HMC8325-SX [ADI]

HMC8325-SX;
HMC8325-SX
型号: HMC8325-SX
厂家: ADI    ADI
描述:

HMC8325-SX

射频 微波
文件: 总17页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
71 GHz to 86 GHz,  
E-Band Low Noise Amplifier  
Data Sheet  
HMC8325  
FEATURES  
GENERAL DESCRIPTION  
Gain: 21 dB typical  
Noise figure: 3.6 dB typical  
The HMC8325 is an integrated E-band gallium arsenide (GaAs),  
monolithic microwave integrated circuit (MMIC), low noise  
amplifier (LNA) chip that operates from 71 GHz to 86 GHz.  
The HMC8325 provides 21 dB of gain, 13 dBm of output P1dB,  
22 dBm of OIP3, and 17 dBm of PSAT while requiring only 50 mA  
from a 3 V power supply. The HMC8325 exhibits excellent linearity  
and is optimized for E-band communications and high capacity,  
wireless backhaul radio systems. All data is taken with the chip  
in a 50 Ω test fixture connected via a 3 mil wide × 0.5 mil thick ×  
7 mil long ribbon on each port.  
Output power for 1 dB compression: 13 dBm typical  
Input third-order intercept at maximum gain: 1 dBm typical  
Output third-order intercept at maximum gain: 22 dBm typical  
Saturated output power: 17 dBm typical  
Input return loss: 15 dB typical  
Output return loss: 17 dB typical  
Die size: 2.844 mm × 0.999 mm × 0.05 mm  
APPLICATIONS  
E-band communication systems  
High capacity wireless backhauls  
Test and measurement  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
V
V
V
V
V
D4  
G1  
D1  
G2  
D2  
G3  
D3  
G4  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
3
2
1
RF  
RF  
OUT  
IN  
HMC8325  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC8325* PRODUCT PAGE QUICK LINKS  
Last Content Update: 07/15/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all HMC8325 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
HMC8325: 71 GHz to 86 GHz, E-Band Low Noise Amplifier  
Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DESIGN RESOURCES  
HMC8325 Material Declaration  
PCN-PDN Information  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
Quality And Reliability  
Symbols and Footprints  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
HMC8325  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................6  
Theory of Operation ...................................................................... 12  
Application Information................................................................ 13  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
Mounting and Bonding Techniques for Millimeterwave GaAs  
MMICs......................................................................................... 14  
Handling Precautions ................................................................ 14  
Mounting..................................................................................... 14  
Wire Bonding.............................................................................. 14  
Assembly Diagram ..................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
2/2017—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
HMC8325  
SPECIFICATIONS  
TA = 25°C, VDx (VD1 and VD2 to VD3 and VD4) = 3 V, unless otherwise noted.  
Table 1.  
Parameter  
Min  
71  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
Radio Frequency (RF) Range  
PERFORMANCE  
86  
GHz  
Gain  
19.5  
21  
0.02  
13  
17  
1
dB  
Gain Variation over Temperature  
Output Power for 1 dB Compression (P1dB)  
dB/°C  
dBm  
dBm  
dBm  
dBm  
dB  
Saturated Output Power (PSAT  
)
Input Third-Order Intercept (IIP3) at Maximum Gain1  
Output Third-Order Intercept (OIP3) at Maximum Gain1  
22  
3.6  
Noise Figure  
Return Loss  
4.5  
Input  
Output  
15  
17  
dB  
dB  
POWER SUPPLY  
Total Drain Current (IDx)2  
50  
mA  
1 Data taken at power output (POUT) = 5 dBm/tone, 1 MHz spacing.  
2 Adjust VG1 and VG2 to VG3 and VG4 from −2 V to 0 V to achieve a total drain current (IDx) = 50 mA.  
Rev. 0 | Page 3 of 16  
 
HMC8325  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Drain Bias Voltage (VD1 to VD4)  
Gate Bias Voltage (VG1 to VG4)  
Maximum Junction Temperature (to  
Maintain 1 Million Hours Mean Time to  
Failure (MTTF))  
Storage Temperature Range  
Operating Temperature Range  
4.5 V  
−3 V to 0 V  
175°C  
Table 3. Thermal Resistance  
Package Type  
C-22-12  
1
θJC  
Unit  
225  
°C/W  
−65°C to +150°C  
−55°C to +85°C  
Class 0 (150 V)  
1 Based on ABLEBOND® 84-1LMIT as die attach epoxy.  
2 Test Condition: Thermal impedance simulated values are based on  
JEDEC 2S2P thermal test board with four thermal vias. See JEDEC JESD51.  
ESD Sensitivity, Human Body Model (HBM)  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. 0 | Page 4 of 16  
 
 
 
Data Sheet  
HMC8325  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
V
GND  
V
GND  
V
GND  
V
GND  
V
GND  
V
GND  
16  
V
GND  
18  
V
D4  
G1  
D1  
G2  
D2  
G3  
D3  
G4  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
17  
19  
HMC8325  
20 GND  
3
2
1
GND  
21  
22  
RF  
RF  
IN  
OUT  
GND  
GND  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pad No.  
Mnemonic  
GND  
Description  
1, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22  
Ground Connection.  
2
RFIN  
RF Input. AC couple RFIN and match it to 50 Ω.  
Gate Bias Voltage for the Low Noise Amplifier.  
Drain Bias Voltage for the Low Noise Amplifier.  
RF Output. AC couple RFOUT and match it to 50 Ω.  
5, 9, 13, 17  
7, 11, 15, 19  
21  
VG1 to VG4  
VD1 to VD4  
RFOUT  
Die Bottom  
GND  
Ground. Die bottom must be connected to the RF/dc ground.  
INTERFACE SCHEMATICS  
GND  
V
, V , V , V  
D1 D2 D3 D4  
Figure 6. VD1 to VD4 Interface Schematic  
Figure 3. GND Interface Schematic  
RF  
RF  
IN  
OUT  
Figure 7. RFOUT Interface Schematic  
Figure 4. RFIN Interface Schematic  
V
, V , V , V  
G1 G2 G3 G4  
Figure 5. VG1 to VG4 Interface Schematic  
Rev. 0 | Page 5 of 16  
 
 
HMC8325  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
0
–5  
–10  
–15  
–20  
GAIN  
INPUT RETURN LOSS  
OUTPUT RETURN LOSS  
–30  
–25  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 11. Noise Figure vs. Frequency over Temperature,  
Figure 8. Gain and Return Loss vs. Frequency, VDx = 3 V, IDx = 57 mA  
VDx = 3 V, IDx = 50 mA  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
20  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
18  
16  
14  
12  
10  
8
6
4
2
0
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Saturated Output Power (PSAT) vs. Frequency over Temperature,  
Dx = 3 V, IDx = 50 mA  
Figure 9. Output P1dB vs. Frequency over Temperature,  
V
VDx = 3 V, IDx = 50 mA  
–40  
–42  
–44  
–46  
–48  
–50  
–52  
–54  
–56  
–58  
–60  
–62  
–64  
–66  
10  
8
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
6
4
2
0
–2  
–4  
–6  
–8  
–10  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. Reverse Isolation vs. Frequency over Temperature,  
Dx = 3 V, IDx = 57 mA  
Figure 10. Input Third-Order Intercept (IP3) vs. Frequency over Temperatures,  
OUT = 5 dBm/Tone, VDx = 3 V, IDx = 50 mA  
V
P
Rev. 0 | Page 6 of 16  
 
Data Sheet  
HMC8325  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
T
T
T
= +85°C  
= +25°C  
= –55°C  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
A
A
A
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. Gain vs. Frequency over Temperature,  
Figure 17. Gain vs. Frequency over Temperature,  
VDx = 3 V, IDx = 57 mA  
VDx = 4 V, IDx = 57 mA  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
I
I
I
I
/I = 1.5mA  
I
I
I
I
/I = 15.0mA  
I
I
I
I
/I = 1.5mA  
I
I
I
I
/I = 15.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 3.0mA  
/I = 20.0mA  
/I = 3.0mA  
/I = 20.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 5.0mA  
/I = 25.0mA  
/I = 5.0mA  
/I = 25.0mA  
D3 D4  
/I = 30.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 10.0mA  
/I = 30.0mA  
/I = 10.0mA  
D3 D4  
D3 D4  
D3 D4  
6
6
4
4
2
2
0
0
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Gain vs. Frequency over Drain Current, VDx = 3 V,  
Figure 18. Gain vs. Frequency over Drain Current, VDx = 4 V,  
VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
–40  
–42  
–44  
–46  
–48  
–50  
–52  
–54  
–56  
–58  
–60  
–62  
–64  
–66  
–68  
–70  
I
I
I
I
I
/I = 3.0mA  
I
I
I
I
I
/I = 25.0mA  
D3 D4  
D3 D4  
T
T
T
= +85°C  
= +25°C  
= –55°C  
/I = 5.0mA  
/I = 30.0mA  
D3 D4  
A
A
A
D3 D4  
/I = 10.0mA  
/I = 35.0mA  
D3 D4  
D3 D4  
/I = 15.0mA  
/I = 40.0mA  
D3 D4  
D3 D4  
/I = 20.0mA  
/I = 44.0mA  
D3 D4  
D3 D4  
6
4
2
0
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. Gain vs. Frequency over Drain Current,  
Figure 19. Reverse Isolation vs. Frequency over Temperature,  
Dx = 4 V, IDx = 57 mA  
VD1 and VD2 = 2 V, VD3 and VD4 = 4 V  
V
Rev. 0 | Page 7 of 16  
HMC8325  
Data Sheet  
0
0
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
T
T
T
= +85°C  
= +25°C  
= –55°C  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
A
A
A
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 20. Input Return Loss vs. Frequency over Temperature,  
Figure 23. Input Return Loss vs. Frequency over Temperature,  
Dx = 4 V, IDx = 57 mA  
VDx = 3 V, IDx = 57 mA  
V
0
–2  
0
–2  
T
T
T
= +85°C  
= +25°C  
= –55°C  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
A
A
A
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 21. Output Return Loss vs. Frequency over Temperature,  
Dx = 3 V, IDx = 57 mA  
Figure 24. Output Return Loss vs. Frequency over Temperature,  
Dx = 4 V, IDx = 57 mA  
V
V
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
I
I
I
I
/I = 1.5mA  
I
I
I
I
/I = 15.0mA  
D3 D4  
D3 D4  
T
T
T
= +85°C  
= +25°C  
= –55°C  
/I = 3.0mA  
/I = 20.0mA  
D3 D4  
A
A
A
D3 D4  
/I = 5.0mA  
/I = 25.0mA  
D3 D4  
/I = 30.0mA  
D3 D4  
D3 D4  
/I = 10.0mA  
D3 D4  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 22. Noise Figure vs. Frequency over Temperature,  
Figure 25. Noise Figure vs. Frequency over Drain Current, VDx = 3 V,  
VDx = 4 V, IDx = 50 mA  
VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
Rev. 0 | Page 8 of 16  
Data Sheet  
HMC8325  
10  
9
8
7
6
5
4
3
2
1
0
10  
8
I
I
I
I
I
/I = 3.0mA  
I
I
I
I
I
/I = 25.0mA  
I
I
I
I
/I = 1.5mA  
I
I
I
I
/I = 15.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 5.0mA  
/I = 30.0mA  
D3 D4  
/I = 3.0mA  
/I = 20.0mA  
D3 D4  
D3 D4  
D3 D4  
/I = 10.0mA  
/I = 35.0mA  
D3 D4  
/I = 5.0mA  
/I = 25.0mA  
D3 D4  
/I = 30.0mA  
D3 D4  
D3 D4  
D3 D4  
/I = 15.0mA  
/I = 40.0mA  
D3 D4  
/I = 10.0mA  
D3 D4  
D3 D4  
/I = 20.0mA  
/I = 44.0mA  
D3 D4  
D3 D4  
6
4
2
0
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 26. Noise Figure vs. Frequency over Drain Current, VDx = 4 V,  
Figure 29. Noise Figure vs. Frequency over Drain Current,  
VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
VD1 and VD2 = 2 V, VD3 and VD4 = 4 V  
20  
18  
16  
14  
12  
10  
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
6
4
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
2
0
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 27. Output P1dB vs. Frequency over Temperature,  
Figure 30. Saturated Output Power (PSAT) vs. Frequency over Temperature,  
Dx = 4 V, IDx = 50 mA  
VDx = 4 V, IDx = 50 mA  
V
20  
18  
16  
14  
12  
10  
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
I
I
I
I
/I = 3.0mA  
I
I
I
/I = 20.0mA  
I
I
I
I
/I = 3.0mA  
I
I
I
/I = 20.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 5.0mA  
/I = 25.0mA  
/I = 5.0mA  
/I = 25.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 10.0mA  
/I = 30.0mA  
/I = 10.0mA  
/I = 30.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 15.0mA  
/I = 15.0mA  
D3 D4  
D3 D4  
6
4
2
0
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 28. Output P1dB vs. Frequency over Drain Current, VDx = 3 V,  
Figure 31. Saturated Output Power (PSAT) vs. Frequency over Drain Current,  
VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
VDx = 3 V, VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
Rev. 0 | Page 9 of 16  
HMC8325  
Data Sheet  
20  
18  
16  
14  
12  
10  
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
I
I
I
/I = 3.0mA  
I
I
I
I
/I = 15.0mA  
I
I
I
I
/I = 3.0mA  
I
I
I
/I = 20.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 5.0mA  
/I = 20.0mA  
D3 D4  
/I = 5.0mA  
/I = 25.0mA  
D3 D4  
D3 D4  
D3 D4  
/I = 10.0mA  
/I = 25.0mA  
/I = 10.0mA  
/I = 30.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 30.0mA  
/I = 15.0mA  
D3 D4  
D3 D4  
6
4
2
0
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 32. Output P1dB vs. Frequency over Drain Current, VDx = 4 V,  
Figure 35. Saturated Output Power (PSAT) vs. Frequency over Drain Current,  
VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
VDx = 4 V, VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
20  
18  
16  
14  
12  
10  
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
I
I
I
I
/I = 5.0mA  
I
I
I
I
I
/I = 25.0mA  
I
I
I
I
/I = 5.0mA  
I
I
I
I
I
/I = 25.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 10.0mA  
/I = 30.0mA  
/I = 10.0mA  
/I = 30.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 15.0mA  
/I = 35.0mA  
/I = 15.0mA  
/I = 35.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 20.0mA  
/I = 40.0mA  
/I = 20.0mA  
/I = 40.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 44.0mA  
/I = 44.0mA  
D3 D4  
D3 D4  
6
4
2
0
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 33. Output P1dB vs. Frequency over Drain Current,  
Figure 36. Saturated Output Power (PSAT) vs. Frequency over Drain Current,  
VD1 and VD2 = 2 V, VD3 and VD4 = 4 V  
VD1 and VD2 = 2 V, VD3 and VD4 = 4 V  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
T
T
T
= +85°C  
= +25°C  
= –55°C  
T
T
T
= +85°C  
= +25°C  
= –55°C  
A
A
A
A
A
A
6
4
2
0
–2  
–4  
–6  
–8  
–10  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 34. Input Third-Order Intercept (IP3) vs. Frequency over Temperature,  
Dx = 4 V, IDx = 50 mA  
Figure 37. Output Third-Order Intercept (IP3) vs. Frequency over  
Temperature, VDx = 4 V, IDx = 50 mA  
V
Rev. 0 | Page 10 of 16  
Data Sheet  
HMC8325  
20  
18  
16  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
I
I
I
I
/I = 3.0mA  
I
I
I
/I = 20.0mA  
I
I
I
I
/I = 3.0mA  
I
I
I
/I = 20.0mA  
D3 D4  
D3 D4  
D3 D4  
D3 D4  
/I = 5.0mA  
/I = 25.0mA  
D3 D4  
/I = 5.0mA  
/I = 25.0mA  
D3 D4  
D3 D4  
D3 D4  
/I = 10.0mA  
/I = 30.0mA  
D3 D4  
/I = 10.0mA  
/I = 30.0mA  
D3 D4  
D3 D4  
D3 D4  
/I = 15.0mA  
/I = 15.0mA  
D3 D4  
D3 D4  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 38. Input Third-Order Intercept (IP3) vs. Frequency over Drain Current,  
Figure 41. Output Third-Order Intercept (IP3) vs. Frequency over Drain  
Current, VDx = 3 V, VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
VDx = 3 V, VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
20  
18  
16  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
14  
I
I
I
I
/I = 3.0mA  
I
I
I
/I = 20.0mA  
D3 D4  
D3 D4  
/I = 5.0mA  
/I = 25.0mA  
D3 D4  
D3 D4  
/I = 10.0mA  
/I = 30.0mA  
D3 D4  
D3 D4  
/I = 15.0mA  
D3 D4  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
I
I
I
I
/I = 3.0mA  
I
I
I
/I = 20.0mA  
D3 D4  
D3 D4  
/I = 5.0mA  
/I = 25.0mA  
D3 D4  
D3 D4  
12  
10  
/I = 10.0mA  
/I = 30.0mA  
D3 D4  
D3 D4  
/I = 15.0mA  
D3 D4  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 39. Input Third-Order Intercept (IP3) vs. Frequency over Drain Current,  
Dx = 4 V, VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
Figure 42. Output Third-Order Intercept (IP3) vs. Frequency over Drain  
Current, VDx = 4 V, VG1 and VG2 Fixed at 20 mA, VG3 and VG4 Swept  
V
20  
18  
16  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
I
I
I
I
/I = 5.0mA  
I
I
I
I
I
/I = 25.0mA  
D3 D4  
D3 D4  
/I = 10.0mA  
/I = 30.0mA  
D3 D4  
D3 D4  
/I = 15.0mA  
/I = 35.0mA  
D3 D4  
D3 D4  
/I = 20.0mA  
/I = 40.0mA  
D3 D4  
D3 D4  
/I = 44.0mA  
D3 D4  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
I
I
I
I
/I = 5.0mA  
I
I
I
I
I
/I = 25.0mA  
D3 D4  
D3 D4  
14  
12  
10  
/I = 10.0mA  
/I = 30.0mA  
D3 D4  
D3 D4  
/I = 15.0mA  
/I = 35.0mA  
D3 D4  
D3 D4  
/I = 20.0mA  
/I = 40.0mA  
D3 D4  
D3 D4  
/I = 44.0mA  
D3 D4  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 40. Input Third-Order Intercept (IP3) vs. Frequency over Drain Current,  
D1 and VD2 = 2 V, VD3 and VD4 = 4 V  
Figure 43. Output Third-Order Intercept (IP3) vs. Frequency over Drain  
Current, VD1 and VD2 = 2 V, VD3 and VD4 = 4 V  
V
Rev. 0 | Page 11 of 16  
HMC8325  
Data Sheet  
THEORY OF OPERATION  
The circuit architecture of the HMC8325 low noise amplifier is  
shown in Figure 44. The HMC8325 uses four cascaded gain  
stages to form an amplifier with a combined gain of 21 dB  
(typical), a noise figure of 3.6 dB (typical), and 1 dBm (typical)  
input IP3 across the 71 GHz to 86 GHz frequency range. Stage 1  
and Stage 2 can be biased separately from Stage 3 and Stage 4.  
Operating at VD1 = VD2 = 2 V and VD3 = VD4 = 4 V improves  
gain and noise figure compared to VD1 = VD2 = VD3 = VD4 = 4 V.  
The input IP3 is slightly lower for the VD1 = VD2 = 2 V and VD3  
D4 = 4 V case. A compromise bias voltage between the gain  
noise figure vs. the input IP3 is VD1 = VD2 = VD3 = VD4 = 3 V.  
Gain control can be achieved by down biasing Stage 3 and  
Stage 4. By lowering the drain current of ID3 and ID4, a 12 dB  
reduction in gain can be achieved with a small degradation in  
=
V
the noise figure. Refer to Figure 45 for further details on biasing  
arrangements for the different stages.  
RF  
RF  
IN  
OUT  
Figure 44. Circuit Architecture  
Rev. 0 | Page 12 of 16  
 
 
Data Sheet  
HMC8325  
APPLICATION INFORMATION  
The typical application circuit shown in Figure 45 shows the  
HMC8325 chip with all of its required bypassing components.  
Bypass all supply connections with adequate bypassing capacitors  
is recommended. Use single-layer chip capacitors with a very  
high, self-resonant frequency close to the HMC8325 chip.  
Typically, 120 pF chip capacitors are recommended, followed by  
0.01 µF and 4.7 µF surface-mount capacitors. Supply lines can be  
combined into single drain and single gate bias sources to minimize  
external component count and simplify power supply routing.  
The HMC8325 uses several amplifier stages. All stages use depletion  
mode, pseudomorphic high electron mobility transfer (pHEMT)  
transistors. Therefore, follow the following recommended bias  
sequence during power-up of the devices to ensure that damage  
does not occur.  
1. Apply −2 V bias to VGx (VG1 and VG2 to VG3 and VG4).  
2. Apply 3 V bias to VDx (VD1 and VD2 to VD3 and VD4).  
3. Adjust VG1/VG2 to VG3/VG4 between −2 V and 0 V to  
achieve a total drain current (IDx) of 50 mA.  
The recommended single power supply source is 3 V (VDx  
VD1/VD2 and VD3/VD4 = 3 V). Alternatively, 2 V and 4 V power  
supply sources can be used for VD1/VD2 and VD3/VD4, respectively.  
=
4. Apply the RF input signal.  
The recommended bias sequence during power-down of the  
device is as follows:  
1. Turn off the RF input signal.  
2. Turn off the VDx (VD1 and VD2 to VD3 and VD4) voltage  
supply or set it to 0 V.  
3. Turn off the VGx (VG1 and VG2 to VG3 and VG4) voltage  
supply.  
V
V
/V  
V
/V  
D1 D2  
G3 G4  
+
+
0.01µF  
0.01µF  
0.01µF  
120pF  
4.7µF  
120pF  
120pF  
4.7µF  
4.7µF  
+
/V  
V
/V  
G1 G2  
D3 D4  
+
0.01µF  
120pF  
4.7µF  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
3
2
1
RF  
RF  
OUT  
IN  
22  
Figure 45. Typical Application Circuit (Two Power Supply Source Configuration)  
Rev. 0 | Page 13 of 16  
 
 
HMC8325  
Data Sheet  
Transients  
MOUNTING AND BONDING TECHNIQUES FOR  
MILLIMETERWAVE GAAS MMICS  
Suppress instrument and bias supply transients while bias is  
applied. To minimize inductive pickup, use shielded signal and  
bias cables.  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy.  
General Handling  
To bring RF to and from the chip, use 50 Ω microstrip transmission  
lines on 0.127 mm (0.005”) thick, alumina thin film substrates  
(see Figure 46).  
Handle the chip on the edges only using a vacuum collet or with  
a sharp pair of bent tweezers. Because the surface of the chip  
has fragile air bridges, never touch the surface of the chip with  
a vacuum collet, tweezers, or fingers.  
0.05mm (0.002") THICK GaAs MMIC  
MOUNTING  
RIBBON BOND  
The chip is back metallized and can be die mounted with gold/tin  
(AuSn) eutectic preforms or with electrically conductive epoxy.  
The mounting surface must be clean and flat.  
0.076mm  
(0.003")  
Eutectic Die Attach  
RF GROUND PLANE  
It is best to use an 80% gold/20% tin preform with a work surface  
temperature of 255°C and a tool temperature of 265°C. When  
hot 90% nitrogen/10% hydrogen gas is applied, maintain a tool  
tip temperature of 290°C. Do not expose the chip to a temperature  
greater than 320°C for more than 20 sec. No more than 3 sec of  
scrubbing is required for attachment.  
0.127mm (0.005") THICK ALUMINA  
THIN FILM SUBSTRATE  
Figure 46. Routing RF Signals  
To minimize bond wire length, place microstrip substrates as  
close to the die as possible. Typical die to substrate spacing is  
0.076 mm to 0.152 mm (0.003” to 0.006”).  
Epoxy Die Attach  
The ABLEBOND 84-1LMIT is recommended for die attachment.  
Apply a minimum amount of epoxy to the mounting surface so  
that a thin epoxy fillet is observed around the perimeter of the  
chip after placing it into position. Cure the epoxy per the schedule  
provided by the manufacturer.  
HANDLING PRECAUTIONS  
To avoid permanent damage, adhere to the following storage,  
cleanliness, static sensitivity, transient, and general handling  
precautions.  
Storage  
WIRE BONDING  
All bare die ship in either waffle or gel-based ESD protective  
containers, sealed in an ESD protective bag. After opening the  
sealed ESD protective bag, all die must be stored in a dry nitrogen  
environment.  
RF bonds made with 3 mil (0.0762 mm) × 0.5 mil (0.0127 mm)  
gold ribbon are recommended. Thermosonically bond these  
bonds with a force of 40 grams to 60 grams. DC bonds of 1 mil  
(0.0254 mm) diameter, thermosonically bonded, are recommended.  
Create ball bonds with a force of 40 grams to 50 grams and  
wedge bonds with a force of 18 grams to 22 grams. Create all  
bonds with a nominal stage temperature of 150°C. Apply a  
minimum amount of ultrasonic energy to achieve reliable bonds.  
Keep all bonds as short as possible, less than 12 mil (0.31 mm).  
Cleanliness  
Handle the chips in a clean environment. Never use liquid  
cleaning systems to clean the chip.  
Static Sensitivity  
Follow ESD precautions to protect against ESD strikes.  
Rev. 0 | Page 14 of 16  
 
 
 
 
 
Data Sheet  
HMC8325  
ASSEMBLY DIAGRAM  
V
TO V  
V
TO V  
V
TO V  
V
TO V  
G1  
G2  
D1  
D2  
G3  
G4  
D3 D4  
0.01µF  
120pF  
0.5mil THICK  
7.0mil LONG  
3mil  
NOMINAL GAP  
GOLD RIBBON  
(WEDGE BOND)  
50Ω  
TRANSMISSION LINE  
Figure 47. Assembly Diagram  
Rev. 0 | Page 15 of 16  
 
HMC8325  
Data Sheet  
OUTLINE DIMENSIONS  
2.844  
0.150  
0.05  
0.115  
0.150  
0.150  
0.150  
0.150  
0.150  
0.150  
AIRBRIDGE  
0.150  
0.150  
0.150  
0.150  
0.150  
0.150  
0.150  
0.150 0.135  
0.148  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
0.466  
0.999  
20  
21  
22  
3
2
1
0.130  
0.130  
0.130  
0.130  
0.179  
0.196  
K7801  
ADI2015  
0.215  
SIDE VIEW  
TOP VIEW  
(CIRCUIT SIDE)  
0.095  
0.133  
2.655  
Figure 48. 22-Pad Bare Die [CHIP]  
(C-22-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−55°C to +85°C  
−55°C to +85°C  
Package Description  
22-Pad Bare Die [CHIP]  
22-Pad Bare Die [CHIP]  
Package Option2  
C-22-1  
HMC8325  
HMC8325-SX  
C-22-1  
1 The HMC8325-SX is two pairs of the die in a gel pack for the sample orders.  
2 This is a waffle pack option; contact Analog Devices, Inc., for additional packaging options.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14692-0-2/17(0)  
Rev. 0 | Page 16 of 16  
 
 

相关型号:

HMC832A

Fractional-N PLL with Integrated VCO
ADI

HMC832ALP6GE

Fractional-N PLL with Integrated VCO
ADI

HMC832ALP6GETR

Fractional-N PLL with Integrated VCO 25 MHz to 3000 MHz
ADI

HMC832LP6GE

Fractional-N PLL with Integrated VCO 25 MHz to 3000 MHz
HITTITE

HMC832LP6GE

暂无描述
ADI

HMC832LP6GETR

Wideband PLL+VCO (3.3V), 25 - 3000 MHz
ADI

HMC832LP6GETR

PLL/Frequency Synthesis Circuit,
HITTITE

HMC833LP6GE

Built in Digital Self Test
HITTITE

HMC833LP6GE

Fractional-N PLL with Integrated VCO, 25 - 6000 MHz
ADI

HMC833LP6GETR

Fractional-N PLL with Integrated VCO, 25 - 6000 MHz
ADI

HMC8342

GaAs MMIC ×2 Active Frequency Multiplier, 22 GHz to 42 GHz Output
ADI

HMC8342LS6

GaAs MMIC ×2 Active Frequency Multiplier, 22 GHz to 42 GHz Output
ADI