HMC8191LC4TR-R5 [ADI]

6 GHz to 26.5 GHz, Wideband I/Q Mixer;
HMC8191LC4TR-R5
型号: HMC8191LC4TR-R5
厂家: ADI    ADI
描述:

6 GHz to 26.5 GHz, Wideband I/Q Mixer

射频 微波
文件: 总44页 (文件大小:871K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6 GHz to 26.5 GHz,  
Wideband I/Q Mixer  
HMC8191  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HMC8191  
Passive, wideband I/Q mixer  
RF and LO range: 6 GHz to 26.5 GHz  
Wide IF bandwidth of dc to 5 GHz  
Single-ended RF, LO, and IF  
GND 1  
GND 2  
GND 3  
18 GND  
17 GND  
16 RF  
Conversion loss: 9 dB (typical)  
Image rejection: 25 dBc (typical)  
Single-sideband noise figure: 9 dB (typical)  
Input IP3 (downconverter): 24 dBm (typical)  
Input P1dB compression point (downconverter): 15 dBm  
(typical)  
4
15  
GND  
GND  
GND 5  
14 GND  
13 GND  
6
GND  
PACKAGE  
BASE  
Input IP2: 55 dBm (typical)  
LO to RF isolation: 40 dB (typical)  
LO to IF isolation: 40 dB (typical)  
RF to IF isolation: 20 dB (typical)  
Amplitude balance: 0.5 dB (typical)  
Phase balance (downconverter): 5° (typical)  
RF return loss: 15 dB (typical)  
Figure 1.  
LO return loss: 15 dB (typical)  
IF return loss: 15 dB (typical)  
Exposed pad, 4 mm × 4 mm, 24-terminal, ceramic, LCC  
package  
APPLICATIONS  
Test and measurement instrumentation  
Military, aerospace, and defense applications  
Microwave point to point base stations  
GENERAL DESCRIPTION  
The HMC8191 is a passive, wideband, I/Q monolithic  
microwave integrated circuit (MMIC) mixer that can be used  
either as an image reject mixer for receiver operations or as a  
single-sideband upconverter for transmitter operations. With a  
radio frequency (RF) and local oscillator (LO) range of 6 GHz  
to 26.5 GHz, and an intermediate frequency (IF) bandwidth of  
dc to 5 GHz, the HMC8191 is ideal for applications requiring a  
wide frequency range, excellent RF performance, and a simple  
design with fewer components and a small printed circuit board  
(PCB) footprint. A single HMC8191 can replace multiple  
narrow-band mixers in a design.  
excellent LO to RF and LO to IF isolation and reduces the effect  
of LO leakage to ensure signal integrity.  
Being a passive mixer, the HMC8191 does not require any dc  
power sources. It offers a lower noise figure compared to an  
active mixer, ensuring superior dynamic range for high  
performance and precision applications.  
The HMC8191 is fabricated on a gallium arsenide (GaAs) metal  
semiconductor field effect transistor (MESFET) process and uses  
Analog Devices, Inc. mixer cells and a 90-degree hybrid. The  
HMC8191 is available in a compact, 4 mm × 4 mm, 24-terminal  
leadless chip carrier (LCC) package and operates over a −40°C to  
+85°C temperature range. An evaluation board for the HMC8191  
is also available from the Analog Devices website.  
The inherent I/Q architecture of the HMC8191 offers excellent  
image rejection and thereby eliminates the need for expensive  
filtering for unwanted sidebands. The mixer also provides  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC8191  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Upconverter Performance: IF = 2500 MHz, Lower Sideband  
(High-Side LO)........................................................................... 20  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
Typical Performance Characteristics ............................................. 6  
Upconverter Performance: IF = 5000 MHz, Lower Sideband  
(High-Side LO)........................................................................... 22  
Upconverter Performance: IF = 100 MHz, Upper Sideband  
(Low-Side LO) ............................................................................ 24  
Upconverter Performance: IF = 2500 MHz, Upper Sideband  
(Low-Side LO) ............................................................................ 26  
Upconverter Performance: IF = 5000 MHz, Upper Sideband  
(Low-Side LO) ............................................................................ 28  
Isolation and Return Loss ......................................................... 30  
IF Bandwidth Performance: Downconverter, Lower Sideband  
(High-Side LO) ............................................................................ 32  
Amplitude and Phase Imbalance Performance: Downconverter,  
Lower Sideband (High-Side LO) ................................................ 33  
Downconverter Performance: IF = 100 MHz, Lower Sideband  
(High-Side LO) ............................................................................. 6  
Amplitude and Phase Imbalance Performance:  
Downconverter, Upper Sideband (Low-Side LO) ..................... 35  
Downconverter Performance: IF = 2500 MHz, Lower  
Sideband (High-Side LO)............................................................ 8  
Spurious and Harmonics Performance ................................... 37  
Theory of Operation ...................................................................... 40  
Applications Information .............................................................. 41  
RF and LO Performance Above 26 GHz................................. 42  
IF Bandwidth Above 5 GHz...................................................... 42  
Soldering Information and Recommended Land Pattern.... 43  
Evaluation Board Information.................................................. 43  
Outline Dimensions....................................................................... 44  
Ordering Guide .......................................................................... 44  
Downconverter Performance: IF = 5000 MHz, Lower  
Sideband (High-Side LO).......................................................... 10  
Downconverter Performance: IF = 100 MHz, Upper  
Sideband (Low-Side LO) ........................................................... 12  
Downconverter Performance: IF = 2500 MHz, Upper  
Sideband (Low-Side LO) ........................................................... 14  
Downconverter Performance: IF = 5000 MHz, Upper  
Sideband (Low-Side LO) ........................................................... 16  
Upconverter Performance: IF = 100 MHz, Lower Sideband  
(High-Side LO) ........................................................................... 18  
REVISION HISTORY  
8/2019—Rev. B to Rev. C  
Changes to Table 4, Figure 5, and Figure 6 ................................... 5  
Changes to Ordering Guide .......................................................... 44  
Change to Single-Sideband Noise Figure Parameter, Table 1......3  
Deleted Figure 13 and Figure 16; Renumbered Sequentially ......7  
Deleted Figure 25 and Figure 28......................................................9  
Deleted Figure 47 and Figure 50................................................... 13  
Deleted Figure 59 and Figure 62................................................... 15  
Changes to Ordering Guide.......................................................... 44  
5/2018—Rev. A to Rev. B  
Changes to Applications Information Section............................ 41  
2/2018—Rev. 0 to Rev. A  
6/2017—Revision 0: Initial Version  
Change to Features Section ............................................................. 1  
Rev. C | Page 2 of 44  
 
Data Sheet  
HMC8191  
SPECIFICATIONS  
TA = 25°C, IF = 100 MHz, LO drive = 18 dBm, all measurements performed as downconverter with lower sideband selected, external 90°  
hybrid at the IF ports, and LO amplifier in line with lab bench LO source, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
6
Typ  
Max  
26.5  
26.5  
5
Unit  
GHz  
GHz  
GHz  
dBm  
RADIO FREQUENCY  
LOCAL OSCILLATOR FREQUENCY  
INTERMEDIATE FREQUENCY  
LOCAL OSCILLATOR DRIVE LEVEL  
RF PERFORMANCE AS DOWNCONVERTER  
Conversion Loss  
RF  
fLO  
IF  
6
DC  
18  
9
11.5  
dB  
Image Rejection  
20  
25  
9
24  
15  
55  
dBc  
dB  
dBm  
dBm  
dBm  
Single-Sideband Noise Figure  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Input Second-Order Intercept  
Isolation  
SSB NF  
IP3  
P1dB  
IP2  
RF to IF  
LO to RF  
LO to IF  
Amplitude Balance1  
Phase Balance1  
20  
40  
40  
0.5  
5
dB  
dB  
dB  
dB  
30  
27  
Degrees  
RF PERFORMANCE AS UPCONVERTER  
Conversion Loss  
9
dB  
Sideband Rejection  
Input Third-Order Intercept  
Input 1 dB Compression Point  
RETURN LOSS PERFORMANCE1  
RF  
25  
22  
13  
dBc  
dBm  
dBm  
IP3  
P1dB  
15  
15  
15  
dB  
dB  
dB  
LO  
IFx  
1 Measurements taken without 90° hybrid at the IF ports.  
Rev. C | Page 3 of 44  
 
HMC8191  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
Parameter  
Rating  
24 dBm  
24 dBm  
24 dBm  
3 mA  
RF Input Power  
LO Input Power  
IF Input Power  
IF Source/Sink Current  
Continuous Power Dissipation, PDISS  
(TA = 85°C, Derate 7.29 mW/°C Above 85°C)  
Maximum Junction Temperature  
Maximum Peak Reflow Temperature (MLS3)  
Operating Temperature Range  
Storage Temperature Range  
Table 3. Thermal Resistance  
Package Type  
E-24-11  
θJA  
38.3  
θJC  
137  
Unit  
°C/W  
657 mW  
1 Refer to JDEC standard JESD51-2 for additional information on optimizing  
the thermal impedance (PCB with 4 × 4 vias).  
175°C  
260°C  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
Electrostatic Discharge Sensitivity  
Human Body Model  
750 V  
Field Induced Charged Device Model  
1200 V  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. C | Page 4 of 44  
 
 
 
Data Sheet  
HMC8191  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND 1  
GND 2  
GND 3  
18 GND  
GND  
17  
16 RF  
HMC8191  
TOP VIEW  
15  
GND  
4
GND  
(Not to Scale)  
GND 5  
14 GND  
13 GND  
6
GND  
PACKAGE  
BASE  
NOTES  
1. NC = NO CONNECT. THESE PINS MAY BE CONNECTED TO  
RF/DC GROUND WITHOUT AFFECTING PERFORMANCE.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED  
TO RF/DC GROUND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1 to 6, 13 to 15, 17 to 22 GND  
Ground. These pins and the package bottom must be connected to RF/dc ground. See Figure 3 for  
the interface schematic.  
7 to 9, 11, 24  
10, 12  
NC  
IF1, IF2  
No Connect. These pins can be connected to RF/dc ground without affecting performance.  
First and Second Quadrature Intermediate Frequency Input/Output Pins. These pins are dc-coupled.  
For applications not requiring operation to dc, use an off-chip dc blocking capacitor. For operations  
to dc, these pins must not source/sink more than 3 mA of current; otherwise, the device may not  
function and may fail. See Figure 4 for the interface schematic.  
16  
23  
RF  
Radio Frequency Input/Output. This pin is dc-coupled and matched to 50 Ω when the LO is turned  
on. See Figure 5 for the interface schematic.  
Local Oscillator Input. This pin is dc-coupled and matched to 50 Ω when the LO is turned on. See  
Figure 6 for the interface schematic.  
LO  
EPAD  
Exposed Pad. The exposed pad must be connected to RF/dc ground.  
INTERFACE SCHEMATICS  
GND  
RF  
Figure 5. RF Interface Schematic  
Figure 3. GND Interface Schematic  
LO  
IF1, IF2  
Figure 4. IF1 and IF2 Interface Schematic  
Figure 6. LO Interface Schematic  
Rev. C | Page 5 of 44  
 
 
 
 
 
 
HMC8191  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER PERFORMANCE: IF = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO)  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
–2  
–2  
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 10. Conversion Gain vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
50  
50  
40  
30  
20  
10  
0
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
45  
40  
35  
30  
25  
20  
15  
10  
5
A
A
A
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Image Rejection vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 11. Image Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 12. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 6 of 44  
 
 
Data Sheet  
HMC8191  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
6
6
4
4
2
2
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 15. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
20dBm  
18dBm  
16dBm  
14dBm  
30  
20  
10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
30  
20  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 14. Input IP2 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 16. Input IP2 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 7 of 44  
HMC8191  
Data Sheet  
DOWNCONVERTER PERFORMANCE: IF = 2500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)  
0
0
–2  
–2  
20dBm  
18dBm  
16dBm  
14dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 20. Conversion Gain vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
0
0
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 18. Image Rejection vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 21. Image Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
0
0
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 19. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 22. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 8 of 44  
Data Sheet  
HMC8191  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
20dBm  
18dBm  
16dBm  
14dBm  
6
6
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
4
4
2
2
0
0
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 25. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
80  
70  
60  
50  
40  
80  
20dBm  
18dBm  
16dBm  
70  
14dBm  
60  
50  
40  
30  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
30  
20  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 24. Input IP2 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 26. Input IP2 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 9 of 44  
HMC8191  
Data Sheet  
DOWNCONVERTER PERFORMANCE: IF = 5000 MHz, LOWER SIDEBAND (HIGH-SIDE LO)  
0
0
20dBm  
18dBm  
16dBm  
14dBm  
–2  
–2  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 27. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 30. Conversion Gain vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
15  
10  
5
A
A
A
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Image Rejection vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 31. Image Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 32. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 10 of 44  
Data Sheet  
HMC8191  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
4
4
2
2
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 33. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 35. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
20  
10  
20  
10  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 34. Input IP2 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 36. Input IP2 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 11 of 44  
HMC8191  
Data Sheet  
DOWNCONVERTER PERFORMANCE: IF = 100 MHz, UPPER SIDEBAND (LOW-SIDE LO)  
0
0
–2  
–2  
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 37. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 40. Conversion Gain vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
0
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 38. Image Rejection vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 41. Image Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 42. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 12 of 44  
Data Sheet  
HMC8191  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
20dBm  
18dBm  
16dBm  
14dBm  
6
6
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
4
4
2
2
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 43. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 45. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
20dBm  
18dBm  
30  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
30  
20  
20  
10  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 44. Input IP2 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 46. Input IP2 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 13 of 44  
HMC8191  
Data Sheet  
DOWNCONVERTER PERFORMANCE: IF = 2500 MHz, UPPER SIDEBAND (LOW-SIDE LO)  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
–2  
–2  
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 50. Conversion Gain vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
60  
50  
40  
30  
60  
50  
40  
30  
20  
10  
0
20dBm  
18dBm  
16dBm  
14dBm  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 48. Image Rejection vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 51. Image Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
0
0
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 49. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 52. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 14 of 44  
Data Sheet  
HMC8191  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
A
A
A
4
4
2
2
0
0
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 53. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 55. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
80  
70  
60  
50  
80  
70  
60  
50  
40  
40  
30  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
30  
20dBm  
18dBm  
16dBm  
20  
10  
14dBm  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 56. Input IP2 vs. RF Frequency at Various LO Drives, TA = 25°C  
Figure 54. Input IP2 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Rev. C | Page 15 of 44  
HMC8191  
Data Sheet  
DOWNCONVERTER PERFORMANCE: IF = 5000 MHz, UPPER SIDEBAND (LOW-SIDE LO)  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
–2  
–2  
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
11  
13  
15  
17  
19  
21  
23  
25  
27  
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 57. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 60. Conversion Gain vs. RF Frequency at Various LO Drives,  
T
A = 25°C  
70  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
60  
50  
40  
30  
20  
10  
0
11  
13  
15  
17  
19  
21  
23  
25  
27  
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 58. Image Rejection vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 61. Image Rejection vs. RF Frequency at Various LO Drives,  
T
A = 25°C  
40  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
35  
30  
25  
20  
15  
10  
5
0
11  
0
13  
15  
17  
19  
21  
23  
25  
27  
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 59. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 62. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 16 of 44  
Data Sheet  
HMC8191  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
6
6
4
11  
4
11  
13  
15  
17  
19  
21  
23  
25  
27  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 63. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 65. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
80  
70  
60  
50  
80  
70  
60  
50  
40  
40  
30  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20dBm  
30  
18dBm  
16dBm  
14dBm  
20  
10  
11  
11  
13  
15  
17  
19  
21  
23  
25  
27  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 64. Input IP2 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 66. Input IP2 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 17 of 44  
HMC8191  
Data Sheet  
UPCONVERTER PERFORMANCE: IF = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO)  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
–2  
–2  
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
20dBm  
18dBm  
16dBm  
14dBm  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 67. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 70. Conversion Gain vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
45  
40  
35  
30  
25  
20  
15  
10  
5
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 68. Sideband Rejection vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 71. Sideband Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 69. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 72. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 18 of 44  
Data Sheet  
HMC8191  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
20dBm  
18dBm  
16dBm  
14dBm  
6
6
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
4
4
2
2
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 73. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 74. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 19 of 44  
HMC8191  
Data Sheet  
UPCONVERTER PERFORMANCE: IF = 2500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
–2  
–2  
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 75. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 78. Conversion Gain vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
0
0
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 76. Sideband Rejection vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 79. Sideband Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
5
0
0
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 77. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 80. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 20 of 44  
Data Sheet  
HMC8191  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
20dBm  
18dBm  
16dBm  
14dBm  
6
6
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
4
4
2
2
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 81. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 82. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 21 of 44  
HMC8191  
Data Sheet  
UPCONVERTER PERFORMANCE: IF = 5000 MHz, LOWER SIDEBAND (HIGH-SIDE LO)  
0
0
–2  
–2  
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 83. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 86. Conversion Gain vs. RF Frequency at Various LO Drives,  
T
A = 25°C  
70  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
A
A
A
60  
50  
40  
30  
20  
10  
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 84. Sideband Rejection vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 87. Sideband Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
A
A
A
10  
5
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 85. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 88. Input IP3 vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
Rev. C | Page 22 of 44  
Data Sheet  
HMC8191  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
6
6
4
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 89. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 90. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 23 of 44  
HMC8191  
Data Sheet  
UPCONVERTER PERFORMANCE: IF = 100 MHz, UPPER SIDEBAND (LOW-SIDE LO)  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
–2  
–2  
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
20dBm  
18dBm  
16dBm  
14dBm  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 91. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 94. Conversion Gain vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
45  
40  
35  
30  
25  
20  
15  
10  
5
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 92. Sideband Rejection vs. RF Frequency at Various Temperatures, LO  
Drive = 18 dBm  
Figure 95. Sideband Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 93. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 96. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 24 of 44  
Data Sheet  
HMC8191  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
4
4
2
2
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 97. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 98. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 25 of 44  
HMC8191  
Data Sheet  
UPCONVERTER PERFORMANCE: IF = 2500 MHz, UPPER SIDEBAND (LOW-SIDE LO)  
0
0
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
–2  
–2  
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 99. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 102. Conversion Gain vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
60  
60  
50  
40  
30  
20  
10  
0
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
50  
40  
30  
20  
10  
0
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 100. Sideband Rejection vs. RF Frequency at Various Temperatures, LO  
Drive = 18 dBm  
Figure 103. Sideband Rejection vs. RF Frequency at Various LO Drives,  
A = 25°C  
T
40  
40  
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
35  
30  
25  
20  
15  
10  
5
0
0
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 101. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 104. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 26 of 44  
Data Sheet  
HMC8191  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
4
4
2
2
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 105. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 106. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 27 of 44  
HMC8191  
Data Sheet  
UPCONVERTER PERFORMANCE: IF = 5000 MHz, UPPER SIDEBAND (LOW-SIDE LO)  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
–2  
–2  
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
11  
13  
15  
17  
19  
21  
23  
25  
27  
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 107. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 110. Conversion Gain vs. RF Frequency at Various LO Drives,  
T
A = 25°C  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20dBm  
18dBm  
16dBm  
14dBm  
70  
60  
50  
40  
30  
20  
10  
0
11  
13  
15  
17  
19  
21  
23  
25  
27  
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 108. Sideband Rejection vs. RF Frequency at Various Temperatures, LO  
Drive = 18 dBm  
Figure 111. Sideband Rejection vs. RF Frequency at Various LO Drives,  
T
A = 25°C  
40  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
35  
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
0
11  
0
11  
13  
15  
17  
19  
21  
23  
25  
27  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 109. Input IP3 vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 112. Input IP3 vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 28 of 44  
Data Sheet  
HMC8191  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
0
10  
0
10  
12  
14  
16  
18  
20  
22  
24  
26  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 113. Input P1dB vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 114. Input P1dB vs. RF Frequency at Various LO Drives, TA = 25°C  
Rev. C | Page 29 of 44  
HMC8191  
Data Sheet  
ISOLATION AND RETURN LOSS  
80  
80  
70  
60  
50  
40  
30  
20  
10  
20dBm  
18dBm  
16dBm  
14dBm  
LO TO IF1  
LO TO IF2  
T
T
T
= +85°C  
= +25°C  
= –40°C  
LO TO IF1  
LO TO IF2  
A
A
A
70  
60  
50  
40  
30  
20  
10  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 115. LO to IF Isolation vs. LO Frequency at Various Temperatures,  
IF = 100 MHz, LO Drive = 18 dBm  
Figure 118. LO to IF Isolation vs. LO Frequency at Various LO Drives,  
IF = 100 MHz, TA = 25°C  
80  
80  
70  
60  
50  
40  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
20dBm  
18dBm  
16dBm  
14dBm  
30  
20  
10  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 116. LO to RF Isolation vs. LO Frequency at Various Temperatures,  
IF = 100 MHz, LO Drive = 18 dBm  
Figure 119. LO to RF Isolation vs. LO Frequency at Various LO Drives,  
IF = 100 MHz, TA = 25°C  
50  
50  
T
T
T
= +85°C  
= +25°C  
= –40°C  
RF TO IF1  
RF TO IF2  
20dBm  
18dBm  
16dBm  
14dBm  
RF TO IF1  
RF TO IF2  
A
A
A
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 117. RF to IF Isolation vs. RF Frequency at Various Temperatures,  
IF = 100 MHz, LO Drive = 18 dBm  
Figure 120. RF to IF Isolation vs. RF Frequency at Various LO Drives,  
IF = 100 MHz, TA = 25°C  
Rev. C | Page 30 of 44  
Data Sheet  
HMC8191  
0
0
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
20dBm  
18dBm  
16dBm  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 121. LO Return Loss vs. LO Frequency at Various Temperatures,  
LO Drive = 18 dBm  
Figure 124. LO Return Loss vs. LO Frequency at Various LO Drives  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
20dBm  
18dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
–30  
–35  
–40  
A
A
A
–30  
16dBm  
–35  
–40  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 122. RF Return Loss vs. RF Frequency at Various Temperatures,  
LO Frequency = 16 GHz, LO Drive = 18 dBm  
Figure 125. RF Return Loss vs. RF Frequency at Various LO Drives,  
LO Frequency = 16 GHz  
0
0
IF1 AT T = +85°C  
A
IF1 AT 20dBm  
IF1 AT 18dBm  
IF1 AT T = +25°C  
A
IF1 AT T = –40°C  
IF1 AT 16dBm  
–5  
–10  
–15  
–20  
–25  
–30  
A
–5  
IF2 AT T = +85°C  
A
IF2 AT 20dBm  
IF2 AT 18dBm  
IF2 AT 16dBm  
IF2 AT T = +25°C  
A
IF2 AT T = –40°C  
A
–10  
–15  
–20  
–25  
–30  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 123. IF1/IF2 Return Loss vs. IF Frequency at Various Temperatures,  
LO Frequency = 16 GHz, LO Drive = 18 dBm  
Figure 126. IF1/IF2 Return Loss vs. IF Frequency at Various LO Drives,  
LO Frequency = 16 GHz  
Rev. C | Page 31 of 44  
HMC8191  
Data Sheet  
IF BANDWIDTH PERFORMANCE: DOWNCONVERTER, LOWER SIDEBAND (HIGH-SIDE LO)  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
–2  
–2  
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 127. Conversion Gain vs. IF Frequency at Various Temperatures, LO  
Drive = 18 dBm at 16 GHz  
Figure 130. Conversion Gain vs. IF Frequency at Various LO Drives,  
LO Frequency = 16 GHz, TA = 25°C  
50  
50  
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
A
A
A
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 128. Image Rejection vs. IF Frequency at Various Temperatures,  
LO Drive = 18 dBm at 16 GHz  
Figure 131. Image Rejection vs. IF Frequency at Various LO Drives,  
LO Frequency = 16 GHz, TA = 25°C  
30  
30  
28  
26  
24  
22  
20  
18  
T
T
T
= +85°C  
= +25°C  
= –40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
A
A
A
16  
20dBm  
18dBm  
14  
12  
10  
16dBm  
14dBm  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 129. Input IP3 vs. IF Frequency at Various Temperatures,  
LO Drive = 18 dBm at 16 GHz  
Figure 132. Input IP3 vs. IF Frequency at Various LO Drives,  
LO Frequency = 16 GHz, TA = 25°C  
Rev. C | Page 32 of 44  
Data Sheet  
HMC8191  
AMPLITUDE AND PHASE IMBALANCE PERFORMANCE: DOWNCONVERTER, LOWER SIDEBAND (HIGH-SIDE LO)  
4
3
4
T
T
T
= +85°C  
= +25°C  
= –40°C  
20dBm  
18dBm  
16dBm  
14dBm  
A
A
A
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 133. Amplitude Imbalance vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm, IF = 100 MHz  
Figure 136. Amplitude Imbalance vs. RF Frequency at Various LO Drives,  
IF = 100 MHz, TA = 25°C  
20  
15  
10  
5
20  
20dBm  
15  
18dBm  
16dBm  
14dBm  
10  
5
0
0
–5  
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–10  
–15  
–20  
–10  
–15  
–20  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 134. Phase Imbalance vs. RF Frequency at Various Temperatures, LO  
Drive = 18 dBm, IF = 100 MHz  
Figure 137. Phase Imbalance vs. RF Frequency at Various LO Drives,  
IF = 100 MHz, TA = 25°C  
4
4
3
2
1
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
3
2
1
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
20dBm  
18dBm  
16dBm  
14dBm  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 135. Amplitude Imbalance vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm, IF = 2500 MHz  
Figure 138. Amplitude Imbalance vs. RF Frequency at Various LO Drives,  
IF = 2500 MHz, TA = 25°C  
Rev. C | Page 33 of 44  
HMC8191  
Data Sheet  
20  
20  
15  
15  
10  
10  
5
5
0
0
–5  
–5  
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–10  
–15  
–20  
–10  
–15  
–20  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 139. Phase Imbalance vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm, IF = 2500 MHz  
Figure 140. Phase Imbalance vs. RF Frequency at Various LO Drives,  
IF = 2500 MHz, TA = 25°C  
Rev. C | Page 34 of 44  
Data Sheet  
HMC8191  
AMPLITUDE AND PHASE IMBALANCE PERFORMANCE: DOWNCONVERTER, UPPER SIDEBAND (LOW-SIDE LO)  
4
3
4
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
20dBm  
18dBm  
16dBm  
14dBm  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 141. Amplitude Imbalance vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm, IF = 100 MHz  
Figure 144. Amplitude Imbalance vs. RF Frequency at Various LO Drives,  
IF = 100 MHz, TA = 25°C  
20  
15  
10  
5
20  
20dBm  
18dBm  
16dBm  
14dBm  
15  
10  
5
0
0
–5  
–5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–10  
–15  
–20  
–10  
–15  
–20  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 142. Phase Imbalance vs. RF Frequency at Various Temperatures, LO  
Drive = 18 dBm, IF = 100 MHz  
Figure 145. Phase Imbalance vs. RF Frequency at Various LO Drives,  
IF = 100 MHz, TA = 25°C  
4
4
3
2
1
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
3
2
1
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
20dBm  
18dBm  
16dBm  
14dBm  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 143. Amplitude Imbalance vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm, IF = 2500 MHz  
Figure 146. Amplitude Imbalance vs. RF Frequency at Various LO Drives,  
IF = 2500 MHz, TA = 25°C  
Rev. C | Page 35 of 44  
HMC8191  
Data Sheet  
20  
20  
15  
15  
10  
10  
5
5
0
0
–5  
–5  
20dBm  
18dBm  
16dBm  
14dBm  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–10  
–15  
–20  
–10  
–15  
–20  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 147. Phase Imbalance vs. RF Frequency at Various Temperatures,  
LO Drive = 18 dBm, IF = 2500 MHz  
Figure 148. Phase Imbalance vs. RF Frequency at Various LO Drives,  
IF = 2500 MHz, TA = 25°C  
Rev. C | Page 36 of 44  
Data Sheet  
HMC8191  
SPURIOUS AND HARMONICS PERFORMANCE  
N/A means not applicable.  
IF = 100 MHz, RF = 26000 MHz, LO = 26100 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
LO Harmonics Isolation  
N × LO  
LO power = 18 dBm, TA = 25°C, and all values are in dBc below  
the input LO level measured at the RF port.  
0
1
2
3
4
5
0
1
2
3
4
5
7
N/A N/A N/A N/A  
Table 5. N × LO Spur at RF Output  
21  
N/A  
84  
46  
69  
82  
N/A N/A N/A  
N × LO Spur at RF Port  
N/A  
N/A  
N/A  
N/A  
85  
83  
N/A N/A  
M × RF  
LO Frequency (GHz)  
1
2
3
4
N/A  
N/A  
N/A  
82  
92  
N/A  
81  
6
8
37  
40  
46  
47  
46  
39  
37  
39  
41  
46  
45  
47  
52  
61  
68  
68  
77  
78  
60  
55  
N/A  
N/A  
57  
53  
62  
79  
37  
40  
46  
47  
46  
39  
37  
39  
40  
46  
45  
N/A 81  
N/A N/A 81  
94  
10  
12  
14  
16  
18  
20  
22  
24  
26  
IF = 2500 MHz, RF = 6000 MHz, LO = 8500 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
72  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N × LO  
0
1
2
3
4
0
0
5
0
0
0
0
1
2
3
4
5
−2  
+26 +22  
+21 +41  
+7  
N/A  
+71  
+77  
+85  
+84  
+73  
+85  
+83  
0
+65 +75 +86  
M × RF  
+71 +77 +85 +85  
+90 +93 +88 +85  
+88 +93 +91 +88  
Downconverter M × N Spurious Outputs  
Mixer spurious products are measured in dBc from the IF output  
power level, unless otherwise specified. Spur values are (M × RF) −  
(N × LO).  
IF = 2500 MHz, RF = 16000 MHz, LO = 18500 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
IF = 100 MHz, RF = 6000 MHz, LO = 6100 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
N × LO  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
N/A  
79  
N/A  
N/A  
N/A  
84  
N/A  
N/A  
N/A  
N/A  
N/A  
87  
0
1
2
3
4
5
N/A  
13  
1
N/A  
40  
65  
85  
0
1
2
3
4
5
N/A  
+18  
+57  
+87  
+84  
N/A  
−4  
+15 +18 +35 N/A  
+23 +31 +41 +57  
+43 +53 +54 +72  
+62 +59 +63 +63  
+88 +80 +78 +80  
+85 +88 +90 +88  
N/A  
78  
N/A  
+49  
+72  
+86  
+84  
N/A  
N/A  
N/A  
N/A  
M × RF  
N/A  
N/A  
N/A  
88  
M × RF  
N/A 90  
N/A 85  
87  
89  
IF = 2500 MHz, RF = 26000 MHz, LO = 28500 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
IF = 100 MHz, RF = 16000 MHz, LO = 16100 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
N × LO  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
N/A  
N/A  
N/A  
N/A  
87  
0
1
2
3
4
5
N/A  
11  
N/A  
N/A  
82  
N/A  
N/A  
73  
N/A  
N/A  
N/A  
79  
N/A  
N/A  
N/A  
N/A  
86  
0
1
2
3
4
5
N/A  
28  
9
N/A N/A  
N/A N/A  
N/A  
N/A  
N/A  
90  
N/A  
N/A  
N/A  
N/A  
88  
N/A  
87  
N/A  
N/A  
N/A  
N/A  
M × RF  
N/A  
N/A  
N/A  
N/A  
75  
86  
84  
75  
N/A  
N/A  
N/A  
85  
M × RF  
N/A  
N/A  
N/A  
N/A  
N/A  
85  
N/A 88  
95  
N/A  
83  
N/A N/A  
87  
96  
Rev. C | Page 37 of 44  
HMC8191  
Data Sheet  
IF = 5000 MHz, RF = 6000 MHz, LO = 11000 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
IF = 100 MHz, RF = 16000 MHz, LO = 16100 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
N × LO  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
7
4
23  
30  
68  
83  
92  
88  
N/A  
N/A  
84  
83  
87  
88  
N/A  
N/A  
N/A  
82  
N/A  
N/A  
N/A  
N/A  
N/A  
83  
0
1
2
3
4
5
2
37  
47  
79  
80  
78  
80  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
92  
82  
87  
83  
62  
94  
95  
95  
93  
N/A  
58  
80  
83  
81  
73  
86  
82  
N/A  
M × RF  
M × IF  
86  
84  
IF = 5000 MHz, RF = 16000 MHz, LO = 21000 MHz,  
IF = 100 MHz, RF = 26000 MHz, LO = 26100 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
N × LO  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
11  
3
N/A  
40  
85  
85  
82  
N/A  
N/A  
N/A  
N/A  
82  
N/A  
N/A  
N/A  
N/A  
84  
N/A  
N/A  
N/A  
N/A  
N/A  
80  
0
1
2
3
4
5
4
N/A N/A N/A N/A  
N/A N/A N/A N/A  
N/A N/A N/A N/A  
N/A N/A N/A N/A  
N/A N/A N/A N/A  
N/A N/A N/A N/A  
N/A  
83  
58  
93  
92  
91  
90  
N/A  
57  
80  
82  
82  
N/A  
N/A  
N/A  
N/A  
M × RF  
M × IF  
N/A  
N/A  
N/A  
81  
82  
88  
IF = 5000 MHz, RF = 26000 MHz, LO = 31000 MHz,  
IF = 2500 MHz, RF = 6000 MHz, LO = 8500 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
N × LO  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
5
N/A  
N/A  
58  
N/A  
N/A  
43  
N/A  
N/A  
N/A  
67  
N/A  
N/A  
N/A  
N/A  
78  
N/A  
N/A  
N/A  
N/A  
N/A  
75  
0
1
2
3
4
5
N/A  
14  
83  
71  
90  
85  
4
11  
15  
70  
78  
86  
89  
14  
30  
66  
69  
82  
84  
50  
43  
82  
80  
82  
82  
0
0
58  
68  
75  
78  
82  
N/A  
N/A  
N/A  
N/A  
81  
90  
92  
91  
M × RF  
M × IF  
N/A  
N/A  
N/A  
66  
N/A  
N/A  
79  
N/A  
82  
Upconverter M × N Spurious Outputs  
IF = 2500 MHz, RF = 16000 MHz, LO = 18500 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
Mixer spurious products are measured in dBc from the RF output  
power level, unless otherwise specified. Spur values are (M × IF) −  
(N × LO).  
N × LO  
0
1
2
3
4
5
IF = 100 MHz, RF = 6000 MHz, LO = 6100 GHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
0
1
2
3
4
5
N/A  
15  
92  
87  
89  
88  
N/A  
N/A  
70  
88  
87  
93  
27  
52  
78  
83  
83  
80  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N × LO  
M × IF  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
+56  
+93  
+92  
N/A  
+56  
−2  
+10 +16 +18 +32  
+16 +14 +31 +33  
+45 +44 +51 +56  
+62 +49 +57 +62  
+10 +16 +18 +32  
+16 +14 +31 +33  
N/A  
+46  
+51  
−2  
M × IF  
N/A  
Rev. C | Page 38 of 44  
Data Sheet  
HMC8191  
IF = 2500 MHz, RF = 26000 MHz, LO = 28500 MHz,  
IF = 5000 MHz, RF = 16000 MHz, LO = 21000 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
N × LO  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
12  
50  
70  
86  
83  
12  
N/A  
61  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
1
2
3
4
5
N/A  
+1  
−3  
N/A  
+62  
+74  
+81  
+81  
+84  
N/A  
N/A  
N/A  
N/A  
N/A  
+65  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
+72  
+87  
+89  
+88  
66  
+81  
+82  
+79  
+76  
M × IF  
M × IF  
82  
83  
N/A  
IF = 5000 MHz, RF = 6000 MHz, LO = 11000 MHz,  
IF = 5000 MHz, RF = 26000 MHz, LO = 31000 MHz,  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
RF power = −10 dBm, LO power = 18 dBm, and TA = 25°C.  
N × LO  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
5
6
23  
17  
65  
85  
91  
89  
34  
47  
79  
83  
83  
85  
N/A  
70  
75  
84  
82  
82  
N/A  
N/A  
N/A  
72  
0
1
2
3
4
5
N/A  
−7  
+3  
N/A  
N/A  
N/A  
N/A  
N/A  
+64  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
91  
89  
86  
83  
N/A  
+42  
+78  
+81  
+84  
80  
81  
80  
77  
+41  
+77  
+76  
+72  
M × IF  
M × IF  
75  
82  
Rev. C | Page 39 of 44  
HMC8191  
Data Sheet  
THEORY OF OPERATION  
The HMC8191 is a passive, wideband, I/Q MMIC mixer  
that can be used either as an image reject mixer for receiver  
operations, or as a single-sideband upconverter for transmitter  
operations. With an RF and LO range of 6 GHz to 26.5 GHz,  
and an IF bandwidth of dc to 5 GHz, the HMC8191 is ideal  
for applications requiring wide frequency range, excellent RF  
performance, and a simple design with fewer components and  
a small PCB footprint. A single HMC8191 can replace multiple  
narrow-band mixers in a design.  
Because the HMC8191 is a passive mixer, the HMC8191 does  
not require any dc power sources. It offers a lower noise figure  
compared to an active mixer, ensuring superior dynamic range  
for high performance and precision applications.  
The HMC8191 is fabricated on a GaAs MESFET process and  
uses Analog Devices mixer cells and a 90° hybrid. The  
HMC8191 is available in a compact, 4 mm × 4 mm, 24-terminal  
LCC package and operates over a −40°C to +85°C temperature  
range. An evaluation board for the HMC8191 is also available  
from the Analog Devices website.  
The inherent I/Q architecture of the HMC8191 offers excellent  
image rejection and thereby eliminates the need for expensive  
filtering for unwanted sidebands. The double balanced archi-  
tecture of the mixer also provides excellent LO to RF isolation  
and LO to IF isolation, and reduces the effect of LO leakage to  
ensure signal integrity.  
For both upconversion and downconversion, an external 90°  
hybrid is required. See the Applications Information section for  
details to interface with an external 90° hybrid.  
Rev. C | Page 40 of 44  
 
Data Sheet  
HMC8191  
APPLICATIONS INFORMATION  
Figure 149 shows the typical application circuit for the HMC8191.  
To select the appropriate sideband, an external 90° hybrid is  
needed. For applications not requiring operation to dc, use an  
off-chip dc blocking capacitor. For applications that require the  
LO signal at the output to be suppressed, use a bias tee or RF  
feed as shown in Figure 149. Ensure that the source or sink  
current used for LO suppression is <3 mA for each IF port to  
prevent damage to the device. The common-mode voltage for  
each IF port is 0 V.  
sideband, connect IF1 to the 0° port of the hybrid and IF2 to the  
90° port of the hybrid. The input is from the sum port of the  
hybrid and the difference port is 50 Ω terminated.  
To select the upper sideband (low-side LO) when using as a  
downconverter, connect the IF1 pin to the 0° port of the hybrid,  
and connect the IF2 pin to the 90° port of the hybrid. To select  
the lower sideband (high-side LO), connect the IF1 pin to the  
90° port of the hybrid and IF2 to the 0° port of the hybrid. The  
output is from the sum port of the hybrid, and the difference  
port is 50 Ω terminated.  
To select the upper sideband when using as an upconverter,  
connect the IF1 pin to the 90° port of the hybrid, and connect  
the IF2 pin to the 0° port of the hybrid. To select the lower  
HMC8191 EVALUATION BOARD  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
RF  
BIAS TEE/  
DC FEED FOR IF1  
BIAS TEE/  
DC FEED FOR IF2  
DC BLOCKING  
CAPACITORS  
SUPPLY  
FOR IF1  
SUPPLY  
FOR IF2  
EXTERNAL  
90° HYBRID  
50Ω  
IF  
NOTES  
1. DASHED SECTIONS ARE OPTIONAL AND MEANT FOR LO NULLING.  
Figure 149. Typical Application Circuit  
Rev. C | Page 41 of 44  
 
 
HMC8191  
Data Sheet  
0
–5  
RF AND LO PERFORMANCE ABOVE 26 GHz  
Figure 150 and Figure 151 shows the RF performance above  
26 GHz for both upconversion and downconversion. The data  
was taken at an IF frequency of 100 MHz and LO power at  
18 dBm.  
–10  
–15  
–20  
–25  
–30  
Note that this performance is typical and not guaranteed.  
0
TYPE  
LOWER SIDEBAND  
UPPER SIDEBAND  
–5  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
IF FREQUENCY (GHz)  
Figure 152. Conversion Gain vs. IF Frequency above 5 GHz at TA = 25°C for  
Upper and Lower Sidebands, LO Drive = 18 dBm at 16 GHz, Calibration to the  
Connector of the Evaluation Board  
MODE  
SIDEBAND  
40  
35  
30  
25  
20  
15  
DOWNCONVERTER LOWER SIDEBAND  
DOWNCONVERTER UPPER SIDEBAND  
UPCONVERTER  
UPCONVERTER  
–25  
–30  
LOWER SIDEBAND  
UPPER SIDEBAND  
26.0  
26.5  
27.0  
27.5  
28.0  
28.5  
29.0  
29.5  
30.0  
RF FREQUENCY (GHz)  
Figure 150. Conversion Gain vs. RF Frequency above 26 GHz at TA = 25°C for  
Upper and Lower Sidebands, Upconversion and Downconversion, LO Drive =  
18 dBm, IF = 100 MHz, External Hybrid Not Calibrated  
40  
35  
30  
25  
20  
15  
10  
5
TYPE  
LOWER SIDEBAND  
UPPER SIDEBAND  
0
5
6
7
8
9
10  
11  
12  
IF FREQUENCY (GHz)  
Figure 153. Input IP3 vs. IF Frequency above 5 GHz at TA = 25°C for Upper and  
Lower Sidebands, LO Drive = 18 dBm at 16 GHz, Calibration to the  
Connector of the Evaluation Board  
10  
5
MODE  
SIDEBAND  
40  
35  
30  
25  
20  
15  
DOWNCONVERTER LOWER SIDEBAND  
DOWNCONVERTER UPPER SIDEBAND  
UPCONVERTER  
UPCONVERTER  
LOWER SIDEBAND  
UPPER SIDEBAND  
0
26.0  
26.5  
27.0  
27.5  
28.0  
28.5  
29.0  
29.5  
30.0  
RF FREQUENCY (GHz)  
Figure 151. Input IP3 vs. RF Frequency above 26 GHz at TA = 25°C for Upper and  
Lower Sidebands, Upconversion and Downconversion, LO Drive = 18 dBm,  
IF = 100 MHz, External Hybrid Not Calibrated  
IF BANDWIDTH ABOVE 5 GHz  
10  
5
TYPE  
LOWER SIDEBAND  
UPPER SIDEBAND  
Figure 152, Figure 153, and Figure 154 show the IF performance  
above 5 GHz. The data for these figures has been taken in  
upconverter configuration at LO frequency and power of  
16 GHz and 18 dBm, respectively.  
0
5
6
7
8
9
10  
11  
12  
IF FREQUENCY (GHz)  
Note that this performance is typical and not guaranteed.  
Figure 154. Sideband Rejection vs. IF Frequency above 5 GHz at TA = 25°C for  
Upper and Lower Sidebands, LO Drive = 18 dBm at 16 GHz, Calibration to the  
Connector of the Evaluation Board  
Rev. C | Page 42 of 44  
 
 
 
 
 
Data Sheet  
HMC8191  
SOLDERING INFORMATION AND RECOMMENDED  
LAND PATTERN  
EVALUATION BOARD INFORMATION  
The EV1HMC8191LC4 evaluation board PCB used in the  
application must use RF circuit design techniques. Signal lines  
must have a 50 Ω impedance and connect the package ground  
leads and exposed pad directly to the ground plane similar to  
the setup shown in Figure 156. Use a sufficient number of via  
holes to connect the top and bottom ground planes.  
Figure 155 shows the recommended land pattern for the  
HMC8191. The HMC8191 is contained in a 4 mm × 4 mm  
24-terminal, ceramic, LCC package, with an exposed ground  
pad (EPAD). This pad is internally connected to the ground of  
the chip. To minimize thermal impedance and ensure electrical  
performance, solder the pad to the low impedance ground  
plane on the PCB. It is recommended that the ground planes on  
all layers under the pad be stitched together with vias, to further  
reduce thermal impedance.  
LO, J2  
The land pattern on the HMC8191 evaluation board provides a  
simulated thermal resistance (θJA) of 38.3°C/W.  
U1  
HMC8191  
RF, J1  
IF1, J3  
IF2, J4  
Figure 156. EV1HMC8191LC4 Evaluation Board PCB, Top Layer  
Figure 155. Evaluation Board Layout for the HMC8191 Package  
Table 6. Bill of Materials for the EV1HMC8191LC41 Evaluation Board PCB  
Quantity  
Reference Designator  
Description  
PCB, EV1HMC8191LC42  
2.92 mm SMA connectors, SRI Connector Gage  
Device under test, HMC8191  
Manufacturer  
Part Number  
08_040858a  
25-146-1000-92  
HMC8191  
1
4
1
Analog Devices  
SRI Connector Gage Co.  
Analog Devices  
J1 to J4  
U1  
1 Reference this number when ordering the evaluation board PCB.  
2 Circuit board material: Rogers 4350.  
Rev. C | Page 43 of 44  
 
 
HMC8191  
Data Sheet  
OUTLINE DIMENSIONS  
4.05  
3.90 SQ  
3.75  
0.36  
0.30  
0.24  
PIN 1  
0.08  
BSC  
INDICATOR  
PIN 1  
24  
19  
18  
1
0.50  
BSC  
2.60  
2.50 SQ  
2.40  
EXPOSED  
PAD  
13  
6
12  
7
BOTTOM VIEW  
2.50 REF  
0.32  
BSC  
TOP VIEW  
SIDE VIEW  
1.00  
0.90  
0.80  
3.10 BSC  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 157. 24-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-24-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package Body  
Material  
Package  
Description  
MSL  
Package  
Option  
Model1  
Lead Finish  
Rating2  
MSL3  
HMC8191LC4  
HMC8191LC4TR  
HMC8191LC4TR-R5  
EV1HMC8191LC4  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Alumina Ceramic  
Alumina Ceramic  
Alumina Ceramic  
Gold over Nickel  
Gold over Nickel  
Gold over Nickel  
24-Terminal Ceramic LCC  
24-Terminal Ceramic LCC  
24-Terminal Ceramic LCC  
Evaluation PCB Assembly  
E-24-1  
E-24-1  
E-24-1  
MSL3  
MSL3  
1 The HMC8191LC4, HMC8191LC4TR, and HMC8191LC4TR-R5 are RoHS compliant parts.  
2 See the Absolute Maximum Ratings section.  
©2017–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13645-0-8/19(C)  
Rev. C | Page 44 of 44  
 
 

相关型号:

HMC8193

2.5 GHz to 8.5 GHz, I/Q Mixer
ADI

HMC8193LC4

HMC8193LC4
ADI

HMC8193LC4TR

HMC8193LC4TR
ADI

HMC8193LC4TR-R5

2.5 GHz to 8.5 GHz, I/Q Mixer
ADI

HMC819LC5

GaAs MMIC I/Q UPCONVERTER 17.7 - 23.6 GHz
HITTITE

HMC819LCS

GaAs MMIC I/Q UPCONVERTER 17.7 - 23.6 GHz
HITTITE

HMC8200LP5ME

Intermediate Frequency Transmitter 800 MHz to 4000 MHz
ADI

HMC8200LP5METR

Intermediate Frequency Transmitter 800 MHz to 4000 MHz
ADI

HMC8205BF10

0.3 or 0.4 GHz to 6 GHz, 35 W, GaN Power Amplifier
ADI

HMC820LP6CE

FRACTIONAL-N SYNTHESIZER w/ INTEGRATED VCO
HITTITE

HMC820LP6CETR

Phase Locked Loop
HITTITE

HMC820LP6CE_10

FRACTIONAL-N SYNTHESIZER w/ INTEGRATED VCO 1095 - 1275, 2190 - 2550, 4380 - 5100 MHz
HITTITE