HMC798ALC4TR-R5 [ADI]

24 GHz to 34 GHz, GaAs, MMIC, Subharmonic SMT Mixer;
HMC798ALC4TR-R5
型号: HMC798ALC4TR-R5
厂家: ADI    ADI
描述:

24 GHz to 34 GHz, GaAs, MMIC, Subharmonic SMT Mixer

局域网 射频 微波
文件: 总26页 (文件大小:481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24 GHz to 34 GHz, GaAs, MMIC,  
Subharmonic SMT Mixer  
Data Sheet  
HMC798ALC4  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Single positive supply: 5 V at 97 mA  
Conversion loss: 10 dB typical at 24 GHz to 30 GHz,  
10.5 dB typical at 30 GHz to 34 GHz (upconverter)  
Input IP3: 17.5 dBm typical at 24 GHz to 30 GHz,  
20 dBm typical at 30 GHz to 34 GHz (upconverter)  
2 × LO to RF isolation: 36 dB typical at 30 GHz to 34 GHz  
Wide IF bandwidth: dc to 4 GHz  
1
2
3
4
5
6
18  
17  
16  
GND  
NIC  
NIC  
GND  
IF  
GND  
NIC  
HMC798ALC4  
GND  
15 LO  
14 GND  
GND  
13  
GND  
LO drive level: 4 dBm input  
Subharmonically pumped 2 × LO  
RoHS compliant, 24-terminal, 3.90 mm × 3.90 mm, ceramic  
LCC package  
PACKAGE  
BASE  
GND  
Figure 1.  
APPLICATIONS  
Microwave and very small aperture terminal (VSAT) radios  
Test equipment  
Point to point radios  
Satellite communications (SATCOM)  
Military electronic warfare (EW), electronic countermeasure  
(ECM), and command, control, communications and  
intelligence (C3I)  
GENERAL DESCRIPTION  
The HMC798ALC4 is a 24 GHz to 34 GHz subharmonically  
pumped (×2) MMIC mixer with an integrated LO amplifier housed  
in a leadless, RoHS compliant LCC package. The HMC798ALC4  
can be used as an upconverter or downconverter between 24 GHz  
and 34 GHz.  
to 34 GHz frequency range, eliminating the need for additional  
filtering. The LO amplifier is single bias at a 5 V dc with a  
typical 4 dBm LO drive level requirement The HMC798ALC4  
eliminates the need for wire bonding, allowing use of surface-  
mount technology (SMT) manufacturing techniques.  
The 2 × LO to radio frequency (RF) isolation is typically 30 dB  
in a 24 GHz to 30 GHz frequency range and 36 dB in a 30 GHz  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC798ALC4  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Downconverter Performance ................................................... 10  
Isolation and Return Loss ......................................................... 18  
IF Bandwidth—Downconverter, Upper Sideband................. 20  
IF Bandwidth—Downconverter, Lower Sideband................. 21  
Spurious and Harmonics Performance ................................... 22  
Theory of Operation ...................................................................... 23  
Applications Information.............................................................. 24  
Typical Application Circuit....................................................... 24  
Evaluation PCB Information .................................................... 24  
Soldering Information and Recommended Land Pattern.... 24  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
Typical Performance Characteristics ............................................. 6  
Upconverter Performance........................................................... 6  
REVISION HISTORY  
6/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 26  
 
Data Sheet  
HMC798ALC4  
SPECIFICATIONS  
VCC = 5 V, TA = 25°C, upconverter (IFIN) = 1 GHz at −10 dBm, LO = 4 dBm, upper side band. All measurements performed as an  
upconverter, unless otherwise noted, on the evaluation printed circuit board (PCB).  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
RF  
LO Input  
24  
12  
DC  
34  
18  
4
GHz  
GHz  
GHz  
mA  
V
IF  
SUPPLY CURRENT  
SUPPLY VOLTAGE  
LO DRIVE LEVELS  
24 GHz to 30 GHz PERFORMANCE  
Upconverter  
ICC  
97  
5
125  
5.25  
6
VCC  
4.75  
0
4
dBm  
IFIN  
Conversion Loss  
10  
17.5  
6
12.5  
dB  
dBm  
dBm  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Downconverter  
IP3  
P1dB  
IF  
12.5  
Conversion Loss  
11  
23  
50  
14  
dB  
Input Third-Order Intercept  
Input Second-Order Intercept  
Input 1 dB Compression Point  
Isolation  
IP3  
IP2  
P1dB  
dBm  
dBm  
dBm  
RF to IF  
2 × LO to RF  
2 × LO to IF  
30  
31  
26.5  
dB  
dB  
dB  
22  
15  
30 GHz to 34 GHz PERFORMANCE  
Upconverter  
IFIN  
Conversion Loss  
10.5  
20  
9
13.5  
dB  
dBm  
dBm  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Downconverter  
IP3  
P1dB  
IF  
Conversion Loss  
10.5  
25  
43  
dB  
Input Third-Order Intercept  
Input Second-Order Intercept  
Input 1 dB Compression Point  
Isolation  
IP3  
IP2  
P1dB  
dBm  
dBm  
dBm  
15  
RF to IF  
2 × LO to RF  
2 × LO to IF  
32  
36  
27  
dB  
dB  
dB  
25  
Rev. 0 | Page 3 of 26  
 
HMC798ALC4  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
THERMAL RESISTANCE  
RF Input Power  
LO Input Power  
IF Input Power  
IF Source or Sink Current  
VCC Supply Voltage  
Peak Reflow Temperature  
Maximum Junction Temperature (TJ)  
Lifetime at Maximum (TJ)  
Moisture Sensitivity Level (MSL)1  
Continuous Power Dissipation, PDISS (TA =  
85°C, Derate 8.33 mW/°C Above 85°C)  
13 dBm  
10 dBm  
13 dBm  
3 mA  
5.5 V  
260°C  
175°C  
1 × 106 hrs  
MSL3  
750 mW  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Table 3. Thermal Resistance  
Package Type  
E-24-11  
θJA  
θJC  
Unit  
120  
119  
°C/W  
1 See JEDEC Standard JESD51-2 for additional information on optimizing the  
thermal impedance (PCB with 3 × 3 vias).  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range  
−40°C to +85°C  
−65°C to +150°C  
−65°C to +150°C  
ESD CAUTION  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
250 V  
250 V  
1 Based on IPC/JEDEC J-STD-20 MSL classifications.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 4 of 26  
 
 
 
 
Data Sheet  
HMC798ALC4  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
NIC  
NIC  
GND  
IF  
1
2
3
4
5
6
18 GND  
17 NIC  
HMC798ALC4  
16  
15  
GND  
LO  
TOP VIEW  
(Not to Scale)  
14 GND  
13 GND  
GND  
NOTES  
1. NOT INTERNALLY CONNECTED. THESE PINS  
CAN BE CONNECTED TO RF AND DC GROUND.  
PERFORMANCE IS NOT AFFECTED.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO RF AND DC GROUND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 4, 6, 7, 9, 12, GND  
13, 14, 16,  
Ground. These pins and package bottom must be connected to RF and dc ground.  
18, 19, 24  
2, 3, 10, 17, 20, NIC  
21, 22, 23  
Not Internally Connected. These pins can be connected to RF and dc ground. Performance is not affected.  
5
IF  
Intermediate Frequency Port. This pin is dc-coupled. For applications not requiring operation to dc, dc block  
this port externally using a series capacitor of a value chosen to pass the necessary IF frequency range. For  
operation to dc, this pin must not source or sink more than 3 mA of current or die malfunction and possible  
die failure may result.  
8
RF  
VCC  
LO  
EPAD  
Radio Frequency Port. This pin is dc-coupled and matched to 50 Ω.  
Power Supply for the LO Amplifier.  
Local Oscillator Port. This pin is ac-coupled and matched to 50 Ω.  
Exposed Pad. The exposed pad must be connected to RF and dc ground.  
11  
15  
25  
INTERFACE SCHEMATICS  
GND  
IF  
Figure 3. GND Interface Schematic  
Figure 5. IF Interface Schematic  
LO  
RF  
Figure 4. LO Interface Schematic  
Figure 6. RF Interface Schematic  
Rev. 0 | Page 5 of 26  
 
 
HMC798ALC4  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
UPCONVERTER PERFORMANCE  
IFIN = 1 GHz, Upper Sideband  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
25  
20  
15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
LO = 6dBm  
10  
LO = 4dBm  
LO = 2dBm  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
15  
10  
5
15  
10  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 12. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 6 of 26  
 
 
Data Sheet  
HMC798ALC4  
IFIN = 1 GHz, Lower Sideband  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 16. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 14. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 17. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
15  
10  
5
15  
10  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 15. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 18. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 7 of 26  
HMC798ALC4  
Data Sheet  
IFIN = 3.75 GHz, Upper Sideband  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 19. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 22. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 20. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 23. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
15  
10  
5
15  
10  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 21. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 24. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 8 of 26  
Data Sheet  
HMC798ALC4  
IFIN = 3.75 GHz, Lower Sideband  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 28. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 26. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 29. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
15  
10  
5
15  
10  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 27. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 30. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 9 of 26  
HMC798ALC4  
Data Sheet  
DOWNCONVERTER PERFORMANCE  
IF = 1 GHz, Upper Sideband (Low-Side LO)  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 31. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 33. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
25  
20  
15  
LO = 6dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
10  
10  
5
A
A
A
LO = 4dBm  
LO = 2dBm  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 34. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Figure 32. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Rev. 0 | Page 10 of 26  
 
Data Sheet  
HMC798ALC4  
Downconverter IP2 and P1dB, Upper Sideband (Low-Side LO)  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
10  
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
Figure 35. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 37. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
15  
10  
20  
15  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 6dBm  
LO = 4dBm  
5
5
LO = 2dBm  
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
Figure 36. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 38. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 11 of 26  
HMC798ALC4  
Data Sheet  
IF = 1 GHz, Lower Sideband (High-Side LO)  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 41. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
25  
20  
15  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
10  
5
A
A
A
10  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 40. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 42. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 12 of 26  
Data Sheet  
HMC798ALC4  
Downconverter IP2 and P1dB, Lower Sideband (High-Side LO)  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
70  
60  
50  
40  
30  
20  
10  
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 43. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 45. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
15  
10  
20  
15  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 6dBm  
LO = 4dBm  
5
5
LO = 2dBm  
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
Figure 44. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 46. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 13 of 26  
HMC798ALC4  
Data Sheet  
IF = 3.75 GHz, Upper Sideband (Low-Side LO)  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 49. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
25  
20  
15  
LO = 6dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
10  
5
10  
A
A
A
LO = 4dBm  
LO = 2dBm  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 48. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 50. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 14 of 26  
Data Sheet  
HMC798ALC4  
Downconverter IP2 and P1dB, Upper Sideband (Low-Side LO)  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
70  
60  
50  
40  
30  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
10  
A
A
A
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
Figure 51. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 53. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
15  
10  
20  
15  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 6dBm  
LO = 4dBm  
5
0
5
LO = 2dBm  
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 52. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 54. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 15 of 26  
HMC798ALC4  
Data Sheet  
IF = 3.75 GHz, Lower Sideband (High-Side LO)  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 55. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 57. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
25  
20  
15  
LO = 6dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
10  
5
A
A
A
10  
LO = 4dBm  
LO = 2dBm  
5
0
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 56. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 58. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 16 of 26  
Data Sheet  
HMC798ALC4  
Downconverter IP2 and P1dB, Lower Sideband (High-Side LO)  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
70  
60  
50  
40  
30  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
10  
A
A
A
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
Figure 59. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 61. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
15  
10  
20  
15  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO = 6dBm  
LO = 4dBm  
5
0
5
LO = 2dBm  
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 60. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 62. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 17 of 26  
HMC798ALC4  
Data Sheet  
ISOLATION AND RETURN LOSS  
Upconverter performance at IFIN = 1 GHz, upper sideband.  
50  
50  
40  
30  
20  
10  
0
40  
30  
20  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
Figure 63. 2 × LO to RF Isolation vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 66. 2 × LO to RF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
50  
40  
30  
20  
50  
40  
30  
20  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
0
10  
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 64. 2 × LO to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 67. 2 × LO to IF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
50  
40  
30  
20  
50  
40  
30  
20  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
0
10  
0
23 24 25 26 27 28 29 30 31 32 33 34 35  
23 24 25 26 27 28 29 30 31 32 33 34 35  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 65. RF to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 68. RF to IF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 18 of 26  
 
Data Sheet  
HMC798ALC4  
0
0
–10  
–20  
–30  
–10  
–20  
–30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
0
1
2
3
4
5
6
7
8
9
10  
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 69. LO Return Loss vs. LO Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 71. IF Return Loss vs. IF Frequency at Various Temperatures,  
LO = 14 GHz at 4 dBm  
0
–10  
–20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–30  
20 11 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  
RF FREQUENCY (GHz)  
Figure 70. RF Return Loss vs. RF Frequency at Various Temperatures,  
LO = 14 GHz at 4 dBm  
Rev. 0 | Page 19 of 26  
HMC798ALC4  
Data Sheet  
IF BANDWIDTH—DOWNCONVERTER, UPPER SIDEBAND  
LO frequency = 8 GHz.  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 72. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 74. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0.1  
0
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 73. Input IP3 vs. IF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 75. Input IP3 vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 20 of 26  
 
Data Sheet  
HMC798ALC4  
IF BANDWIDTH—DOWNCONVERTER, LOWER SIDEBAND  
LO frequency = 13 GHz.  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 76. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 78. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
LO = 6dBm  
LO = 4dBm  
LO = 2dBm  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
0
0.1  
0
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 77. Input IP3 vs. IF Frequency at Various Temperatures,  
LO = 4 dBm  
Figure 79. Input IP3 vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. 0 | Page 21 of 26  
 
HMC798ALC4  
Data Sheet  
SPURIOUS AND HARMONICS PERFORMANCE  
M × N Spurious Outputs  
Upconversion, Upper Sideband  
Spur values are (M × IFIN) + (N × LO). IFIN = 0.1 GHz, LO =  
10 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer  
spurious products are measured in dBc from the RF output power  
level. N/A means not applicable.  
Downconversion, Upper Sideband  
Spur values are (M × RF) − (N × LO). RF = 10.1 GHz, LO =  
10 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer  
spurious products are measured in dBc from the IF output power  
level. N/A means not applicable.  
N × LO  
0
1
2
3
4
75  
80  
83  
85  
49  
0
77  
79  
77  
78  
39  
12  
36  
73  
77  
78  
77  
74  
73  
63  
44  
3
70  
70  
71  
74  
53  
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−5  
−4  
−3  
−2  
−1  
0
N × LO  
0
1
2
3
4
0
25  
3
N/A  
25  
N/A  
47  
0
1
2
3
4
18  
28  
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
63  
N/A  
N/A  
75  
71  
M × RF  
14  
0
M × IFIN  
N/A  
N/A  
72  
50  
83  
81  
77  
78  
53  
73  
71  
70  
69  
+1  
+2  
+3  
+4  
+5  
N/A  
44  
68  
73  
72  
Downconversion, Lower Sideband  
Spur values are (M × RF) − (N × LO). RF = 14 GHz, LO =  
14.1 GHz, RF power = −10 dBm, and LO power = 13 dBm.  
Mixer spurious products are measured in dBc from the IF output  
power level. N/A means not applicable.  
Upconversion, Lower Sideband  
Spur values are (M × IFIN) + (N × LO). IFIN = 0.1 GHz, LO =  
14.1 GHz, RF power = −10 dBm, and LO power = 13 dBm.  
Mixer spurious products are measured in dBc from the RF output  
power level. N/A means not applicable.  
N × LO  
0
1
2
3
4
0
18  
0
N/A  
30  
N/A  
48  
0
1
2
3
4
22  
33  
0
N × LO  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
58  
N/A  
N/A  
75  
62  
M × RF  
0
1
2
3
4
N/A  
N/A  
70  
76  
76  
80  
82  
53  
0
76  
77  
77  
75  
45  
24  
41  
73  
74  
73  
73  
68  
72  
69  
40  
0
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
N/A N/A  
−5  
−4  
−3  
−2  
−1  
0
N/A  
8
M × IFIN  
53  
82  
79  
79  
75  
0
+1  
+2  
+3  
+4  
+5  
44  
63  
65  
68  
Rev. 0 | Page 22 of 26  
 
Data Sheet  
HMC798ALC4  
THEORY OF OPERATION  
The HMC798ALC4 is a subharmonically pumped (×2) MMIC  
mixer with an integrated LO amplifier that can be used as an  
upconverter or a downconverter from 24 GHz to 34 GHz. The  
LO amplifier is single bias at a 5 V dc with a typical 4 dBm LO  
drive level.  
When used as a downconverter, the HMC798ALC4 downconverts  
radio frequencies between 24 GHz and 34 GHz to intermediate  
frequencies between dc and 4 GHz.  
When used as an upconverter, the mixer up converts IF  
between dc and 4 GHz to RF between 24 GHz and 34 GHz.  
Rev. 0 | Page 23 of 26  
 
HMC798ALC4  
Data Sheet  
APPLICATIONS INFORMATION  
directly to the ground plane (see Figure 81). Use a sufficient  
TYPICAL APPLICATION CIRCUIT  
number of via holes to connect the top and bottom ground  
planes. The evaluation circuit board shown in Figure 81 is  
available from Analog Devices, Inc., upon request.  
Figure 80 shows the typical application circuit for the  
HMC798ALC4. The integrated LO amplifier is single bias at 5 V  
with a typical 4 dBm input. Place capacitors as close as possible  
to the pin to decouple the power supply. The LO and RF pins  
are internally ac-coupled. The IF pin is internally dc-coupled.  
When IF operation to dc is not required, use of an external  
series capacitor is recommended, of a value chosen to pass the  
necessary IF frequency range. When IF operation to dc is  
required, do not exceed the IF source or sink current rating  
specified in the Absolute Maximum Ratings section.  
TERMINAL_SWAGE  
Table 5. List of Materials for Evaluation PCB  
EV1HMC798ALC4  
Item  
Description  
J1  
Johnson Surface-Mount Type A (SMA) connector  
SRI 2.92 mm connector  
HMC798ALC4  
126598-1 evaluation board  
C0G, 0402, 100 pF capacitor  
X7R, 0603, 10000 pF capacitor  
SMD, 3216, 4.7 µF capacitor  
J2, J3  
U1  
PCB1  
C1  
C2  
C3  
GND  
NIC  
NIC  
GND  
IF  
GND  
NIC  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
1 126598-1 is the raw bare PCB identifier. Reference EV1HMC798ALC4 when  
ordering the complete evaluation PCB.  
HMC798ALC4  
GND  
LO  
LO  
K_SRI-NS  
IF  
SOLDERING INFORMATION AND RECOMMENDED  
LAND PATTERN  
GND  
GND  
GND  
SMA_JC_062PCB  
Figure 81 shows the recommended land pattern for the  
HMC798ALC4. The HMC798ALC4 is contained in a 3.90 mm  
× 3.90 mm, 24-terminal, ceramic LCC package with an exposed  
ground pad (EPAD). This exposed pad is internally connected  
to the ground of the chip. To minimize thermal impedance and  
ensure electrical performance, solder the exposed pad to the  
low impedance ground plane on the PCB. It is recommended  
that the ground planes on all layers under the exposed pad be  
stitched together with vias to further reduce thermal  
RF  
VCC  
+
C1  
100pF  
C2  
10nF  
C3  
4.7µF  
TERMINAL_SWAGE  
K_SRI-NS  
Figure 80. Typical Application Circuit  
EVALUATION PCB INFORMATION  
impedance. The land pattern on the HMC798ALC4 evaluation  
board provides a simulated thermal resistance (θJC) of 119° C / W.  
Use RF circuit design techniques for the circuit board used in  
the application. Ensure that signal lines have 50 Ω impedance,  
and connect the package ground leads and the exposed pad  
Rev. 0 | Page 24 of 26  
 
 
 
 
 
Data Sheet  
HMC798ALC4  
.178" SQUARE  
.004" MASK/METAL OVERLAP  
.010" MIN MASK WIDTH  
SOLDERMASK  
GROUND PAD  
PAD SIZE  
.026" × .010"  
PIN 1  
.0197"  
[0.50]  
.116"  
MASK  
OPENING  
.034"  
TYPICAL  
VIA  
SPACING  
ᶲ .010"  
TYPICAL VIA  
.010" REF  
.030"  
MASK OPENING  
.098" SQUARE MASK OPENING  
.020 × 45" CHAMFER FOR PIN 1  
.106" SQUARE  
GROUND PAD  
Figure 81. Evaluation Board Land Pattern for the HMC798ALC4 Package  
GND  
126598-1  
IF  
LO  
24 23 22 21 20 19  
1
18  
17  
16  
15  
14  
13  
2
3
4
5
6
798A  
XXXX  
J3  
J1  
7
8 9 10 11 12  
C1 C2  
VCC  
RF  
C3  
J2  
Figure 82. Evaluation PCB Top Layer  
Rev. 0 | Page 25 of 26  
 
HMC798ALC4  
Data Sheet  
OUTLINE DIMENSIONS  
4.05  
3.90 SQ  
3.75  
0.36  
0.30  
0.24  
PIN 1  
0.08  
BSC  
INDICATOR  
PIN 1  
24  
19  
18  
1
0.50  
BSC  
2.60  
2.50 SQ  
2.40  
EXPOSED  
PAD  
13  
6
12  
7
BOTTOM VIEW  
2.50 REF  
0.32  
BSC  
TOP VIEW  
SIDE VIEW  
1.00  
0.90  
0.80  
3.10 BSC  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 83. 24-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-24-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
HMC798ALC4  
HMC798ALC4TR  
HMC798ALC4TR-R5  
EV1HMC798ALC4  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
MSL Rating2  
MSL3  
MSL3  
MSL3  
Package Description  
Package Option  
E-24-1  
E-24-1  
24-Terminal Ceramic Leadless Chip Carrier [LCC]  
24-Terminal Ceramic Leadless Chip Carrier [LCC]  
24-Terminal Ceramic Leadless Chip Carrier [LCC]  
Evaluation PCB Assembly  
E-24-1  
1 All models are RoHS compliant parts.  
2 The peak reflow temperature is 260°C. See the Absolute Maximum Ratings section, Table 2.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16785-0-6/18(0)  
Rev. 0 | Page 26 of 26  
 
 

相关型号:

HMC798LC4

GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz
HITTITE

HMC798LC4TR

Double Balanced Mixer
HITTITE

HMC798LC4_10

GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz
HITTITE

HMC798LC4_1007

GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz
HITTITE

HMC7992LP3DE

Nonreflective, Silicon SP4T Switch, 0.1 GHz to 6.0 GHz
ADI

HMC7992LP3DETR

Nonreflective, Silicon SP4T Switch, 0.1 GHz to 6.0 GHz
ADI

HMC799LP3E

DC - 700 MHz, 10 kOhm TRANSIMPEDANCE AMPLIFIER
HITTITE

HMC799LP3E

DC - 700 MHz, 10 kOhm Transimpedance Amplifier SMT
ADI

HMC799LP3ETR

DC - 700 MHz, 10 kOhm Transimpedance Amplifier SMT
ADI

HMC799LP3E_1

DC - 700 MHz, 10 kOhm TRANSIMPEDANCE AMPLIFIER
HITTITE

HMC799LP3E_10

DC - 700 MHz, 10 kOhm TRANSIMPEDANCE AMPLIFIER
HITTITE

HMC800LP3E

10 dB GaAs MMIC 1-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 10 GHz
HITTITE