HMC8073 [ADI]

0.6 GHz to 3.0 GHz, 0.5 dB LSB, 6-Bit, Silicon Digital Step Attenuator;
HMC8073
型号: HMC8073
厂家: ADI    ADI
描述:

0.6 GHz to 3.0 GHz, 0.5 dB LSB, 6-Bit, Silicon Digital Step Attenuator

文件: 总13页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0.6 GHz to 3.0 GHz, 0.5 dB LSB, 6-Bit,  
Silicon Digital Step Attenuator  
HMC8073  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HMC8073  
Attenuation range: 0.5 dB LSB steps to 31.5 dB  
Low insertion loss  
1.1 dB to 1.0 GHz  
1.5 dB to 2.0 GHz  
Tight attenuation accuracy  
1
2
3
4
12 LE  
VDD  
A0  
LOGIC  
11 GND  
10 GND  
CONTROL  
Less than 0.25 dB (plus 3% of attenuation state)  
Low phase shift error: 4° phase shift to 1.0 GHz  
Bidirectional use: 30 dBm high power handling  
Internal dc block on the RFIN/RFOUT pins  
High linearity  
GND  
RFIN  
6-BIT DSA  
9
RFOUT  
P1dB: 31 dBm typical  
Input IP3: 52 dBm typical  
Figure 1.  
Safe state transitions  
Serial interface with TTL/CMOS  
Up to 8 devices on a single data bus  
Single-supply operation: 3.3 V to 5.0 V  
ESD sensitivity rating: Class 1C (1 kV human body model)  
16-lead, 3 mm × 3 mm LFCSP package: 9 mm2  
APPLICATIONS  
Cellular infrastructure  
Microwave radios  
Very small aperture terminals  
Test equipment and sensors  
GENERAL DESCRIPTION  
The HMC8073 is a 6-bit digital step attenuator (DSA), operating  
from 0.6 GHz to 3.0 GHz, that features 31.5 dB of attenuation  
range with 0.5 dB steps.  
The external address feature of the HMC8073 allows users to  
control up to eight DSAs using a single bus. The DSA has an  
on-chip regulator that supports a wide supply operating range  
from 3.3 V to 5.0 V with no performance change in electrical  
characteristics. The HMC8073 incorporates a complementary  
metal-oxide semiconductor (CMOS)- and transistor transitory  
logic (TTL)- compatible interface that supports serial (3-wire)  
control of the attenuator.  
The HMC8073 is implemented in a silicon process, offering  
a fast settling time, low power consumption, and high  
electrostatic discharge (ESD) robustness. The device features  
safe state transitions, allowing attenuation state changes without  
overshooting, and is optimized for excellent step accuracy and  
high power and high linearity over frequency and temperature  
range. The radio frequency (RF) input and output are internally  
matched to 50 Ω and do not require any external matching  
components. The design is bidirectional, and the RF input and  
output are interchangeable.  
The HMC8073 comes in an RoHS compliant, compact,  
3 mm × 3 mm LFCSP package.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2018–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC8073  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Insertion Loss, Return Loss, State Error, Normalized  
Attenuation, Step Error, and Relative Phase.............................7  
Input Power Compression and Third-Order Intercept ..........9  
Theory of Operation ...................................................................... 10  
Power-Up Sequence................................................................... 10  
RF Input and Output................................................................. 10  
Serial Control Interface ............................................................. 10  
Attenuation State at Power-Up................................................ 10  
Applications Information ............................................................. 12  
Evaluation PCB........................................................................... 12  
Packaging and Ordering Information......................................... 13  
Outline Dimensions................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Electrical Specifications............................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings ........................................................... 5  
Thermal Resistance...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions ............................ 6  
Interface Schematics .................................................................... 6  
Typical Performance Characteristics............................................. 7  
REVISION HISTORY  
4/2020—Rev. A to Rev. B  
Changes to Figure 1.......................................................................... 1  
Changes to Figure 3 and Table 5.................................................... 6  
Change to Figure 25....................................................................... 12  
4/2018—Revision 0: Initial Version  
Rev. B | Page 2 of 13  
 
Data Sheet  
HMC8073  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
VDD = 5.0 V, TA = 25°C, 50 ꢀ system, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
GHz  
dB  
dB  
dB  
FREQUENCY RANGE  
INSERTION LOSS  
0.6  
3.0  
0.6 GHz to 1.0 GHz  
1.0 GHz to 2.0 GHz  
2.0 GHz to 3.0 GHz  
0.6 GHz to 3.0 GHz  
Delta between minimum and maximum  
attenuation states  
Between any successive attenuation states  
Referenced to insertion loss; all  
attenuation states  
1.1  
1.5  
2.2  
ATTENUATION  
Range  
31.5  
0.5  
dB  
dB  
Step Size, LSB  
Accuracy  
−(0.25 + 3% of  
attenuation state)  
+(0.25 + 3% of  
attenuation state)  
dB  
Step Error  
RETURN LOSS  
RFIN, RFOUT  
All attenuation states  
All attenuation states  
0.6 GHz to 1.0 GHz  
1.0 GHz to 2.0 GHz  
2.0 GHz to 3.0 GHz  
0.6 GHz to 1.0 GHz  
1.0 GHz to 2.0 GHz  
2.0 GHz to 3.0 GHz  
0.ꢀ  
1ꢀ  
12  
9
dB  
dBm  
dBm  
dBm  
RELATIVE PHASE  
1ꢀ  
38  
Degrees  
Degrees  
Degrees  
SWITCHING CHARACTERISTICS  
Rise and Fall Time (tRISE, tFALL  
)
10% to 90% of RF output  
50% VCTL to 90% of RF output  
All attenuation states  
65  
260  
ns  
ns  
On and Off Time (tON, tOFF  
INPUT LINEARITY  
)
0.1 dB Compression (P0.1dB)  
1 dB Compression (P1dB)  
Input Third-Order Intercept (IP3)  
28  
31  
52  
dBm  
dBm  
dBm  
Two-tone input power = 16 dBm/tone, ∆f =  
1 MHz  
SUPPLY CURRENT (IDD)  
VDD = 3.3 V  
VDD = 5.0 V  
0.3  
0.3  
mA  
mA  
CONTROL VOLTAGE THRESHOLD,  
VCTL  
For CLK, LE, SI, A0, A1, A2; <1 μA typical  
Low, VIL  
VDD = 3.3 V  
VDD = 5.0 V  
VDD = 3.3 V  
VDD = 5.0 V  
0
0
2
2
0.8  
0.8  
3.3  
5.0  
V
V
V
V
High, VIH  
RECOMMENDED OPERATING  
CONDITIONS  
Supply Voltage Range (VDD)  
Digital Control Voltage Range  
Maximum RF Input Power  
3.3  
0
5.0  
VDD  
30  
V
V
dBm  
°C  
For CLK, LE, SI, A0, A1, A2  
Worst case at maximum attenuation  
Case Temperature (TCASE  
)
−ꢀ0  
+85  
Rev. B | Page 3 of 13  
 
 
HMC8073  
Data Sheet  
TIMING SPECIFICATIONS  
Table 2.  
Parameter  
Description  
Min  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1  
t2  
t3  
tꢀ  
t5  
t6  
t7  
t8  
CLK period  
CLK high  
CLK low  
SI to CLK setup time  
CLK to SI hold time  
LE to CLK setup time  
CLK to LE hold time  
LE pulse width  
2.5  
2.5  
1.5  
1.5  
1.5  
1.5  
2.5  
Timing Diagram  
A2 TO A0  
X
X
A2 TO A0 EXTERNAL ADDRESS SETTING  
NEW ADDRESS  
SI  
CLK  
LE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
X
NEW WORD  
X
t4 t5  
t1 t2 t3  
t7 t8 t6  
Figure 2. Serial Control Timing Diagram  
Rev. B | Page ꢀ of 13  
 
 
 
Data Sheet  
HMC8073  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
RF Input Power (TCASE = 85°C)  
Digital Control Inputs (CLK, LE, SI, A0, A1, A2)  
Supply Voltage (VDD)  
Continuous Power Dissipation (PDISS  
Temperature  
30 dBm  
−0.3 V to VDD + 0.ꢀ V  
5.ꢀ V  
θJC is the junction to case bottom (channel to package bottom)  
thermal resistance.  
)
0.999 W  
Table 4. Thermal Resistance  
Package Type  
Channel Temperature  
Storage  
Maximum Reflow Temperature  
ESD Sensitivity  
1ꢀ0°C  
−65°C to +150°C  
260°C (MSL3 Rating)  
θJC  
Unit  
CP-16-38  
55  
°C/W  
Human Body Model (HBM)  
1 kV (Class 1C)  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Rev. B | Page 5 of 13  
 
 
 
HMC8073  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VDD  
A0  
1
2
3
4
12 LE  
HMC8073  
11 GND  
TOP VIEW  
10  
9
GND  
RFIN  
GND  
(Not to Scale)  
RFOUT  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD MUST  
BE CONNECTED TO RF/DC GROUND.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VDD  
Supply Voltage Pin.  
2, 15, 16  
A0, A1, A2  
Parallel Control Voltage Inputs. Apply VIH or VIL to attain the desired address for attenuator. See Figure ꢀ for the  
interface schematic.  
3, 5 to 8, 10, 11 GND  
Ground. The package bottom has an exposed metal pad that must connect to the PCB RF/dc ground. See  
Figure 5 for the GND interface schematic.  
RFIN  
RFOUT  
LE  
Attenuator Input. This pin is ac-coupled and matched to 50 Ω. No external dc blocking capacitors are  
required on the RF lines. See Figure 6 for the interface schematic.  
Attenuator Output. This pin is ac-coupled and matched to 50 Ω. No external dc blocking capacitors are  
required on the RF lines. See Figure 6 for the interface schematic.  
Serial Interface Latch Enable Input. See the Theory of Operation section for more information. See Figure 7  
for the interface schematic.  
Serial Interface Clock Input. See the Theory of Operation section for more information. See Figure 7 for the  
interface schematic.  
9
12  
13  
1ꢀ  
CLK  
SI  
Serial Interface Data Input. See the Theory of Operation section for more information. See Figure 7 for the  
interface schematic.  
EPAD  
Exposed Pad. The exposed pad must be connected to RF/dc ground.  
INTERFACE SCHEMATICS  
V
V
DD  
DD  
ESD  
16kΩ  
16kΩ  
RFIN,  
RFOUT  
A0, A1, A2  
Figure 4. A0 to A2 Interface Schematic  
Figure 6. RFIN and RFOUT Interface Schematic  
V
V
DD  
DD  
16kΩ  
16kΩ  
LE, CLK, SI  
GND  
Figure 5. GND Interface Schematic  
Figure 7. LE, CLK, and SI Interface Schematic  
Rev. B | Page 6 of 13  
 
 
 
 
 
 
Data Sheet  
HMC8073  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSERTION LOSS, RETURN LOSS, STATE ERROR, NORMALIZED ATTENUATION, STEP ERROR, AND RELATIVE  
PHASE  
VDD = 5.0 V, TA = 25°C, 50 ꢀ system, unless otherwise noted.  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
0
–5  
+85°C  
+25°C  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
0.5dB  
1.0dB  
2.0dB  
4.0dB  
8.0dB  
16.0dB  
31.5dB  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Insertion Loss vs. Frequency at Various Temperatures  
Figure 11. Normalized Attenuation vs. Frequency, Major States Only  
–5  
0
NO ATTENUATION  
NO ATTENUATION  
0.5dB  
0.5dB  
1.0dB  
2.0dB  
4.0dB  
8.0dB  
16.0dB  
31.5dB  
1.0dB  
2.0dB  
–5  
–10  
–15  
–20  
–25  
4.0dB  
8.0dB  
–10  
16.0dB  
31.5dB  
–15  
–20  
–25  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Input Return Loss vs. Frequency, Major States Only  
Figure 12. Output Return Loss vs. Frequency, Major States Only  
1.5  
1.0  
0.7GHz  
1.0GHz  
2.0GHz  
0.5dB  
0.8  
0.6  
1.0dB  
2.0dB  
4.0dB  
8.0dB  
16.0dB  
31.5dB  
1.0  
0.5  
3.0GHz  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
0
5
10  
15  
20  
25  
30  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
ATTENUATION STATE (dB)  
FREQUENCY (GHz)  
Figure 10. State Error vs. Attenuation State  
Figure 13. State Error vs. Frequency, Major States Only  
Rev. B | Page 7 of 13  
 
 
HMC8073  
Data Sheet  
1.0  
0.8  
1.0  
0.8  
0.7GHz  
1.0GHz  
2.0GHz  
3.0GHz  
0.5dB  
1.0dB  
2.0dB  
4.0dB  
8.0dB  
16.0dB  
31.5dB  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
0
4
8
12  
16  
20  
24  
28  
32  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
ATTENUATION STATE (dB)  
FREQUENCY (GHz)  
Figure 14. Step Error vs. Attenuation State  
Figure 16. Step Error vs. Frequency, Major States Only  
40  
35  
30  
25  
20  
15  
10  
5
30  
20  
0.7GHz  
1.0GHz  
2.0GHz  
3.0GHz  
10  
0
0.5dB  
1.0dB  
2.0dB  
4.0dB  
8.0dB  
16.0dB  
31.5dB  
–10  
–20  
–30  
0
–5  
–10  
0
4
8
12  
16  
20  
24  
28  
32  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
ATTENUATION STATE (dB)  
FREQUENCY (GHz)  
Figure 15. Relative Phase vs. Attenuation State  
Figure 17. Relative Phase vs. Frequency, Major States Only  
Rev. B | Page 8 of 13  
Data Sheet  
HMC8073  
INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT  
VDD = 5.0 V, TA = 25°C, 50 ꢀ system, unless otherwise noted.  
35  
35  
30  
25  
20  
15  
+85°C  
+25°C  
–40°C  
30  
25  
20  
15  
NO ATTENUATION  
0.5dB  
1.0dB  
2.0dB  
4.0dB  
8.0dB  
16.0dB  
31.5dB  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.0  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 18. P0.1dB vs. Frequency at Various Temperatures,  
No Attenuation State  
Figure 21. P0.1dB vs. Frequency, Major States Only  
40  
40  
35  
30  
25  
20  
15  
+85°C  
+25°C  
–40°C  
35  
30  
25  
20  
15  
NO ATTENUATION  
0.5dB  
1.0dB  
2.0dB  
4.0dB  
8.0dB  
16.0dB  
31.5dB  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 19. P1dB vs. Frequency at Various Temperatures,  
No Attenuation State  
Figure 22. P1dB vs. Frequency, Major States Only  
70  
65  
60  
55  
50  
45  
40  
70  
65  
60  
55  
50  
45  
40  
NO ATTENUATION  
0.5dB  
1.0dB  
2.0dB  
4.0dB  
8.0dB  
16.0dB  
31.5dB  
+85°C  
+25°C  
–40°C  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 20. Input IP3 vs. Frequency at Various Temperatures,  
No Attenuation State  
Figure 23. Input IP3 vs. Frequency, Major States Only  
Rev. B | Page 9 of 13  
 
HMC8073  
Data Sheet  
THEORY OF OPERATION  
A simplified circuit diagram of the HMC8073 is shown in  
Figure 24. The HMC8073 incorporates a 6-bit fixed attenuator  
array that offers an attenuation range of 31.5 dB in 0.5 dB steps.  
An on-chip driver provides control of the attenuator from a  
3-wire serial peripheral interface (SPI) and features 3-bit address  
pins (A0 to A2) to enable the control of up to eight devices on a  
single bus.  
The serial input data bits in LSB first format are clocked into  
the shift register on the rising edge of the clock signal. The latch  
enable signal must be kept low during data transmission.  
Otherwise, the clock signal is masked by a high latch enable  
with logical OR operation. When all 16 data bits are loaded, a  
high going latch enable pulse updates the attenuation state.  
Figure 2 and Table 2 provide the general signal requirements  
and the specific timing requirements, respectively, that must be  
met for the data transfer to be accomplished properly.  
POWER-UP SEQUENCE  
The HMC8073 requires a single dc voltage applied to the  
VDD pin. The ideal power-up sequence is as follows:  
In a bit stream to serial data input, the first eight bits (D[7:0])  
are designated as attenuation data, and the last eight bits (A[7:0])  
are designated as address data. D[6:1] specifies the attenuation  
setting, whereas D0 and D7 are don’t care bits and can be set low  
or high without affecting the attenuation state (see Table 7).  
Bits A[2:0] must be matched to the address setting by the A2 to  
A0 pins and A[7:3] must all be low so that D[6:1] can be  
latched into the attenuator bits when the latch enable signal is  
pulsed.  
1. Connect the GND pin to a ground reference.  
2. Apply a supply voltage to the VDD pin.  
3. Power up the digital control inputs. The relative order of  
the digital control inputs is not important.  
4. Apply an RF input signal to RFIN or RFOUT.  
RF INPUT AND OUTPUT  
The attenuator in the HMC8073 is bidirectional. The RFIN and  
RFOUT pins are interchangeable as the RF input and output  
ports. The attenuator is internally matched to 50 Ω at both the  
input and the output, and no external matching components are  
required. There are internal dc blocking capacitors on the RFIN  
and RFOUT pins, and no external dc blocking capacitors are  
required on the RF lines.  
ATTENUATION STATE AT POWER-UP  
The HMC8073 powers up at a maximum attenuation if the LE pin  
is kept low during the initial power-up. At initial power-up or  
immediately after the initial power-up, when the serial input  
data is not clocked to the device, and when the LE pin is set  
high while keeping the A2 to A0 pins low, the HMC8073 is  
latched into an insertion loss state due to the internal pull-  
down resistors at the shift register outputs. If the address set by  
the A2 to A0 pins is not equal to 000, the device stays at a  
maximum attenuation even with the high latch enabled.  
SERIAL CONTROL INTERFACE  
The HMC8073 has a 3-wire SPI that consists of the serial data  
input (SI), the clock (CLK), and the latch enable (LE) pins. The  
serial control inputs are both TTL- and 5 V CMOS-compatible  
{fix space issue} and can easily interface to most industry-standard  
field programmable gate arrays (FPGAs) and microcontrollers.  
Table 6. Attenuation State at Power-Up  
Address Setting  
Attenuation State  
31.5 dB (Maximum)  
0 dB (Reference)  
LE  
(A2, A1, A0 Pins)  
Don’t care  
000  
≠ 000 (001, 010, 011, 100,  
101, 110, 111)  
As shown in Figure 24, the driver portion contains a 16-bit serial to  
parallel shift register, an 8-bit comparator, and an 8-bit latch.  
Low  
High  
High  
31.5 dB (Maximum)  
Rev. B | Page 10 of 13  
 
 
 
 
 
Data Sheet  
HMC8073  
FIRST 8-BIT SHIFT REGISTER FOR ADDRESS SETTING  
(ALL OUTPUTS GO TO LOW AT POWER-UP)  
FIRST 8-BIT SHIFT REGISTER FOR ATTENUATION SETTING  
(ALL OUTPUTS GO TO LOW AT POWER-UP)  
SI  
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
CLK  
LE  
FIRST IN  
D0'  
LAST IN  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D7'  
D6'  
D5'  
D4'  
D3'  
D2'  
D
D1'  
D
6-BIT LATCH  
D
D
Q
D
Q
Q
D
Q
Q
Q
8-BIT ADDRESS COMPARATOR  
OUT = 1 IF A7' – A0' = A7 – A0  
OUT  
(ALL OUTPUTS GO TO LOW AT POWER-UP)  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
A2  
A1  
A0  
6-BIT ATTENUATOR  
16dB  
8dB  
4dB  
2dB  
1dB  
0.5dB  
RFOUT  
RFIN  
Figure 24. Simplified Circuit Diagram  
Table 7. Attenuation Truth Table  
Attenuation Control Input1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Attenuation State (dB)  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
Low  
Low  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
Low  
Low  
High  
Low  
Low  
High  
Low  
Low  
Low  
High  
Low  
Low  
Low  
High  
Low  
Low  
High  
Low  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
Low  
Low  
Low  
High  
Don’t care  
0 (reference)  
0.5  
1.0  
2.0  
ꢀ.0  
8.0  
16.0  
31.5  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
1 Any combination of the control voltage input states shown in Figure 2ꢀ provides an attenuation equal to the sum of the bits selected.  
Table 8. Address Truth Table  
Address Control Input  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Setting (A2, A1, A0 Pins)  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
000  
001  
010  
011  
100  
101  
110  
111  
Rev. B | Page 11 of 13  
 
 
HMC8073  
Data Sheet  
APPLICATIONS INFORMATION  
electrical and thermal performance, as many vias as possible are  
arranged around the transmission lines and under the package  
exposed pad. The evaluation board layout shown in Figure 25  
serves as a recommendation for optimal and stable performance as  
well as for improvement of thermal efficiency.  
EVALUATION PCB  
The EV1HMC8073LP3D with component placement is shown  
in Figure 25. The EV1HMC8073LP3D is constructed of a 4-layer  
material with a copper thickness of 0.7 mil on each layer. Every  
copper layer is separated with a dielectric material. The top  
dielectric material is 10 mil RO4350. The middle and bottom  
dielectric material is FR-4, used for mechanical strength and  
overall board thickness of approximately 62 mil, which allows  
SMA connectors to be slipped in at the board edges.  
The EV1HMC8073LP3D is grounded from the dc test point,  
TP3. The dc supply must be connected to the dc test point,  
TP1, of the EV1HMC8073LP3D. The decoupling capacitors are  
populated on the supply trace to filter high frequency noise.  
The RF input and output ports (RFIN and RFOUT) are connected  
through 50 Ω transmission lines to the SMA connectors, J1 and  
J2, respectively. All the digital control pins are connected through  
digital signal traces to the 2 × 6-pin header, J5. A thru calibration  
transmission line can estimate the loss of PCB over the  
environmental conditions being evaluated.  
All RF and dc traces are routed on the top copper layer. The RF  
transmission lines are designed using a coplanar waveguide  
(CPWG) model, with a width of 18 mil, spacing of 13 mil, and  
dielectric thickness of 10 mil, to have a characteristic impedance of  
50 ꢀ. The inner and bottom layers are grounded planes that  
provide a solid ground for the RF transmission lines. For optimal  
J1  
J5  
VDD_USB  
TP2  
600-01513-00-2  
CLK  
C2  
VDD  
GND  
USB  
GND  
VDD  
GND  
GND  
GND  
A2  
SI  
U1  
TP1  
R1  
A1  
A0  
VDD  
LE  
A1  
A0  
TP3  
VDD  
J2  
Figure 25. EV1HMC8073LP3D Evaluation PCB  
Table 9. Bill of Materials for EV1HMC8073LP3D PCB  
Item  
J1, J2  
J5  
TP1 to TP3  
C2  
Value1  
Description  
Manufacturer2  
PCB mount SMA connectors  
Socket strip, dual-row 2 × 6  
Through hole mount test points  
Capacitor, 0ꢀ02 package  
ꢀ70 pF  
0 Ω  
R1  
Resistor, 0ꢀ02 package  
U1  
PCB3  
HMC8073 digital attenuator  
600-01513-00 evaluation PCB  
Analog Devices, Inc.  
EV1HMC8073LP3Dfrom Analog Devices  
1 Blank cells in the value column indicate that there is no specific value recommendation for the listed component.  
2 Blank cells in the manufacturer column indicate that there is no specific manufacturer recommendation for the listed component.  
3 Circuit board material is Arlon 25FR.  
Reference this number when ordering the full evaluation PCB. See the Ordering Guide section.  
Rev. B | Page 12 of 13  
 
 
 
Data Sheet  
HMC8073  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
3.10  
0.30  
0.25  
0.20  
3.00 SQ  
PIN 1  
2.90  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
13  
16  
0.50  
BSC  
12  
1
EXPOSED  
PAD  
1.92  
1.70 SQ  
1.48  
9
4
5
8
*
0.35  
0.30  
0.25  
0.20 MIN  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.95  
0.85  
0.75  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
*
COMPLIANT WITH JEDEC STANDARDS MO-220-VEED-4  
WITH THE EXCEPTION OF PACKAGE EDGE TO LEAD EDGE.  
Figure 26. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.85 mm Package Height  
(CP-16-38)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−ꢀ0°C to +85°C  
−ꢀ0°C to +85°C  
MSL Rating2  
MSL3  
Package Description  
Package Option  
CP-16-38  
CP-16-38  
HMC8073LP3DE  
HMC8073LP3DETR  
EV1HMC8073LP3D  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
MSL3  
1 All models are RoHS compliant.  
2 See the Absolute Maximum Ratings section.  
©2018–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14678-4/20(B)  
Rev. B | Page 13 of 13  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY