HMC8364LP6GETR [ADI]

18.10 GHz to 26.60 GHz Quadband VCO;
HMC8364LP6GETR
型号: HMC8364LP6GETR
厂家: ADI    ADI
描述:

18.10 GHz to 26.60 GHz Quadband VCO

文件: 总17页 (文件大小:465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18.10 GHz to 26.60 GHz Quadband VCO  
HMC8364  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Set of 4 narrow-band VCOs with consistent sensitivity vs.  
frequency  
RF and tuning ports common to all 4 VCOs  
RF output operates from fundamental oscillators with no  
subharmonic oscillations  
Up to 4 dBm RF output power  
Power mute capability  
NIC  
GND  
NIC  
1
2
NIC  
30  
29  
18.10GHz TO  
20.10GHz  
VC1  
3
28 GND  
27  
26  
V
TUNE  
GND  
RFOUT  
GND  
NIC  
4
19.90GHz TO  
22.30GHz  
5
GND  
No external resonator required  
40-lead, 6 mm × 6 mm LFCSP  
25 VC2  
6
22.10GHz TO  
24.10GHz  
24  
23  
22  
21  
7
GND  
VC3  
VC4  
NIC  
APPLICATIONS  
8
VCB  
NIC  
NIC  
23.90GHz TO  
26.60GHz  
9
Electronic test and measurement  
Industrial and medical instrumentation  
Point to point and multipoint radios  
Aerospace and defense  
10  
HMC8364  
PACKAGE  
BASE  
Wireless communication infrastructure  
GND  
Figure 1.  
GENERAL DESCRIPTION  
The HMC8364 is a gallium arsenide (GaAs), quadband, mono-  
lithic microwave integrated circuit (MMIC), voltage controlled  
oscillator (VCO) designed to offer wideband frequency capabilities  
without compromising phase noise performance. The device inte-  
grates four independent, narrow-band VCOs with overlapping  
frequency bands, operating at a fundamental frequency range  
of 18.10 GHz to 26.60 GHz. The consistent tuning sensitivity  
across all frequency bands simplifies the synthesizer loop filter  
design.  
The HMC8364 integrates resonators, negative resistance devices,  
and varactor diodes. The monolithic structure of the oscillator  
offers very low phase noise, optimal temperature stability, and  
is immune to vibration and process variation.  
The four VCOs are packaged in a single, 6 mm × 6 mm,  
surface-mount lead frame chip scale package (LFCSP), and  
require no external matching components.  
Combined with a high frequency, high performance PLL, the  
ADF41513, the HMC8364 offers a complete RF or microwave  
frequency generation solution.  
The tuning port is common to all VCO cores for a simpler  
design of the phase-locked loop (PLL) feedback path. The  
HMC8364 also offers a low typical current consumption of  
99 mA for power sensitive applications.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property oftheir respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC8364  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Interface Schematics .....................................................................6  
Typical Performance Characteristics .............................................7  
Band 1: 18.10 GHz to 20.10 GHz, VCC = 5 V.............................7  
Band 2: 19.90 GHz to 22.30 GHz, VCC = 5 V.............................9  
Band 3: 22.10 GHz to 24.10 GHz, VCC = 5 V.......................... 11  
Band 4: 23.90 GHz to 26.60 GHz, VCC = 5 V.......................... 13  
Theory of Operation ...................................................................... 15  
Applications Information ............................................................. 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Absolute Maximum Ratings ........................................................... 5  
Thermal Resistance...................................................................... 5  
Electrostatic Discharge (ESD) Ratings...................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions ............................ 6  
REVISION HISTORY  
9/2020—Revision A: Initial Version  
Rev. A | Page 2 of 17  
 
Data Sheet  
HMC8364  
SPECIFICATIONS  
TA = −40°C to +85°C and Band 1 to Band 4 supply voltage (VCC) = 5 V, buffer supply voltage (VCB) = 5 V, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RF OUTPUT CHARACTERISTICS  
Frequency (fOUT  
)
Band 1  
Band 2  
Band 3  
Band 4  
18.10  
19.90  
22.10  
23.90  
20.10 GHz  
22.30 GHz  
24.10 GHz  
26.60 GHz  
Output Power (POUT  
)
Band 1  
Band 2  
Band 3  
Band 4  
−3  
−4  
−4  
−8  
0
+4  
+4  
+4  
+3  
dBm  
dBm  
dBm  
dBm  
−0.5  
+0.8  
−1.5  
POUT with Buffer Amplifier Muted  
Measured at VCB = 0 V  
Band 1  
Band 2  
Band 3  
−20  
−22  
−21  
−25  
Band 4  
Tuning Sensitivity  
Band 1  
Band 2  
Band 3  
Band 4  
267  
330  
362  
364  
MHz/V  
MHz/V  
MHz/V  
MHz/V  
Frequency Drift Rate  
Drift specifications are not de-embedded to remove contribution  
from the board  
Band 1  
Band 2  
Band 3  
Band 4  
2.0  
2.3  
2.7  
3.1  
MHz/°C  
MHz/°C  
MHz/°C  
MHz/°C  
Harmonic Content  
Second Harmonic  
Frequency Pulling  
Frequency Pushing  
Output Return Loss  
POWER SUPPLIES  
Supply Voltage  
18  
0.45  
65  
8
dBc  
Worst measured value at typical  
MHz p-p Worst measured value at typical  
MHz/V  
dB  
Worst measured value at typical  
Worst measured value at typical  
4.75  
5.0  
5.25  
130  
V
Supply Current (ICC  
)
Band 1  
Band 2  
Band 3  
Band 4  
Buffer Amplifier  
Total Supply Current  
83  
81  
87  
80  
12  
99  
mA  
mA  
mA  
mA  
mA  
mA  
Total supply current is for the output buffer and one VCO band;  
only one VCO band must be powered at a time  
Tune Voltage  
Tune Port Leakage Current  
1.0  
13.5  
60  
V
μA  
V
TUNE = 13.5 V, where the maximum tune port leakage current is  
measured  
Rev. A | Page 3 of 17  
 
HMC8364  
Data Sheet  
Parameter  
SINGLE SIDEBAND PHASE NOISE  
Band 1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
10 kHz  
100 kHz  
1 MHz  
−66  
−95  
−122  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Band 2  
10 kHz  
100 kHz  
1 MHz  
−65  
−92  
−120  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Band 3  
10 kHz  
100 kHz  
1 MHz  
−62  
−91  
−118  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Band 4  
10 kHz  
100 kHz  
1 MHz  
−62  
−89  
−118  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Rev. A | Page 4 of 17  
Data Sheet  
HMC8364  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
VC1 to VC4, VCB  
VTUNE  
Rating  
5.5 V dc  
0 V to 14.5 V  
1
Temperature  
Operating  
Storage  
Nominal Junction (to Maintain 1 Million  
Hours Mean Time to Failure (MTTF))  
θ
JA is the natural convection junction to ambient thermal  
−40°C to +85°C  
−65°C to +150°C  
135°C  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Table 3. Thermal Resistance  
Package Type1  
θJA  
θJC  
Unit  
Peak Reflow (Moisture Sensitivity  
Level (MSL) 3 Rating)  
260°C  
HCP-40-1  
27.50  
18.04  
°C/W  
1 Only one VCO band must be powered at a time. VC1 to VC4 are the Band 1 to  
Band 4 supply voltages on the VC1 to VC4 pins, respectively.  
1 The thermal impedance simulated values are based on the JESD51 standard  
using 2S2P on FR4 with four standard JEDEC vias (0.3 mm diameter,  
0.025 mm plating, and 1.2 mm pitch).  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The following ESD information is provided for handling of  
ESD sensitive devices in an ESD protected area only.  
Human body model (HBM) per JEDEC JS-001.  
Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.  
ESD Ratings for HMC8364  
Table 4. HMC8364, 40-Lead LFCSP  
ESD Model  
HBM  
Withstand Threshold (V)  
250  
Class  
1A  
CDM  
1000  
C3  
ESD CAUTION  
Rev. A | Page 5 of 17  
 
 
 
 
HMC8364  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NIC  
GND  
NIC  
GND  
RFOUT  
GND  
NIC  
VCB  
NIC  
NIC 10  
1
2
3
4
5
6
7
8
9
30 NIC  
29 VC1  
28 GND  
V
27  
TUNE  
HMC8364  
26 GND  
25 VC2  
24 GND  
23 VC3  
22 VC4  
21 NIC  
TOP VIEW  
(Not to Scale)  
NOTE  
1. NIC = NO INTERNAL CONNECTION. HOWEVER, THESE PINS  
CAN BECONNECTED TO RF OR DC GROUND WITHOUT  
AFFECTING THE PERFORMANCE OF THE DEVICE.  
2. EXPOSED PAD. THE PACKAGE BOTTOM HAS AN  
EXPOSED METAL PAD THAT MUST BE CONNECTED  
TO RF OR DC GROUND.  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 3, 7, 9 to 21, 30 to 40  
NIC  
No Internal Connection. However, these pins can be connected to RF or dc ground without  
affecting the performance of the device.  
2, 4, 6, 24, 26, 28  
5
GND  
RFOUT  
Ground. The GND pins must be connected to RF or dc ground.  
RF Output. The RFOUT pin is ac-coupled, and maintaining a voltage standing wave ratio (VSWR)  
load of ≤2.0:1 across frequency is recommended.  
8
VCB  
VC4  
VC3  
VC2  
VTUNE  
Buffer Supply Voltage.  
Band 4 Supply Voltage.  
Band 3 Supply Voltage.  
Band 2 Supply Voltage.  
22  
23  
25  
27  
Control Voltage and Modulation Input. The modulation bandwidth is dependent on the drive  
source impedance.  
29  
VC1  
EP  
Band 1 Supply Voltage.  
Exposed Pad. The package bottom has an exposed metal pad that must be connected to RF or dc  
ground.  
INTERFACE SCHEMATICS  
0.4nH  
1.6Ω  
RFOUT  
V
TUNE  
215pF  
VCB  
125pF  
Figure 5. VTUNE Interface Schematic  
GND  
Figure 3. RFOUT and VCB Interface Schematic  
VCx  
Figure 6. GND Interface Schematic  
Figure 4. VC1 to VC4 Interface Schematic  
Rev. A | Page 6 of 17  
 
 
Data Sheet  
HMC8364  
TYPICAL PERFORMANCE CHARACTERISTICS  
BAND 1: 18.10 GHz TO 20.10 GHz, VCC = 5 V  
5
4
22  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
21  
20  
19  
18  
17  
16  
15  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
TUNING VOLTAGE (V dc)  
Figure 7. Output Frequency vs. Tuning Voltage for Various Temperatures  
Figure 10. Output Power vs. Tuning Voltage for Various Temperatures  
2200  
T
T
T
= –40°C  
= +25°C  
= +85°C  
130  
A
A
A
2000  
1800  
1600  
1400  
1200  
1000  
800  
T
T
T
= –40°C  
= +25°C  
= +85°C  
125  
120  
115  
110  
105  
100  
95  
A
A
A
90  
85  
80  
600  
75  
70  
400  
65  
200  
60  
55  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
TUNING VOLTAGE (V dc)  
Figure 8. Tuning Sensitivity vs. Tuning Voltage for Various Temperatures  
Figure 11. Supply Current vs. Tuning Voltage for Various Temperatures  
–50  
–40°C, 10kHz  
+25°C, 10kHz  
+85°C, 10kHz  
–40°C, 100kHz  
+25°C, 100kHz  
+85°C, 100kHz  
–40°C, 1MHz  
+25°C, 1MHz  
+85°C, 1MHz  
0
–55  
–60  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–10  
–20  
–65  
–30  
–70  
–40  
–75  
–50  
–80  
–60  
–85  
–70  
–90  
–80  
–95  
–90  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
100  
1k  
10k  
100k  
1M  
10M 40M  
TUNING VOLTAGE (V dc)  
OFFSET FREQUENCY (Hz)  
Figure 9. Single Sideband Phase Noise vs. Tuning Voltage for Various  
Temperatures and Frequencies  
Figure 12. Single Sideband Phase Noise vs. Offset Frequency for Various  
Temperatures at VTUNE = 5 V  
Rev. A | Page 7 of 17  
 
 
HMC8364  
Data Sheet  
0
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
FREQUENCY (GHz)  
TUNING VOLTAGE (V dc)  
Figure 13. Second Harmonic vs. Tuning Voltage for Various Temperatures  
Figure 15. Return Loss vs. Frequency at VTUNE = 6 V  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
–5  
–10  
–15  
–20  
–25  
–30  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
Figure 14. Output Power vs. Tuning Voltage at VCB = 0 V for Various  
Temperatures  
Rev. A | Page 8 of 17  
Data Sheet  
HMC8364  
BAND 2: 19.90 GHz TO 22.30 GHz, VCC = 5 V  
24  
5
4
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
23  
22  
21  
20  
19  
18  
17  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
TUNING VOLTAGE (V dc)  
Figure 19. Ouput Power vs. Tuning Voltage for Various Temperatures  
Figure 16. Output Frequency vs. Tuning Voltage for Various Temperatures  
130  
2400  
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
125  
120  
115  
110  
105  
100  
95  
T
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
A
T
A
90  
85  
80  
75  
70  
600  
65  
400  
60  
200  
55  
50  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
TUNING VOLTAGE (V dc)  
Figure 20. Supply Current vs. Tuning Voltage for Various Temperatures  
Figure 17. Tuning Sensitivity vs. Tuning Voltage for Various Temperatures  
0
–50  
–40°C, 10kHz  
+25°C, 10kHz  
+85°C, 10kHz  
–40°C, 100kHz  
+25°C, 100kHz  
+85°C, 100kHz  
–40°C, 1MHz  
+25°C, 1MHz  
+85°C, 1MHz  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–10  
–20  
–55  
–60  
–30  
–65  
–40  
–70  
–50  
–75  
–60  
–80  
–70  
–85  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
40M  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
100  
1k  
10k  
100k  
1M  
10M  
TUNING VOLTAGE (V dc)  
OFFSET FREQUENCY (Hz)  
Figure 18. Single Sideband Phase Noise vs. Tuning Voltage for Various  
Temperatures and Frequencies  
Figure 21. Single Sideband Phase Noise vs. Offset Frequency for Various  
Temperatures at VTUNE = 5 V  
Rev. A | Page 9 of 17  
 
HMC8364  
Data Sheet  
0
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
TUNING VOLTAGE (V dc)  
FREQUENCY (GHz)  
Figure 22. Second Harmonic vs. Tuning Voltage for Various Temperatures  
Figure 24. Return Loss vs. Frequency at VTUNE = 6 V  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
Figure 23. Output Power vs. Tuning Voltage at VCB = 0 V for Various  
Temperatures  
Rev. A | Page 10 of 17  
Data Sheet  
HMC8364  
BAND 3: 22.10 GHz TO 24.10 GHz, VCC = 5 V  
5
4
26  
T
T
A
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
T
A
A
A
25  
24  
23  
22  
21  
20  
19  
18  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
TUNING VOLTAGE (V dc)  
Figure 25. Output Frequency vs. Tuning Voltage for Various Temperatures  
Figure 28. Output Power vs. Tuning Voltage for Various Temperatures  
130  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
125  
120  
115  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
TUNING VOLTAGE (V dc)  
Figure 26. Tuning Sensitivity vs. Tuning Voltage for Various Temperatures  
Figure 29. Supply Current vs. Tuning Voltage for Various Temperatures  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–40°C, 10kHz  
+25°C, 10kHz  
+85°C, 10kHz  
–40°C, 100kHz  
+25°C, 100kHz  
+85°C, 100kHz  
–40°C, 1MHz  
+25°C, 1MHz  
+85°C, 1MHz  
–105  
–110  
–115  
–120  
–125  
100  
1k  
10k  
100k  
1M  
10M 40M  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
OFFSET FREQUENCY (Hz)  
TUNING VOLTAGE (V dc)  
Figure 27. Single Sideband Phase Noise vs. Tuning Voltage for Various  
Temperatures and Frequencies  
Figure 30. Single Sideband Phase Noise vs. Offset Frequency for Various  
Temperatures at VTUNE = 5 V  
Rev. A | Page 11 of 17  
 
HMC8364  
Data Sheet  
10  
0
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–20  
–30  
–40  
–50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
FREQUENCY (GHz)  
TUNING VOLTAGE (V dc)  
Figure 31. Second Harmonic vs. Tuning Voltage for Various Temperatures  
Figure 33. Return Loss vs. Frequency at VTUNE = 6 V  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
–5  
–10  
–15  
–20  
–25  
–30  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
Figure 32. Output Power vs. Tuning Voltage at VCB = 0 V for Various  
Temperatures  
Rev. A | Page 12 of 17  
Data Sheet  
HMC8364  
BAND 4: 23.90 GHz TO 26.60 GHz, VCC = 5 V  
4
3
28  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
27  
26  
25  
24  
23  
22  
21  
20  
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
TUNING VOLTAGE (V dc)  
Figure 37. Output Power vs. Tuning Voltage for Various Temperatures  
Figure 34. Output Frequency vs. Tuning Voltage for Various Temperatures  
130  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
125  
120  
115  
110  
105  
100  
95  
A
A
A
90  
85  
80  
75  
70  
65  
60  
55  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
TUNING VOLTAGE (V dc)  
Figure 38. Supply Current vs. Tuning Voltage for Various Temperatures  
Figure 35. Tuning Sensitivity vs. Tuning Voltage for Various Temperatures  
0
–50  
–55  
–60  
–65  
–70  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–10  
–20  
–30  
–40  
–50  
–75  
–80  
–40°C, 10kHz  
+25°C, 10kHz  
+85°C, 10kHz  
–40°C, 100kHz  
+25°C, 100kHz  
+85°C, 100kHz  
–40°C, 1MHz  
+25°C, 1MHz  
+85°C, 1MHz  
–60  
–70  
–80  
–85  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
100  
1k  
10k  
100k  
1M  
10M 40M  
0
1
2
3
4
5
6
7
8
9
10  
OFFSET FREQUENCY (Hz)  
TUNING VOLTAGE (V dc)  
Figure 39. Single Sideband Phase Noise vs. Offset Frequency for Various  
Temperatures at VTUNE = 5 V  
Figure 36. Single Sideband Phase Noise vs. Tuning Voltage for Various  
Temperatures and Frequencies (Measurement Up to 10 V Only Due to  
Equipment Limitation)  
Rev. A | Page 13 of 17  
 
HMC8364  
Data Sheet  
0
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
TUNING VOLTAGE (V dc)  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
Figure 40. Second Harmonic vs. Tuning Voltage for Various Temperatures  
(Measurement Up to 6.5 V Only Due to Equipment Limitation)  
Figure 42. Return Loss vs. Frequency at VTUNE = 6 V  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TUNING VOLTAGE (V dc)  
Figure 41. Output Power vs. Tuning Voltage at VCB = 0 V for Various  
Temperatures  
Rev. A | Page 14 of 17  
Data Sheet  
HMC8364  
THEORY OF OPERATION  
The HMC8364 consists of four, fundamental VCOs with  
overlapping frequency ranges to ensure continuous frequency  
coverage from 18.10 GHz to 26.60 GHz over all conditions.  
parallel and tuned simultaneously. A single buffer amplifier is  
also shared by all four VCOs.  
The upper circuitry of the buffer amplifier is biased by VCB  
(Pin 8). The lower portion of the cascode buffer amplifier  
remains off and very little current flows until one of the VCO  
cores is enabled.  
Using four oscillators instead of a single oscillator to span the  
frequency range reduces the percent bandwidth and tuning  
sensitivity of each oscillator, improving phase noise performance.  
Tuning sensitivity flatness across the frequency range is also  
improved and simplifies the loop filter design in synthesizer  
applications. The tuning sensitivity is similar across the four  
VCO cores, which means that the loop bandwidth and phase  
margin of the loop filter vary less overall vs. a single oscillator  
solution.  
The lower circuitry of the amplifier is enabled when the RF  
signal of any one of the four VCOs arrives at its input. If VCB is  
biased and any VCO core is enabled, current flows through the  
buffer amplifier and the RF signal propagates to RFOUT (Pin 5).  
The buffer amplifier is designed to support only one VCO at a  
time. Avoid enabling more than one oscillator at a time because  
multiple oscillators stress the buffer amplifier enough to reduce  
its long-term operating life.  
The four oscillators share a common tuning port, which means  
that even though the active devices in unused VCO cores are  
not biased, the resonant tanks of all four VCO cores are in  
Rev. A | Page 15 of 17  
 
HMC8364  
Data Sheet  
APPLICATIONS INFORMATION  
The HMC8364 serves as the local oscillator (LO) in microwave  
synthesizer applications. The primary applications for this  
device are point to point and multipoint radios, military radars,  
test and measurement, industrial and medical equipment, and  
wireless communication infrastructure. The low phase noise  
allows higher orders of modulation and offers improved bit  
error rates in communication systems. Stable loop filter design  
is easily achieved due to the linear, monotonic tuning sensitivity  
across the four-VCO core, and higher output power minimizes  
the gain required to drive subsequent stages. The cascode  
output buffer amplifier stage guarantees stability over a wide  
range of output load conditions and improves the pulling  
performance of the VCO cores.  
ADG1604 has low on resistance, the ability to operate with  
either 3 V or 5 V logic, and offers break before make switch  
sequencing. Alternatively, multiple ADG854 switches can also  
be used to enable and disable the VCO cores. Although this  
switch also includes a break before make delay, users must  
prevent the possibility of powering up more than one VCO  
core at a time. Regardless of which approach is used to control  
the VCO cores, an additional ADG854 can be used to control  
bias to the upper portion of the cascode amplifier circuitry for  
use in muting the RF output (RFOUT, Pin 5) if desired. Muting  
RFOUT suppresses the output power by approximately 20 dB  
across all cores) and does not impact long-term reliability when  
only one VCO core is powered up at a time.  
To achieve optimal performance of the VCO cores, including  
the lowest phase noise native to VCOs, use high power supply  
rejection ratio (PSRR) and low dropout (LDO) regulators to  
minimize any spurious frequencies from the power supply. The  
ADM7150 and the LT3042 meet these requirements and are  
acceptable LDO regulators to use.  
It is important to follow optimal RF layout practices for the  
layout of the interconnecting circuit. Give first priority to the  
microwave power splitter network from the output buffer of  
the VCO cores to the RF input pin (RFINA) of the ADF41513.  
Give the next highest priority to the highly sensitive VTUNE line  
with the first pole placed as close to the ADF41513 CP output  
pin as possible, and the final RC pole of the filter placed as close  
to the HMC8364 VTUNE pin as possible. The wide tuning range  
of the HMC8364 requires the use of a high voltage, low noise,  
operational amplifier. The ADA4625-1 is acceptable to use for  
such applications.  
The wide frequency range of the VCO cores suggests the use of  
a low noise, PLL synthesizer, such as the ADF41513. The wide  
input bandwidth of the ADF41513 (1 GHz to 26.5 GHz) makes  
it an ideal synthesizer to be used with the HMC8362. The charge  
pump current can be varied up or down on the ADF41513 to  
compensate for VCO sensitivity variation. Many applications  
require actively switching between the four VCO cores as  
quickly as possible. Enabling more than one VCO core at a  
time is not recommended. Therefore, use of an appropriate  
4:1 multiplexer such as the ADG1604 is recommended. The  
The suggested PCB stackup consists of a high quality dielectric  
material, such as Rogers 4003. The transmission lines carrying  
the high frequency signal must be carefully controlled with  
50 Ω characteristic impedances.  
RF  
A
IN  
REFERENCE  
INPUT  
ADF41513  
PLL  
SYNTHESIZER  
V
TUNE  
LOOP FILTER  
CIRCUIT  
CP  
REF  
IN  
V
TUNE  
HMC8364  
S1  
S2  
POWER SPLITTER  
NETWORK  
RFOUT  
VC1  
VC2  
VC3  
VC4  
RF OUT  
D
5V V  
CC  
VCB  
ADG1604  
A1  
A0  
EN  
S3  
S4  
TO DIGITAL  
CONTROL PINS  
ADG854  
VDD  
S1A  
S1B  
5V V  
CC  
D1  
IN1  
NOTES  
1. THIS IS A SIMPLIFIED SCHEMATIC OF A TYPICAL APPLICATION DIAGRAM. PASSIVE COMPONENTS DETAILS HAVE BEEN OMITTED FOR CLARITY.  
Figure 43. Typical Application Diagram  
Rev. A | Page 16 of 17  
 
Data Sheet  
HMC8364  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
31  
40  
30  
1
0.50  
BSC  
4.75  
4.70 SQ  
4.65  
EXPOSED  
PAD  
21  
10  
11  
*
20  
0.35  
0.30  
0.25  
0.20 MIN  
BOTTOM VIEW  
4.50 REF  
TOP VIEW  
SIDE VIEW  
0.90  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-5  
WITH EXCEPTION TO LEAD LENGHT  
Figure 44. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm Body and 0.85 mm Package Height  
(HCP-40-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Ordering  
Quantity  
Model1  
Temperature Range  
MSL Rating2 Package Description  
HMC8364LP6GE  
HMC8364LP6GETR  
EV1HMC8364LP6G  
−40°C to +85°C  
−40°C to +85°C  
MSL3  
MSL3  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
HCP-40-1  
HCP-40-1  
500  
1 Z = RoHS Compliant Part.  
2 See the Absolute Maximum Ratings section.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D23681-9/20(A)  
Rev. A | Page 17 of 17  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY