HMC8108LC5 [ADI]

9 GHz to 10 GHz, X-Band, GaAs, MMIC, Low Noise Converter;
HMC8108LC5
型号: HMC8108LC5
厂家: ADI    ADI
描述:

9 GHz to 10 GHz, X-Band, GaAs, MMIC, Low Noise Converter

文件: 总18页 (文件大小:430K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
9 GHz to 10 GHz,  
X-Band, GaAs, MMIC, Low Noise Converter  
Data Sheet  
HMC8108  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Conversion gain: 13 dB typical  
Image rejection: 20 dBc typical  
Noise figure: 2 dB typical  
Input power for 1 dB compression: −4 dBm typical  
Input third-order intercept: 6 dBm typical  
Output saturated power: 10 dBm typical  
LO leakage at the IF port: −20 dBm typical  
LO leakage at the RF port: −37 dBm typical  
32-terminal, 5 mm × 5 mm, ceramic leadless chip carrier (LCC)  
NIC  
NIC  
1
2
3
4
5
6
7
8
24 NIC  
23 BUFF_VD  
22 NIC  
LNA_VG1  
NIC  
21 NIC  
RFIN  
20 LOIN  
19 NIC  
APPLICATIONS  
NIC  
Point to point and point to multipoint radios  
Military radar  
Satellite communications  
VCTRL  
NIC  
18 NIC  
HMC8108  
17 NIC  
EPAD  
Figure 1.  
GENERAL DESCRIPTION  
The HMC8108 is a compact, X-band, gallium arsenide (GaAs),  
monolithic microwave integrated circuit (MMIC) in-phase/  
quadrature (I/Q), low noise converter in a ceramic, leadless chip  
carrier, RoHS compliant package. The HMC8108 converts radio  
frequency (RF) input signals ranging from 9 GHz to 10 GHz to a  
typical single-ended intermediate frequency (IF) signal of 60 MHz  
at its output. This device provides a small signal conversion gain  
of 13 dB with a noise figure of 2 dB and image rejection of 20 dBc.  
The HMC8108 uses a low noise amplifier followed by an image  
reject mixer that is driven by an active LO buffer amplifier. The  
image reject mixer eliminates the need for a filter following the  
low noise amplifier and removes thermal noise at the image  
frequency. I/Q mixer outputs are provided, and an external 90°  
hybrid is needed to select the required sideband. The HMC8108  
is a much smaller alternative to hybrid style, image reject mixer,  
downconverter assemblies and is compatible with surface-mount  
manufacturing techniques.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC8108  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 14  
Applications Information.............................................................. 15  
Biasing Sequence........................................................................ 15  
Results.......................................................................................... 15  
Evaluation Board Information ................................................. 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
REVISION HISTORY  
2/2017—Revision 0: Initial Version  
Rev. 0 | Page 2 of 18  
 
Data Sheet  
HMC8108  
SPECIFICATIONS  
TA = −25°C, IF = 60 MHz, LNA_VD1/LNA_VD2 = +3 V, BUFF_VD = +3 V, VCTRL = −1 V, MIX_VG = −1.4 V, LO power= −5 dBm,  
downconverter mode with lower side selected and external 90° hybrid at the IF ports, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
Frequency Range  
Radio Frequency  
Local Oscillator  
Intermediate Frequency  
LO Input Level  
RF  
LO  
IF  
9
9
0.02  
−10  
10  
10  
1
GHz  
GHz  
GHz  
dBm  
0
PERFORMANCE  
Conversion Gain  
Gain Variation Range  
Noise Figure  
10  
10  
13  
15  
2
dB  
dB  
dB  
NF  
2.5  
Image Rejection  
Input Power for 1 dB Compression  
Input Third-Order Intercept  
Input Second-Order Intercept  
Output Saturated Power  
LO Leakage at the IF Port1  
LO Leakage at the RF Port  
RF Leakage at the IF Port1  
Amplitude Balance1  
Phase Balance1  
15  
2
20  
−4  
6
12  
10  
−20  
−37  
−27  
3
dBc  
P1dB  
IP3  
IP2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dB  
PSAT  
−25  
4
Degree  
Return Loss  
RF Port  
LO Port  
IF Port1  
15  
9
20  
dB  
dB  
dB  
POWER SUPPLY  
LNA_VD1  
LNA_VD2  
BUFF_VD  
20  
30  
40  
mA  
mA  
mA  
1 Measurements performed without external 90° hybrid at the IF ports.  
Rev. 0 | Page 3 of 18  
 
HMC8108  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Drain Bias Voltage  
LNA_VD1  
LNA_VD2  
BUFF_VD  
Gate Bias Voltage  
LNA_VG1  
LNA_VG2  
MIX_VG  
BUFF_VG  
5.8 V  
4.8 V  
4.2 V  
Table 3. Thermal Resistance  
Package Type  
E-32-11  
θJA  
θJC  
Unit  
93  
119.47  
°C/W  
−2 V to + 0.15 V  
−2 V to + 0.15 V  
−2 V to + 0.15 V  
−2 V to + 0.15 V  
−2 V to + 0.15 V  
20 dBm  
1 See JEDEC standard JESD51-2 for additional information on optimizing the  
thermal impedance (PCB with 3 × 3 vias).  
VCTRL  
RF Input Power  
ESD CAUTION  
LO Input Power  
24 dBm  
Maximum Peak Reflow Temperature (MSL3)1  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Field Induced Charged Device Model (FICDM)  
260°C  
165°C  
−40°C to +85°C  
−65°C to 150°C  
Class 0 (150 V)  
Class C3 (250 V)  
1 See the Ordering Guide section.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 4 of 18  
 
 
 
Data Sheet  
HMC8108  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NIC 1  
NIC 2  
LNA_VG1 3  
24 NIC  
23 BUFF_VD  
NIC  
22  
21 NIC  
HMC8108  
4
NIC  
RFIN 5  
TOP VIEW  
20  
19  
LOIN  
NIC  
(Not to Scale)  
6
7
8
NIC  
VCTRL  
NIC  
18 NIC  
17 NIC  
EPAD  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
2. EXPOSED PAD. EXPOSED PAD MUST  
BE CONNECTED TO RF/DC GROUND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 2, 4, 6, 8, 9, 11, 12, NIC  
14, 17 to 19, 21, 22,  
24, 25, 27, 29, 31  
No Internal Connection. These pins are not connected internally.  
3
5
LNA_VG1  
RFIN  
Gate Bias Voltage for the First Low Noise Amplifier. See Figure 3 for the interface schematic.  
Radio Frequency Input. This pin is dc-coupled and matched to 50 Ω. See Figure 4 for the interface  
schematic.  
7
VCTRL  
Voltage Control. Gate bias attenuation control for the low noise amplifier. See Figure 5 for the interface  
schematic.  
10  
13, 28  
15  
16  
20  
23  
26  
30  
32  
LNA_VG2  
IF_I, IF_Q  
MIX_VG  
BUFF_VG  
LOIN  
BUFF_VD  
GND  
LNA_VD2  
LNA_VD1  
EPAD  
Gate Bias Voltage for the Second Low Noise Amplifier. See Figure 6 for the interface schematic.  
In-Phase and Quadrature Intermediate Frequency Output Pins. See Figure 7 for the interface schematic.  
Gate Bias Voltage for FET Mixer. See Figure 8 for the interface schematic.  
Gate Bias Voltage for the Local Oscillator Buffer. See Figure 9 for the interface schematic.  
Local Oscillator Input. This pin is ac-coupled and matched to 50 Ω. See Figure 10 for the interface schematic.  
Drain Bias Voltage for the Local Oscillator Buffer. See Figure 11 for the interface schematic.  
Ground Connect. This pin must be connected to RF/dc ground. See Figure 12 for the interface schematic.  
Drain Bias Voltage for the Second Low Noise Amplifier. See Figure 13 for the interface schematic.  
Drain Bias Voltage for the First Low Noise Amplifier. See Figure 14 for the interface schematic.  
Exposed Pad. Connect the exposed pad to RF/dc ground. See Figure 12 for the interface schematic.  
Rev. 0 | Page 5 of 18  
 
HMC8108  
Data Sheet  
INTERFACE SCHEMATICS  
LNA_VG1  
BUFF_VG  
Figure 3. LNA_VG1 Interface Schematic  
Figure 9. BUFF_VG Interface Schematic  
RFIN  
LOIN  
Figure 4. RFIN Interface Schematic  
Figure 10. LOIN Interface Schematic  
BUFF_VD  
VCTRL  
Figure 5. VCTRL Interface Schematic  
Figure 11. BUFF_VD Interface Schematic  
GND  
LNA_VG2  
Figure 6. LNA_VG2 Interface Schematic  
Figure 12. GND and EPAD Interface Schematic  
LNA_VD2  
IF_I, IF_Q  
Figure 7. IF_I and IF_Q Interface Schematic  
Figure 13. LNA_VD2 Interface  
LNA_VD1  
MIX_VG  
Figure 8. MIX_VG Interface Schematic  
Figure 14. LNA_VD1 Interface Schematic  
Rev. 0 | Page 6 of 18  
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
HMC8108  
TYPICAL PERFORMANCE CHARACTERISTICS  
Measurements performed as image reject mixer with lower sideband selected, external 90° hybrid at the IF ports, IF = 60 MHz,  
LO drive = −5 dBm, and TA = −25°C, unless otherwise noted.  
20  
16  
12  
8
20  
16  
12  
8
10GHz  
9.41GHz  
9GHz  
+85°C  
+25°C  
–40°C  
4
4
0
9.0  
0
–16  
9.2  
9.4  
9.6  
9.8  
10.0  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
0
RF FREQUENCY (GHz)  
LO DRIVE (dBm)  
Figure 15. Conversion Gain vs. RF Frequency over Temperature  
Figure 18. Conversion Gain vs. LO Drive at Various RF Frequencies  
20  
16  
16  
12  
8
12  
8
–1.2V  
–1V  
–0.8V  
–0.6V  
–0.4V  
–0.2V  
0V  
4
0
9GHz  
9.34GHz  
4
0
9.375GHz  
9.41GHz  
10GHz  
–4  
–24  
–19  
–14  
–9  
–4  
1
6
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
RF INPUT POWER (dBm)  
RF FREQUENCY (GHz)  
Figure 16. Conversion Gain vs. RF Input Power at Various RF Frequencies  
Figure 19. Conversion Gain vs. RF Frequency at Various Control Voltages  
16  
20  
16  
12  
8
12  
8
4
20MHz  
60MHz  
100MHz  
500MHz  
750MHz  
1000MHz  
10GHz  
9.41GHz  
4
0
0
9GHz  
–4  
–1.2  
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0
RF FREQUENCY (GHz)  
CONTROL VOLTAGE (V)  
Figure 20. Conversion Gain vs. RF Frequency at Various IF Frequencies  
Figure 17. Conversion Gain vs. Control Voltage at Various RF Frequencies  
Rev. 0 | Page 7 of 18  
 
HMC8108  
Data Sheet  
Measurements performed as image reject mixer with lower sideband selected, external 90° hybrid at the IF ports, IF = 60 MHz,  
LO drive = −5 dBm, and TA = −25°C, unless otherwise noted.  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
10GHz  
9.41GHz  
9GHz  
+85°C  
+25°C  
–40°C  
0
9.0  
0
–16  
9.2  
9.4  
9.6  
9.8  
10.0  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
0
RF FREQUENCY (GHz)  
LO DRIVE (dBm)  
Figure 21. Image Rejection vs. RF Frequency over Temperature  
Figure 24. Image Rejection vs. LO Drive at Various RF Frequencies  
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
–1.2V  
–1V  
–0.8V  
–0.6V  
–0.4V  
–0.2V  
0V  
9GHz  
10  
10  
5
9.34GHz  
9.375GHz  
9.41GHz  
5
10GHz  
0
–24  
0
9.0  
–19  
–14  
–9  
–4  
1
6
9.2  
9.4  
9.6  
9.8  
10.0  
RF INPUT POWER (dBm)  
RF FREQUENCY (GHz)  
Figure 22. Image Rejection vs. RF Input Power at Various RF Frequencies  
Figure 25. Image Rejection vs. RF Frequency at Various Control Voltages  
40  
35  
30  
25  
20  
15  
40  
35  
20MHz  
60MHz  
100MHz  
500MHz  
750MHz  
1000MHz  
30  
25  
20  
15  
10  
5
10GHz  
10  
9.41GHz  
9GHz  
5
0
–1.2  
0
9.0  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0
9.2  
9.4  
9.6  
9.8  
10.0  
CONTROL VOLTAGE (V)  
RF FREQUENCY (GHz)  
Figure 23. Image Rejection vs. Control Voltage at Various RF Frequencies  
Figure 26. Image Rejection vs. RF Frequency at Various IF Frequencies  
Rev. 0 | Page 8 of 18  
Data Sheet  
HMC8108  
Measurements performed as image reject mixer with lower sideband selected, external 90° hybrid at the IF ports, IF = 60 MHz,  
LO drive = −5 dBm, and TA = −25°C, unless otherwise noted.  
12  
10  
8
12  
10  
8
10GHz  
9.41GHz  
9GHz  
6
6
4
4
+85°C  
+25°C  
–40°C  
2
2
0
9.0  
0
–16  
9.2  
9.4  
9.6  
9.8  
10.0  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
0
RF FREQUENCY (GHz)  
LO DRIVE (dBm)  
Figure 27. Input Third-Order Intercept (IP3) vs. RF Frequency over  
Temperature  
Figure 30. Input Third-Order Intercept (IP3) vs. LO Drive at Various  
RF Frequencies  
12  
10  
8
25  
20  
–1.2V  
–1V  
–0.8V  
–0.6V  
–0.4V  
–0.2V  
0V  
15  
10  
5
6
4
9GHz  
9.34GHz  
9.375GHz  
2
9.41GHz  
10GHz  
0
–24  
0
9.0  
–19  
–14  
–9  
–4  
1
6
9.2  
9.4  
9.6  
9.8  
10.0  
RF INPUT POWER (dBm)  
RF FREQUENCY (GHz)  
Figure 28. Input Third-Order Intercept (IP3) vs. RF Input Power at Various  
RF Frequencies  
Figure 31. Input Third-Order Intercept (IP3) vs. RF Frequency at Various  
Control Voltages  
25  
12  
20MHz  
60MHz  
100MHz  
500MHz  
750MHz  
1000MHz  
10  
8
10GHz  
20  
9.41GHz  
9GHz  
15  
6
10  
5
4
2
0
–1.2  
0
9.0  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0
9.2  
9.4  
9.6  
9.8  
10.0  
CONTROL VOLTAGE (V)  
RF FREQUENCY (GHz)  
Figure 29. Input Third-Order Intercept (IP3) vs. Control Voltage at Various RF  
Frequencies  
Figure 32. Input Third-Order Intercept (IP3) vs. RF Frequency at Various IF  
Frequencies  
Rev. 0 | Page 9 of 18  
HMC8108  
Data Sheet  
Measurements performed as image reject mixer with lower sideband selected, external 90° hybrid at the IF ports, IF = 60 MHz,  
LO drive = −5 dBm, and TA = −25°C, unless otherwise noted.  
20  
16  
12  
8
20  
16  
12  
8
10GHz  
9.41GHz  
9GHz  
+85°C  
+25°C  
–40°C  
4
4
0
–16  
0
9.0  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
0
9.2  
9.4  
9.6  
9.8  
10.0  
LO DRIVE (dBm)  
RF FREQUENCY (GHz)  
Figure 36. Input Second-Order Intercept (IP2) vs. LO Drive at Various  
RF Frequencies  
Figure 33. Input Second-Order Intercept (IP2) vs. RF Frequency over  
Temperature  
30  
25  
20  
15  
10  
35  
9GHz  
30  
25  
20  
15  
10  
5
9.34GHz  
9.375GHz  
9.41GHz  
10GHz  
–1.2V  
–1V  
–0.8V  
–0.6V  
–0.4V  
–0.2V  
0V  
5
0
9.0  
0
–24  
9.2  
9.4  
9.6  
9.8  
10.0  
–19  
–14  
–9  
–4  
1
6
RF FREQUENCY (GHz)  
RF INPUT POWER (dBm)  
Figure 37. Input Second-Order Intercept (IP2) vs. RF Frequency at Various  
Control Voltages  
Figure 34. Input Second-Order Intercept (IP2) vs. RF Input Power at Various  
RF Frequencies  
20  
16  
12  
8
30  
25  
20  
15  
10  
5
10GHz  
9.41GHz  
9GHz  
20MHz  
60MHz  
100MHz  
500MHz  
750MHz  
1000MHz  
4
0
0
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
–1.2  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0
RF FREQUENCY (GHz)  
CONTROL VOLTAGE (V)  
Figure 38. Input Second-Order Intercept (IP2) vs. RF Frequency at Various  
IF Frequencies  
Figure 35. Input Second-Order Intercept (IP2) vs. Control Voltage at Various  
RF Frequencies  
Rev. 0 | Page 10 of 18  
Data Sheet  
HMC8108  
Measurements performed as image reject mixer with lower sideband selected, external 90° hybrid at the IF ports, IF = 60 MHz,  
LO drive = −5 dBm, and TA = −25°C, unless otherwise noted.  
0
0
–2  
–2  
–4  
–4  
–6  
–6  
+85°C  
+25°C  
–40°C  
–0.5V  
–1V  
0V  
–8  
–8  
–10  
9.0  
–10  
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
9.2  
9.4  
9.6  
9.8  
10.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Input Power for 1 dB Compression (P1dB) vs. RF Frequency over  
Temperature  
Figure 42. Input Power for 1 dB Compression (P1dB) vs. RF Frequency at  
Various Control Voltages  
20  
15  
170  
160  
150  
140  
130  
120  
110  
100  
90  
5
4
3
2
+85°C  
+25°C  
–40°C  
10  
5
0
–5  
+85°C  
+25°C  
–40°C  
–10  
–15  
–20  
1
0
–30 –26 –22 –18 –14 –10  
–6  
–2  
2
6
10  
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
RF INPUT POWER (dBm)  
RF FREQUENCY (GHz)  
Figure 40. IF Output Power and Total Drain Current vs. RF Input Power over  
Temperature  
Figure 43. Noise Figure vs. RF Frequency over Temperature  
10  
16  
10GHz  
8
–0.5V  
–1V  
0V  
9.41GHz  
12  
8
9GHz  
6
4
2
0
4
0
9.0  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
0
9.2  
9.4  
9.6  
9.8  
10.0  
LO DRIVE (dBm)  
RF FREQUENCY (GHz)  
Figure 41. Noise Figure vs. LO Drive at Various RF Frequencies  
Figure 44. Noise Figure vs. RF Frequency at Various Control Voltages  
Rev. 0 | Page 11 of 18  
HMC8108  
Data Sheet  
Measurements performed as image reject mixer with lower sideband selected, external 90° hybrid at the IF ports, IF = 60 MHz,  
LO drive = −5 dBm, and TA = −25°C, unless otherwise noted.  
16  
12  
8
5
4
3
2
1
0
10GHz  
9.41GHz  
9GHz  
10GHz  
9.41GHz  
9GHz  
4
0
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120  
CONTROL VOLTAGE (V)  
IF FREQUENCY (MHz)  
Figure 45. Noise Figure vs. Control Voltage at Various RF Frequencies  
Figure 47. Noise Figure vs. IF Frequency at Various RF Frequencies  
6
5
4
3
2
10MHz  
20MHz  
30MHz  
40MHz  
50MHz  
60MHz  
70MHz  
80MHz  
90MHz  
100MHz  
110MHz  
120MHz  
1
0
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
RF FREQUENCY (GHz)  
Figure 46. Noise Figure vs. RF Frequency at Various IF Frequencies  
Rev. 0 | Page 12 of 18  
Data Sheet  
HMC8108  
Measurements performed without external 90° hybrid at the IF ports and TA = −25°C, unless otherwise noted.  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
9.0  
9.4  
9.8  
10.2  
10.6  
11.0  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 48. RF Return Loss vs. RF Frequency over Temperature  
Figure 51. LO Return Loss vs. LO Frequency over Temperature  
0
0
LO TO RF  
LO TO IF_I  
LO TO IF_Q  
RF TO IF_I  
RF TO IF_Q  
IF_I AT +85°C  
IF_I AT +25°C  
IF_I AT –40°C  
IF_Q AT +85°C  
IF_Q AT +25°C  
IF_Q AT –40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–20  
–30  
–40  
–50  
0
0.2  
0.4  
0.6  
0.8  
1.0  
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
IF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 49. In-Phase and Quadrature IF Output Return Loss vs. IF Frequency  
over Temperature  
Figure 52. Leakage vs. RF Frequency  
6
2
0
+85°C  
4
2
+25°C  
–40°C  
–2  
–4  
–6  
–8  
0
+85°C  
+25°C  
–40°C  
–2  
–4  
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 50. Amplitude Balance vs. RF Frequency over Temperature  
Figure 53. Phase Balance vs. RF Frequency over Temperature  
Rev. 0 | Page 13 of 18  
HMC8108  
Data Sheet  
THEORY OF OPERATION  
The HMC8108 is a X-band, low noise converter with integrated  
LO buffers that converts RF input signals ranging from 9 GHz  
to 10 GHz down to a typical single-ended IF signal of 60 MHz  
at its output. See Figure 54 for a functional block diagram of the  
circuit architecture of the HMC8108.  
The RF input signal passes through two stages of low noise  
amplification. The preamplified RF input signal then splits  
through an internal hybrid to feed two singly balanced passive  
mixers. A power divider followed by three LO buffer amplifiers  
drives the two I and Q mixer cores to convert the amplified RF  
input frequencies to a 60 MHz typical single-ended IF. A variable  
attenuator allows gain control ranging from 10 dB to 30 dB.  
VCTRL LNA_VD1 LNA_VD2  
IF_Q  
BUFF_VD  
HYBRID  
MIX  
MIX  
RFIN  
LNA1  
LNA2  
ESD  
ATTENUATOR  
LOIN  
BUFF3  
BUFF2  
BUFF1  
DIV  
LNA_VG1 LNA_VG2  
MIX_VG IF_I  
BUFF_VG  
Figure 54. Functional Block Diagram of the Circuit Architecture  
Rev. 0 | Page 14 of 18  
 
 
Data Sheet  
HMC8108  
APPLICATIONS INFORMATION  
A typical lower sideband application circuit is shown in Figure 57.  
The IF_Q output signal of the HMC8108 is connected to the  
90° port of the hybrid coupler followed by a low-pass filter to  
produce a lower sideband IF output signal. The LO input signal  
passes through a voltage control oscillator (VCO) followed by  
an optional buffer amplifier, a 2× frequency multiplier, and an  
optional band-pass filter before entering the LO port of the  
device. Band-pass filter and LO buffer are optional and depend  
on the VCO specification and the LO input power requirement.  
External capacitors of 0.6 pF, 1 nF, 10 nF, and 100 nF, and 5.6 nH  
inductors are connected to the input voltage pin of the device.  
The IF_I and IF_Q pins are dc-coupled and must not source or  
sink more than 3 mA of current or device malfunction or possible  
device failure may result. For applications not requiring  
operation to dc, use an off chip dc blocking capacitor.  
To turn off the HMC8108, take the following steps:  
1. Turn off the LO and RF signal source.  
2. Turn off the LNA_VD1, LNA_VD2, and BUFF_VD power  
supplies.  
3. Turn off the LNA_VG1, LNA_VG2, BUFF_VG, MIX_VG,  
and VCTRL power supplies. Refer to Figure 55 for the  
HMC8108 lab bench setup.  
RF INPUT  
POWER  
SUPPLY  
POWER  
SUPPLY  
BIASING SEQUENCE  
90° HYBRID FOR  
I/Q IF OUTPUT  
90°  
0°  
The HMC8108 uses amplifier and LO buffer stages. These active  
stages use depletion mode, pseudomorphic high electron  
mobility transfer (pHEMT) transistors.  
To avoid transistor damage, follow these power-up bias  
sequence steps:  
POWER  
SUPPLY  
1. Set the LNA_VG1, LNA_VG2, and BUFF_VG power  
supplies to −2 V and the MIX_VG power supply to +1.4 V.  
Do not turn on the power supplies.  
LO INPUT  
SPECTRUM  
ANALYZER  
Figure 55. HMC8108 Lab Bench Setup  
2. Set the LNA_VD1, LNA_VD2, and BUFF_VD power  
supplies to 3 V. Do not turn on the power supplies.  
3. Set the VCTRL power supply to −1 V. Do not turn on the  
power supply.  
4. Turn on the power supplies in Step 1, Step 2, and Step 3 in  
order.  
5. Adjust the LNA_VG1, LNA_VG2, and BUFF_VG power  
supplies between −2 V and 0 V to achieve an quiescent  
current LNA_ID1, LNA_ID2, and BUFF_ID = 20 mA,  
30 mA, and 40 mA, respectively.  
6. Connect the signal generator to the RF and LO input.  
7. Connect the 90° hybrid to the IF_I and IF_Q output. Note  
that IF_Q is connected to the 90° port of the hybrid. Under  
this condition, the lower sideband is selected.  
8. Turn on the LO and RF input to see the output on the  
spectrum analyzer.  
RESULTS  
Figure 56 shows the expected results when testing the HMC8108  
with the following operating conditions:  
RF = −15 dBm at 9.44 GHz  
LO = −5 dBm at 9.5 GHz  
The on board IF_Q port is connected to the 90° port of the  
hybrid.  
The lower sideband is selected.  
Note that hybrid, cable, and board loss were not deembedded.  
RWB 6.25kHz  
VBW 20kHz  
SWT 420ms  
MARKER 1 [T1]  
–4.31dBm  
REF 0dBm  
ATT 5dB  
60.00MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
CENTER 59.511MHz  
1.63MHz/  
SPAN 16.3MHz  
Figure 56. Test Results at IF = 60 MHz  
Rev. 0 | Page 15 of 18  
 
 
 
 
 
HMC8108  
Data Sheet  
Figure 57. Typical Application Circuit  
Rev. 0 | Page 16 of 18  
 
Data Sheet  
HMC8108  
directly to the ground plane. A sufficient number of via holes  
EVALUATION BOARD INFORMATION  
connect the top and bottom ground planes. The full evaluation  
circuit board shown in Figure 58 is available from Analog Devices,  
Inc., upon request.  
RF circuit design techniques were implemented for the evaluation  
board PCB shown in Figure 58. Signal lines have 50 Ω impedance,  
and the package ground leads and exposed pad are connected  
Figure 58. EV1HMC8108LC5 Evaluation PCB Top Layer  
Table 5. Bill of Material for the EV1HMC8108LC5 Evaluation PCB  
Reference Designator  
Quantity  
Description  
600-01494-00-1  
J1, J2  
J3, J7  
J4  
J5, J6  
C1  
C2 to C12  
C13 to C16, C18 to C21  
C22 to C29  
C30 to C32  
L1 to L3  
1
2
2
1
2
1
11  
8
8
3
3
3
1
Evaluation board PCB; circuit board material: Rogers 4350 or Arlon 25FR  
SMA connectors, SRI  
SMA connectors, Johnson  
Connector header, 2 mm ,12-position vertical, SMT  
Terminal strips, single row, 3-pin, SMT  
Ceramic capacitor, 0.5 pF, 50 V, C0G, 0402  
Ceramic capacitors, 0.6 pF, 0.1 pF, 50 V, C0G, 0402  
Ceramic capacitors, 1 nF, 50 V, X7R, 0402  
Ceramic capacitors, 10 nF, 50 V, 10%, X7R, 0402  
Ceramic capacitors, 100 nF, 16 V, 10%, X7R, 0402  
Inductors, 5.6 nH, 0402, 5%, 760 mA  
TP1 to TP3  
U1  
Test points, PC compact, SMT  
Device under test (DUT), HMC8108LC5  
Rev. 0 | Page 17 of 18  
 
 
HMC8108  
Data Sheet  
OUTLINE DIMENSIONS  
5.05  
4.90 SQ  
4.75  
0.36  
0.30  
0.24  
PIN 1  
INDICATOR  
PIN 1  
(0.32 × 0.32)  
25  
32  
24  
1
0.50  
BSC  
EXPOSED  
PAD  
3.50 SQ  
17  
8
16  
9
BOTTOM VIEW  
3.50 REF  
TOP VIEW  
SIDE VIEW  
4.10 BSC  
1.12 MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 59. 32-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package Body  
Material  
MSL  
Package  
Model1  
Lead Finish  
Rating2 Package Description Option  
Branding3  
HMC8108LC5  
−40°C to +85°C Alumina Ceramic Gold over Nickel MSL3  
32-Terminal LCC  
32-Terminal LCC  
32-Terminal LCC  
Evaluation Board  
E-32-1  
E-32-1  
E-32-1  
H8108  
XXXX  
H8108  
XXXX  
H8108  
XXXX  
HMC8108LC5TR  
−40°C to +85°C Alumina Ceramic Gold over Nickel MSL3  
HMC8108LC5TR-R5 −40°C to +85°C Alumina Ceramic Gold over Nickel MSL3  
EV1HMC8108LC5 −40°C to +85°C Alumina Ceramic  
1 The HMC8108LC5, the HMC8108LC5TR, and the HMC8108LC5TR-R5 are RoHS Compliant Parts.  
2 See the Absolute Maximum Ratings section.  
3 The HMC8108LC5, the HMC8108LC5TR, and the HMC8108LC5TR-R5 four-digit lot numbers are XXXX.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15133-0-2/17(0)  
Rev. 0 | Page 18 of 18  
 
 

相关型号:

HMC8108LC5TR

9 GHz to 10 GHz, X-Band, GaAs, MMIC, Low Noise Converter
ADI

HMC8108LC5TR-R5

9 GHz to 10 GHz, X-Band, GaAs, MMIC, Low Noise Converter
ADI

HMC8120

暂无描述
ADI

HMC8120-SX

HMC8120-SX
ADI

HMC8121

HMC8121
ADI

HMC8121-SX

HMC8121-SX
ADI

HMC812LC4

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz
HITTITE

HMC812LC4RTR

暂无描述
HITTITE

HMC812LC4TR

Variable Attenuator,
HITTITE

HMC812LC4_11

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz
HITTITE

HMC813

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA) WITH LIMITED RF OUTPUT, 1 - 26 GHz
HITTITE

HMC813LC4B

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA)LIMITED RF OUTPUT, 1 - 20 GHz
HITTITE