buffers support single-ended signals with a slightly reduced  
input sensitivity and bandwidth. If driving these buffers single-  
ended, ac couple the unused section of the buffer to ground at  
the input of the die.  
Input Termination Network—Common for All Input  
Buffers  
The four reference input buffers to PLL1, as well as the VCXO  
input buffer, share similar architecture and control features. The  
input termination network is configurable to 100 Ω, 200 Ω, and  
2 kΩ differentially. It is typically ac-coupled on the board, and  
uses the on-chip resistive divider to set the internal common-  
mode voltage, VCM, to 2.1 V.  
Maximum Signal Swing Considerations  
The internal supplies to these buffers are regulated from 3.3 V  
to 2.8 V using on-chip regulation. With very high power  
references, the signal swing can be enough to drive the signal  
above the 2.8 V rail. The ESD network and parasitic diodes are  
generally able to shunt the excess power, and protect the  
internal circuits even above 13 dBm. Nevertheless, to protect  
from latch-up concerns, the signals on reference inputs must  
not exceed the 2.8 V internal supply. For a 2.1 V common-  
mode, 50 Ω single-ended source, this 2.8 V limit allows  
~700 mV of amplitude, or 6 dBm of maximum reference power.  
By closing the 50 Ω termination switch (see Figure 48), the  
network also serves as the termination system for an LVPECL  
driver. Although the input termination network for the four  
PLL1 reference buffers and the VCXO input buffer is identical,  
the buffer behind the network is different.  
2.8V  
50Ω,  
100Ω,  
1kΩ  
4kΩ  
TYPICAL PROGRAMMING SEQUENCE  
To initialize the HMC7044 to an operational state, use the  
following programming procedure:  
5kΩ  
1pF  
50Ω,  
100Ω,  
1kΩ  
50Ω  
1. Connect the HMC7044 to the rated power supplies. No  
specific power supply sequencing is necessary.  
2. Release the hardware reset by switching from Logic 1 to  
Logic 0) when all supplies are stable.  
3. Load the configuration updates (provided by Analog  
Devices) to specific registers (see Table 74).  
4. Program PLL2. Select the VCO range (high or low). Then  
program the dividers (R2, N2, and reference doubler).  
5. Program PLL1. Set the lock detect timer threshold based  
on the PLL1 BW of the user system. Set the LCM, R1, and  
N1 divider setpoints. Enable the reference and VCXO  
input buffer terminations.  
6. Program the SYSREF timer. Set the divide ratio (a submultiple  
of the lower output channel frequency). Set the pulse  
generator mode configuration, for example, selecting level  
sensitive option and the number of pulses desired.  
7. Program the output channels. Set the output buffer modes  
(for example, LVPECL, CML, and LVDS). Set the divide  
ratio, channel start-up mode, coarse/analog delays, and  
performance modes.  
Figure 48. On-Chip Termination Network for VCXO and Reference Buffers  
PLL1 Reference Buffer Stages  
The PLL1 reference buffers use a CMOS input stage, are capable  
of a wide common-mode input range (0.4 V to 2.4 V), and have  
hysteresis to support reliable LOS detection. These buffers are  
designed to be driven reliably with an input swing of >375 mV p-p  
diff (the half swing point of the LVDS standard), and support up to  
800 MHz operation. For signal swings that are below 375 mV p-p  
diff, the hysteresis of the buffer can engage and shut down the  
signal to the internal reference paths. The exact input hysteresis  
threshold varies as a function of common-mode level and input  
frequency, but generally ranges from about 75 mV p-p diff to  
300 mV p-p diff.  
VCXO Buffer Stage  
The VCXO input buffer is implemented with a bipolar input  
stage to meet the stringent noise requirements of PLL2. Its  
common-mode input range is tighter and, if set externally, must  
be kept between 1.6 V and 2.4 V. This buffer does not have  
hysteresis and is functional down to very low signal levels.  
Although the buffer remains functional down to these low  
signal levels, for optimal performance, keep the input power  
greater than −4 dBm when driven single-ended, or −7 dBm per  
side when driven differentially.  
8. Wait until the VCO peak detector loop has stabilized  
(~10 ms after Step 4).  
9. Ensure that the references are provided to PLL1 and the  
VCXO is powered.  
10. Issue a software restart to reset the system and initiate  
calibration. Toggle the restart dividers/FSMs bit to 1 and  
then back to 0.  
11. PLL1 starts to lock in parallel with PLL2 going through its  
calibration and lock procedure. Wait for PLL2 to be locked  
(takes ~50 μs in typical configurations).  
Recommendations for Normal Use  
For both styles of buffer, unless there are extenuating circum-  
stances in the application, use the 100 Ω differential termination to  
control reflections, use the on-chip dc bias network to set the  
common-mode level, and externally ac couple the input signals.  
Do not use receiver side dc termination of the LVPECL signal.  
12. Confirm that PLL2 is locked by checking the PLL2 lock  
detect bit.  
Rev. B | Page 38 of 72  
 
 
 
Data Sheet  
HMC7044  
13. Send a sync request via the SPI (set the reseed request bit)  
to align the divider phases and send any initial pulse  
generator stream.  
14. Wait 6 SYSREF periods (6 × SYSREF Timer[11:0]) to allow  
the outputs to phase appropriately (takes ~3 μs in typical  
configurations).  
POWER SUPPLY CONSIDERATIONS  
The HMC7044 contains on-board regulators to shield some of  
the more sensitive supplies from external noise and interference  
as much as possible. Nevertheless, the user must still take  
special care to the supply noise profile of the VCC1_VCO  
supply to achieve the intended performance of the device.  
15. Confirm that the outputs have all reached their phases by  
checking that the clock outputs phases status bit = 1.  
16. At this time, initialize any other devices in the system.  
PLL1 may not be locked yet, but the small frequency offset  
that can result on the output of the HMC7044 is not normally  
severe enough to cause synchronization or initialization  
failures. Configure slave JESD204B devices in the system to  
operate with the SYSREF signal outputs from the HMC7044.  
SYSREF channels from the HMC7044 can either be on  
asynchronously, or dynamically, and can temporarily turn  
on for a pulse generator stream.  
17. Wait for PLL1 to lock. This takes ~50 ms for a 100 Hz BW  
(from Step 11).  
18. When all JESD204B slaves are powered and ready, send a  
pulse generator request to send out a pulse generator chain  
on any SYSREF channels programmed for pulse generator  
mode.  
In general, a flat input noise of 200 nV/Hz is an equivalent  
contributor to the VCO noise and causes a 3 dB increase in the  
noise profile from about 100 kHz to 10 MHz when the VCO is  
the dominant contributor. This increase equates to a roughly  
one-to-one conversion from dBV to dBc/Hz at a 1 MHz offset,  
and fOUT = 2.457 GHz, that is, 200 nV/Hz = −134 dBV, and the  
performance of the VCO at 1 MHz offset at 2.4576 GHz is  
~−134 dBc/Hz. The PSRR of the VCO follows its closed-loop  
noise profile; therefore, as the offset moves in and the VCO  
profile becomes higher, the 200 nV/Hz noise stays approximately  
equal to the VCO. To stay suitably below the VCO, a supply  
input with <50 nV/Hz is recommended on the VCC1_VCO pin  
across the 100 kHz to 10 MHz frequency range.  
The output buffers are also susceptible to supply noise, but to a  
lesser extent. A noise tone of −60 dBV at a 40 MHz offset results  
in a −90 dBc tone at the output of the buffers in CML mode and  
−85 dBc in LVPECL mode. This result is a relatively flat frequency  
response, and these numbers are measured differentially. Phase  
noise/spurs caused by supply noise on the output buffers do not  
scale with output frequency, whereas those on the VCO do.  
The system is now initialized.  
For power savings and the reduction of the crosscoupling of  
frequencies on the HMC7044, shut down the SYSREF channels.  
1. Program each JESD204B slave to ignore the SYSREF input  
channel.  
2. On the HMC7044, disable the individual channel enable  
bits of each SYSREF channel.  
Table 22 lists the supply network of the HMC7044 by pin,  
showing the relevant functional blocks. Six different usage  
profiles are defined for the network, not including the output  
channel supplies, which are accounted for separately.  
To resynchronize one or more of the JESD204B slaves, use the  
following procedure:  
The values listed under Profile 0 to Profile 5 in Table 22 and  
Table 23 are the typical currents of that block or feature. If a  
number is not listed in a profile column, a typical profile does  
not exist for that block or feature, but the user can mix and  
match features outside of the profile list, and can determine what  
the power consumption is going to be given the current listings  
per feature.  
1. Set the channel enable (and SYNC enable bit) of the  
SYSREF channel of interest.  
2. To prevent an output channel from responding to a sync  
request, disable the SYNC enable mask of each channel so  
that it continues to run normally without a phase  
adjustment.  
3. Issue a reseed request to phase the SYSREF channel  
properly with respect to the DCLK.  
4. Enable the JESD204B slave sensitivity to the SYSREF  
channel.  
5. If the SYSREF channel is in pulse generator mode, wait at  
least 20 SYSREF periods from Step 3, and issue a pulse  
generator request.  
Rev. B | Page 39 of 72  
 
HMC7044  
Data Sheet  
Table 22. Supply Network of the HMC7044 by Pin for PLL1, PLL2, VCO, and SYSREF  
Profile1  
Typical Current  
(mA)  
Circuit Block  
Comment  
0
1
2
3
4
5
VCC5_PLL1  
CLKIN1/CLKIN1  
CLKIN1/CLKIN1 Buffer  
Used as a PLL1 reference  
2
5
2
2
2
5
2
5
Extra if used as buffer for external  
VCO  
CLKIN0/CLKIN0  
Used as a PLL1 reference  
2
5
2
CLKIN0/CLKIN0 Buffer  
Extra current if used as RF  
synchronization buffer2  
External VCO Path (fOUT  
External VCO Path  
External RF Synchronization Path3  
Regulator to 1.8 V, Bypassed on LDOBYP2  
PLL1 Functions  
PLL2 Functions  
SYSREF Timer  
GPO Drivers in High Speed Mode4  
Regulator to 2.8 V, Bypassed on LDOBYP3  
PLL1 PFD/CP  
)
18  
10  
3
18  
Extra current for divide by 2  
N2, digital functions  
LOS, R1, N1, FSMs  
R2, N2, lock detect  
2
2
2
2
2
10  
2
2
2
2
10  
17  
1
10  
17  
1
17  
17  
2
7
2
7
2
7
2
2
PLL1 DAC Holdover Circuits  
CLKIN2/CLKIN2 Buffer  
2
2
2
2
CLKIN3/CLKIN3 Buffer  
2
2
Subtotal for VCC5_PLL1  
VCC7_PLL2  
Regulator to 2.8 V, Bypassed on LDOBYP7  
90  
4
49  
23 21  
46  
11  
2
2
21  
2
4
2
21  
2
2
2
21  
PLL2 PFD, Doubler, and R2 and N2  
Outputs  
21  
PLL2 Charge Pump  
Regulator to 2.8 V, Bypassed on LDOBYP6  
VCXO Buffer  
OSCOUTx/OSCOUTx Divider/Mux5  
Subtotal for VCC7_PLL2  
VCC1_VCO  
VCO Distribution Network  
Sync Retiming Network  
VCO Regulator, Bypass to LDOBYP4 and  
LDOBYP5  
8
2
16  
8
8
2
16  
8
2
8
2
16  
2
2
2
16 16  
57  
8
8
49  
71  
84  
20 49  
49  
71  
4
Minimum possible value  
Minimum possible value6  
71  
8
84  
0
0
71  
84  
71  
VCO Core  
Subtotal for VCC1_VCO  
163  
8
155  
155 71  
71  
VCC3_SYSREF  
SYSREF Input Network3  
SYSREF Counter Base  
SYSREF Counter, SYNC network  
Subtotal for VCC3_SYSREF  
Subtotal (Without Output Paths)  
11  
12  
4
12  
12  
12  
12  
27  
0
0
0
0
20 265 43 225 166 98  
1 Profile 0 = sleep mode; Profile 1 = power-up defaults, PLL1 with four references and PLL2 locked with internal VCO, SYSREF timer running; Profile 2 = PLL1 only, one  
reference; Profile 3 = PLL2 + VCO, PLL1 disabled, Profile 4 = PLL2 with external VCO, PLL1 disabled, Profile 5 = fanout mode only, SYSREF running.  
2
CLKIN0  
This is the incremental amount of current for the circuit when put in this mode. For example, the CLKIN0/  
used as the external synchronization buffer instead, it is 2 + 5 mA.  
buffer used for PLL1 reference path is 2 mA. If it is  
3 The transient current in PLL2 synchronization mode can be temporarily enabled when using external synchronization.  
4 The current is highly dependent on rate of input/output and load of input/output traces. For heavily loaded traces, it is recommended to use a series resistance of  
~100 Ω to minimize the IR drop on the internal regulator during transitions.  
5 The function varies from 8 mA to 14 mA depending on divide ratio.  
6 A temporary current only.  
Rev. B | Page 40 of 72  
 
Data Sheet  
HMC7044  
Table 23. Supply Network of the HMC7044 by Pin for the Clock Output Network  
Profile1  
Per Output Channel  
Comment  
Typical Current (mA)  
0
1
2
3
4
Digital Regulator and Other Sources  
2.5  
0.5  
2.5 2.5  
2.5  
2.5  
Buffer  
LVPECL  
Including term currents  
Including term currents  
43  
43 43  
43  
CML100  
High Power  
Low Power  
LVDS  
31  
24  
High Power  
Low Power  
CMOS  
At 307 MHz  
10  
10  
At 100 MHz, both sections  
25  
Included2  
Channel Mux  
Digital Delay  
Off  
Setpoint > 1  
Analog Delay  
Off  
Included2  
3
3
3
9
Included2  
0
Minimum Setting  
Maximum Setting  
Divider Logic  
0
Glitchless mode enabled  
Not using divider path  
9
9
9
Included2  
0
0
÷1  
÷2  
÷3  
÷4  
27  
27  
31  
29  
32  
29  
30  
31  
32  
32  
4
÷5  
÷6  
÷8  
÷16  
÷32  
31  
÷2044  
32  
92  
SYNC Logic3  
Slip Logic3  
Subtotal  
4
2.5 48 89  
13  
1 Profile 0 = sleep mode; Profile 1 = fundamental mode; Profile 2 =SYSREF channel matched to fundamental mode; Profile 3 = LVDS—high power signal source from  
other channel; Profile 4 = worst case configuration for power consumption of a channel.  
2 The base current consumption of the circuit (for example, mux) is included in the buffer typical current.  
3 Currents occur only temporarily during a synchronization event.  
Rev. B | Page 41 of 72  
 
HMC7044  
Data Sheet  
SERIAL CONTROL PORT  
4. The host registers the 8-bit data on the next eight rising  
edges of SCLK. The HMC7044 places 8-bit data (D7 to D0)  
MSB first on the next eight falling edges of SCLK.  
SERIAL PORT INTERFACE (SPI) CONTROL  
The HMC7044 can be controlled via the SPI using 24-bit  
registers and three pins: serial port enable (SLEN) serial data  
input/output (SDATA), and serial clock (SCLK).  
5. Deassertion of SLEN completes the register read cycle.  
Typical Write Cycle  
The 24-bit register, shown in Table 24, consists of the following:  
A typical write cycle is shown in Figure 49, and occurs as  
follows:  
1-bit read/write command  
2-bit multibyte field (W1, W0)  
13-bit address field (A12 to A0)  
8-bit data field (D7 to D0)  
1. The master (host) asserts both SLEN and SDATA to  
indicate a read, followed by a rising edge SCLK. The slave  
(HMC7044) reads SDIO on the first rising edge of SCLK  
after SLEN. Setting SDATA low initiates a write.  
2. The host places the 2-bit multibyte field to be written to  
low (0) on the next two falling edges of SCLK. The  
HMC7044 registers the 2-bit multibyte field on the next  
two rising edges of SCLK.  
Table 24. SPI Bit Map  
MSB  
LSB  
Bit 23  
Bit 22  
Bit 21  
Bits[20:8]  
Bits[7:0]  
D7 to D0  
R/W  
W1  
W0  
A12 to A0  
Typical Read Cycle  
3. The host places the13-bit address field (A12 to A0), MSB  
first on SDATA on the next 13 falling edges of SCLK. The  
HMC7044 registers the 13-bit address field (MSB first) on  
SDIO over the next 13 rising edges of SCLK.  
4. The host places the 8-bit data (D7 to D0) MSB first on the  
next eight falling edges of SCLK. The HMC7044 register  
the 8-bit data (D7 to D0) MSB first on the next eight rising  
edges of SCLK.  
A typical read cycle is shown in Figure 48 and occurs as follows:  
1. The master (host) asserts both SLEN and SDATA to  
indicate a read, followed by a rising edge SCLK. The slave  
(HMC7044) reads SDATA on the first rising edge of SCLK  
after SLEN. Setting SDATA high initiates a read.  
2. The host places the 2-bit multibyte field to be written to  
low (0) on the next two falling edges of SCLK. The  
HMC7044 registers the 2-bit multibyte field on the next  
two rising edges of SCLK.  
3. The host places the 13-bit address field (A12 to A0) MSB  
first on SDATA on the next 13 falling edges of SCLK. The  
HMC7044 registers the 13-bit address field (MSB first) on  
SDATA over the next 13 rising edges of SCLK.  
5. The final rising edge of SCLK performs the internal data  
transfer into the register file, updating the configuration of  
the device.  
6. Deassertion of SLEN completes the register write cycle.  
1
2
3
4
5
16  
17  
18  
24  
SCLK  
X
READ W1  
W0  
A12 A11  
A0  
D7  
D6  
D0  
SDATA  
SLEN  
Figure 49. SPI Timing Diagram, Read Operation  
1
2
3
4
5
24  
16  
17  
18  
SCLK  
WRITE  
X
W1  
W0  
A12 A11  
A0  
D7  
D6  
D0  
SDATA  
SLEN  
Figure 50. SPI Timing Diagram, Write Operation  
Rev. B | Page 42 of 72  
 
 
 
 
Data Sheet  
HMC7044  
APPLICATIONS INFORMATION  
where:  
Floor_FOM is the figure of merit at the floor frequency.  
PD2 is the phase detector frequency of PLL2.  
Calculate the total phase noise (unfiltered) as follows:  
PLL1 NOISE CALCULATIONS  
Use the following equations to calculate the flicker noise, noise  
floor, and total unfiltered phase noise specifications for PLL1  
(see Table 4).  
f
PN  
(
fOUT , fPD2 , fOFFSET =  
)
Calculate the flicker noise using the following equation:  
2
2
PN(fOUT, fOFFSET) = Flicker_FOM + 20 × log(fOUT) – 10 ×  
PN _ Flicker  
PN _ Floor  
10  
(6)  
+10  
10  
10×log 10  
log(fOFFSET  
where:  
PN() is the phase noise.  
)
(1)  
where:  
f
f
OUT is the output frequency.  
OFFSET is the offset of noise frequency from the output carrier  
PN_Flicker is the phase noise at the flicker frequency.  
PN_Floor is the phase noise at the floor frequency.  
frequency.  
PHASE NOISE FLOOR AND JITTER  
Flicker_FOM is the figure of merit at the flicker frequency.  
Use the following equations to calculate the phase noise floor,  
jitter density, and rms additive jitter due to floor specifications  
(see Table 9).  
Calculate the noise floor as follows:  
PN  
(
fOUT , fPD1  
)
=
(2)  
fOUT  
fPD1  
Calculate the phase noise floor using the following equation:  
Floor_ FOM + 20×log  
10×log  
(
fPD1  
)
PNFLOOR = FOMOCHAN + 10 × log(fOUT) + Harmonic  
where:  
PD1 is the phase detector frequency of PLL1.  
Degradation + Power Degradation  
(7)  
f
where:  
PNFLOOR is the phase noise floor at fOUT  
Floor_FOM is the figure of merit at the floor frequency.  
.
Calculate the total phase noise (unfiltered) as follows:  
FOMOCHAN is the figure of merit of the output channel.  
Harmonic Degradation is the harmonics of the signal captured  
in the measurement bandwidth of the receiving  
instrument/circuit. The noise power of those harmonics can  
fold and influence the overall noise.  
Power Degradation results when the noise floor (−174 dBm/Hz)  
of the measurement system approaches the noise power in the  
phase noise floor of the signal. For example, a phase noise value  
of−155 dBc/Hz at 0 dBm carrier level is −155 dBm/Hz and is  
easily measurable. If, however, the carrier level is −20 dBm, the  
phase noise of –155 dBc/Hz is −175 dBm/Hz, and is not  
measurable below the other noise sources in the system.  
PN  
(
fOUT , fPD1, fOFFSET =  
)
2
2
PN _ Flicker  
PN _ Floor  
(3)  
+10  
10  
10  
10×log 10  
where:  
PN_Flicker is the phase noise at the flicker frequency.  
PN_Floor is the phase noise at the floor frequency.  
PLL2 NOISE CALCULATIONS  
Use the following equations to calculate the flicker noise, noise  
floor, and total unfiltered phase noise specifications for PLL2  
(see Table 5).  
Calculate the jitter density at fOUT as follows:  
PN  
10  
floor  
Calculate the flicker noise using the following equation:  
f
OUT ×2π  
JITTER _ DENSITY _ FLOOR = 2 ×10  
(8)  
PN(fOUT, fOFFSET) = Flicker_FOM + 20 × log(fOUT) – 10 ×  
log(fOFFSET  
)
(4)  
where JITTER_DENSITY_FLOOR is the jitter density of floor at  
fOUT  
.
where:  
f
OUT is the output frequency.  
Calculate the rms additive jitter due to floor using the following  
equation:  
fOFFSET is the offset of noise frequency from the output carrier  
frequency.  
JITTER_RMS_FLOOR = JITTER_DENSITY_FLOOR ×  
Observation Bandwidth  
Flicker_FOM is the figure of merit at the flicker frequency.  
(9)  
Calculate the noise floor as follows:  
where Observation Bandwidth is the desired integration  
bandwidth of the noise with a lower and upper bound offset  
from the output carrier frequency.  
fOUT  
fPD2  
PN  
(
fOUT , fPD2  
)
= Floor_ FOM +20×log  
10×  
log  
(
fPD2  
)
(5)  
Rev. B | Page 43 of 72  
 
 
 
 
HMC7044  
Data Sheet  
CONTROL REGISTERS  
CONTROL REGISTER MAP  
Register addresses that are not listed in Table 25 are not used, and writing to those registers has no effect. Do not change the values of  
registers that are marked as reserved. When writing to registers with bits that are marked reserved, take care to always write the default  
value for the reserved bits, unless listed otherwise in the other controls subsection of Table 25.  
Table 25. Control Register Map  
Default  
Addr.  
(Hex)  
Register  
Name  
Bit 0  
(LSB)  
Value  
(Hex)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Global Control  
0x0000  
Global soft  
reset control  
Reserved  
Soft reset  
0x00  
0x00  
0x0001  
Global  
request and  
mode control  
Reseed  
request  
High  
High  
Force  
holdover  
Mute  
output  
drivers  
Pulse  
Restart  
Sleep  
mode  
performance performance  
distribution  
generator dividers/  
request  
PLLs/VCO  
FSMs  
path  
0x0002  
0x0003  
Reserved  
PLL2  
autotune  
trigger  
Slip  
request  
Reserved  
0x00  
0x37  
Global  
enable  
control  
Reserved  
RF reseeder  
enable  
VCO Selection[1:0]  
SYSREF  
timer  
enable  
PLL2  
enable  
PLL1  
enable  
0x0004  
0x0005  
Reserved  
SYNC Pin Mode  
Selection[1:0]  
Seven Pairs of 14-Channel Outputs Enable[6:0]  
CLKIN0/  
PLL1 Reference Path Enable[3:0]  
CLKIN0  
0x7F  
0x4F  
Global mode  
and enable  
control  
CLKIN1/  
CLKIN1  
in  
in RF  
external VCO  
input mode  
SYNC input  
mode  
0x0006  
Global clear  
alarms  
Reserved  
Clear  
alarms  
0x00  
0x0007  
0x0008  
0x0009  
Global  
miscellaneous  
control  
Reserved  
0x00  
0x00  
0x01  
Reserved (Scratchpad)  
Reserved  
Disable  
SYNC at  
lock  
PLL1  
0x000A CLKIN0/  
CLKIN0  
Reserved  
Input Buffer Mode[3:0]  
Buffer  
enable  
0x07  
0x07  
0x07  
0x07  
0x07  
0xE4  
input  
buffer control  
0x000B  
CLKIN1/  
Reserved  
Reserved  
Reserved  
Reserved  
Input Buffer Mode[3:0]  
Input Buffer Mode[3:0]  
Input Buffer Mode[3:0]  
Input Buffer Mode[3:0]  
Second Priority  
Buffer  
enable  
CLKIN1  
input  
buffer control  
0x000C CLKIN2/  
CLKIN2  
Buffer  
enable  
input  
buffer control  
0x000D CLKIN3/  
CLKIN3  
Buffer  
enable  
input  
buffer control  
OSCIN  
input buffer  
control  
0x000E  
0x0014  
Buffer  
enable  
OSCIN/  
PLL1  
Fourth Priority  
CLKINx  
First Priority  
CLKINx  
CLKINx  
Third Priority CLKINx/  
reference  
priority  
control  
CLKINx  
CLKINx/  
Input[1:0]  
CLKINx/  
Input[1:0]  
CLKINx/  
Input[1:0]  
Input[1:0]  
0x0015  
0x0016  
PLL1 loss of  
signal (LOS)  
control  
Reserved  
LOS Validation Timer[2:0]  
0x03  
0x0C  
PLL1  
holdover exit  
Reserved  
Holdover Exit  
Action[1:0]  
Holdover Exit  
Criteria[1:0]  
control  
Rev. B | Page 44 of 72  
 
 
 
Data Sheet  
HMC7044  
Default  
Addr.  
(Hex)  
Register  
Name  
Bit 0  
(LSB)  
Value  
(Hex)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x0017  
0x0018  
PLL1  
Reserved  
Holdover DAC Value[6:0]  
0x00  
0x04  
holdover  
DAC/ADC  
control  
Reserved  
ADC  
tracking  
disable  
Force  
Holdover BW  
Reduction[1:0]  
DAC to  
holdover  
in quick  
mode  
0x0019  
PLL1 LOS  
Reserved  
LOS  
LOS uses  
0x00  
mode control  
bypass  
input  
VCXO  
prescaler  
prescaler  
0x001A PLL1 charge  
pump control  
Reserved  
PLL1 CP Current[3:0]  
0x08  
0x18  
0x001B  
PLL1 PFD  
control  
Reserved  
PLL1 PFD up  
enable  
PLL1 PFD  
down  
PLL1 PFD  
up force  
PLL1 PFD  
down  
PLL1 PFD  
polarity  
enable  
force  
0x001C CLKIN0/  
CLKIN0  
CLKIN0  
CLKIN1  
CLKIN2  
CLKIN3  
0x04  
0x01  
0x04  
0x01  
0x04  
CLKIN0/  
CLKIN1/  
CLKIN2/  
CLKIN3/  
OSCIN/  
Input Prescaler[7:0]  
Input Prescaler[7:0]  
Input Prescaler[7:0]  
Input Prescaler[7:0]  
Input Prescaler[7:0]  
input  
prescaler  
control  
0x001D  
0x001E  
0x001F  
0x0020  
CLKIN1/  
CLKIN1  
input  
prescaler  
control  
CLKIN2/  
CLKIN2  
input  
prescaler  
control  
CLKIN3/  
CLKIN3  
input  
prescaler  
control  
OSCIN  
OSCIN/  
OSCIN  
Input  
prescaler  
control  
0x0021  
0x0022  
PLL1  
reference  
divider  
16-Bit R1 Divider[7:0] (LSB)  
16-Bit R1 Divider[15:8] (MSB)  
0x04  
0x00  
control (R1)  
0x0026  
0x0027  
PLL1  
feedback  
divider  
16-Bit N1 Divider[7:0] (LSB)  
16-Bit N1 Divider[15:8] (MSB)  
0x10  
0x00  
control (N1)  
0x0028  
0x0029  
PLL1 lock  
detect  
control  
Reserved  
PLL1 lock  
detect uses  
slip  
PLL1 Lock Detect Timer[4:0]  
0x0F  
0x05  
PLL1  
Reserved  
Bypass  
debouncer  
Manual Mode Reference  
Holdover  
uses DAC  
Auto-  
Auto-  
mode  
reference  
switching  
reference  
switching  
control  
Switching[1:0]  
revertive  
reference  
switching  
0x002A PLL1 holdoff  
time control  
Holdoff Timer[7:0]  
0x00  
PLL2  
0x0031  
PLL2  
miscellaneou  
s control  
Reserved  
0x01  
0x01  
0x0032  
PLL2  
Reserved  
Bypass  
frequency  
doubler  
control  
frequency  
doubler  
0x0033  
0x0034  
PLL2  
reference  
divider  
12-Bit R2 Divider[7:0] (LSB)  
0x02  
0x00  
Reserved  
12-Bit R2 Divider[11:8] (MSB)  
control (R2)  
Rev. B | Page 45 of 72  
HMC7044  
Data Sheet  
Default  
Addr.  
(Hex)  
Register  
Name  
Bit 0  
(LSB)  
Value  
(Hex)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x0035  
0x0036  
PLL2  
feedback  
divider  
16-Bit N2 Divider[7:0] (LSB)  
16-Bit N2 Divider[15:8] (MSB)  
0x20  
0x00  
control (N2)  
0x0037  
0x0038  
PLL2 charge  
pump control  
Reserved  
PLL2 CP Current[3:0]  
0x0F  
0x18  
PLL2 PFD  
control  
Reserved  
PLL2 PFD up  
enable  
PLL2 PFD  
down  
PLL2 PFD  
up force  
PLL2 PFD  
down  
PLL2 PFD  
polarity  
enable  
force  
0x0039  
OSCOUTx/  
OSCOUTx  
path control  
Reserved  
OSCOUTx/  
OSCOUTx/  
OSCOUTx  
path  
0x00  
OSCOUTx  
Divider[1:0]  
enable  
0x003A OSCOUTx/  
OSCOUTx  
Reserved  
OSCOUT0  
Mode[1:0]  
Reserved  
Reserved  
OSCOUT0  
Driver Impedance[1:0]  
OSCOUT0/ 0x00  
OSCOUT0  
driver  
OSCOUT0/  
Driver  
Driver  
OSCOUT0/  
driver control  
enable  
0x003B  
Reserved  
OSCOUT1  
Mode[1:0]  
OSCOUT1  
Driver Impedance[1:0]  
OSCOUT1/ 0x00  
OSCOUT1  
driver  
OSCOUT1/  
OSCOUT1/  
enable  
0x003C PLL2  
miscellaneous  
control  
Reserved  
0x00  
GPIO/SDATA Control  
0x0046  
0x0047  
0x0048  
0x0049  
0x0050  
0x0051  
0x0052  
0x0053  
0x0054  
GPI1 control  
GPI2 control  
GPI3 control  
GPI4 control  
GPO1 control  
GPO2 control  
GPO3 control  
GPO4 control  
Reserved  
GPI1 Selection[3:0]  
GPI2 Selection[3:0]  
GPI3 Selection[3:0]  
GPI4 Selection[3:0]  
GPI1  
enable  
0x00  
0x00  
0x09  
0x11  
0x37  
0x33  
0x00  
0x00  
0x03  
Reserved  
Reserved  
Reserved  
GPI2  
enable  
GPI3  
enable  
GPI4  
enable  
GPO1 Selection[5:0]  
GPO2 Selection[5:0]  
GPO3 Selection[5:0]  
GPO4 Selection[5:0]  
Reserved  
GPO1  
mode  
GPO1  
enable  
GPO2  
mode  
GPO2  
enable  
GPO3  
mode  
GPO3  
enable  
GPO4  
mode  
GPO4  
enable  
SDATA  
control  
SDATA  
mode  
SDATA  
enable  
SYSREF/SYNC Control  
0x005A Pulse  
generator  
Reserved  
Reserved  
Pulse Generator Mode Selection[2:0] 0x00  
control  
0x005B  
SYNC control  
SYNC  
SYNC  
SYNC  
0x06  
retime  
through  
PLL2  
polarity  
0x005C SYSREF timer  
SYSREF Timer[7:0] (LSB)  
Reserved  
0x00  
0x01  
0x00  
control  
0x005D  
Reserved  
SYSREF Timer[11:8] (MSB)  
0x005E  
SYSREF  
miscellaneous  
control  
Rev. B | Page 46 of 72  
Data Sheet  
HMC7044  
Default  
Addr.  
(Hex)  
Register  
Name  
Bit 0  
(LSB)  
Value  
(Hex)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Clock Distribution Network  
0x0064  
External VCO  
control  
Divide by  
2 on  
external  
VCO  
enable  
Low  
0x00  
0x00  
frequency  
external  
VCO path  
0x0065  
Analog delay  
common  
control  
Reserved  
Analog  
delay low  
power  
mode  
Alarm Masks Registers  
0x0070  
PLL1 alarm  
mask control  
PLL1 near  
lock mask  
PLL1 lock  
acquisition  
mask  
PLL1 lock  
detect mask  
PLL1 holdover  
status mask  
CLKINx  
0x00  
0x10  
PLL1 CLKINx/  
LOS Mask[3:0]  
0x0071  
Alarm mask  
control  
Reserved  
Sync request  
mask  
PLL1 and  
PLL2 lock  
detect  
Clock  
SYSREF  
sync  
PLL2 lock  
detect  
mask  
outputs  
phase  
status  
mask  
status  
mask  
mask  
Product ID Registers  
0x0078  
0x0079  
0x007A  
Product ID  
Product ID Value[7:0] (LSB)  
Product ID Value[15:8] (Mid)  
Product ID Value[23:16] (MSB)  
0x51  
0x16  
0x30  
Alarm Readback Status Registers  
0x007B  
Readback  
register  
Reserved  
Alarm  
signal  
0x007C PLL1 alarm  
readback  
PLL1 near  
lock  
PLL1 lock  
acquisition  
PLL1 lock  
detect  
PLL1 holdover  
status  
CLKINx  
CLKINx/ LOS[3:0]  
0x007D Alarm  
readback  
Reserved  
Sync request  
status  
PLL1 and  
PLL2 lock  
detect  
Clock  
SYSREF  
sync  
status  
PLL2 lock  
detect  
outputs  
phases  
status  
0x007E  
0x007F  
Latched  
alarm  
readback  
Reserved  
PLL2 lock  
acquisition  
latched  
PLL1 lock  
acquisition  
latched  
PLL1 holdover  
latched  
CLKINx  
CLKINx/  
LOS Latched[3:0]  
Alarm  
Reserved  
readback  
miscellaneous  
PLL1 Status Registers  
0x0082  
PLL1 status  
registers  
Reserved  
Reserved  
PLL1 Best Clock[1:0]  
PLL1 Active  
CLKINx  
CLKINx/ [1:0]  
PLL1 FSM State[2:0]  
0x0083  
0x0084  
PLL1 Holdover DAC Averaged Value[6:0]  
PLL1 Holdover DAC Current Value[6:0]  
Holdover  
comparator  
value  
0x0085  
Reserved  
PLL1  
PLL1  
PLL1  
PLL1  
active  
CLKINx/  
CLKINx  
LOS  
VCXO  
status  
holdover  
ADC  
status  
holdover  
ADC input  
range  
status  
0x0086  
0x0087  
Reserved  
PLL1 Holdover Exit  
Phase[1:0]  
Reserved  
Reserved  
PLL2 Status Registers  
0x008C PLL2 status  
PLL2 autotune value  
registers  
0x008D  
PLL2 Autotune Signed Error[7:0] (LSB)  
0x008E  
PLL2  
PLL2  
PLL2 Autotune Signed Error[13:8] (MSB)  
autotune  
status  
autotune  
error sign  
0x008F  
0x0090  
PLL2 Autotune FSM State[3:0]  
PLL2 SYNC FSM State[3:0]  
Reserved  
Rev. B | Page 47 of 72  
HMC7044  
Data Sheet  
Default  
Addr.  
(Hex)  
Register  
Name  
Bit 0  
(LSB)  
Value  
(Hex)  
Bit 7 (MSB)  
Bit 6  
Reserved  
Bit 5  
Bit 4  
Channel  
outputs FSM  
busy  
Bit 3  
Bit 2  
Bit 1  
SYSREF Status Register  
0x0091  
SYSREF status  
register  
SYSREF FSM State[3:0]  
Other Controls  
0x0096  
0x0097  
0x0098  
0x0099  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0x00  
0x00  
0x00  
0xAA  
0xAA  
0xAA  
0xAA  
0x55  
0x56  
0x97  
0x03  
0x00  
0x00  
0x00  
0x1C  
0x00  
0x22  
0x00  
0x00  
0x20  
0x00  
0x08  
0x50  
0x09  
0x0D  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
0x009A Reserved  
0x009B Reserved  
0x009C Reserved  
0x009D  
0x009E  
0x009F  
Reserved  
Reserved  
Reserved  
Clock output driver low power setting (for optimum performance, set to 0x4D instead of default value)  
0x00A0 Reserved  
0x00A1 Reserved  
0x00A2 Reserved  
0x00A3 Reserved  
0x00A4 Reserved  
0x00A5 Reserved  
0x00A6 Reserved  
0x00A7 Reserved  
0x00A8 Reserved  
0x00A9 Reserved  
0x00AB Reserved  
0x00AC Reserved  
0x00AD Reserved  
0x00AE Reserved  
0x00AF Reserved  
Clock output driver high power setting (for optimum performance, set to 0xDF instead of default value)  
Reserved  
Reserved  
Reserved  
Reserved  
PLL1 more delay (PFD1, lock detect) (for optimum performance, set to 0x06 instead of default value)  
Reserved  
Reserved  
PLL1 holdover DAC gm setting (for optimum performance, set to 0x06 instead of default value)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00B0  
0x00B1  
0x00B2  
0x00B3  
0x00B5  
0x00B6  
0x00B7  
0x00B8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VTUNE preset setting (for optimum performance, set to 0x04 instead of default value)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Clock Distribution  
0x00C8 Channel  
Output 0  
High  
performance  
mode  
SYNC  
enable  
Slip enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
0xF3  
control  
0x00C9  
0x00CA  
0x00CB  
0x00CC  
0x00CD  
0x00CE  
0x00CF  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x04  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x00D0  
0x00D1  
Force Mute[1:0]  
Reserved  
Dynamic  
driver enable  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x01  
0x00  
Rev. B | Page 48 of 72  
Data Sheet  
HMC7044  
Default  
Addr.  
(Hex)  
Register  
Name  
Bit 0  
(LSB)  
Value  
(Hex)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x00D2  
Channel  
Output 1  
control  
High  
performance  
mode  
SYNC  
enable  
Slip enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
0xFD  
0x00D3  
0x00D4  
0x00D5  
0x00D6  
0x00D7  
0x00D8  
0x00D9  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x00DA  
Force Mute[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x30  
driver enable  
Slip enable  
0x00DB  
0x00  
0xF3  
0x00DC Channel  
Output 2  
High  
SYNC  
enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
performance  
control  
mode  
0x00DD  
0x00DE  
0x00DF  
0x00E0  
0x00E1  
0x00E2  
0x00E3  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x08  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Dynamic  
Output Mux  
Selection[1:0]  
0x00E4  
Force Mute[1:0]  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x01  
driver enable  
0x00E5  
0x00  
0xFD  
0x00E6  
Channel  
Output 3  
control  
High  
SYNC  
enable  
Slip enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
performance  
mode  
0x00E7  
0x00E8  
0x00E9  
0x00EA  
0x00EB  
0x00EC  
0x00ED  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x00EE  
Force Mute[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x30  
driver enable  
Slip enable  
0x00EF  
0x00F0  
0x00  
0xF3  
Channel  
Output 4  
control  
High  
SYNC  
enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
performance  
mode  
0x00F1  
0x00F2  
0x00F3  
0x00F4  
0x00F5  
0x00F6  
0x00F7  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x02  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
Reserved  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x00F8  
0x00F9  
Force Mute[1:0]  
Dynamic  
driver enable  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x01  
0x00  
Rev. B | Page 49 of 72  
 
 
HMC7044  
Data Sheet  
Default  
Addr.  
(Hex)  
Register  
Name  
Bit 0  
(LSB)  
Value  
(Hex)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x00FA Channel  
Output 5  
High  
performance  
SYNC  
enable  
Slip enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
0xFD  
control  
mode  
0x00FB  
0x00FC  
0x00FD  
0x00FE  
0x00FF  
0x0100  
0x0101  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x0102  
Force Mute[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x30  
driver enable  
Slip enable  
0x0103  
0x00  
0xF3  
0x0104  
Channel  
Output 6  
control  
High  
SYNC  
enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
performance  
mode  
0x0105  
0x0106  
0x0107  
0x0108  
0x0109  
0x010A  
0x010B  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x02  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Dynamic  
Output Mux  
Selection[1:0]  
0x010C  
Force Mute[1:0]  
SYNC  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x01  
driver enable  
0x010D  
0x010E  
0x00  
0xFD  
Channel  
Output 7  
control  
High  
Slip enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
performance  
enable  
mode  
0x010F  
0x0110  
0x0111  
0x0112  
0x0113  
0x0114  
0x0115  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x0116  
Force Mute[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x30  
driver enable  
Slip enable  
0x0117  
0x0118  
0x00  
0xF3  
Channel  
Output 8  
control  
High  
SYNC  
enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
performance  
mode  
0x0119  
0x011A  
0x011B  
0x011C  
0x011D  
0x011E  
0x011F  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x02  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x0120  
0x0121  
Force Mute[1:0]  
Dynamic  
driver enable  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x01  
0x00  
Rev. B | Page 50 of 72  
Data Sheet  
HMC7044  
Default  
Addr.  
(Hex)  
Register  
Name  
Bit 0  
(LSB)  
Value  
(Hex)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x0122  
Channel  
Output 9  
control  
High  
performance  
mode  
SYNC  
enable  
Slip enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
0xFD  
0x0123  
0x0124  
0x0125  
0x0126  
0x0127  
0x0128  
0x0129  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x012A  
Force Mute[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x30  
driver enable  
Slip enable  
0x012B  
0x00  
0xF3  
0x012C Channel  
Output 10  
High  
SYNC  
enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
performance  
control  
mode  
0x012D  
0x012E  
0x012F  
0x0130  
0x0131  
0x0132  
0x0133  
12-Bit Channel Divider[7:0] (LSB)  
0x02  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
12-bit channel divider[11:8] (MSB)  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Dynamic  
Output mux  
selection[1:0]  
0x0134  
Force Mute[1:0]  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x01  
driver enable  
0x0135  
0x00  
0xFD  
0x0136  
Channel  
Output 11  
control  
High  
SYNC  
enable  
Slip enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
performance  
mode  
0x0137  
0x0138  
0x0139  
0x013A  
0x013B  
0x013C  
0x013D  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x013E  
Force Mute[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x30  
driver enable  
Slip enable  
0x013F  
0x0140  
0x00  
0xF3  
Channel  
Output 12  
control  
High  
SYNC  
enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
performance  
mode  
0x0141  
0x0142  
0x0143  
0x0144  
0x0145  
0x0146  
0x0147  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x10  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x0148  
0x0149  
Force Mute[1:0]  
Dynamic  
driver enable  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x01  
0x00  
Rev. B | Page 51 of 72  
HMC7044  
Data Sheet  
Default  
Addr.  
(Hex)  
Register  
Name  
Bit 0  
(LSB)  
Value  
(Hex)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x014A Channel  
Output 13  
High  
performance  
SYNC  
enable  
Slip enable  
Reserved  
Start-Up Mode[1:0]  
Multislip  
enable  
Channel  
enable  
0xFD  
control  
mode  
0x014B  
0x014C  
0x014D  
0x014E  
0x014F  
0x0150  
0x0151  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux  
Selection[1:0]  
0x0152  
0x0153  
Force Mute[1:0]  
Dynamic  
driver enable  
Driver Mode[1:0]  
Reserved  
Reserved  
Driver Impedance[1:0]  
0x30  
0x00  
CONTROL REGISTER MAP BIT DESCRIPTIONS  
Global Control (Register 0x0000 to Register 0x0009)  
Table 26. Global Soft Reset Control  
Address Bits Bit Name  
0x0000 [7:1] Reserved  
Soft reset  
Settings  
Description  
Access  
Reserved.  
RW  
0
Resets all registers, dividers, and FSMs to default values.  
Table 27. Global Request and Mode Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0001  
7
Reseed request  
Requests the centralized resync timer and FSM to reseed any of the  
output dividers that are programmed to pay attention to sync events.  
This signal is rising edge sensitive, and is only acknowledged if the  
resync FSM has completed all events (has finished any previous pulse  
generator and/or sync events, and is in the done state; SYSREF FSM  
State[3:0] = 0010).  
RW  
6
High performance  
distribution path  
High performance distribution path select. The VCO clock distribution  
path has two modes.  
0
1
Power priority.  
Noise priority. Provides the option for better noise floors on the  
divided output signals.  
5
4
High performance  
PLLs/VCO  
High performance PLL/VCO select. The VCO has two modes of  
operation.  
0
1
Power priority.  
Noise priority. Reduces the phase noise around the carrier.  
Force holdover  
Force PLL1 into holdover mode. A holdover request from the GPI or SPI  
is debounced inside the device when transferred to the PLL1 FSM  
clock domain (which is nominally at the VCXO or LCM rate). With the  
debouncer enabled, the delay from force holdover assertion to the  
HOLDOVER state is six clock cycles. If the debouncer is bypassed, the  
delay is two clock cycles. To asynchronously tristate the charge pump,  
the user can disable the up and down signals from the PFD via Bits[4:3]  
(PLL1 PFD up enable, PLL1 PFD down enable) in the PLL1 PFD control  
register (Register 0x001B).  
3
2
Mute output drivers  
Mutes the output drivers (dividers still run in the background).  
Pulse generator request  
Asks for a pulse stream (see the Typical Programming Sequence  
section).  
1
0
Restart dividers/FSMs  
Sleep mode  
Resets all dividers and FSMs. Does not affect configuration registers.  
Forces shutdown. PLL1 and PLL2, output network, and I/O buffers are  
disabled.  
Rev. B | Page 52 of 72  
 
Data Sheet  
HMC7044  
Address Bits Bit Name  
Settings Description  
Access  
0x0002  
[7:3] Reserved  
Reserved.  
RW  
2
PLL2 autotune trigger  
Triggers an autotune if there is an error/issue when the device comes  
out of reset.  
1
Slip request  
Reserved  
Requests a slip or multislip event from all divider channels that are  
sensitive to slip or multislip commands. The dividers are rising edge  
sensitive and take some time to process the request, after which the  
phase synchronization alarm is asserted.  
0
Reserved.  
Table 28. Global Enable Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0003  
[7:6] Reserved  
Reserved  
RW  
5
RF reseeder enable  
Enable RF reseed for SYSREF  
Internal disabled/external  
High  
[4:3] VCO Selection[1:0]  
00  
01  
10  
Low  
2
1
0
7
SYSREF timer enable  
PLL2 enable  
Enable internal SYSREF time reference  
Master analog enable to PLL2  
Master analog enable to PLL1  
Reserved  
PLL1 enable  
0x0004  
Reserved  
RW  
[6:0] Seven Pairs of 14  
Channel Outputs  
Enable[6:0]  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Enable Channel 0 and Channel 1  
Enable Channel 2 and Channel 3  
Enable Channel 4 and Channel 5  
Enable Channel 6 and Channel 7  
Enable Channel 8 and Channel 9  
Enable Channel 10 and Channel 11  
Enable Channel 12 and Channel 13  
Table 29. Global Mode and Enable Control  
Address Bits Bit Name  
Settings Description  
SYNC pin configuration with respect to PLL2.  
Disabled.  
Access  
0x0005  
[7:6] SYNC Pin Mode  
Selection[1:0]  
RW  
00  
01  
SYNC. A rising edge is carried through PLL2. Useful for multichip  
synchronization.  
10  
11  
Pulse generator. Request a pulse generator stream from any channels  
configured for dynamic startup. This behaves in the same way as a GPI  
requested pulse generator.  
Causes SYNC if alarm exists, otherwise causes pulse generator.  
CLKIN1/CLKIN1 input is used for external VCO.  
5
4
CLKIN1/CLKIN1 in  
external VCO input  
mode  
CLKIN0/CLKIN0 in RF  
SYNC input mode  
CLKIN0/CLKIN0 input is used for external RF sync.  
[3:0] PLL1 Reference Path  
Enable[3:0]  
Selects and enables the reference path for PLL1.  
Enable CLKIN0/CLKIN0 input path.  
Enable CLKIN1/CLKIN1 input path.  
Enable CLKIN2/CLKIN2 input path.  
Enable CLKIN3/CLKIN3 input path.  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Rev. B | Page 53 of 72  
HMC7044  
Data Sheet  
Table 30. Global Clear Alarms  
Address Bits Bit Name  
Settings Description  
Access  
0x0006  
[7:1] Reserved  
Clear alarms  
Reserved  
RW  
0
Clear latched alarms  
Table 31. Global Miscellaneous Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0007  
0x0008  
[7:0] Reserved  
Reserved.  
RW  
[7:0] Reserved (Scratchpad)  
Reserved. The user can write/read to this register to confirm I/Os to the RW  
HMC7044. This register does not affect device operation.  
0x0009  
[7:1] Reserved  
Reserved.  
RW  
0
Disable SYNC at lock  
0
1
PLL2 sends a sync event up N2 when lock is achieved.  
This feature is disabled and SYNC is not internally generated on PLL2  
lock.  
PLL1 (Register 0x000A to Register 0x002A)  
CLKINx  
OSCIN  
Table 32. CLKINx/  
and OSCIN/  
Input Buffer Control  
Address  
Bits Bit Name  
Settings Description  
Access  
0x000A, 0x000B, 0x000C, 0x000D, 0x000E  
[7:5] Reserved  
Reserved  
RW  
[4:1] Input Buffer Mode[3:0]  
Input buffer control  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Enable internal 100 Ω termination  
Enable ac coupling input mode  
Enable LVPECL input mode  
Enable high-Z input mode  
Enable input buffer  
0
Buffer enable  
Table 33. PLL1 Reference Priority Control  
Address Bits Bit Name  
Settings  
Description  
Access  
0x0014  
[7:6] Fourth Priority CLKINx/CLKINx Input[1:0]  
[5:4] Third Priority CLKINx/CLKINx Input[1:0]  
[3:2] Second Priority CLKINx/CLKINx Input[1:0]  
[1:0] First Priority CLKINx/CLKINx Input[1:0]  
If third choice clock is not available, use the fourth  
choice clock  
RW  
If second choice clock is not available, use the third  
choice clock  
If the first choice clock is not available, use the  
second choice clock  
This is the first choice clock  
Table 34. PLL1 Loss of Signal (LOS) Control  
Address Bits Bit Name Settings Description  
Reserved.  
Access  
0x0015  
[7:3] Reserved  
RW  
[2:0] LOS Validation  
Timer[2:0]  
LCM cycles of LOS hysteresis. This is the number of LCM cycles to wait before  
exiting LOS state when the reference input becomes valid again.1  
000  
001  
010  
011  
100  
101  
110  
111  
None.  
2 cycles.  
4 cycles.  
8 cycles.  
16 cycles.  
32 cycles.  
64 cycles.  
128 cycles.  
1 The LOS revalidation takes between two and three times this number of cycles. The LOS revalidation ambiguity is dependent on whether another channel is in LOS.  
Rev. B | Page 54 of 72  
Data Sheet  
HMC7044  
Table 35. PLL1 Holdover Exit Control  
Address  
Bits  
[7:4]  
[3:2]  
Bit Name  
Settings  
Description  
Access  
0x0016  
Reserved  
Reserved  
RW  
Holdover Exit Action[1:0]  
Action the PLL1 FSM takes as it exits holdover mode.  
Reset dividers.  
Do nothing.  
00  
01  
10  
11  
Do nothing.  
DAC assist.  
[1:0]  
Holdover Exit Criteria[1:0]  
Criteria the PLL1 FSM uses to exit holdover mode.  
Exit holdover when LOS is gone.  
Exit holdover when phase error = 0.  
Exit holder immediately.  
X01  
01  
11  
1 X means don’t care.  
Table 36. PLL1 Holdover DAC/ADC Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0017  
7
Reserved  
Reserved  
RW  
[6:0] Holdover DAC  
Value[6:0]  
In holdover mode, if ADC tracking disable is set 1, the holdover DAC control  
value is set to this value (regarded as an unsigned integer value); otherwise,  
the holdover average DAC value is summed by this value (regarded as twos  
complement coded signed integer value)  
0x0018  
[7:4] Reserved  
Reserved  
RW  
3
ADC tracking  
disable  
Disable ADC tracking; use DAC hold word  
2
Force DAC to  
holdover in quick  
mode  
Force DAC control value from DAC current value to computed DAC holdover  
value immediately, not gradually  
[1:0] Holdover BW  
Reduction[1:0]  
Reduce tracking BW  
Table 37. PLL1 LOS Mode Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0019  
[7:2] Reserved  
Reserved  
RW  
1
LOS bypass input  
prescaler  
Bypass LCM R divider cascade; the R1 input is the selected  
CLKINx/CLKINx input  
0
LOS uses VCXO prescaler  
For very low PFD rates; cascades VCXO LCM divider after N1  
Table 38. PLL1 Charge Pump Control  
Address  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Access  
RW  
0x001A  
Reserved  
Reserved  
PLL1 CP Current[3:0]  
PLL1 charge pump current  
Rev. B | Page 55 of 72  
HMC7044  
Data Sheet  
Table 39. PLL1 PFD Control  
Address Bits Bit Name  
Settings Description  
Access  
0x001B  
[7:5] Reserved  
Reserved  
RW  
4
3
2
PLL1 PFD up enable  
Enable PLL1 PFD up  
Enable PLL1 PFD down  
PLL1 PFD down enable  
PLL1 PFD up force  
Force PLL1 charge pump up; do not assert simultaneously with PLL1  
PFD down force  
1
0
PLL1 PFD down force  
PLL1 PFD polarity  
Force PLL1 charge pump down; do not assert simultaneously with PLL1  
PFD up force  
Select PFD polarity  
Positive  
Negative  
0
1
CLKINx  
OSCIN  
Table 40. CLKINx/  
and OSCIN/  
Input Prescaler Control  
Settings  
Address  
0x001C  
0x001D  
0x001E  
0x001F  
0x0020  
Bits  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Bit Name  
Description  
Access  
RW  
CLKIN0/CLKIN0 Input Prescaler[7:0]  
CLKIN1/CLKIN1 Input Prescaler[7:0]  
CLKIN2/CLKIN2 Input Prescaler[7:0]  
CLKIN3/CLKIN3 Input Prescaler[7:0]  
OSCIN/OSCIN Input Prescaler[7:0]  
CLKIN0/CLKIN0 Prescaler divider setpoint  
CLKIN1/CLKIN1 Prescaler divider setpoint  
CLKIN2/CLKIN2 Prescaler divider setpoint  
CLKIN3/CLKIN3 Prescaler divider setpoint  
OSCIN/OSCIN Prescaler divider setpoint  
RW  
RW  
RW  
RW  
Table 41. PLL1 Reference Divider Control (R1)  
Address  
0x0021  
0x0022  
Bits  
[7:0]  
[7:0]  
Bit Name  
Settings  
Description  
Access  
RW  
RW  
16-Bit R1 Divider[7:0] (LSB)  
16-Bit R1 Divider[15:8] (MSB)  
16-bit R1 divider setpoint LSB  
16-bit R1 divider setpoint MSB  
Table 42. PLL1 Feedback Divider Control (N1)  
Address  
0x0026  
0x0027  
Bits  
[7:0]  
[7:0]  
Bit Name  
Settings  
Description  
Access  
RW  
RW  
16-Bit N1 Divider[7:0] (LSB)  
16-Bit N1 Divider[15:8] (MSB)  
16-bit N1 divider setpoint LSB  
16-bit N1 divider setpoint MSB  
Table 43. PLL1 Lock Detect Control  
Address  
Bits  
Bit Name  
Settings  
Description  
Access  
RW  
0x0028  
[7:6] Reserved  
Reserved  
5
PLL1 lock detect uses slip  
Use the slip indicator instead of ~2 ns timer for lock detect  
[4:0] PLL1 Lock Detect Timer[4:0]  
PLL1 lock detect center depth (LCMs); increments of  
2PLL1 Lock Detect Timer[4:0] cycles  
00000  
00001  
00010  
1 cycle  
2 cycles  
4 cycles  
11110  
11111  
1,073,741,824 cycles  
2,147,483,648 cycles  
Rev. B | Page 56 of 72  
Data Sheet  
HMC7044  
Table 44. PLL1 Reference Switching Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0029  
[7:6] Reserved  
Reserved  
RW  
5
Bypass debouncer  
Bypass the debouncer in manual mode and GPI clock/holdover  
selection  
[4:3] Manual Mode Reference  
Switching[1:0]  
If automode REF switching = 0, manual selection of  
CLKINx/CLKINx input  
2
Holdover uses DAC  
In holdover, selects whether PLL1 uses the DAC or tristates the  
charge pump  
0
1
Tristate the charge pump  
Use holdover DAC  
1
0
Autorevertive reference  
switching  
Revert to PLL1 best clock option if it becomes available again  
Automode reference switching  
Clock switching is automatic based on LOS/PLL1 reference  
priority control register (Register 0x0014)  
Table 45. PLL1 Holdoff Time Control  
Address Bits Bit Name  
Settings Description  
Access  
0x002A  
[7:0] Holdoff Timer[7:0]  
PLL1 waits in holdover for 2Holdoff Timer[7:0] LCM cycles to give the abandoned  
reference a chance to recover before switching to the next priority clock. If  
Holdoff Timer[7:0] equals to 0, holdoff functionality is disabled and switches  
directly to the next priority clock.  
RW  
PLL2 (Register 0x0031 to Register 0x003C)  
Table 46. PLL2 Miscellaneous Control  
Address  
0x0031  
0x003C  
Bits  
[7:0]  
[7:0]  
Bit Name  
Reserved  
Reserved  
Settings  
Description  
Reserved  
Access  
RW  
Reserved  
RW  
Table 47. PLL2 Frequency Doubler Control  
Address  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Reserved  
Access  
RW  
0x0032  
Reserved  
Bypass frequency doubler  
Bypass PLL2 frequency doubler  
Enable frequency doubler before R2 divider  
Bypass frequency doubler  
0
1
Table 48. PLL2 Reference Divider Control (R2)  
Address Bits Bit Name Settings Description  
Access  
0x0033  
[7:0] 12-Bit R2 Divider[7:0]  
12-bit R2 divider setpoint LSB. Divide by 1 to divide by 4095. 00000000,  
00000001 = divide by 1.  
RW  
(LSB)  
0x0034  
[7:4] Reserved  
Reserved.  
RW  
[3:0] 12-Bit R2 Divider[11:8]  
(MSB)  
12-Bits R2 divider setpoint MSB.  
Table 49. PLL2 Feedback Divider Control (N2)  
Address Bits Bit Name  
Settings Description  
Access  
RW  
0x0035  
0x0036  
[7:0] 16-Bit N2 Divider[7:0] (LSB)  
[7:0] 16-Bit N2 Divider[15:8] (MSB)  
16-bit N2 divider setpoint LSB.  
16-bit N2 divider setpoint MSB.  
RW  
Rev. B | Page 57 of 72  
HMC7044  
Data Sheet  
Table 50. PLL2 Charge Pump Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0037  
[7:4] Reserved  
Reserved.  
RW  
[3:0] PLL2 CP  
Current[3:0]  
These 4 bits set the magnitude of PLL2 charge pump current. Granularity is  
~160 µA with full magnitude of ~2560 µA.  
Table 51. PLL2 PFD Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0038  
[7:5] Reserved  
Reserved  
RW  
4
3
PLL2 PFD up enable  
Enable PLL2 PFD up  
Enable PLL2 PFD down  
PLL2 PFD down  
enable  
2
1
0
PLL2 PFD up force  
Force PLL2 charge pump up; do not assert simultaneously with PLL2 PFD  
down force  
PLL2 PFD down  
force  
Force PLL2 charge pump down; do not assert simultaneously with PLL2  
PFD up force  
PLL2 PFD polarity  
Select PFD polarity  
Positive  
0
1
Negative  
Table 52. OSCOUTx/  
Path Control  
OSCOUTx  
Address Bits Bit Name  
0x0039 [7:3] Reserved  
Settings Description  
Access  
Reserved  
RW  
[2:1] OSCOUTx/OSCOUTx  
Divider[1:0]  
Oscillator output divider ratio  
Divided by 1  
Divided by 2  
Divided by 4  
Divided by 8  
00  
01  
10  
11  
0
OSCOUTx/OSCOUTx  
path enable  
Enable the oscillator output path (divider and the internal path except  
driver)  
Table 53. OSCOUTx/  
Driver Control  
OSCOUTx  
Address  
Bits Bit Name  
Settings1 Description  
Access  
0x003A,  
0x003B  
[7:6] Reserved  
Reserved  
RW  
[5:4] OSCOUTx/OSCOUTx Driver Mode[1:0]  
Oscillator output driver mode selection  
CML mode  
00  
01  
10  
11  
LVPECL mode  
LVDS mode  
CMOS mode  
[3]  
Reserved  
Reserved  
[2:1] OSCOUTx/OSCOUTx Driver  
Impedance[1:0]  
Oscillator output driver impedance selection for  
CML mode  
00  
01  
10  
11  
Internal resistor disable  
Internal 100 Ω resistor enable per output pin  
Reserved  
Internal 50 Ω resistor enable per output pin  
Enable oscillator driver  
0
OSCOUTx/OSCOUTx driver enable  
1 X means don’t care.  
Rev. B | Page 58 of 72  
Data Sheet  
HMC7044  
GPIO/SDATA Control (Register 0x0046 to Register 0x0054)  
Table 54. GPIx Control  
Address  
Bits Bit Name  
Settings Description  
Access  
0x0046, 0x0047,  
0x0048, 0x0049  
[7:5] Reserved  
Reserved.  
RW  
[4:1] GPIx Selection[3:0]  
Select the GPIx functionality.  
Reserved.  
Force PLL1 to holdover.  
Select PLL1 reference manually, Bit 1.  
Select PLL1 reference manually, Bit 0.  
Put the chip into sleep mode.  
Issue a mute.  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Select the internal VCO type manually.  
Select high performance mode for PLL2 and the internal VCO.  
Issue a pulse generator request.  
Issue a reseed request.  
Issue a restart request.  
Force the chip into fanout mode.  
Reserved.  
Issue a slip request  
Reserved.  
Reserved.  
0
GPIx enable  
GPIx function enable. Before changing the function of the pin,  
disable it first, and then reenable it after the function change.1  
1 Note that it is possible to have a GPIOx pin configured as both an output and an input.  
Table 55. GPOx Control  
Address  
Bits Bit Name  
Settings Description  
Select the GPOx functionality  
Alarm signal  
Access  
0x0050, 0x0051, 0x0052, 0x0053 [7:2] GPOx Selection[5:0]  
RW  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
SDATA from SPI communication  
CLKIN3/CLKIN3 LOS for CLKIN3/CLKIN3 input  
CLKIN2/CLKIN2 LOS for CLKIN2/CLKIN2input  
CLKIN1/CLKIN1 LOS for CLKIN1/CLKIN1 input  
CLKIN0/CLKIN0 LOS for CLKIN0/CLKIN0 input  
PLL1 holdover enabled signal from PLL1  
Lock detect signal from PLL1  
Acquiring lock signal from PLL1  
PLL1 near lock acquisition status signal from PLL1  
PLL2 lock detect signal from PLL2  
SYSREF sync status has not synchronized since reset  
Clock outputs phase status  
PLL1 and PLL2 lock detect is locked  
Sync request status signal  
PLL1 active CLKIN0/CLKIN0  
PLL1 active CLKIN1/CLKIN1  
PLL1 holdover ADC input range status  
PLL1 holdover ADC input status  
PLL1 VCXO status  
PLL1 active CLKINx/CLKINx status  
PLL1 FSM state, Bit 0  
PLL1 FSM state, Bit 1  
PLL1 FSM state, Bit 2  
Rev. B | Page 59 of 72  
HMC7044  
Data Sheet  
Address  
Bits Bit Name  
Settings Description  
PLL1 holdover exit phase, Bit 0  
Access  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
PLL1 holdover exit phase, Bit 1  
Channel outputs FSM busy  
SYSREF FSM state, Bit 0  
SYSREF FSM state, Bit 1  
SYSREF FSM state, Bit 2  
SYSREF FSM state, Bit 3  
Force Logic 1 to GPO  
Force Logic 0 to GPO  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PLL1 holdover DAC averaged value, Bit 0  
PLL1 holdover DAC averaged value, Bit 1  
PLL1 holdover DAC averaged value, Bit 2  
PLL1 holdover DAC averaged value, Bit 3  
PLL1 holdover DAC current value, Bit 0  
PLL1 holdover DAC current value, Bit 1  
PLL1 holdover DAC current value, Bit 2  
PLL1 holdover DAC current value, Bit 3  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Holdover comparator status  
Pulse generator request status signal  
Reserved  
1
0
GPOx mode  
GPOx enable  
Selects the mode of GPOx driver  
Open-drain mode  
CMOS mode  
0
1
GPOx driver enable  
Table 56. SDATA Control  
Address  
Bits  
[7:2]  
1
Bit Name  
Reserved  
Settings  
Description  
Access  
0x0054  
Reserved  
RW  
SDATA mode  
Selects the mode of SDATA driver  
Open-drain mode  
CMOS mode  
0
1
0
SDATA enable  
SDATA driver enable  
Rev. B | Page 60 of 72  
Data Sheet  
HMC7044  
SYSREF/SYNC Control (Register 0x005A to Register 0x005E)  
Table 57. Pulse Generator Control  
Address Bits Bit Name  
Settings Description  
Access  
0x005A  
[7:3] Reserved  
Reserved.  
RW  
[2:0] Pulse Generator  
Mode  
SYSREF output enable with pulse generator.  
000  
Level sensitive. When the GPIx is configured to issue a pulse generator  
Selection[2:0]  
request (GPIx Selection[3:0] = 1000), or a pulse generator request is issued  
through the SPI or as a SYNC pin-based pulse generator, run the pulse  
generator. Otherwise, stop the pulse generator.  
001  
010  
011  
100  
101  
110  
111  
1 pulse.  
2 pulses.  
4 pulses.  
8 pulses.  
16 pulses.  
16 pulses.  
Continuous mode (50% duty cycle).  
Table 58. SYNC Control  
Address Bits Bit Name  
Settings Description  
Access  
0x005B  
[7:3] Reserved  
Reserved  
RW  
2
SYNC retime  
0
1
Bypass the retime (if using SYNC path with on-chip VCO)  
Retime the external SYNC from Reference 0  
1
0
SYNC through PLL2  
SYNC polarity  
Allow a reseed event to be through PLL2  
SYNC polarity (must be 0 if not using CLKIN0/CLKIN0 as the input)  
0
1
Positive  
Negative  
Table 59. SYSREF Timer Control  
Address Bits Bit Name  
Settings Description  
12-bit SYSREF timer setpoint LSB. This sets the internal beat frequency of the  
Access  
0x005C  
[7:0] SYSREF  
Timer[7:0]  
RW  
master timer, which controls synchronization and pulse generator events. Set the  
12-bit timer to a submultiple of the lowest output SYSREF frequency, and  
program it to be no faster than 4 MHz.  
(LSB)  
0x005D  
[7:4] Reserved  
Reserved.  
RW  
[3:0] SYSREF  
Timer[11:8]  
(MSB)  
12-bit SYSREF timer setpoint MSB.  
Table 60. SYSREF Miscellaneous Control  
Address  
Bits  
Bit Name  
Settings  
Description  
Access  
0x005E  
[7:0]  
Reserved  
Reserved  
RW  
Clock Distribution Network (Register 0x0064 to Register 0x0065)  
Table 61. External VCO Control  
Address  
Bits  
[7:2]  
1
Bit Name  
Settings  
Description  
Access  
0x0064  
Reserved  
Reserved  
RW  
Divide by 2 on external VCO enable  
Low frequency external VCO path  
Use divide by 2 on external VCO path  
Changes bias to Class A for low frequency VCO  
0
Rev. B | Page 61 of 72  
HMC7044  
Data Sheet  
Table 62. Analog Delay Common Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0065  
[7:1] Reserved  
Analog delay low  
power mode  
Reserved.  
RW  
0
Analog delay is in low power mode, which can save power for low settings of  
analog delay, but is not glitchless between setpoints.  
Alarm Masks Registers (Register 0x0070 to Register 0x0071)  
Table 63. PLL1 Alarm Mask Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0070  
7
6
PLL1 near lock mask  
If set, allow the PLL1 near lock signal to generate alarm signal  
RW  
PLL1 lock acquisition mask  
If set, allow the PLL1 lock acquisition signal to generate alarm  
signal  
5
4
PLL1 lock detect mask  
If set, allow the PLL1 lock detect signal to generate alarm  
signal  
PLL1 holdover status mask  
If set, allow the PLL1 holdover status signal to generate alarm  
signal  
[3:0] PLL1 CLKINx/CLKINx Status  
Mask[3:0]  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
If set, allow CLKIN0/CLKIN0 LOS to generate alarm signal  
If set, allow CLKIN1/CLKIN1 LOS to generate alarm signal  
If set, allow CLKIN2/CLKIN2 LOS to generate alarm signal  
If set, allow CLKIN3/CLKIN3 LOS to generate alarm signal  
Table 64. Alarm Mask Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0071  
[7:5] Reserved  
Reserved  
RW  
4
3
Sync request mask  
If set, allow the sync request signals to generate alarm signal  
PLL1 and PLL2 lock detect mask  
If set, allow the PLL1 and PLL2 lock detect signals to generate  
alarm signal  
2
1
0
Clock outputs phases status  
mask  
If set, allow the clock outputs phases status signal to generate  
alarm signal  
SYSREF sync status mask  
If set, allow the SYSREF sync status signal to generate alarm  
signal  
PLL2 lock detect mask  
If set, allow the PLL2 lock detect signal to generate alarm  
signal  
Product ID Registers (Register 0x0078 to Register 0x007A)  
Table 65. Product ID  
Address  
0x0078  
0x0079  
0x007A  
Bits  
[7:0]  
[7:0]  
[7:0]  
Bit Name  
Settings Description  
24-bit product ID value low  
Access  
Product ID Value[7:0] (LSB)  
Product ID Value[15:8] (Mid)  
Product ID Value[23:16] (MSB)  
R
R
R
24-bit product ID value high  
24-bit product ID value very high  
Alarm Readback Status Registers (Register 0x007B to Register 0x007F)  
Table 66. Readback Register  
Address  
Bits  
[7:1]  
0
Bit Name  
Reserved  
Settings  
Description  
Access  
0x007B  
Reserved.  
R
Alarm signal  
Readback alarm status from SPI.  
Rev. B | Page 62 of 72  
Data Sheet  
HMC7044  
Table 67. PLL1 Alarm Readback  
Address Bits Bit Name  
Settings Description  
PLL1 near locked. Declare near locked when the counter reaches 1/16 of  
the programmable limit.  
Access  
0x007C  
7
PLL1 near lock  
R
6
5
4
PLL1 lock acquisition  
PLL1 lock detect  
PLL1 acquiring lock.  
PLL1 locked.  
PLL1 holdover status  
PLL1 in holdover.  
CLKIN0/CLKIN0 LOS.  
CLKIN1/CLKIN1 LOS.  
CLKIN2/CLKIN2 LOS.  
CLKIN3/CLKIN3 LOS.  
[3:0] CLKINx/CLKINx  
LOS[3:0]  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Table 68. Alarm Readback  
Address Bits Bit Name  
Settings Description  
Access  
0x007D  
[7:5] Reserved  
Reserved.  
R
4
3
Sync request status  
PLL2 locked (or disabled), but unsynchronized.  
PLL1 and PLL2 lock detect status.  
PLL1 and PLL2 lock  
detect  
0
1
Either PLL1 or PLL2 is not locked or both PLL1 and PLL2 are not locked.  
PLL1 and PLL2 are locked.  
2
1
Clock outputs phases  
status  
SYSREF alarm.  
0
1
SYSREF of the HMC7044 is not valid; that is, its phase output is not stable.  
SYSREF of the HMC7044 is valid and locked; that is, its phase output is  
stable.  
SYSREF sync status  
PLL2 lock detect  
SYSREF SYNC status alarm.  
0
1
1
The HMC7044 has been synchronized with an external sync pulse or a  
sync request from the SPI.  
The HMC7044 never synchronized with an external sync pulse or a sync  
request from the SPI.  
0
PLL2 near locked. Declare near locked when counter reaches 1/16 of the  
programmable limit.  
Table 69. Latched Alarm Readback  
Address Bits Bit Name  
Settings Description  
Access  
0x007E  
7
6
5
4
Reserved  
Reserved.  
R
PLL2 lock acquisition latched  
PLL1 lock acquisition latched  
PLL1 holdover latched  
Readback record of PLL2 lock acquisition since the last clear event.  
Readback record of PLL1 lock acquisition since the last clear event.  
Readback record of PLL1 holdover since the last clear event.  
[3:0] CLKINx/CLKINx LOS  
Latched[3:0]  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Readback record of CLKIN0/CLKIN0 LOS since the last clear event.  
Readback record of CLKIN1/CLKIN1 LOS since the last clear event.  
Readback record of CLKIN2/CLKIN2 LOS since the last clear event.  
Readback record of CLKIN3/CLKIN3 LOS since the last clear event.  
Table 70. Alarm Readback Miscellaneous  
Address Bits Bit Name  
Settings Description  
Access  
0x007F  
[7:0] Reserved  
Reserved.  
R
Rev. B | Page 63 of 72  
HMC7044  
Data Sheet  
PLL1 Status Registers (Register 0x0082 to Register 0x0087)  
Table 71. PLL1 Status Registers  
Address Bits Bit Name  
Settings Description  
Reserved  
Access  
0x0082  
7
Reserved  
R
[6:5] PLL1 Best Clock[1:0]  
Indicates which clock the LOS/priority encoder prefers if automode  
reference switching is used  
[4:3] PLL1 Active CLKINx/  
CLKINx[1:0]  
Indicates which CLKINx/CLKINx input is currently in use  
[2:0] PLL1 FSM State[2:0]  
Sets the state PLL1 is in  
Reset  
000  
001  
010  
011  
100  
101  
Acquisition  
Locked  
Invalid  
Holdover  
DAC assisted holdover exit  
Reserved  
0x0083  
0x0084  
0x0085  
7
Reserved  
R
R
R
[6:0] Holdover DAC Averaged  
Value[6:0]  
Average DAC code  
7
Holdover comparator value  
Holdover comparator output value (DAC output vs. PLL1 VTUNE  
Current DAC code  
)
[6:0] Holdover DAC Current  
Value[6:0]  
[7:4] Reserved  
Reserved  
3
2
1
PLL1 active CLKINx/CLKINx  
LOS  
LOS of the currently active reference  
PLL1 VCXO status  
Indicates whether any of the enabled references appears to run  
faster than the VCXO  
PLL1 holdover ADC status  
0
1
0
1
ADC is acquiring  
PLL1 VTUNE is moving quickly  
PLL1 VTUNE is in range  
PLL1 VTUNE is out of range  
Reserved  
0
PLL1 holdover ADC input  
range status  
0x0086  
0x0087  
[7:5] Reserved  
R
R
[4:3] PLL1 Holdover Exit  
Phase[1:0]  
The phase of the PLL1 holdover exit  
[2:0] Reserved  
[7:0] Reserved  
Reserved  
Reserved  
PLL2 Status Registers (Register 0x008C to Register 0x0090)  
Table 72. PLL2 Status Registers  
Address Bits Bit Name  
Settings Description  
Access  
0x008C  
0x008D  
0x008E  
[7:0] PLL2 autotune value  
After autotune, this word is populated with the selected capacitor  
bank of the VCO  
R
[7:0] PLL2 Autotune Signed  
Error[7:0] (LSB)  
14-bit PLL2 VTUNE error count, LSB  
R
R
7
PLL2 autotune status  
1
0
Autotune busy  
Done/not working  
Sign of PLL2 autotune error  
Positive  
6
PLL2 autotune error sign  
0
1
Negative  
[5:0] PLL2 Autotune Signed  
Error[13:8] (MSB)  
14-bit PLL2 VTUNE error count, MSB  
Rev. B | Page 64 of 72  
Data Sheet  
HMC7044  
Address Bits Bit Name  
Settings Description  
Autotune FSM state  
Idle  
Access  
0x008F  
[7:4] PLL2 Autotune FSM  
R
State[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
Startup  
Startup  
Reset  
Reset  
Reset  
Measure  
Wait  
Wait  
Update loop to state 18 times  
Round  
Finish  
[3:0] PLL2 SYNC FSM State[3:0]  
PLL2 sync carry FSM state  
Idle  
0000  
0100  
0110  
0111  
1110  
1100  
Power up Section A of the FSM  
Power up Section B of the FSM  
Sending to N2  
Power down Section A of the FSM  
Power down Section B of the FSM  
Reserved  
0x0090  
[7:0] Reserved  
R
SYSREF Status Register (Register 0x0091)  
Table 73. SYSREF Status Register  
Address Bits Bit Name  
0x0091 [7:5] Reserved  
Channel outputs  
FSM busy  
Settings Description  
Access  
Reserved.  
R
4
One of clock outputs FSM requested clock, and it is running.  
[3:0] SYSREF FSM  
State[3:0]  
Indicates the current step of the SYSREF reseed process. Note that the three  
different progressions are caused by different trigger events (reseed, pulse  
generator, reserved).  
0000  
0010  
0100  
0101  
0110  
1010  
1011  
1100  
1101  
1110  
1111  
Reset.  
Done.  
Get ready.  
Get ready.  
Get ready.  
Running (pulse generator).  
Start.  
Power up.  
Power up.  
Power up.  
Clear reset.  
Rev. B | Page 65 of 72  
 
HMC7044  
Data Sheet  
Other Controls (Register 0x0096 to Register 0x00B8)  
For optimum performance of the chip, Register 0x0096 to Register 0x00B8 must be programmed to a different value than their default  
value.  
Table 74. Reserved Registers  
Address  
0x0096  
0x0097  
0x0098  
0x0099  
0x009A  
0x009B  
0x009B  
0x009C  
0x009D  
0x009E  
0x009F  
0x00A0  
0x00A1  
0x00A2  
0x00A3  
0x00A4  
0x00A5  
0x00A6  
0x00A7  
0x00A8  
0x00A9  
0x00AB  
0x00AC  
0x00AD  
0x00AE  
0x00AF  
0x00B0  
0x00B1  
0x00B2  
0x00B3  
0x00B4  
0x00B5  
0x00B6  
0x00B7  
0x00B8  
Bits  
Bit Name  
Settings  
Description  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Clock output driver low power setting (set to 0x4D instead of default value)  
Clock output driver high power setting (set to 0xDF instead of default value)  
Reserved  
Reserved  
Reserved  
Reserved  
PLL1 more delay (PFD1, lock detect) (set to 0x06 instead of default value)  
Reserved  
Reserved  
PLL1 holdover DAC gm setting (set to 0x06 instead of default value)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VTUNE preset setting (set to 0x04 instead of default value)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Rev. B | Page 66 of 72  
 
Data Sheet  
HMC7044  
Clock Distribution (Register 0x00C8 to Register 0x0153)  
The bit descriptions in Table 75 apply to all 14 channels.  
Table 75. Channel 0 to Channel 13 Control  
Address  
Bits Bit Name  
Settings1 Description  
Access  
0x00C8, 0x00D2, 0x00DC,  
0x00E6, 0x00F0, 0x00FA,  
0x0104, 0x010E, 0x0118,  
0x0122, 0x012C, 0x0136,  
0x0140, 0x014A  
7
High performance  
mode  
High performance mode. Adjusts the divider and buffer RW  
bias to improve swing/phase noise at the expense of  
power.  
6
5
SYNC enable  
Slip enable  
Susceptible to SYNC event. The channel can process a  
SYNC event to reset its phase.  
Susceptible to slip event. The channel can process a slip  
request from SPI or GPI. Note that if slip enable is true  
but multislip is off, a channel slips by 1 VCO cycle on an  
explicit slip request broadcast from the SPI/GPI.  
4
Reserved  
Reserved.  
[3:2] Start-Up Mode[1:0]  
Configures the channel to normal mode with  
asynchronous startup, or to a pulse generator mode  
with dynamic start-up. Note that this must be set to  
asynchronous mode if the channel is unused.  
00  
01  
10  
11  
Asynchronous.  
Reserved.  
Reserved.  
Dynamic.  
1
0
Multislip enable  
Channel enable  
Allow multislip operation (default = 0 for SYSREF, 1 for  
DCLK).  
Do not engage automatic multislip on channel startup.  
Multislip events after SYNC or pulse generator request,  
if slip enable, Bit = 1.  
0
1
Channel enable. If this bit is 0, channel is disabled.  
0x00C9, 0x00D3, 0x00DD,  
0x00E7, 0x00F1, 0x00FB,  
0x0105, 0x010F, 0x0119,  
0x0123, 0x012D, 0x0137,  
0x0141, 0x014B  
[7:0] 12-Bit Channel  
Divider[7:0] (LSB)  
12-bit channel divider setpoint LSB. The divider  
supports even divide ratios from 2 to 4094. The  
supported odd divide ratios are 1, 3, and 5. All even and  
odd divide ratios have 50.0% duty cycle.  
RW  
RW  
RW  
RW  
0x00CA, 0x00D4, 0x00DE,  
0x00E8, 0x00F2, 0x00FC,  
0x0106, 0x0110, 0x011A,  
0x0124, 0x012E, 0x0138,  
0x0142, 0x014C  
[7:4] Reserved  
Reserved.  
[3:0] 12-Bit Channel  
Divider[11:8] (MSB)  
12-bit channel divider setpoint MSB.  
0x00CB, 0x00D5, 0x00DF,  
0x00E9, 0x00F3, 0x00FD,  
0x0107, 0x0111, 0x011B,  
0x0125, 0x012F, 0x0139,  
0x0143, 0x014D  
[7:5] Reserved  
Reserved.  
[4:0] Fine Analog  
Delay[4:0]  
24 fine delay steps. Step size = 25 ps. Values greater  
than 23 have no effect on analog delay.  
0x00CC, 0x00D6, 0x00E0,  
0x00EA, 0x00F4, 0x00FE,  
0x0108, 0x0112, 0x011C,  
0x0126, 0x0130, 0x013A,  
0x0144, 0x014E  
[7:5] Reserved  
Reserved.  
[4:0] Coarse Digital  
Delay[4:0]  
17 coarse delay steps. Step size = ½ VCO cycle. This flip  
flop (FF)-based digital delay does not increase noise  
level at the expense of power. Values greater than 17  
have no effect on coarse delay.  
0x00CD, 0x00D7, 0x00E1,  
0x00EB, 0x00F5, 0x00FF,  
0x0109, 0x0113, 0x011D,  
0x0127, 0x0131, 0x013B,  
0x0145, 0x014F  
[7:0] 12-Bit Multislip  
Digital Delay[7:0]  
(LSB)  
12-bit multislip digital delay amount LSB.  
RW  
Step size = (delay amount: MSB + LSB) × VCO cycles. If  
multislip enable bit = 1, any slip events (caused by GPI,  
SPI, SYNC, or pulse generator events) repeat the  
number of times set by 12-Bit Multislip Digital  
Delay[11:0] to adjust the phase by step size.  
Rev. B | Page 67 of 72  
 
 
HMC7044  
Data Sheet  
Address  
Bits Bit Name  
Settings1 Description  
Access  
0x00CE, 0x00D8, 0x00E2,  
0x00EC, 0x00F6, 0x0100,  
0x010A, 0x0114, 0x011E,  
0x0128, 0x0132, 0x013C,  
0x0146, 0x0150  
[7:4] Reserved  
Reserved.  
RW  
[3:0] 12-Bit Multislip  
Digital Delay[11:8]  
(MSB)  
12-bit multislip digital delay amount MSB.  
0x00CF, 0x00D9, 0x00E3,  
0x00ED, 0x00F7, 0x0101,  
0x010B, 0x0115, 0x011F,  
0x0129, 0x0133, 0x013D,  
0x0147, 0x0151  
[7:2] Reserved  
Reserved.  
RW  
[1:0] Output Mux  
Selection[1:0]  
Channel output mux selection.  
Channel divider output.  
Analog delay output.  
Other channel of the clock group pair.  
Input VCO clock (fundamental). Fundamental can also  
be generated with 12-Bit Channel Divider[11:0] = 1.  
00  
01  
10  
11  
0x00D0, 0x00DA, 0x00E4,  
0x00EE, 0x00F8, 0x0102,  
0x010C, 0x0116, 0x0120,  
0x012A, 0x0134, 0x013E,  
0x0148, 0x0152  
[7:6] Force Mute[1:0]  
Idle at Logic 0 selection (pulse generator mode only).  
RW  
Force to Logic 0 or VCM  
.
00  
01  
10  
11  
Normal mode (selection for DCLK).  
Reserved.  
Force to Logic 0.  
Reserved.  
5
Dynamic driver  
enable  
Dynamic driver enable (pulse generator mode only).  
Driver is enabled/disabled with channel enable bit  
Driver is dynamically disabled with pulse generator  
events.  
0
1
[4:3] Driver Mode[1:0]  
Output driver mode selection.  
00  
01  
10  
11  
CML mode.  
LVPECL mode.  
LVDS mode.  
CMOS mode.  
[2]  
[1:0] Driver  
Impedance[1:0]  
Reserved  
Reserved.  
Output driver impedance selection for CML mode.  
Internal resistor disable.  
Internal 100 Ω resistor enable per output pin.  
Reserved.  
Internal 50 Ω resistor enable per output pin.  
Reserved.  
00  
01  
10  
11  
0x00D1, 0x00DB, 0x00E5,  
0x00EF, 0x00F9, 0x0103,  
0x010D, 0x0117, 0x0121,  
0x012B, 0x0135, 0x013F,  
0x0149, 0x0153  
[7:0] Reserved  
RW  
1 X means don’t care.  
Rev. B | Page 68 of 72  
Data Sheet  
HMC7044  
EVALUATION PCB SCHEMATIC  
60 TO 150  
SECONDS  
RAMP UP  
3°C/SECOND MAX  
EVALUATION PCB  
260 – 5°C/260 + 0°C  
For the circuit board used in the application, use RF circuit  
design techniques. Ensure that signal lines have 50 Ω  
impedance. Connect the package ground leads and exposed pad  
directly to the ground plane (see Figure 52). Use a sufficient  
number of via holes to connect the top and bottom ground  
planes. The evaluation circuit board is available from Analog  
Devices upon request.  
217°C  
150°C TO 200°C  
RAMP DOWN  
6°C/SECOND MAX  
TIME (Second)  
60 TO 180  
SECONDS  
20 TO 40  
SECONDS  
480 SECONDS MAX  
The typical Pb-free reflow solder profile is shown in Figure 51.  
Figure 51. Pb-Free Reflow Solder Profile  
Figure 52. Evaluation PCB Layout, Top Side  
Rev. B | Page 69 of 72  
 
 
 
 
HMC7044  
Data Sheet  
Figure 53. Evaluation PCB Layout, Bottom Side  
Rev. B | Page 70 of 72  
Data Sheet  
HMC7044  
OUTLINE DIMENSIONS  
10.10  
10.00 SQ  
9.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
52  
51  
68  
1
0.50  
BSC  
EXPOSED  
PAD  
6.40  
6.30 SQ  
6.20  
35  
34  
17  
18  
0.60  
0.50  
0.40  
1.20 BSC  
BOTTOM VIEW  
8.00 REF  
TOP VIEW  
0.90  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-2  
Figure 54. 68-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
10 mm × 10 mm Body, Very Thin Quad  
(HCP-68-1)  
Dimensions shown in millimeters  
NOTE 1  
4.10  
4.00  
3.90  
NOTE 6  
2.10  
2.00  
1.90  
16.10  
16.00  
15.90  
1.85  
1.75  
1.65  
0.35  
0.30  
0.25  
A
Ø 1.5 ~ 1.6  
11.60  
11.50  
11.40  
NOTE 6  
24.30  
24.00  
23.70  
10.30  
10.40  
R0.3  
MAX  
10.20  
NOTE 4  
1.20  
1.10  
1.00  
TOP VIEW  
A
Ø 1.5 MIN  
10.40  
10.30  
DETAIL A  
NOTE 5  
DIRECTION OF FEED  
10.20  
SECTION A-A  
NOTE 4  
0.25  
NOTES:  
1. 10 SPROCKET HOLE PITCH CUMUL ATIVE TOLERANCE ± 0.20  
2. CAMBER IN COMPLIANCE WITH EIA 481  
3. MATERIAL: CONDUCTIVE BLACK PO LYSTYRENE  
4. MEASURED ON A PLANE 0.30 mm ABOVE THE BOTTOM OF  
THE POCKET  
R 0.25  
DETAIL A  
5. MEASURED FROM A PLANE ON THE INSIDE BOTTOM OF  
THE POCKET TO THE TOP SURFACE OF THE CARRIER  
6. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED  
AS TRUE POSITION OF POCKET, NOT POCKET HOLE  
Figure 55. LFCSP Tape and Reel Outline Dimensions  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Lead Finish  
MSL Rating  
Package Description Package Option Branding2  
7044  
XXXX  
7044  
HMC7044LP10BE  
–40°C to +85°C 100% matte tin MSL-3  
68-Lead LFCSP_VQ  
68-Lead LFCSP_VQ  
Evaluation Kit  
HCP-68-1  
HMC7044LP10BETR –40°C to +85°C  
EK1HMC7044LP10B –40°C to +85°C  
100% matte tin MSL-3  
HCP-68-1  
XXXX  
1 E = RoHS Compliant Part.  
2 Four-digit lot number represented by XXXX.  
Rev. B | Page 71 of 72  
 
 
HMC7044  
NOTES  
Data Sheet  
©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13033-0-11/16(B)  
Rev. B | Page 72 of 72  

相关型号:

HMC7044LP10BETR

High Performance, 3.2 GHz, 14-Output Jitter Attenuator with JESD204B / JESD204C
ADI

HMC704LP4E

8 GHz fractionaL-N PLL
HITTITE

HMC7056

Up Converter
HITTITE

HMC7056

Ka-Band Block Upconverter with HPA
ADI

HMC705LP4

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)
HITTITE

HMC705LP4E

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)
HITTITE

HMC705LP4ERTR

Prescaler/Multivibrator,
HITTITE

HMC705LP4ETR

Telecom Circuit, 1-Func, PQCC24, ROHS COMPLIANT, PLASTIC, SMT-24
HITTITE

HMC705LP4RTR

Prescaler/Multivibrator,
HITTITE

HMC706LC3C

13 Gbps, NRZ-to-RZ CONVERTER, +3.3V SUPPLY
HITTITE

HMC706LC3CRTR

IC,CONVERTER, OTHER/SPECIAL/MISCELLANEOUS,LLCC,16PIN
ADI

HMC706LC3CTR

13 Gbps NRZ-to-RZ Converter, +3.3V Supply
ADI