HMC8413 [ADI]

Low Noise Amplifier, 0.01 GHz to 9 GHz;
HMC8413
型号: HMC8413
厂家: ADI    ADI
描述:

Low Noise Amplifier, 0.01 GHz to 9 GHz

文件: 总21页 (文件大小:621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise Amplifier,  
0.01 GHz to 9 GHz  
HMC8413  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HMC8413  
Low noise figure: 1.9 dB typical at 0.01 GHz to 7 GHz  
Single positive supply (self biased)  
High gain: 19.5 dB typical at 0.01 GHz to 7 GHz  
High OIP3: 35 dBm typical at 0.01 GHz to 7 GHz  
RoHS-compliant, 2 mm × 2 mm, 6-lead LFCSP  
R
NC  
6
1
2
BIAS  
RF  
5 RF  
/V  
OUT DD  
IN  
GND 3  
4 GND  
Figure 1.  
APPLICATIONS  
Test instrumentation  
Military communications  
Military radar  
Telecommunications  
GENERAL DESCRIPTION  
The HMC8413 is a gallium arsenide (GaAs), monolithic  
microwave integrated circuit (MMIC), pseudomorphic high  
electron mobility transistor (pHEMT), low noise wideband  
amplifier that operates from 0.01 GHz to 9 GHz.  
Analog Devices, Inc., balanced, in-phase/quadrature (I/Q) or  
image rejection mixers.  
The HMC8413 also features inputs and outputs that are internally  
matched to 50 Ω, making the device ideal for surface-mounted  
technology (SMT)-based, high capacity microwave radio  
applications.  
The HMC8413 provides a typical gain of 19.5 dB, a 1.9 dB  
typical noise figure, and a typical output third-order intercept  
(OIP3) of 35 dBm at 0.01 GHz to 7 GHz, requiring only 95 mA  
from a 5 V supply voltage. The saturated output power (PSAT) of  
22 dBm typical at 0.01 GHz to 7 GHz enables the low noise  
amplifier to function as a local oscillator (LO) driver for many of  
The HMC8413 is housed in an RoHS-compliant, 2 mm × 2 mm,  
6-lead LFCSP.  
Multifunction pin names may be referenced by their relevant  
function only.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of theirrespective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2021 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC8413  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Pin Configuration and Function Descriptions .............................5  
Interface Schematics .....................................................................5  
Typical Performance Characteristics .............................................6  
Theory of Operation ...................................................................... 17  
Applications Information ............................................................. 18  
Recommended Bias Sequencing .............................................. 18  
Extending Operation Below 10 MHz .......................................... 19  
Biasing the HMC8413 Using the LT3470A................................ 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
0.01 GHz to 7 GHz Frequency Range ....................................... 3  
7 GHz to 9 GHz Frequency Range............................................. 3  
Absolute Maximum Ratings ........................................................... 4  
Thermal Resistance...................................................................... 4  
Electrostatic Discharge (ESD) Ratings...................................... 4  
ESD Caution.................................................................................. 4  
REVISION HISTORY  
10/2021—Revision 0: Initial Version  
Rev. 0 | Page 2 of 21  
 
Data Sheet  
HMC8413  
SPECIFICATIONS  
0.01 GHz TO 7 GHz FREQUENCY RANGE  
VDD = 5 V, supply current (IDQ) = 95 mA, RBIAS = 787 Ω, and TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
0.01  
17.5  
Typ  
Max  
Unit  
GHz  
dB  
dB/°C  
dB  
Test Conditions/Comments  
FREQUENCY RANGE  
7
GAIN  
19.5  
0.013  
1.9  
Gain Variation over Temperature  
NOISE FIGURE  
RETURN LOSS  
Input  
Output  
15  
18  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression (OP1dB)  
PSAT  
OIP3  
19  
21.5  
22  
35  
dBm  
dBm  
dBm  
Measurement taken at output power (POUT) per  
tone = 5 dBm  
Output Second-Order Intercept (OIP2)  
39  
37  
dBm  
%
Measurement taken at POUT per tone = 5 dBm  
Measured at PSAT  
POWER ADDED EFFICIENCY (PAE)  
SUPPLY  
IDQ  
VDD  
95  
5
mA  
V
2
6
7 GHz TO 9 GHz FREQUENCY RANGE  
VDD = 5 V, IDQ = 95 mA, RBIAS = 787 Ω, and TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Min  
7
Typ  
Max  
Unit  
GHz  
dB  
Test Conditions/Comments  
FREQUENCY RANGE  
9
GAIN  
17  
19  
Gain Variation over Temperature  
0.02  
2.8  
dB/°C  
dB  
NOISE FIGURE  
RETURN LOSS  
Input  
Output  
OUTPUT  
OP1dB  
PSAT  
12  
15  
dB  
dB  
16.5  
19  
21  
33  
45  
22  
dBm  
dBm  
dBm  
dBm  
%
OIP3  
OIP2  
Measurement taken at POUT per tone = 5 dBm  
Measurement taken at POUT per tone = 5 dBm  
Measured at PSAT  
PAE  
SUPPLY  
IDQ  
VDD  
95  
5
mA  
V
2
6
Rev. 0 | Page 3 of 21  
 
 
 
HMC8413  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Parameter  
VDD  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Close attention to  
PCB thermal design is required.  
Rating  
7 V  
25 dBm  
1.25 W  
RFIN Power  
Continuous Power Dissipation (PDISS), TA = 85°C  
(Derate 13.9 mW/°C Above 85°C)  
θJC is the junction to case thermal resistance.  
Temperature  
Storage Range  
Operating Range  
Peak Reflow (Moisture Sensitivity Level 1  
(MSL1))  
Table 4. Thermal Resistance  
Package Type  
−65°C to +150°C  
−40°C to +85°C  
260°C  
θJC  
Unit  
CP-6-12  
72  
°C/W  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
Junction to Maintain 1,000,000 Hours Mean  
Time to Failure (MTTF)  
Nominal Junction (TA = 85°C, VDD = 5 V,  
175°C  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
119.2°C  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
I
DQ = 95 mA)  
ESD Ratings for HMC8413  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Table 5. HMC8413, 6-Lead LFCSP  
ESD Model  
Withstand Threshold (V)  
Class  
HBM  
500  
1B  
ESD CAUTION  
Rev. 0 | Page 4 of 21  
 
 
 
 
Data Sheet  
HMC8413  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
HMC8413  
TOP VIEW  
(Not to Scale)  
R
NC  
6
1
2
BIAS  
RF  
5 RF  
/V  
OUT DD  
IN  
GND 3  
4 GND  
NOTES  
1. NC = NO CONNECT. THIS PIN IS NOT  
CONNECTED INTERNALLY. THIS PIN MUST BE  
CONNECTED TO THE RF AND DC GROUND.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO THE RF AND DC GROUND.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
RBIAS  
Current Mirror Bias Resistor. Use the RBIAS pin via the external resistor (R2, see Figure 71) to set the current to the  
internal resistor. See Figure 3 for the interface schematic.  
2
3, 4  
5
RFIN  
GND  
RFOUT/VDD  
RF Input. The RFIN pin is dc-coupled and matched to 50 Ω. See Figure 4 for the interface schematic.  
Ground. This pin must be connected to the RF and dc ground. See Figure 6 for the interface schematic.  
RF Output/Drain Bias for the Amplifier. The RFOUT/VDD pin is dc-coupled and matched to 50 Ω. See Figure 5 for the  
interface schematic.  
6
NC  
EPAD  
No Connect. This pin is not connected internally. This pin must be connected to the RF and dc ground.  
Exposed Pad. The exposed pad must be connected to the RF and dc ground.  
INTERFACE SCHEMATICS  
R
BIAS  
RF  
/V  
OUT DD  
Figure 3. RBIAS Interface Schematic  
Figure 5. RFOUT/VDD Interface Schematic  
RF  
IN  
GND  
Figure 4. RFIN Interface Schematic  
Figure 6. GND Interface Schematic  
Rev. 0 | Page 5 of 21  
 
 
 
 
 
 
HMC8413  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
IDQ is the collector current without RF signal applied, and IDD is the collector current with RF signal applied.  
25  
20  
25  
20  
15  
15  
10  
10  
5
5
S22  
S21  
S11  
S22  
S21  
S11  
0
0
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
2
4
6
8
10  
12  
14  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
Figure 7. Broadband Gain and Return Loss vs. Frequency, 200 MHz to 14 GHz,  
Figure 10. Gain and Return Loss vs. Frequency, 10 MHz to 200 MHz, VDD = 5 V,  
V
DD = 5 V, IDQ = 95 mA (S22 Is the Output Return Loss, S21 Is the Gain, and S11  
Is the Input Return Loss)  
I
DQ = 95 mA  
24  
22  
20  
18  
16  
24  
22  
20  
18  
16  
14  
12  
10  
8
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
6
6
4
4
2
2
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 8. Gain vs. Frequency for Various Temperatures, 10 MHz to 200 MHz,  
VDD = 5 V, IDQ = 95 mA  
Figure 11. Gain vs. Frequency for Various Temperatures, 200 MHz to 12 GHz,  
VDD = 5 V, IDQ = 95 mA  
25  
20  
15  
25  
20  
15  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
10  
5
10  
5
787Ω, I  
540Ω, I  
0
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Gain vs. Frequency for Various Bias Resistor Values and IDQ, VDD = 5 V  
Figure 9. Gain vs. Frequency for Various Supply Voltages and IDQ, RBIAS = 787 Ω  
Rev. 0 | Page 6 of 21  
 
Data Sheet  
HMC8413  
0
0
–5  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 13. Input Return Loss vs. Frequency for Various Temperatures,  
10 MHz to 200 MHz, VDD = 5 V, IDQ = 95 mA  
Figure 16. Input Return Loss vs. Frequency for Various Temperatures,  
200 MHz to 12 GHz, VDD = 5 V, IDQ = 95 mA  
0
0
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
DQ  
DQ  
DQ  
DQ  
DQ  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
787Ω, I  
540Ω, I  
–5  
–10  
–15  
–20  
–5  
–10  
–15  
–20  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 17. Input Return Loss vs. Frequency for Various Bias Resistor Values and IDQ  
,
Figure 14. Input Return Loss vs. Frequency for Various Supply Voltages and IDQ  
,
VDD = 5 V  
RBIAS = 787 Ω  
0
0
–5  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
2
4
6
8
10  
12  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
Figure 18. Output Return Loss vs. Frequency for Various Temperatures,  
200 MHz to 12 GHz, VDD = 5 V, IDQ = 95 mA  
Figure 15. Output Return Loss vs. Frequency for Various Temperatures,  
10 MHz to 200 MHz, VDD = 5 V, IDQ = 95 mA  
Rev. 0 | Page 7 of 21  
HMC8413  
Data Sheet  
0
0
–5  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
DQ  
DQ  
DQ  
DQ  
DQ  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
787Ω, I  
540Ω, I  
–5  
–10  
–15  
–10  
–15  
–20  
–20  
0
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 22. Output Return Loss vs. Frequency for Various Bias Resistor Values  
and IDQ, VDD = 5 V  
Figure 19. Output Return Loss vs. Frequency for Various Supply Voltages and IDQ  
,
RBIAS = 787 Ω  
0
0
–5  
+85°C  
+85°C  
+25°C  
–40°C  
+25°C  
–5  
–40°C  
–10  
–10  
–15  
–20  
–25  
–30  
–15  
–20  
–25  
–30  
0
2
4
6
8
10  
12  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
Figure 23. Reverse Isolation vs. Frequency for Various Temperatures,  
200 MHz to 12 GHz, VDD = 5 V, IDQ = 95 mA  
Figure 20. Reverse Isolation vs. Frequency for Various Temperatures,  
10 MHz to 200 MHz, VDD = 5 V, IDQ = 95 mA  
0
0
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
DQ  
DQ  
DQ  
DQ  
DQ  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
–5  
–10  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
–20  
–25  
–30  
787Ω, I  
540Ω, I  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 24. Reverse Isolation vs. Frequency for Various Bias Resistor Values  
and IDQ, VDD = 5 V  
Figure 21. Reverse Isolation vs. Frequency for Various Supply Voltages and IDQ  
,
RBIAS = 787 Ω  
Rev. 0 | Page 8 of 21  
Data Sheet  
HMC8413  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 25. Noise Figure vs. Frequency for Various Temperatures,  
10 MHz to 200 MHz, VDD = 5 V, IDQ = 95 mA  
Figure 28. Noise Figure vs. Frequency for Various Temperatures,  
200 MHz to 12 GHz, VDD = 5 V, IDQ = 95 mA  
10  
10  
9
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
9
8
7
6
5
4
3
2
1
0
DQ  
DQ  
DQ  
DQ  
DQ  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
DQ  
DQ  
DQ  
DQ  
DQ  
8
7
6
5
4
3
2
1
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 26. Noise Figure vs. Frequency for Various Supply Voltages and IDQ  
,
Figure 29. Noise Figure vs. Frequency for Various Supply Voltages and IDQ  
,
10 MHz to 200 MHz, RBIAS = 787 Ω  
200 MHz to 12 GHz, RBIAS = 787 Ω  
10  
9
10  
9
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
787Ω, I  
540Ω, I  
787Ω, I  
540Ω, I  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 27. Noise Figure vs. Frequency for Various Bias Resistor Values and IDQ  
,
Figure 30. Noise Figure vs. Frequency for Various Bias Resistor Values and IDQ  
,
10 MHz to 200 MHz, VDD = 5 V  
200 MHz to 12 GHz, VDD = 5 V  
Rev. 0 | Page 9 of 21  
HMC8413  
Data Sheet  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 31. OP1dB vs. Frequency for Various Temperatures, 0.01 GHz to 1.0 GHz,  
VDD = 5 V, IDQ = 95 mA  
Figure 34. OP1dB vs. Frequency for Various Temperatures, 1 GHz to 12 GHz,  
VDD = 5 V, IDQ = 95 mA  
25  
20  
15  
10  
25  
20  
15  
10  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
5
0
5
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 32. OP1dB vs. Frequency for Various Supply Voltages and IDQ  
,
Figure 35. OP1dB vs. Frequency for Various Supply Voltages and IDQ  
,
0.01 GHz to 1.0 GHz, RBIAS = 787 Ω  
1 GHz to 12 GHz, RBIAS = 787 Ω  
25  
20  
15  
10  
25  
20  
15  
10  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
787Ω, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
787Ω, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
5
0
5
0
540Ω, I  
540Ω, I  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 33. OP1dB vs. Frequency for Various Bias Resistor Values and IDQ  
,
Figure 36. OP1dB vs. Frequency for Various Bias Resistor Values and IDQ  
,
0.01 GHz to 1.0 GHz, VDD = 5 V  
1 GHz to 12 GHz, VDD = 5 V  
Rev. 0 | Page 10 of 21  
Data Sheet  
HMC8413  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 37. PSAT vs. Frequency for Various Temperatures, 0.01 GHz to 1.0 GHz,  
VDD = 5 V, IDQ = 95 mA  
Figure 40. PSAT vs. Frequency for Various Temperatures, 1 GHz to 12 GHz,  
VDD = 5 V, IDQ = 95 mA  
28  
24  
20  
16  
12  
28  
24  
20  
16  
12  
8
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
8
4
0
DQ  
DQ  
DQ  
DQ  
DQ  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
DQ  
DQ  
DQ  
DQ  
DQ  
4
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 38. PSAT vs. Frequency for Various Supply Voltages and IDQ  
,
Figure 41. PSAT vs. Frequency for Various Supply Voltages and IDQ  
,
0.01 GHz to 1.0 GHz, RBIAS = 787 Ω  
1 GHz to 12 GHz, RBIAS = 787 Ω  
25  
20  
15  
10  
25  
20  
15  
10  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
5
0
5
0
787Ω, I  
540Ω, I  
787Ω, I  
540Ω, I  
0
2
4
6
8
10  
12  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 42. PSAT vs. Frequency for Various Bias Resistor Values and IDQ  
,
Figure 39. PSAT vs. Frequency for Various Bias Resistor Values and IDQ  
,
1 GHz to 12 GHz, VDD = 5 V  
0.01 GHz to 1.0 GHz, VDD = 5 V  
Rev. 0 | Page 11 of 21  
HMC8413  
Data Sheet  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 43. PAE vs. Frequency for Various Temperatures, 0.01 GHz to 1.0 GHz,  
VDD = 5 V, IDQ = 95 mA  
Figure 46. PAE vs. Frequency for Various Temperatures, 1 GHz to 12 GHz,  
VDD = 5 V, IDQ = 95 mA  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
104  
103  
102  
101  
100  
99  
P
GAIN  
PAE  
OUT  
I
DD  
P
GAIN  
PAE  
OUT  
I
DD  
98  
97  
96  
0
–20  
0
–20  
95  
–17  
–14  
–11  
–8  
–5  
–2  
1
4
7
–17  
–14  
–11  
–8  
–5  
–2  
1
4
7
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 44. POUT, Gain, PAE, and IDD vs. Input Power,  
Power Compression at 1 GHz, VDD = 5 V, RBIAS = 787 Ω  
Figure 47. POUT, Gain, PAE, and IDD vs. Input Power,  
Power Compression at 5 GHz, VDD = 5 V, RBIAS = 787 Ω  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
115  
25  
170  
P
GAIN  
PAE  
OUT  
110  
105  
100  
95  
20  
15  
10  
5
140  
110  
80  
I
DD  
90  
85  
80  
OP1dB  
P
75  
50  
SAT  
GAIN  
I
70  
DD  
0
–20  
65  
0
20  
–17  
–14  
–11  
–8  
–5  
–2  
1
4
7
2
3
4
5
6
INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
Figure 45. POUT, Gain, PAE, and IDD vs. Input Power,  
Power Compression at 9 GHz, VDD = 5 V, RBIAS = 787 Ω  
Figure 48. OP1dB, PSAT, Gain, and IDD vs. Supply Voltage,  
Power Compression at 1 GHz, RBIAS = 787 Ω  
Rev. 0 | Page 12 of 21  
Data Sheet  
HMC8413  
25  
20  
15  
10  
5
140  
120  
100  
80  
25  
20  
15  
10  
5
140  
120  
100  
80  
60  
60  
40  
40  
OP1dB  
OP1dB  
P
P
SAT  
SAT  
GAIN  
GAIN  
20  
20  
0
I
I
DD  
DD  
0
2
0
0
3
4
5
6
2
3
4
5
6
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 49. OP1dB, PSAT, Gain, and IDD vs. Supply Voltage,  
Power Compression at 5 GHz, RBIAS = 787 Ω  
Figure 52. OP1dB, PSAT, Gain, and IDD vs. Supply Voltage,  
Power Compression at 9 GHz, RBIAS = 787 Ω  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
15  
10  
5
0
0
0
2
4
6
8
10  
12  
0
0.2  
0.4  
0.6  
0.8  
1.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 53. OIP3 vs. Frequency for Various Temperatures, 1 GHz to 12 GHz,  
VDD = 5 V, IDQ = 95 mA  
Figure 50. OIP3 vs. Frequency for Various Temperatures, 0.01 GHz to 1.0 GHz,  
VDD = 5 V, IDQ = 95 mA  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
10  
5
10  
5
0
0
0
2
4
6
8
10  
12  
0
0.2  
0.4  
0.6  
0.8  
1.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 54. OIP3 vs. Frequency for Various Supply Voltages and IDQ  
,
Figure 51. OIP3 vs. Frequency for Various Supply Voltages and IDQ  
,
1 GHz to 12 GHz, RBIAS = 787 Ω  
0.01 GHz to 1.0 GHz, RBIAS = 787 Ω  
Rev. 0 | Page 13 of 21  
HMC8413  
Data Sheet  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
787Ω, I  
540Ω, I  
787Ω, I  
540Ω, I  
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 55. OIP3 vs. Frequency for Various Bias Resistor Values and IDQ  
,
Figure 58. OIP3 vs. Frequency for Various Bias Resistor Values and IDQ  
,
0.01 GHz to 1.0 GHz, VDD = 5 V  
1 GHz to 12 GHz, VDD = 5 V  
60  
50  
40  
30  
60  
50  
40  
30  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
20  
10  
0
20  
10  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 56. OIP2 vs. Frequency for Various Temperatures, 0.01 GHz to 1.0 GHz,  
VDD = 5 V, IDQ = 95 mA  
Figure 59. OIP2 vs. Frequency for Various Temperatures, 1 GHz to 12 GHz,  
VDD = 5 V, IDQ = 95 mA  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
6V, I  
5V, I  
4V, I  
3V, I  
2V, I  
= 120mA  
= 95mA  
= 70mA  
= 47mA  
= 25mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
10  
0
10  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 57. OIP2 vs. Frequency for Various Supply Voltages and IDQ  
,
Figure 60. OIP2 vs. Frequency for Various Supply Voltages and IDQ  
,
0.01 GHz to 1.0 GHz, RBIAS = 787 Ω  
1 GHz to 12 GHz, RBIAS = 787 Ω  
Rev. 0 | Page 14 of 21  
Data Sheet  
HMC8413  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
6.7kΩ, I  
3.6kΩ, I  
1.9kΩ, I  
1.2kΩ, I  
= 25mA  
= 35mA  
= 55mA  
= 75mA  
= 95mA  
= 115mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
787Ω, I  
540Ω, I  
787Ω, I  
540Ω, I  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 61. OIP2 vs. Frequency for Various Bias Resistor Values and IDQ  
,
Figure 64. OIP2 vs. Frequency for Various Bias Resistor Values and IDQ  
,
0.01 GHz to 1.0 GHz, VDD = 5 V  
1 GHz to 12 GHz, VDD = 5 V  
115  
0.6  
0.5  
9GHz  
5GHz  
1GHz  
110  
105  
100  
95  
0.4  
90  
9GHz  
0.3  
85  
5GHz  
1GHz  
80  
0.2  
75  
70  
0.1  
65  
60  
0
–20  
55  
–10  
–16  
–12  
–8  
–4  
0
4
8
–6  
–2  
2
6
10  
14  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 65. IDD vs. Input Power for Various Frequencies, VDD = 5 V  
Figure 62. PDISS vs. Input Power at TA = 85°C, VDD = 5 V, IDQ = 95 mA  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
60  
40  
40  
30  
20  
20  
300  
400  
500  
600  
700  
800  
900  
1000  
1
2
3
4
5
6
7
8
9
10  
11  
12  
BIAS RESISTOR VALUE (Ω)  
BIAS RESISTOR VALUE (kΩ)  
Figure 63. IDQ vs. Bias Resistor Value, 300 Ω to 1 kΩ, VDD = 5 V  
Figure 66. IDQ vs. Bias Resistor Value, 1 kΩ to 12 kΩ, VDD = 5 V  
Rev. 0 | Page 15 of 21  
HMC8413  
Data Sheet  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
100 200 300 400 500 600 700 800 900 1000  
BIAS RESISTOR VALUE (Ω)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
BIAS RESISTOR VALUE (kΩ)  
Figure 67. IDQ vs. Bias Resistor Value, 1 Ω to 1 kΩ, VDD = 3 V  
Figure 69. IDQ vs. Bias Resistor Value, 1 kΩ to 12 kΩ, VDD = 3 V  
200  
175  
150  
125  
100  
75  
50  
25  
0
–25  
0
1
2
3
4
5
6
7
SUPPLY VOLTAGE (V)  
Figure 68. IDQ vs. Supply Voltage, RBIAS = 787 Ω  
Rev. 0 | Page 16 of 21  
Data Sheet  
HMC8413  
THEORY OF OPERATION  
The HMC8413 is a GaAs, MMIC, pHEMT, low noise wideband  
amplifier. Figure 70 shows the simplified architecture of the  
HMC8413.  
To achieve optimal performance from the HMC8413 and  
prevent damage to the device, do not exceed the absolute  
maximum ratings.  
The HMC8413 has single-ended input and output ports with  
impedances that nominally equal 50 Ω over the 0.01 GHz to  
9 GHz frequency range. Therefore, the HMC8413 can be directly  
inserted into a 50 Ω system with no required impedance  
matching circuitry, which also means that multiple HMC8413  
amplifiers can be cascaded back to back without the need for  
external matching circuitry.  
The RBIAS pin is used to set the IDQ with an external resistor,  
allowing single positive supply operation.  
R
BIAS  
RF  
RF  
/V  
OUT DD  
IN  
Figure 70. Simplified Architecture  
It is critical to supply very low inductance ground connections  
to the ground pins as well as to the backside exposed pad to  
ensure stable operation.  
Rev. 0 | Page 17 of 21  
 
 
HMC8413  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 71 shows the basic connections for operating the  
HMC8413. AC couple the input and output of the HMC8413  
with appropriately sized capacitors (American Technical  
Ceramics, 531Z104KTR16T). Use an appropriate bias tee on the  
RFOUT/VDD pin to provide both ac and dc coupling to the  
RFOUT/VDD pin. A 5 V dc bias is supplied to the amplifier through  
the choke inductor connected to the RFOUT/VDD pin. The  
recommended bias inductor is the Coilcraft® 0402DF-901XJRE,  
0.9 μH.  
RECOMMENDED BIAS SEQUENCING  
During Power-Up  
The recommended bias sequence during power-up is as follows:  
1. Set VDD to 5 V.  
2. Apply the RF signal.  
During Power-Down  
The recommended bias sequence during power-down is as follows:  
1. Turn off the RF signal.  
2. Set VDD to 0 V.  
The shunt resistor, inductor, capacitor (RLC) network on the  
input of the HMC8413 adds resistive loss to help stabilize the  
amplifier by reducing the gain at low frequencies. The shunt  
inductor makes the resistor frequency dependent. At low  
frequencies, the resistor becomes more active. The resistor has  
less influence at higher frequencies where the impedance of the  
choke is high. The capacitor blocks dc voltages and currents  
from flowing through the resistor and the inductor.  
Table 7. Recommended Bias Resistor Values  
Total Current,  
DQ (mA)  
Amplifier Current, RBIAS Current,  
IDQ AMP (mA) RBIAS (mA)  
RBIAS (Ω)  
440  
490  
540  
590  
650  
710  
787  
I
_
I
125  
120  
115  
110  
105  
100  
95  
120.55  
115.74  
110.94  
106.13  
101.32  
96.51  
91.7  
4.45  
4.26  
4.06  
3.87  
3.68  
3.49  
3.3  
The bias condition, VDD = 5 V and IDQ = 95 mA, is the  
recommended operating point to achieve optimum performance.  
To set other bias conditions, adjust the value of RBIAS. Table 7  
shows the recommended bias resistor values and their associated  
quiescent current.  
890  
90  
86.89  
82.07  
77.26  
72.45  
67.63  
62.81  
57.99  
53.17  
48.36  
43.54  
38.72  
33.91  
29.12  
24.37  
19.62  
3.11  
2.93  
2.74  
2.55  
2.37  
2.19  
2.01  
1.83  
1.64  
1.46  
1.28  
1.09  
0.88  
0.63  
0.38  
990  
85  
V
DD  
1100  
1200  
1360  
1520  
1700  
1900  
2240  
2600  
3080  
3600  
4780  
6700  
11900  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
C4  
0.1µF  
C3  
10pF  
GND  
R2  
787Ω  
HMC8413  
L2  
0.9µH  
1
6
5
4
C1  
C5  
RF  
2
3
RF  
OUT  
IN  
0.1µF  
0.1µF  
L1  
0.14µH  
GND  
GND  
R1  
15Ω  
20  
C2  
0.1µF  
GND  
Figure 71. Typical Application Circuit  
Rev. 0 | Page 18 of 21  
 
 
 
 
Data Sheet  
HMC8413  
EXTENDING OPERATION BELOW 10 MHz  
The operation of the HMC8413 can be extended below 10 MHz  
by adding a 10 μH inductor (Coilcraft 0603AF-103XJE) and 1 kΩ  
shunt resistor. The 10 μH inductor and 1 kΩ shunt are placed  
in series with the 0.9 μH inductor (Coilcraft 0402DF-901XJRE)  
to form a multisection bias network. Figure 72 shows the  
broadband gain and return loss, and Figure 73 shows the narrow-  
band gain and return loss. Figure 74 shows the application circuit  
for operation below 10 MHz.  
25  
20  
15  
10  
S11  
S21  
S22  
5
0
–5  
25  
–10  
–15  
–20  
20  
15  
10  
0
20  
40  
60  
80  
100 120 140 160 180 200  
S11  
5
0
S21  
S22  
FREQUENCY (MHz)  
Figure 73. Gain and Return Loss vs. Frequency, 1 MHz to 200 MHz,  
VDD = 5 V, IDQ = 95 mA  
–5  
–10  
–15  
–20  
–25  
0
1
2
3
4
5
6
7
8
9
FREQUENCY (GHz)  
Figure 72. Gain and Return Loss vs. Frequency, 1 MHz to 9 GHz, VDD = 5 V,  
IDQ = 95 mA  
V
DD  
C4  
0.1µF  
C3  
10pF  
GND  
R3  
1kΩ  
R2  
787Ω  
L3  
10µH  
L2  
0.9µH  
HMC8413  
1
2
3
6
5
4
C5  
0.1µF  
C1  
RF  
IN  
RF  
OUT  
0.1µF  
L1  
0.14µH  
GND  
GND  
R1  
15Ω  
C2  
0.1µF  
GND  
Figure 74. Application Circuit for Operation Below 10 MHz  
Rev. 0 | Page 19 of 21  
 
 
 
 
HMC8413  
Data Sheet  
BIASING THE HMC8413 USING THE LT3470A  
The HMC8413 can be powered by using a well regulated power  
source. The LT3470A micropower, step-down, dc-to-dc converter  
is recommended to provide a 5 V supply to RFOUT/VDD. The  
regulator is designed for a wide input voltage range while  
maintaining a high efficiency and high power supply modulation  
ratio (PSMR). Using the LT3470A as a power supply for the  
HMC8413 results in high PSMR, and dynamic performance is  
achieved without degradation. Figure 75 shows the application  
circuit for the HMC8413 using the LT3470A regulator.  
V
IN  
5.7V TO 40V  
V
BOOST  
IN  
V
LT3470A  
DD  
SW  
OFF ON  
22µF  
SHDN  
BIAS  
C4  
604kΩ  
1%  
22µF  
22µF  
FB  
0.1µF  
C3  
GND  
200kΩ  
1%  
10pF  
GND  
R2  
787Ω  
HMC8413  
L2  
0.9µH  
1
6
C1  
0.1µF  
C5  
RF  
2
3
5
4
RF  
IN  
OUT  
0.1µF  
L1  
0.14µH  
GND  
GND  
R1  
15Ω  
C2  
0.1µF  
GND  
Figure 75. Application Circuit for the HMC8413 Using the LT3470A Regulator  
Rev. 0 | Page 20 of 21  
 
 
Data Sheet  
HMC8413  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
1.70  
1.60  
1.50  
2.05  
2.00 SQ  
1.95  
0.65  
BSC  
5
8
PIN 1 INDEX  
1.10  
1.00  
0.90  
AREA  
EXPOSED  
PAD  
PIN 1  
IONS  
INDICATOR AR EA OP T  
4
1
0.30  
0.25  
0.20  
(SEE DETAIL A)  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
1.30 REF  
0.90  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
0.35  
0.30  
0.25  
SEATING  
PLANE  
0.203 REF  
Figure 76. 6-Lead Lead Frame Chip Scale Package [LFCSP]  
2 mm × 2 mm Body and 0.85 mm Package Height  
(CP-6-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
MSL Rating3  
MSL1  
Package Description4  
Package Option  
HMC8413LP2FE  
−40°C to +85°C  
6-Lead Lead Frame Chip Scale Package [LFCSP]  
6-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-6-12  
CP-6-12  
HMC8413LP2FETR −40°C to +85°C  
EV1HMC8413LP2F  
MSL1  
1 The HMC8413LP2FE, HMC8413LP2FETR, and EV1HMC8413LP2F are RoHS compliant parts.  
2 When ordering the evaluation board only, reference the model number, EV1HMC8413LP2F.  
3 See the Absolute Maximum Ratings for additional information.  
4 The lead finish of the HMC8413LP2FE and HMC8413LP2FETR is nickel palladium gold (NiPdAu).  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D23879-10/21(0)  
Rev. 0 | Page 21 of 21  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY