LT4356MPS-3 [ADI]

Surge Stopper with Fault Latchoff;
LT4356MPS-3
型号: LT4356MPS-3
厂家: ADI    ADI
描述:

Surge Stopper with Fault Latchoff

文件: 总24页 (文件大小:631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT4356-3  
Surge Stopper with  
Fault Latchoff  
FEATURES  
DESCRIPTION  
The LT®4356-3 surge stopper protects loads from high  
voltage transients. It regulates the output during an  
overvoltage event, such as load dump in automobiles, by  
controllingthegateofanexternalN-channelMOSFET.The  
output is limited to a safe value thereby allowing the loads  
to continue functioning. The LT4356-3 also monitors the  
n
Stops High Voltage Surges  
n
Adjustable Output Clamp Voltage  
n
Overcurrent Protection  
n
Wide Operation Range: 4V to 80V  
n
Reverse Input Protection to –60V  
n
Low 7µA Shutdown Current  
n
Adjustable Latchoff Fault Timer  
voltage drop between the V and SNS pins to protect  
CC  
n
Controls N-channel MOSFET  
against overcurrent faults. An internal amplifier limits  
the current sense voltage to 50mV. In either fault condi-  
tion, a timer is started inversely proportional to MOSFET  
stress. If the timer expires, the FLT pin pulls low to warn  
of an impending power down. If the condition persists,  
the MOSFET is turned off, until the SHDN pin pulls low  
momentarily.  
n
Shutdown Pin Withstands –60V to 100V  
n
Fault Output Indication  
n
Auxiliary Amplifier for Level Detection Comparator or  
Linear Regulator Controller  
Available in 12-Pin 4mm × 3mm DFN,  
n
10-Pin MSOP, and 16-Pin SO Packages  
The auxiliary amplifier may be used as a voltage detection  
comparator or as a linear regulator controller driving an  
external PNP pass transistor.  
APPLICATIONS  
n
Automotive/Avionic Surge Protection  
n
Hot Swap/Live Insertion  
Back-to-back FETs can be used in lieu of a Schottky diode  
for reverse input protection, reducing voltage drop and  
power loss. The SHDN input turns off the part, including  
the auxiliary amplifier, and reduces the quiescent current  
to less than 7µA.  
n
High Side Switch for Battery Powered Systems  
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
4A, 12V Overvoltage Output Regulator  
Overvoltage Protector Regulates Output at  
27V During Transient  
10mΩ  
IRLR2908  
V
OUT  
V
IN  
12V  
ꢇꢒꢎD  
ꢛ ꢌꢜꢔꢝꢞ  
ꢛ ꢋꢁꢁꢂꢎ  
ꢔꢁꢆ ꢅꢐꢕꢓꢈ ꢖꢓRꢗꢘ  
ꢈꢚR  
10Ω  
102k  
ꢅꢐ  
V
SNS GATE OUT  
FB  
ꢑꢁꢆꢄDꢅꢆ  
CC  
383k  
V
CC  
SHDN  
ꢀꢑꢆ  
ꢀꢑꢆ  
4.99k  
ꢑꢟꢆ ꢎDꢠꢓꢖꢈꢎꢡꢇꢘ ꢙꢇꢎꢚꢕ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
DC-DC  
+
IN  
LT4356DE-3  
ꢒꢓꢈ  
CONVERTER  
ꢑꢁꢆꢄDꢅꢆ  
100k  
EN  
SHDN  
GND  
ꢁNDꢂꢃꢄꢅLTꢀꢆꢂ  
A
FLT  
FꢀꢁLT  
ꢇꢈꢉꢊꢋꢌꢍꢊꢈꢎꢁꢀꢏ  
OUT  
GND  
TMR  
43563 TA01  
0.1µF  
Rev D  
For more information www.analog.com  
1
LT4356-3  
(Notes 1 and 2)  
ABSOLUTE MAXIMUM RATINGS  
V , SHDN ................................................ –60V to 100V  
LT4356H-3......................................... –40°C to 125°C  
LT4356MP-3...................................... –55°C to 125°C  
Storage Temperature Range  
CC  
SNS.............................V – 30V or –60V to V + 0.3V  
CC  
CC  
OUT, A , FLT, EN..................................... –0.3V to 80V  
OUT  
GATE (Note 3) .................................–0.3V to V  
+ 10V  
DE12 .................................................. –65°C to 125°C  
MS, SO .............................................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
OUT  
+
FB, TMR, IN ................................................ –0.3V to 6V  
+
A
OUT  
, EN, FLT, IN .................................................. –3mA  
Operating Temperature Range  
MS, SO .............................................................300°C  
LT4356C-3............................................... 0°C to 70°C  
LT4356I-3 ............................................–40°C to 85°C  
PIN CONFIGURATION  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢐꢎꢙ ꢗꢊꢒꢚ  
ꢀꢑR  
ꢟꢠ  
ꢄꢡ  
ꢐꢓR  
ꢔꢕ  
ꢀꢁ ꢊꢋ  
ꢀꢀ  
ꢀꢂ ꢑꢋD  
ꢡꢉ  
ꢉꢇꢗ ꢏꢘꢌꢙ  
ꢎꢏꢐ  
ꢡꢉ  
ꢁꢢꢀ  
ꢅꢆ  
ꢇꢈꢉ  
ꢀꢑ ꢉꢖR  
ꢎꢏꢐ  
ꢑꢍꢐꢒ  
ꢖꢋꢖ  
ꢊꢎD  
ꢌꢎ  
ꢁꢢꢀ  
ꢋꢈꢀꢅ  
ꢡꢉ  
ꢡꢉ  
ꢀꢆ  
ꢊꢋꢉꢌ  
ꢍꢎꢍ  
ꢒꢋ  
ꢋꢡD  
ꢅꢡ  
FLT  
SHDN  
FLT  
ꢐꢐ  
ꢖꢍ ꢗꢋꢐꢚꢋꢊꢌ  
ꢀꢑꢛꢜꢌꢋD ꢗꢜꢋꢍꢉꢘꢐ ꢖꢍꢇꢗ  
SHDN  
ꢇꢡꢇ  
ꢘꢘ  
FLT  
SHDN  
ꢉꢉ  
ꢟ ꢀꢁꢄꢠꢐꢡ θ ꢟ ꢀꢕꢑꢠꢐꢢꢙ  
ꢝꢋ  
ꢝꢖꢋꢞ  
Dꢒ ꢙꢍꢘꢛꢍꢑꢒ  
ꢀꢁꢜꢝꢒꢍD ꢞꢇꢟꢟ × ꢆꢟꢟꢠ ꢙꢝꢍꢖꢐꢊꢘ Dꢔꢋ  
ꢣ ꢀꢁꢈꢤꢘꢥ θ ꢣ ꢇꢆꢤꢘꢦꢚ  
ꢡꢍ  
ꢒꢢꢙꢎꢖꢒD ꢙꢍD ꢞꢙꢊꢋ ꢀꢆꢠ ꢙꢘꢕ ꢑꢋD ꢘꢎꢋꢋꢒꢘꢐꢊꢎꢋ ꢎꢙꢐꢊꢎꢋꢍꢝ  
ꢇ ꢂꢈꢉꢊꢈꢋꢅ  
ꢌꢍꢎꢏꢅꢈD ꢂꢏꢈꢇꢀꢄꢉ ꢇꢁ  
ꢓ ꢌꢔꢕꢖꢉꢗ θ ꢓ ꢌꢕꢕꢖꢉꢘꢆ  
ꢡꢓꢍꢢ  
ꢐꢑꢈꢒ  
ꢐꢈ  
ORDER INFORMATION  
LEAD FREE FINISH  
LT4356CDE-3#PBF  
LT4356IDE-3#PBF  
LT4356HDE-3#PBF  
LT4356CMS-3#PBF  
LT4356IMS-3#PBF  
LT4356HMS-3#PBF  
LT4356MPMS-3#PBF  
LT4356CS-3#PBF  
LT4356IS-3#PBF  
TAPE AND REEL  
PART MARKING*  
43563  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT4356CDE-3#TRPBF  
LT4356IDE-3#TRPBF  
LT4356HDE-3#TRPBF  
LT4356CMS-3#TRPBF  
LT4356IMS-3#TRPBF  
LT4356HMS-3#TRPBF  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
0°C to 70°C  
43563  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
43563  
LTFFK  
LTFFK  
10-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 125°C  
0°C to 70°C  
LTFFK  
10-Lead Plastic MSOP  
LT4356MPMS-3#TRPBF LTGGZ  
10-Lead Plastic MSOP  
LT4356CS-3#TRPBF  
LT4356IS-3#TRPBF  
LT4356HS-3#TRPBF  
LT4356MPS-3#TRPBF  
LT4356S-3  
16-Lead Plastic SO  
LT4356S-3  
16-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 125°C  
LT4356HS-3#PBF  
LT4356MPS-3#PBF  
LT4356S-3  
16-Lead Plastic SO  
LT4356MPS-3  
16-Lead Plastic SO  
Rev D  
2
For more information www.analog.com  
LT4356-3  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 12V unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
Operating Voltage Range  
Supply Current  
MIN  
TYP  
MAX  
80  
UNITS  
V
l
l
V
4
CC  
I
V
CC  
V
V
= Float  
1
1.5  
mA  
CC  
SHDN  
+
= 0V, IN = 1.3V  
7
7
7
25  
30  
40  
µA  
µA  
µA  
SHDN  
l
l
LT4356C, LT4356I  
LT4356H, LT4356MP  
l
l
I
Reverse Input Current  
V
V
= V = –30V, SHDN Open  
0.3  
0.8  
1
2
mA  
mA  
R
SNS  
SNS  
CC  
= V = V  
= –30V  
CC  
SHDN  
l
l
ΔV  
GATE Pin Output High Voltage  
GATE Pin Pull-Up Current  
V
= 4V; (V  
– V )  
OUT  
4.5  
10  
8
16  
V
V
GATE  
CC  
GATE  
80V ≥ V ≥ 8V; (V  
– V )  
CC  
GATE  
OUT  
l
l
l
I
I
V
V
V
= 12V; V = 12V; LT4356C, LT4356I, LT4356H  
= 12V; V = 12V; LT4356MP  
= 48V; V = 48V  
–4  
–4  
–4.5  
–23  
–23  
–30  
–36  
–38  
–50  
µA  
µA  
µA  
GATE(UP)  
GATE  
GATE  
GATE  
CC  
CC  
CC  
l
l
l
GATE Pin Pull-Down Current  
FB Pin Servo Voltage  
Overvoltage, V = 1.4V, V = 12V  
GATE  
Overcurrent, V – V  
Shutdown Mode, V  
75  
4
1.5  
150  
10  
5
mA  
mA  
mA  
GATE(DN)  
FB  
= 120mV, V  
= 12V  
= 12V  
CC  
SNS  
GATE  
= 0V, V  
SHDN  
GATE  
l
l
V
V
V
= 12V, V  
= 12V, V  
= 12V; LT4356C, LT4356I  
= 12V; LT4356H, LT4356MP  
1.225  
1.215  
1.25  
1.25  
1.275  
1.275  
V
V
FB  
GATE  
GATE  
OUT  
OUT  
l
I
FB Pin Input Current  
V
= 1.25V  
FB  
0.3  
1
µA  
FB  
l
l
l
l
l
l
ΔV  
SNS  
Overcurrent Fault Threshold  
ΔV  
SNS  
ΔV  
SNS  
ΔV  
SNS  
ΔV  
SNS  
ΔV  
SNS  
ΔV  
SNS  
= (V – V ), V = 12V; LT4356C, LT4356I  
45  
42.5  
42.5  
46  
43  
43  
50  
50  
50  
51  
51  
51  
55  
55  
56  
56  
56  
57  
mV  
mV  
mV  
mV  
mV  
mV  
CC  
SNS  
CC  
= (V – V ), V = 12V; LT4356H  
CC  
SNS  
CC  
= (V – V ), V = 12V; LT4356MP  
CC  
SNS  
CC  
= (V – V ), V = 48V; LT4356C, LT4356I  
CC  
SNS  
CC  
= (V – V ), V = 48V; LT4356H  
CC  
SNS  
CC  
= (V – V ), V = 48V; LT4356MP  
CC  
SNS  
CC  
l
l
I
I
SNS Pin Input Current  
V
= V = 12V to 48V  
5
10  
22  
µA  
SNS  
SNS  
CC  
FLT, EN Pins Leakage Current  
FLT, EN = 80V  
A
2.5  
4.5  
µA  
µA  
LEAK  
A
OUT  
Pin Leakage Current  
= 80V  
OUT  
l
l
l
l
l
I
TMR Pin Pull-up Current  
V
TMR  
V
TMR  
V
TMR  
V
TMR  
V
TMR  
= 1V, V = 1.5V, (V – V ) = 0.5V  
–1.5  
–44  
–3.5  
–2.5  
–195  
–2.5  
–50  
–5.5  
–4.5  
–260  
–4  
–56  
–8.5  
–6.5  
–325  
µA  
µA  
µA  
µA  
µA  
TMR  
FB  
CC  
OUT  
= 1V, V = 1.5V, (V – V ) = 75V  
FB  
CC  
OUT  
= 1.3V, V = 1.5V, (V – V ) = 75V  
FB  
CC  
OUT  
= 1V, ΔV  
= 1V, ΔV  
= 60mV, (V – V ) = 0.5V  
SNS  
SNS  
CC OUT  
= 60mV, (V – V ) = 80V  
CC  
OUT  
l
l
l
l
l
TMR Pin Pull-down Current  
TMR Pin Thresholds  
V
= 1V, V = 1V, ΔV = 0V  
SNS  
1.5  
1.22  
80  
2.2  
1.25  
100  
1.25  
0.3  
2.7  
1.28  
120  
1.28  
1
µA  
V
TMR  
FB  
V
FLT From High to Low, V = 5V to 80V  
CC  
TMR  
ΔV  
Early Warning Period  
From FLT going Low to GATE Going Low, V = 5V to 80V  
mV  
V
TMR  
+
CC  
+
V
IN  
IN Pin Threshold  
1.22  
+
+
+
I
IN  
IN Pin Input Current  
V
= 1.25V  
µA  
IN  
l
l
V
OL  
FLT, EN, A  
Pins Output Low  
I
I
= 2mA  
= 0.1mA  
2
300  
8
800  
V
mV  
OUT  
SINK  
SINK  
l
l
l
I
OUT Pin Input Current  
OUT Pin High Threshold  
V
V
V
= V = 12V; LT4356C, LT4356I, LT4356H  
200  
200  
6
300  
310  
14  
µA  
µA  
mA  
OUT  
OUT  
OUT  
OUT  
CC  
= V = 12V; LT4356MP  
CC  
= V = 12V, V  
= 0V  
CC  
SHDN  
l
ΔV  
ΔV  
= V – V ; EN From Low to High  
0.25  
0.5  
0.7  
V
OUT  
OUT  
CC  
OUT  
Rev D  
For more information www.analog.com  
3
LT4356-3  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 12V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
SHDN Pin Threshold  
V
= 12V to 48V  
0.6  
0.4  
1.7  
2.1  
V
V
SHDN  
CC  
l
l
l
V
SHDN Pin Resting Voltage  
SHDN Pin Current  
V
V
= 12V to 48V, Note 4  
0.6  
–1  
2.1  
–8  
V
SHDN(FLT)  
CC  
I
t
= 0V  
–4  
µA  
SHDN  
SHDN  
)
Overcurrent Turn Off Delay Time  
GATE From High to Low, ΔV  
LT4356I, LT4356H  
LT4356MP  
= 0 120mV; LT4356C,  
OFF(OC  
SNS  
l
l
2
2
4
4.5  
µs  
µs  
l
t
Overvoltage Turn Off Delay Time  
GATE From High to Low, V = 0 1.5V  
0.25  
1
µs  
OFF(OV)  
FB  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: An internal clamp limits the GATE pin to a minimum of 10V above  
the OUT pin. Driving this pin to voltages beyond the clamp may damage  
the device.  
Note 4: Resting voltage after turn-on.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to GND unless otherwise  
specified.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at VCC = 12V, TA = 25°C unless otherwise noted.  
ICC vs VCC ICC (Shutdown) vs VCC  
ICC (Shutdown) vs Temperature  
ꢏꢄꢄꢄ  
ꢋꢄꢄ  
ꢊꢄꢄ  
ꢉꢄꢄ  
ꢈꢄꢄ  
ꢒꢋ  
ꢒꢌ  
ꢐꢋ  
ꢐꢌ  
ꢏꢋ  
ꢏꢌ  
ꢌꢄ  
ꢎꢄ  
ꢋꢄ  
ꢊꢄ  
ꢉꢄ  
ꢈꢄ  
ꢏꢄ ꢈꢄ ꢌꢄ ꢉꢄ ꢍꢄ ꢊꢄ ꢐꢄ ꢋꢄ  
ꢂꢀꢃ  
ꢊꢋꢌ ꢊꢐꢋ  
ꢐꢋ  
ꢋꢌ  
ꢕꢋ ꢏꢌꢌ ꢏꢐꢋ  
ꢈꢄ ꢉꢄ ꢊꢄ ꢋꢄ ꢎꢄ ꢌꢄ ꢐꢄ ꢍꢄ  
ꢂꢀꢃ  
ꢁꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢁꢁ  
ꢉꢌꢍꢊꢌ ꢎꢄꢈ  
ꢑꢒꢋꢓꢒ ꢔꢌꢒ  
ꢋꢊꢎꢌꢊ ꢏꢄꢈ  
Rev D  
4
For more information www.analog.com  
LT4356-3  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at VCC = 12V, TA = 25°C unless otherwise noted.  
GATE Pull-Up Current vs  
Temperature  
SHDN Current vs Temperature  
GATE Pull-Up Current vs VCC  
ꢏꢄ  
ꢍꢎ  
ꢍꢄ  
ꢌꢎ  
ꢌꢄ  
ꢋꢎ  
ꢋꢄ  
ꢓꢋ  
ꢓꢌ  
ꢑꢋ  
ꢑꢌ  
ꢐꢋ  
ꢐꢌ  
ꢗ ꢌꢖ  
ꢗ ꢖ  
ꢗ ꢐꢑꢖ  
ꢘꢅꢀ  
SHDN  
ꢎꢄꢀꢁ  
ꢊꢋꢌ ꢊꢐꢋ  
ꢐꢋ  
ꢋꢌ  
ꢕꢋ ꢏꢌꢌ ꢏꢐꢋ  
ꢋꢄ ꢌꢄ ꢍꢄ ꢏꢄ ꢎꢄ ꢐꢄ ꢒꢄ ꢑꢄ  
ꢂꢀꢃ  
ꢊꢋꢌ ꢊꢑꢋ  
ꢑꢋ  
ꢋꢌ  
ꢕꢋ ꢐꢌꢌ ꢐꢑꢋ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢁꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢒꢑꢋꢓꢑ ꢔꢌꢒ  
ꢏꢍꢎꢐꢍ ꢆꢄꢎ  
ꢒꢓꢋꢔꢓ ꢎꢌꢔ  
GATE Pull-Down Current vs  
Temperature  
GATE Pull-Down Current vs  
Temperature  
ΔVGATE vs IGATE  
ꢔꢔꢌ  
ꢔꢌꢌ  
ꢍꢙꢌ  
ꢍꢖꢌ  
ꢍꢕꢌ  
ꢍꢔꢌ  
ꢍꢌꢌ  
12  
10  
8
14  
12  
10  
8
ꢐꢚꢁRꢚꢐꢛꢀꢄꢏꢁ ꢈꢐꢒDꢎꢀꢎꢐꢒ  
ꢞ ꢍꢟꢋꢚ  
OVERCURRENT CONDITION  
∆V = 120mV  
V
= 12V  
OUT  
ꢜꢝ  
SNS  
6
6
4
4
2
2
0
0
ꢊꢋꢌ ꢊꢔꢋ  
ꢔꢋ  
ꢋꢌ  
ꢘꢋ ꢍꢌꢌ ꢍꢔꢋ  
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10 12 14 16  
(µA)  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
TEMPERATURE (°C)  
I
GATE  
ꢕꢗꢋꢖꢗ ꢏꢌꢘ  
43563 G08  
43563 G09  
Overvoltage TMR Current vs  
(VCC – VOUT  
ΔVGATE vs Temperature  
ΔVGATE vs VCC  
)
14  
12  
10  
8
16  
14  
12  
10  
8
ꢑꢍ  
ꢑꢈ  
ꢒꢐ  
ꢐꢑ  
ꢎꢏ  
I
= –1µA  
ꢃꢀꢖRꢀꢃꢗꢅꢌꢔꢖ ꢁꢃꢘDꢉꢅꢉꢃꢘ  
GATE  
T
= 130°C  
A
ꢙ ꢓꢀ  
ꢙ ꢎꢀ  
ꢃꢄꢅ  
ꢅꢊR  
V
CC  
= 8V  
T
= –45°C  
A
T
= 25°C  
A
6
6
V
CC  
= 4V  
4
4
2
2
I
= –1µA  
CC  
GATE  
OUT  
V
= V  
0
0
–50 –25  
0
25  
50  
75 100 125  
0
10 20 30 40 50 60 70 80  
(V)  
ꢎꢈ ꢐꢈ ꢒꢈ ꢑꢈ ꢓꢈ ꢏꢈ ꢕꢈ ꢍꢈ  
ꢂ ꢀ ꢆꢀꢇ  
TEMPERATURE (°C)  
V
ꢁꢁ  
CC  
ꢃꢄꢅ  
43563 G10  
43563 G11  
ꢑꢒꢓꢏꢒ ꢔꢎꢐ  
Rev D  
For more information www.analog.com  
5
LT4356-3  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at VCC = 12V, TA = 25°C unless otherwise noted.  
Warning Period  
TMR Current vs VCC  
TMR Pull-Down Current vs  
Temperature  
Overcurrent TMR Current vs  
(VCC – VOUT  
)
ꢌꢆ  
ꢌꢅ  
ꢌꢄ  
ꢒꢕꢌ  
ꢐꢕꢋ  
ꢐꢕꢌ  
ꢏꢕꢋ  
ꢏꢕꢌ  
ꢌꢕꢋ  
ꢐꢎꢈ  
ꢐꢍꢈ  
ꢐꢈꢈ  
ꢏꢑꢈ  
ꢏꢐꢈ  
ꢎꢈ  
ꢓꢀꢔRꢀꢓꢕꢏꢒꢋꢔꢖ ꢔꢒRꢕꢗ  
ꢘꢒRꢙꢎꢙꢋ ꢚꢔRꢎꢓD  
ꢘ ꢏꢗ  
ꢃꢀꢖRꢁꢄRRꢖꢗꢅ ꢁꢃꢗDꢉꢅꢉꢃꢗ  
ꢀꢂR  
ꢘ ꢈꢀ  
ꢘ ꢏꢀ  
ꢃꢄꢅ  
ꢅꢊR  
ꢛꢜ  
ꢏꢐR  
ꢝ ꢌꢞꢊꢀ  
ꢝ ꢌꢞꢉꢀ  
ꢍꢈ  
ꢌꢄ ꢅꢄ ꢉꢄ ꢆꢄ ꢊꢄ ꢇꢄ ꢍꢄ ꢈꢄ  
ꢂꢀꢃ  
ꢊꢋꢌ ꢊꢐꢋ  
ꢐꢋ  
ꢋꢌ  
ꢖꢋ ꢏꢌꢌ ꢏꢐꢋ  
ꢏꢈ ꢐꢈ ꢒꢈ ꢍꢈ ꢓꢈ ꢑꢈ ꢕꢈ ꢎꢈ  
ꢂ ꢀ ꢆꢀꢇ  
ꢁꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢁꢁ  
ꢃꢄꢅ  
ꢆꢉꢊꢇꢉ ꢋꢌꢆ  
ꢑꢒꢋꢓꢒ ꢔꢏꢋ  
ꢍꢒꢓꢑꢒ ꢔꢏꢒ  
Overvoltage Turn-Off Time vs  
Temperature  
Output Low Voltage vs Current  
ꢒꢎꢉ  
ꢋꢌꢌ  
ꢔꢌꢌ  
ꢕꢌꢌ  
ꢓꢌꢌ  
ꢍꢌꢌ  
ꢏꢙꢁRꢙꢏꢚꢀꢄꢗꢁ ꢈꢏꢛDꢜꢀꢜꢏꢛ  
ꢐꢝ  
ꢞ ꢍꢟꢋꢙ  
ꢐꢎꢑ  
ꢐꢎꢉ  
ꢏꢎꢑ  
ꢏꢎꢉ  
ꢍꢎꢑ  
ꢍꢎꢉ  
ꢉꢎꢑ  
ꢋꢁꢄ  
FLT  
ꢂꢃ  
ꢉꢎꢑ  
ꢍꢎꢉ  
ꢍꢎꢑ  
ꢏꢎꢉ  
ꢏꢎꢑ  
ꢐꢎꢉ  
ꢊꢋꢌ ꢊꢓꢋ  
ꢓꢋ  
ꢋꢌ  
ꢘꢋ ꢍꢌꢌ ꢍꢓꢋ  
ꢀꢁRRꢂꢃꢄ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢒꢐꢑꢓꢐ ꢔꢍꢓ  
ꢔꢕꢋꢖꢕ ꢗꢍꢘ  
Overcurrent Turn-Off Time vs  
Temperature  
Reverse Current vs Reverse  
Voltage  
ꢈꢑꢄ  
ꢈꢉꢊ  
ꢈꢉꢄ  
ꢈꢊ  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
OVERCURRENT CONDITION  
∆V = 120mV  
ꢁꢁ  
ꢒ ꢓꢔꢓ  
SNS  
ꢈꢌꢄ  
–50 –25  
0
25  
50  
75 100 125  
ꢈꢑꢄ  
ꢈꢎꢄ  
ꢈꢋꢄ  
TEMPERATURE (°C)  
ꢁꢁ  
ꢂꢀꢃ  
43563 G18  
ꢌꢍꢊꢎꢍ ꢏꢉꢐ  
Rev D  
6
For more information www.analog.com  
LT4356-3  
PIN FUNCTIONS  
the fault timer current. When the OUT pin voltage reaches  
A
OUT  
(DFNandSOPackagesOnly):AmplifierOutput.Open  
0.7V away from V , the EN pin goes high impedance.  
collector output of the auxiliary amplifier. It is capable of  
sinking up to 2mA from 80V. The negative input of the  
amplifier is internally connected to a 1.25V reference.  
CC  
SHDN: Shutdown Control Input. Pulling the SHDN pin  
low shuts the LTC4356-3 down to a low current mode. All  
functions, including the GATE and the spare amplifier are  
turned off. The SHDN input threshold is similar to a TTL  
input. If the SHDN voltage goes below 2.1V, the voltage  
must go below 0.4V for 100µs to properly shut down the  
part. To turn the part back on, the SHDN voltage must  
transitionfrombelow0.4Vtogreaterthan2.1Vwithaslew  
rate faster than 10V/ms. An internal 7µA current source  
is provided to pull the SHDN pin up. An external pull-up  
device should be used if the leakage current to ground  
might exceed 1µA. After a fault time-out which turns the  
GATE off, the GATE can be restarted by shutting down and  
restarting the part. The SHDN pin can be pulled up to 100V  
or below GND by 60V without damage.  
EN: Open-Collector Enable Output. The EN pin goes high  
impedance when the voltage at the OUT pin is above (V  
– 0.7V), indicating the external MOSFET is fully on. The  
state of the pin is latched until the OUT pin voltage resets  
at below 0.5V and goes back up above 2V. The internal  
NPN is capable of sinking up to 3mA of current from 80V  
to drive an LED or opto-coupler.  
CC  
Exposed Pad: Exposed pad may be left open or connected  
to device ground (GND).  
FB: Voltage Regulator Feedback Input. Connect this pin  
to the center tap of the output resistive divider connected  
between the OUT pin and ground. During an overvoltage  
condition, the GATE pin is servoed to maintain a 1.25V  
threshold at the FB pin. This pin is clamped internally to  
7V. Tie to GND to disable the OV clamp.  
SNS:CurrentSenseInput.Connectthispintotheoutputof  
thecurrentsenseresistor.Thecurrentlimitcircuitcontrols  
the GATE pin to limit the sense voltage between V and  
CC  
FLT: Open-Collector Fault Output. This pin pulls low  
after the voltage at the TMR pin has reached the fault  
threshold of 1.25V. It indicates the pass transistor is  
about to turn off because either the supply voltage has  
stayed at an elevated level for an extended period of  
time (voltage fault) or the device is in an overcurrent  
condition (current fault). The internal NPN is capable of  
sinking up to 3mA of current from 80V to drive an LED or  
opto-coupler.  
SNS pins to 50mV. At the same time the sense amplifier  
also starts a current source to charge up the TMR pin.  
This pin can be pulled below GND by up to 60V, though  
the voltage difference with the V pin must be limited to  
CC  
less than 30V. Connect to V if unused.  
CC  
TMR: Fault Timer Input. Connect a capacitor between this  
pin and ground to set the times for early warning and fault  
periods. The current charging up this pin during fault  
conditions depends on the voltage difference between the  
GATE: N-Channel MOSFET Gate Drive Output. The GATE  
pin is pulled up by an internal charge pump current source  
and clamped to 14V above the OUT pin. Both voltage and  
current amplifiers control the GATE pin to regulate the  
output voltage and limit the current through the MOSFET.  
V
and OUT pins. When V  
reaches 1.25V, the FLT pin  
CC  
TMR  
pulls low to indicate the detection of a fault condition. If  
the condition persists, the pass transistor turns off when  
V
TMR  
reachesthethresholdof1.35V.TheGATEpinremains  
low even after the fault condition has disappeared and the  
voltage at the TMR pin has reached 0.5V. A minimum of  
10nF capacitor is needed to compensate the loop. A 10V  
GND: Device Ground.  
+
IN (DFN and SO Packages Only): Positive Input of the  
rated X7R capacitor is recommended for C  
.
TMR  
Auxiliary Amplifier. This amplifier can be used as a level  
detection comparator with external hysteresis or linear  
regulator controlling an external PNP transistor. This pin  
is clamped internally to 7V. Connect to ground if unused.  
V : Positive Supply Voltage Input. The positive supply  
CC  
input ranges from 4V to 80V for normal operation. It  
can also be pulled below ground potential by up to 60V  
during a reverse battery condition, without damaging the  
part. The supply current is reduced to 7µA with all the  
OUT: Output Voltage Sense Input. This pin senses the  
voltage at the source of the N-channel MOSFET and sets  
functional blocks off.  
Rev D  
For more information www.analog.com  
7
LT4356-3  
BLOCK DIAGRAM  
ꢃꢃ  
ꢗꢅꢗ  
ꢙꢆꢘꢎ  
ꢛꢇꢘ  
ꢃꢞꢆRꢙꢎ  
ꢌꢇꢋꢌ  
ꢟ ꢠ ꢑꢒꢓꢡꢞꢢ  
ꢏꢚꢂ  
ꢒꢓꢔꢂ  
ꢑꢓꢕꢆ  
ꢍꢝ  
ꢃꢃ  
ꢂꢆ  
ꢄꢆ  
ꢏꢐꢑꢒꢂ  
ꢣꢕꢆ  
SHDN  
FLT  
ꢛꢇꢘ  
ꢛꢃ  
ꢛꢇꢘ  
ꢛꢂ  
ꢏꢐꢑꢒꢂ  
SHDN  
ꢎꢅ  
ꢃꢛꢅꢘRꢛꢉ  
ꢉꢛꢙꢄꢃ  
ꢆꢇꢈꢄꢉꢄꢆRꢊ  
ꢆꢋꢌꢉꢄꢍꢄꢎR  
ꢙꢆꢘꢎꢛꢍꢍ ꢍꢉꢘ  
ꢄꢅ  
ꢏꢐꢖꢒꢂ  
ꢃꢃ  
ꢓꢐꢒꢂ  
ꢘꢋR  
ꢑꢕꢆ  
ꢏꢐꢑꢒꢂ  
ꢘꢋR  
ꢙꢅD  
ꢚꢖꢒꢜꢖ ꢝD  
Rev D  
8
For more information www.analog.com  
LT4356-3  
OPERATION  
Some power systems must cope with high voltage surges  
of short duration such as those in automobiles. Load  
circuitry must be protected from these transients, yet  
high availability systems must continue operating during  
these events.  
the part for more than 100µs before powering it back up,  
or second, pull the SHDN below 0.4V for more than 100µs  
then pull SHDN high with a slew rate higher than 10V/ms.  
The potential at the TMR pin starts decreasing as soon  
as the output voltage is not being servoed, indicating the  
overvoltage condition has disappeared, but the GATE  
pin remains low even when the voltage at the TMR pin  
reaches 0.5V.  
The LT4356-3 is an overvoltage protection regulator that  
drives an external N-channel MOSFET as the pass transis-  
tor. It operates from a wide supply voltage range of 4V to  
80V. It can also be pulled below ground potential by up  
to 60V without damage. The low power supply require-  
ment of 4V allows it to operate even during cold cranking  
conditionsinautomotiveapplications. Theinternalcharge  
pump turns on the N-channel MOSFET to supply current  
to the loads with very little power loss. Two MOSFETs can  
be connected back to back to replace an inline Schottky  
diode for reverse input protection. This improves the ef-  
ficiency and increases the available supply voltage level  
to the load circuitry during cold crank.  
The fault timer allows the load to continue functioning  
duringshorttransienteventswhileprotectingtheMOSFET  
from being damaged by a long period of supply overvolt-  
age, such as a load dump in automobiles. The timerperiod  
varieswiththevoltageacrosstheMOSFET.Ahighervoltage  
corresponds to a shorter fault timer period, ensuring the  
MOSFET operates within its safe operating area (SOA).  
TheLT4356-3sensesanovercurrentconditionbymonitor-  
ing the voltage across an optional sense resistor placed  
between the V and SNS pins. An active current limit  
CC  
Normally, the pass transistor is fully on, powering the  
loads with very little voltage drop. When the supply volt-  
age surges too high, the voltage amplifier (VA) controls  
the gate of the MOSFET and regulates the voltage at the  
source pin to a level that is set by the external resistive  
divider from the OUT pin to ground and the internal 1.25V  
reference. A current source starts charging up the capaci-  
tor connected at the TMR pin to ground. If the voltage at  
circuit (IA) controls the GATE pin to limit the sense volt-  
age to 50mV. A current is also generated to start charging  
up the TMR pin. This current is about 5 times the current  
generated during an overvoltage event. The FLT pin pulls  
low when the voltage at the TMR pin reaches 1.25V and  
the MOSFET is turned off when it reaches 1.35V.  
An auxiliary amplifier is provided with the negative input  
connected to an internal 1.25V reference. The output pull  
down device is capable of sinking up to 2mA of current  
allowing it to drive an LED or opto coupler. This amplifier  
can be configured as a linear regulator controller driving  
an external PNP transistor or a comparator function to  
monitor voltages.  
the TMR pin, V  
, reaches 1.25V, the FLT pin pulls low  
TMR  
to indicate impending turn-off due to the overvoltage  
condition. The pass transistor stays on until the TMR  
pin reaches 1.35V, at which point the GATE pin pulls low  
turning off the MOSFET. The GATE pin stays latched off  
until it is cleared by one of two ways. First, power down  
The SHDN pin turns off the pass transistor and reduces  
the supply current to less than 7µA.  
Rev D  
For more information www.analog.com  
9
LT4356-3  
APPLICATIONS INFORMATION  
The LT4356-3 can limit the voltage and current to the load  
circuitry during supply transients or overcurrent events.  
The total fault timer period should be set to ride through  
short overvoltage transients while not causing damage  
to the pass transistor. The selection of this N-channel  
MOSFET pass transistor is critical for this application.  
It must stay on and provide a low impedance path from  
the input supply to the load during normal operation and  
then dissipate power during overvoltage or overcurrent  
conditions.  
Overcurrent Fault  
The LT4356-3 features an adjustable current limit that  
protects against short circuits or excessive load current.  
During an overcurrent event, the GATE pin is regulated to  
limit the current sense voltage across the V and SNS  
pins to 50mV.  
CC  
Anovercurrentfaultoccurswhenthecurrentlimitcircuitry  
has been engaged for longer than the time-out delay set  
by the timer capacitor. The GATE pin is then immediately  
pulled low by a 10mA current to GND turning off the  
MOSFET. The GATE pin stays low until the SHDN pin is  
pulled low for at least 100µs and pulled high with a slew  
rate faster than 10V/ms.  
The following sections describe the overcurrent and the  
overvoltage faults, and the selection of the timer capacitor  
value based on the required warning time. The selection  
of the N-channel MOSFET pass transistor is discussed  
next. Auxiliary amplifier, reverse input, and the shutdown  
functionsarecoveredaftertheMOSFETselection.External  
component selection is discussed in detail in the Design  
Example section.  
Fault Timer  
The LT4356-3 includes an adjustable fault timer pin. Con-  
necting a capacitor from the TMR pin to ground sets the  
delay timer period before the MOSFET is turned off. The  
same capacitor also sets the cool down period before the  
MOSFETisallowedtoturnbackonafterthefaultcondition  
has disappeared.  
Overvoltage Fault  
The LT4356-3 limits the voltage at the OUT pin during an  
overvoltage situation. An internal voltage amplifier regu-  
lates the GATE pin voltage to maintain a 1.25V threshold at  
the FB pin. During this period of time, the power MOSFET  
is still on and continues to supply current to the load. This  
allows uninterrupted operation during short overvoltage  
transient events.  
Once a fault condition, either overvoltage or overcurrent,  
is detected, a current source charges up the TMR pin. The  
current level varies depending on the voltage drop across  
thedrainandsourceterminalsofthepowerMOSFET(V ),  
which is typically from the V pin to the OUT pin. This  
scheme takes better advantage of the available Safe Oper-  
ating Area (SOA) of the MOSFET than would a fixed timer  
current. The timer function operates down to V = 5V  
across the whole temperature range.  
DS  
CC  
When the voltage regulation loop is engaged for longer  
than the time-out period, set by the timer capacitor con-  
nected from the TMR pin to ground, an overvoltage fault  
is detected. The GATE pin is pulled down to the OUT pin by  
a 150mA current. This prevents the power MOSFET from  
being damaged during a long period of overvoltage, such  
as during load dump in automobiles. Pulling the SHDN  
pin low for at least 100µs and pulled high with a slew rate  
faster than 10V/ms will allow the GATE pin to pull back up.  
CC  
Rev D  
10  
For more information www.analog.com  
LT4356-3  
APPLICATIONS INFORMATION  
Fault Timer Current  
When the voltage at the TMR pin, V  
, reaches the 1.25V  
TMR  
threshold, the FLT pin pulls low to indicate the detection  
of a fault condition and provide warning to the load of  
the impending power loss. In the case of an overvoltage  
fault, the timer current then switches to a fixed 5µA. The  
interval between FLT asserting low and the MOSFET turn-  
ing off is given by:  
The timer current starts at around 2µA with 0.5V or less  
of V , increasing linearly to 50µA with 75V of V dur-  
DS  
DS  
ing an overvoltage fault (Figure 1). During an overcurrent  
fault, it starts at 4µA with 0.5V or less of V but increases  
DS  
to 260µA with 80V across the MOSFET (Figure 2). This  
arrangement allows the pass transistor to turn off faster  
duringanovercurrentevent,sincemorepowerisdissipated  
during this condition. Refer to the Typical Performance  
Characteristics section for the timer current at different  
C
• 100mV  
5µA  
TMR  
t
=
WARNING  
V
in both overvoltage and overcurrent events.  
DS  
ꢃꢏRꢜꢛꢝ  
ꢄ ꢆꢊꢌ  
ꢄ ꢆꢊꢌ  
ꢃꢏR  
ꢃꢏR  
ꢅꢙꢘꢆ  
ꢅꢙꢕꢆ  
ꢃꢏR  
ꢄ ꢚꢆꢛ  
ꢄ ꢆꢖꢊꢌꢝ  
Dꢞ  
ꢜꢎ  
ꢃꢏR  
ꢄ ꢅꢖꢛ  
ꢄ ꢟꢊꢌꢝ  
Dꢞ  
ꢜꢎ  
ꢖꢙꢆꢖ  
ꢃꢎꢏꢐ  
ꢒꢌRꢓꢎꢓꢔ  
ꢄ ꢕꢖꢇꢈꢉꢊꢁ  
ꢁꢂꢃ  
ꢄ ꢅꢆꢇꢈꢉꢊꢁ  
ꢄ ꢗꢘꢙꢚꢆꢇꢈꢉꢊꢁ  
ꢒꢌRꢓꢎꢓꢔ  
ꢄ ꢕꢖꢇꢈꢉꢊꢁ  
ꢁꢂꢃ  
ꢃꢋꢃꢌꢂ ꢁꢌꢍꢂꢃ ꢃꢎꢏꢐR ꢄ ꢀ ꢑ ꢀ  
ꢠꢘꢆꢡꢘ ꢁꢖꢅ  
ꢁꢂꢃ ꢒꢌRꢓꢎꢓꢔ  
Figure 1. Overvoltage Fault Timer Current  
ꢃꢐRꢜꢛꢝ  
ꢖꢆꢘꢟ  
ꢖꢆꢅꢟ  
ꢃꢐR  
ꢄ ꢇꢚꢛ  
Dꢞ  
ꢃꢐR  
ꢄ ꢖꢚꢛ  
ꢄ ꢘꢟꢋꢍꢝ  
ꢜꢏ  
ꢄ ꢅꢙꢚꢋꢍꢝ  
Dꢞ  
ꢜꢏ  
ꢚꢆꢟꢚ  
ꢃꢏꢐꢑ  
ꢓꢍRꢔꢏꢔꢕ  
ꢄ ꢚꢆꢘꢇꢈꢉꢊꢋꢁ  
ꢁꢂꢃ  
ꢄ ꢅꢆꢇꢇꢈꢉꢊꢋꢁ  
ꢄ ꢅꢖꢆꢗꢘꢈꢉꢊꢋꢁ  
ꢁꢂꢃ  
ꢓꢍRꢔꢏꢔꢕ  
ꢗꢘꢟꢙꢘ ꢁꢚꢅ  
ꢄ ꢅꢆꢇꢙꢈꢉꢊꢋꢁ  
ꢃꢌꢃꢍꢂ ꢁꢍꢎꢂꢃ ꢃꢏꢐꢑR ꢄ ꢀ ꢒ ꢀ  
ꢁꢂꢃ ꢓꢍRꢔꢏꢔꢕ  
Figure 2. Overcurrent Fault Timer Current  
Rev D  
For more information www.analog.com  
11  
LT4356-3  
APPLICATIONS INFORMATION  
The SOA of the MOSFET must encompass all fault condi-  
tions. In normal operation the pass transistor is fully on,  
dissipating very little power. But during either overvoltage  
or overcurrent faults, the GATE pin is servoed to regu-  
late either the output voltage or the current through the  
MOSFET. Large current and high voltage drop across the  
MOSFET can coexist in these cases. The SOA curves of  
the MOSFET must be considered carefully along with the  
selection of the fault timer capacitor.  
This fixed early warning period allows time for the system  
to perform necessary backup or house-keeping functions  
before power is cut off. When V  
crosses the 1.35V  
TMR  
threshold, the GATE pin pulls low immediately and turns  
off the MOSFET. Note that during an overcurrent event the  
timer current is not reduced to 5µA when V  
reaches  
TMR  
1.25V,sinceitwouldlengthentheoverallfaulttimerperiod  
and cause additional MOSFET stress. After the GATE pin  
pulls low due to a fault time out, the LT4356-3 latches off.  
Allow sufficient time for the TMR pin to discharge to 0.5V  
(typical discharge current is 2.2µA) and for the MOSFET  
to cool before attempting to reset the part. To reset, pull  
the SHDN pin low for at least 100µs, then pull high with  
a slew rate of at least 10V/ms.  
Transient Stress in the MOSFET  
During an overvoltage event, the LT4356-3 drives a series  
passMOSFETtoregulatetheoutputvoltageatanacceptable  
level.Theloadcircuitrymaycontinueoperatingthroughout  
this interval, but only at the expense of dissipation in the  
MOSFET pass device. MOSFET dissipation or stress is a  
function of the input voltage waveform, regulation voltage  
and load current. The MOSFET must be sized to survive  
this stress.  
MOSFET Selection  
TheLT4356-3drivesanN-channelMOSFETtoconductthe  
load current. The important features of the MOSFET are  
on-resistanceR  
(BR)DSS  
,themaximumdrain-sourcevoltage  
DS(ON)  
V
, the threshold voltage, and the SOA.  
Most transient event specifications use the model shown  
in Figure 3. The idealized waveform comprises a linear  
The maximum allowable drain-source voltage must be  
higher than the supply voltage. If the output is shorted  
to ground or during an overvoltage event, the full supply  
voltage will appear across the MOSFET.  
ramp of rise time t , reaching a peak voltage of V and  
r
PK  
exponentially decaying back to V with a time constant  
IN  
of t. A common automotive transient specification has  
constants of t = 10µs, V = 80V and t = 1ms. A surge  
r
PK  
The gate drive for the MOSFET is guaranteed to be more  
conditionknownasloaddumphasconstantsoft = 5ms,  
r
than10Vandlessthan16VforthoseapplicationswithV  
CC  
V
PK  
= 60V and t = 200ms.  
higher than 8V. This allows the use of standard threshold  
voltage N-channel MOSFETs. For systems with V less  
CC  
than 8V, a logic level MOSFET is required since the gate  
drive can be as low as 4.5V.  
ꢁꢂ  
τ
ꢃꢄ  
ꢅꢆꢇꢈꢆ ꢉꢊꢆ  
Figure 3. Prototypical Transient Waveform  
Rev D  
12  
For more information www.analog.com  
LT4356-3  
APPLICATIONS INFORMATION  
MOSFET stress is the result of power dissipated within  
the device. For long duration surges of 100ms or more,  
stress is increasingly dominated by heat transfer; this is  
a matter of device packaging and mounting, and heat sink  
thermal mass. This is analyzed by simulation, using the  
MOSFET thermal model.  
ꢁꢂ  
τ
Rꢋꢌ  
ꢃꢄ  
Forshortdurationtransientsoflessthan100ms, MOSFET  
survival is increasingly a matter of safe operating area  
(SOA), an intrinsic property of the MOSFET. SOA quanti-  
ꢅꢆꢇꢈꢆ ꢉꢊꢅ  
Figure 4. Safe Operating Area Required to Survive Prototypical  
Transient Waveform  
fies the time required at any given condition of V and  
DS  
I to raise the junction temperature of the MOSFET to its  
D
Typically V  
≈ V and t >> t simplifying the above to  
IN r  
REG  
rated maximum. MOSFET SOA is expressed in units of  
2
watt-squared-seconds(P t).Thisfigureisessentiallycon-  
1
P2t = ILOAD2 (VPK – VREG)2 τ  
(W2s)  
stant for intervals of less than 100ms for any given device  
type, and rises to infinity under DC operating conditions.  
Destruction mechanisms other than bulk die temperature  
2
For the transient conditions of V = 80V, V = 12V, V  
REG  
PK  
IN  
= 16V, t = 10µs and t = 1ms, and a load current of 3A,  
distort the lines of an accurately drawn SOA graph so that  
r
2
2
2
P t is 18.4W s—easily handled by a MOSFET in a D-pak  
P t is not the same for all combinations of I and V .  
D
DS  
2
2
package.TheP tofothertransientwaveshapesisevaluated  
In particular P t tends to degrade as V approaches the  
DS  
by integrating the square of MOSFET power versus time.  
maximum rating, rendering some devices useless for  
absorbing energy above a certain voltage.  
Calculating Short-Circuit Stress  
Calculating Transient Stress  
SOAstressmustalsobecalculatedforshort-circuitcondi-  
2
tions. Short-circuit P t is given by:  
To select a MOSFET suitable for any given application, the  
SOA stress must be calculated for each input transient  
whichshallnotinterruptoperation.Itisthenasimplematter  
to chose a device which has adequate SOA to survive the  
maximumcalculatedstress.P tforaprototypicaltransient  
waveform is calculated as follows (Figure 4).  
2
2
2
P t = (V ΔV /R ) • t  
(W s)  
IN  
SNS SNS  
TMR  
where, ΔV  
is the SENSE pin threshold, and t  
is the  
TMR  
SNS  
2
overcurrent timer interval.  
For V = 14.7V, V  
= 50mV, R  
= 12mΩ and C  
SNS TMR  
IN  
SNS  
2
2
= 100nF, P t is 6.6W s—less than the transient SOA  
calculated in the previous example. Nevertheless, to  
accountforcircuittolerancesthisfigureshouldbedoubled  
Let  
a = V  
– V  
IN  
IN  
REG  
b = V – V  
2
PK  
to 13.2W s.  
(V = Nominal Input Voltage)  
IN  
Limiting Inrush Current and GATE Pin Compensation  
Then  
The LT4356-3 limits the inrush current to any load capaci-  
tance by controlling the GATE pin voltage slew rate. An  
external capacitor can be connected from GATE to ground  
to slow down the inrush current further at the expense of  
slower turn-off time. The gate capacitor is set at:  
1 (b a)3  
tr  
2
P2t=ILOAD  
+
3
b
1
2
b
2a2 ln +3a2 +b2 4ab  
a
I
GATE(UP)  
C1 =  
•C  
L
I
INRUSH  
Rev D  
For more information www.analog.com  
13  
LT4356-3  
APPLICATIONS INFORMATION  
R
LIM  
The LT4356-3 does not need extra compensation compo-  
nents at the GATE pin for stability during an overvoltage  
or overcurrent event. However, with fast, high voltage  
transientstepsattheinput, agatecapacitor, C1, toground  
is needed to prevent turn-on of the N-channel MOSFET.  
2N2905A OR  
BCP53  
*4.7Ω  
2.5V OUTPUT  
≈ 150mA MAX  
INPUT  
10µF  
R6  
100k  
*OPTIONAL FOR  
CURRENT LIMIT  
D1*  
BAV99  
R4 + R5  
R5  
11  
V
I
= 1.25  
0.7  
OUT  
The extra gate capacitance slows down the turn off time  
during fault conditions and may allow excessive current  
during an output short event. An extra resistor, R1, in  
series with the gate capacitor can improve the turn off  
time. A diode, D1, should be placed across R1 with the  
cathode connected to C1 as shown in Figure 5.  
R4  
A
OUT  
47nF  
249k  
LT4356DE-3  
LIM  
R
12  
LIM  
+
IN  
R5  
249k  
43563 F06  
Figure 6. Auxiliary LDO Output with Optional Current Limit  
ꢎꢁ  
tions. This diode causes extra power loss, generates heat,  
and reduces the available supply voltage range. During  
cold crank, the extra voltage drop across the diode is  
particularly undesirable.  
Dꢁ  
ꢏꢐꢃꢁꢃꢑꢒ  
Rꢂ  
Rꢁ  
ꢀꢁ  
The LT4356-3 is designed to withstand reverse voltage  
ꢋꢌꢉꢍ  
without damage to itself or the load. The V , SNS, and  
CC  
SHDN pins can withstand up to 60V of DC voltage below  
the GND potential. Back-to-back MOSFETs must be used  
to eliminate the current path through their body diodes  
(Figure 7). Figure 8 shows the approach with a P-Channel  
MOSFET in place of Q2.  
ꢈꢉꢃꢂꢄꢅꢊꢂ  
ꢃꢂꢄꢅꢂ ꢆꢇꢄ  
Figure 5.  
Auxiliary Amplifier  
An uncommitted amplifier is included in the LT4356-3 to  
provide flexibility in the system design. With the negative  
input connected internally to the 1.25V reference, the  
amplifier can be connected as a level detect comparator  
with external hysteresis. The open collector output pin,  
R
M2  
M1  
SNS  
10mΩ  
IRLR2908  
IRLR2908  
V
V
OUT  
IN  
12V  
12V, 3A  
CLAMPED  
AT 16V  
D2*  
SMAJ58CA  
R4  
10Ω  
R3  
R5  
Q3  
2N3904  
10Ω  
1M  
R1  
59k  
A
, is capable of driving an opto or LED. It can also  
OUT  
D1  
interface with the system via a pull-up resistor to a supply  
voltage up to 80V.  
R7  
1N4148  
10k  
5
4
3
SNS  
GATE OUT  
FB  
The amplifier can also be configured as a low dropout  
linearregulatorcontroller.WithanexternalPNPtransistor,  
such as 2N2905A, it can supply up to 100mA of current  
with only a few hundred mV of dropout voltage. Current  
limit can be easily included by adding two diodes and one  
resistor (Figure 6). The amplifier is turned off when the  
LT4356-3 is shut down.  
6
2
V
CC  
R2  
4.99k  
LT4356DE-3  
7
11  
12  
SHDN  
8
9
A
OUT  
FLT  
+
IN  
EN  
43563 F07  
GND  
10  
TMR  
1
C
TMR  
0.1µF  
*DIODES INC.  
Reverse Input Protection  
A blocking diode is commonly employed when reverse  
input potential is possible, such as in automotive applica-  
Figure 7. Overvoltage Regulator with N-channel MOSFET  
Reverse Input Protection  
Rev D  
14  
For more information www.analog.com  
LT4356-3  
APPLICATIONS INFORMATION  
R
Shutdown  
M2  
Si4435  
M1  
IRLR2908  
SNS  
10mΩ  
V
V
OUT  
IN  
12V  
D2*  
SMAJ58CA  
12V, 3A  
CLAMPED  
AT 16V  
The LT4356-3 can be shut down to a low current mode  
whenthevoltageattheSHDNpingoesbelowtheshutdown  
threshold of 0.4V. The quiescent current drops to 7µA. All  
functions are turned off including the auxiliary amplifier.  
D1  
1N5245  
15V  
R3  
R6  
10k  
R1  
59k  
10Ω  
5
4
3
After the GATE pin pulls low due to a fault time out, the  
LT4356-3 latches off. Allow sufficient time for the TMR  
pin to discharge to 0.5V (typical discharge current is  
2.2µA) and for the MOSFET to cool before attempting to  
reset the part. To reset, pull the SHDN pin low for at least  
100µs, then pull high with a slew rate of at least 10V/ms.  
SNS  
GATE OUT  
6
2
V
FB  
CC  
R2  
4.99k  
LT4356DE-3  
7
11  
12  
SHDN  
8
9
A
FLT  
OUT  
The SHDN pin can be pulled up to V or below GND by  
CC  
+
IN  
EN  
up to 60V without damaging the pin. Leaving the pin open  
allows an internal current source to pull it up and turn  
on the part while clamping the pin to 2.5V. The leakage  
current at the pin should be limited to no more than 1µA  
if no pull up device is used to help turn it on.  
GND  
10  
TMR  
1
43563 F08  
C
TMR  
0.1µF  
*DIODES INC.  
Figure 8. Overvoltage Regulator with P-Channel MOSFET  
Reverse Input Protection  
Supply Transient Protection  
R
M1  
SNS  
The LT4356-3 is 100% tested and guaranteed to be safe  
fromdamagewithsupplyvoltagesupto80V.Nevertheless,  
voltagetransientsabove100Vmaycausepermanentdam-  
age. During a short-circuit condition, the large change in  
currentflowingthroughpowersupplytracesandassociated  
wiring can cause inductive voltage transients which could  
exceed100V.Tominimizethevoltagetransients,thepower  
trace parasitic inductance should be minimized by using  
wide traces. A small surge suppressor, D2, in Figure 9,  
at the input will clamp the voltage spikes.  
10mΩ  
IRLR2908  
V
IN  
C *  
L
D2  
SMAJ58A  
22µF  
R3  
10Ω  
4
R1  
59k  
5
3
SNS GATE OUT  
6
V
CC  
2
FB  
R4  
383k  
7
V
CC  
SHDN  
R2  
4.99k  
12  
DC-DC  
CONVERTER  
+
IN  
LT4356DE-3  
R5  
100k  
9
8
EN  
SHDN  
GND  
A total bulk capacitance of at least 22µF low ESR is re-  
quired close to the source pin of MOSFET Q1. In addition,  
the bulk capacitance should be at least 10 times larger  
than the total ceramic bypassing capacitor on the input  
of the DC/DC converter.  
11  
ꢁNDꢂꢃꢄꢅLTꢀꢆꢂ  
A
OUT  
FLT  
FꢀꢁLT  
GND  
10  
TMR  
43563 F09  
1
*SANYO 25CE22GA  
C
47nF  
TMR  
Figure 9. Overvoltage Regulator with Low-Battery Detection  
Rev D  
For more information www.analog.com  
15  
LT4356-3  
APPLICATIONS INFORMATION  
Layout Considerations  
1.25V  
R2 =  
= 5kΩ  
To achieve accurate current sensing, Kelvin connection  
to the current sense resistor (R  
250µA  
in Figure 9) is recom-  
SNS  
Choose 4.99kΩ for R2.  
16V – 1.25V • R2  
mended. The minimum trace width for 1oz copper foil is  
0.02" per amp to ensure the trace stays at a reasonable  
temperature. 0.03" per amp or wider is recommended.  
Note that 1oz copper exhibits a sheet resistance of about  
530µΩ/square.Smallresistancescancauselargeerrorsin  
highcurrentapplications.Noiseimmunitywillbeimproved  
significantly by locating resistive dividers close to the pins  
(
)
R1 =  
= 58.88kΩ  
1.25V  
The closest standard value for R1 is 59kΩ.  
Next calculate the sense resistor, R , value:  
SNS  
with short V and GND traces.  
CC  
50mV  
50mV  
5A  
R
=
=
= 10mΩ  
SNS  
I
LIM  
Design Example  
As a design example, take an application with the follow-  
C
is then chosen for 1ms of early warning time:  
TMR  
ing specifications: V = 8V to 14V DC with transient up  
CC  
1ms • 5µA  
to 80V, V  
≤ 16V, current limit (I ) at 5A, low battery  
C
=
= 50nF  
OUT  
LIM  
TMR  
100mV  
detection at 6V, and 1ms of overvoltage early warning  
(Figure 9).  
The closest standard value for C  
is 47nF.  
TMR  
First, calculate the resistive divider value to limit V  
16V during an overvoltage event:  
to  
OUT  
Finally, calculate R4 and R5 for the 6V low battery thresh-  
old detection:  
1.25V • R1 + R2  
(
)
1.25V • R4 + R5  
(
)
V
=
= 16V  
REG  
6V =  
R2  
R5  
Set the current through R1 and R2 during the overvoltage  
condition to 250µA.  
Choose 100kΩ for R5.  
6V – 1.25V • R5  
(
)
R4 =  
= 380kΩ  
1.25V  
Select 383kΩ for R4.  
The pass transistor, Q1, should be chosen to withstand  
the output short condition with V = 14V.  
CC  
The total overcurrent fault time is:  
47nF • 0.85V  
t
=
= 0.878ms  
OC  
45.5µA  
The power dissipation on Q1 equals to:  
14V • 50mV  
P =  
= 70W  
10mΩ  
These conditions are well within the Safe Operating Area  
of IRLR2908.  
Rev D  
16  
For more information www.analog.com  
LT4356-3  
TYPICAL APPLICATIONS  
Wide Input Range 5V to 28V Hot Swap with Undervoltage Lockout  
24V Overvoltage Regulator Withstands 150V at VIN  
R
M1  
M1  
SNS  
0.02Ω  
IRF640  
SUD50N03-10  
V
V
OUT  
CLAMPED AT 32V  
IN  
V
V
OUT  
IN  
24V  
R9  
1k  
1W  
R1  
118k  
100µF  
R6  
118k  
R3  
10Ω  
R3  
10Ω  
5
SNS  
4
3
OUT  
C1  
47nF  
V
SNS GATE OUT  
FB  
GATE  
CC  
6
2
SHDN  
V
CC  
FB  
D2*  
R2  
4.99k  
A
OUT  
+
SMAT70A  
IN  
LT4356DE-3  
LT4356DE-3  
7
8
9
R7  
49.9k  
SHDN  
FLT  
FLT  
EN  
GND  
TMR  
43563 TA02  
EN  
GND  
10  
TMR  
1
C
TMR  
43563 TA03  
1µF  
C
TMR  
0.1µF  
*DIODES INC.  
Overvoltage Regulator with Low Battery Detection and Output Keep Alive During Shutdown  
1k  
0.5W  
R
SNS  
M1  
IRLR2908  
V
10mΩ  
OUT  
V
IN  
12V, 4A  
12V  
CLAMPED AT 16V  
D2*  
SMAJ58A  
R3  
D1  
10Ω  
M2  
1N4746A  
18V  
VN2222  
R4  
402k  
1W  
5
SNS  
4
3
OUT  
R1  
294k  
GATE  
6
V
2
CC  
FB  
R2  
24.9k  
V
DD  
R6  
LT4356DE-3  
47k  
12  
7
11  
8
+
IN  
A
Lꢀꢁ  
THRESHOLD = 6V  
OUT  
R5  
105k  
SHDN  
FLT  
9
EN  
GND  
10  
TMR  
1
*DIODES INC.  
43563 TA04  
C
TMR  
0.1µF  
Rev D  
For more information www.analog.com  
17  
LT4356-3  
TYPICAL APPLICATIONS  
2.5A, 48V Hot Swap with Overvoltage Output Regulation at 72V and UV Shutdown at 35V  
R
M1  
FDB3632  
SNS  
15mΩ  
V
V
OUT  
IN  
48V  
48V  
2.5A  
R4  
140k  
R6  
100k  
D2*  
SMAT70A  
R3  
10Ω  
C
L
300µF  
C1  
6.8nF  
6
5
4
3
OUT  
D1  
1N4714  
BV = 33V  
V
SNS GATE  
R7  
CC  
1M  
12  
2
+
IN  
7
SHDN  
R5  
4.02k  
R8  
47k  
R1  
226k  
LT4356DE-3  
FB  
R2  
4.02k  
8
9
FLT  
11  
EN  
A
PWRGD  
OUT  
GND  
10  
TMR  
1
*DIODES INC.  
43563 TA05  
C
TMR  
0.1µF  
2.5A, 28V Hot Swap with Overvoltage Output Regulation at 36V and UV Shutdown at 15V  
R
M1  
FDB3632  
SNS  
15mΩ  
V
V
OUT  
IN  
28V  
28V  
2.5A  
R4  
113k  
R6  
27k  
D2*  
SMAT70A  
R3  
10Ω  
C
L
300µF  
C1  
6.8nF  
6
5
4
3
OUT  
D1  
1N4700  
BV = 13V  
V
SNS GATE  
R7  
CC  
1M  
12  
2
+
IN  
7
SHDN  
R5  
4.02k  
R8  
47k  
R1  
110k  
LT4356DE-3  
FB  
R2  
4.02k  
8
9
FLT  
11  
EN  
A
PWRGD  
OUT  
GND  
10  
TMR  
1
*DIODES INC.  
43563 TA06  
C
TMR  
0.1µF  
Rev D  
18  
For more information www.analog.com  
LT4356-3  
TYPICAL APPLICATIONS  
Overvoltage Regulator with Reverse Input Protection Up to –80V  
R
M2  
IRLR2908  
M1  
IRLR2908  
SNS  
10mΩ  
V
V
OUT  
IN  
12V  
12V, 3A  
CLAMPED  
AT 16V  
D2*  
SMAJ58CA  
R4  
10Ω  
R3  
10Ω  
R5  
1M  
Q1  
2N3904  
6
5
SNS  
4
3
R1  
59k  
V
GATE OUT  
FB  
CC  
D1  
1N4148  
2
R7  
10k  
R2  
4.99k  
D3**  
1N4148  
LT4356DE-3  
7
SHDN  
11  
12  
8
9
A
FLT  
OUT  
+
IN  
EN  
43563 TA07  
GND  
10  
TMR  
1
*DIODES INC.  
C
TMR  
**OPTIONAL COMPONENT  
0.1µF  
FOR REDUCED STANDBY CURRENT  
250mA High Voltage Low Dropout Linear Regulator  
R
M1  
SNS  
0.2Ω  
PSMNAR8 –100BSE  
V
V
OUT  
16V/250mA  
IN  
20V  
100µF  
R3  
10Ω  
R1  
59k  
5
4
3
SNS  
GATE  
OUT  
6
2
V
CC  
FB  
R2  
4.99k  
LT4356DE-3  
7
8
9
SHDN  
FLT  
*THE OUTPUT LOAD STEP  
RESPONSE IS SLOW DUE TO  
THE RESPONSE TIME OF THE  
INTERNAL CHARGE PUMP  
EN  
GND  
10  
TMR  
1
43563 TA08  
R3  
7.5k  
Rev D  
For more information www.analog.com  
19  
LT4356-3  
PACKAGE DESCRIPTION  
DEꢀUE Package  
12-Lead Plastic DFN (4mm × 3mm)  
ꢄReꢫeꢬeꢭꢮe ꢚꢍꢗ Dꢐꢑ ꢯ ꢂꢡꢜꢂꢪꢜꢃꢤꢝꢡ Rev Dꢉ  
ꢂꢁꢦꢂ ±ꢂꢁꢂꢡ  
ꢊꢁꢊꢂ ±ꢂꢁꢂꢡ  
ꢊꢁꢤꢂ ±ꢂꢁꢂꢡ  
ꢅꢁꢅꢂ ±ꢂꢁꢂꢡ  
ꢃꢁꢦꢂ ±ꢂꢁꢂꢡ  
ꢒꢏꢗꢘꢏꢑꢈ ꢌꢙꢍꢚꢇꢋꢈ  
ꢂꢁꢅꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢡꢂ ꢓꢆꢗ  
ꢅꢁꢡꢂ Rꢈꢕ  
RꢈꢗꢌꢛꢛꢈꢋDꢈD ꢆꢌꢚDꢈR ꢒꢏD ꢒꢇꢍꢗꢟ ꢏꢋD Dꢇꢛꢈꢋꢆꢇꢌꢋꢆ  
ꢏꢒꢒꢚꢣ ꢆꢌꢚDꢈR ꢛꢏꢆꢘ ꢍꢌ ꢏRꢈꢏꢆ ꢍꢟꢏꢍ ꢏRꢈ ꢋꢌꢍ ꢆꢌꢚDꢈRꢈD  
ꢂꢁꢀꢂ ±ꢂꢁꢃꢂ  
ꢀꢁꢂꢂ ±ꢂꢁꢃꢂ  
ꢄꢅ ꢆꢇDꢈꢆꢉ  
R ꢧ ꢂꢁꢃꢃꢡ  
ꢍꢣꢒ  
ꢃꢅ  
R ꢧ ꢂꢁꢂꢡ  
ꢍꢣꢒ  
ꢊꢁꢊꢂ ±ꢂꢁꢃꢂ  
ꢊꢁꢂꢂ ±ꢂꢁꢃꢂ  
ꢄꢅ ꢆꢇDꢈꢆꢉ  
ꢃꢁꢦꢂ ±ꢂꢁꢃꢂ  
ꢒꢇꢋ ꢃ  
ꢍꢌꢒ ꢛꢏRꢘ  
ꢄꢋꢌꢍꢈ ꢤꢉ  
ꢒꢇꢋ ꢃ ꢋꢌꢍꢗꢟ  
R ꢧ ꢂꢁꢅꢂ ꢌR  
ꢂꢁꢊꢡ × ꢀꢡ°  
ꢗꢟꢏꢛꢕꢈR  
ꢄꢙꢈꢃꢅꢩDꢈꢃꢅꢉ Dꢕꢋ ꢂꢪꢂꢤ Rꢈꢔ D  
ꢂꢁꢅꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢦꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢅꢂꢂ Rꢈꢕ  
ꢂꢁꢡꢂ ꢓꢆꢗ  
ꢅꢁꢡꢂ Rꢈꢕ  
ꢓꢌꢍꢍꢌꢛ ꢔꢇꢈꢐꢥꢈꢞꢒꢌꢆꢈD ꢒꢏD  
ꢂꢁꢂꢂ ꢨ ꢂꢁꢂꢡ  
ꢋꢌꢍꢈꢎ  
ꢃꢁ DRꢏꢐꢇꢋꢑ ꢒRꢌꢒꢌꢆꢈD ꢍꢌ ꢓꢈ ꢏ ꢔꢏRꢇꢏꢍꢇꢌꢋ ꢌꢕ ꢔꢈRꢆꢇꢌꢋ  
ꢄꢐꢑꢈDꢉ ꢇꢋ ꢖꢈDꢈꢗ ꢒꢏꢗꢘꢏꢑꢈ ꢌꢙꢍꢚꢇꢋꢈ ꢛꢂꢜꢅꢅꢝ  
ꢅꢁ DRꢏꢐꢇꢋꢑ ꢋꢌꢍ ꢍꢌ ꢆꢗꢏꢚꢈ  
ꢊꢁ ꢏꢚꢚ Dꢇꢛꢈꢋꢆꢇꢌꢋꢆ ꢏRꢈ ꢇꢋ ꢛꢇꢚꢚꢇꢛꢈꢍꢈRꢆ  
Rev D  
20  
For more information www.analog.com  
LT4356-3  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1ꢀꢀ1 Rev F)  
0.889 0.127  
(.035 .005)  
5.10  
(.201)  
MIN  
3.20 – 3.45  
(.12ꢀ – .13ꢀ)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
(.0197)  
0.497 0.07ꢀ  
(.019ꢀ .003)  
REF  
0.50  
0.305 0.038  
(.0120 .0015)  
TYP  
10 9  
8
7 ꢀ  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 0.152  
(.021 .00ꢀ)  
0.8ꢀ  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.101ꢀ 0.0508  
(.004 .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0213 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
Rev D  
For more information www.analog.com  
21  
LT4356-3  
PACKAGE DESCRIPTION  
S Package  
16-Lead Plastic Small Outline (Narrow .150 Inch)  
ꢆReꢧeꢨeꢩꢪe ꢝꢍꢚ Dꢢꢘ ꢫ ꢁꢅꢬꢁꢋꢬꢂꢃꢂꢁ Rev ꢘꢊ  
ꢀꢐꢋꢃ ꢄ ꢀꢐꢓꢇ  
ꢆꢓꢀꢋꢁꢇ ꢄ ꢂꢁꢀꢁꢁꢋꢊ  
ꢀꢁꢇꢅ ꢀꢁꢁꢅ  
ꢑꢔꢍꢕ ꢐ  
ꢀꢁꢅꢁ ꢙꢖꢚ  
ꢂꢃ  
ꢂꢅ  
ꢂꢇ  
ꢂꢐ  
ꢂꢈ  
ꢂꢂ  
ꢂꢁ  
ꢀꢈꢇꢅ  
ꢛꢜꢑ  
ꢀꢂꢃꢁ ꢀꢁꢁꢅ  
ꢀꢂꢅꢁ ꢄ ꢀꢂꢅꢉ  
ꢆꢐꢀꢋꢂꢁ ꢄ ꢐꢀꢓꢋꢋꢊ  
ꢑꢔꢍꢕ ꢐ  
ꢀꢈꢈꢋ ꢄ ꢀꢈꢇꢇ  
ꢆꢅꢀꢉꢓꢂ ꢄ ꢃꢀꢂꢓꢉꢊ  
ꢑꢒꢈ  
ꢑꢒꢈ  
ꢀꢁꢐꢁ ꢀꢁꢁꢅ  
ꢍꢎꢏ  
RꢕꢚꢔꢛꢛꢕꢑDꢕD ꢖꢔꢝDꢕR ꢏꢞD ꢝꢞꢎꢔꢟꢍ  
ꢀꢁꢂꢁ ꢄ ꢀꢁꢈꢁ  
ꢆꢁꢀꢈꢅꢇ ꢄ ꢁꢀꢅꢁꢋꢊ  
× ꢇꢅ°  
ꢀꢁꢅꢐ ꢄ ꢀꢁꢃꢓ  
ꢆꢂꢀꢐꢇꢃ ꢄ ꢂꢀꢉꢅꢈꢊ  
ꢀꢁꢁꢇ ꢄ ꢀꢁꢂꢁ  
ꢆꢁꢀꢂꢁꢂ ꢄ ꢁꢀꢈꢅꢇꢊ  
ꢀꢁꢁꢋ ꢄ ꢀꢁꢂꢁ  
ꢆꢁꢀꢈꢁꢐ ꢄ ꢁꢀꢈꢅꢇꢊ  
ꢁꢌ ꢄ ꢋꢌ ꢍꢎꢏ  
ꢀꢁꢅꢁ  
ꢆꢂꢀꢈꢉꢁꢊ  
ꢙꢖꢚ  
ꢀꢁꢂꢇ ꢄ ꢀꢁꢂꢓ  
ꢆꢁꢀꢐꢅꢅ ꢄ ꢁꢀꢇꢋꢐꢊ  
ꢍꢎꢏ  
ꢀꢁꢂꢃ ꢄ ꢀꢁꢅꢁ  
ꢆꢁꢀꢇꢁꢃ ꢄ ꢂꢀꢈꢉꢁꢊ  
ꢖꢂꢃ Rꢕꢗ ꢘ ꢁꢈꢂꢈ  
ꢑꢔꢍꢕꢡ  
ꢂꢀ Dꢜꢛꢕꢑꢖꢜꢔꢑꢖ ꢜꢑ  
ꢜꢑꢚꢠꢕꢖ  
ꢆꢛꢜꢝꢝꢜꢛꢕꢍꢕRꢖꢊ  
ꢈꢀ DRꢞꢢꢜꢑꢘ ꢑꢔꢍ ꢍꢔ ꢖꢚꢞꢝꢕ  
ꢐꢀ ꢍꢠꢕꢖꢕ Dꢜꢛꢕꢑꢖꢜꢔꢑꢖ Dꢔ ꢑꢔꢍ ꢜꢑꢚꢝꢟDꢕ ꢛꢔꢝD ꢣꢝꢞꢖꢠ ꢔR ꢏRꢔꢍRꢟꢖꢜꢔꢑꢖꢀ  
ꢛꢔꢝD ꢣꢝꢞꢖꢠ ꢔR ꢏRꢔꢍRꢟꢖꢜꢔꢑꢖ ꢖꢠꢞꢝꢝ ꢑꢔꢍ ꢕꢤꢚꢕꢕD ꢀꢁꢁꢃꢥ ꢆꢁꢀꢂꢅꢦꢦꢊ  
ꢇꢀ ꢏꢜꢑ ꢂ ꢚꢞꢑ ꢙꢕ ꢙꢕꢗꢕꢝ ꢕDꢘꢕ ꢔR ꢞ Dꢜꢛꢏꢝꢕ  
Rev D  
22  
For more information www.analog.com  
LT4356-3  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/09 Revise Features and Description  
1
Update Absolute Maximum Ratings, Pin Configuration, Order Information and Electrical Characteristics to Include  
H-grade  
2-4  
Revise Pin Functions  
7
8
Revise Block Diagram  
Minor Text Edits to Operation Section  
Text Added to Applications Information  
Update Typical Applications  
9
12, 15  
18, 19  
2, 3, 4  
7
B
C
D
8/12  
9/17  
4/19  
Added MP-Grade  
Updated TMR pin function with minimum recommended capacitance  
Updated: SHDN Pin Function; Block Diagram; Operation section  
7, 8, 9  
Rev D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
23  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LT4356-3  
TYPICAL APPLICATION  
Overvoltage Regulator with Linear Regulator Up to 100mA  
Q1  
2N2905A  
2.5V, 100mA  
C5  
10µF  
R
M1  
IRLR2908  
SNS  
10mΩ  
V
V
OUT  
12V, 3A  
CLAMPED AT 16V  
IN  
12V  
D2*  
SMAJ58A  
R3  
R1  
10Ω  
59k  
5
4
3
SNS  
GATE  
OUT  
R6  
100k  
6
2
V
A
FB  
CC  
R2  
4.99k  
R4  
249k  
C3  
47nF  
LT4356DE-3  
11  
7
12  
8
+
IN  
OUT  
R5  
249k  
SHDN  
FLT  
9
EN  
GND  
10  
TMR  
*DIODES INC.  
43563 TA09  
1
C
TMR  
0.1µF  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1696  
Overvoltage Protection Controller  
ThinSOT™ Package, 2.7V to 28V  
LTC1735  
High Efficiency Synchronous Step-Down  
Switching Regulator  
Output Fault Protection, 16-Pin SSOP  
LTC1778  
No R  
™ Wide Input Range Synchronous  
Up to 97% Efficiency, 4V ≤ V ≤ 36V, 0.8V ≤ V  
≤ (0.9)(V ),  
OUT IN  
SENSE  
IN  
Step-Down Controller  
I
Up to 20A  
OUT  
LTC2909  
Triple/Dual Inputs UV/OV Negative Monitor  
Single/Dual UV/OV Voltage Monitor  
Quad UV/OV Monitor  
Pin Selectable Input Polarity Allows Negative and OV Monitoring  
Ads UV and OV Trip Values, 1.5% Threshold Accuracy  
For Positive and Negative Supplies  
LTC2912/LTC2913  
LTC2914  
LTC3727/LTC3727-1 2-Phase, Dual, Synchronous Controller  
LTC3827/LTC3827-1 Low I , Dual, Synchronous Controller  
4V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 14V  
IN  
OUT  
OUT  
4V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V, 80µA Quiescent Current  
Q
IN  
LTC3835/LTC3835-1 Low I , Synchronous Step-Down Controller  
Single Channel LTC3827/LTC3827-1  
4V ≤ V ≤ 60V, 1.23V ≤ V ≤ 36V, 120µA Quiescent Current  
Q
LT3845  
Low I , Synchronous Step-Down Controller  
Q
IN  
OUT  
LTC3850  
Dual, 550kHz, 2-Phase Synchronous Step-Down Dual 180° Phased Controllers, V 4V to 24V, 97% Duty Cycle, 4mm × 4mm  
IN  
Controller  
QFN-28, SSOP-28 Packages  
LT4256-1/LT4256-2 Positive 48V Hot Swap Controller with  
Open-Circuit Detect  
Foldback Current Limiting, Open-Circuit and Overcurrent Fault Output, Up to  
80V Supply  
LTC4260  
Positive High Voltage Hot Swap Controller with  
ADC and I C  
Wide Operating Range 8.5V to 80V  
2
LTC4352  
LTC4354  
LTC4355  
LTC4380  
Ideal MOSFET ORing Diode  
External N-channel MOSFETs Replace ORing Diodes, 0V to 18V  
Controls Two N-channel MOSFETs, 1µs Turn-Off, 80V Operation  
Controls Two N-channel MOSFETs, 0.5µs Turn-Off, 80V Operation  
Negative Voltage Diode-OR Controller  
Positive Voltage Diode-OR Controller  
Low Quiescent Current Surge Stopper  
8µA I ; 4V to 72V Operation; –60V Reverse Input Protection  
Q
Rev D  
04/19  
www.analog.com  
ANALOG DEVICES, INC. 2009-2019  
24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY