LT6556CGN#TR [ADI]

LT6556 - 750MHz Gain of 1 Triple 2:1Video Multiplexer; Package: SSOP; Pins: 24; Temperature Range: 0°C to 70°C;
LT6556CGN#TR
型号: LT6556CGN#TR
厂家: ADI    ADI
描述:

LT6556 - 750MHz Gain of 1 Triple 2:1Video Multiplexer; Package: SSOP; Pins: 24; Temperature Range: 0°C to 70°C

光电二极管
文件: 总16页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6556  
750MHz Gain of 1 Triple  
2:1Video Multiplexer  
U
DESCRIPTIO  
FEATURES  
®
750MHz –3dB Small Signal Bandwidth  
The LT 6556 is a high speed triple 2:1 video multiplexer  
450MHz –3dB 2V Large-Signal Bandwidth  
with an internally fixed gain of 1. The individual buffers  
are optimized for performance with a 1k load and feature a  
P-P  
120MHz 0ꢀ1dB Bandwidth  
High Slew Rate: 2100V/µs  
2V –3dB bandwidth of 450MHz, making them ideal for  
P-P  
Fixed Gain of 1; No External Resistors Required  
72dB Channel Separation at 10MHz  
52dB Channel Separation at 100MHz  
drivingveryhighresolutionvideosignals. Separatepower  
supply pins for each amplifier boost channel separation  
to 72dB, allowing the LT6556 to excel in many high speed  
applications.  
–84dBc 2nd Harmonic Distortion at 10MHz, 2V  
P-P  
P-P  
–87dBc 3rd Harmonic Distortion at 10MHz, 2V  
Low Supply Current: 9.5mA per Amplifier  
6.5ns 0.1% Settling Time for 2V Step  
While the performance of the LT6556 is optimized for dual  
supplyoperation, itcanalsobeoperatedwithasinglesup-  
ply as low as 4.5V. Using dual 5V supplies, each amplifier  
draws only 9.5mA. When disabled, the amplifiers draw  
less than 330µA and the outputs become high impedance.  
For applications requiring a fixed gain of 2, refer to the  
LT6555 datasheet.  
I
SS  
≤ 330µA per Amplifier When Disabled  
Differential Gain of 0.033%, Differential Phase of 0.022°  
Wide Supply Range: 2.25V ꢀ4.5Vꢁ to 6V ꢀ12Vꢁ  
Available in 24-Lead SSOP and 24-Lead QFN Packages  
U
TheLT6556isavailablein24-leadSSOPandultra-compact  
24-lead QFN packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIO S  
RGB Buffers  
UXGA Video Multiplexing  
LCD Projectors  
U
TYPICAL APPLICATIO  
RGB Multiplexer and Line Driver  
Large-Signal Transient Response  
+
V
R
G
B
LT6556  
INA  
INA  
INA  
1.5  
75Ω  
V
V
= 2V  
P-P  
IN  
S
L
= ±5V  
= 1k  
×1  
R
G
OUT  
1.0  
0.5  
R
1k  
1k  
1k  
T
= 25°C  
A
75Ω  
0
AGND  
75Ω  
×1  
OUT  
–0.5  
–1.0  
–1.5  
R
INB  
G
INB  
B
INB  
75Ω  
0
2
4
6
8
10 12 14 16 18 20  
TIME (ns)  
×1  
B
OUT  
75Ω  
6556 TA02  
SELECT A/B  
V
REF  
75Ω  
ENABLE  
DGND  
6556 TA01  
V
6556f  
1
LT6556  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
+
Total Supply Voltage ꢀV to V ꢁ .............................12.6V  
Input Current ꢀNote 2ꢁ ......................................... 10mA  
Output Current ꢀContinuousꢁ .............................. 70mA  
EN to DGND Voltage ꢀNote 2ꢁ ..................................5.5V  
SEL to DGND Voltage ꢀNote 2ꢁ....................................8V  
Output Short-Circuit Duration ꢀNote 3ꢁ ............ Indefinite  
Operating Temperature Range ꢀNote 4ꢁ ... –40°C to 85°C  
Specified Temperature Range ꢀNote 5ꢁ .... –40°C to 85°C  
Junction Temperature  
SSOP ................................................................ 150°C  
QFN................................................................... 125°C  
Storage Temperature Range  
SSOP ................................................. –65°C to 150°C  
QFN.................................................... –65°C to 125°C  
Soldering Temperature ꢀ10 secꢁ............................ 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
+
1
2
V
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
IN1A  
DGND  
IN2A  
EN  
24 23 22 21 20 19  
+
3
SEL A/B  
+
V
1
2
3
4
5
6
18  
17  
16  
V
REF  
4
V
V
REF  
IN3A  
OUT1  
G=+1  
G=+1  
G=+1  
5
OUT1  
IN3A  
AGND1  
IN1B  
AGND1  
V
25  
6
V
V
15 OUT2  
+
7
OUT2  
+
IN1B  
14  
V
8
V
AGND2  
IN2B  
AGND2  
13 OUT3  
9
OUT3  
7
8
9 10 11 12  
10  
11  
12  
V
AGND3  
IN3B  
+
V
+
V
UF PACKAGE  
24-LEAD (4mm × 4mm) PLASTIC QFN  
V
GN PACKAGE  
T
= 125°C, θ = 37°C/W, θ = 2.6°C/W  
JA JC  
JMAX  
24-LEAD PLASTIC SSOP  
EXPOSED PAD ꢀPIN 25ꢁ IS V  
MUST BE SOLDERED TO PCB  
T
= 150°C, θ = 90°C/W  
JA  
JMAX  
ORDER PART NUMBER  
GN PART MARKING  
ORDER PART NUMBER  
UF PART MARKING*  
6556  
LT6556CGN  
LT6556IGN  
LT6556CGN  
LT6556IGN  
LT6556CUF  
LT6556IUF  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ VS = 5V, RL = 1k, CL = 1ꢀ5pF, VEN = 0ꢀ4V, VAGND, VDGND, VVREF = 0Vꢀ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
18  
mV  
mV  
V
Offset Voltage  
V
= 0V, V = V  
OUT  
67  
75  
OS  
IN  
OS  
µA  
I
IN  
Input Current  
12  
500  
1
45  
100  
51  
R
Input Resistance  
V
=
1V  
kΩ  
IN  
IN  
pF  
C
IN  
Input Capacitance  
Power Supply Rejection Ratio  
f = 100kHz  
V = 2.25V to 6V (Note 6)  
PSRR  
62  
dB  
S
6556f  
2
LT6556  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ VS = 5V, RL = 1k, CL = 1ꢀ5pF, VEN = 0ꢀ4V, VAGND, VDGND, VVREF = 0Vꢀ  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 2.25V to 6V (Note 6)  
MIN  
2.8  
3.65  
TYP  
MAX  
UNITS  
µA/V  
%
1
I
Input Current Power Supply Rejection  
Gain Error  
3
PSRR  
S
A ERR  
V
V
= V =  
REF  
2V, Nominal Gain 1V/V  
1.15  
0.05  
3.85  
9.5  
0
OUT  
%
A MATCH  
V
Gain Matching  
Any One Channel to Another  
(Note 7)  
V
V
OUT  
Output Voltage Swing  
Supply Current, Per Amplifier  
13  
14.5  
mA  
mA  
I
S
R = ∞  
L
47  
42  
330  
330  
µA  
µA  
µA  
µA  
Supply Current, Disabled, Per Amplifier  
Enable Pin Current  
V
V
= 4V, R = ∞  
EN  
EN  
L
= Open, R = ∞  
L
I
I
I
V
V
= 0.4V  
= 4V  
200  
75  
95  
21  
EN  
EN  
EN  
µA  
µA  
mA  
Select Pin Current  
V
V
= 0.4V  
= 4V  
50  
50  
50  
5  
1  
105  
2100  
750  
SEL  
SC  
SEL  
SEL  
Output Short-Circuit Current  
Slew Rate  
R = 0Ω, V  
=
2V, V =  
1V  
L
IN  
REF  
1200  
SR  
1V on 2.2V Output Step (Note 8)  
V/µs  
MHz  
MHz  
–3dB BW  
0.1dB BW  
FPBW  
Small-Signal –3dB Bandwidth  
Gain Flatness 0.1dB Bandwidth  
V
V
= 200mV  
= 200mV  
OUT  
OUT  
P-P  
P-P  
120  
190  
335  
175  
MHz  
MHz  
dB  
dB  
Full Power Bandwidth 2V  
Full Power Bandwidth 4V  
All-Hostile Crosstalk  
V
V
= 2V (Note 9)  
P-P  
OUT  
OUT  
= 4V (Note 9)  
P-P  
f = 10MHz, V = 2V  
f = 100MHz, V = 2V  
72  
52  
IN  
IN  
P-P  
P-P  
dB  
dB  
Selected Channel to Unselected  
Channel Crosstalk  
f = 10MHz, V = 2V  
85  
64  
IN  
P-P  
P-P  
f = 100MHz, V = 2V  
IN  
200  
Channel Select Output Transient  
Channel-to-Channel Select Time  
INA = INB = 0V  
mV  
P-P  
8
ns  
INA = –1V, INB = 1V  
from 50% SEL to V  
= 0V  
OUT  
6.5  
ns  
ps  
%
t
Settling Time  
0.1% of V  
, V = 2V  
S
FINAL STEP  
500  
t , t  
R
Small-Signal Rise and Fall Time  
Differential Gain  
10% to 90%, V  
(Note 10)  
= 200mV  
P-P  
F
OUT  
dG  
dP  
0.056  
0.028  
Deg  
dBc  
dBc  
Differential Phase  
(Note 10)  
HD2  
HD3  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
f = 10MHz, V  
f = 10MHz, V  
= 2V  
–84  
–87  
OUT  
P-P  
P-P  
= 2V  
OUT  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
to V + 0.4V, and the SEL pin is set to either V + 0.4V or V + 4V. At 6V  
and all other cases, DGND is set to ground and the EN and SEL pins are  
referenced from it.  
of a device may be impaired.  
Note 2: This parameter is guaranteed to meet specified performance  
through design and characterization. It is not production tested.  
Note 3: As long as output current and junction temperature are kept  
below the Absolute Maximum Ratings, no damage to the part will occur.  
Depending on the supply voltage, a heat sink may be required.  
Note 4: The LT6556C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 5: The LT6556C is guaranteed to meet specified performance from  
0°C to 70°C. The LT6556C is designed, characterized and expected to  
meet specified performance from –40°C and 85°C but is not tested or  
QA sampled at these temperatures. The LT6556I is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 7: The V pin is set to 3V when testing positive swing and –3V  
REF  
when testing negative swing to ensure that the internal input clamps do  
not limit the output swing.  
Note 8: Slew rate is 100% production tested using both inputs of  
channel 2. Slew rates of channels 1 and 3 are guaranteed through  
design and characterization.  
Note 9: Full power bandwidth is calculated from the slew rate:  
FPBW = SR/ꢀπ • V  
P-P  
Note 10: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R video  
measurement set. The resolution of this equipment is better than 0.05%  
and 0.05°. Nine identical amplifier stages were cascaded giving an  
effective resolution of better than 0.0056% and 0.0056°.  
Note 6: In order to follow the constraints for 4.5V operation for PSRR  
and I  
testing at 2.25V, the DGND pin is set to V , the EN pin is set  
PSRR  
6556f  
3
LT6556  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current per Amplifier  
vs Temperature  
Supply Current per Amplifier  
vs Supply Voltage  
Supply Current per Amplifier  
vs EN Pin Voltage  
12  
10  
8
12  
10  
8
12  
10  
8
V
V
T
= ±5V  
EN IN DGND SEL  
= 25°C  
V
R
V
= ±5V  
=  
L
V
S
= ±5V  
= ∞  
= 0V  
S
S
, V , V  
, V  
= 0V  
R
IN  
L
V
= 0V  
EN  
= 0V  
IN  
V
A
V
= 0.4V  
EN  
T
= –55°C  
A
T
= 25°C  
A
6
6
6
T
= 125°C  
A
4
4
4
2
2
2
V
EN  
= 4V  
0
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
2.0  
3.0 3.5  
0.5 1.0 1.5  
2.5  
4.0  
–55 –35 –15  
5
25 45 65 85 105 125  
EN PIN VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
6556 G02  
6556 G03  
6556 G01  
Input Bias Current  
vs Temperature  
EN Pin Current vs EN Pin Voltage  
Offset Voltage vs Temperature  
25  
20  
0
–5  
0
–20  
V
V
= ±5V  
IN  
V
= ±5V  
S
S
V
V
= ±5V  
DGND  
S
= 0V  
= 0V  
V
= 1.5V  
IN  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–40  
15  
T
= 125°C  
A
–60  
V
= 0V  
IN  
T
= –55°C  
A
V
= –1.5V  
IN  
–80  
10  
5
T
= 25°C  
A
–100  
–120  
–140  
0
25 45  
TEMPERATURE (°C)  
–55 –35 –15  
5
25 45 65  
85 105  
125  
–55 –35 –15  
5
65 85 105 125  
0
3
4
5
1
2
TEMPERATURE (°C)  
EN PIN VOLTAGE (V)  
6556 G05  
6556 G04  
6556 G06  
Maximum Output Voltage Swing  
vs VREF Pin Voltage  
Output Voltage Swing  
vs ILOAD (Output High)  
Output Voltage Swing  
vs ILOAD (Output Low)  
5
4
5
4
3
0
–1  
–2  
V
= ±5V  
= 1k  
V
V
V
= ±5V  
V
V
V
= ±5V  
S
L
S
S
R
= 4V  
= –4V  
IN  
IN  
T
= 125°C  
T
= –55°C  
A
A
= 3V  
= –3V  
VREF  
VREF  
3
HIGH SWING  
T
= –55°C  
2
A
T
= 125°C  
A
T
= –55°C  
A
1
T
= 25°C  
A
T
= 125°C  
A
0
T
= 25°C  
T
= 125°C  
A
A
T
= 25°C  
–1  
–2  
–3  
–4  
–5  
A
2
1
0
–3  
–4  
–5  
T
= 25°C  
A
T
= –55°C  
A
LOW SWING  
0
0.5  
–2 –1.5 –1 –0.5  
1
1.5  
2
0
10 20 30 40 50 60 70 80 90 100  
SOURCE CURRENT (mA)  
6556 G08  
10 20 30 40 50 60 70 80 90 100  
0
V
PIN VOLTAGE (V)  
SINK CURRENT (mA)  
REF  
6556 G07  
6556 G09  
6556f  
4
LT6556  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Noise Spectral Density  
Input Impedance vs Frequency  
PSRR vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
1000  
100  
10  
V
V
A
= ±5V  
V
T
= ±5V  
= 25°C  
S
S
A
V
= ±5V  
S
A
±PSRR  
= 0V  
IN  
= 25°C  
T
= 25°C  
T
–PSRR  
+PSRR  
e
n
n
i
1
0.1  
1
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
6556 G12  
6556 G11  
6556 G10  
Frequency Response  
vs Output Amplitude  
Frequency Response with  
Capacitive Loads  
Gain Flatness vs Frequency  
9
6
0.15  
3
V
V
= ±5V  
S
V
= ±5V  
= 1k  
= 25°C  
S
L
V
V
= ±5V  
S
= 200mV  
C
= 10pF  
OUT  
P-P  
L
R
2
1
= 200mV  
OUT  
P-P  
R
L
= 1k  
0.10  
0.05  
T
A
R
= 1k  
L
T
= 25°C  
A
C
= 15pF  
L
T
A
= 25°C  
IN2B  
0
IN3B  
IN1A  
3
C
= 6.8pF  
L
–1  
–2  
–3  
–4  
–5  
–6  
V
= 200mV  
OUT  
P-P  
0
0
V
= 2V  
OUT  
P-P  
–0.05  
C
= 3.3pF  
L
V
= 4V  
P-P  
OUT  
–3  
–6  
IN3A  
IN1B  
–0.10  
–0.15  
IN2A  
1
C
= 0pF  
100  
L
0.1  
1
10  
1000  
0.1  
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6555 G15  
6556 G14  
6556 G13  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
Harmonic Distortion vs Frequency  
0
0
0
–10  
V
V
R
T
= ±5V  
V
V
R
T
= ±5V  
V
V
R
T
= ±5V  
S
S
S
= 2V  
= 2V  
= 2V  
OUT  
P-P  
OUT  
P-P  
OUT  
P-P  
–20  
= 1k  
= 1k  
–20  
–40  
= 1k  
–20  
–40  
L
L
L
= 25°C  
= 25°C  
= 25°C  
A
A
A
–30  
–40  
–50  
–60  
–60  
–80  
–60  
–80  
WORST  
ADJACENT  
DRIVE IN A;  
SELECT IN B  
–70  
ALL CHANNELS  
DRIVEN  
–80  
HD2  
HD3  
–90  
DRIVE IN B;  
SELECT IN A  
–100  
–110  
–120  
–100  
–120  
–100  
–120  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
6556 G16  
6556 G18  
6556 G17  
6556f  
5
LT6556  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Capacitive Load vs  
Output Series Resistor  
Output Impedance vs Frequency  
Small-Signal Transient Response  
0.20  
0.15  
0.10  
0.05  
0
1000000  
100000  
10000  
1000  
100  
35  
30  
25  
20  
15  
10  
5
V
V
= 2V  
P–P  
OUT  
S
= ±5V  
= 1k  
R
L
DISABLED  
EN  
T
= 25°C  
A
V
= 4V  
AC PEAKING  
>3dB  
–0.05  
–0.10  
–0.15  
–0.20  
10  
V
V
= 200mV  
= ±5V  
IN  
S
L
P-P  
ENABLED  
= O.4V  
V
EN  
1
V
= ±5V  
S
A
R
= 1k  
T
= 25°C  
T
= 25°C  
A
0.1  
0
0
2
4
6
8
10 12 14 16 18 20  
0.01  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
TIME (ns)  
CAPACITIVE LOAD (pF)  
6556 G19  
6556 G21  
6556 G20  
Video Amplitude Transient  
Response  
Large-Signal Transient Response  
Gain Error Distribution  
35  
30  
25  
20  
15  
10  
5
2.5  
2.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 700mV  
V
V
= 4V  
V
= ±5V  
S
IN  
S
L
P-P  
IN  
S
L
P-P  
= ±5V  
= 1k  
= ±5V  
= 1k  
V
= ±2V  
OUT  
R
R
R
= 1k  
L
1.5  
T
= 25°C  
T
A
= 25°C  
T
= 25°C  
A
A
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.1  
–0.2  
0
–1.05  
–1.3 –1.25 –1.2 –1.15 –1.1  
–1.0 –.95 –.90  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
TIME (ns)  
GAIN ERROR—INDIVIDUAL CHANNEL (%)  
TIME (ns)  
6556 G24  
6556 G22  
6556 G23  
Gain Error Matching Distribution  
Channel Switching Transient  
Channel Switching Transient  
40  
35  
30  
25  
20  
15  
10  
5
0.15  
0.10  
0.05  
0
1.5  
1.0  
0.5  
0
V
V
= ±5V  
S
= ±2V  
OUT  
R
L
= 1k  
T
= 25°C  
A
–0.05  
–0.10  
–0.5  
–1.0  
–1.5  
V
= ±5V INA = INB = 0V  
S
L
R
= 1k  
T = 25°C  
V
= ±5V INB = 300MHz, 2V SINE  
P-P  
A
S
L
R
= 1k  
T = 25°C INA = 0V  
A
5
4
3
2
1
0
5
4
3
2
1
0
0
0.025  
–0.1 –0.075 –0.05 –0.025  
0
0.05 0.075 0.1  
0
10 20 30 40 50 60 70 80 90 100  
TIME (ns)  
0
10 20 30 40 50 60 70 80 90 100  
TIME (ns)  
GAIN ERROR—BETWEEN CHANNELS (%)  
6556 G25  
6556 G26  
6556 G27  
6556f  
6
LT6556  
U
U
U
PI FU CTIO S  
(GN24 Package)  
IN1A (Pin 1): Channel 1 Input A. This pin has a nominal  
impedance of 500kΩ and does not have any internal  
termination resistor.  
be connected externally. Proper supply bypassing is  
necessary for best performance. See the Applications  
Information section.  
DGND (Pin 2): Digital Ground Reference for Enable Pin.  
V(Pin15):NegativeSupplyVoltageforChannel3Output  
Stage.Vpinsarenotinternallyconnectedtoeachotherand  
mustallbeconnectedexternally. Propersupplybypassing  
is necessary for best performance. See the Applications  
Information section.  
This pin is normally connected to ground.  
IN2A (Pin 3): Channel 2 Input A. This pin has a nominal  
impedance of 500kΩ and does not have any internal  
termination resistor.  
OUT3 (Pin 16): Channel 3 Output. It is the buffered output  
of the selected Channel 3 input.  
VREF (Pin 4): Voltage Reference for Input Clamping. This  
is the tap to an internal voltage divider that defines mid-  
supply. It is normally connected to ground in dual supply,  
DC coupled applications.  
V+ (Pin 17): Positive Supply Voltage for Channels 2 and  
+
3 Output Stages. V pins are not internally connected to  
each other and must all be connected externally. Proper  
supply bypassing is necessary for best performance. See  
the Applications Information section.  
IN3A (Pin 5): Channel 3 Input A. This pin has a nominal  
impedance of 500kΩ and does not have any internal  
termination resistor.  
OUT2 (Pin 18): Channel 2 Output. It is the buffered output  
of the selected Channel 2 input.  
AGND (Pin 6): Analog Ground for Isolation between IN3A  
andIN1B.AGNDpinshaveESDprotectionandshouldnotbe  
connected to potentials outside the power supply range.  
V– (Pin 19): Negative Supply Voltage for Channels 1 and  
2 Output Stages. Vpins are not internally connected to  
each other and must all be connected externally. Proper  
supply bypassing is necessary for best performance. See  
the Applications Information section.  
IN1B (Pin 7): Channel 1 Input B. This pin has a nominal  
impedance of 500kΩ and does not have any internal  
termination resistor.  
AGND (Pin 8): Analog Ground for Isolation between IN1B  
andIN2B.AGNDpinshaveESDprotectionandshouldnotbe  
connected to potentials outside the power supply range.  
OUT1 (Pin 20): Channel 1 Output. It is the buffered output  
of the selected Channel 1 input.  
V+ (Pin 21): Positive Supply Voltage for Channel 1 Output  
IN2B (Pin 9): Channel 2 Input B. This pin has a nominal  
impedance of 500kΩ and does not have any internal  
termination resistor.  
+
Stage.V pinsarenotinternallyconnectedtoeachotherand  
mustallbeconnectedexternally. Propersupplybypassing  
is necessary for best performance. See the Applications  
Information section.  
AGND (Pin 10): Analog Ground for Isolation between  
IN2B and IN3B. AGND pins have ESD protection and  
should not be connected to potentials outside the power  
supply range.  
SEL A/B (Pin 22): Select Pin. This high impedance pin  
selects which set of inputs are sent to the output pins.  
Whenthepinispulledlow, theAinputsareselected. When  
the pin is pulled high, the B inputs are selected.  
IN3B (Pin 11): Channel 3 Input B. This pin has a nominal  
impedance of 500kΩ and does not have any internal  
termination resistor.  
V– (Pin 12): Negative Supply Voltage. Vpins are not in-  
ternally connected to each other and must all be connected  
externally. Proper supply bypassing is necessary for best  
performance. See the Applications Information section.  
EN(Pin23):EnableControlPin.Aninternalpull-upresistor  
of 46k defines the pin’s impedance and will turn the part  
off if the pin is unconnected. When the pin is pulled low,  
the amplifiers are enabled.  
Exposed Pad (Pin 25, QFN Only): The Exposed Pad is  
V and must be soldered to the PCB. It is internally con-  
+
V+ (Pins 13, 14, 24): Positive Supply Voltage. V pins  
nected to the QFN Pin 4, V .  
are not internally connected to each other and must all  
6556f  
7
LT6556  
U
W U U  
APPLICATIO S I FOR ATIO  
Power Supplies  
The enable/disable times of the LT6556 are fast when  
driven with a logic input. Turn on ꢀfrom 50% EN input to  
50% outputꢁ typically occurs in less than 50ns. Turn off  
is slower, but is typically below 500ns.  
The LT6556 is optimized for 5V supplies but can be op-  
erated on as little as 2.25V or a single 4.5V supply and  
as much as 6V or a single 12V supply. Internally, each  
supply is independent to improve channel isolation. Do  
not leave any supply pins disconnected or the part may  
not function correctly!  
Channel Select  
The SEL pin uses the same internal threshold as the EN  
pin and is also referenced to DGND. When the pin is logic  
low, the channel A inputs are passed to the output. When  
the pin is logic high, the channel B inputs are passed to  
the output. The pin should not be floated but can be tied  
to DGND to force the outputs to always be channel A or  
Enable/Shutdown  
The LT6556 has a shutdown mode controlled by the EN  
pinandreferencedtotheDGNDpin. Iftheamplifierwillbe  
enabled at all times, the EN pin can be connected directly  
to DGND. If the enable function is desired, either driving  
the pin above 2V or allowing the internal 46k pull-up  
resistor to pull the EN pin to the top rail will disable the  
amplifier. When disabled, the output will become very  
high impedance. Supply current into the amplifier in the  
disabled state will be:  
+
to V ꢀwhen less than 8Vꢁ to force the outputs to always  
be channel B.  
Truth Table  
SEL A/B  
EN  
0
OUT  
IN A  
IN B  
OFF  
0
1
X
0
1
V+ VEN  
46k  
V+ – V–  
80k  
IS =  
+
Input Considerations  
It is important that the following constraints on the DGND,  
EN and SEL pins are always followed:  
The LT6556 uses input clamps referenced to the V pin  
REF  
to prevent damage to the input stage on the unselected  
+
channel.Threetransistorsinserieslimittheinputvoltageto  
V – V  
≥ 4ꢀ5V  
DGND  
within three diode drops ꢀ ꢁ from V . V  
is nominally  
REF REF  
-0ꢀ5V ≤ V – V  
SEL  
≤ 5ꢀ5V  
EN  
DGND  
set to half of the sum of the supplies by the 40k resistors.  
A simplified schematic is shown in Figure 1.  
V
– V  
≤ 8V  
DGND  
+
In dual supply cases where V is less than 4.5V, DGND  
should be connected to a potential below ground, such as  
+
V
V . Since the EN and SEL pins are referenced to DGND, they  
40k  
mayneedtobepulledbelowgroundinthosecases.However,  
in order to protect the internal enable circuitry, the EN pin  
should not be forced more than 0.5V below DGND.  
In single supply applications above 5.5V, an additional  
resistor may be needed from the EN pin to DGND if the  
pin is ever allowed to float. For example, on a 12V single  
supply, a 33k resistor would protect the pin from floating  
too high while still allowing the internal pull-up resistor  
to disable the part.  
IN  
V
REF  
40k  
6556 F01  
V
Ondual 2.25Vsupplies, connectingtheDGNDpintoV is  
Figure 1ꢀ Simplified Schematic of VREF Pin and Input Clamping  
+
the only way of ensuring that V – V  
≥ 4.5V.  
DGND  
6556f  
8
LT6556  
U
W U U  
APPLICATIO S I FOR ATIO  
To improve clamping, the pin’s DC impedance should be  
minimized by connecting the V pin directly to ground  
Layout and Grounding  
REF  
It is imperative that care is taken in PCB layout in order to  
benefit from the very high speed and very low crosstalk of  
the LT6556. Separate power and ground planes are highly  
recommended and trace lengths should be kept as short  
as possible. If input traces must be run over a distance of  
several centimeters, they should use a controlled imped-  
ance with either series or shunt terminations ꢀnominally  
50Ω or 75Ωꢁ to maintain signal fidelity.  
in the symmetric dual supply case with a common mode  
voltage of 0V. If the common mode voltage is not centered  
at ground or the input voltage exceeds plus or minus three  
diodes from ground, an external resistor to either supply  
can be added to shift the V voltage to the desired level.  
REF  
The only way to cover the full input voltage range of V +  
+
1V to V – 1V is to shift V up or down.  
REF  
The V pin can also be directly driven with a DC source.  
REF  
Care should be taken to minimize capacitance on the  
LT6556’s output traces by increasing spacing between  
traces and adjacent metal and by eliminating metal planes  
in underlying layers. To drive cable or traces longer than  
several centimeters, using the LT6555 with its fixed gain  
of+2inconjunctionwithseriesandloadterminationresis-  
tors may provide better results.  
Figure 2 shows the effect of the clamp on input current  
when sweeping input voltage with various V  
pin volt-  
REF  
ages. Bypassing the V pin is not necessary.  
REF  
250  
V
V
V
V
V
= –2V  
= –1V  
= 0V  
= 1V  
= 2V  
REF  
REF  
REF  
REF  
REF  
200  
150  
100  
50  
A plot of AC performance driving a 1k load with various  
tracelengthsisshowninFigure3. Alldataisfroma4-layer  
board with 2oz copper, 18mil of board layer thickness to  
the ground plane, a trace width of 12mils and spacing to  
adjacent metal of 18mils. The 0.2cm output trace places  
the 1k resistor as close to the part as possible, while the  
other curves show the load resistor consecutively further  
away. The worst case, 4cm, trace has almost 10pF of  
parasitic capacitance.  
0
–50  
–100  
–150  
–200  
–250  
T
= 25°C  
= ±5V  
A
S
V
0
1
–4 –3 –2 –1  
2
3
4
INPUT VOLTAGE (V)  
6556 F02  
Figure 2ꢀ Input Current vs Input Voltage  
at Different VREF Voltages  
6
V
V
= ±5V  
S
= 200mV  
OUT  
P-P  
4
2
R
= 1k  
L
4cm TRACE  
T
A
= 25°C  
The inputs can be driven beyond the point at which the  
output clips so long as input currents are limited to less  
than 10mA. Continuing to drive the input beyond the  
output limit can result in increased current drive and  
slightly increased swing, but will also increase supply  
current and may result in delays in transient response  
at larger levels of overdrive.  
2cm TRACE  
0.2cm TRACE  
0
–2  
–4  
–6  
0.1  
10  
FREQUENCY (MHz)  
100  
1000  
1
6556 F03  
Figure 3ꢀ Response vs Output Trace Length  
6556f  
9
LT6556  
U
W U U  
APPLICATIO S I FOR ATIO  
In order to counteract any peaking in the frequency re-  
sponse from driving a capacitive load, a series resistance  
can be inserted in the line at the output of the part to flat-  
ten the response. Figure 4 shows the frequency response  
with the same 4cm trace from Figure 3, now with a 10Ω  
series resistor inserted near the output pin of the ampli-  
fier. Note that using a 10Ω series resistor with a 1k load  
only decreases the output amplitude by 0.1dB or 1% and  
has a minimal effect on the bandwidth of the system. See  
the graph labeled “Maximum Capacitive Load vs Output  
SeriesResistorintheTypicalPerformanceCharacteristics  
section for more information.  
To maintain the LT6556’s channel isolation, it is beneficial  
to shield parallel input and parallel output traces using a  
ground plane or power supply traces. Vias between top-  
side and backside metal may be required to maintain a  
low inductance ground near the part where numerous  
traces converge. See Figures 7 and 8 for photos of an  
optimized layout.  
Single Supply Operation  
Figure 5 illustrates how to use the LT6556 with a single  
supplyrangingfrom4.5Vto12V. Sincetheoutputrangeis  
comparabletotheinputrange,theDCbiaspointattheinput  
canbesetanywherebetweenthesuppliesthatwillprevent  
the AC-coupled signal from running into the output range  
limits. As shown, the DC input level is mid-supply.  
6
V
V
= ±5V  
S
= 200mV  
OUT  
P-P  
4
2
R
= 1k  
L
4cm TRACE  
T
= 25°C  
A
The only additional power dissipation in the single supply  
configurationisthroughtheresistorbiasstringattheinput  
and through any load resistance at the output. In many  
cases, the output can be used to directly drive other single  
supply devices without additional coupling and without  
any resistive load.  
0
4cm TRACE  
S, OUT  
R
= 10Ω  
–2  
–4  
–6  
4.5V TO 12V  
0.1  
10  
FREQUENCY (MHz)  
100  
1000  
1
6556 F04  
5k  
22μF  
Figure 4ꢀ Response vs Series Output Resistance  
+
V
IN  
V
IN  
OUT  
1/3  
LT6556  
While the AGND pins on the LT6556 are not connected to  
the amplifier circuitry, tying them to ground or another  
“quiet” node significantly increases channel isolation  
and is always recommended. The AGND pins do have  
ESD protection and therefore should not be connected to  
potentials outside the power supply range.  
AGND  
5k  
V
6556 F05  
Figure 5ꢀ Single Supply Configuration, One Channel Shown  
LowESL/ESRbypasscapacitorsshouldbeplacedasclose  
to the positive and negative supply pins as possible. One  
Input Expansion  
+
4700pF ceramic capacitor is recommended for both V  
In applications with more than two inputs per channel,  
multipleLT6556scanbeconnecteddirectlytogetheratthe  
outputs. Logic circuitry can be used to drive the EN pins  
of each LT6556 to ensure that only one set of channels is  
buffered at a time. See Figure 9 for a schematic.  
andV supplybusses.Additional470pFceramiccapacitors  
with minimal trace length on each supply pin will further  
improve AC and transient response as well as channel  
isolation. For high current drive and large-signal transient  
applications, additional 1µF to 10µF tantalums should  
be added on each supply. The smallest value capacitors  
should be placed closest to the package.  
Since the output impedance of a disabled LT6556 is high,  
adding additional channels will not resistively load an  
6556f  
10  
LT6556  
U
W U U  
APPLICATIO S I FOR ATIO  
enabledoutput.However,sincethedisabledLT6556andits  
traces have around 6pF of capacitance, it may be desirable  
toresistivelyisolatetheoutputsofeachchanneltomaintain  
flat frequency response as shown in the graph labeled  
“Maximum Capacitive Load vs Output Series Resistor” in  
the Typical Performance Characteristics section.  
ESD Protection  
TheLT6556hasreverse-biasedESDprotectiondiodesonall  
pins. If any pins are forced a diode drop above the positive  
supply or a diode drop below the negative supply, large  
currents may flow through these diodes. If the current is  
kept below 10mA, no damage to the devices will occur.  
U
TYPICAL APPLICATIO  
RGB Multiplexer Demo Board  
traces and isolate the part from any capacitive loading in  
those traces, they also contribute to gain error if the out-  
put is not terminated with high impedance. For example,  
if the output is terminated with a 1k load, the 75Ω back  
termination will cause a 7% gain error. Decreasing the  
value of the back termination resistors will decrease the  
signal attenuation but may compromise the AC response.  
However, connecting the LT6556 output pins to the output  
tracesontheDC892Aboardwithoutsomeseriesresistance  
is not recommended; 10Ω to 20Ω is generally sufficient.  
Figures7and8showthetopandbottomsideboardlayout  
and placement.  
The DC892A Demo Board illustrates optimal routing,  
bypassing and termination using the LT6556 as an  
RGBvideomultiplexer.TheschematicisshowninFigure 6.  
All inputs and outputs are routed to have a characteristic  
impedance of 75Ω and 75Ω input shunt and output series  
terminations are connected as close to the part as pos-  
sible. The board is fabricated with four layers with internal  
ground and power planes.  
While the 75Ω back termination resistors at the outputs  
of the LT6556 minimize signal reflections in the output  
E1  
EN  
E4  
SEL A/B  
J8  
J1  
50Ω BNC  
50Ω BNC  
Z = 50  
Z = 50  
1
1
R7  
20k  
JP1  
2
EN  
SEL A/B  
E2  
DGND  
R8  
50Ω  
OPT  
R9  
50Ω  
OPT  
CONTROL  
A
B
1
3
1
3
V
CC  
2
JP4  
SEL  
EXT ENABLE  
5
4 3 2  
DGND  
5
4
3
2
DGND  
JP2  
DGND  
3
1
2
FLOAT AGND  
E5  
REF  
V
J2  
BANANA JACK  
JP5  
REF  
V
3
1
V
CC  
3.3V TO 5V  
2
C1  
C2  
C3  
C10  
C4  
C7  
0.33μF  
10V  
BNC × 6  
EXT GND  
4700pF  
470pF  
470pF  
4700pF  
10μF  
16V  
1206  
5
JP12  
U1 LT6556CUF  
IN1A  
V
CC  
1
L1 Z = 75  
L1 Z = 75  
L1 Z = 75  
L1 Z = 75  
L1 Z = 75  
L1 Z = 75  
22  
23  
24  
1
21  
4
3
2
+
V
IN1A  
DGND  
20 EN  
DGND  
IN2A  
EN  
5
4
3
2
5
4
3
2
5
4
3
2
5
4
3
2
JP13  
JP14  
JP5  
1
1
1
1
1
SEL  
19  
18  
17  
16  
15  
14  
13  
12  
IN2A  
IN3A  
IN1B  
IN2B  
IN3B  
SEL A/B  
V
BNC × 3  
REF  
+
V
V
R1  
75Ω  
REF  
J9  
5
4
3
2
5
4
3
2
5
4
3
2
Z = 75  
Z = 75  
Z = 75  
L2  
1
1
1
2
IN3A  
OUT1  
OUT1  
OUT2  
OUT3  
3
AGND1  
IN1B  
V
R2  
75Ω  
J10  
J11  
L2  
L2  
5
OUT2  
6
+
AGND2  
IN2B  
V
R3  
75Ω  
JP6  
7
OUT3  
8
AGND3  
IN3B  
V
5
4
3
2
JP7  
9
4
11  
10  
+
V
R10  
75Ω  
R11  
75Ω  
R12  
75Ω  
R4  
R5  
75Ω  
R6  
+
J4  
V
V
V
75Ω  
75Ω  
BANANA JACK  
25  
V
EE  
E3  
AGND  
–3.3V TO –5V  
C5  
4700pF  
C6  
470pF  
C9  
C8  
0.33μF  
10V  
10μF  
16V  
1206  
J3  
BANANA JACK  
SINGLE DUAL  
2
V
EE  
6556 F06  
AGND  
NOTE:  
1
3
JP3  
SUPPLY  
470pF BYPASS CAPACITORS LOCATED  
AS CLOSE TO PINS AS POSSIBLE  
Figure 6ꢀ Demo Board Schematic  
6556f  
11  
LT6556  
U
TYPICAL APPLICATIO  
Figure 7ꢀ Demo Board Topside  
(IC Removed for Clarity)  
Figure 8ꢀ Demo Board Bottom Side  
6556f  
12  
LT6556  
W
W
SI PLIFIED SCHE ATIC  
(One channel shown)  
6556f  
13  
LT6556  
U
PACKAGE DESCRIPTIO  
GN Package  
24-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.337 – .344*  
(8.560 – 8.738)  
.033  
(0.838)  
REF  
24 23 22 21 20 19 18 17 16 15 14 13  
.045 ±.005  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.254 MIN  
.150 – .165  
1
2
3
4
5
6
7
8
9 10 11 12  
.0165 ±.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
.015 ± .004  
(0.38 ± 0.10)  
.0532 – .0688  
(1.35 – 1.75)  
× 45°  
.004 – .0098  
(0.102 – 0.249)  
.0075 – .0098  
(0.19 – 0.25)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
.0250  
(0.635)  
BSC  
GN24 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
6556f  
14  
LT6556  
U
PACKAGE DESCRIPTIO  
UF Package  
24-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1697)  
0.70 ±0.05  
4.50 ± 0.05  
3.10 ± 0.05  
2.45 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
PIN 1 NOTCH  
R = 0.20 TYP OR  
0.35 × 45° CHAMFER  
0.75 ± 0.05  
4.00 ± 0.10  
(4 SIDES)  
TYP  
23 24  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 ± 0.10  
1
2
2.45 ± 0.10  
(4-SIDES)  
(UF24) QFN 0105  
0.200 REF  
0.25 ± 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
6556f  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT6556  
U
TYPICAL APPLICATIO  
RED 1  
GREEN 1  
BLUE 1  
+
LT6556 #1  
×1  
V
5V  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
IN1A  
IN1B  
OUT1  
OUT2  
OUT3  
IN2A  
IN2B  
×1  
×1  
RED 2  
GREEN 2  
BLUE 2  
IN3A  
IN3B  
AGND  
DGND  
SEL  
EN  
V
R
G
REF  
OUT  
V
–2V  
5V  
OUT  
RED 3  
GREEN 3  
BLUE 3  
+
LT6556 #2  
V
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
IN1A  
IN1B  
OUT1  
OUT2  
OUT3  
B
OUT  
×1  
×1  
×1  
IN2A  
IN2B  
RED 4  
GREEN 4  
BLUE 4  
IN3A  
IN3B  
AGND  
DGND  
SEL1 SEL0 OUTPUT  
SEL  
EN  
0
0
1
1
0
1
0
1
1
2
3
4
V
REF  
SEL0  
SEL1  
V
NC7SZ14  
6556 F09  
–2V  
Figure 9ꢀ 4:1 RGB Multiplexer  
RELATED PARTS  
PART NUMBER  
LT1203  
DESCRIPTION  
COMMENTS  
Single SPDT Video Switch  
0.1dB Gain Flatness to 150MHz, Shutdown  
150MHz Single 2:1 Multiplexer  
LT1399  
300MHz Triple Current Feedback Amplifier  
250MHz Triple RGB Multiplexer  
LT1675  
100MHz Pixel Switching, 1100V/µs Slew Rate, 16-Lead SSOP  
110MHz Gain of 2 Buffers in MS Package  
LT6550/LT6551  
LT6553  
3.3V Triple and Quad Video Buffers  
650MHz Gain of 2 Triple Video Amplifier  
650MHz Gain of 1 Triple Video Amplifier  
650MHz Gain of 2 Triple Video Multiplexer  
Same Pinout as the LT6554 but Optimized for Driving 75Ω Cables  
Performance Similar to the LT6556 with One Set of Inputs, 16-Lead SSOP  
Same Pinout as the LT6556 but Optimized for Driving 75Ω Cables  
LT6554  
LT6555  
6556f  
LT/TP 0805 500 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY