HMC911LC4BTR [ADI]

Broadband Analog Time Delay to 24 GHz;
HMC911LC4BTR
型号: HMC911LC4BTR
厂家: ADI    ADI
描述:

Broadband Analog Time Delay to 24 GHz

文件: 总14页 (文件大小:1520K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Broadband Analog Time Delay to 24 GHz  
Data Sheet  
HMC911  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Very wide bandwidth to 24 GHz  
Time delay range: 70 ps typical  
Single-ended or differential operation  
Adjustable differential output amplitude with 780 mV p-p typical  
at 10 GHz  
Delay control modulation bandwidth: 1.6 GHz typical  
Single supply: 3.3 V  
NC  
GND  
INP  
1
2
3
4
5
6
18 NC  
17 GND  
16 QP  
15 QN  
14 GND  
V
CC  
V
CC  
HMC911  
AMP  
BUF  
24-terminal ceramic, leadless chip carrier (LCC)  
INN  
TEMPERATURE  
COMPENSATION  
AND BIAS  
APPLICATIONS  
GND  
EN  
V
CC  
BUF  
V
CC  
Synchronization of clock and data  
Transponder design  
13  
V
EE  
Serial data transmissions up to 32 Gbps  
Broadband test and measurement  
RF ATE applications  
PACKAGE  
BASE  
GND  
Figure 1.  
GENERAL DESCRIPTION  
The HMC911 is a broadband time delay with 62 ps to 75 ps  
continuously adjustable delay range to 24 GHz. The delay control  
is linearly monotonic with respect to the differential delay control  
voltage (VDCP and VDCN), and the control input has a modulation  
bandwidth of 1.6 Hz. The HMC911 provides a differential  
output voltage with constant amplitude for single-ended or  
differential input voltages above the input sensitivity level, and  
the output voltage swing can be adjusted using the VAC control pin.  
The HMC911 features internal temperature compensation and  
bias circuitry to minimize delay variations with temperature. All  
RF inputs and outputs of the HMC911 are internally terminated  
with 50 Ω to VCC and can be ac-coupled or dc-coupled. Output  
pins connect directly to a 50 Ω to VCC terminated system.  
However, use dc blocking capacitors if the terminated system  
input is 50 Ω to a dc voltage other than VCC  
.
The HMC911 is available in a RoHS-compliant, 24-terminal,  
ceramic, leadless chip carrier.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC911* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
HMC911 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
HMC911LC4B Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all HMC911 EngineerZone Discussions.  
HMC911: Broadband Analog Time Delay to 24 GHz Data  
Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
REFERENCE MATERIALS  
Quality Documentation  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
Package/Assembly Qualification Test Report: LC4, LC4B  
(QTR: 2014-00380 REV: 01)  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
HMC911  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................5  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Applications Information .............................................................. 11  
Evaluation Printed Circuit Board (PCB)................................. 11  
Typical Application Circuit........................................................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
REVISION HISTORY  
10/2016—Rev. v02.0614 to Rev. B  
Changes to Figure 13 Caption .........................................................7  
Changes to Figure 17 Caption and Figure 20 Caption .................8  
Changes to Figure 31 Caption ...................................................... 10  
Changes to Table 4.......................................................................... 11  
Changes to Typical Application Circuit Section ........................ 12  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide.......................................................... 13  
Updated Format..................................................................Universal  
Changes to Product Title, Features Section, and General  
Description Section.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Changes to Figure 4 and Figure 6................................................... 6  
Rev. B | Page 2 of 13  
 
Data Sheet  
HMC911  
SPECIFICATIONS  
TA = 25°C, VCC = 3.3 V, VAC = 2.6 V, VEE = GND = 0 V, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
5% tolerance  
POWER SUPPLY  
Voltage  
Current  
3.13  
460  
3.3  
3.47  
530  
V
mA  
TIME DELAY RANGE  
10 GHz  
18 GHz  
VDCP = 3.9 V, VDCN = 3.3 V  
62  
64  
66  
70  
70  
70  
71  
73  
75  
ps  
ps  
ps  
22 GHz  
TIME DELAY SENSITIVITY  
Voltage  
116  
ps/V  
Temperature  
PHASE SHIFT RANGE  
10 GHz  
18 GHz  
22 GHz  
0.04  
ps/°C  
VDCP = VDCN = 3.3 V at 18 GHz  
VDCP = 3.9 V, VDCN = 3.3 V  
210  
400  
515  
32  
250  
475  
595  
Degrees  
Degrees  
Degrees  
Gbps  
MAXIMUM DATA RATE  
MAXIMUM CLOCK FREQUENCY  
DELAY CONTROL  
Modulation Bandwidth  
Voltage (VDCP and VDCN  
INPUT VOLTAGE  
Low (VIL)  
24  
GHz  
1.6  
GHz  
V
)
VCC − 0.6  
VCC + 0.6  
VCC − 500 VCC − 200 VCC − 25  
mV  
High (VIH)  
VCC + 25  
VCC + 200 VCC + 500 mV  
INPUT AMPLITUDE, PEAK TO PEAK  
Single Ended  
Differential  
50  
100  
1000  
2000  
mV p-p  
mV p-p  
OUTPUT AMPLITUDE  
10 GHz  
VAC = 2.6 V  
370  
740  
350  
700  
340  
680  
1.7  
390  
780  
375  
750  
350  
700  
2.6  
640  
1280  
640  
1280  
640  
1280  
2.7  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
V
Single-ended  
Differential  
Single-ended  
Differential  
Single-ended  
Differential  
18 GHz  
22 GHz  
CONTROL VOLTAGE (VAC)  
HARMONIC SUPPRESSION (fIN − 2fIN)1, 2  
VDCP = VDCN = 3.3 V  
10 GHz  
20 GHz  
21  
19  
32  
30  
dBc  
dBc  
RETURN LOSS  
Input  
Output  
Frequency < 24 GHz  
32 Gbps, 10101 … data  
9
10  
0.3  
dB  
dB  
RMS JITTER  
TIME3  
ps, p-p  
Rise (tR)  
Fall (tF)  
15  
14  
ps  
ps  
ps  
PROPAGATION DELAY  
480  
VDCP = 2.7 V, VDCN = 3.3 V (relative to zero time delay)  
1 Harmonic suppression measurements were taken for single-ended inputs and outputs.  
2 fIN is the fundamental frequency.  
3 VINPUT = differential 400 mV p-p, and fDATA = 22.5 Gbps, and pseudorandom bit sequences (PRBS) 233 − 1  
Rev. B | Page 3 of 13  
 
HMC911  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Power Supply Voltage (VCC)  
Input Voltage (VIN)  
−0.5 V to +3.75 V  
VCC – 1.2 V to  
V
CC + 0.6 V  
Output Voltage (VOUT  
)
VCC – 1.2 V to  
VCC + 0.6 V  
Delay Control Voltage (VDCP, VDCN  
Power-Down (Enable) Pin (EN)  
Amplitude Control (VAC)  
Continuous Power Dissipation, PDISS (TA =  
85°C, Derate 54.96 mW/°C above 85°C)  
)
0 V to VCC + 0.6 V  
0 V to VCC + 0.6 V  
0 V to VCC + 0.6 V  
2.2 W  
ESD CAUTION  
Thermal Resistance (Junction to Ground  
Paddle)  
Channel Temperature (TC)  
Maximum Peak Reflow Temperature (MSL3)1 260°C  
18.2°C/W  
125°C  
Storage Temperature Range  
Operating Temperature Range  
Electrostatic Discharge (ESD)  
Human Body Model (HBM)  
1 See the Ordering Guide section.  
−65°C to +125°C  
−40°C to +85°C  
Class 1B  
Rev. B | Page 4 of 13  
 
 
Data Sheet  
HMC911  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
GND  
INP  
1
2
3
4
5
6
18 NC  
17 GND  
16 QP  
15 QN  
14 GND  
HMC911  
TOP VIEW  
(Not to Scale)  
INN  
GND  
EN  
13  
V
EE  
PACKAGE  
BASE  
GND  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD. CONNECT THE EXPOSED  
PAD TO RF/DC GROUND  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 18  
NC  
No Connect. These pins are not connected internally; however, all data shown herein was measured with these  
pins connected to RF/dc ground externally.  
2, 5, 14, 17  
GND  
INP  
INN  
EN  
Ground Pin. Connect these signal grounds to 0 V. See Figure 3 for the interface schematic.  
Positive Differential RF Input Pin. See Figure 4 for the interface schematic.  
Negative Differential RF Input Pin. See Figure 4 for the interface schematic.  
Enable Pin for the Time Delay. For normal operation, leave this pin open or apply 3.3 V. To disable the HMC911,  
apply 0 V. When disabled, the total current consumption drops to 15 mA. See Figure 5 for the interface schematic.  
3
4
6
7, 8, 11, 13  
9
10  
12  
15  
16  
19 to 24  
VEE  
Supply Grounds. Connect these pins to 0 V. See Figure 6 for the interface schematic.  
Positive Differential Time Delay Control Pin. See Figure 7 for the interface schematic.  
Negative Differential Time Delay Control Pin. See Figure 7 for the interface schematic.  
Output Amplitude Control Pin. See Figure 8 for the interface schematic.  
Negative Differential RF Output Pin. See Figure 9 for the interface schematic.  
Positive Differential RF Output Pin. See Figure 9 for the interface schematic.  
Positive Supply Pins. See Figure 10 for the interface schematic.  
VDCP  
VDCN  
VAC  
QN  
QP  
VCC  
EPAD  
Exposed Pad. Connect the exposed pad to RF/dc ground.  
Rev. B | Page 5 of 13  
 
HMC911  
Data Sheet  
INTERFACE SCHEMATICS  
V
CC  
50  
V
V
,
DCP  
DCN  
GND  
V
EE  
Figure 7. VDCP and VDCN Interface Schematic  
Figure 3. GND Interface Schematic  
V
V
CC  
CC  
50  
INP,  
INN  
V
AC  
V
V
EE  
EE  
Figure 4. INP and INN Interface Schematic  
Figure 8. VAC Interface Schematic  
V
V
CC  
CC  
50  
20k  
QP,  
QN  
250Ω  
EN  
V
EE  
V
EE  
EN  
Figure 5. Interface Schematic  
Figure 9. QN and QP Interface Schematic  
V
CC  
V
EE  
GND  
GND  
Figure 10. VCC Interface Schematic  
Figure 6. VEE Interface Schematic  
Rev. B | Page 6 of 13  
 
 
 
 
 
 
 
 
 
Data Sheet  
HMC911  
TYPICAL PERFORMANCE CHARACTERISTICS  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
= 2.6V  
= 3.3V  
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
AC  
AC  
DCN  
DCN  
70  
60  
50  
40  
30  
20  
10  
0
= 3.3V  
CC  
CC  
10GHz  
16GHz  
20GHz  
22GHz  
24GHz  
3.13V  
3.30V  
3.47V  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
DIFFERENTIAL DELAY CONTROL VOLTAGE (V)  
DIFFERENTIAL DELAY CONTROL VOLTAGE (V)  
Figure 14. Normalized Time Delay vs. Differential Delay Control Voltage at  
22 GHz for Various Voltages, Differential Delay Control Voltage Represents  
VDCP − VDCN Voltage on the X-Axis  
Figure 11. Normalized Time Delay vs. Differential Delay Control Voltage,  
Differential Delay Control Voltage Represents VDCP − VDCN Voltage on the X-Axis  
80  
80  
V
V
V
= 2.6V  
AC  
V
V
V
= 2.6V  
AC  
= 3.3V  
DCN  
= 3.3V  
DCN  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
= 3.3V  
CC  
= 3.3V  
CC  
+85°C  
+25°C  
–40°C  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
FREQUENCY (GHz)  
DIFFERENTIAL DELAY CONTROL VOLTAGE (V)  
Figure 15. Time Delay vs. Frequency at VDCP = 2.7 V to 3.9 V with 0.1 V Step  
Figure 12. Normalized Time Delay vs. Differential Delay Control Voltage at  
22 GHz for Various Temperatures, Differential Delay Control Voltage  
Represents VDCP − VDCN Voltage on the X-Axis  
45  
8
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
AC  
AC  
V
V
V
V
V
V
V
– V  
– V  
– V  
– V  
– V  
– V  
– V  
= –0.6V (REFERENCE)  
= –0.4V  
DCP  
DCP  
DCP  
DCP  
DCP  
DCP  
DCP  
DCN  
DCN  
DCN  
DCN  
DCN  
DCN  
DCN  
DCN  
DCN  
40  
35  
30  
25  
20  
15  
10  
5
6
4
= –0.2V  
CC  
CC  
= 0V  
= +0.2V  
= +0.4V  
= +0.6V  
2
0
–2  
–4  
–6  
–8  
V
V
V
V
V
V
V
– V  
– V  
– V  
– V  
– V  
– V  
– V  
= –0.6V  
= –0.4V  
= –0.2V  
= 0V  
= +0.2V  
= +0.4V  
= +0.6V  
DCP  
DCP  
DCP  
DCP  
DCP  
DCP  
DCP  
DCN  
DCN  
DCN  
DCN  
DCN  
DCN  
DCN  
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
FREQUENCY (GHz)  
Figure 13. fIN Power – 2fIN Power vs. Frequency  
Figure 16. Time Delay Error vs. Frequency at Mean Frequency (fMEAN) = 18 GHz  
Rev. B | Page 7 of 13  
 
HMC911  
Data Sheet  
80  
V
80  
75  
70  
65  
60  
55  
50  
= 2.6V  
= 3.3V  
V
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
AC  
AC  
V
V
V
DCN  
DCN  
= 3.3V  
= 3.9V  
CC  
CC  
75  
70  
65  
60  
55  
50  
= 3.9V  
DCP  
DCP  
+85°C  
+25°C  
–40°C  
3.13V  
3.30V  
3.47V  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 17. Programmable Maximum Time Delay vs. Frequency for Various  
Temperatures  
Figure 20. Programmable Maximum Time Delay vs. Frequency for Various  
Voltages  
400  
375  
350  
325  
300  
275  
250  
600  
550  
500  
450  
400  
350  
300  
V
V
f
= 2.6V  
= V  
= 18GHz  
V
V
f
= 2.6V  
= V  
= 18GHz  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
AC  
AC  
225  
250  
= 3.3V  
DCN  
= 3.3V  
DCN  
DCP  
DCP  
IN  
IN  
200  
200  
3.13  
3.30  
SUPPLY VOLTAGE (V)  
3.47  
3.13  
3.30  
SUPPLY VOLTAGE (V)  
3.47  
Figure 18. Single-Ended Output Voltage Swing vs. Supply Voltage for Various  
Temperatures  
Figure 21. DC Current vs. Supply Voltage for Various Temperatures  
450  
600  
550  
500  
450  
400  
350  
300  
V
V
f
= V  
= 3.3V  
= 10GHz  
= 3.3V  
DCP  
DCN  
CC  
400  
350  
300  
250  
200  
150  
100  
50  
IN  
+85°C  
+25°C  
–40°C  
V
V
f
= V  
= 3.3V  
= 10GHz  
= 3.3V  
2.0  
+85°C  
+25°C  
–40°C  
DCP  
DCN  
250  
CC  
IN  
0
1.7  
200  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
1.8  
1.9  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
AMPLITUDE CONTROL VOLTAGE (V)  
AMPLITUDE CONTROL VOLTAGE (V)  
Figure 19. Single-Ended Output Voltage Swing vs. Amplitude Control Voltage  
(VAC) for Various Temperatures  
Figure 22. DC Current vs. Amplitude Control Voltage (VAC) for Various  
Temperatures  
Rev. B | Page 8 of 13  
Data Sheet  
HMC911  
500  
450  
400  
350  
300  
250  
200  
500  
450  
400  
350  
300  
250  
200  
V
V
V
= 2.6V  
V
V
V
= 2.6V  
AC  
AC  
= V  
= 3.3V  
= V  
= 3.3V  
DCP  
DCN  
DCP  
DCN  
= 3.3V  
= 3.3V  
CC  
CC  
+85°C  
+25°C  
–40°C  
5GHz  
14GHz  
22GHz  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
FREQUENCY (GHz)  
DIFFERENTIAL DELAY CONTROL VOLTAGE (V)  
Figure 23. Single-Ended Output Voltage Swing vs. Frequency for Various  
Temperatures  
Figure 26. Single-Ended Output Voltage Swing vs. Differential Delay Control  
Voltage, Differential Control Voltage Represents VDCP − VDCN Voltage on the  
X-Axis  
0.40  
0.40  
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
AC  
AC  
DCN  
DCN  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
CC  
CC  
+85°C  
+25°C  
–40°C  
3.13V  
3.30V  
3.47V  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
DIFFERENTIAL DELAY CONTROL VOLTAGE (V)  
DIFFERENTIAL DELAY CONTROL VOLTAGE (V)  
Figure 24. RMS Jitter vs. Differential Delay Control Voltage at 18 GHz for  
Various Temperatures, Differential Control Voltage Represents VDCP − VDCN  
Voltage on the X-Axis  
Figure 27. RMS Jitter vs. Differential Delay Control Voltage at 18 GHz for  
Various Voltages, Differential Control Voltage Represents VDCP − VDCN Voltage  
on the X-Axis  
18  
18  
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
AC  
AC  
DCN  
DCN  
CC  
CC  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
DIFFERENTIAL DELAY CONTROL VOLTAGE (V)  
DIFFERENTIAL DELAY CONTROL VOLTAGE (V)  
Figure 25. Rise Time vs. Differential Delay Control Voltage, Differential Control  
Voltage Represents VDCP − VDCN Voltage on the X-Axis, Input Data Rate =  
22.5 Gbps, PRBS 233 − 1  
Figure 28. Fall Time vs. Differential Delay Control Voltage, Differential Control  
Voltage Represents VDCP − VDCN Voltage on the X-Axis, Input Data Rate =  
22.5 Gbps, PRBS 233 − 1  
Rev. B | Page 9 of 13  
HMC911  
Data Sheet  
0
0
–5  
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
V
V
V
= 2.6V  
= 3.3V  
= 3.3V  
AC  
INN  
INP  
AC  
QN  
QP  
DCN  
DCN  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
CC  
CC  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0
2
4
6
8
10 12 14 16 18 20 22 24  
FREQUENCY (GHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24  
FREQUENCY (GHz)  
Figure 32. Output Return Loss vs. Frequency,  
Figure 29. Input Return Loss vs. Frequency,  
V
V
= 3.3V  
= 2.6V  
V
V
= 3.3V  
= 2.6V  
CC  
AC  
CC  
AC  
V
V
= 1200mV p-p AT 1800MHz,  
= 50TERMINATED,  
DCP  
V
IS VARIED FROM 2.7V TO 3.3V  
DCP  
DCN  
(50% OF THE WHOLE DELAY RANGE)  
INPUT DATA = SINGLE-ENDED 400mV p-p 16GHz CLOCK SIGNAL  
INPUT DATA = DIFFERENTIAL 400mV p-p, 10Gbps NRZ,  
23  
PRBS 2 – 1 PATTERN  
96.4mV/DIV  
20ps/DIV  
TIME DELAY = 45.2ps  
99.1mV/DIV  
20ps/DIV  
TIME DELAY = 37ps  
Figure 33. Output Eye Diagram Continuous Snapshot for 10 Gbps Input  
Figure 30. Output Eye Diagram Continuous Snapshot for 16 GHz Input  
80  
+85°C  
+25°C  
–40°C  
70  
60  
50  
40  
30  
20  
10  
V
V
= 2.6V  
= 3.3V  
AC  
CC  
0
100M  
1G  
10G  
MODULATION FREQUENCY (Hz)  
Figure 31. Maximum Time Delay vs. Modulation Frequency,  
Input Data Rate = 22.5 Gbps, PRBS 233 – 1, 6 dBm Input Power Applied to  
VDCP and VDCN Terminated to 50 Ω  
Rev. B | Page 10 of 13  
Data Sheet  
HMC911  
APPLICATIONS INFORMATION  
of via holes to connect the top and bottom ground planes.  
EVALUATION PRINTED CIRCUIT BOARD (PCB)  
Mount the evaluation board to an appropriate heat sink. The  
evaluation PCB shown is available from Analog Devices, Inc.,  
upon request.  
Generate the evaluation PCB used in this application with  
proper RF circuit design techniques. Signal lines at the RF port  
must have 50 Ω impedance, and the package ground leads and  
exposed paddle must be connected directly to the ground plane  
similar to what is shown in Figure 34. Use a sufficient number  
Figure 34. 600-00070-00-1 (EVAL01-HMC911LC4B) Evaluation Board  
Bill of Materials  
Table 4.  
Component  
J1 to J4  
J5, J6  
Description  
K connectors  
SMA connectors  
J7, J8  
SMA connectors for through calibration  
DC test points  
TP1 to TP6  
C1, C3 to C6  
C2, C7 to C10  
C9  
C11 to C14  
U1  
1 nF capacitors, 0402 package  
0.1 μF capacitors, 0402 package  
100 nF capacitor, 0402 package  
4.7 μF tantalum capacitors  
HMC911 analog phase shifter  
PCB  
600-00070-00-1 (EVAL01-HMC911LC4B1) evaluation PCB, circuit board material: Rogers 4350 or Arlon 25 FR  
1 Reference this number when ordering the completed evaluation PCB.  
Rev. B | Page 11 of 13  
 
 
 
HMC911  
Data Sheet  
TYPICAL APPLICATION CIRCUIT  
Figure 35 shows the typical application circuit. Note that TP2 goes to ground and is not shown in Figure 35.  
V
CC  
TP6  
C11  
4.7µF  
C2  
0.1µF  
C1  
1nF  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
V
CC  
V
CC  
HMC911  
INP  
J1  
QP  
J3  
AMP  
BUF  
INN  
J2  
QN  
J4  
TEMPERATURE  
COMPENSATION  
AND BIAS  
V
CC  
BUF  
V
CC  
EN  
TP1  
C9  
100nF  
C6  
1nF  
V
EE  
TP3  
C14  
4.7µF  
C10  
0.1µF  
C5  
1nF  
V
TP5  
AC  
C3  
1nF  
C8  
0.1µF  
C12  
4.7µF  
V
EE  
TP4  
C4  
1nF  
C7  
0.1µF  
C13  
4.7µF  
V
V
DCP  
J5  
DCN  
J6  
Figure 35. Typical Application Circuit  
Rev. B | Page 12 of 13  
 
 
Data Sheet  
HMC911  
OUTLINE DIMENSIONS  
4.13  
4.00 SQ  
3.87  
0.36  
0.30  
0.24  
PIN 1  
(0.32 × 0.32)  
PIN 1  
INDICATOR  
19  
24  
18  
1
0.50  
BSC  
EXPOSED  
PAD  
2.50 SQ  
13  
6
7
12  
BOTTOM VIEW  
2.50 REF  
TOP VIEW  
SIDE VIEW  
3.10 BSC  
1.02 MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 36. 24-Terminal Ceramic Leadless Chip [LCC]  
(E-24-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Model1  
Package Body Material Lead Finish  
MSL Rating2 Package Description Option  
HMC911LC4B  
−40°C to +85°C Alumina, White  
−40°C to +85°C Alumina, White  
−40°C to +85°C Alumina, White  
Gold over Nickel MSL3  
Gold over Nickel MSL3  
Gold over Nickel MSL3  
24-Terminal LCC  
24-Terminal LCC  
24-Terminal LCC  
Evaluation Board  
E-24-1  
E-24-1  
E-24-1  
HMC911LC4BTR  
HMC911LC4BTR-R5  
EVAL01-HMC911LC4B  
1 The HMC911LC4B, HMC911LC4BTR, and HMC911LC4BTR-R5 are RoHS Compliant Parts.  
2 See the Absolute Maximum Ratings section for additional information.  
©2014–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14816-0-10/16(B)  
Rev. B | Page 13 of 13  
 
 

相关型号:

HMC911LC4BTR-R5

Broadband Analog Time Delay to 24 GHz
ADI

HMC913

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.6 - 20 GHz
HITTITE

HMC913LC4B

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.6 - 20 GHz
HITTITE

HMC913LC4B

HMC913LC4B
ADI

HMC913LC4BTR

Wide Band Low Power Amplifier,
HITTITE

HMC913LC4BTR

HMC913LC4BTR
ADI

HMC913LC4B_10

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.6 - 20 GHz
HITTITE

HMC913_10

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.6 - 20 GHz
HITTITE

HMC914LP4E

12.5 Gbps LIMITING AMPLIFIER w/ LOSS OF SIGNAL FEATURE
HITTITE

HMC914LP4E

12.5 Gbps Limiting Amplifier SMT, with Loss of Signal Feature
ADI

HMC914LP4ETR

12.5 Gbps Limiting Amplifier SMT, with Loss of Signal Feature
ADI

HMC914LP4TR

IC,APPLICATION SPECIFIC AMPLIFIER,SINGLE,LLCC,24PIN,PLASTIC
ADI