HMC8362LP6GE [ADI]

11.90 GHz to 18.30 GHz Quadband VCO;
HMC8362LP6GE
型号: HMC8362LP6GE
厂家: ADI    ADI
描述:

11.90 GHz to 18.30 GHz Quadband VCO

文件: 总17页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
11.90 GHz to 18.30 GHz Quadband VCO  
Data Sheet  
HMC8362  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Set of 4 narrow-band VCOs with consistent sensitivity vs.  
frequency  
RF and tuning ports common to all 4 VCOs  
RF output operates from fundamental oscillators with no  
subharmonic oscillations  
Up to 8 dBm RF output power  
Power mute capability  
30  
29  
28  
27  
26  
NIC  
GND  
NIC  
1
2
3
NIC  
HMC8362  
11.90GHz TO  
13.70GHz  
VC1  
GND  
V
GND  
RFOUT  
GND  
NIC  
4
5
6
7
8
9
TUNE  
13.50GHz TO  
15.40GHz  
GND  
No external resonator required  
40-lead, 6 mm × 6 mm LFCSP  
25 VC2  
15.20GHz TO  
17.15GHz  
24  
23  
22  
21  
GND  
VC3  
VC4  
NIC  
APPLICATIONS  
VCB  
16.95GHz TO  
18.30GHz  
NIC  
Electronic test and measurement  
Industrial and medical instrumentation  
Point to point and multipoint radios  
Aerospace and defense  
NIC 10  
PACKAGE  
BASE  
GND  
Wireless communication infrastructure  
Figure 1.  
GENERAL DESCRIPTION  
The HMC8362 is a gallium arsenide (GaAs), quadband,  
monolithic microwave integrated circuit (MMIC), voltage  
controlled oscillator (VCO) designed to offer wideband  
capabilities without compromising on phase noise performance.  
The device integrates four independent, narrow-band VCOs  
with overlapping frequency bands, operating at a fundamental  
frequency range of 11.90 GHz to 18.30 GHz. The consistent  
tuning sensitivity across all frequency bands simplifies the  
synthesizer loop filter design.  
The HMC8362 integrates resonators, negative resistance  
devices, and varactor diodes. The monolithic structure of the  
oscillator offers very low phase noise, optimal temperature  
stability, and is immune to vibration and process variation.  
The four VCOs are packaged in a single, 6 mm × 6 mm,  
surface-mount lead frame chip scale package (LFCSP), and  
require no external matching components.  
Combined with a high frequency, high performance phase-  
locked loop (PLL), the ADF41513, the HMC8362 offers a  
complete RF or microwave frequency generation solution.  
The tuning port is common to all VCO cores for a simpler  
design of the phase-locked loop (PLL) feedback path. The  
HMC8362 also offers a low typical current consumption of  
72 mA for power sensitive applications.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC8362  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Interface Schematics .....................................................................6  
Typical Performance Characteristics .............................................7  
Band 1: 11.90 GHz to 13.70 GHz, VCC = 5 V.............................7  
Band 2: 13.50 GHz to 15.40 GHz, VCC = 5 V.............................9  
Band 3: 15.20 GHz to 17.15 GHz, VCC = 5 V.......................... 11  
Band 4: 16.95 GHz to 18.30 GHz, VCC = 5 V.......................... 13  
Theory of Operation ...................................................................... 15  
Applications Information ............................................................. 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Absolute Maximum Ratings ........................................................... 5  
Thermal Resistance...................................................................... 5  
Electrostatic Discharge (ESD) Ratings...................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions ............................ 6  
REVISION HISTORY  
9/2020—Revision A: Initial Version  
Rev. A | Page 2 of 17  
 
Data Sheet  
HMC8362  
SPECIFICATIONS  
TA = −40°C to +85°C, Band 1 to Band 4 supply voltage (VCC) = 5 V, buffer supply voltage (VCB) = 5 V, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RF OUTPUT CHARACTERISTICS  
Frequency (fOUT  
)
Band 1  
Band 2  
Band 3  
Band 4  
11.90  
13.50  
15.20  
16.95  
13.70 GHz  
15.40 GHz  
17.15 GHz  
18.30 GHz  
Output Power (POUT  
)
Band 1  
Band 2  
Band 3  
Band 4  
−4  
−4  
−4  
−4  
+1.9  
+0.8  
+3  
+8  
+8  
+8  
+8  
dBm  
dBm  
dBm  
dBm  
+1.8  
POUT with Buffer Amplifier Muted  
Measured at VCB = 0 V  
Band 1  
Band 2  
Band 3  
−27  
−20  
−25  
−30  
dBm  
dBm  
dBm  
dBm  
Band 4  
Tuning Sensitivity  
Band 1  
Band 2  
Band 3  
Band 4  
226  
246  
272  
291  
MHz/V  
MHz/V  
MHz/V  
MHz/V  
Frequency Drift Rate  
Drift specifications are not de-embedded to remove contribution  
from the evaluation board  
Band 1  
Band 2  
Band 3  
Band 4  
1.7  
2
2.4  
2.6  
MHz/°C  
MHz/°C  
MHz/°C  
MHz/°C  
Harmonic Content  
Second Harmonic  
Third Harmonic  
Frequency Pulling  
Frequency Pushing  
Output Return Loss  
POWER SUPPLIES  
Supply Voltage  
Supply Current (ICC)  
Band 1  
Band 2  
Band 3  
Band 4  
Buffer Amplifier  
Total Supply Current  
Worst measured value at typical  
12  
30  
0.5  
30  
8
dBc  
dBc  
MHz p-p Worst measured value at typical  
MHz/V  
dB  
Worst measured value at typical  
Worst measured value at typical  
4.75  
5.0  
5.25  
V
63  
63  
67  
67  
9
mA  
mA  
mA  
mA  
mA  
mA  
72  
95  
Total supply current is for the output buffer and one VCO band;  
only one VCO band must be powered at a time  
Tuning Voltage  
Tuning Port Leakage Current  
1.0  
13.5  
60  
V
μA  
V
TUNE = 13.5 V, where the maximum tune port leakage current is  
measured  
Rev. A | Page 3 of 17  
 
HMC8362  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SINGLE SIDEBAND PHASE NOISE  
Band 1  
10 kHz  
100 kHz  
1 MHz  
−74  
−101  
−128  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Band 2  
10 kHz  
100 kHz  
1 MHz  
−71  
−99  
−126  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Band 3  
10 kHz  
100 kHz  
1 MHz  
−69  
−96  
−124  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Band 4  
10 kHz  
100 kHz  
1 MHz  
−66  
−94  
−122  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Rev. A | Page 4 of 17  
Data Sheet  
HMC8362  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
VC1 to VC4, VCB  
VTUNE  
Rating  
1
5.5 V dc  
0 V to 15 V  
Temperature  
Operating  
Storage  
Maximum Junction to Maintain 1 Million  
Hours Mean Time to Failure (MTTF)  
θ
JA is the natural convection junction to ambient thermal  
−40°C to +85°C  
−65°C to +150°C  
135°C  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Table 3. Thermal Resistance  
Package Type1  
Peak Reflow (Moisture Sensitivity  
Level (MSL) 3 Rating)  
260°C  
θJA  
θJC  
Unit  
HCP-40-1  
27.50  
17.96  
°C/W  
1 Only one VCO band must be powered at a time. VC1 to VC4 are the Band 1 to  
Band 4 supply voltages on the VC1 to VC4 pins, respectively.  
1 The thermal impedance simulated values are based on the JESD51 standard  
using 2S2P on FR4 with four standard JEDEC vias (0.3 mm diameter,  
0.025 mm plating, and 1.2 mm pitch).  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
Human body model (HBM) per JEDEC JS-001.  
Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.  
ESD Ratings for HMC8362  
Table 4. HMC8362, 40-Lead LFCSP  
ESD Model  
Withstand Threshold (V)  
Class  
1A  
HBM  
500  
CDM  
1000  
C3  
ESD CAUTION  
Rev. A | Page 5 of 17  
 
 
 
 
HMC8362  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NIC  
GND  
NIC  
GND  
RFOUT  
GND  
NIC  
VCB  
NIC  
NIC 10  
1
2
3
4
5
6
7
8
9
30 NIC  
29 VC1  
28 GND  
V
26 GND  
25 VC2  
24 GND  
23 VC3  
22 VC4  
21 NIC  
27  
TUNE  
HMC8362  
TOP VIEW  
(Not to Scale)  
NOTES  
1. NOT INTERNALLY CONNECTED. HOWEVER, THESE  
PINS CAN BE CONNECTED TO RF OR DC GROUND  
WITHOUTAFFECTING THE PERFORMANCE OF  
THE DEVICE.  
2. EXPOSED PAD. THE PACKAGE BOTTOM HAS AN  
EXPOSED METAL PAD THAT MUST BE CONNECTED  
TO RF OR DC GROUND.  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 3, 7, 9 to 21, 30 to 40  
NIC  
Not Internally Connected. However, these pins can be connected to RF or dc ground without  
affecting the performance of the device.  
2, 4, 6, 24, 26, 28  
5
GND  
RFOUT  
Ground. The GND pins must be connected to RF or dc ground.  
RF Output. The RFOUT pin is ac-coupled, and maintaining a voltage standing wave ratio (VSWR)  
load of ≤2.0:1 across frequency is recommended.  
8
VCB  
VC4  
VC3  
VC2  
VTUNE  
Buffer Supply Voltage.  
Band 4 Supply Voltage.  
Band 3 Supply Voltage.  
Band 2 Supply Voltage.  
22  
23  
25  
27  
Control Voltage and Modulation Input. The modulation bandwidth is dependent on the drive  
source impedance.  
29  
VC1  
EP  
Band 1 Supply Voltage.  
Exposed Pad. The package bottom has an exposed metal pad that must be connected to RF or dc  
ground.  
INTERFACE SCHEMATICS  
0.4nH  
1.6Ω  
RFOUT  
V
TUNE  
295pF  
125pF  
VCB  
Figure 5. VTUNE Interface Schematic  
Figure 3. RFOUT and VCB Interface Schematic  
VCx  
GND  
Figure 4. VC1 to VC4 Interface Schematic  
Figure 6. GND Interface Schematic  
Rev. A | Page 6 of 17  
 
Data Sheet  
HMC8362  
TYPICAL PERFORMANCE CHARACTERISTICS  
BAND 1: 11.90 GHz TO 13.70 GHz, VCC = 5 V  
14.5  
8
7
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
6
5
4
3
2
1
0
–1  
–2  
–3  
–4  
10.5  
+85°C  
+85°C  
+25°C  
–40°C  
10.0  
9.5  
+25°C  
–40°C  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 7. Output Frequency vs. VTUNE for Various Temperatures  
Figure 10. Output Power vs. VTUNE for Various Temperatures  
1800  
90  
+85°C  
+85°C  
+25°C  
+25°C  
1600  
1400  
85  
80  
–40°C  
–40°C  
1200  
1000  
800  
600  
400  
200  
0
75  
70  
65  
60  
55  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 8. Tuning Sensitivity vs. VTUNE for Various Temperatures  
Figure 11. Supply Current vs. VTUNE for Various Temperatures  
–55  
0
–10  
–20  
–30  
–40  
10kHz, –40°C  
100kHz, –40°C  
1MHz, –40°C  
10kHz, +25°C  
100kHz, +25°C  
1MHz, +25°C  
10kHz, +85°C  
100kHz, +85°C  
1MHz, +85°C  
+85°C  
+25°C  
–40°C  
–65  
–75  
–50  
–85  
–60  
–70  
–95  
–80  
–90  
–105  
–115  
–125  
–135  
–145  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
100  
1k  
10k  
100k  
1M  
10M  
100M  
V
(V dc)  
OFFSET FREQUENCY (Hz)  
TUNE  
Figure 12. Single Sideband Phase Noise vs. Offset Frequency for Various  
Temperatures at VTUNE = 5 V  
Figure 9. Single Sideband Phase Noise vs. VTUNE for Various Temperatures and  
Frequencies  
Rev. A | Page 7 of 17  
 
 
HMC8362  
Data Sheet  
10  
5
0
–2  
–4  
–6  
–8  
+85°C  
+25°C  
–40°C  
0
–5  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–15  
–20  
–25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
FREQUENCY (GHz)  
V
(V dc)  
TUNE  
Figure 13. Second Harmonic vs. VTUNE for Various Temperatures  
Figure 15. Output Return Loss vs. Frequency at VTUNE = 7.25 V,  
CB = 5 V, TA = 25°C  
V
0
0
–5  
+85°C  
+85°C  
+25°C  
–40°C  
–5  
+25°C  
–40°C  
–10  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 14. Third Harmonic vs. VTUNE for Various Temperatures  
Figure 16. Output Power vs. VTUNE at VCB = 0 V for Various Temperatures  
Rev. A | Page 8 of 17  
Data Sheet  
HMC8362  
BAND 2: 13.50 GHz TO 15.40 GHz, VCC = 5 V  
16.5  
8
7
+85°C  
+25°C  
–40°C  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
6
5
4
3
2
1
0
–1  
–2  
–3  
–4  
+85°C  
+25°C  
–40°C  
11.5  
11.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 17. Output Frequency vs. VTUNE for Various Temperatures  
Figure 20. Output Power vs. VTUNE for Various Temperatures  
2200  
90  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2000  
1800  
1600  
1400  
1200  
1000  
800  
85  
80  
75  
70  
65  
60  
55  
50  
600  
400  
200  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 18. Tuning Sensitivity vs. VTUNE for Various Temperatures  
Figure 21. Supply Current vs. VTUNE for Various Temperatures  
–55  
–65  
0
–10  
–20  
–30  
+85°C  
+25°C  
–40°C  
–75  
–40  
–50  
–85  
–60  
–70  
–95  
–80  
–90  
–105  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
10kHz, –40°C  
100kHz, –40°C  
1MHz, –40°C  
10kHz, +25°C  
100kHz, +25°C  
1MHz, +25°C  
10kHz, +85°C  
100kHz, +85°C  
1MHz, +85°C  
–115  
–125  
–135  
–145  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
100  
1k  
10k  
100k  
1M  
10M  
100M  
V
(V dc)  
OFFSET FREQUENCY (Hz)  
TUNE  
Figure 22. Single Sideband Phase Noise vs. Offset Frequency for Various  
Temperatures at VTUNE = 5 V  
Figure 19. Single Sideband Phase Noise vs. VTUNE for Various Temperatures  
and Frequencies  
Rev. A | Page 9 of 17  
 
HMC8362  
Data Sheet  
10  
5
0
+85°C  
+25°C  
–40°C  
–5  
0
–10  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
–20  
–25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
FREQUENCY (GHz)  
V
(V dc)  
TUNE  
Figure 25. Output Return Loss vs. Frequency at VTUNE = 7.25 V,  
CB = 5 V, TA = 25°C  
Figure 23. Second Harmonic vs. VTUNE for Various Temperatures  
V
0
–5  
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
TUNE  
V
(V dc)  
TUNE  
Figure 26. Output Power vs. VTUNE at VCB = 0 V for Various Temperatures  
Figure 24. Third Harmonic vs. VTUNE for Various Temperatures  
Rev. A | Page 10 of 17  
Data Sheet  
HMC8362  
BAND 3: 15.20 GHz TO 17.15 GHz, VCC = 5 V  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
8
7
+85°C  
+25°C  
–40°C  
6
5
4
3
2
1
0
–1  
–2  
–3  
–4  
+85°C  
+25°C  
–40°C  
13.0  
12.5  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 27. Output Frequency vs. VTUNE for Various Temperatures  
Figure 30. Output Power vs. VTUNE for Various Temperatures  
2200  
90  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2000  
1800  
1600  
1400  
1200  
1000  
800  
85  
80  
75  
70  
65  
60  
55  
50  
600  
400  
200  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 28. Tuning Sensitivity vs. VTUNE for Various Temperatures  
Figure 31. Supply Current vs. VTUNE for Various Temperatures  
–55  
–65  
–75  
–85  
–95  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
+85°C  
+25°C  
–40°C  
–90  
–105  
–115  
–125  
–135  
–145  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
10kHz, –40°C  
100kHz, –40°C  
1MHz, –40°C  
10kHz, +25°C  
100kHz, +25°C  
1MHz, +25°C  
10kHz, +85°C  
100kHz, +85°C  
1MHz, +85°C  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
100  
1k  
10k  
100k  
1M  
10M  
100M  
V
(V dc)  
OFFSET FREQUENCY (Hz)  
TUNE  
Figure 32. Single Sideband Phase Noise vs. Offset Frequency for Various  
Temperatures at VTUNE = 5 V  
Figure 29. Single Sideband Phase Noise vs. VTUNE for Various Temperatures  
and Frequencies  
Rev. A | Page 11 of 17  
 
HMC8362  
Data Sheet  
10  
5
0
+85°C  
+25°C  
–40°C  
–5  
0
–10  
–15  
–20  
–25  
–5  
–10  
–15  
–20  
–25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
FREQUENCY (GHz)  
V
(V dc)  
TUNE  
Figure 33. Second Harmonic vs. VTUNE for Various Temperatures  
Figure 35. Output Return Loss vs. Frequency at VTUNE = 7.25 V, VCC = 5 V,  
CB = 5 V, T = 25°C  
V
0
0
–5  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 34. Third Harmonic vs. VTUNE for Various Temperatures,  
(Measurement Up to 6.5 V Only Due to Equipment Limitation)  
Figure 36. Output Power vs. VTUNE at VCB = 0 V for Various Temperatures  
Rev. A | Page 12 of 17  
Data Sheet  
HMC8362  
BAND 4: 16.95 GHz TO 18.30 GHz, VCC = 5 V  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
8
7
+85°C  
+25°C  
–40°C  
6
5
4
3
2
1
0
–1  
–2  
–3  
–4  
+85°C  
+25°C  
–40°C  
14.5  
14.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 37. Output Frequency vs. VTUNE for Various Temperatures  
Figure 40. Output Power vs. VTUNE for Various Temperatures  
2200  
90  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2000  
1800  
1600  
1400  
1200  
1000  
800  
85  
80  
75  
70  
65  
60  
55  
50  
600  
400  
200  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 38. Tuning Sensitivity vs. VTUNE for Various Temperatures  
Figure 41. Supply Current vs. VTUNE for Various Temperatures  
–55  
–65  
0
–10  
–20  
–30  
+85°C  
+25°C  
–40°C  
–75  
–40  
–50  
–85  
–60  
–70  
–95  
–80  
–90  
–105  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
10kHz, –40°C  
100kHz, –40°C  
1MHz, –40°C  
10kHz, +25°C  
100kHz, +25°C  
1MHz, +25°C  
10kHz, +85°C  
100kHz, +85°C  
1MHz, +85°C  
–115  
–125  
–135  
–145  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
100  
1k  
10k  
100k  
1M  
10M  
100M  
V
(V dc)  
OFFSET FREQUENCY (Hz)  
TUNE  
Figure 42. Single Sideband Phase Noise vs. Offset Frequency for Various  
Temperatures at VTUNE = 5 V  
Figure 39. Single Sideband Phase Noise vs. VTUNE for Various Temperatures  
and Frequencies  
Rev. A | Page 13 of 17  
 
HMC8362  
Data Sheet  
10  
5
0
+85°C  
+25°C  
–40°C  
–5  
0
–10  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
–20  
–25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
FREQUENCY (GHz)  
V
(V dc)  
TUNE  
Figure 45. Output Return Loss vs. Frequency at VTUNE = 7.25 V,  
CB = 5 V, TA = 25°C  
Figure 43. Second Harmonic vs. VTUNE for Various Temperatures  
V
0
–5  
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–5  
–10  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–15  
–20  
–25  
–30  
–35  
–40  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
V
(V dc)  
V
(V dc)  
TUNE  
TUNE  
Figure 46. Output Power vs. VTUNE at VCB = 0 V for Various Temperatures  
Figure 44. Third Harmonic vs. VTUNE for Various Temperatures  
(Measurement Up to 6.5 V Only Due to Equipment Limitation)  
Rev. A | Page 14 of 17  
Data Sheet  
HMC8362  
THEORY OF OPERATION  
The HMC8362 consists of four fundamental VCOs with  
overlapping frequency ranges to ensure continuous frequency  
coverage from 11.90 GHz to 18.30 GHz over all conditions.  
are in parallel and being tuned simultaneously. A single buffer  
amplifier is also shared by all four VCOs.  
The upper circuitry of the buffer amplifier is biased by VCB  
(Pin 8). The lower portion of the buffer amplifier or VCB  
remains off and very little current flows until one of the VCO  
cores is enabled.  
Using four oscillators instead of a single oscillator to span the  
frequency range reduces the percent bandwidth and tuning  
sensitivity of each oscillator, improving phase noise performance.  
Tuning sensitivity flatness across the frequency range is also  
improved and simplifies the loop filter design in synthesizer  
applications. The tuning sensitivity is similar across the four  
VCO cores, which means that the loop bandwidth and phase  
margin of the loop filter vary less overall vs. a single oscillator  
solution.  
The lower circuitry of the buffer amplifier is enabled when the  
RF signal of any one of the four VCOs arrives at its input. If  
VCB is biased and any VCO core is enabled, current flows  
through the buffer amplifier and the RF signal propagates to  
RFOUT (Pin 5).  
The buffer amplifier is designed to support only one VCO at a  
time. Avoid enabling more than one oscillator at a time because  
multiple oscillators stress the buffer amplifier enough to reduce  
its long-term operating life.  
The four oscillators share a common tune port, which means  
that even though the active devices in the unused VCO cores  
are not being biased, the resonant tanks of all four VCO cores  
Rev. A | Page 15 of 17  
 
HMC8362  
Data Sheet  
APPLICATIONS INFORMATION  
The HMC8362 serves as the local oscillator (LO) in microwave  
synthesizer applications. The primary applications for this  
device are point to point and multipoint radios, military radars,  
test and measurement, industrial and medical equipment, and  
wireless communication infrastructure. The low phase noise  
allows higher orders of modulation and offers improved bit  
error rates in communication systems. Stable loop filter design  
is easily achieved due to the linear, monotonic tuning  
sensitivity across the four-VCO core, and higher output power  
minimizes the gain required to drive subsequent stages. The  
cascode output buffer amplifier stage guarantees stability over a  
wide range of output load conditions and improves the pulling  
performance of the VCO cores.  
multiplexer such as the ADG1604 is recommended. The  
ADG1604 has low on resistance, the ability to operate with  
either 3 V or 5 V logic, and offers break before make switch  
sequencing. Alternatively, multiple ADG854 switches can also  
be used to enable and disable the VCO cores. Although this  
switch also includes a break before make delay, users must  
prevent the possibility of powering up more than one VCO  
core at a time. Regardless of which approach is used to control  
the VCO cores, an additional ADG854 can be used to control  
bias to the upper portion of the cascode amplifier circuitry for  
use in muting the RF output (RFOUT, Pin 5) if desired. Muting  
RFOUT suppresses the output power by approximately 20 dB  
across all cores) and does not impact long-term reliability when  
only one VCO core is powered up at a time.  
To achieve optimal performance of the VCO cores, including  
the lowest phase noise native to VCOs, high power supply  
rejection ratio (PSRR) and low dropout (LDO) regulators are  
recommended to minimize any spurious frequencies from the  
power supply, and to achieve the lowest phase noise native to  
the VCO. The ADM7150 and the LT3042 meet these requirements  
and are acceptable LDO regulators to use.  
It is important to follow optimal RF layout practices for the  
layout of the interconnecting circuit. Give first priority to the  
microwave power splitter network from the output buffer of  
the VCO cores to the RF input pin (RFINA) of the ADF41513.  
Give the next highest priority to the highly sensitive VTUNE line  
with the first pole placed as close to the ADF41513 CP output  
pin as possible, and the final RC pole of the filter placed as close  
to the HMC8362 VTUNE pin as possible. The wide tuning range  
of the HMC8362 requires the use of a high voltage, low noise,  
operational amplifier. The ADA4625-1 is acceptable to use for  
such applications.  
The wide frequency range of the VCO cores suggests the use of  
a low noise, PLL synthesizer, such as the ADF41513. The wide  
input bandwidth of the ADF41513 (1 GHz to 26.5 GHz) makes  
it an ideal synthesizer to be used with the HMC8362. The charge  
pump current can be varied up or down on the ADF41513 to  
compensate for VCO sensitivity variation. Many applications  
require actively switching between the four VCO cores as  
quickly as possible. Enabling more than one VCO core at a time  
is not recommended. Therefore, use of an appropriate 4:1  
The suggested PCB stackup consists of a high quality dielectric  
material, such as Rogers 4003. The transmission lines carrying  
the high frequency signal must be carefully controlled with  
50 Ω characteristic impedances.  
RF  
A
IN  
REFERENCE  
INPUT  
ADF41513  
PLL  
SYNTHESIZER  
V
TUNE  
LOOP FILTER  
CIRCUIT  
CP  
REF  
IN  
V
TUNE  
HMC8362  
S1  
S2  
POWER SPLITTER  
NETWORK  
RFOUT  
VC1  
VC2  
VC3  
VC4  
RF OUT  
D
5V V  
CC  
VCB  
ADG1604  
A1  
A0  
EN  
S3  
S4  
TO DIGITAL  
CONTROL PINS  
ADG854  
VDD  
S1A  
S1B  
5V V  
CC  
D1  
IN1  
NOTES  
1. THIS IS A SIMPLIFIED SCHEMATIC OF A TYPICAL APPLICATION DIAGRAM. PASSIVE COMPONENTS DETAILS HAVE BEEN OMITTED FOR CLARITY.  
Figure 47. Typical Application Diagram  
Rev. A | Page 16 of 17  
 
Data Sheet  
HMC8362  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
AREA  
PIN 1  
ONS  
INDICATOR AR EA OP TI  
(SEE DETAIL A)  
31  
40  
30  
1
0.50  
BSC  
4.75  
4.70 SQ  
4.65  
EXPOSED  
PAD  
21  
10  
11  
*
20  
0.35  
0.30  
0.25  
0.20 MIN  
BOTTOM VIEW  
4.50 REF  
TOP VIEW  
SIDE VIEW  
0.90  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-5  
WITH EXCEPTION TO LEAD LENGHT  
Figure 48. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm Body and 0.85 mm Package Height  
(HCP-40-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Ordering  
Quantity  
Model1  
Temperature Range  
−40°C to +85°C  
MSL Rating2 Package Description  
HMC8362LP6GE  
MSL3  
MSL3  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
HCP-40-1  
HCP-40-1  
HMC8362LP6GETR −40°C to +85°C  
EV1HMC8362LP6G  
500  
Evaluation Board  
1 All models are RoHS compliant.  
2 See the Absolute Maximum Ratings section.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D23984-9/20(A)  
Rev. A | Page 17 of 17  
 

相关型号:

HMC8362LP6GETR

11.90 GHz to 18.30 GHz Quadband VCO
ADI

HMC8364

18.10 GHz to 26.60 GHz Quadband VCO
ADI

HMC8364LP6GE

18.10 GHz to 26.60 GHz Quadband VCO
ADI

HMC8364LP6GETR

18.10 GHz to 26.60 GHz Quadband VCO
ADI

HMC836LP6CE

FRACTIONAL-N SYNTHESIZER WITH INTEGRATED VCO, 3365 - 3705 MHz
HITTITE

HMC836LP6CETR

Phase Locked Loop
HITTITE

HMC836LP6CE_09

FRACTIONAL-N SYNTHESIZER WITH INTEGRATED VCO, 3365 - 3705 MHz
HITTITE

HMC836LP6CE_10

FRACTIONAL-N SYNTHESIZER WITH INTEGRATED VCO, 3365 - 3705 MHz
HITTITE

HMC837LP6CE

FRACTIONAL-N PLL WITH INTEGRATED VCO 1025 - 1150, 2050 - 2300, 4100 - 4600 MHz
HITTITE

HMC838LP6CE

FRACTIONAL-N SYNTHESIZER WITH INTEGRATED VCO 795 - 945, 1590 - 1890, 3180 - 3780 MHz
HITTITE

HMC838LP6CE

Fractional-N PLL with Integrated VCO SMT, 795 - 945, 1590 - 1890, 3180 - 3780 MHz
ADI

HMC838LP6CETR

Fractional-N PLL with Integrated VCO SMT, 795 - 945, 1590 - 1890, 3180 - 3780 MHz
ADI