LT8301 [ADI]

42VIN Micropower No-Opto Isolated Flyback Converter with 65V/3.6A Switch;
LT8301
型号: LT8301
厂家: ADI    ADI
描述:

42VIN Micropower No-Opto Isolated Flyback Converter with 65V/3.6A Switch

文件: 总26页 (文件大小:1546K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8302/LT8302-3  
42V Micropower No-Opto  
IN  
Isolated Flyback Converter  
with 65V/3.6A Switch  
FEATURES  
DESCRIPTION  
The LT®8302/LT8302-3 is a monolithic micropower iso-  
lated flyback converter. By sampling the isolated output  
voltage directly from the primary-side flyback waveform,  
the part requires no third winding or opto-isolator for  
regulation. The output voltage is programmed with two  
external resistors and a third optional temperature com-  
pensation resistor. Boundary mode operation provides a  
small magnetic solution with excellent load regulation.  
Low ripple Burst Mode operation maintains high efficiency  
at light load while minimizing the output voltage ripple. A  
3.6A, 65V DMOS power switch is integrated along with all  
the high voltage circuitry and control logic into a thermally  
enhanced 8-lead SO package.  
n
3V to 42V Input Voltage Range  
n
3.6A, 65V Internal DMOS Power Switch  
n
Low Quiescent Current:  
n
106µA in Sleep Mode  
380µA in Active Mode  
n
n
Quasi-Resonant Boundary Mode Operation at  
Heavy Load  
Low Ripple Burst Mode® Operation at Light Load  
n
n
Minimum Load < 0.5% (Typ) of Full Output  
n
No Transformer Third Winding or Opto-Isolator  
Required for Output Voltage Regulation  
n
Accurate EN/UVLO Threshold and Hysteresis  
n
Internal Compensation and Soft-Start  
n
Temperature Compensation for Output Diode  
The LT8302/LT8302-3 operates from an input voltage  
range of 3V to 42V and delivers up to 18W of isolated  
output power. The high level of integration and the use of  
boundary and low ripple burst modes result in a simple to  
use, low component count, and high efficiency application  
solution for isolated power delivery.  
n
Output Short-Circuit Protection  
n
Thermally Enhanced 8-Lead SO Package  
n
AEC-Q100 Qualified for Automotive Applications  
APPLICATIONS  
n
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. patents, including 5438499, 7463497, 7471522.  
Isolated Automotive, Industrial, Medical  
Power Supplies  
n
Isolated Auxiliary/Housekeeping Power Supplies  
TYPICAL APPLICATION  
3V to 32VIN/5VOUT Isolated Flyback Converter  
Efficiency vs Load Current  
ꢒꢋ  
+
V
V
IN  
OUT  
3V TO 32V  
3:1  
5V  
470pF  
9µH  
ꢐꢑ  
220µF  
1µH  
39Ω  
V
IN  
ꢐꢋ  
10µF  
V
EN/UVLO  
SW  
OUT  
LT8302/LT8302-3  
154k  
ꢗꢑ  
GND  
INTV  
R
FB  
10mA TO 1.1A (V = 5V)  
IN  
10mA TO 2.0A (V = 12V)  
IN  
R
REF  
ꢗꢋ  
ꢘꢑ  
ꢘꢋ  
CC  
10mA TO 2.9A (V = 24V)  
IN  
1µF  
115k  
10k  
ꢚ ꢑꢙ  
ꢚ ꢓꢔꢙ  
ꢚ ꢔꢛꢙ  
ꢍꢇ  
ꢍꢇ  
ꢍꢇ  
TC  
8302 TA01a  
ꢔ.ꢋ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢕ.ꢋ  
ꢋ.ꢑ  
ꢓ.ꢋ  
ꢓ.ꢑ  
ꢔ.ꢑ  
ꢐꢕꢋꢔ ꢈꢂꢋꢓꢖ  
Rev. G  
1
Document Feedback  
For more information www.analog.com  
LT8302/LT8302-3  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
SW (Note 2)..............................................................65V  
IN  
ꢈꢉꢊ ꢋꢌꢍꢎ  
V ............................................................................42V  
EN/UVLO....................................................................V  
ꢍꢓꢔꢕꢋꢖꢉ  
ꢌꢓꢈꢋ  
ꢈꢏ  
IN  
IN  
R ........................................................V – 0.5V to V  
R
Rꢍꢐ  
R
ꢐꢑ  
ꢏꢏ  
FB  
IN  
Gꢓꢗ  
Current Into R ....................................................200µA  
ꢌꢓ  
FB  
INTV , R , TC.........................................................4V  
Gꢓꢗ  
ꢒꢎ  
CC REF  
Operating Junction Temperature Range (Notes 3, 4)  
LT8302E, LT8302E-3 ......................... –40°C to 125°C  
LT8302I, LT8302I-3 ........................... –40°C to 125°C  
LT8302J, LT8302J-3.......................... –40°C to 150°C  
LT8302H, LT8302H-3 ........................ –40°C to 150°C  
LT8302MP ......................................... –55°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
ꢒꢄꢍ ꢊꢘꢏꢙꢘGꢍ  
ꢄꢚꢖꢍꢘꢗ ꢊꢖꢘꢒꢈꢌꢏ ꢒꢉ  
θ
ꢛꢘ  
ꢜ ꢂꢂꢝꢏꢔꢎ  
ꢍꢞꢊꢉꢒꢍꢗ ꢊꢘꢗ ꢟꢊꢌꢓ ꢠꢡ ꢌꢒ Gꢓꢗꢢ ꢣꢕꢒꢈ ꢑꢍ ꢒꢉꢖꢗꢍRꢍꢗ ꢈꢉ ꢊꢏꢑ  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LT8302ES8E#PBF  
LT8302ES8E#TRPBF  
LT8302IS8E#TRPBF  
LT8302JS8E#TRPBF  
LT8302HS8E#TRPBF  
LT8302MPS8E#TRPBF  
LT8302ES8E-3#TRPBF  
LT8302IS8E-3#TRPBF  
LT8302JS8E-3#TRPBF  
LT8302HS8E-3#TRPBF  
8302  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
LT8302IS8E#PBF  
8302  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
–55°C to 150°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
LT8302JS8E#PBF  
8302  
LT8302HS8E#PBF  
8302  
LT8302MPS8E#PBF  
LT8302ES8E-3#PBF  
LT8302IS8E-3#PBF  
LT8302JS8E-3#PBF  
LT8302HS8E-3#PBF  
AUTOMOTIVE PRODUCTS**  
LT8302ES8E#WPBF  
LT8302IS8E#WPBF  
LT8302JS8E#WPBF  
LT8302HS8E#WPBF  
LT8302ES8E-3#WPBF  
LT8302IS8E-3#WPBF  
LT8302JS8E-3#WPBF  
LT8302HS8E-3#WPBF  
8302  
83023  
83023  
83023  
83023  
LT8302ES8E#WTRPBF  
LT8302IS8E#WTRPBF  
LT8302JS8E#WTRPBF  
LT8302HS8E#WTRPBF  
LT8302ES8E-3#WTRPBF  
LT8302IS8E-3#WTRPBF  
LT8302JS8E-3#WTRPBF  
LT8302HS8E-3#WTRPBF  
8302  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
8302  
8302  
8302  
83023  
83023  
83023  
83023  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
Rev. G  
2
For more information www.analog.com  
LT8302/LT8302-3  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 5V, VEN/UVLO = VIN, CINTVCC = 1µF to GND, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
42  
UNIT  
l
V
IN  
V
V
Voltage Range  
3
V
IN  
IN  
I
Q
Quiescent Current  
V
V
= 0.2V  
= 1.1V  
0.5  
53  
106  
380  
2
µA  
µA  
µA  
µA  
EN/UVLO  
EN/UVLO  
Sleep Mode (Switch Off)  
Active Mode (Switch On)  
l
l
l
EN/UVLO Shutdown Threshold  
EN/UVLO Enable Threshold  
EN/UVLO Enable Threshold  
EN/UVLO Enable Hysteresis  
EN/UVLO Hysteresis Current  
For Lowest Off I  
0.2  
0.75  
1.214  
1.214  
14  
V
V
Q
Falling (E, I, H, MP Grades)  
Falling (J Grade Only)  
1.178  
1.160  
1.250  
1.268  
V
mV  
I
V
V
V
= 0.3V  
= 1.1V  
= 1.3V  
–0.1  
2.3  
–0.1  
0
2.5  
0
0.1  
2.7  
0.1  
µA  
µA  
µA  
HYS  
EN/UVLO  
EN/UVLO  
EN/UVLO  
V
INTV Regulation Voltage  
I
= 0mA to 10mA  
= 2.8V  
INTVCC  
2.85  
10  
3
3.1  
20  
V
mA  
V
INTVCC  
CC  
INTVCC  
I
INTV Current Limit  
V
13  
INTVCC  
CC  
INTV UVLO Threshold  
Falling  
2.39  
2.47  
105  
2.55  
CC  
INTV UVLO Hysteresis  
mV  
mV  
V
CC  
(R – V ) Voltage  
I = 75µA to 125µA  
RFB  
–50  
0.98  
50  
FB  
REF  
REF  
IN  
l
R
R
Regulation Voltage  
1.00  
0
1.02  
0.01  
Regulation Voltage Line Regulation  
3V ≤ V ≤ 42V  
–0.01  
%/V  
V
IN  
V
TC  
TC Pin Voltage  
TC Pin Current  
1.00  
I
TC  
V
V
V
= 1.2V (LT8302)  
= 1.2V (LT8302-3)  
= 0.8V  
12  
7
15  
10  
–200  
18  
13  
µA  
µA  
µA  
TC  
TC  
TC  
f
t
t
I
I
Minimum Switching Frequency  
Minimum Switch-On Time  
Maximum Switch-Off Time  
Maximum Switch Current Limit  
Minimum Switch Current Limit  
Switch On-Resistance  
11.3  
12  
160  
170  
4.5  
0.87  
80  
12.7  
kHz  
ns  
MIN  
ON(MIN)  
OFF(MAX)  
SW(MAX)  
SW(MIN)  
Backup Timer  
µs  
3.6  
5.4  
A
0.70  
1.04  
A
R
I
SW  
= 1.5A  
= 65V  
mΩ  
µA  
ms  
DS(ON)  
LKG  
I
t
Switch Leakage Current  
Soft-Start Timer  
V
SW  
0.1  
11  
0.5  
SS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
controls. The LT8302I/LT8302I-3 is guaranteed over the full –40°C to  
125°C operating junction temperature range. The LT8302J/LT8302J-3  
and LT8302H/LT8302H-3 are guaranteed over the full –40°C to 150°C  
operating junction temperature range. The LT8302MP is guaranteed  
over the full –55°C to 150°C operating junction temperature range. High  
junction temperatures degrade operating lifetimes. Operating lifetime is  
derated at junction temperature greater than 125°C.  
Note 4: The LT8302/LT8302-3 includes overtemperature protection that  
is intended to protect the devices during momentary overload conditions.  
Junction temperature will exceed 150°C when overtemperature protection  
is active. Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 2: The SW pin is rated to 65V for transients. Depending on the  
leakage inductance voltage spike, operating waveforms of the SW pin  
should be derated to keep the flyback voltage spike below 65V as shown  
in Figure 5.  
Note 3: The LT8302E/LT8302E-3 is guaranteed to meet performance  
specifications from 0°C to 125°C junction temperature. Specifications  
over the –40°C to 125°C operating junction temperature range are  
assured by design, characterization and correlation with statistical process  
Rev. G  
3
For more information www.analog.com  
LT8302/LT8302-3  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Switching Frequency  
vs Load Current  
Output Load and Line Regulation  
Output Temperature Variation  
ꢎ.ꢒꢋ  
ꢋ.ꢒ  
ꢋ.ꢑ  
ꢋ.ꢐ  
ꢋ.ꢌ  
ꢌꢋꢋ  
ꢗꢋꢋ  
ꢖꢋꢋ  
ꢓꢋꢋ  
ꢔꢋꢋ  
ꢗRꢍꢘꢀ ꢃꢄGꢁ ꢄꢃꢃꢏꢙꢈꢄꢀꢙꢍꢘ  
ꢍRꢁꢇꢈ ꢛꢂGꢆ ꢂꢛꢛꢀꢙꢄꢂꢈꢙꢁꢇ  
ꢚ ꢐꢑꢎ  
ꢎ.ꢏꢎ  
ꢎ.ꢏꢋ  
ꢙꢘ  
ꢍꢅꢀ  
ꢚ ꢐꢄ  
ꢎ.ꢋꢎ  
ꢎ.ꢋꢋ  
ꢓ.ꢔꢎ  
ꢓ.ꢔꢋ  
ꢓ.ꢐꢎ  
R
ꢚ ꢐꢐꢋꢛ  
ꢀꢈ  
R
ꢀꢈ  
ꢚ ꢍꢃꢁꢘ  
ꢕ.ꢖ  
ꢕ.ꢔ  
ꢕ.ꢓ  
ꢖ ꢎꢍ  
ꢖ ꢏꢒꢍ  
ꢖ ꢒꢓꢍ  
ꢙꢇ  
ꢙꢇ  
ꢙꢇ  
ꢚ ꢌꢘ  
ꢚ ꢔꢓꢘ  
ꢚ ꢓꢗꢘ  
ꢕꢇ  
ꢕꢇ  
ꢕꢇ  
ꢓ.ꢐꢋ  
ꢋ.ꢎ  
ꢏ.ꢋ  
ꢒ.ꢋ  
ꢒ.ꢎ  
ꢑ.ꢋ  
ꢋꢌ  
ꢐꢌꢌ ꢐꢑꢋ ꢐꢋꢌ  
ꢏ.ꢎ  
ꢊꢋꢌ ꢊꢑꢋ  
ꢑꢋ  
ꢓꢋ  
ꢋ.ꢌ  
ꢔ.ꢋ  
ꢔ.ꢌ  
ꢓ.ꢋ  
ꢓ.ꢌ  
ꢖ.ꢋ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢐꢑꢋꢒ Gꢋꢏ  
ꢔꢒꢌꢑ Gꢌꢑ  
ꢕꢖꢋꢓ Gꢋꢖ  
Boundary Mode Waveforms  
Discontinuous Mode Waveforms  
Burst Mode Waveforms  
ꢁꢂ  
ꢁꢂ  
ꢃꢄꢀꢅꢆꢇꢀ  
ꢁꢂ  
ꢃꢄꢀꢅꢆꢇꢀ  
ꢃꢄꢀꢅꢆꢇꢀ  
ꢈꢉꢊ  
ꢈꢉꢊ  
ꢈꢉꢊ  
ꢋꢄꢌꢀꢅꢆꢇꢀ  
ꢋꢄꢌꢀꢅꢆꢇꢀ  
ꢋꢄꢌꢀꢅꢆꢇꢀ  
ꢘꢙꢄꢃ Gꢄꢚ  
ꢘꢙꢄꢃ Gꢄꢋ  
ꢘꢙꢄꢃ Gꢄꢚ  
ꢃꢍꢎꢅꢆꢇꢀ  
ꢃꢍꢎꢅꢆꢇꢀ  
ꢃꢄꢍꢎꢅꢆꢇꢀ  
ꢏRꢈꢐꢊ ꢑꢒGꢓ ꢒꢑꢑꢔꢇꢕꢒꢊꢇꢈꢐ  
ꢏRꢈꢐꢊ ꢑꢒGꢓ ꢒꢑꢑꢔꢇꢕꢒꢊꢇꢈꢐ  
ꢏRꢈꢐꢊ ꢑꢒGꢓ ꢒꢑꢑꢔꢇꢕꢒꢊꢇꢈꢐ  
ꢖ ꢗꢃꢀ  
ꢖ ꢗꢃꢀ  
ꢖ ꢗꢃꢀ  
ꢇꢐ  
ꢇꢐ  
ꢇꢐ  
ꢖ ꢃꢒ  
ꢖ ꢄ.ꢋꢒ  
ꢖ ꢗꢄꢌꢒ  
ꢈꢉꢊ  
ꢈꢉꢊ  
ꢈꢉꢊ  
VIN Quiescent Current,  
Sleep Mode  
VIN Quiescent Current,  
Active Mode  
VIN Shutdown Current  
ꢋꢎꢅ  
ꢋꢍꢅ  
ꢋꢌꢅ  
ꢋꢅꢅ  
ꢉꢊꢅ  
ꢉꢎꢅ  
ꢉꢋꢅ  
ꢉꢌꢅ  
ꢋꢅ  
ꢓ ꢋꢐꢅꢔꢕ  
ꢓ ꢎꢐꢔꢕ  
ꢓ ꢏꢐꢅꢔꢕ  
ꢒ ꢋꢏꢅꢓꢔ  
ꢓ ꢖꢐꢐꢔꢕ  
ꢋꢌꢅ  
ꢋꢋꢅ  
ꢓ ꢌꢐꢔꢕ  
ꢒ ꢌꢏꢓꢔ  
ꢓ ꢖꢐꢐꢔꢕ  
ꢒ ꢕꢏꢏꢓꢔ  
ꢋꢅꢅ  
ꢊꢅ  
ꢆꢅ  
ꢋꢅ  
ꢌꢅ  
ꢍꢅ  
ꢎꢅ  
ꢏꢅ  
ꢏꢅ  
ꢌꢅ  
ꢉꢅ  
ꢋꢅ  
ꢐꢅ  
ꢋꢅ  
ꢎꢅ  
ꢍꢅ  
ꢃꢀꢄ  
ꢌꢅ  
ꢐꢅ  
ꢃꢀꢄ  
ꢃꢀꢄ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢆꢍꢅꢌ Gꢅꢆ  
ꢊꢉꢅꢌ Gꢅꢍ  
ꢊꢍꢅꢎ Gꢅꢏ  
Rev. G  
4
For more information www.analog.com  
LT8302/LT8302-3  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
EN/UVLO Enable Threshold  
EN/UVLO Hysteresis Current  
INTVCC Voltage vs Temperature  
ꢒ.ꢓꢗꢌ  
ꢒ.ꢓꢔꢋ  
ꢒ.ꢓꢔꢌ  
ꢒ.ꢓꢓꢋ  
ꢒ.ꢓꢓꢌ  
ꢒ.ꢓꢒꢋ  
ꢒ.ꢓꢒꢌ  
ꢒ.ꢓꢌꢋ  
ꢒ.ꢓꢌꢌ  
ꢓ.ꢔꢌ  
ꢓ.ꢌꢋ  
ꢓ.ꢌꢌ  
ꢍ.ꢒꢋ  
ꢍ.ꢒꢌ  
ꢍ.ꢎꢋ  
ꢍ.ꢎꢌ  
RꢘꢙꢘꢎG  
ꢖ ꢌꢗꢄ  
ꢐꢑꢀꢏꢈꢈ  
ꢖ ꢔꢌꢗꢄ  
ꢐꢑꢀꢏꢈꢈ  
ꢚꢄꢐꢐꢘꢎG  
ꢋꢌ ꢖꢋ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢊꢋꢌ ꢊꢓꢋ  
ꢓꢋ  
ꢒꢌꢌ ꢒꢓꢋ ꢒꢋꢌ  
ꢕꢋ ꢔꢌꢌ  
ꢔꢍꢋ ꢔꢋꢌ  
ꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ ꢋꢌ  
ꢊꢋꢌ ꢊꢔꢋ  
ꢔꢋ  
ꢕꢋ ꢖꢌꢌ ꢖꢔꢋ ꢖꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢕꢔꢌꢓ Gꢒꢌ  
ꢗꢒꢌꢔ Gꢖꢖ  
ꢎꢓꢌꢍ Gꢔꢍ  
INTVCC Voltage vs VIN  
INTVCC UVLO Threshold  
(RFB-VIN) Voltage  
ꢊ.ꢎꢋ  
ꢊ.ꢋꢅ  
ꢊ.ꢋꢋ  
ꢈ.ꢉꢅ  
ꢈ.ꢉꢋ  
ꢈ.ꢍꢅ  
ꢈ.ꢍꢋ  
ꢍ.ꢕ  
ꢍ.ꢖ  
ꢍ.ꢓ  
ꢍ.ꢋ  
ꢍ.ꢒ  
ꢍ.ꢑ  
ꢍ.ꢍ  
ꢕꢌ  
ꢔꢌ  
ꢚ ꢒꢑꢋꢛꢄ  
Rꢘꢙ  
ꢑꢌ  
ꢏ ꢋꢐꢑ  
RꢏꢙꢏꢐG  
ꢁꢂꢆꢀꢇꢇ  
ꢒꢌ  
ꢚ ꢒꢌꢌꢛꢄ  
Rꢘꢙ  
ꢗꢄꢘꢘꢏꢐG  
ꢏ ꢎꢋꢐꢑ  
ꢁꢂꢆꢀꢇꢇ  
ꢊꢒꢌ  
ꢊꢑꢌ  
ꢊꢔꢌ  
ꢊꢕꢌ  
ꢚ ꢖꢋꢛꢄ  
Rꢘꢙ  
ꢖꢋ ꢔꢌꢌ  
ꢎꢋ ꢎꢅ  
ꢌꢅ  
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ ꢋꢌ  
ꢔꢍꢋ ꢔꢋꢌ  
ꢋꢌ ꢖꢋ  
ꢈꢋ ꢈꢅ ꢊꢋ ꢊꢅ ꢌꢋ  
ꢃꢀꢄ  
ꢊꢋꢌ ꢊꢑꢋ  
ꢑꢋ  
ꢒꢌꢌ ꢒꢑꢋ  
ꢒꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢁꢂ  
ꢍꢊꢋꢈ Gꢎꢊ  
ꢕꢑꢌꢍ Gꢔꢒ  
ꢓꢔꢌꢑ Gꢒꢋ  
RREF Regulation Voltage  
RREF Line Regulation  
TC Pin Voltage  
ꢓ.ꢌꢓꢌ  
ꢓ.ꢌꢌꢒ  
ꢓ.ꢌꢌꢑ  
ꢓ.ꢌꢌꢔ  
ꢓ.ꢌꢌꢐ  
ꢓ.ꢌꢌꢌ  
ꢌ.ꢍꢍꢒ  
ꢌ.ꢍꢍꢑ  
ꢌ.ꢍꢍꢔ  
ꢌ.ꢍꢍꢐ  
ꢌ.ꢍꢍꢌ  
ꢈ.ꢅꢈꢅ  
ꢈ.ꢅꢅꢌ  
ꢈ.ꢅꢅꢊ  
ꢈ.ꢅꢅꢋ  
ꢈ.ꢅꢅꢉ  
ꢈ.ꢅꢅꢅ  
ꢅ.ꢏꢏꢌ  
ꢅ.ꢏꢏꢊ  
ꢅ.ꢏꢏꢋ  
ꢅ.ꢏꢏꢉ  
ꢅ.ꢏꢏꢅ  
ꢎ.ꢋ  
ꢎ.ꢔ  
ꢎ.ꢏ  
ꢎ.ꢑ  
ꢎ.ꢎ  
ꢎ.ꢌ  
ꢌ.ꢒ  
ꢌ.ꢐ  
ꢌ.ꢓ  
ꢊꢋꢌ  
ꢋꢌ  
ꢓꢌꢌ ꢓꢐꢋ  
ꢈꢅ  
ꢍꢅ  
ꢃꢀꢄ  
ꢋꢅ  
ꢐꢅ  
ꢋꢌ ꢓꢋ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢊꢐꢋ  
ꢐꢋ  
ꢕꢋ  
ꢓꢋꢌ  
ꢉꢅ  
ꢊꢋꢌ ꢊꢑꢋ  
ꢑꢋ  
ꢎꢌꢌ ꢎꢑꢋ ꢎꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢁꢂ  
ꢒꢖꢌꢐ Gꢓꢑ  
ꢌꢍꢅꢉ Gꢈꢎ  
ꢐꢏꢌꢑ Gꢎꢐ  
Rev. G  
5
For more information www.analog.com  
LT8302/LT8302-3  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
RDS(ON)  
Switch Current Limit  
Maximum Switching Frequency  
200  
ꢋꢌꢌ  
ꢂꢄꢖꢍꢂꢅꢂ ꢈꢅRRꢁꢗꢀ ꢘꢍꢂꢍꢀ  
160  
120  
ꢕꢌꢌ  
ꢔꢌꢌ  
80  
40  
0
ꢖꢌꢌ  
ꢘꢌꢌ  
ꢂꢍꢗꢍꢂꢅꢂ ꢈꢅRRꢁꢗꢀ ꢘꢍꢂꢍꢀ  
50  
TEMPERATURE (°C)  
ꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
–50 –25  
0
25  
75 100 125 150  
ꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢊꢋꢌ ꢊꢖꢋ  
ꢖꢋ  
ꢗꢋ ꢘꢌꢌ ꢘꢖꢋ ꢘꢋꢌ  
ꢊꢋꢌ ꢊꢒꢋ  
ꢒꢋ  
ꢓꢋ ꢔꢌꢌ ꢔꢒꢋ ꢔꢋꢌ  
8302 G19  
ꢙꢔꢌꢖ Gꢖꢘ  
ꢕꢐꢌꢒ Gꢒꢌ  
Minimum Switching Frequency  
Minimum Switch-On Time  
Minimum Switch-Off Time  
ꢕꢌ  
400  
300  
200  
100  
400  
300  
200  
100  
ꢔꢖ  
ꢔꢕ  
0
0
ꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢊꢋꢌ ꢊꢕꢋ  
ꢕꢋ  
ꢗꢋ ꢔꢌꢌ ꢔꢕꢋ ꢔꢋꢌ  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
ꢘꢙꢌꢕ Gꢕꢕ  
8302 G23  
8302 G24  
Rev. G  
6
For more information www.analog.com  
LT8302/LT8302-3  
PIN FUNCTIONS  
EN/UVLO (Pin 1): Enable/Undervoltage Lockout. The  
EN/UVLO pin is used to enable the LT8302/LT8302-3.  
Pull the pin below 0.3V to shut down the LT8302/LT8302-  
3. This pin has an accurate 1.214V threshold and can  
SW (Pin 5): Drain of the Internal DMOS Power Switch.  
Minimize trace area at this pin to reduce EMI and voltage  
spikes.  
RFB (Pin 6): Input Pin for External Feedback Resistor.  
be used to program a V undervoltage lockout (UVLO)  
IN  
Connect a resistor from this pin to the transformer pri-  
threshold using a resistor divider from V to ground. A  
IN  
mary SW pin. The ratio of the R resistor to the R  
FB  
REF  
2.5µA current hysteresis allows the programming of V  
IN  
resistor, times the internal voltage reference, determines  
the output voltage (plus the effect of any non-unity trans-  
former turns ratio). Minimize trace area at this pin.  
UVLO hysteresis. If neither function is used, tie this pin  
directly to V .  
IN  
INTV (Pin 2): Internal 3V Linear Regulator Output. The  
CC  
RREF (Pin 7): Input Pin for External Ground Referred  
Reference Resistor. The resistor at this pin should be in  
the range of 10k, but for convenience in selecting a resis-  
tor divider ratio, the value may range from 9.09k to 11.0k.  
INTV pin is supplied from VIN and powers the inter-  
CC  
nal control circuitry and gate driver. Do not overdrive the  
INTV pin with any external supply, such as a third wind-  
CC  
ing supply. Locally bypass this pin to ground with a mini-  
TC (Pin 8): Output Voltage Temperature Compensation.  
The voltage at this pin is proportional to absolute tem-  
perature (PTAT) with temperature coefficient equal to  
3.35mV/°K, i.e., equal to 1V at room temperature 25°C.  
The TC pin voltage can be used to estimate the LT8302/  
LT8302-3 junction temperature. Connect a resistor from  
mum 1µF ceramic capacitor.  
V (Pin 3): Input Supply. The V pin supplies current to  
IN  
IN  
the internal circuitry and serves as a reference voltage for  
the feedback circuitry connected to the R pin. Locally  
FB  
bypass this pin to ground with a capacitor.  
GND (Pin 4, Exposed Pad Pin 9): Ground. The exposed  
pad provides both electrical contact to ground and good  
thermal contact to the printed circuit board. Solder the  
exposed pad directly to the ground plane.  
this pin to the R  
pin to compensate the output diode  
REF  
temperature coefficient.  
Rev. G  
7
For more information www.analog.com  
LT8302/LT8302-3  
BLOCK DIAGRAM  
ꢗꢙꢊ  
ꢊꢌ  
ꢉꢍꢌ  
ꢗꢙꢊ  
ꢗꢙꢊ  
ꢗꢙꢊ  
ꢆꢉ  
ꢆꢉ  
ꢘꢌꢎ  
ꢘꢌꢑ  
R
ꢒꢑ  
R
ꢏꢣ  
ꢆꢉ  
ꢒꢑ  
ꢆꢉꢊꢇ  
ꢋꢋ  
ꢆꢉ  
ꢘꢅꢗ  
ꢌꢍꢕ  
ꢆꢉꢊꢇꢋꢋ  
ꢖꢂ  
ꢖꢃ  
ꢏꢊꢎRꢊꢛꢙ ꢝ  
RꢈꢒꢈRꢈꢉꢋꢈꢝ  
ꢋꢗꢉꢊRꢗꢘ  
ꢑꢗꢙꢉꢅꢎRꢚ  
ꢅꢈꢊꢈꢋꢊꢗR  
ꢃꢢꢤꢎ  
R
ꢗꢏꢋꢆꢘꢘꢎꢊꢗR  
ꢈꢉꢌ  
ꢈꢉꢃ  
ꢆꢉꢊꢇ  
ꢋꢋ  
ꢈꢉꢥꢙꢇꢘꢗ  
ꢌ.ꢃꢌꢕꢇ  
R
R
ꢖꢌ  
ꢎꢂ  
ꢌꢇ  
ꢅRꢆꢇꢈR  
ꢎꢌ  
ꢃ.ꢢꢤꢎ  
ꢜꢊꢎꢊ  
ꢇꢗGꢈ  
ꢖꢕ  
ꢎꢃ  
R
ꢏꢈꢉꢏꢈ  
Gꢉꢅ  
ꢕꢝ ꢈꢞꢜꢗꢏꢈꢅ ꢜꢎꢅ ꢜꢆꢉ ꢟ  
R
ꢊꢋ  
Rꢈꢒ  
R
ꢊꢋ  
ꢄꢂꢐꢃ ꢑꢅ  
R
Rꢈꢒ  
Rev. G  
8
For more information www.analog.com  
LT8302/LT8302-3  
OPERATION  
The LT8302/LT8302-3 is a current mode switching regula-  
tor IC designed specially for the isolated flyback topology.  
The key problem in isolated topologies is how to commu-  
nicate the output voltage information from the isolated  
secondary side of the transformer to the primary side  
for regulation. Historically, opto-isolators or extra trans-  
former windings communicate this information across  
the isolation boundary. Opto-isolator circuits waste output  
power, and the extra components increase the cost and  
physical size of the power supply. Opto-isolators can also  
cause system issues due to limited dynamic response,  
nonlinearity, unit-to-unit variation and aging over life-  
time. Circuits employing extra transformer windings also  
exhibit deficiencies, as using an extra winding adds to  
the transformer’s physical size and cost, and dynamic  
response is often mediocre.  
provides easy output diode temperature compensation.  
By integrating the loop compensation and soft-start  
inside, the part reduces the number of external compo-  
nents. As shown in the Block Diagram, many of the blocks  
are similar to those found in traditional switching reg-  
ulators including reference, regulators, oscillator, logic,  
current amplifier, current comparator, driver, and power  
switch. The novel sections include a flyback pulse sense  
circuit, a sample-and-hold error amplifier, and a boundary  
mode detector, as well as the additional logic for boundary  
conduction mode, discontinuous conduction mode, and  
low ripple Burst Mode operation.  
Quasi-Resonant Boundary Mode Operation  
The LT8302/LT8302-3 features quasi-resonant bound-  
ary conduction mode operation at heavy load, where  
the chip turns on the primary power switch when the  
secondary current is zero and the SW rings to its valley.  
Boundary conduction mode is a variable frequency, vari-  
able peak-current switching scheme. The power switch  
turns on and the transformer primary current increases  
until an internally controlled peak current limit. After the  
power switch turns off, the voltage on the SW pin rises to  
the output voltage multiplied by the primary-to-secondary  
transformer turns ratio plus the input voltage. When the  
secondary current through the output diode falls to zero,  
the SW pin voltage collapses and rings around VIN. A  
boundary mode detector senses this event and turns the  
power switch back on at its valley.  
The LT8302/LT8302-3 samples the isolated output voltage  
through the primary-side flyback pulse waveform. In this  
manner, neither opto-isolator nor extra transformer wind-  
ing is required for regulation. Since the LT8302/LT8302-3  
operates in either boundary conduction mode or discon-  
tinuous conduction mode, the output voltage is always  
sampled on the SW pin when the secondary current is  
zero. This method improves load regulation without the  
need of external load compensation components.  
The LT8302/LT8302-3 is a simple to use micropower iso-  
lated flyback converter housed in a thermally enhanced  
8-lead SO package. The output voltage is programmed  
with two external resistors. An optional TC resistor  
Rev. G  
9
For more information www.analog.com  
LT8302/LT8302-3  
OPERATION  
Boundary conduction mode returns the secondary current  
to zero every cycle, so parasitic resistive voltage drops  
do not cause load regulation errors. Boundary conduc-  
tion mode also allows the use of smaller transformers  
compared to continuous conduction mode and does not  
exhibit subharmonic oscillation.  
minimum switch current limit and minimum switch-off  
time are necessary to guarantee the correct operation of  
specific applications.  
As the load gets very light, the LT8302/LT8302-3 starts to  
fold back the switching frequency while keeping the min-  
imum switch current limit. So the load current is able to  
decrease while still allowing minimum switch-off time for  
the sample-and-hold error amplifier. Meanwhile, the part  
switches between sleep mode and active mode, thereby  
reducing the effective quiescent current to improve light  
load efficiency. In this condition, the LT8302/LT8302-3  
runs in low ripple Burst Mode operation. The typical  
12kHz minimum switching frequency determines how  
often the output voltage is sampled and also the mini-  
mum load requirement.  
Discontinuous Conduction Mode Operation  
As the load gets lighter, boundary conduction mode  
increases the switching frequency and decreases the  
switch peak current at the same ratio. Running at a higher  
switching frequency up to several MHz increases switch-  
ing and gate charge losses. To avoid this scenario, the  
LT8302/LT8302-3 has an additional internal oscillator,  
which clamps the maximum switching frequency to be  
less than 380kHz. Once the switching frequency hits the  
internal frequency clamp, the part starts to delay the switch  
turn-on and operates in discontinuous conduction mode.  
Difference Between LT8302 and LT8302-3  
The difference between LT8302 and LT8302-3 is  
the boundary detection method. The LT8302 is using the  
dv/dt slope on R pin, while the LT8302-3 is using the  
Low Ripple Burst Mode Operation  
voltage level onRREF pin. For good transformers with  
Unlike traditional flyback converters, the LT8302/  
LT8302-3 has to turn on and off at least for a minimum  
amount of time and with a minimum frequency to allow  
accurate sampling of the output voltage. The inherent  
REF  
low leakage inductance, both the LT8302 and LT8302-3  
are behaving the same. The LT8302-3 is recommended  
for multiple-winding output applications due to its lower  
sensitivity to the noise on R pin.  
REF  
Rev. G  
10  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
Output Voltage  
Combination with the previous V  
equation yields an  
FLBK  
equation for V , in terms of the R and R resistors,  
OUT  
FB  
REF  
The RFB and RREF resistors as depicted in the Block  
Diagram are external resistors used to program the out-  
put voltage. The LT8302/LT8302-3 operates similar to  
traditional current mode switchers, except in the use of a  
unique flyback pulse sense circuit and a sample-and-hold  
error amplifier, which sample and therefore regulate the  
isolated output voltage from the flyback pulse.  
transformer turns ratio, and diode forward voltage:  
RFB  
1
N
PS  
VOUT = VREF  
– V  
F
R
REF  
Output Temperature Compensation  
The first term in the V  
equation does not have tem-  
perature dependence,OUbTut the output diode forward  
Operation is as follows: when the power switch M1 turns  
off, the SW pin voltage rises above the V supply. The  
IN  
voltage, V , has a significant negative temperature coef-  
F
amplitude of the flyback pulse, i.e., the difference between  
ficient (–1mV/°C to –2mV/°C). Such a negative tem-  
perature coefficient produces approximately 200mV to  
300mV voltage variation on the output voltage across  
temperature.  
the SW pin voltage and V supply, is given as:  
IN  
V
FLBK  
= (V  
+ V + I  
• ESR) • N  
SEC PS  
OUT  
F
V = Output diode forward voltage  
F
I
= Transformer secondary current  
For higher voltage outputs, such as 12V and 24V, the  
output diode temperature coefficient has a negligible  
effect on the output voltage regulation. For lower voltage  
outputs, such as 3.3V and 5V, however, the output diode  
temperature coefficient does count for an extra 2% to 5%  
output voltage regulation.  
SEC  
ESR = Total impedance of secondary circuit  
NPS = Transformer effective primary-to-secondary  
turns ratio  
The flyback voltage is then converted to a current, I  
by the RFB resistor and the flyback pulse sense cirRcFuBit  
(M2 and M3). This current, I , also flows through the  
REF  
resulting voltage feeds to the inverting input of the sam-  
ple-and-hold error amplifier. Since the sample-and-hold  
error amplifier samples the voltage when the secondary  
current is zero, the (ISEC • ESR) term in the VFLBK equation  
can be assumed to be zero.  
,
The LT8302/LT8302-3 junction temperature usually tracks  
the output diode junction temperature to the first order.  
To compensate the negative temperature coefficient of the  
RFB  
R
resistor to generate a ground-referred voltage. The  
output diode, a resistor, R , connected between the TC  
TC  
and R pins generates a proportional-to-absolute-tem-  
REF  
perature (PTAT) current. The PTAT current is zero at 25°C,  
flows into the R pin at hot temperature, and flows out  
REF  
of the R pin at cold temperature. With the R resistor  
REF  
TC  
The internal reference voltage, V , 1.00V, feeds to the  
in place, the output voltage equation is revised as follows:  
REF  
noninverting input of the sample-and-hold error amplifier.  
RFB  
RREF  
1
NPS  
The relatively high gain in the overall loop causes the  
VOUT = VREF  
– V TO – V / T •  
) (  
(
)
F
TC  
voltage at the R  
pin to be nearly equal to the internal  
REF  
reference voltage V . The resulting relationship between  
REF  
RFB  
RTC  
1
NPS  
V
and V can be expressed as:  
TTO •  
– V / T T–TO  
F
FLBK  
REF  
(
)
(
(
)
)
VFLBK  
RFB  
•RREF = VREF or  
TO=Room temperature 25°C  
V / T =Output diode forward voltage  
(
(
)
F
temperature coefficient  
RFB  
V
FLBK = VREF  
°
V / T = 3.35mV/ C  
)
R
TC  
REF  
V
REF  
= Internal reference voltage 1.00V  
Rev. G  
11  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
To cancel the output diode temperature coefficient, the  
following two equations should be satisfied:  
First, build and power up the application with the starting  
, R values (no R resistor yet) and other com-  
R
REF  
FB  
TC  
ponents connected, and measure the regulated output  
RFB  
RREF  
1
NPS  
voltage, V  
to:  
. The new R value can be adjusted  
VOUT = VREF  
V / T •  
– V TO  
F
OUT(MEAS)  
FB  
(
)
VOUT  
VOUT(MEAS)  
RFB  
RTC  
1
RFB(NEW)  
=
•RFB  
= – V / T  
(
)
(
)
F
TC  
NPS  
Second, with a new RFB resistor value selected, the output  
diode temperature coefficient in the application can be  
Selecting Actual R , R , R Resistor Values  
REF FB TC  
The LT8302/LT8302-3 uses a unique sampling scheme  
to regulate the isolated output voltage. Due to the sam-  
pling nature, the scheme contains repeatable delays and  
error sources, which will affect the output voltage and  
force a re-evaluation of the R and R resistor values.  
tested to determine the R value. Still without the R  
TC  
TC  
resistor, the V  
should be measured over temperature  
OUT  
at a desired target output load. It is very important for this  
evaluation that uniform temperature be applied to both the  
output diode and the LT8302/LT8302-3. If freeze spray or  
a heat gun is used, there can be a significant mismatch  
in temperature between the two devices that causes sig-  
nificant error. Attempting to extrapolate the data from a  
diode data sheet is another option if there is no method  
to apply uniform heating or cooling such as an oven. With  
at least two data points spreading across the operating  
temperature range, the output diode temperature coeffi-  
cient can be determined by:  
FB  
TC  
Therefore, a simple 2-step sequential process is recom-  
mended for selecting resistor values.  
Rearrangement of the expression for VOUT in the previous  
sections yields the starting value for R :  
FB  
RREF N V + V TO  
( )  
(
)
F
PS  
OUT  
RFB =  
VREF  
V
= Output voltage  
OUT  
V
T1 – V  
T1T2  
T2  
OUT ( ) OUT ( )  
δV /δT =  
(
)
VF (TO) = Output diode forward voltage at 25°C = ~0.3V  
F
NPS = Transformer effective primary-to-secondary  
turns ratio  
Using the measured output diode temperature coefficient,  
an exact RTC value can be selected with the following  
equation:  
The equation shows that the R resistor value is indepen-  
dent of the R resistor value. FABny R resistor connected  
TC  
between the TTCC and R pins has no effect on the output  
(
)
)
RFB  
δV /δT  
TC  
REF  
RTC  
=
voltage setting at 25°C because the TC pin voltage is equal  
δV /δT  
N
(
F
PS  
to the R regulation voltage at 25°C.  
REF  
Once the R , R , and R values are selected, the reg-  
REF FB  
TC  
The RREF resistor value should be approximately 10k  
because the LT8302/LT8302-3 is trimmed and specified  
ulation accuracy from board to board for a given appli-  
cation will be very consistent, typically under 5% when  
including device variation of all the components in the  
system (assuming resistor tolerances and transformer  
windings matching within 1%). However, if the trans-  
former or the output diode is changed, or the layout is  
using this value. If the R resistor value varies consid-  
REF  
erably from 10k, additional errors will result. However, a  
variation in R  
up to 10% is acceptable. This yields a  
REF  
bit of freedom in selecting standard 1% resistor values  
to yield nominal R /R ratios.  
FB REF  
dramatically altered, there may be some change in V  
.
OUT  
Rev. G  
12  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
Output Power  
5V, 12V, and 24V. The maximum output power curve is  
the calculated output power if the switch voltage is 50V  
during the switch-off time. 15V of margin is left for leak-  
age inductance voltage spike. To achieve this power level  
at a given input, a winding ratio value must be calculated  
to stress the switch to 50V, resulting in some odd ratio  
values. The curves below the maximum output power  
curve are examples of common winding ratio values and  
the amount of output power at given input voltages.  
A flyback converter has a complicated relationship between  
the input and output currents compared to a buck or a  
boost converter. A boost converter has a relatively constant  
maximum input current regardless of input voltage and a  
buck converter has a relatively constant maximum out-  
put current regardless of input voltage. This is due to the  
continuous non-switching behavior of the two currents. A  
flyback converter has both discontinuous input and out-  
put currents which make it similar to a nonisolated buck-  
boost converter. The duty cycle will affect the input and  
output currents, making it hard to predict output power. In  
addition, the winding ratio can be changed to multiply the  
output current at the expense of a higher switch voltage.  
One design example would be a 5V output converter with  
a minimum input voltage of 8V and a maximum input  
voltage of 32V. A three-to-one winding ratio fits this  
design example perfectly and outputs equal to 15.3W at  
32V but lowers to 7.7W at 8V.  
The graphs in Figure 1 to Figure 4 show the typical maxi-  
mum output power possible for the output voltages 3.3V,  
ꢓꢌ  
ꢓꢌ  
ꢗꢈꢘꢀꢗꢃꢗ  
ꢆꢃꢄꢂꢃꢄ ꢂꢆꢍꢉR  
ꢘꢈꢙꢀꢘꢃꢘ  
ꢆꢃꢄꢂꢃꢄ ꢂꢆꢍꢉR  
ꢁ ꢕ ꢓꢖꢎ  
ꢎꢏ  
ꢎꢏ  
ꢎꢌ  
ꢁ ꢕ ꢖꢗꢎ  
ꢁ ꢕ ꢒꢖꢓ  
ꢁ ꢕ ꢎꢖꢎ  
ꢁ ꢕ ꢎꢖꢓ  
ꢁ ꢕ ꢐꢗꢎ  
ꢁ ꢕ ꢒꢗꢎ  
ꢎꢌ  
ꢁ ꢕ ꢓꢗꢎ  
ꢎꢌ  
ꢓꢌ  
ꢒꢌ  
ꢐꢌ  
ꢎꢌ  
ꢓꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢄꢈGꢉ ꢊꢅꢋ  
ꢒꢌ  
ꢐꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢄꢈGꢉ ꢊꢅꢋ  
ꢑꢒꢌꢓ ꢔꢌꢎ  
ꢑꢒꢌꢓ ꢔꢌꢒ  
Figure 1. Output Power for 3.3V Output  
Figure 3. Output Power for 12V Output  
ꢓꢌ  
ꢓꢌ  
ꢕꢈꢖꢀꢕꢃꢕ  
ꢆꢃꢄꢂꢃꢄ ꢂꢆꢍꢉR  
ꢗꢈꢘꢀꢗꢃꢗ  
ꢆꢃꢄꢂꢃꢄ ꢂꢆꢍꢉR  
ꢁ ꢕ ꢎꢖꢎ  
ꢁ ꢗ ꢐꢘꢎ  
ꢁ ꢗ ꢒꢘꢎ  
ꢁ ꢗ ꢓꢘꢎ  
ꢎꢏ  
ꢎꢌ  
ꢎꢏ  
ꢎꢌ  
ꢁ ꢕ ꢓꢖꢒ  
ꢁ ꢕ ꢎꢖꢓ  
ꢁ ꢕ ꢎꢖꢒ  
ꢁ ꢗ ꢎꢘꢎ  
ꢎꢌ  
ꢓꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢄꢈGꢉ ꢊꢅꢋ  
ꢒꢌ  
ꢎꢌ  
ꢓꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢄꢈGꢉ ꢊꢅꢋ  
ꢒꢌ  
ꢐꢌ  
ꢐꢌ  
ꢑꢒꢌꢓ ꢔꢌꢓ  
ꢑꢒꢌꢓ ꢔꢌꢐ  
Figure 2. Output Power for 5V Output  
Figure 4. Output Power for 24V Output  
Rev. G  
13  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
The equations below calculate output power:  
the power switch shorter than approximately 160ns. This  
minimum switch-on time is mainly for leading-edge blank-  
ing the initial switch turn-on current spike. If the inductor  
current exceeds the desired current limit during that time,  
oscillation may occur at the output as the current control  
loop will lose its ability to regulate. Therefore, the following  
equation relating to maximum input voltage must also be  
followed in selecting primary-side magnetizing inductance:  
P
OUT  
= η • V • D • I  
• 0.5  
IN  
SW(MAX)  
ꢀ η = Efficiency = ~85%  
V
+V •N  
)
F
PS  
(
OUT  
D=Duty Cycle=  
V
+V •N +V  
)
F IN  
PS  
(
OUT  
ISW(MAX) = Maximum switch current limit = 3.6A (MIN)  
tON(MIN) V  
IN(MAX)  
LPRI  
Primary Inductance Requirement  
ISW(MIN)  
The LT8302/LT8302-3 obtains output voltage information  
from the reflected output voltage on the SW pin. The con-  
duction of secondary current reflects the output voltage on  
the primary SW pin. The sample-and-hold error amplifier  
needs a minimum 350ns to settle and sample the reflected  
output voltage. In order to ensure proper sampling, the  
secondary winding needs to conduct current for a mini-  
mum of 350ns. The following equation gives the minimum  
value for primary-side magnetizing inductance:  
t
= Minimum switch-on time = 160ns (TYP)  
ON(MIN)  
In general, choose a transformer with its primary mag-  
netizing inductance about 40% to 60% larger than the  
minimum values calculated above. A transformer with  
much larger inductance will have a bigger physical size  
and may cause instability at light load.  
Selecting a Transformer  
Transformer specification and design is perhaps the most  
critical part of successfully applying the LT8302/LT8302-  
3. In addition to the usual list of guidelines dealing with  
high frequency isolated power supply transformer design,  
the following information should be carefully considered.  
tOFF(MIN) •N • V +V  
(
)
F
PS  
OUT  
LPRI  
ISW(MIN)  
t
= Minimum switch-off time = 350ns (TYP)  
= Minimum switch current limit = 0.87A (TYP)  
OFF(MIN)  
I
SW(MIN)  
Analog Devices has worked with several leading magnetic  
component manufacturers to produce pre-designed fly-  
back transformers for use with the LT8302/LT8302-3.  
Table 1 shows the details of these transformers.  
In addition to the primary inductance requirement for the  
minimum switch-off time, the LT8302/LT8302-3 has mini-  
mum switch-on time that prevents the chip from turning on  
Table 1. Predesigned Transformers–Typical Specifications  
TARGET APPLICATION  
TRANSFORMER  
PART NUMBER  
DIMENSIONS  
L
L
R
R
SEC  
PRI  
LKG  
PRI  
(W × L × H) (mm)  
(µH)  
(µH)  
0.35  
0.12  
0.6  
N :N  
(mΩ) (mΩ) VENDOR  
V
(V)  
V
(V)  
I
(A)  
OUT  
P
S
IN  
OUT  
750311625  
750311564  
750313441  
750311624  
12387-TO79  
750313445  
750313457  
750313460  
750311342  
750313439  
750313442  
17.75 × 13.46 × 12.70  
17.75 × 13.46 × 12.70  
15.24 × 13.34 x 11.43  
17.75 × 13.46 × 12.70  
15.5 × 12.5 × 11.5  
15.24 × 13.34 × 11.43  
15.24 × 13.34 × 11.43  
15.24 × 13.34 × 11.43  
15.24 × 13.34 × 11.43  
15.24 × 13.34 × 11.43  
15.24 × 13.34 × 11.43  
9
4:1  
3:1  
2:1  
3:2  
43  
36  
6
Wurth Elektronik  
Wurth Elektronik  
Wurth Elektronik  
Wurth Elektronik  
Sumida  
8 to 32  
8 to 32  
8 to 32  
8 to 32  
8 to 36  
8 to 36  
8 to 36  
4 to 18  
4 to 18  
18 to 42  
18 to 42  
3.3  
2.1  
9
7
5
5
8
1.5  
1.3  
0.9  
0.3  
0.3  
0.15  
0.9  
0.4  
2.1  
1.6  
9
75  
18  
21  
90  
9
0.18  
0.5  
34  
9
1:1:1  
1:2  
1:4  
4:1  
2:1  
2:1  
3:2  
55  
12  
24  
48  
5
9
0.25  
0.25  
0.7  
85  
190 Wurth Elektronik  
770 Wurth Elektronik  
9
85  
12  
15  
12  
12  
85  
11  
22  
28  
53  
Wurth Elektronik  
Wurth Elektronik  
Wurth Elektronik  
Wurth Elektronik  
0.44  
0.6  
85  
12  
3.3  
5
115  
150  
0.75  
Rev. G  
14  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
Turns Ratio  
The turns ratio is an important element in the isolated  
feedback scheme, and directly affects the output voltage  
accuracy. Make sure the transformer manufacturer spec-  
ifies turns ratio accuracy within 1%.  
Note that when choosing an R /R resistor ratio to set  
FB REF  
output voltage, the user has relative freedom in selecting  
a transformer turns ratio to suit a given application. In  
contrast, the use of simple ratios of small integers, e.g.,  
3:1, 2:1, 1:1, etc., provides more freedom in settling total  
turns and mutual inductance.  
Saturation Current  
The current in the transformer windings should not exceed  
its rated saturation current. Energy injected once the core  
is saturated will not be transferred to the secondary and  
will instead be dissipated in the core. When designing  
custom transformers to be used with the LT8302/LT8302-  
3, the saturation current should always be specified by  
the transformer manufacturers.  
Typically, choose the transformer turns ratio to maximize  
available output power. For low output voltages (3.3V  
or 5V), a N:1 turns ratio can be used with multiple pri-  
mary windings relative to the secondary to maximize the  
transformer’s current gain (and output power). However,  
remember that the SW pin sees a voltage that is equal  
to the maximum input supply voltage plus the output  
voltage multiplied by the turns ratio. In addition, leakage  
inductance will cause a voltage spike (VLEAKAGE) on top of  
this reflected voltage. This total quantity needs to remain  
below the 65V absolute maximum rating of the SW pin to  
prevent breakdown of the internal power switch. Together  
these conditions place an upper limit on the turns ratio,  
NPS, for a given application. Choose a turns ratio low  
enough to ensure  
Winding Resistance  
Resistance in either the primary or secondary windings  
will reduce overall power efficiency. Good output voltage  
regulation will be maintained independent of winding  
resistance due to the boundary/discontinuous conduction  
mode operation of the LT8302/LT8302-3.  
Leakage Inductance and Snubbers  
Transformer leakage inductance on either the primary  
or secondary causes a voltage spike to appear on the  
primary after the power switch turns off. This spike is  
increasingly prominent at higher load currents where  
more stored energy must be dissipated. It is very import-  
ant to minimize transformer leakage inductance.  
65V – VIN(MAX) VLEAKAGE  
NPS <  
VOUT +VF  
For larger N:1 values, choose a transformer with a larger  
physical size to deliver additional current. In addition,  
choose a large enough inductance value to ensure that  
the switch-off time is long enough to accurately sample  
the output voltage.  
When designing an application, adequate margin should  
be kept for the worst-case leakage voltage spikes even  
under overload conditions. In most cases shown in  
Figure 5, the reflected output voltage on the primary plus  
For lower output power levels, choose a 1:1 or 1:N trans-  
former for the absolute smallest transformer size. A 1:N  
transformer will minimize the magnetizing inductance  
(and minimize size), but will also limit the available output  
power. A higher 1:N turns ratio makes it possible to have  
very high output voltages without exceeding the break-  
down voltage of the internal power switch.  
V
should be kept below 50V. This leaves at least 15V  
IN  
margin for the leakage spike across line and load condi-  
tions. A larger voltage margin will be required for poorly  
wound transformers or for excessive leakage inductance.  
Rev. G  
15  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
then add capacitance until the period of the ringing is 1.5  
to 2 times longer. The change in period determines the  
value of the parasitic capacitance, from which the para-  
sitic inductance can be also determined from the initial  
period. Once the value of the SW node capacitance and  
inductance is known, a series resistor can be added to  
the snubber capacitance to dissipate power and critically  
damp the ringing. The equation for deriving the optimal  
series resistance using the observed periods ( tPERIOD and  
tPERIOD(SNUBBED)) and snubber capacitance (CSNUBBER) is:  
ꢐꢑꢅꢉ  
ꢊꢋꢌꢍꢌGꢋ  
ꢐꢅꢆꢉ  
ꢎꢏ  
ꢃ ꢄꢅꢆꢇꢈ  
ꢁꢂꢂ  
ꢎꢗ  
ꢐ ꢖꢅꢆꢇꢈ  
ꢕꢄꢆꢖ ꢂꢆꢅ  
ꢒꢓꢔꢋ  
CSNUBBER  
Figure 5. Maximum Voltages for SW Pin Flyback Waveform  
CPAR  
=
2
tPERIOD(SNUBBED)  
tPERIOD  
–1  
In addition to the voltage spikes, the leakage inductance  
also causes the SW pin ringing for a while after the power  
switch turns off. To prevent the voltage ringing falsely trig-  
ger boundary mode detector, the LT8302/LT8302-3 inter-  
nally blanks the boundary mode detector for approximately  
250ns. Any remaining voltage ringing after 250ns may turn  
the power switch back on again before the secondary cur-  
rent falls to zero. In this case, the LT8302/LT8302-3 enters  
continuous conduction mode. So the leakage inductance  
spike ringing should be limited to less than 250ns.  
2
tPERIOD  
LPAR  
=
CPAR 4π2  
LPAR  
CPAR  
RSNUBBER  
=
Note that energy absorbed by the RC snubber will be con-  
verted to heat and will not be delivered to the load. In high  
voltage or high current applications, the snubber needs  
to be sized for thermal dissipation. A 470pF capacitor in  
series with a 39Ω resistor is a good starting point.  
To clamp and damp the leakage voltage spikes, a  
(RC + DZ) snubber circuit in Figure 6 is recommended.  
The RC (resistor-capacitor) snubber quickly damps the  
voltage spike ringing and provides great load regulation  
and EMI performance. And the DZ (diode-Zener) ensures  
well defined and consistent clamping voltage to protect  
SW pin from exceeding its 65V absolute maximum rating.  
For the DZ snubber, proper care should be taken when  
choosing both the diode and the Zener diode. Schottky  
diodes are typically the best choice, but some PN diodes  
can be used if they turn on fast enough to limit the leakage  
inductance spike. Choose a diode that has a reverse-volt-  
age rating higher than the maximum SW pin voltage. The  
Zener diode breakdown voltage should be chosen to bal-  
ance power loss and switch voltage protection. The best  
compromise is to choose the largest voltage breakdown  
with 5V margin. Use the following equation to make the  
proper choice:  
L
Z
C
R
D
8302 F06  
V
≤ 60V – V  
IN(MAX)  
ZENNER(MAX)  
Figure 6. (RC + DZ) Snubber Circuit  
For an application with a maximum input voltage of 32V,  
choose a 24V Zener diode, the V of which is  
around 26V and below the 28V maximum. The power loss  
in the DZ snubber determines the power rating of the Zener  
diode. A 1.5W Zener diode is typically recommended.  
Rev. G  
ZENER(MAX)  
The recommended approach for designing an RC snubber  
is to measure the period of the ringing on the SW pin  
when the power switch turns off without the snubber and  
16  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
Undervoltage Lockout (UVLO)  
minimum amount of energy even during light load con-  
ditions to ensure accurate output voltage information.  
The minimum energy delivery creates a minimum load  
requirement, which can be approximately estimated as:  
A resistive divider from V to the EN/UVLO pin imple-  
IN  
ments undervoltage lockout (UVLO). The EN/UVLO enable  
falling threshold is set at 1.214V with 14mV hysteresis. In  
addition, the EN/UVLO pin sinks 2.5µA when the voltage  
on the pin is below 1.214V. This current provides user  
programmable hysteresis based on the value of R1. The  
programmable UVLO thresholds are:  
LPRI ISW(MIN)2 fMIN  
ILOAD(MIN)  
=
2VOUT  
L
PRI  
= Transformer primary inductance  
1.228V • R1+R2  
ISW(MIN) = Minimum switch current limit = 1.04A (MAX)  
= Minimum switching frequency = 12.7kHz (MAX)  
(
)
+
V
=
=
+2.5µA •R1  
IN(UVLO )  
R2  
f
MIN  
The LT8302/LT8302-3 typically needs less than 0.5% of  
its full output power as minimum load. Alternatively, a  
Zener diode with its breakdown of 10% higher than the  
output voltage can serve as a minimum load if pre-loading  
is not acceptable. For a 5V output, use a 5.6V Zener with  
cathode connected to the output.  
1.214V • R1+R2  
(
)
V
IN(UVLO )  
R2  
Figure 7 shows the implementation of external shutdown  
control while still using the UVLO function. The NMOS  
grounds the EN/UVLO pin when turned on, and puts the  
Output Short Protection  
ꢓꢈ  
When the output is heavily overloaded or shorted to  
ground, the reflected SW pin waveform rings longer  
than the internal blanking time. After the 350ns minimum  
switch-off time, the excessive ringing falsely triggers the  
boundary mode detector and turns the power switch back  
on again before the secondary current falls to zero. Under  
this condition, the LT8302/LT8302-3 runs into continu-  
ous conduction mode at 380kHz maximum switching fre-  
Rꢎ  
Rꢅ  
ꢊꢈꢆꢋꢌꢀꢍ  
ꢂꢃꢄꢅꢆꢂꢃꢄꢅꢇꢃ  
Gꢈꢉ  
RUNꢆꢏꢁꢍꢐ  
ꢑꢍꢈꢁRꢍꢀ  
ꢒꢍꢐꢁꢓꢍꢈꢔꢀꢕ  
ꢂꢃꢄꢅ ꢖꢄꢗ  
Figure 7. Undervoltage Lockout (UVLO)  
quency. If the sampled R voltage is still less than 0.6V  
REF  
after 11ms (typ) soft-start timer, the LT8302/LT8302-3  
initiates a new soft-start cycle. If the sampled RREF voltage  
is larger than 0.6V after 11ms, the switch current may  
run away and exceed the 4.5A maximum current limit.  
Once the switch current hits 7.2A over current limit, the  
LT8302/LT8302-3 also initiates a new soft-start cycle.  
Under either condition, the new soft-start cycle throttles  
back both the switch current limit and switch frequency.  
The output short-circuit protection prevents the switch  
current from running away and limits the average output  
diode current.  
LT8302/LT8302-3 in shutdown with quiescent current  
less than 2µA.  
Minimum Load Requirement  
The LT8302/LT8302-3 samples the isolated output  
voltage from the primary-side flyback pulse waveform.  
The flyback pulse occurs once the primary switch turns  
off and the secondary winding conducts current. In order  
to sample the output voltage, the LT8302/LT8302-3 has  
to turn on and off for a minimum amount of time and with  
a minimum frequency. The LT8302/LT8302-3 delivers a  
Rev. G  
17  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
Design Example  
Step 2: Determine the primary inductance.  
Use the following design example as a guide to design-  
ing applications for the LT8302/LT8302-3. The design  
example involves designing a 5V output with a 1.5A load  
current and an input range from 8V to 32V.  
Primary inductance for the transformer must be set above  
a minimum value to satisfy the minimum switch-off and  
switch-on time requirements:  
tOFF(MIN) •N • V +V  
(
)
F
PS  
OUT  
LPRI  
VIN(MIN) = 8V, VIN(NOM) = 12V, VIN(MAX) = 32V,  
ISW(MIN)  
V
= 5V, I  
= 1.5A  
OUT  
OUT  
tON(MIN) V  
Step 1: Select the transformer turns ratio.  
IN(MAX)  
LPRI  
ISW(MIN)  
65V – VIN(MAX) VLEAKAGE  
NPS <  
VOUT +VF  
t
t
I
= 350ns  
= 160ns  
= 0.87A  
OFF(MIN)  
ON(MIN)  
SW(MIN)  
VLEAKAGE = Margin for transformer leakage spike = 15V  
V = Output diode forward voltage = ~0.3V  
F
Example:  
Example:  
350ns•3• 5V+0.3V  
65V 32V 15V  
(
)
NPS <  
=3.4  
LPRI  
=6.4µH  
5V+0.3V  
0.87A  
160ns32V  
The choice of transformer turns ratio is critical in deter-  
mining output current capability of the converter. Table 2  
shows the switch voltage stress and output current capa-  
bility at different transformer turns ratio.  
LPRI  
=5.9µH  
0.87A  
Most transformers specify primary inductance with a tol-  
erance of 20%. With other component tolerance consid-  
ered, choose a transformer with its primary inductance  
40% to 60% larger than the minimum values calculated  
Table 2. Switch Voltage Stress and Output Current Capability vs  
Turns Ratio  
V
V
at  
I
at  
(A)  
SW(MAX)  
IN(MAX)  
OUT(MAX)  
IN(MIN)  
NPS  
1:1  
2:1  
3:1  
(V)  
V
DUTY CYCLE (%)  
14-40  
above. L = 9µH is then chosen in this example.  
PRI  
37.3  
0.92  
Once the primary inductance has been determined, the  
maximum load switching frequency can be calculated as:  
42.6  
47.9  
1.31  
1.53  
25-57  
33-67  
1
1
fSW  
=
=
Clearly, only NPS = 3 can meet the 1.5A output current  
LPRI •ISW  
LPRI •ISW  
t
ON +tOFF  
+
requirement, so N = 3 is chosen as the turns ratio in  
PS  
V
N • V +V  
(
)
F
IN  
PS  
OUT  
this example.  
V
OUT •IOUT 2  
ISW  
=
ηV •D  
IN  
Rev. G  
18  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
Example:  
and cost of a larger capacitor. Use the following equation  
to calculate the output capacitance:  
5V + 0.3V 3  
(
)
D =  
= 0.57  
2
LPRI •ISW  
5V + 0.3V 3+12V  
(
)
COUT  
=
2•VOUT ΔVOUT  
5V 1.5A 2  
ISW  
=
0.8 12V 0.57  
Example:  
fSW = 277kHz  
Design for output voltage ripple less than 1% of V  
i.e., 100mV.  
,
OUT  
The transformer also needs to be rated for the correct  
saturation current level across line and load conditions.  
A saturation current rating larger than 7A is necessary to  
work with the LT8302/LT8302-3. The 750311564 from  
Wurth is chosen as the flyback transformer.  
2
H4.5A  
(
)
COUT  
=
=182µF  
2•5V 0.1V  
Remember ceramic capacitors lose capacitance with  
applied voltage. The capacitance can drop to 40% of  
quoted capacitance at the maximum voltage rating. So  
a 220µF, 6.3V rating X5R or X7R ceramic capacitor is  
chosen.  
Step 3: Choose the output diode.  
Two main criteria for choosing the output diode include  
forward current rating and reverse-voltage rating. The  
maximum load requirement is a good first-order guess  
at the average current requirement for the output diode.  
Under output short-circuit condition, the output diode  
needs to conduct much higher current. Therefore, a con-  
servative metric is 60% of the maximum switch current  
limit multiplied by the turns ratio:  
Step 5: Design snubber circuit.  
The snubber circuit protects the power switch from leak-  
age inductance voltage spike. A (RC + DZ) snubber is  
recommended for this application. A 470pF capacitor in  
series with a 39Ω resistor is chosen as the RC snubber.  
I
= 0.6 • I • N  
SW(MAX) PS  
DIODE(MAX)  
The maximum Zener breakdown voltage is set according  
to the maximum V :  
Example:  
IN  
V
≤ 60V – V  
IN(MAX)  
I
= 8.1A  
ZENNER(MAX)  
DIODE(MAX)  
Example:  
Next calculate reverse voltage requirement using maxi-  
mum V :  
IN  
V
≤ 60V – 32V = 28V  
ZENNER(MAX)  
V
IN(MAX)  
A 24V Zener with a maximum of 26V will provide optimal  
protection and minimize power loss. So a 24V, 1.5W Zener  
from Central Semiconductor (CMZ5934B) is chosen.  
V
REVERSE = VOUT  
+
NPS  
Example:  
Choose a diode that is fast and has sufficient reverse  
voltage breakdown:  
32V  
3
VREVERSE =5V+  
=15.7V  
V
V
> V  
SW(MAX)  
REVERSE  
SW(MAX)  
The PDS835L (8A, 35V diode) from Diodes Inc. is chosen.  
= V  
+ V  
ZENNER(MAX)  
IN(MAX)  
Step 4: Choose the output capacitor.  
Example:  
The output capacitor should be chosen to minimize the  
output voltage ripple while considering the increase in size  
V
> 60V  
REVERSE  
A 100V, 1A diode from Diodes Inc. (DFLS1100) is chosen.  
Rev. G  
19  
For more information www.analog.com  
LT8302/LT8302-3  
APPLICATIONS INFORMATION  
Step 6: Select the R  
and R resistors.  
Example:  
REF  
FB  
Use the following equation to calculate the starting values  
5.189V 5.041V  
δV /δT =  
=1.48mV /°C  
(
)
F
for R and R :  
REF  
FB  
100°C0°C  
(
)
R
REF N V  
+ V TO  
(
)
)
(
F
PS  
OUT  
3.35mV/°C 154  
RFB =  
RTC  
=
=115k  
VREF  
1.48mV/°C  
3
RREF = 10k  
Step 9: Select the EN/UVLO resistors.  
Example:  
Determine the amount of hysteresis required and calcu-  
late R1 resistor value:  
10k 3• 5V+0.3V  
(
)
RFB =  
=159k  
1.00V  
V
= 2.5µA • R1  
IN(HYS)  
For 1% standard values, a 158k resistor is chosen.  
Example:  
Step 7: Adjust R resistor based on output voltage.  
FB  
Choose 2V of hysteresis, R1 = 806k  
Build and power up the application with application com-  
ponents and measure the regulated output voltage. Adjust  
FB  
Determine the UVLO thresholds and calculate R2 resistor  
value:  
R
resistor based on the measured output voltage:  
1.228V R1+R2  
(
)
+ 2.5µA R1  
V
=
VOUT  
VOUT(MEASURED)  
IN(UVLO+)  
R2  
RFB(NEW)  
=
•RFB  
Example:  
Example:  
Set V UVLO rising threshold to 7.5V:  
IN  
5V  
5.14V  
R2 = 232k  
RFB =  
•158k =154k  
V
V
+ = 7.5V  
IN(UVLO )  
Step 8: Select RTC resistor based on output voltage tem-  
perature variation.  
– = 5.5V  
IN(UNLO )  
Step 10: Ensure minimum load.  
Measure output voltage in a controlled temperature envi-  
ronment like an oven to determine the output temperature  
coefficient. Measure output voltage at a consistent load  
current and input voltage, across the operating tempera-  
ture range.  
The theoretical minimum load can be approximately esti-  
mated as:  
H1.04A 2 12.7kHz  
(
)
ILOAD(MIN)  
=
=12.4mA  
2 5V  
Calculate the temperature coefficient of V :  
F
Remember to check the minimum load requirement in  
real application. The minimum load occurs at the point  
where the output voltage begins to climb up as the con-  
verter delivers more energy than what is consumed at  
the output. The real minimum load for this application is  
about 10mA. In this example, a 500Ω resistor is selected  
as the minimum load.  
V
T1 – V  
T1T2  
T2  
OUT ( ) OUT ( )  
δV /δT =  
(
)
F
3.35mV/°C RFB  
RTC  
=
δV /δT  
N
PS  
(
)
F
Rev. G  
20  
For more information www.analog.com  
LT8302/LT8302-3  
TYPICAL APPLICATIONS  
8V to 32VIN/12VOUT Isolated Flyback Converter  
+
V
D2  
T1  
OUT  
12V  
V
IN  
8V TO 32V  
1:1  
5mA TO 0.8A (V = 12V)  
5mA TO 1.1A (V = 24V)  
IN  
IN  
C3  
Z1  
470pF  
9µH  
C4  
47µF  
9µH  
R3  
R1  
D1  
V
C1  
10µF  
IN  
39Ω  
806k  
V
EN/UVLO  
SW  
OUT  
R2  
232k  
R4  
121k  
LT8302/LT8302-3  
GND  
INTV  
R
FB  
D1: DIODES DFLS1100  
D2: DIODES PDS360  
T1: SUMIDA 12387-TO79  
Z1: CENTRAL CMZ5934B  
R
REF  
CC  
C2  
1µF  
R5  
R6  
OPEN  
10k  
TC  
8302 TA02a  
Efficiency vs Load Current  
Load and Line Regulation  
ꢍꢎ.ꢑ  
ꢍꢎ.ꢎ  
ꢕꢎ  
ꢕꢌ  
ꢍꢎ.ꢌ  
ꢍꢍ.ꢓ  
ꢔꢎ  
ꢔꢌ  
ꢍꢍ.ꢒ  
ꢍꢍ.ꢑ  
ꢍꢍ.ꢎ  
ꢓꢎ  
ꢓꢌ  
ꢍꢎ  
ꢜ ꢘꢖꢛ  
ꢜ ꢖꢗꢛ  
ꢐꢇ  
ꢐꢇ  
ꢗ ꢍꢎꢐ  
ꢗ ꢎꢑꢐ  
ꢖꢇ  
ꢖꢇ  
ꢎꢌꢌ  
ꢑꢌꢌ  
ꢒꢌꢌ  
ꢓꢌꢌ ꢍꢌꢌꢌ ꢍꢎꢌꢌ  
ꢖꢌꢌ  
ꢗꢌꢌ  
ꢍꢌꢌ  
ꢔꢌꢌ ꢘꢌꢌꢌ ꢘꢖꢌꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢓꢔꢌꢎ ꢈꢂꢌꢎꢕ  
ꢔꢙꢌꢖ ꢈꢂꢌꢖꢚ  
8V to 32VIN/3.3VOUT Isolated Flyback Converter  
Output Temperature Variation  
ꢓ.ꢎꢏ  
ꢓ.ꢔꢎ  
ꢓ.ꢔꢏ  
ꢓ.ꢓꢎ  
ꢓ.ꢓꢏ  
ꢓ.ꢗꢎ  
ꢓ.ꢗꢏ  
ꢓ.ꢕꢎ  
ꢓ.ꢕꢏ  
+
ꢐꢈꢆ  
ꢚ ꢕꢗꢑ  
ꢃꢅ  
V
D2  
T1  
OUT  
3.3V  
ꢚ ꢕꢀ  
V
IN  
8V TO 32V  
20mA TO 2.7A (V = 12V)  
20mA TO 3.8A (V = 24V)  
IN  
4:1  
IN  
C3  
Z1  
470pF  
9µH  
C4  
0.56µH  
R3  
R1  
470µF  
D1  
V
C1  
10µF  
IN  
39Ω  
806k  
R
ꢆꢋ  
ꢚ ꢕꢏꢎꢛ  
V
SW  
EN/UVLO  
LT8302/LT8302-3  
OUT  
R2  
232k  
R4  
140k  
R
ꢆꢋ  
ꢚ ꢐꢇꢄꢅ  
R
GND  
INTV  
FB  
D1: DIODES DFLS1100  
D2: DIODES PDS1040L  
T1: WURTH 750311625  
R
REF  
CC  
C2  
1µF  
R5  
R6  
105k  
Z1: CENTRAL CMZ5934B  
10k  
TC  
8302 TA03  
ꢎꢏ ꢙꢎ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢍꢎꢏ ꢍꢗꢎ  
ꢗꢎ  
ꢕꢏꢏ ꢕꢗꢎ ꢕꢎꢏ  
ꢖꢓꢏꢗ ꢆꢀꢏꢓꢘ  
Rev. G  
21  
For more information www.analog.com  
LT8302/LT8302-3  
TYPICAL APPLICATIONS  
8V to 36VIN/ 12VOUT Isolated Flyback Converter  
+
T1  
1:1:1  
V
D2  
OUT1  
12V  
V
IN  
8V TO 36V  
5mA TO 0.4A (V = 12V)  
IN  
C3  
5mA TO 0.55A (V = 24V)  
IN  
Z1  
470pF  
C4  
9µH  
9µH  
D3  
R3  
39Ω  
R1  
22µF  
D1  
V
C1  
10µF  
IN  
806k  
V
V
12V  
EN/UVLO  
SW  
OUT2  
+
R2  
232k  
R4  
121k  
OUT2  
LT8302/LT8302-3  
GND  
INTV  
R
5mA TO 0.4A (V = 12V)  
FB  
IN  
5mA TO 0.55A (V = 24V)  
IN  
R
REF  
C5  
22µF  
CC  
9µH  
C2  
1µF  
R5  
R6  
OPEN  
10k  
V
TC  
OUT2  
8302 TA04  
D1: DIODES DFLS1100  
D2, D3: DIODES PDS360  
T1: SUMIDA 12387-TO79  
Z1: CENTRAL CMZ5934B  
8V to 36VIN/24VOUT Isolated Flyback Converter  
+
V
D2  
T1  
OUT  
24V  
V
IN  
8V TO 36V  
1:2  
2.5mA TO 0.4A (V = 12V)  
2.5mA TO 0.55A (V = 24V)  
IN  
IN  
C3  
Z1  
470pF  
9µH  
C4  
10µF  
36µH  
R3  
R1  
D1  
V
C1  
10µF  
IN  
39Ω  
806k  
V
EN/UVLO  
SW  
OUT  
R2  
232k  
R4  
121k  
LT8302/LT8302-3  
GND  
INTV  
R
FB  
D1: DIODES DFLS1100  
D2: DIODES SBR2U150SA  
T1: WURTH 750313445  
Z1: CENTRAL CMZ5934B  
R
REF  
CC  
C2  
1µF  
R5  
R6  
OPEN  
10k  
TC  
8302 TA05  
8V to 36VIN/48VOUT Isolated Flyback Converter  
+
V
D2  
T1  
OUT  
48V  
V
IN  
8V TO 36V  
1:4  
1.2mA TO 0.2A (V = 12V)  
1.2mA TO 0.27A (V = 24V)  
IN  
IN  
C3  
Z1  
470pF  
9µH  
C4  
144µH  
R3  
R1  
2.2µF  
D1  
V
C1  
10µF  
IN  
39Ω  
806k  
EN/UVLO  
V
SW  
OUT  
R2  
232k  
R4  
121k  
LT8302/LT8302-3  
GND  
INTV  
R
FB  
D1: DIODES DFLS1100  
D2: DIODES SBR1U200P1  
T1: WURTH 750313457  
Z1: CENTRAL CMZ5934B  
R
REF  
CC  
C2  
1µF  
R5  
R6  
OPEN  
10k  
TC  
8302 TA06  
Rev. G  
22  
For more information www.analog.com  
LT8302/LT8302-3  
TYPICAL APPLICATIONS  
8V to 32VIN/5VOUT Isolated Flyback Converter with LT8309  
Efficiency vs Load Current  
+
V
OUT  
T1  
V
IN  
8V TO 32V  
5V/2.0A (V = 12V)  
5V/2.9A (V = 24V)  
IN  
ꢒꢑ  
IN  
3:1  
C3  
470pF  
Z1  
9µH  
1µH  
ꢒꢋ  
ꢐꢑ  
ꢐꢋ  
C4  
R3  
39Ω  
R1  
R7  
D1  
D2  
V
C1  
10µF  
220µF  
IN  
806k  
5Ω  
EN/UVLO  
SW  
C4  
R2  
232k  
R4  
10µF  
LT8302/LT8302-3  
154k  
R8  
2.1k  
GND  
INTV  
R
FB  
V
CC  
R
REF  
DRAIN  
CC  
C2  
1µF  
R5  
10k  
R6  
OPEN  
LT8309  
GATE INTV  
GND  
ꢖꢑ  
ꢖꢋ  
ꢘꢑ  
M1  
CC  
TC  
C5  
4.7µF  
D1: DIODES DFLS1100  
D2: CENTRAL CMMSH1-60  
M1: INFINEON BSC059N04LS  
T1: WURTH 750311564  
V
OUT  
8302 TA07  
ꢋ.ꢑ  
ꢓ.ꢋ  
ꢓ.ꢑ  
ꢔ.ꢋ  
ꢔ.ꢑ  
ꢕ.ꢋ  
Z1: CENTRAL CMZ5934B  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢐꢕꢋꢔ ꢈꢂꢋꢖꢗ  
–4V to –42VIN/12VOUT Buck-Boost Converter  
Efficiency vs Load Current  
ꢅꢍ  
ꢕꢎ  
ꢕꢌ  
ꢖꢕꢆ  
ꢍꢊꢀꢋꢉ.ꢘꢟꢞ ꢣꢀ ꢤ ꢠꢟꢀꢥ  
ꢐꢍ  
ꢍꢊꢎꢏ  
ꢁꢂ  
ꢍꢊꢀꢋꢉ.ꢇꢞ ꢣꢀ ꢤ ꢠꢍꢊꢀꢥ  
ꢁꢂ  
ꢍꢊꢀꢋꢍ.ꢍꢞ ꢣꢀ ꢤ ꢠꢊꢘꢀꢥ  
ꢁꢂ  
ꢗꢈ  
ꢘꢙꢎꢒ  
Rꢘ  
ꢑꢍ  
ꢍꢊꢀꢋꢍ.ꢈꢞ ꢣꢀ ꢤ ꢠꢘꢊꢀꢥ  
ꢁꢂ  
ꢃꢄ  
ꢁꢂ  
ꢔꢂꢋꢕꢀꢅꢖ  
ꢇꢈꢉꢊꢋꢇꢈꢉꢊꢌꢈ  
ꢍꢍꢇꢡ  
ꢔꢎ  
ꢔꢌ  
R
ꢒꢓ  
ꢗꢍ  
ꢍꢉꢎꢒ  
R
Rꢔꢒ  
ꢁꢂꢆꢀ  
ꢐꢍꢚ ꢐꢁꢖꢐꢔꢃ ꢛꢜꢔGꢝꢉꢈꢉꢔꢛ  
ꢅꢍꢚ ꢄꢕRꢆꢏ ꢙꢘꢘꢙꢙꢉꢍꢍꢊ  
ꢑꢍꢚ ꢗꢔꢂꢆRꢞꢅ ꢗꢜꢏꢑꢟꢊꢘꢈꢓ  
ꢗꢗ  
Rꢟ  
ꢍꢉꢡ  
ꢗꢊ  
ꢍꢎꢒ  
ꢓꢎ  
ꢓꢌ  
ꢍꢎ  
Gꢂꢐ  
ꢐꢇ  
ꢐꢇ  
ꢐꢇ  
ꢐꢇ  
ꢜ ꢝꢎꢛ  
ꢁꢂ  
ꢇꢈꢉꢊ ꢆꢞꢉꢇꢢ  
ꢜ ꢝꢘꢖꢛ  
ꢜ ꢝꢖꢗꢛ  
ꢜ ꢝꢗꢖꢛ  
ꢠꢘꢀ ꢆꢖ ꢠꢘꢊꢀ  
ꢖꢌꢌ ꢗꢌꢌ ꢍꢌꢌ ꢔꢌꢌ ꢘꢌꢌꢌ ꢘꢖꢌꢌ ꢘꢗꢌꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢔꢙꢌꢖ ꢈꢂꢌꢔꢚ  
–18V to –42VIN/–12VOUT Negative Buck Converter  
Efficiency vs Load Current  
ꢕꢌꢌ  
ꢟꢆ  
ꢞꢝꢌꢗ  
ꢔꢒ  
ꢓꢋ  
ꢒꢋ  
ꢐꢋꢈꢀ  
ꢋ.ꢅꢑ  
ꢎꢏꢄ  
ꢔꢌ  
ꢓꢒ  
ꢃꢋ  
ꢋꢈꢌꢍ  
Rꢋ  
ꢅꢇꢜꢡ  
ꢁꢂ  
ꢖꢂꢉꢏꢀꢃꢎ  
ꢔꢕ  
ꢟꢋ  
ꢋꢇꢌꢗ  
Rꢈ  
ꢈꢆꢈꢡ  
Rꢞ  
ꢋꢋꢅꢡ  
ꢅꢆꢇꢈꢉꢅꢆꢇꢈꢊꢆ  
ꢓꢌ  
ꢍꢒ  
ꢍꢌ  
ꢒꢋꢙ ꢒꢁꢎꢒꢖꢔ ꢚꢛꢖGꢜꢇꢆꢇꢖꢚ  
ꢃꢋꢙ ꢕꢏRꢄꢍ ꢝꢞꢞꢝꢝꢇꢋꢋꢈ  
ꢓꢋꢙ ꢟꢖꢂꢄRꢑꢃ ꢟꢛꢍꢓꢠꢈꢞꢆꢘ  
ꢖꢂꢉꢏꢀꢃꢎ  
R
ꢗꢘ  
ꢚ ꢛꢕꢓꢙ  
ꢚ ꢛꢖꢜꢙ  
ꢚ ꢛꢜꢖꢙ  
ꢏꢇ  
ꢏꢇ  
ꢏꢇ  
R
ꢁꢂꢄꢀ  
ꢟꢟ  
Rꢖꢗ  
Rꢠ  
ꢟꢈ  
ꢋꢌꢗ  
ꢋꢇꢡ  
ꢁꢂ  
ꢒꢌꢌ  
ꢕꢌꢌꢌ  
ꢕꢒꢌꢌ  
ꢖꢌꢌꢌ  
ꢅꢆꢇꢈ ꢄꢑꢇꢢꢣ  
ꢐꢋꢅꢀ ꢄꢎ ꢐꢞꢈꢀ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢓꢗꢌꢖ ꢈꢂꢌꢔꢘ  
Rev. G  
23  
For more information www.analog.com  
LT8302/LT8302-3  
PACKAGE DESCRIPTION  
S8E Package  
8-Lead Plastic SOIC (Narrow .150 Inch) Exposed Pad  
ꢅReꢧeꢨeꢩꢪe ꢜꢋꢒ ꢛꢡG ꢫ ꢀꢄꢬꢀꢊꢬꢁꢊꢄꢈ Rev ꢒꢉ  
.ꢁꢊꢓ ꢃ .ꢁꢓꢈ  
ꢅꢆ.ꢊꢀꢁ ꢃ ꢄ.ꢀꢀꢆꢉ  
.ꢀꢄꢀ  
ꢅꢁ.ꢇꢈꢉ  
ꢔꢏꢒ  
ꢕꢖꢋꢐ ꢎ  
.ꢀꢆꢄ ±.ꢀꢀꢄ  
ꢅꢁ.ꢁꢆꢎ ±ꢀ.ꢁꢇꢈꢉ  
.ꢀꢀꢄ ꢅꢀ.ꢁꢎꢉ ꢗꢘꢙ  
.ꢁꢄꢀ ꢃ .ꢁꢄꢈ  
ꢅꢎ.ꢊꢁꢀ ꢃ ꢎ.ꢓꢊꢊꢉ  
ꢕꢖꢋꢐ ꢎ  
.ꢀꢊꢓ  
ꢅꢇ.ꢇꢂꢉ  
Rꢐꢚ  
.ꢇꢆꢄ  
ꢅꢂ.ꢇꢇꢉ  
ꢗꢞꢕ  
.ꢀꢊꢀ ꢃ .ꢀꢓꢓ  
ꢅꢇ.ꢀꢎꢇ ꢃ ꢇ.ꢄꢎꢀꢉ  
.ꢁꢂꢀ ±.ꢀꢀꢄ  
ꢅꢆ.ꢀꢂ ±ꢀ.ꢁꢇꢈꢉ  
.ꢇꢇꢊ ꢃ .ꢇꢆꢆ  
ꢅꢄ.ꢈꢓꢁ ꢃ ꢂ.ꢁꢓꢈꢉ  
.ꢀꢎꢀ ±.ꢀꢀꢄ  
.ꢁꢁꢊ ꢃ .ꢁꢎꢓ  
ꢅꢇ.ꢓꢓꢈ ꢃ ꢎ.ꢄꢄꢀꢉ  
ꢅꢀ.ꢈꢂ ±ꢀ.ꢁꢇꢈꢉ  
.ꢁꢁꢊ  
ꢅꢇ.ꢓꢓꢉ  
Rꢐꢚ  
ꢋꢌꢍ  
Rꢐꢒꢖꢗꢗꢐꢕꢛꢐꢛ ꢏꢖꢜꢛꢐR ꢍꢘꢛ ꢜꢘꢌꢖꢝꢋ  
.ꢀꢁꢀ ꢃ .ꢀꢇꢀ  
ꢅꢀ.ꢇꢄꢆ ꢃ ꢀ.ꢄꢀꢊꢉ  
× ꢆꢄ°  
.ꢀꢄꢎ ꢃ .ꢀꢂꢓ  
ꢅꢁ.ꢎꢆꢂ ꢃ ꢁ.ꢈꢄꢇꢉ  
.ꢀꢀꢆ ꢃ .ꢀꢁꢀ  
ꢅꢀ.ꢁꢀꢁ ꢃ ꢀ.ꢇꢄꢆꢉ ꢅꢀ.ꢀ ꢃ ꢀ.ꢁꢎꢀꢉ  
ꢀ.ꢀ ꢃ ꢀ.ꢀꢀꢄ  
.ꢀꢀꢊ ꢃ .ꢀꢁꢀ  
°ꢃ ꢊ° ꢋꢌꢍ  
ꢅꢀ.ꢇꢀꢎ ꢃ ꢀ.ꢇꢄꢆꢉ  
.ꢀꢁꢂ ꢃ .ꢀꢄꢀ  
ꢅꢀ.ꢆꢀꢂ ꢃ ꢁ.ꢇꢈꢀꢉ  
.ꢀꢄꢀ  
ꢅꢁ.ꢇꢈꢀꢉ  
ꢔꢏꢒ  
.ꢀꢁꢆ ꢃ .ꢀꢁꢓ  
ꢅꢀ.ꢎꢄꢄ ꢃ ꢀ.ꢆꢊꢎꢉ  
ꢋꢌꢍ  
ꢕꢖꢋꢐꢠ  
ꢁ. ꢛꢞꢗꢐꢕꢏꢞꢖꢕꢏ ꢞꢕ  
ꢏꢊꢐ ꢁꢀꢁꢄ Rꢐꢑ ꢒ  
ꢞꢕꢒꢟꢐꢏ  
ꢅꢗꢞꢜꢜꢞꢗꢐꢋꢐRꢏꢉ  
ꢇ. ꢛRꢘꢡꢞꢕG ꢕꢖꢋ ꢋꢖ ꢏꢒꢘꢜꢐ  
ꢎ. ꢋꢟꢐꢏꢐ ꢛꢞꢗꢐꢕꢏꢞꢖꢕꢏ ꢛꢖ ꢕꢖꢋ ꢞꢕꢒꢜꢝꢛꢐ ꢗꢖꢜꢛ ꢚꢜꢘꢏꢟ ꢖR ꢍRꢖꢋRꢝꢏꢞꢖꢕꢏ.  
ꢗꢖꢜꢛ ꢚꢜꢘꢏꢟ ꢖR ꢍRꢖꢋRꢝꢏꢞꢖꢕꢏ ꢏꢟꢘꢜꢜ ꢕꢖꢋ ꢐꢙꢒꢐꢐꢛ .ꢀꢁꢀꢢ ꢅꢀ.ꢇꢄꢆꢣꢣꢉ  
ꢆ. ꢏꢋꢘꢕꢛꢘRꢛ ꢜꢐꢘꢛ ꢏꢋꢘꢕꢛꢖꢚꢚ ꢞꢏ ꢆꢣꢤꢥꢦ ꢋꢖ ꢁꢀꢣꢤꢥꢦ ꢅꢛꢘꢋꢐ ꢒꢖꢛꢐ ꢔꢐꢚꢖRꢐ ꢄꢆꢇꢉ  
ꢄ. ꢜꢖꢡꢐR ꢜꢐꢘꢛ ꢏꢋꢘꢕꢛꢖꢚꢚ ꢞꢏ ꢀꢣꢤꢥꢦ ꢋꢖ ꢄꢣꢤꢥꢦ ꢅꢛꢘꢋꢐ ꢒꢖꢛꢐ ꢘꢚꢋꢐR ꢄꢆꢇꢉ  
Rev. G  
24  
For more information www.analog.com  
LT8302/LT8302-3  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/14 Modified I and I  
conditions.  
HYS  
3
Q
Modified L equation.  
14  
23  
26  
24  
PRI  
Modified schematic.  
Updated Related Parts.  
B
C
11/15 Revised package drawing.  
9/16  
5/19  
7/19  
Reduced EN/UVLO shutdown threshold.  
3
3
Increased I  
max current limit.  
current limit range.  
INTVCC  
Changed I  
3
SW(MIN)  
Corrected I  
equation.  
20  
LOAD(MIN)  
D
Changed V minimum from 2.8V to 3V.  
1, 3  
14  
IN  
Table 1, Line 5: Replaced Wurth predesigned transformer with Sumida equivalent.  
Table 1 Sumida transformer used in 12V  
and 12V  
Typical Application circuits.  
21, 22  
OUT  
OUT  
5V/1.1A (V = 5V) output capability line removed from LT8302/LT8302-3/LT8309 Typical Application circuit.  
23  
2
IN  
E
F
Added AEC-Q100 automotive models.  
12/19 Added LT8302-3 Models  
All  
2, 3  
G
04/20 Added J grade option and specifications  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license i rantedbyica r otheris ndany patent or patent rights of Analog Devices.  
25  
s  
g
impltionoweuer
LT8302/LT8302-3  
TYPICAL APPLICATION  
4V to 42VIN/48VOUT Boost Converter  
ꢅꢍ  
ꢖꢕꢆ  
ꢐꢍ  
ꢊꢊꢎꢏ  
ꢝꢇꢀꢋꢍ.ꢝꢞ ꢢꢀ ꢣ ꢝꢊꢀꢤ  
ꢁꢂ  
ꢁꢂ  
ꢝꢇꢀꢋꢉ.ꢇꢞ ꢢꢀ ꢣ ꢊꢝꢀꢤ  
ꢁꢂ  
ꢝꢀ ꢆꢖ ꢝꢊꢀ  
ꢝꢇꢀꢋꢉ.ꢝꢞ ꢢꢀ ꢣ ꢍꢊꢀꢤ  
ꢁꢂ  
ꢝꢇꢀꢋꢉ.ꢍꢚꢞ ꢢꢀ ꢣ ꢚꢀꢤ  
ꢁꢂ  
ꢃꢄ  
ꢁꢂ  
ꢔꢂꢋꢕꢀꢅꢖ  
R
ꢒꢓ  
ꢗꢈ  
ꢍꢉꢎꢒ  
Rꢈ  
ꢍꢟ  
Rꢝ  
ꢝꢛꢝꢠ  
ꢗꢍ  
ꢍꢉꢎꢒ  
ꢑꢍ  
ꢇꢈꢉꢊꢋꢇꢈꢉꢊꢌꢈ  
R
Rꢔꢒ  
ꢁꢂꢆꢀ  
ꢗꢗ  
ꢐꢍꢘ ꢐꢁꢖꢐꢔꢃ ꢙꢐꢃꢚꢛꢉ  
ꢅꢍꢘ ꢄꢕRꢆꢏ ꢜꢝꢝꢈꢚꢚꢍꢊꢊꢍ  
ꢑꢍꢘ ꢗꢔꢂꢆRꢞꢅ ꢗꢟꢏꢑꢚꢊꢛꢊꢓ  
Rꢚ  
ꢍꢉꢠ  
ꢗꢊ  
ꢍꢎꢒ  
Gꢂꢐ  
ꢇꢈꢉꢊ ꢆꢞꢍꢉꢡ  
Efficiency vs Load Current  
ꢕꢌꢌ  
ꢔꢒ  
ꢔꢌ  
ꢓꢒ  
ꢓꢌ  
ꢍꢒ  
ꢍꢌ  
ꢚ ꢒꢙ  
ꢏꢇ  
ꢏꢇ  
ꢏꢇ  
ꢏꢇ  
ꢚ ꢕꢖꢙ  
ꢚ ꢖꢛꢙ  
ꢚ ꢛꢖꢙ  
ꢖꢒꢌ  
ꢒꢌꢌ  
ꢍꢒꢌ ꢕꢌꢌꢌ ꢕꢖꢒꢌ ꢕꢒꢌꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢓꢗꢌꢖ ꢈꢂꢕꢌꢘ  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT8301  
42V Micropower Isolated Flyback Converter with 65V/1.2A  
Low I Monolithic No-Opto Flyback 5-Lead TSOT-23  
Q
IN  
Switch  
LT8300  
LT8309  
100V Micropower Isolated Flyback Converter with  
Low I Monolithic No-Opto Flyback, 5-Lead TSOT-23  
Q
IN  
150V/260mA Switch  
Secondary-Side Synchronous Rectifier Driver  
40V Isolated Flyback Converters  
4.5V ≤ V ≤ 40V, Fast Turn-On and Turn-Off, 5-Lead TSOT-23  
CC  
LT3573/LT3574  
LT3575  
Monolithic No-Opto Flybacks with Integrated 1.25A/0.65A/2.5A  
Switch  
LT3511/LT3512  
100V Isolated Flyback Converters  
Monolithic No-Opto Flybacks with Integrated 240mA/420mA  
Switch, MSOP-16(12)  
LT3748  
LT3798  
100V Isolated Flyback Controller  
5V ≤ V ≤ 100V, No-Opto Flyback, MSOP-16(12)  
IN  
Off-Line Isolated No-Opto Flyback Controller with Active PFC  
40V/100V Flyback/Boost Controllers  
V
IN  
and V  
Limited Only by External Components  
OUT  
LT3757A/LT3759  
LT3758  
Universal Controllers with Small Package and Powerful Gate Drive  
LT3957/LT3958  
40V/80V Boost/Flyback Converters  
Monolithic with Integrated 5A/3.3A Switch  
Rev. G  
04/20  
www.analog.com  
ANALOG DEVICES, INC. 2013-2020  
26  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY