HMC862A [ADI]

0.1 GHz to 24 GHz, Low Noise, Programmable Divider;
HMC862A
型号: HMC862A
厂家: ADI    ADI
描述:

0.1 GHz to 24 GHz, Low Noise, Programmable Divider

文件: 总15页 (文件大小:478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0.1 GHz to 24 GHz, Low Noise,  
Programmable Divider  
HMC862A  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HMC862A  
Low noise floor: −153 dBc/Hz at 100 kHz offset  
Programmable frequency divider (N)  
N = 1, 2, 4, or 8  
Wide bandwidth: 0.1 GHz to 24 GHz  
Low current consumption: 81 mA in the N = 8 divide state  
HBM ESD sensitivity, Class 2 classification  
FICDM ESD sensitivity, Class C3 classification  
16-lead, 3 mm × 3 mm LFCSP package: 9 mm2  
GND  
IN  
1
2
3
4
12 GND  
11 OUT  
÷1,2,4,8  
10  
9
IN  
OUT  
GND  
GND  
APPLICATIONS  
Satellite communication systems  
Point to point and point to multipoint radios  
Military applications  
PACKAGE  
BASE  
GND  
Figure 1.  
Test equipment  
GENERAL DESCRIPTION  
The HMC862A is a low noise, programmable frequency divider  
in a 3 mm × 3 mm, leadless, surface-mount package. The  
frequency divider, N, can be programmed to divide from 1,  
2, 4, or 8 in the 0.1 GHz to 24 GHz input frequency range.  
The low phase noise, wide frequency range, and flexible division  
ratio make this device ideal for high performance and wideband  
communication systems.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC862A  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Divide by 2 .....................................................................................8  
Divide by 4 .....................................................................................9  
Divide by 8 .................................................................................. 10  
Current Consumption (ICC) ...................................................... 11  
Theory of Operation ...................................................................... 12  
Input Interface ............................................................................ 12  
Output Interface ......................................................................... 12  
Applications Information.............................................................. 13  
Evaluation Printed Circuit Board (PCB) ................................ 13  
Evaluation Board Overview...................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
RF Specifications .......................................................................... 3  
DC Specifications ......................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Divide by 1..................................................................................... 7  
REVISION HISTORY  
4/2019—Rev. 0 to Rev. A  
Added Thermal Resistance Section and Table 4 .......................... 5  
Changes to Theory of Operation Section.................................... 12  
Changes to Ordering Guide .......................................................... 15  
10/2017—Revision 0: Initial Version  
Rev. A | Page 2 of 15  
 
Data Sheet  
HMC862A  
SPECIFICATIONS  
RF SPECIFICATIONS  
VCC = 5 V, TA = −40°C to +85°C, unless otherwise noted.  
Table 1.  
Parameter  
RF INPUT CHARACTERISTICS  
RF Input Frequency  
Maximum  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Sine wave or square wave input  
Square wave input1  
N = 1  
N = 2, 4, 8  
Minimum  
18  
24  
GHz  
GHz  
GHz  
0.1  
RF Input Power Range  
N = 1, 2  
N = 2  
0.1 GHz< fIN < 18 GHz, sine or square wave input1 −15  
+10  
+10  
+10  
+10  
dBm  
dBm  
dBm  
dBm  
18 GHz < fIN < 24 GHz, sine or square wave input  
0.1 GHz < fIN < 20 GHz, sine or square wave input1  
20 GHz < fIN < 24 GHz, sine or square wave input  
−5  
−15  
−5  
N = 4, 8  
Reverse Leakage  
N = 1  
N = 2  
N = 4, 8  
fIN = 6 GHz, input power (PIN) = 0 dBm  
fIN = 6 GHz, PIN = 0 dBm  
fIN = 6 GHz, PIN = 0 dBm  
−10  
−55  
−70  
dBm  
dBm  
dBm  
RF OUTPUT CHARACTERISTICS, N = 1  
Output Power, Single-Ended  
0.1 GHz < fIN < 10 GHz  
10 GHz < fIN < 15 GHz  
15 GHz < fIN < 18 GHz  
−1  
−5  
−11  
+3  
−2  
−6  
+5  
+3  
0
dBm  
dBm  
dBm  
Single-Sideband (SSB) Residual Phase Noise fIN = 12 GHz, PIN = 5 dBm  
at 100 kHz Offset  
−155  
dBc/Hz  
Second Harmonic  
Third Harmonic  
fIN = 6 GHz, PIN = 0 dBm  
fIN = 6 GHz, PIN = 0 dBm  
−27  
−6  
dBm  
dBm  
RF OUTPUT CHARACTERISTICS, N = 2  
Output Power, Single-Ended  
0.1 GHz < fIN < 18 GHz  
18 GHz < fIN < 24 GHz  
fIN = 12 GHz, PIN = 5 dBm  
fIN = 6 GHz, PIN = 0 dBm  
fIN = 6 GHz, PIN = 0 dBm  
0
−3  
3
0
5
+3  
dBm  
dBm  
dBc/Hz  
dBm  
dBm  
SSB Residual Phase Noise at 100 kHz Offset  
Second Harmonic (Feedthrough)  
Third Harmonic  
−153  
−28  
−7  
RF OUTPUT CHARACTERISTICS, N = 4  
Output Power, Single-Ended  
0.1 GHz < fIN < 18 GHz  
18 GHz < fIN < 24 GHz  
fIN = 12 GHz, PIN = 5 dBm  
fIN = 6 GHz, PIN = 0 dBm  
fIN = 6 GHz, PIN = 0 dBm  
0
−1  
2
+3  
−154  
−35  
−6  
4
+6  
dBm  
dBm  
dBc/Hz  
dBm  
dBm  
SSB Residual Phase Noise at 100 kHz Offset  
Second Harmonic  
Third Harmonic  
RF OUTPUT CHARACTERISTICS, N = 8  
Output Power, Single-Ended  
SSB Residual Phase Noise at 100 kHz Offset  
Second Harmonic  
0.1 GHz < fIN < 24 GHz  
fIN = 12 GHz, PIN = 5 dBm  
fIN = 6 GHz, PIN = 0 dBm  
fIN = 6 GHz, PIN = 0 dBm  
0
2
4
dBm  
dBc/Hz  
dBm  
−155  
−45  
−7  
Third Harmonic  
dBm  
1 A square wave input is recommended to be below 650 MHz for best phase noise performance. If a sine wave input below 650 MHz is used, it is recommended that the  
drive level be >5 dBm for best operation, including phase noise. Refer to the Typical Performance Characteristics section.  
Rev. A | Page 3 of 15  
 
 
HMC862A  
Data Sheet  
DC SPECIFICATIONS  
VCC = 5 V, TA = −40°C to +85°C, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Analog supply  
Min  
Typ  
Max  
Unit  
POWER SUPPLIES  
VCC  
4.75  
5
5.25  
V
CURRENT CONSUMPTION, ICC  
N = 1  
N = 2  
N = 4  
N = 8  
55  
64  
68  
71  
61  
73  
78  
81  
71  
84  
90  
94  
mA  
mA  
mA  
mA  
DIGITAL INPUT S (S0, S1, S2)  
Logic Voltage  
Low  
High  
0
3
0.4  
5
V
V
Rev. A | Page 4 of 15  
 
Data Sheet  
HMC862A  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
RF Input Power (IN, IN)  
13 dBm  
Supply Voltage (VCC)  
5.5 V  
Logic Inputs (S0, S1, S2)  
Storage Temperature Range  
Reflow Temperature  
Operating Temperature Range (TA)  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM), JS-001-2012  
−0.5 V to (0.5 V +VCC)  
−65°C to +125°C  
260°C  
Thermal impedance simulated values are based on the use of  
the EV1HMC862ALP3 evaluation board with the exposed pad  
soldered to GND. VCC = 5 V and Divider Ratio (N) = 8.  
−40°C to +85°C  
Table 4.  
PackageType  
Thermal Impedance (θJB)  
Unit  
Class 2  
HCP-16-1  
34  
°C/W  
Field Induced Charged Device Model  
(FICDM), JS-002  
Class C3  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. A | Page 5 of 15  
 
 
 
HMC862A  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
IN  
1
2
3
4
12 GND  
11 OUT  
HMC862A  
TOP VIEW  
10  
9
IN  
OUT  
GND  
(Not to Scale)  
GND  
PACKAGE  
BASE  
GND  
NOTES  
1. EXPOSED PAD. EXPOSED PAD MUST  
BE CONNECTED TO RF/DC GROUND.  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 4, 8, 9,  
GND  
Ground. The backside of the package has an exposed metal ground slug that must be connected to RF/dc ground.  
12, 14, 15  
2
3
IN  
IN  
RF Input. This pin must be dc blocked.  
RF Input, 180° Out of Phase with Pin 2 for Differential Operation. This pin must be ac grounded for single-ended  
operation. DC block this pin for differential operation.  
5, 6, 7  
10  
S0, S1, S2  
OUT  
CMOS Compatible Division Ratio Control Bits. See Table 6.  
Divider Output, 180° Out of Phase with Pin 11. This RF output must be dc blocked. See Figure 31 for proper termination.  
Divided Output. This RF output must be dc blocked. See Figure 31 for proper termination.  
Supply Voltage Pins, 5 V. Connect both VCC pins to a 5 V supply. These pins are internally connected.  
Exposed Pad. Exposed pad must be connected to RF/dc ground.  
11  
13, 16  
OUT  
VCC  
EPAD  
Rev. A | Page 6 of 15  
 
Data Sheet  
HMC862A  
TYPICAL PERFORMANCE CHARACTERISTICS  
DIVIDE BY 1  
6
6
4
4
2
2
0
0
–2  
–4  
–6  
–2  
–4  
–6  
–18  
–10  
–12  
–18  
+85°C  
+25°C  
–40°C  
V
V
V
= 5.25V  
= 5.0V  
= 4.75V  
CC  
CC  
CC  
–10  
–12  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
SINE WAVE INPUT FREQUENCY (GHz)  
SINE WAVE INPUT FREQUENCY (GHz)  
Figure 3. Output Power vs. Sine Wave Input Frequency for Various  
Temperatures, PIN = 0 dBm  
Figure 6. Output Power vs. Sine Wave Input Frequency for Various VCC  
Voltages, PIN = 0 dBm  
15  
0
–10  
–20  
–30  
–40  
–50  
MAX P  
IN  
10  
5
0
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
MIN P  
IN  
SECOND HARMONIC  
THIRD HARMONIC  
–60  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
0
2
4
6
8
10  
12  
14  
16  
18  
SINE WAVE INPUT FREQUENCY (GHz)  
OUTPUT FREQUENCY (GHz)  
Figure 4. Allowable Range of Input Power vs. Sine Wave Input Frequency  
for Various Temperatures  
Figure 7. Output Harmonics, PIN = 0 dBm, TA = 25°C  
–115  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
P
P
P
P
P
= +10dBm  
= +5dBm  
= 0dBm  
= –5dBm  
= –10dBm  
SQUARE 100MHz  
IN  
IN  
IN  
IN  
IN  
–120  
SINE 100MHz (5dBm)  
SINE 12GHz  
SINE 6GHz  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 5. SSB Phase Noise vs. Offset Frequency for Various Input Frequencies,  
PIN = 0 dBm, TA = 25°C  
Figure 8. SSB Phase Noise vs. Offset Frequency for Various Input Power (PIN  
)
Levels, fIN = 12 GHz Sine Wave, TA = 25°C  
Rev. A | Page 7 of 15  
 
 
HMC862A  
Data Sheet  
DIVIDE BY 2  
6
6
4
4
2
2
0
0
–2  
–4  
–6  
–2  
–4  
–6  
V
V
V
= 5.25V  
= 5.00V  
= 4.75V  
CC  
CC  
CC  
+85°C  
+25°C  
–40°C  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
2
4
6
8
10 12 14 16 18 20 22 24  
SINE WAVE INPUT FREQUENCY (GHz)  
SINE WAVE INPUT FREQUENCY (GHz)  
Figure 9. Output Power vs. Sine Wave Input Frequency for Various  
Temperatures, PIN = 0 dBm  
Figure 12. Output Power vs. Sine Wave Input Frequency for Various VCC  
Voltages, PIN = 0 dBm  
15  
0
–10  
–20  
–30  
–40  
–50  
MAX P  
IN  
10  
5
+85°C  
+25°C  
–40°C  
0
–5  
–10  
–15  
–20  
–25  
MIN P  
IN  
FEEDTHROUGH  
THIRD HARMONIC  
–60  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
2
4
6
8
10  
12  
SINE WAVE INPUT FREQUENCY (GHz)  
OUTPUT FREQUENCY (GHz)  
Figure 13. Output Harmonics, PIN = 0 dBm, TA = 25°C  
Figure 10. Allowable Range of Input Power vs. Sine Wave Input Frequency  
for Various Temperatures  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–115  
SQUARE 100MHz  
P
P
P
P
P
= +10dBm  
= +5dBm  
= 0dBm  
IN  
IN  
IN  
IN  
IN  
SINE 100MHz (5dBm)  
SINE 18GHz  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
SINE 12GHz  
SINE 6GHz  
= –5dBm  
= –10dBm  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 14. SSB Phase Noise vs. Offset Frequency for Various Input Power (PIN  
)
Figure 11. SSB Phase Noise vs. Offset Frequency for Various Input  
Frequencies, PIN = 0 dBm, TA = 25°C  
Levels, fIN = 12 GHz Sine Wave, TA = 25°C  
Rev. A | Page 8 of 15  
 
Data Sheet  
HMC862A  
DIVIDE BY 4  
6
6
5
5
4
3
2
1
0
4
3
2
1
0
V
V
V
= 5.25V  
= 5.00V  
= 4.75V  
CC  
CC  
CC  
+85°C  
+25°C  
–40°C  
–1  
–2  
–1  
–2  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
2
4
6
8
10 12 14 16 18 20 22 24  
SINE WAVE INPUT FREQUENCY (GHz)  
SINE WAVE INPUT FREQUENCY (GHz)  
Figure 15. Output Power vs. Sine Wave Input Frequency for Various  
Temperatures, PIN = 0 dBm  
Figure 18. Output Power vs. Sine Wave Input Frequency for Various VCC  
Voltages, PIN = 0 dBm  
15  
0
–10  
–20  
–30  
MAX P  
IN  
10  
5
+85°C  
+25°C  
–40°C  
0
–5  
–10  
–15  
–20  
–25  
–40  
FEEDTHROUGH  
SECOND HARMONIC  
THIRD HARMONIC  
MIN P  
–50  
IN  
–60  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
1
2
3
4
5
6
SINE WAVE INPUT FREQUENCY (GHz)  
OUTPUT FREQUENCY (GHz)  
Figure 19. Output Harmonics, PIN = 0 dBm, TA = 25°C  
Figure 16. Allowable Range of Input Power vs. Sine Wave Input Frequency  
for Various Temperatures  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–115  
SQUARE 100MHz  
P
P
P
P
P
= +10dBm  
= +5dBm  
= 0dBm  
IN  
IN  
IN  
IN  
IN  
SINE 100MHz (5dBm)  
SINE 18GHz  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
SINE 12GHz  
SINE 6GHz  
= –5dBm  
= –10dBm  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 20. SSB Phase Noise vs. Offset Frequency for Various Input Power (PIN  
)
Figure 17. SSB Phase Noise vs. Offset Frequency for Various Input  
Frequencies, PIN = 0 dBm, TA = 25°C  
Levels, fIN = 12 GHz Sine Wave, TA = 25°C  
Rev. A | Page 9 of 15  
 
HMC862A  
Data Sheet  
DIVIDE BY 8  
6
6
5
5
4
4
3
3
2
2
1
1
0
0
V
V
V
= 5.25V  
= 5.00V  
= 4.75V  
CC  
CC  
CC  
+85°C  
+25°C  
–40°C  
–1  
–2  
–1  
–2  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
2
4
6
8
10 12 14 16 18 20 22 24  
SINE WAVE INPUT FREQUENCY (GHz)  
SINE WAVE INPUT FREQUENCY (GHz)  
Figure 24. Output Power vs. Sine Wave Input Frequency for Various Vcc  
Voltages, PIN = 0 dBm  
Figure 21. Output Power vs. Sine Wave Input Frequency for Various  
Temperatures, PIN = 0 dBm  
0
–10  
–20  
–30  
–40  
–50  
15  
MAX P  
IN  
10  
5
+85°C  
+25°C  
–40°C  
0
–5  
–10  
–15  
–20  
–25  
MIN P  
IN  
FEEDTHROUGH  
SECOND HARMONIC  
THIRD HARMONIC  
–60  
–70  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
2
4
6
8
10 12 14 16 18 20 22 24  
OUTPUT FREQUENCY (GHz)  
SINE WAVE INPUT FREQUENCY (GHz)  
Figure 22. Allowable Range of Input Power vs. Sine Wave Input Frequency  
for Various Temperatures  
Figure 25. Output Harmonics, PIN = 0 dBm, TA = 25°C  
–115  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
SQUARE 100MHz  
P
P
P
P
P
= +10dBm  
= +5dBm  
= 0dBm  
= –5dBm  
= –10dBm  
IN  
IN  
IN  
IN  
IN  
SINE 100MHz (5dBm)  
SINE 18GHz  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
SINE 12GHz  
SINE 6GHz  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 26. SSB Phase Noise vs. Offset Frequency for Various Input Power (PIN  
)
Figure 23. SSB Phase Noise vs. Offset Frequency for Various Input  
Frequencies, PIN = 0 dBm, TA = 25°C  
Levels, fIN = 12 GHz Sine Wave, TA = 25°C  
Rev. A | Page 10 of 15  
 
Data Sheet  
HMC862A  
CURRENT CONSUMPTION (ICC)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
N = 8  
N = 4  
N = 2  
N = 1  
0
2
4
6
8
10 12 14 16 18 20 22 24  
SINE WAVE INPUT FREQUENCY (GHz)  
Figure 27. Input Power vs. Sine Wave Input Frequency  
Rev. A | Page 11 of 15  
 
HMC862A  
Data Sheet  
THEORY OF OPERATION  
The HMC862A is a wideband, configurable RF divider with  
minimal additive phase noise.  
IN  
pins as  
For differential input signals, ac couple the IN and  
shown in Figure 29. Off-chip termination is not required because  
IN  
the IN and  
pins have internal 50 Ω termination resistors.  
The divide ratio, N, can be programmed to N = 1, 2, 4, or 8 by  
setting the digital input pins—S0, S1, and S2—to the logic high  
(1) or logic low (0) states indicated in Table 6.  
For single-ended input signals, ac couple the IN input. AC  
IN  
IN  
pin as possible.  
ground the  
pin as close to the  
Table 6. Programming Truth Table for Frequency Division  
Ratios1  
IN  
IN  
IN  
IN  
S0  
S1  
S2  
Divide Ratio (N)  
0
1
1
1
0
0
1
1
0
0
0
1
1
2
4
8
Figure 29. Recommended Input Configuration for Single-Ended Operation  
(Left) and Differential Operation (Right)  
OUTPUT INTERFACE  
1 0 means logic low and 1 means logic high.  
Figure 30 shows the output interface schematic for the OUT  
OUT  
and  
pins.  
The HMC862A does not support any other combination of the S0,  
S1, and S2 programming states other than those listed in Table 6.  
Using other programming states causes the HMC862A to  
generate an unstable output.  
50  
50Ω  
OUT  
OUT  
Enable the HMC862A by applying a voltage (VCC) to the supply  
pins, VCC. These pins are internally connected.  
Figure 30. Output Interface Schematic  
To provide a differential output or two single-ended outputs, ac  
OUT  
Note that the VCC voltage must be applied before the logic level  
signals (S0, S1, and S2) can be driven to a logic high to prevent  
the ESD diodes from turning on.  
couple the OUT and  
pins. Off-chip termination is not  
OUT  
required because the OUT and  
termination resistors.  
pins have internal 50 Ω  
The HMC862A toggles on the rising edge of the IN input for all  
divide ratios where N = 1, 2, 4, or 8.  
If only one output pin is used, connect the unused output pin to  
ground through a capacitor and a 50 Ω termination  
INPUT INTERFACE  
The HMC862A can be driven by differential or single-ended  
input signals, and can provide differential or single-ended  
output signals.  
OUT  
OUT  
OUT  
OUT  
Figure 28 shows the input interface schematic for the IN and  
IN  
pins.  
Figure 31. Recommended Output Configuration for Single-Ended Operation  
(Left) and Differential Operation (Right)  
50Ω  
IN  
50Ω  
IN  
Figure 28. Input Interface Schematic  
Rev. A | Page 12 of 15  
 
 
 
 
 
 
 
Data Sheet  
HMC862A  
APPLICATIONS INFORMATION  
EVALUATION PRINTED CIRCUIT BOARD (PCB)  
600-01663-00-1  
FOUT  
C3  
FIN  
C7  
+
GND  
J7  
VCC  
J6  
C1  
C2  
J3  
J4  
J1  
J2  
C6  
C
5
U1  
GND  
J5  
C4  
R3  
R2  
R1  
NFIN  
NFOUT  
S2  
S0  
S1  
Figure 32. Evaluation PCB  
J6  
J7  
+
C7  
2.2µF  
C6  
1nF  
NC  
U1  
HMC862ALP3E  
C1  
100nF  
C3  
100nF  
GND  
1
2
12 GND  
11 OUT  
J1  
J3  
IN  
K_SRI-NS  
K_SRI-NS  
÷1,2,4,8  
10  
9
IN  
3
4
OUT  
GND  
C2  
C4  
100nF  
100nF  
J2  
J4  
GND  
C5  
100nF  
K_SRI-NS  
K_SRI-NS  
R1  
10k  
R2  
10kΩ  
J5  
2
4
6
1
3
5
R3  
10kΩ  
87759-0614  
Figure 33. Evaluation PCB Schematic  
Rev. A | Page 13 of 15  
 
 
HMC862A  
Data Sheet  
It is recommended that the circuit board used in the application  
use RF circuit design techniques with a 50 Ω impedance on the  
signal lines and with the package ground leads and backside  
ground pad connected directly to the ground plane. Use a  
sufficient number of via holes to connect the top and bottom  
ground planes. The evaluation circuit board shown is available  
from Analog Devices, Inc., upon request.  
EVALUATION BOARD OVERVIEW  
Use the EV1HMC862ALP3 evaluation board to evaluate the  
HMC862A.  
The HMC862A is enabled by applying 5 V between J6 (VCC  
)
and J7 (GND). Note that J6 only provides power to Pin 13 on  
the HMC862A; however, because Pin 13 and Pin 16 are  
internally connected, both VCC pins receive power.  
Table 8. List of Materials for EV1HMC862ALP3  
The divide ratio, N, is selected by inserting pin jumpers on  
Component J5, as shown in Table 7. When installed, a jumper  
pulls the digital input pin to ground and sets a logic low. When  
removed, the R1, R2, and R3 pull-up resistors pull the digital  
input to VCC and set a logic high.  
Item  
Description  
J1 to J4  
J5  
PCB-mount K connector  
DC connector header, Molex 2 mm  
C1 to C5  
ATC550L104KTT, 100 nF, 16 V, broadband capacitor,  
0402 package  
C6  
C7  
R1 to R3  
J6, J7  
1000 pF capacitor, 0603 package  
2.2 μF capacitor, tantalum, 3216 package  
10 kΩ resistor, 0402 package  
Mill-Max 0.040 inch diameter PC pin, 3101-2-00-21-00-  
00-08-0  
HMC862A, programmable divider  
Custom heatsink, alumimum  
600-01663-00-1 evaluation board  
Table 7. Jumper Configuration for EV1HMC862ALP3  
Divide Ratio (N)  
S0 Jumper  
Installed  
Open  
Open  
Open  
S1 Jumper  
Installed  
Installed  
Open  
S2 Jumper  
Installed  
Installed  
Installed  
Open  
1
2
4
8
U1  
Heatsink  
PCB  
Open  
By default, the evaluation board is set up to accept a single-  
ended input and provide a differential output. A differential  
input can be used by removing Component C5; a single-ended  
output can be generated by terminating J4 with a 50 Ω  
termination.  
Rev. A | Page 14 of 15  
 
 
Data Sheet  
HMC862A  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
3.10  
3.00 SQ  
2.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
TIONS  
INDIC ATOR AREA OP  
(SEE DETAIL A)  
13  
16  
0.50  
BSC  
12  
1
EXPOSED  
PAD  
1.95  
1.70 SQ  
1.50  
4
9
8
5
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT WITH JEDEC STANDARDS MO-220-VEED-4.  
Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.85 mm Package Height  
(HCP-16-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
MSL  
Model1  
Temperature Range Package Description  
Lead Finish  
Rating2  
Package Option  
HCP-16-1  
HCP-16-1  
HMC862ALP3E  
HMC862ALP3ETR  
EV1HMC862ALP3  
−40°C to +85°C  
−40°C to +85°C  
16-Lead Lead Frame Chip Scale Package [LFCSP] 100% Matte Sn MSL3  
16-Lead Lead Frame Chip Scale Package [LFCSP] 100% Matte Sn MSL3  
Evaluation Board  
1 The HMC862ALP3E and HMC862ALP3ETR are RoHS compliant.  
2 The maximum peak reflow temperature is 260°C. See the Absolute Maximum Ratings section for more information.  
©2017–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13599-0-4/19(A)  
Rev. A | Page 15 of 15  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY