HMC8121 [ADI]

HMC8121;
HMC8121
型号: HMC8121
厂家: ADI    ADI
描述:

HMC8121

射频 微波
文件: 总16页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
81 GHz to 86 GHz,  
E-Band Variable Gain Amplifier  
Data Sheet  
HMC8121  
FEATURES  
GENERAL DESCRIPTION  
Gain: 22 dB typical  
The HMC8121 is an integrated E-band, gallium arsenide (GaAs),  
pseudomorphic (pHEMT), monolithic microwave integrated  
circuit (MMIC), variable gain amplifier and/or driver amplifier  
that operates from 81 GHz to 86 GHz. The HMC8121 provides up  
to 22 dB of gain, 20 dBm output P1dB, 27.5 dBm of OIP3, and  
21 dBm of PSAT while requiring only 265 mA from a 4 V power  
supply. Two gain control voltages (VCTL1 and VCTL2) are provided  
to allow up to 17 dB of variable gain control. The HMC8121  
exhibits excellent linearity and is optimized for E-band  
communications and high capacity wireless backhaul radio  
systems. All data is taken with the chip in a 50 Ω test fixture  
connected via a 3 mil wide × 0.5 mil thick × 7 mil long ribbon  
on each port.  
Wide gain control range: 17 dB typical  
Output third-order intercept (OIP3): 27.5 dBm typical  
Output power for 1 dB compression (P1dB): 20 dBm typical  
Saturated output power (PSAT): 21 dBm typical  
DC supply: 4 V at 265 mA  
No external matching required  
Die size: 3.599 mm × 1.369 mm × 0.05 mm  
APPLICATIONS  
E-band communication systems  
High capacity wireless backhaul radio systems  
Test and measurement  
FUNCTIONAL BLOCK DIAGRAM  
1
2
3
HMC8121  
4
5
6
RFOUT  
1.6k  
1.6kΩ  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC8121  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 12  
Typical Application Circuit........................................................... 13  
Assembly Diagram ..................................................................... 14  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 6  
Mounting and Bonding Techniques for Millimeterwave GaAs  
MMICs............................................................................................. 15  
Handling Precautions ................................................................ 15  
Mounting..................................................................................... 15  
Wire Bonding.............................................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
4/2017—Rev. A to Rev. B  
Updated Outline Dimensions....................................................... 16  
2/2016—Revision A: Initial Version  
Rev. B | Page 2 of 16  
 
Data Sheet  
HMC8121  
SPECIFICATIONS  
TA = 25°C, VDDx = 4 V, VCTLx = −5 V, unless otherwise noted.  
Table 1.  
Min  
81  
Typ  
Max  
Unit  
Parameter  
OPERATING CONDITIONS  
RF Frequency Range  
PERFORMANCE  
86  
GHz  
Gain  
19  
22  
dB  
Gain Variation over Temperature  
Gain Control Range  
Output Power for 1 dB Compression (P1dB)  
0.03  
17  
dB/°C  
dB  
12  
16  
20  
dBm  
dBm  
dBm  
dB  
Saturated Output Power (PSAT  
)
21  
Output Third-Order Intercept (OIP3) at Maximum Gain1  
27.5  
12  
Input Return Loss  
Output Return Loss  
10  
dB  
POWER SUPPLY  
Total Supply Current (IDD)2  
265  
mA  
1 Data taken at power input (PIN) = −10 dBm/tone, 1 MHz spacing.  
2 Set VCTL1/VCTL2 = −5 V and then adjust VGG1/VGG2, VGG3, VGG4, VGG5, and VGG6 from −2 V to 0 V to achieve a total drain current (IDD) = 265 mA.  
Rev. B | Page 3 of 16  
 
HMC8121  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Table 3. Thermal Resistance  
Package Type  
Parameter  
Rating  
1
Drain Bias Voltage (VDD1 to VDD6  
Gate Bias Voltage (VGG1/VGG2, VGG3 to VGG6  
Gain Control Voltage (VCTL1 and VCTL2  
Maximum Junction Temperature (to Maintain  
1 Million Hours Mean Time to Failure (MTTF))  
)
4.5 V  
θJC  
69.5  
Unit  
)
−3 V to 0 V  
−6 V to 0 V  
175°C  
28-Pad Bare Die [CHIP]  
°C/W  
)
1 Based on ABLEBOND® 84-1LMIT as die attach epoxy with thermal  
conductivity of 3.6 W/mK.  
Storage Temperature Range  
Operating Temperature Range  
−65°C to +150°C  
−55°C to +85°C  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 4 of 16  
 
 
 
Data Sheet  
HMC8121  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
GND  
RFOUT  
GND  
HMC8121  
TOP VIEW  
(Not to Scale)  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
Figure 2. Pad Configuration  
Table 4. Pad Function Descriptions  
Pad No. Mnemonic  
Description  
Ground Connection (See Figure 3).  
1, 3, 4, 6, 10, 13, 16, GND  
19, 24, 27  
2
5
7
RFIN  
RFOUT  
VDET  
RF Input. DC couple RFIN and match it to 50 Ω (see Figure 4).  
RF Output. DC couple RFOUT and match it to 50 Ω (see Figure 5).  
Detector Voltage for the Power Detector (See Figure 6). VDET is the dc voltage representing the RF  
output power rectified by the diode, which is biased through an external resistor. Refer to the typical  
application circuit for the required external components (see Figure 38).  
8
VREF  
Reference Voltage for the Power Detector (See Figure 6). VREF is the dc bias of the diode biased through  
an external resistor used for the temperature compensation of VDET. Refer to the typical application  
circuit for the required external components (see Figure 38).  
9, 12, 15, 18, 25, 26 VDD6 to VDD1  
Drain Bias Voltage for the Variable Gain Amplifier (See Figure 7). For the required external  
components, see Figure 38.  
11, 14, 17, 20, 28  
21, 22  
VGG6 to VGG3  
,
Gate Bias Voltage for the Variable Gain Amplifier (See Figure 8). For the required external components,  
see Figure 38.  
Gain Control Voltage for the Variable Gain Amplifier (See Figure 9). For the required external  
components, see Figure 38.  
V
GG1/VGG2  
VCTL2, VCTL1  
23  
ENVDET  
GND  
Envelope Detector (See Figure 10). For the required external components, see Figure 38.  
Ground. Die bottom must be connected to the RF/dc ground (see Figure 3).  
Die Bottom  
Rev. B | Page 5 of 16  
 
HMC8121  
Data Sheet  
INTERFACE SCHEMATICS  
V
, V  
DD5  
, V ,  
DD4  
DD6  
V
, V  
, V  
DD3  
DD2  
DD1  
GND  
Figure 7. VDD6 to VDD1 Interface  
Figure 3. GND Interface  
RFIN  
1.6k  
V
TO V ,  
GG3  
GG6  
V
/V  
GG1 GG2  
Figure 8. VGG6 to VGG3, VGG1/VGG2 Interface  
Figure 4. RFIN Interface  
RFOUT  
1.6k  
V
, V  
CTL1  
CTL2  
Figure 9. VCTL2, VCTL1 Interface  
Figure 5. RFOUT Interface  
V
, V  
ENV  
DET  
DET  
REF  
Figure 6. VDET, VREF Interface  
Figure 10. ENVDET Interface  
Rev. B | Page 6 of 16  
 
 
 
 
 
 
 
 
 
Data Sheet  
HMC8121  
TYPICAL PERFORMANCE CHARACTERISTICS  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
T
T
T
= –55°C  
= +25°C  
= +85°C  
A
A
A
20  
GAIN  
INPUT RETURN LOSS  
OUTPUT RETURN LOSS  
10  
0
–10  
–20  
–30  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 11. Broadband Gain and Return Loss Response vs. Frequency,  
CTL1/VCTL2 = −5 V  
Figure 14. Gain vs. Frequency at Various Temperatures,  
V
VCTL1/VCTL2 = −5 V  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
RF = 81GHz  
RF = 82GHz  
RF = 83GHz  
RF = 84GHz  
RF = 85GHz  
RF = 86GHz  
V
V
V
V
= –5.0V  
= –4.0V  
= –3.5V  
= –3.0V  
V
= –2.6V  
= –2.2V  
= –2.0V  
= –1.5V  
V
V
V
V
= –1.2V  
= –1.0V  
= –0.5V  
= 0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
V
V
V
0
0
–5.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
FREQUENCY (GHz)  
CONTROL VOLTAGE (V)  
Figure 12. Gain vs. Frequency at Various Control Voltages  
Figure 15. Gain vs. Control Voltage at Various RF Frequencies  
0
0
T
T
T
= –55°C  
= +25°C  
= +85°C  
T
T
T
= –55°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–4  
–8  
–4  
–8  
–12  
–16  
–20  
–24  
–12  
–16  
–20  
–24  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5  
86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. Input Return Loss vs. Frequency at Various Temperatures,  
VCTL1/VCTL2 = −5 V  
Figure 16. Output Return Loss vs. Frequency at Various Temperatures,  
VCTL1/VCTL2 = −5 V  
Rev. B | Page 7 of 16  
 
HMC8121  
Data Sheet  
0
0
–4  
V
V
V
V
= –5.0V  
= –4.0V  
= –3.5V  
= –3.0V  
V
V
V
V
= –2.6V  
= –2.2V  
= –2.0V  
= –1.5V  
V
V
= –1.2V  
= –1.0V  
V
V
V
V
= –5.0V  
= –4.0V  
= –3.5V  
= –3.0V  
V
V
V
V
= –2.6V  
= –2.2V  
= –2.0V  
= –1.5V  
V
V
= –1.2V  
= –1.0V  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
CTLx  
–5  
–10  
–15  
–20  
–25  
–30  
–8  
–12  
–16  
–20  
–24  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 17. Input Return Loss vs. Frequency at Various Control Voltages  
Figure 20. Output Return Loss vs. Frequency at Various Control Voltages  
–40  
30  
29  
28  
27  
26  
25  
24  
23  
22  
T
T
T
= –55°C  
= +25°C  
= +85°C  
A
A
A
–45  
–50  
–55  
–60  
–65  
–70  
T
T
T
= –55°C  
= +25°C  
= +85°C  
A
A
A
21  
20  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 21. Output IP3 vs. Frequency at Various Temperatures,  
PIN = −10 dBm/Tone, VCTL1/VCTL2 = −5 V  
Figure 18. Reverse Isolation vs. Frequency at Various Temperatures,  
VCTL1/VCTL2 = −5 V  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
25  
T
T
T
= –55°C  
= +25°C  
= +85°C  
T
T
T
= –55°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 22. PSAT vs. Frequency at Various Temperatures,  
VCTL1/VCTL2 = −5 V  
Figure 19. Output P1dB vs. Frequency at Various Temperatures,  
VCTL1/VCTL2 = −5 V  
Rev. B | Page 8 of 16  
Data Sheet  
HMC8121  
25  
20  
32  
28  
24  
20  
16  
12  
8
GAIN  
IIP3  
GAIN  
IIP3  
OIP3  
OIP3  
15  
10  
5
0
–5  
–10  
–15  
–20  
4
0
–5.0  
265  
245  
225  
205  
185  
165  
145  
125  
105  
85  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
DRAIN CURRENT (mA)  
CONTROL VOLTAGE (V)  
Figure 26. Gain and Input/Output IP3 vs. Drain Current,  
PIN = −5 dBm/Tone, VCTL1/VCTL2 = −1 V, RF = 81 GHz,  
Drain Current = (IDD1/IDD2 Fixed at 50 mA) + (IDD3 to IDD6 Swept)  
Figure 23. Gain and Input/Output IP3 vs. Control Voltage,  
PIN = −10 dBm/Tone, RF = 81 GHz  
32  
28  
24  
20  
16  
12  
8
25  
GAIN  
IIP3  
OIP3  
GAIN  
IIP3  
OIP3  
20  
15  
10  
5
0
–5  
–10  
4
–15  
0
–5.0  
–20  
265  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
245  
225  
205  
185  
165  
145  
125  
105  
85  
CONTROL VOLTAGE (V)  
DRAIN CURRENT (mA)  
Figure 24. Gain and Input/Output IP3 vs. Control Voltage,  
PIN = −10 dBm/Tone, RF = 83.5 GHz  
Figure 27. Gain and Input/Output IP3 vs. Drain Current,  
PIN = −5 dBm/Tone, VCTL1/VCTL2 = −1 V, RF = 83.5 GHz,  
Drain Current = (IDD1/IDD2 Fixed at 50 mA) + (IDD3 to IDD6 Swept)  
25  
32  
28  
24  
20  
16  
12  
8
GAIN  
IIP3  
OIP3  
GAIN  
IIP3  
OIP3  
20  
15  
10  
5
0
–5  
–10  
4
–15  
–20  
265  
0
–5.0  
245  
225  
205  
185  
165  
145  
125  
105  
85  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
DRAIN CURRENT (mA)  
CONTROL VOLTAGE (V)  
Figure 28. Gain and Input/Output IP3 vs. Drain Current,  
PIN = −5 dBm/Tone, VCTL1/VCTL2 = −1 V, RF = 86 GHz,  
Figure 25. Gain and Input/Output IP3 vs. Control Voltage,  
PIN = −10 dBm/Tone, RF = 86 GHz  
Drain Current = (IDD1/IDD2 Fixed at 50 mA) + (IDD3 to IDD6 Swept)  
Rev. B | Page 9 of 16  
HMC8121  
Data Sheet  
24  
20  
16  
12  
8
350  
330  
310  
290  
270  
250  
230  
10  
5
P
OUT  
GAIN  
0
PAE  
I
DD  
–5  
–10  
I
= 265mA  
= 250mA  
= 225mA  
= 200mA  
= 175mA  
= 150mA  
I
I
I
I
I
I
= 140mA  
= 130mA  
= 120mA  
= 110mA  
= 100mA  
= 90mA  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
I
I
4
–15  
I
I
I
0
–15  
–20  
–13  
–11  
–9  
–7  
–5  
–3  
–1  
1
3
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 29. Gain vs. Frequency at Various Drain Currents,  
PIN = −5 dBm/Tone, VCTL1/VCTL2 = −1 V,  
Figure 32. POUT, Gain, PAE, and IDD vs. Input Power,  
CTL1/VCTL2 = −5 V, RF = 81 GHz  
V
Drain Current = (IDD1/IDD2 fixed at 50 mA) + (IDD3 to IDD6 Swept)  
24  
20  
16  
12  
8
350  
330  
24  
20  
16  
12  
8
350  
330  
310  
290  
270  
250  
230  
P
P
OUT  
OUT  
GAIN  
GAIN  
310  
290  
270  
250  
230  
PAE  
PAE  
I
I
DD  
DD  
4
4
0
–15  
0
–15  
–13  
–11  
–9  
–7  
–5  
–3  
–1  
1
3
–13  
–11  
–9  
–7  
–5  
–3  
–1  
1
3
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 30. POUT, Gain, PAE, and IDD vs. Input Power,  
CTL1/VCTL2 = −5 V, RF = 83.5 GHz  
Figure 33. POUT, Gain, PAE, and IDD vs. Input Power,  
VCTL1/VCTL2 = −5 V, RF = 86 GHz  
V
10  
0.40  
RF = 81GHz  
RF = 83.5GHz  
RF = 86GHz  
100MHz TONE SPACING  
300MHz TONE SPACING  
500MHz TONE SPACING  
750MHz TONE SPACING  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1
0.1  
0.01  
0.001  
–4  
0
4
8
12  
16  
20  
–20  
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
OUTPUT POWER (dBm)  
TOTAL INPUT POWER (dBm)  
Figure 31. Detector Output Voltage (VREF – VDET) vs. Output Power at  
Various RF Frequencies, VCTL1/VCTL2 = −5 V  
Figure 34. Envelope Detector Peak-to-Peak Output Voltage vs. Total Input  
Power at Various Tone Spacings, RF = 81 GHz, VCTL1/VCTL2 = −5 V,  
VDET = 4 V with 150 Ω Load Impedance at ENVDET  
Rev. B | Page 10 of 16  
Data Sheet  
HMC8121  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.40  
100MHz TONE SPACING  
300MHz TONE SPACING  
500MHz TONE SPACING  
750MHz TONE SPACING  
100MHz TONE SPACING  
300MHz TONE SPACING  
500MHz TONE SPACING  
750MHz TONE SPACING  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–20  
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
–20  
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
TOTAL INPUT POWER (dBm)  
TOTAL INPUT POWER (dBm)  
Figure 36. Envelope Detector Peak-to-Peak Output Voltage vs. Total Input  
Power at Various Tone Spacings, RF = 86 GHz, VCTL1/VCTL2 = −5 V,  
Figure 35. Envelope Detector Peak-to-Peak Output Voltage vs. Total Input  
Power at Various Tone Spacings, RF = 83.5 GHz, VCTL1/VCTL2 = −5 V,  
VDET = 4 V with 150 Ω Load Impedance at ENVDET  
VDET = 4 V with 150 Ω Load Impedance at ENVDET  
Rev. B | Page 11 of 16  
HMC8121  
Data Sheet  
THEORY OF OPERATION  
The circuit architecture of the HMC8121 variable gain amplifier  
is shown in Figure 37. The HMC8121 uses multiple gain stages  
and staggered voltage variable attenuation stages to form a low  
noise, high linearity variable gain amplifier with a gain range of  
~17 dB. The first stage is a low noise preamp, which is followed  
by the first voltage variable attenuator in the signal path. A  
portion of the signal is coupled away and further amplified  
before driving an on-chip envelope detector. The envelope  
detector provides an output that is proportional to the peak  
envelope power of the incoming signal. After the first  
attenuator, a second stage amplifier provides additional gain  
and isolation before driving the second variable attenuator  
block. Three cascaded gain stages follow the second variable  
attenuator. At the output of the last stage, another coupler taps  
off a small portion of the output signal. The coupled signal is  
presented to an on-chip diode detector for external monitoring  
of the output power. A matched reference diode is included to  
help correct for detector temperature dependencies. See the  
application circuit in Figure 38 for further details on biasing the  
different blocks and utilizing the detector features.  
RFIN  
RFOUT  
ENV  
DET  
ENV  
V
V
V
V
DET  
DET  
CTL1  
CTL2  
REF  
Figure 37. Variable Gain Amplifier Circuit Architecture  
Rev. B | Page 12 of 16  
 
 
Data Sheet  
HMC8121  
TYPICAL APPLICATION CIRCUIT  
A typical application circuit for the HMC8121 is provided in  
Figure 38. For typical operation, drive the attenuator control  
pads from a single control voltage. It is important to bypass all  
the supply connections and attenuator control pads with  
adequate bypassing capacitors. Use single-layer chip capacitors  
with very high self-resonant frequency close to the HMC8121  
die, bypassing each supply or control pad. Typically, 120 pF chip  
capacitors are used, followed by 0.01 µF and 4.7 µF surface-mount  
capacitors. Combine supply lines as shown in the application  
circuit schematic to minimize external component count and  
simplify power supply routing (see Figure 38). Pad 25 and Pad 26  
are internally connected. Therefore, use either pad to connect  
The HMC8121 uses several amplifier, detector, and attenuator  
stages. All stages use depletion mode pHEMT transistors. It is  
important to follow the following power-up bias sequence to  
ensure transistor damage does not occur.  
1. Apply a −5 V bias to the VCTL1 and VCTL2 pads.  
2. Apply a −2 V bias to the VGG3 to VGG6 and VGG1/VGG2 pads.  
3. Apply 4 V to the VDD1 to VDD6 pads.  
4. Adjust VGG1/VGG2 and VGG3 to VGG6 between −2 V and 0 V  
to achieve a total amplifier drain current of 265 mA.  
After bias is established, adjust the VCTL1 = VCTL2 bias between  
−5 V and 0 V to achieve the desired gain.  
the external bypass components of VDD1/VDD2  
.
To power down the HMC8121, follow the reverse procedure.  
For additional guidance on general bias sequencing, see the  
MMIC Amplifier Biasing Procedure application note.  
1
2
3
4
5
6
RFOUT  
1.6kΩ  
1.6kΩ  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
120pF  
120pF  
120pF  
120pF  
120pF  
120pF  
120pF  
120pF  
120pF  
120pF  
120pF  
0.01µF  
4.7µF  
120pF  
0.01µF  
4.7µF  
0.01µF  
4.7µF  
0.01µF  
4.7µF  
0.01µF  
4.7µF  
0.01µF  
4.7µF  
0.01µF  
4.7µF  
V
, V  
V
, V  
V
DD6  
V
/V  
V
, V  
V
, V  
, V  
V
, V  
CTL1  
CTL2  
GG3 GG4  
GG1 GG2  
DD1 DD2  
DD3  
DD4  
DD5  
GG5 GG6  
V
V
DET  
REF  
+5V  
100kΩ 100kΩ  
+5V  
1000pF  
10kΩ  
10kΩ  
150Ω  
3.5kΩ  
+4V  
ENV  
DET  
V
= V  
– V  
OUT  
REF DET  
10kΩ  
10kΩ  
–5V  
SUGGESTED CIRCUIT  
Figure 38. Typical Application Circuit  
Rev. B | Page 13 of 16  
 
 
HMC8121  
Data Sheet  
ASSEMBLY DIAGRAM  
50Ω  
TRANSMISSION  
LINE  
3 MIL WIDE  
GOLD RIBBON  
(WEDGE BOND)  
3 MIL  
NOMINAL  
GAP  
1
2
3
4
5
6
RFOUT  
1.6kΩ  
1.6kΩ  
3 MIL WIDE  
GOLD RIBBON  
(WEDGE BOND)  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
120pF  
0.01µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
V
/V  
V
, V  
V
, V  
V
, V  
V
, V  
, V  
V
, V  
V
DD6  
GG1 GG2  
DD1  
DD2  
CTL1  
CTL2  
GG3 GG4  
DD3  
DD4  
DD5  
GG5 GG6  
Figure 39. Assembly Diagram  
Rev. B | Page 14 of 16  
 
Data Sheet  
HMC8121  
MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICS  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy.  
Transients  
Suppress instrument and bias supply transients while bias is  
applied. To minimize inductive pickup, use shielded signal and  
bias cables.  
To bring RF to and from the chip, use 50 Ω microstrip trans-  
mission lines on 0.127 mm (5 mil) thick alumina thin film  
substrates (see Figure 40).  
General Handling  
Handle the chip on the edges only using a vacuum collet or with  
a sharp pair of bent tweezers. Because the surface of the chip  
has fragile air bridges, never touch the surface of the chip with a  
vacuum collet, tweezers, or fingers.  
0.05mm (0.002") THICK GaAs MMIC  
RIBBON BOND  
0.076mm  
(0.003")  
MOUNTING  
The chip is back metallized and can be die mounted with gold/tin  
(AuSn) eutectic preforms or with electrically conductive epoxy.  
The mounting surface must be clean and flat.  
RF GROUND PLANE  
Eutectic Die Attach  
0.127mm (0.005") THICK ALUMINA  
THIN FILM SUBSTRATE  
It is best to use an 80% gold/20% tin preform with a work surface  
temperature of 255°C and a tool temperature of 265°C. When  
hot 90% nitrogen/10% hydrogen gas is applied, maintain tool tip  
temperature at 290°C. Do not expose the chip to a temperature  
greater than 320°C for more than 20 sec. No more than 3 sec of  
scrubbing is required for attachment.  
Figure 40. Routing RF Signals  
To minimize bond wire length, place microstrip substrates as  
close to the die as possible. Typical die to substrate spacing is  
0.076 mm to 0.152 mm (3 mil to 6 mil).  
Epoxy Die Attach  
HANDLING PRECAUTIONS  
ABLEBOND 84-1LMIT is recommended for die attachment.  
Apply a minimum amount of epoxy to the mounting surface so  
that a thin epoxy fillet is observed around the perimeter of the  
chip after placing it into position. Cure the epoxy per the  
schedule provided by the manufacturer.  
To avoid permanent damage, adhere to the following  
precautions.  
Storage  
All bare die ship in either waffle or gel-based ESD protective  
containers, sealed in an ESD protective bag. After opening the  
sealed ESD protective bag, all die must be stored in a dry  
nitrogen environment.  
WIRE BONDING  
RF bonds made with 0.003 in. × 0.0005 in. gold ribbon are recom-  
mended for the RF ports. These bonds must be thermosonically  
bonded with a force of 40 g to 60 g. DC bonds of 0.001 in.  
(0.025 mm) diameter, thermosonically bonded, are recommended.  
Create ball bonds with a force of 40 g to 50 g and wedge bonds  
with a force of 18 g to 22 g. Create all bonds with a nominal  
stage temperature of 150°C. Apply a minimum amount of  
ultrasonic energy to achieve reliable bonds. Keep all bonds as  
short as possible, less than 12 mil (0.31 mm).  
Cleanliness  
Handle the chips in a clean environment. Never use liquid  
cleaning systems to clean the chip.  
Static Sensitivity  
Follow ESD precautions to protect against ESD strikes.  
Rev. B | Page 15 of 16  
 
 
 
 
 
HMC8121  
Data Sheet  
OUTLINE DIMENSIONS  
3.599  
0.05  
0.085  
0.125  
0.125  
0.216  
TOP VIEW  
(CIRCUIT SIDE)  
0.225  
1
2
3
4
5
6
0.125  
0.125  
1.200  
1.369  
0.682  
28 27 26 25 24 23 22 21  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
SIDE VIEW  
0.073  
0.085  
0.081  
0.30  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15 0.15  
0.15  
0.15 0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
Figure 41. 28-Pad Bare Die [CHIP]  
(C-28-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
HMC8121  
Temperature Range  
−55°C to +85°C  
−55°C to +85°C  
Package Description  
28-Pad Bare Die [CHIP]  
28-Pad Bare Die [CHIP]  
Package Option2  
C-28-1  
HMC8121-SX  
C-28-1  
1 The HMC8121-SX is two pairs of the die in a gel pack for the sample orders.  
2 This is a waffle pack option; contact Analog Devices, Inc., sales representatives for additional packaging options.  
©2016–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13154-0-4/17(B)  
Rev. B | Page 16 of 16  
 
 

相关型号:

HMC8121-SX

HMC8121-SX
ADI

HMC812LC4

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz
HITTITE

HMC812LC4RTR

暂无描述
HITTITE

HMC812LC4TR

Variable Attenuator,
HITTITE

HMC812LC4_11

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz
HITTITE

HMC813

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA) WITH LIMITED RF OUTPUT, 1 - 26 GHz
HITTITE

HMC813LC4B

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA)LIMITED RF OUTPUT, 1 - 20 GHz
HITTITE

HMC813LC4BTR

Video Amplifier
HITTITE

HMC814

GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT
HITTITE

HMC8142

HMC8142
ADI

HMC8142-SX

HMC8142-SX
ADI

HMC814LC3B

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT
HITTITE