LT8607MSE [ADI]

42V, 750mA Synchronous Step-Down Regulator with 2.5μA Quiescent Current;
LT8607MSE
型号: LT8607MSE
厂家: ADI    ADI
描述:

42V, 750mA Synchronous Step-Down Regulator with 2.5μA Quiescent Current

文件: 总24页 (文件大小:2950K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8607/LT8607B  
42V, 750mA Synchronous  
Step-Down Regulator with  
2.5µA Quiescent Current  
FEATURES  
DESCRIPTION  
The LT®8607 is a compact, high efficiency, high speed syn-  
chronous monolithic step-down switching regulator that  
consumes only 1.7µA of non-switching quiescent current.  
The LT8607 can deliver 750mA of continuous current.  
Burst Mode operation enables high efficiency down to very  
low output currents while keeping the output ripple below  
n
Wide Input Voltage Range: 3.0V to 42V  
Ultralow Quiescent Current Burst Mode® Operation  
n
n
<3µA I Regulating 12V to 3.3V  
Q
IN  
P-P  
OUT  
n
Output Ripple <10mV  
n
High Efficiency 2MHz Synchronous Operation  
n
>93% Efficiency at 0.5A, 12V to 5V  
IN  
OUT  
n
n
n
n
n
n
n
n
n
n
n
n
10mV . Internal compensation with peak current mode  
750mA Maximum Continuous Output  
Fast Minimum Switch-On Time: 35ns  
LT8607 Available in Fixed 5V Output  
Adjustable and Synchronizable: 200kHz to 2.2MHz  
Spread Spectrum Frequency Modulation for Low EMI  
Allows Use of Small Inductors  
Low Dropout  
Peak Current Mode Operation  
Accurate 1V Enable Pin Threshold  
Internal Compensation  
Output Soft-Start and Tracking  
P-P  
topology allows the use of small inductors and results in  
fast transient response and good loop stability. The EN/UV  
pin has an accurate 1V threshold and can be used to pro-  
gram V undervoltage lockout or to shut down the LT8607  
IN  
reducing the input supply current to 1µA.  
The MSOP package includes a SYNC pin to synchronize  
to an external clock, or to select Burst Mode operation  
or pulse-skipping with or without spread spectrum; the  
TR/SS pin programs soft-start or tracking. The DFN  
package omits these pins and can be purchased in pulse-  
skipping or Burst Mode operation.  
Small Thermally Enhanced 10-Lead MSOP Package  
or 8-Lead 2mm × 2mm DFN Package  
AEC-Q100 Qualified for Automotive Applications  
PART NUMBER PACKAGE OUTPUT VOLTAGE SYNC FUNCTIONALITY  
n
LT8607MSE  
MSE  
Programmable  
Fixed 5V Out  
Programmable  
LT8607-5MSE MSE  
Programmable  
APPLICATIONS  
General Purpose Step-Down Converter  
Low EMI Step Down  
LT8607DFN  
DFN  
DFN  
Programmable  
Programmable  
Burst Mode Operation  
Pulse-Skipping Mode  
LT8607BDFN  
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
12VIN to 5VOUT Efficiency  
ꢀꢁꢁ  
ꢀꢁ  
5V, 2MHz Step-Down  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢂꢃꢄꢅ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃR  
ꢀꢁꢁD  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
Rꢀ  
1MΩ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢃꢄR  
ꢅꢀꢆꢇ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁD  
ꢀꢁ.ꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢂꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢂꢆꢇ  
Rev. D  
1
Document Feedback  
For more information www.analog.com  
LT8607/LT8607B  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
V , EN/UV, PG..........................................................42V  
Operating Junction Temperature Range (Note 2)  
IN  
FB, TR/SS . .................................................................4V  
LT8607E ............................................ –40°C to 125°C  
LT8607I ............................................. –40°C to 125°C  
LT8607J............................................. –40°C to 150°C  
LT8607H............................................ –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
SYNC Voltage .............................................................6V  
PIN CONFIGURATION  
LT8607  
LT8607-5  
LT8607/LT8607B  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢇꢙꢖ ꢋꢉꢓꢈ  
ꢇꢘꢖ ꢋꢉꢓꢈ  
BST  
SW  
EN/UV  
ꢅꢆꢇ  
ꢆꢈ  
ꢌꢌ  
Rꢇ  
ꢆꢍꢊꢌ  
ꢀꢎ ꢓꢊꢔꢕꢋ  
ꢅꢆꢇ  
ꢆꢈ  
ꢌꢌ  
Rꢇ  
ꢆꢍꢊꢌ  
ꢀꢎ ꢓꢊꢔꢕꢋ  
V
IN  
ꢉꢊ  
ꢉꢊ  
ꢊꢔD  
ꢀꢀ  
ꢗꢊD  
ꢀꢀ  
ꢗꢊD  
ꢉꢊꢇꢋ  
ꢖꢗ  
ꢉꢊꢇꢋ  
ꢖꢗ  
INTV  
PG  
FB  
CC  
ꢇRꢔꢆꢆ  
ꢘꢅ  
ꢇRꢔꢆꢆ  
ꢘꢕꢇ  
RT  
ꢚꢆꢓ ꢖꢛꢌꢜꢛꢗꢓ  
ꢙꢆꢓ ꢖꢚꢌꢛꢚꢗꢓ  
ꢀꢎꢝꢞꢓꢛD ꢖꢞꢛꢆꢇꢉꢌ ꢚꢆꢙꢖ  
ꢀꢎꢜꢝꢓꢚD ꢖꢝꢚꢆꢇꢉꢌ ꢙꢆꢘꢖ  
Dꢇ ꢂꢈꢇꢉꢈꢊꢅ  
ꢋꢌꢍꢅꢈD ꢎꢏꢐꢐ × ꢏꢐꢐꢑ ꢂꢍꢈꢒꢀꢄꢇ Dꢓꢔ  
θ
ꢟꢛ  
ꢠ ꢃꢎꢡꢌꢔꢈ  
θ
ꢟ ꢃꢎꢠꢌꢔꢈ  
ꢞꢚ  
ꢓꢡꢖꢘꢆꢓD ꢖꢚD ꢢꢖꢉꢊ ꢀꢀꢣ ꢉꢆ ꢗꢊDꢤ ꢙꢕꢆꢇ ꢅꢓ ꢆꢘꢝDꢓRꢓD ꢇꢘ ꢖꢌꢅ  
ꢓꢢꢖꢙꢆꢓD ꢖꢛD ꢣꢖꢉꢊ ꢀꢀꢤ ꢉꢆ ꢗꢊDꢥ ꢚꢕꢆꢇ ꢅꢓ ꢆꢙꢞDꢓRꢓD ꢇꢙ ꢖꢌꢅ  
θ
ꢕꢈ  
ꢖ ꢗꢘꢏꢙꢇꢚꢆ  
ꢅꢛꢂꢁꢒꢅD ꢂꢈD ꢎꢂꢄꢔ ꢜꢑ ꢄꢒ ꢊꢔDꢝ ꢞꢟꢒꢀ ꢠꢅ ꢒꢁꢍDꢅRꢅD ꢀꢁ ꢂꢇꢠ  
ORDER INFORMATION  
LEAD FREE FINISH  
LT8607EMSE#PBF  
TAPE AND REEL  
PART MARKING*  
LTGXJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 125°C  
–40°C to 150°C  
LT8607EMSE#TRPBF  
LT8607IMSE#TRPBF  
LT8607HMSE#TRPBF  
LT8607EMSE-5#TRPBF  
LT8607JMSE-5#TRPBF  
LT8607EDC#TRPBF  
LT8607IDC#TRPBF  
LT8607HDC#TRPBF  
LT8607BEDC#TRPBF  
LT8607BIDC#TRPBF  
LT8607BHDC#TRPBF  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
LT8607IMSE#PBF  
LTGXJ  
LT8607HMSE#PBF  
LTGXJ  
LT8607EMSE-5#PBF  
LT8607JMSE-5#PBF  
LT8607EDC#TRMPBF  
LT8607IDC#TRMPBF  
LT8607HDC#TRMPBF  
LT8607BEDC#TRMPBF  
LT8607BIDC#TRMPBF  
LT8607BHDC#TRMPBF  
LTHNY  
LTHNY  
LGXK  
8-Lead Plastic (2mm × 2mm) DFN  
8-Lead Plastic (2mm × 2mm) DFN  
8-Lead Plastic (2mm × 2mm) DFN  
8-Lead Plastic (2mm × 2mm) DFN  
8-Lead Plastic (2mm × 2mm) DFN  
8-Lead Plastic (2mm × 2mm) DFN  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
LGXK  
LGXK  
LGXM  
LGXM  
LGXM  
Rev. D  
2
For more information www.analog.com  
LT8607/LT8607B  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
AUTOMOTIVE PRODUCTS**  
LT8607EMSE#WPBF  
LT8607IMSE#WPBF  
LT8607EMSE#WTRPBF  
LT8607IMSE#WTRPBF  
LT8607JMSE#WTRPBF  
LT8607HMSE#WTRPBF  
LTGXJ  
LTGXJ  
LTGXJ  
LTGXJ  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
–40°C to 125°C  
–40°C to 150°C  
LT8607JMSE#WPBF  
LT8607HMSE#WPBF  
LT8607EMSE-5#WPBF  
LT8607JMSE-5#WPBF  
LT8607EDC#WTRMPBF  
LT8607IDC#WTRMPBF  
LT8607JDC#WTRMPBF  
LT8607HDC#WTRMPBF  
LT8607EMSE-5#WTRPBF LTHNY  
LT8607JMSE-5#WTRPBF LTHNY  
LT8607EDC#WTRPBF  
LT8607IDC#WTRPBF  
LT8607JDC#WTRPBF  
LT8607HDC#WTRPBF  
LGXK  
LGXK  
LGXK  
LGXK  
8-Lead Plastic (2mm × 2mm) DFN  
8-Lead Plastic (2mm × 2mm) DFN  
8-Lead Plastic (2mm × 2mm) DFN  
8-Lead Plastic (2mm × 2mm) DFN  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
2.5  
3.0  
3.2  
V
l
V
IN  
Current in Regulation  
LT8607/LT8607B  
l
l
V
V
= 6V, V  
= 6V, V  
= 2.7V, Output Load = 100µA  
= 2.7V, Output Load = 1mA  
56  
500  
90  
700  
µA  
µA  
IN  
IN  
OUT  
OUT  
LT8607-5  
l
l
V
V
= 12V, V  
= 5V, I  
LOAD  
= 100µA  
= 1mA  
56  
500  
90  
700  
µA  
µA  
IN  
IN  
OUT  
OUT  
= 12V, V  
= 5V, I  
LOAD  
Feedback Reference Voltage  
LT8607 MSOP Package  
V
V
= 6V, I  
= 6V, I  
= 100mA  
0.774  
0.762  
0.778  
0.778  
0.782  
0.798  
V
V
IN  
IN  
LOAD  
LOAD  
l
l
= 100mA  
LT8607/LT8607B DFN Package  
V
IN  
V
IN  
= 6V, I  
= 6V, I  
= 100mA  
= 100mA  
0.771  
0.753  
0.778  
0.778  
0.785  
0.803  
V
V
LOAD  
LOAD  
Output Reference Voltage  
LT8607-5  
V
V
= 12V, I  
= 100mA  
= 100mA  
4.970  
4.890  
5
5
5.030  
5.110  
V
V
IN  
IN  
LOAD  
LOAD  
l
l
l
= 12V, I  
Feedback Voltage Line Regulation  
Output Voltage Line Regulation  
LT8607/LT8607B  
= 4.0V to 40V  
V
IN  
0.02  
0.02  
0.04  
0.04  
%/V  
%/V  
LT8607-5  
= 6.0V to 40V  
V
IN  
Rev. D  
3
For more information www.analog.com  
LT8607/LT8607B  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
nA  
Feedback Pin Input Current  
LT8607/LT8607B  
l
l
V
FB  
= 1.0V  
20  
Output Pin Input Current  
Minimum On-Time  
LT8607-5  
V
OUT  
= 6.0V  
900  
nA  
l
l
I
I
= 500mA, SYNC = 0V or LT8607 DFN  
= 500mA, SYNC = 1.9V or LT8607B DFN  
35  
35  
65  
60  
ns  
ns  
LOAD  
LOAD  
l
Minimum Off Time  
Oscillator Frequency  
I
= 300mA  
93  
130  
ns  
LOAD  
MSOP Package  
R = 221k, I  
R = 60.4k, I  
R = 18.2k, I  
l
l
l
= 350mA  
= 350mA  
= 350mA  
155  
640  
1.90  
200  
700  
2.00  
245  
760  
2.10  
kHz  
kHz  
MHz  
T
T
T
LOAD  
LOAD  
LOAD  
DFN Package  
R = 221k, I  
l
l
l
= 350mA  
= 350mA  
= 350mA  
140  
610  
1.85  
200  
700  
2.00  
260  
790  
2.15  
kHz  
kHz  
MHz  
T
LOAD  
R = 60.4k, I  
T
LOAD  
LOAD  
R = 18.2k, I  
T
Top Power NMOS On-Resistance  
Top Power NMOS Current Limit  
I
= 500mA  
375  
1.6  
1.7  
240  
mΩ  
A
LOAD  
l
l
MSOP Package  
DFN Package  
1.2  
1.2  
2.0  
2.2  
A
Bottom Power NMOS On-Resistance  
SW Leakage Current  
mΩ  
µA  
V
V
= 36V  
5
IN  
l
EN/UV Pin Threshold  
EN/UV Rising  
0.99  
1.05  
50  
1.11  
EN/UV Pin Hysteresis  
mV  
nA  
%
EN/UV Pin Current  
V
V
V
= 2V  
20  
13.0  
13.0  
EN/UV  
l
l
PG Upper Threshold Offset from V  
Rising  
5.0  
5.0  
8.5  
8.5  
0.5  
FB  
FB  
FB  
PG Lower Threshold Offset from V  
PG Hysteresis  
Falling  
%
FB  
%
PG Leakage  
V
V
= 42V  
200  
nA  
Ω
PG  
PG  
PG Pull-Down Resistance  
Sync Low Input Voltage  
Sync High Input Voltage  
TR/SS Source Current  
TR/SS Pull-Down Resistance  
= 0.1V  
550  
0.9  
2.7  
2
1200  
l
l
l
MSOP Only  
0.4  
1
V
INTV = 3.5V, MSOP Only  
3.2  
3
V
CC  
MSOP Only  
µA  
Ω
Fault Condition, TR/SS = 0.1V, MSOP Only  
300  
3
900  
6
Spread Spectrum Modulation Frequency  
V
= 3.3V, MSOP Only  
0.5  
kHz  
SYNC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime. Absolute Maximum Ratings are those values beyond  
which the life of a device may be impaired.  
Note 2: The LT8607E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization, and correlation with statistical process controls. The  
LT8607I is guaranteed over the full –40°C to 125°C operating junction  
temperature range. The LT8607H is guaranteed over the full –40°C to  
150°C operating junction temperature range. High junction temperatures  
degrade operating lifetimes. Operating lifetime is derated at junction  
temperatures greater than 125°C.  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during overload conditions. Junction temperature will  
exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
will reduce lifetime.  
Rev. D  
4
For more information www.analog.com  
LT8607/LT8607B  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency (5V Output, Burst Mode  
Operation)  
Efficiency (5V Output, Burst Mode  
Operation)  
Efficiency (3.3V Output,  
Burst Mode Operation)  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄ ꢅꢆ ꢇR ꢊꢋꢅꢌ Dꢍꢂ  
ꢀꢁꢂꢃ ꢄ ꢅꢆ ꢇR ꢊꢋꢅꢌ Dꢍꢂ  
ꢀꢁꢂꢃ ꢄ ꢅꢆ ꢇR ꢊꢋꢅꢌ Dꢍꢂ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
ꢀ ꢁ ꢂ.ꢂꢃꢄ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢀꢀꢁ ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
Efficiency (3.3V Output,  
Burst Mode Operation)  
FB Voltage  
VOUT Voltage  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢀꢁ  
ꢀꢀꢀ  
ꢀꢀꢁ  
ꢀꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄ ꢅꢆ ꢇR ꢊꢋꢅꢌ Dꢍꢂ  
ꢀ ꢁ ꢂ.ꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ.ꢀꢀꢁ ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢁ  
No-Load Supply Current  
(3.3V Output Switching)  
Line Regulation  
Load Regulation  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢂ  
ꢀ ꢁ ꢂ.ꢂꢃꢄ  
ꢀꢁꢂꢃ ꢄ ꢅꢆ ꢇR ꢊꢋꢅꢌ Dꢍꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢀ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢀ  
ꢀ.ꢀꢀ  
ꢀꢁ.ꢁꢂ  
ꢀꢁ.ꢂꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ.ꢂꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ.ꢁꢂ  
ꢀꢁ.ꢂꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ.ꢂꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢃ  
ꢀꢁꢂꢃ ꢄꢂꢀ  
Rev. D  
5
For more information www.analog.com  
LT8607/LT8607B  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
No-Load Supply Current  
(5V Output Switching)  
No Load Supply Current vs  
Temperature (Not Switching)  
Top MOSFET Current Limit  
vs Duty Cycle  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁꢂꢃ ꢄ ꢅꢆ ꢇR ꢊꢋꢅꢌ Dꢍꢂ  
ꢀꢁꢂꢃ ꢄ ꢅꢆ  
ꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Dꢀꢁꢂ ꢃꢂꢃꢄꢅ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
Top MOSFET Current Limit  
vs Temperature  
Switch Drop vs Temperature  
Switch Drop vs Switch Current  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ ꢄꢆRRꢇꢈꢃ ꢉ ꢊꢋꢌꢍꢎ  
Dꢀꢁꢂ ꢃꢂꢃꢄꢅ ꢆ ꢇ  
ꢀꢁꢂ ꢃꢄ  
ꢅꢁꢀ ꢃꢄ  
ꢀꢁꢂ ꢃꢄ  
ꢅꢁꢀ ꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ ꢄꢆRRꢇꢈꢃ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Minimum On-Time  
vs Temperature  
Minimum Off-Time  
vs Temperature  
Dropout Voltage vs Output Current  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ ꢂꢃꢀꢄꢅꢆꢅꢇꢄꢈꢆꢉꢊ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
Rev. D  
6
For more information www.analog.com  
LT8607/LT8607B  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Minimum Load to Full  
Frequency (SYNC Float to 1.9V)  
(MSOP Package) or LT8607B DFN  
Switching Frequency  
vs Temperature  
Burst Frequency vs  
Output Current  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢁꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢁ  
ꢀꢁꢁꢂ  
ꢀꢁꢁꢁ  
ꢀꢁꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁ ꢂ.ꢂꢃꢄ  
R
= 18.2kΩ  
ꢀ ꢁ ꢂ.ꢂꢃꢄ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄ ꢅꢆ ꢇR ꢊꢋꢅꢌ Dꢍꢂ  
R
= 18.2kΩ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
Soft-Start Current vs Temperature  
(MSOP Package)  
Soft-Start Tracking  
(MSOP Package)  
Frequency Foldback  
ꢀꢁꢂꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢁꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢁ  
ꢀꢁꢂ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
R
D
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀ.ꢀ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢀ ꢀ.ꢁ  
ꢀꢁ ꢂꢃꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀ ꢁꢂꢆꢇ ꢈꢁꢉ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
VIN UVLO vs Temperature  
Start-Up Dropout  
Start-Up Dropout  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢁ  
R
ꢀꢁꢂD  
= 6.66Ω  
R
ꢀꢁꢂD  
= 50Ω  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
Rev. D  
7
For more information www.analog.com  
LT8607/LT8607B  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switching Waveforms  
(Burst Mode)  
Switching Waveforms  
Switching Waveforms  
ꢆꢇꢈ  
ꢇꢈꢉD  
ꢇꢈꢉD  
ꢀꢉꢊꢅꢃDꢄꢅ  
ꢀꢁꢁꢊꢉꢄDꢅꢆ  
ꢀꢁꢁꢊꢉꢄDꢅꢆ  
ꢋꢆꢌD  
ꢀꢉꢉꢊꢌꢃDꢄꢅ  
ꢋꢌ  
ꢋꢌ  
ꢍꢁꢆꢄDꢅꢆ  
ꢍꢎ  
ꢏꢉꢅꢃDꢄꢅ  
ꢍꢆꢄDꢅꢆ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
ꢀꢁꢂꢃDꢄꢅ  
ꢒꢀꢆ ꢔꢈ ꢍꢆ  
ꢅꢓ  
ꢉꢔ ꢍꢁꢁꢊꢉ  
ꢓꢏꢆ ꢕꢈ ꢖꢆ  
ꢅꢔ  
ꢉꢕ ꢖꢁꢁꢊꢉ  
ꢏꢀꢅ ꢈꢆ ꢖꢅ ꢌꢈ ꢒ.ꢖꢊꢌ  
ꢆꢇꢈ  
ꢈꢕꢔ  
ꢈꢗꢕ  
ꢄꢕ  
ꢎꢏꢁꢐ ꢑꢀꢎ  
ꢎꢏꢁꢐ ꢑꢀꢒ  
ꢐꢑꢉꢒ ꢓꢔꢉ  
ꢀꢖꢗꢘ  
ꢀꢘꢙꢚ  
ꢀꢀꢁꢗ ꢘ  
ꢆꢇꢈ  
Transient Response  
Transient Response  
ꢇꢈꢉD  
ꢇꢈꢉD  
ꢊꢁꢁꢋꢉꢄDꢅꢆ  
ꢀꢁꢁꢊꢉꢄDꢅꢆ  
ꢈꢌꢍ  
ꢈꢋꢌ  
ꢀꢁꢁꢋꢆꢄDꢅꢆ  
ꢍꢁꢁꢊꢆꢄDꢅꢆ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
ꢔꢍꢀꢆ  
ꢔꢀꢊꢆ  
ꢅꢓ  
ꢈꢋꢌ  
ꢅꢓ  
ꢈꢌꢍ  
ꢎꢏꢁꢐ ꢑꢒꢍ  
ꢎꢏꢁꢐ ꢑꢒꢊ  
ꢔ ꢕꢆ  
ꢔ ꢕꢆ  
ꢕꢁꢊꢉ ꢌꢈ ꢕꢕꢁꢊꢉ  
ꢊꢕꢁꢋꢉ ꢍꢈ ꢐꢕꢁꢋꢉ  
ꢔ ꢊꢊꢂꢗ  
ꢔ ꢀꢀꢂꢗ  
ꢈꢋꢌ  
ꢈꢌꢍ  
ꢔ ꢀꢛꢜꢝ  
ꢔ ꢊꢛꢜꢝ  
ꢙꢚ  
ꢙꢚ  
Radiated EMI Performance  
(CISPR 25 Radiated Emission Test with Class 5 Peak Limits)  
ꢗꢘ  
ꢚꢗ  
ꢚꢘ  
ꢝꢗ  
ꢝꢘ  
ꢛꢗ  
ꢛꢘ  
ꢜꢗ  
ꢜꢘ  
ꢔꢁRꢐꢏꢅꢌꢎ ꢍꢣꢎꢌRꢏꢤꢌꢐꢏꢣꢄ  
ꢍꢁꢌꢥ DꢁꢐꢁꢅꢐꢣR  
ꢅꢎꢌꢦꢦ ꢗ ꢍꢁꢌꢥ ꢎꢏꢈꢏꢐ  
ꢦꢍRꢁꢌD ꢦꢍꢁꢅꢐRꢃꢈ ꢈꢣDꢁ  
ꢀꢏꢧꢁD ꢀRꢁꢂꢃꢁꢄꢅꢆ  
ꢙꢗ  
ꢙꢜꢘ  
ꢜꢘꢘ  
ꢛꢘꢘ  
ꢝꢘꢘ  
ꢚꢘꢘ  
ꢗꢘꢘ  
ꢟꢘꢘ  
ꢠꢘꢘ  
ꢞꢘꢘ  
ꢢꢘꢘ  
ꢜꢘꢘꢘ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢞꢟꢘꢠ ꢡꢝꢝ  
Dꢅꢛꢗꢟꢗꢌ Dꢁꢈꢣ ꢒꢣꢌRD  
ꢨꢏꢐꢉ ꢁꢈꢏ ꢀꢏꢁR ꢏꢄꢦꢐꢌꢎꢎꢁD  
ꢜꢚꢔ ꢏꢄꢍꢃꢐ ꢐꢣ ꢗꢔ ꢣꢃꢐꢍꢃꢐ ꢌꢐ ꢗꢘꢘꢖꢌꢩ ꢪ ꢫ ꢛꢈꢉꢊ  
ꢦꢨ  
Rev. D  
8
For more information www.analog.com  
LT8607/LT8607B  
PIN FUNCTIONS  
BST: This pin is used to provide a drive voltage, higher  
than the input voltage, to the topside power switch. Place  
a 0.1µF boost capacitor as close as possible to the IC. Do  
not place a resistor in series with this pin.  
TR/SS (MSOP Only): Output Tracking and Soft-Start Pin.  
This pin allows user control of output voltage ramp rate  
during start-up. A TR/SS voltage below 0.778V forces the  
LT8607 to regulate the FB pin to equal the TR/SS pin volt-  
age. The LT8607-5 will track the TR/SS pin voltage based  
on a factor set by the internal resistor divider. The part  
will track to 6.43 times the TR/SS voltage. When TR/SS  
is above 0.778V, the tracking function is disabled and the  
internal reference resumes control of the error amplifier.  
SW: The SW pin is the output of the internal power  
switches. Connect this pin to the inductor and boost  
capacitor. This node should be kept small on the PCB for  
good performance.  
INTV : Internal 3.5V Regulator Bypass Pin. The internal  
An internal 2µA pull-up current from INTV on this pin  
CC  
CC  
power drivers and control circuits are powered from this  
voltage. INTV max output current is 20mA. Voltage on  
INTVCC will vCaCry between 2.8V and 3.5V. Decouple this  
pin to power ground with at least a 1µF low ESR ceramic  
capacitor. Do not load the INTVCC pin with external circuitry.  
allows a capacitor to program output voltage slew rate.  
This pin is pulled to ground with a 300Ω MOSFET dur-  
ing shutdown and fault conditions; use a series resistor  
if driving from a low impedance output. There is no TR/  
SS pin on the LT8607 or LT8607B DFN and the node is  
internally floated.  
RT: A resistor is tied between RT and ground to set the  
switching frequency. When synchronizing, the RT resistor  
should be chosen to set the LT8607 switching frequency  
to equal or below the lowest synchronization input.  
PG: The PG pin is the open-drain output of an internal  
comparator. PG remains low until the FB pin is within  
8.5% of the final regulation voltage, and there are no  
fault conditions. PG is valid when V is above 3.2V and  
IN  
SYNC (MSOP Only): External Clock Synchronization  
Input. Ground this pin for low ripple Burst Mode operation  
at low output loads. Tie to a clock source for synchroni-  
zation to an external frequency. Leave floating for pulse-  
skipping mode with no spread spectrum modulation. Tie  
when EN/UV is high. PG is pulled low when V is above  
IN  
3.2V and EN/UV is low. If V is near zero, PG will be high  
IN  
impedance.  
V : The V pin supplies current to the LT8607 internal  
IN  
IN  
to INTV or tie to a voltage between 3.2V and 5.0V for  
circuitry and to the internal topside power switch. This pin  
must be locally bypassed. Be sure to place the positive  
terminal of the input capacitor as close as possible to the  
CC  
pulse-skipping mode with spread spectrum modulation.  
When in pulse-skipping mode, the I regulating no load  
will increase to several mA. ThereQis no SYNC pin on  
the LT8607 DFN package. The LT8607 DFN internally  
ties SYNC to ground. The LT8607B package internally  
floats SYNC.  
V pins, and the negative capacitor terminal as close as  
IN  
possible to the GND pins.  
EN/UV: The LT8607 is shut down when this pin is low and  
active when this pin is high. The hysteretic threshold volt-  
FB (LT8607/LT8607B Only): The LT8607 regulates the  
FB pin to 0.778V. Connect the feedback resistor divider  
tap to this pin.  
age is 1.05V going up and 1.00V going down. Tie to V  
IN  
if the shutdown feature is not used. An external resistor  
divider from V can be used to program a V threshold  
IN  
IN  
below which the LT8607 will shut down.  
V
(LT8607-5 Only): The LT8607-5 regulates the V  
OUT  
OUT  
pin to 5V. This pin connects to a 6.6MΩ internal divider.  
GND: Exposed Pad Pin. The exposed pad must be con-  
nected to the negative terminal of the input capaci-  
tor and soldered to the PCB in order to lower the  
thermal resistance.  
Rev. D  
9
For more information www.analog.com  
LT8607/LT8607B  
BLOCK DIAGRAM  
ꢉꢊ  
ꢉꢊ  
ꢉꢊ  
ꢉꢊꢋꢆRꢊꢌꢃ ꢍ.ꢎꢎꢏꢐ Rꢆꢑ  
ꢂꢔDꢊ  
ꢘ.ꢙꢐ  
Rꢆꢚ  
Rꢘ  
ꢄꢅꢋ  
ꢛꢐ  
ꢆꢊꢡꢗꢐ  
ꢅꢚ  
ꢂꢃꢄꢅꢆ ꢇꢄꢈꢅ  
ꢉꢊꢋꢐ  
ꢇꢇ  
Rꢤ  
ꢄꢅꢋ  
ꢐꢇꢇ  
ꢏ.ꢙꢟ  
ꢄꢂꢇꢉꢃꢃꢌꢋꢄR  
ꢒꢍꢍꢓꢔꢕ ꢋꢄ ꢒ.ꢒꢈꢔꢕ  
ꢖꢂꢋ  
ꢂꢝ  
R
ꢆRRꢄR  
ꢌꢈꢅ  
ꢅꢚ  
ꢄꢗꢋ  
ꢖꢂꢋ  
ꢂꢝꢉꢋꢇꢔ  
ꢃꢄꢚꢉꢇ  
ꢈꢛ  
ꢈꢒ  
ꢖꢗRꢂꢋ  
Dꢆꢋꢆꢇꢋ  
ꢄꢗꢋ  
ꢌꢊD  
ꢄꢗꢋ  
ꢌꢊꢋꢉꢞ  
ꢂꢔꢄꢄꢋ  
ꢋꢔRꢄꢗꢚꢔ  
ꢄꢗꢋ  
ꢂꢔDꢊ  
ꢋꢂD  
ꢉꢊꢋꢐ ꢗꢐꢃꢄ  
Rꢛ  
ꢑꢑ  
ꢒꢥꢌ  
ꢇꢇ  
Rꢒ  
ꢗꢐꢃꢄ  
ꢉꢊ  
ꢑꢖ  
ꢚꢊD  
ꢂꢔDꢊ  
ꢋꢂD  
ꢗꢐꢃꢄ  
ꢉꢊ  
ꢏꢜꢍꢎꢡꢏꢜꢍꢎꢖ  
ꢄꢊꢠ  
ꢑꢑ  
Rꢛ  
ꢄꢗꢋ  
ꢄꢗꢋ  
Rꢒ  
ꢏꢜꢍꢎꢞꢙ  
ꢄꢊꢠ  
ꢋRꢡꢂꢂ  
ꢢꢈꢂꢄꢅ  
ꢄꢊꢣ  
ꢂꢠꢊꢇ  
ꢢꢈꢂꢄꢅ ꢄꢊꢣ  
Rꢋ  
ꢏꢜꢍꢎ ꢖD  
ꢂꢂ  
R
ꢄꢅꢋ  
Rev. D  
10  
For more information www.analog.com  
LT8607/LT8607B  
OPERATION  
The LT8607 is a monolithic constant frequency current  
mode step-down DC/DC converter. An oscillator with  
frequency set using a resistor on the RT pin turns on  
the internal top power switch at the beginning of each  
clock cycle. Current in the inductor then increases until  
the top switch current comparator trips and turns off the  
top power switch. The peak inductor current at which the  
top switch turns off is controlled by the voltage on the  
internal VC node. The error amplifier servos the VC node  
1.7µA. In a typical application, 3.0µA will be consumed  
from the input supply when regulating with no load. The  
SYNC pin is tied low to use Burst Mode operation and can  
be floated to use pulse-skipping mode. If a clock is applied  
to the SYNC pin the part will synchronize to an external  
clock frequency and operate in pulse-skipping mode. While  
in pulse-skipping mode the oscillator operates continu-  
ously and positive SW transitions are aligned to the clock.  
During light loads, switch pulses are skipped to regulate  
the output and the quiescent current will be several mA.  
The SYNC pin may be tied high for spread spectrum modu-  
lation mode, and the LT8607 will operate similar to pulse-  
skipping mode but vary the clock frequency to reduce EMI.  
The LT8607 DFN has no SYNC pin and will always operate  
in Burst Mode operation. The LT8607B has no SYNC pin  
and will operate in pulse-skipping mode.  
by comparing the voltage on the V pin with an internal  
FB  
0.778V reference. The LT8607-5 fixed output part uses  
the V  
pin and an internal resistor divider to generate  
OUT  
an internal FB node. When the load current increases, it  
causes a reduction in the feedback voltage relative to the  
reference leading the error amplifier to raise the VC volt-  
age until the average inductor current matches the new  
load current. When the top power switch turns off the  
synchronous power switch turns on until the next clock  
cycle begins or inductor current falls to zero. If overload  
conditions result in excess current flowing through the  
bottom switch, the next clock cycle will be delayed until  
switch current returns to a safe level.  
Comparators monitoring the FB pin voltage will pull the PG  
pin low if the output voltage varies more than 8.5% (typi  
-
cal) from the set point, or if a fault condition is present.  
In Burst Mode operation, the oscillator reduces the  
LT8607's operating frequency when the voltage at the  
FB pin is low, or the voltage at the V  
pin is low on the  
LT8607-5 fixed output option. ThisOfUrTequency foldback  
helps to control the inductor current when the output volt-  
age is lower than the programmed value which occurs  
during start-up.  
If the EN/UV pin is low, the LT8607 is shut down and  
draws 1µA from the input. When the EN/UV pin is above  
1.05V, the switching regulator becomes active.  
To optimize efficiency at light loads, the LT8607 enters  
Burst Mode operation during light load situations. Between  
bursts, all circuitry associated with controlling the output  
switch is shut down, reducing the input supply current to  
Rev. D  
11  
For more information www.analog.com  
LT8607/LT8607B  
APPLICATIONS INFORMATION  
Achieving Ultralow Quiescent Current  
LT8607 DFN is programmed for Burst Mode operation  
and cannot enter pulse-skipping mode. The LT8607B DFN  
is programmed for pulse-skipping mode and cannot enter  
Burst Mode operation.  
To enhance efficiency at light loads, the LT8607 enters  
into low ripple Burst Mode operation, which keeps the  
output capacitor charged to the desired output voltage  
while minimizing the input quiescent current and mini-  
mizing output voltage ripple. In Burst Mode operation the  
LT8607 delivers single small pulses of current to the out-  
put capacitor followed by sleep periods where the output  
power is supplied by the output capacitor. While in sleep  
mode the LT8607 consumes 1.7µA.  
ꢀꢁꢂꢂ  
ꢀ ꢁ ꢂ.ꢂꢃꢄ  
ꢀꢀꢁꢂ  
ꢀꢁꢁꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄ ꢅꢆ ꢇR ꢊꢋꢅꢌ Dꢍꢂ  
As the output load decreases, the frequency of single cur-  
rent pulses decreases (see Figure 1) and the percentage  
of time the LT8607 is in sleep mode increases, result-  
ing in much higher light load efficiency than for typical  
converters. By maximizing the time between pulses, the  
converter quiescent current approaches 3.0µA for a typi-  
cal application when there is no output load. Therefore,  
to optimize the quiescent current performance at light  
loads, the current in the feedback resistor divider must  
be minimized as it appears to the output as load current.  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
Figure 1. Burst Frequency vs Output Current  
ꢀꢁꢂ  
ꢀ ꢁ ꢂ.ꢂꢃꢄ  
R
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
= 18.2kΩ  
While in Burst Mode operation the current limit of the  
top switch is approximately 250mA resulting in output  
voltage ripple shown in Figure 3. Increasing the output  
capacitance will decrease the output ripple proportionally.  
As load ramps upward from zero the switching frequency  
will increase but only up to the switching frequency  
programmed by the resistor at the RT pin as shown in  
Table 1. The output load at which the LT8607 reaches the  
programmed frequency varies based on input voltage,  
output voltage, and inductor choice.  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
Figure 2. Minimum Load to Full Frequency  
(SYNC Float to 1.9V) (MSOP or LT8607B DFN)  
For some applications it is desirable for the LT8607 to  
operate in pulse-skipping mode, offering two major differ-  
ences from Burst Mode operation. First is the clock stays  
awake at all times and all switching cycles are aligned to  
the clock. In this mode much of the internal circuitry is  
awake at all times, increasing quiescent current to several  
hundred µA. Second is that full switching frequency is  
reached at lower output load than in Burst Mode opera-  
tion as shown in Figure 2. To enable pulse-skipping mode  
the SYNC pin is floated. To achieve spread spectrum  
modulation with pulse-skipping mode, the SYNC pin is  
tied high. While a clock is applied to the SYNC pin the  
LT8607 will also operate in pulse-skipping mode. The  
ꢆꢇꢈ  
ꢀꢉꢊꢅꢃDꢄꢅ  
ꢋꢆꢌD  
ꢀꢉꢉꢊꢌꢃDꢄꢅ  
ꢍꢎ  
ꢏꢉꢅꢃDꢄꢅ  
ꢀꢁꢂꢃDꢄꢅ  
ꢐꢑꢉꢒ ꢓꢉꢔ  
Figure 3. Burst Mode Operation  
Rev. D  
12  
For more information www.analog.com  
LT8607/LT8607B  
APPLICATIONS INFORMATION  
FB Resistor Network  
Operating Frequency Selection and Trade-Offs  
The output voltage is programmed with a resistor divider  
between the output and the FB pin. Choose the resistor  
values according to:  
Selection of the operating frequency is a trade-off between  
efficiency, component size, and input voltage range. The  
advantage of high frequency operation is that smaller  
inductor and capacitor values may be used. The disadvan-  
tages are lower efficiency and a smaller input voltage range.  
VOUT  
0.778V  
R1=R2  
–1  
The highest switching frequency (f  
) for a given  
SW(MAX)  
1% resistors are recommended to maintain output volt-  
age accuracy.  
application can be calculated as follows:  
V
+ V  
OUT  
SW(BOT)  
The total resistance of the FB resistor divider should be  
selected to be as large as possible when good low load  
efficiency is desired: The resistor divider generates a  
small load on the output, which should be minimized to  
optimize the quiescent current at low loads.  
f
=
SW(MAX)  
t
V – V  
+ V  
(
)
IN  
ON(MIN)  
SW(TOP) SW(BOT)  
where V is the typical input voltage, V  
is the output  
OUT  
voltage,INV  
and V  
are the internal switch  
SW(TOP)  
SW(BOT)  
drops (~0.25V, ~0.125V, respectively at max load) and  
tON(MIN) is the minimum top switch on-time (see Electrical  
Characteristics). This equation shows that slower switch-  
When using large FB resistors, a 10pF phase lead capaci-  
tor should be connected from V  
to FB. The LT8607-5  
OUT  
regulates to 5V and has a total of 6.6MΩ of internal feed-  
ing frequency is necessary to accommodate a high V /  
IN  
back divider resistance from the V  
pin to ground.  
OUT  
V
ratio.  
OUT  
Setting the Switching Frequency  
For transient operation V may go as high as the Abs Max  
rating regardless of theINR value, however the LT8607  
The LT8607 uses a constant frequency PWM architecture that  
can be programmed to switch from 200kHz to 2.2MHz by  
using a resistor tied from the RT pin to ground. A table show-  
T
will reduce switching frequency as necessary to maintain  
control of inductor current to assure safe operation.  
ing the necessary R value for a desired switching frequency  
T
The LT8607 is capable of maximum duty cycle approach-  
is in Table 1. When in spread spectrum modulation mode, the  
ing 100%, and the V to V  
DS(ON)  
dropout is limited by the  
IN  
OUT  
frequency is modulated upwards of the frequency set by R .  
T
R
of the top switch. In this mode the LT8607 skips  
switch cycles, resulting in a lower switching frequency  
Table 1. SW Frequency vs RT Value  
than programmed by R .  
T
f
SW  
(MHz)  
R (kΩ)  
T
0.2  
221  
143  
For applications that cannot allow deviation from the pro-  
0.300  
0.400  
0.500  
0.600  
0.700  
0.800  
0.900  
1.000  
1.200  
1.400  
1.600  
1.800  
2.000  
2.200  
grammed switching frequency at low V /V  
ratios use  
IN OUT  
110  
the following formula to set switching frequency:  
86.6  
71.5  
60.4  
52.3  
46.4  
40.2  
33.2  
27.4  
23.7  
20.5  
18.2  
16.2  
V
+ V  
OUT  
SW(BOT)  
V
=
– V  
+ V  
IN(MIN)  
SW(BOT) SW(TOP)  
1– f • t  
SW OFF(MIN)  
where VIN(MIN) is the minimum input voltage without  
skipped cycles, V is the output voltage, V and  
OUT  
SW(TOP)  
V
are the internal switch drops (~0.25V, ~0.125V,  
SW(BOT)  
respectively at max load), f is the switching frequency  
(set by RT), and tOFF(MIN)SiWs the minimum switch off-  
time. Note that higher switching frequency will increase  
the minimum input voltage below which cycles will be  
dropped to achieve higher duty cycle.  
Rev. D  
13  
For more information www.analog.com  
LT8607/LT8607B  
APPLICATIONS INFORMATION  
Inductor Selection and Maximum Output Current  
The peak-to-peak ripple current in the inductor can be  
calculated as follows:  
The LT8607 is designed to minimize solution size by  
allowing the inductor to be chosen based on the output  
load requirements of the application. During overload or  
VOUT  
VOUT  
ΔIL =  
1–  
L•fSW  
V
IN(MAX)  
short circuit conditions the LT8607 safely tolerates opera  
-
tion with a saturated inductor through the use of a high  
speed peak-current mode architecture.  
where f is the switching frequency of the LT8607, and  
SW  
L is the value of the inductor. Therefore, the maximum  
output current that the LT8607 will deliver depends on  
the switch current limit, the inductor value, and the input  
and output voltages. The inductor value may have to be  
increased if the inductor ripple current does not allow  
A good first choice for the inductor value is:  
V
+ V  
SW(BOT)  
OUT  
L =  
•2  
f
SW  
sufficient maximum output current (I  
) given the  
OUT(MAX)  
where fSW is the switching frequency in MHz, VOUT is  
switching frequency, and maximum input voltage used in  
the desired application.  
the output voltage, V  
is the bottom switch drop  
SW(BOT)  
(~0.125V) and L is the inductor value in µH.  
The optimum inductor for a given application may differ  
from the one indicated by this design guide. A larger value  
inductor provides a higher maximum load current and  
reduces the output voltage ripple. For applications requir-  
ing smaller load currents, the value of the inductor may  
be lower and the LT8607 may operate with higher ripple  
current. This allows use of a physically smaller inductor,  
or one with a lower DCR resulting in higher efficiency. Be  
aware that low inductance may result in discontinuous  
mode operation, which further reduces maximum load  
current.  
To avoid overheating and poor efficiency, an inductor  
must be chosen with an RMS current rating that is greater  
than the maximum expected output load of the applica-  
tion. In addition, the saturation current (typically labeled  
I
) rating of the inductor must be higher than the load  
SAT  
current plus 1/2 of in inductor ripple current:  
1
2
I
L(PEAK) =ILOAD(MAX) + ΔL  
where ∆IL is the inductor ripple current as calculated sev-  
eral paragraphs below and ILOAD(MAX) is the maximum  
output load for a given application.  
For more information about maximum output current and  
discontinuous operation, see Analog Devices Application  
Note 44.  
As a quick example, an application requiring 0.25A output  
should use an inductor with an RMS rating of greater  
than 0.5A and an I  
of greater than 0.7A. To keep the  
SAT  
Finally, for duty cycles greater than 50% (V /V > 0.5),  
OUT IN  
efficiency high, the series resistance (DCR) should be less  
than 0.04Ω, and the core material should be intended for  
high frequency applications.  
a minimum inductance is required to avoid sub-harmonic  
oscillation. See Analog Devices Application Note 19.  
Input Capacitor  
The LT8607 limits the peak switch current in order to  
protect the switches and the system from overload faults.  
Bypass the input of the LT8607 circuit with a ceramic  
capacitor of X7R or X5R type. Y5V types have poor per-  
formance over temperature and applied voltage, and  
should not be used. A 4.7µF to 10µF ceramic capacitor  
is adequate to bypass the LT8607 and will easily handle  
the ripple current. Note that larger input capacitance is  
required when a lower switching frequency is used. If  
the input power source has high impedance, or there is  
The top switch current limit (I ) is at least 1.2A at low  
LIM  
duty cycles and decreases linearly to at least 0.9A at D =  
0.8. The inductor value must then be sufficient to supply  
the desired maximum output current (I  
), which  
is a function of the switch current limOitUT(I(LMIMAX)) and the  
ripple current:  
ΔIL  
2
IOUT(MAX) =ILIM  
Rev. D  
14  
For more information www.analog.com  
LT8607/LT8607B  
APPLICATIONS INFORMATION  
significant inductance due to long wires or cables, addi-  
tional bulk capacitance may be necessary. This can be  
provided with a low performance electrolytic capacitor.  
cause loop instability. See the Typical Applications in this  
data sheet for suggested capacitor values.  
When choosing a capacitor, special attention should be  
given to the data sheet to calculate the effective capaci-  
tance under the relevant operating conditions of voltage  
bias and temperature. A physically larger capacitor or one  
with a higher voltage rating may be required.  
Step-down regulators draw current from the input sup-  
ply in pulses with very fast rise and fall times. The input  
capacitor is required to reduce the resulting voltage rip-  
ple at the LT8607 and to force this very high frequency  
switching current into a tight local loop, minimizing EMI.  
A 4.7µF capacitor is capable of this task, but only if it is  
placed close to the LT8607 (see the PCB Layout section).  
A second precaution regarding the ceramic input capaci-  
tor concerns the maximum input voltage rating of the  
LT8607. A ceramic input capacitor combined with trace  
or cable inductance forms a high quality (under damped)  
tank circuit. If the LT8607 circuit is plugged into a live  
supply, the input voltage can ring to twice its nominal  
value, possibly exceeding the LT8607’s voltage rating.  
This situation is easily avoided (see Analog Devices  
Application Note 88).  
Ceramic Capacitors  
Ceramic capacitors are small, robust and have very low  
ESR. However, ceramic capacitors can cause problems  
when used with the LT8607 due to their piezoelectric  
nature. When in Burst Mode operation, the LT8607’s  
switching frequency depends on the load current, and at  
very light loads theLT8607 can excite the ceramic capacitor  
at audio frequencies, generating audible noise. Since the  
LT8607 operates at a lower current limit during Burst Mode  
operation, the noise is typically very quiet to a casual ear.  
If this is unacceptable, use a high performance tantalum  
or electrolytic capacitor at the output.  
Output Capacitor and Output Ripple  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LT8607. As pre-  
viously mentioned, a ceramic input capacitor combined  
with trace or cable inductance forms a high quality (under  
damped) tank circuit. If the LT8607 circuit is plugged into  
a live supply, the input voltage can ring to twice its nomi-  
nal value, possibly exceeding the LT8607’s rating. This  
situation is easily avoided (see Analog Devices Application  
Note 88).  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave generated  
by the LT8607 to produce the DC output. In this role it  
determines the output ripple, thus low impedance at the  
switching frequency is important. The second function is  
to store energy in order to satisfy transient loads and sta-  
bilize the LT8607’s control loop. Ceramic capacitors have  
very low equivalent series resistance (ESR) and provide  
the best ripple performance. A good starting value is:  
Enable Pin  
100  
C
=
OUT  
V
• f  
The LT8607 is in shutdown when the EN pin is low and  
active when the pin is high. The rising threshold of the EN  
comparator is 1.05V, with 50mV of hysteresis. The EN pin  
can be tied to V if the shutdown feature is not used, or  
tied to a logic level if shutdown control is required.  
OUT SW  
where fSW is in MHz, and COUT is the recommended output  
capacitance in µF. Use X5R or X7R types. This choice will  
provide low output ripple and good transient response.  
Transient performance can be improved with a higher value  
output capacitor and the addition of a feedforward capaci-  
IN  
Adding a resistor divider from V to EN programs the  
LT8607 to regulate the output oInNly when V is above  
a desired voltage (see Block Diagram). Typically, this  
threshold, V  
IN  
tor placed between V  
and FB. Increasing the output  
OUT  
capacitance will also decrease the output voltage ripple. A  
lower value of output capacitor can be used to save space  
and cost but transient performance will suffer and may  
, is used in situations where the input  
IN(EN)  
Rev. D  
15  
For more information www.analog.com  
LT8607/LT8607B  
APPLICATIONS INFORMATION  
supply is current limited, or has a relatively high source  
resistance. A switching regulator draws constant power  
from the source, so source current increases as source  
voltage drops. This looks like a negative resistance load  
to the source and can cause the source to current limit or  
can be externally driven by another voltage source. From  
0V to 0.778V, the TR/SS voltage will override the internal  
0.778V reference input to the error amplifier, thus regulat  
-
ing the FB pin voltage to that of TR/SS pin.  
In the LT8607-5 fixed output option, the output voltage  
will track the TR/SS pin to 6.43 times the TR/SS voltage,  
a voltage based on a factor set by the internal feedback  
resistor divider. When TR/SS is above 0.778V, tracking  
is disabled and the feedback voltage will regulate to the  
internal reference voltage.  
latch low under low source voltage conditions. The V  
IN(EN)  
threshold prevents the regulator from operating at source  
voltages where the problems might occur. This threshold  
can be adjusted by setting the values R3 and R4 such that  
they satisfy the following equation:  
R3  
R4  
An active pull-down circuit is connected to the TR/SS pin  
which will discharge the external soft-start capacitor in  
the case of fault conditions and restart the ramp when the  
faults are cleared. Fault conditions that clear the soft-start  
V
=
+1 •1V  
IN(EN)  
where the LT8607 will remain off until VIN is above VIN(EN)  
Due to the comparator’s hysteresis, switching will not  
stop until the input falls slightly below V  
.
capacitor are the EN/UV pin transitioning low, V volt-  
IN  
.
IN(EN)  
age falling too low, or thermal shutdown. The LT8607 and  
LT8607B DFN does not have the TR/SS pin or functionality.  
When in Burst Mode operation for light-load currents,  
the current through the V resistor network can eas-  
ily be greater than the supply current consumed by the  
LT8607. Therefore, the V resistors should be large  
to minimize their effect on efficiency at low loads.  
IN(EN)  
Output Power Good  
IN(EN)  
When the LT8607’s output voltage is within the 8.5%  
window of the regulation point, which is a V voltage in  
FB  
the range of 0.716V to 0.849V (typical), the output voltage  
is considered good and the open-drain PG pin goes high  
impedance and is typically pulled high with an external  
resistor. Otherwise, the internal drain pull-down device  
will pull the PG pin low. To prevent glitching both the  
upper and lower thresholds include 0.5% of hysteresis.  
INTV Regulator  
CC  
An internal low dropout (LDO) regulator produces the  
3.5V supply from VIN that powers the drivers and the  
internal bias circuitry. The INTVCC can supply enough cur-  
rent for the LT8607’s circuitry and must be bypassed to  
ground with a minimum of 1µF ceramic capacitor. Good  
bypassing is necessary to supply the high transient  
currents required by the power MOSFET gate drivers.  
Applications with high input voltage and high switching  
frequency will increase die temperature because of the  
higher power dissipation across the LDO. Do not connect  
The PG pin is also actively pulled low during several fault  
conditions: EN/UV pin is below 1V, INTV has fallen too  
CC  
low, V is too low, or thermal shutdown.  
IN  
Synchronization (MSOP Only)  
To select low ripple Burst Mode operation, tie the SYNC pin  
below 0.4V (this can be ground or a logic low output). To  
synchronize the LT8607 oscillator to an external frequency  
connect a square wave (with 20% to 80% duty cycle) to the  
SYNC pin. The square wave amplitude should have valleys  
that are below 0.9V and peaks above 2.7V (up to 5V).  
an external load to the INTV pin.  
CC  
Output Voltage Tracking and Soft-Start (MSOP Only)  
The LT8607 allows the user to program its output voltage  
ramp rate by means of the TR/SS pin. An internal 2µA  
pulls up the TR/SS pin to INTVCC. Putting an external  
capacitor on TR/SS enables soft-starting the output to  
prevent current surge on the input supply. During the soft-  
start ramp the output voltage will proportionally track the  
TR/SS pin voltage. For output tracking applications, TR/SS  
The LT8607 will not enter Burst Mode operation at low  
output loads while synchronized to an external clock, but  
instead will pulse skip to maintain regulation. The LT8607  
may be synchronized over a 200kHz to 2.2MHz range. The  
Rev. D  
16  
For more information www.analog.com  
LT8607/LT8607B  
APPLICATIONS INFORMATION  
R resistor should be chosen to set the LT8607 switch-  
inTg frequency equal to or below the lowest synchroni-  
zation input. For example, if the synchronization signal  
brownout conditions. The first is the switching frequency  
will be folded back while the output is lower than the set  
point to maintain inductor current control. Second, the  
bottom switch current is monitored such that if inductor  
current is beyond safe levels switching of the top switch  
will be delayed until such time as the inductor current  
falls to safe levels. This allows for tailoring the LT8607  
to individual applications and limiting thermal dissipation  
during short circuit conditions.  
will be 500kHz and higher, the R should be selected for  
T
500kHz. The slope compensation is set by the R value,  
T
while the minimum slope compensation required to avoid  
subharmonic oscillations is established by the inductor  
size, input voltage, and output voltage. Since the syn-  
chronization frequency will not change the slopes of the  
inductor current waveform, if the inductor is large enough  
to avoid subharmonic oscillations at the frequency set by  
Frequency foldback behavior depends on the state of the  
SYNC pin: If the SYNC pin is low the switching frequency  
will slow while the output voltage is lower than the pro-  
grammed level. If the SYNC pin is connected to a clock  
source, tied high or floated, the LT8607 will stay at the  
programmed frequency without foldback and only slow  
switching if the inductor current exceeds safe levels.  
R , then the slope compensation will be sufficient for all  
T
synchronization frequencies.  
For some applications it is desirable for the LT8607 to  
operate in pulse-skipping mode, offering two major differ-  
ences from Burst Mode operation. First is the clock stays  
awake at all times and all switching cycles are aligned  
to the clock. Second is that full switching frequency is  
reached at lower output load than in Burst Mode operation  
as shown in Figure 2 in an earlier section. These two differ-  
ences come at the expense of increased quiescent current.  
To enable pulse-skipping mode the SYNC pin is floated.  
There is another situation to consider in systems where  
the output will be held high when the input to the LT8607  
is absent. This may occur in battery charging applications  
or in battery backup systems where a battery or some  
other supply is diode ORed with the LT8607’s output.  
If the V pin is allowed to float and the EN pin is held  
IN  
For some applications, reduced EMI operation may be  
desirable, which can be achieved through spread spec-  
trum modulation. This mode operates similar to pulse  
skipping mode operation, with the key difference that the  
switching frequency is modulated up and down by a 3kHz  
high (either by a logic signal or because it is tied to V ),  
IN  
then the LT8607’s internal circuitry will pull its quiescent  
current through its SW pin. This is acceptable if the sys-  
tem can tolerate several µA in this state. If the EN pin is  
grounded the SW pin current will drop to near 0.7µA.  
However, if the VIN pin is grounded while the output is  
held high, regardless of EN, parasitic body diodes inside  
the LT8607 can pull current from the output through the  
triangle wave. The modulation has the frequency set by R  
T
as the low frequency, and modulates up to approximately  
20% higher than the frequency set by RT. To enable spread  
spectrum mode, tie SYNC to INTV or drive to a voltage  
SW pin and the V pin. Figure 4 shows a connection of  
CC  
IN  
between 3.2V and 5V.  
the V and EN/UV pins that will allow the LT8607 to run  
IN  
only when the input voltage is present and that protects  
The LT8607 does not operate in forced continuous mode  
regardless of SYNC signal. The LT8607 DFN is always  
programmed for Burst Mode operation and cannot  
enter pulse-skipping mode. The LT8607B DFN is pro-  
grammed for pulse-skipping mode and cannot enter Burst  
Mode operation.  
against a shorted or reversed input.  
Dꢊ  
ꢁꢂ  
ꢁꢂ  
ꢅꢆꢇꢈ  
ꢍꢂꢎꢏꢀ  
ꢉꢂD  
ꢅꢆꢇꢈ ꢋꢇꢌ  
Shorted and Reversed Input Protection  
The LT8607 will tolerate a shorted output. Several features  
are used for protection during output short-circuit and  
Figure 4. Reverse VIN Protection  
Rev. D  
17  
For more information www.analog.com  
LT8607/LT8607B  
APPLICATIONS INFORMATION  
PCB Layout  
the ground plane as much as possible, and add thermal  
vias under and near the LT8607 to additional ground  
planes within the circuit board and on the bottom side.  
For proper operation and minimum EMI, care must be  
taken during printed circuit board layout. Note that large,  
switched currents flow in the LT8607’s V pins, GND  
IN  
Thermal Considerations  
pins, and the input capacitor (C ). The loop formed by  
IN  
For higher ambient temperatures, care should be taken in  
the layout of the PCB to ensure good heat sinking of the  
LT8607. Figure 5 shows the recommended component  
placement with trace, ground plane and via locations.  
The exposed pad on the bottom of the package must be  
soldered to a ground plane. This ground should be tied  
to large copper layers below with thermal vias; these lay-  
ers will spread heat dissipated by the LT8607. Placing  
additional vias can reduce thermal resistance further. The  
maximum load current should be derated as the ambient  
temperature approaches the maximum junction rating.  
Power dissipation within the LT8607 can be estimated  
by calculating the total power loss from an efficiency  
measurement and subtracting the inductor loss. The  
die temperature is calculated by multiplying the LT8607  
power dissipation by the thermal resistance from junction  
to ambient. The LT8607 will stop switching and indicate  
a fault condition if safe junction temperature is exceeded.  
the input capacitor should be as small as possible by  
placing the capacitor adjacent to the V and GND pins.  
IN  
When using a physically large input capacitor the result-  
ing loop may become too large in which case using a  
small case/value capacitor placed close to the V and  
GND pins plus a larger capacitor further away iIsN pre-  
ferred. These components, along with the inductor and  
output capacitor, should be placed on the same side of  
the circuit board, and their connections should be made  
on that layer. Place a local, unbroken ground plane under  
the application circuit on the layer closest to the surface  
layer. The SW and BOOST nodes should be as small as  
possible. Finally, keep the FB and RT nodes small so  
that the ground traces will shield them from the SW and  
BOOST nodes. The exposed pad on the bottom of the  
package must be soldered to ground so that the pad is  
connected to ground electrically and also acts as a heat  
sink thermally. To keep thermal resistance low, extend  
ꢆRꢋꢌꢇD ꢕꢒꢊꢇꢎ ꢋꢇ ꢒꢊꢖꢎR ꢗ  
ꢋꢌꢍ  
ꢉꢇ  
ꢔꢑꢍ  
ꢈꢓꢓ  
ꢘꢋꢕꢍꢙ  
ꢉꢇ  
R
R
ꢕꢆ  
Rꢛ  
Rꢜ  
ꢑꢑ  
Rꢚ  
ꢄꢄ  
Rꢗ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢆꢇD ꢈꢉꢊ  
ꢉꢇ  
ꢈꢉꢊ  
ꢋꢌꢍ  
ꢈꢉꢊ  
ꢎꢇꢏꢌꢈ ꢈꢉꢊ  
ꢋꢍꢐꢎR ꢑꢉꢆꢇꢊꢒ ꢈꢉꢊ  
Figure 5. PCB Layout  
Rev. D  
18  
For more information www.analog.com  
LT8607/LT8607B  
TYPICAL APPLICATIONS  
5V, 2MHz Step-Down  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀꢁ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢂ.ꢁꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢂ.ꢃꢄꢅ  
ꢆꢃR  
ꢇꢁꢈꢉ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
Rꢀ  
ꢁꢂꢂꢃ  
ꢂꢃꢄꢅ  
ꢀꢁꢂꢃR  
ꢀꢁꢁD  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢂꢃꢄ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
Rꢀ  
R2  
1MΩ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁD  
ꢂꢂꢃꢄ  
ꢅꢆR  
Rꢀ  
ꢁꢂꢃꢄ  
Rꢀ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢂꢆ  
ꢇꢂꢈꢉ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄꢀꢅꢆꢇꢆꢈꢅꢉꢇꢊꢋ  
3.3V, 2MHz Step-Down  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀꢁ  
ꢀꢁ  
ꢂ.ꢂꢃꢄ  
ꢀꢁ  
ꢂ.ꢁꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢂ.ꢃꢄꢅ  
ꢆꢃR  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀ.ꢀꢁ  
ꢇꢁꢈꢉ  
Rꢀ  
ꢀꢁꢂꢃꢄ  
ꢂꢃꢄꢅ  
ꢁꢂꢂꢃ  
ꢀꢁꢂꢃR  
ꢀꢁꢁD  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢂꢃꢄ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
Rꢀ  
R2  
1MΩ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁD  
Rꢀ  
ꢀꢁꢂꢃ  
ꢂꢂꢃꢄ  
ꢅꢆR  
Rꢀ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢂꢆ  
ꢇꢂꢈꢉ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄꢀꢅꢆꢁꢇꢈꢇꢇꢇꢉꢊ  
12V, 1MHz Step-Down  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ.ꢂꢃ ꢄꢅ ꢆꢁꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢂ.ꢃꢄꢅ  
ꢆꢃR  
ꢂ.ꢁꢃꢄ ꢂꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢇꢁꢈꢉ  
Rꢀ  
ꢁꢂꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢂꢃꢄꢅ  
ꢀꢁꢂꢃR  
ꢀꢁꢁD  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢂꢃꢄꢅ  
ꢀꢁ  
ꢂꢃꢄ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
Rꢀ  
R2  
1MΩ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁD  
Rꢀ  
ꢁꢂ.ꢃꢄ  
ꢂꢂꢃꢄ  
ꢅꢆR  
Rꢀ  
ꢁꢂ.ꢃꢄ  
ꢀꢁꢂꢃ ꢄꢅꢂꢆ  
ꢇꢂꢈꢉ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄꢄꢅꢁꢆꢇꢈꢇꢇꢆꢃꢀ  
Rev. D  
19  
For more information www.analog.com  
LT8607/LT8607B  
TYPICAL APPLICATIONS  
1.8V, 2MHz Step-Down  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢁꢅꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢂ.ꢂꢃꢄ  
ꢀꢁ  
ꢂ.ꢁꢃꢄ  
ꢆꢇꢁꢂ ꢃRꢈꢉꢊꢋꢌꢉꢃꢍ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂ  
ꢀꢁꢂꢃꢄ  
Rꢀ  
ꢂꢃꢄꢅ  
ꢁꢂꢂꢃ  
ꢀꢁꢂꢃR  
ꢀꢁꢁD  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
ꢂꢃꢄ  
ꢀꢁ  
Rꢀ  
R2  
1MΩ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁD  
ꢂꢂꢃꢄ  
ꢅꢆR  
Rꢀ  
ꢁꢂꢃꢄ  
Rꢀ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢂꢆ  
ꢇꢂꢈꢉ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄꢀꢅꢆꢁꢇꢈꢇꢇꢇꢉꢊ  
Ultralow EMI, 5V, 1.5A Step-Down  
ꢀꢁ  
ꢂꢃꢄD  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢂꢂꢃꢄ  
ꢀꢁ  
ꢂ.ꢁꢃꢄ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢂ.ꢁꢃꢄ  
ꢀꢁ  
ꢂꢂꢃꢄ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
Rꢀ  
ꢁꢂꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢂꢃꢄꢅ  
ꢆꢇꢈꢉꢊꢋ  
ꢀꢁꢂꢃR  
ꢀꢁ  
ꢀꢁꢁD  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢂꢃꢄ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
Rꢀ  
R2  
1MΩ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁD  
Rꢀ  
ꢁꢂꢃꢄ  
ꢂꢂꢃꢄ  
ꢅꢆR  
Rꢀ  
ꢀꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢂꢁ  
ꢇꢂꢈꢉ  
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢃꢂ ꢀꢄꢅ ꢆꢃR ꢇꢁꢈꢉ  
ꢀꢊꢅ ꢉꢋꢌꢆꢍꢋꢋꢎ  
ꢏꢇꢅ ꢎꢌꢌꢉꢇꢋꢁꢐꢁꢁꢋ  
ꢏꢁꢅ ꢑꢒꢓꢁꢇꢁꢔꢕꢌꢇꢈꢇꢐꢖ  
5V, 2MHz Step-Down  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀꢁ  
ꢂ.ꢁꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢂ.ꢃꢄꢅ  
ꢆꢃR  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
Rꢀ  
ꢇꢁꢈꢉ  
ꢂꢃꢄꢅꢆꢇ  
ꢁꢂꢂꢃ  
ꢀꢁꢂꢃR  
ꢀꢁꢁD  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
ꢂꢃꢄ  
ꢀꢁ  
Rꢀ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁD  
ꢂꢂꢃꢄ  
ꢅꢆR  
Rꢀ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢂꢃ  
ꢇꢂꢈꢉ  
ꢀꢁꢂ ꢃꢄꢀꢅꢆꢇꢆꢈꢅꢉꢇꢊꢋ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
Rev. D  
20  
For more information www.analog.com  
LT8607/LT8607B  
PACKAGE DESCRIPTION  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev I)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.88 ±0.102  
(.074 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
0.29  
REF  
1.68  
(.066)  
0.05 REF  
5.10  
(.201)  
MIN  
1.68 ±0.102  
3.20 – 3.45  
DETAIL “B”  
(.066 ±.004) (.126 – .136)  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
10  
NO MEASUREMENT PURPOSE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ±.0015)  
TYP  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 3)  
0.497 ±0.076  
(.0196 ±.003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
1
2
3
4 5  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0213 REV I  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
Rev. D  
21  
For more information www.analog.com  
LT8607/LT8607B  
PACKAGE DESCRIPTION  
DC8 Package  
8-Lead Plastic DFN (2mm × 2mm)  
ꢀReꢁeꢂeꢃꢄe ꢅꢆꢇ Dꢈꢉ ꢊ ꢋꢌꢍꢋꢎꢍꢏꢐꢑꢐ Rev ꢒꢓ  
Exposed Pad Variation AA  
1.8 REF  
0.23  
REF  
0.90  
REF  
0.85 ±0.05  
2.60 ±0.05  
PACKAGE  
OUTLINE  
0.335 REF  
0.25 ±0.05  
0.45 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
2.00 SQ ±0.05  
1.8 REF  
5
8
0.23  
REF  
0.55 ±0.05  
0.335  
REF  
2.00 ±0.05  
(4 SIDES)  
PIN 1 NOTCH  
R = 0.15  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
(DC8MA) DFN 0113 REV Ø  
4
1
0.23 ±0.05  
0.45 BSC  
0.75 ±0.05  
0.200 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
Rev. D  
22  
For more information www.analog.com  
LT8607/LT8607B  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
06/17 Added DFN package option.  
1, 2  
2, 3  
6
Clarified electrical parameters for DFN package option.  
Clarified graphs for MSOP package option.  
Clarified Pins Functions for DFN package option.  
Clarified Operation to include DFN option.  
Clarified Applications last paragraph and Figure 2 to include DFN option.  
Clarified Applications section to include DFN operation.  
Added DFN Package Description.  
8
9
10  
14, 15  
20  
B
C
11/17 Added H-grade option  
2, 3  
Clarified Oscillator Frequency R conditions  
3
4
T
Clarified efficiency graph  
Clarified Block Diagram  
9
16  
18, 22  
Added Figure 5  
Clarified Typical Applications for MSOP package option  
11/18 Added B version  
All  
1
Added table to clarify versions  
Modified text in Description to add DFN functionality  
Added B version to Order Information  
1
2
Clarified Minimum On-Time Conditions  
Clarified efficiency graphs  
3
4
Clarified Burst Frequency vs Output Current graph  
Clarified Minimum Load to Full Frequency and Frequency Foldback graphs  
Clarified Pin Functions on SYNC and TR/SS  
Clarified Operation third paragraph  
5
6
8
9
Clarified last paragraph to include DFN B version and Figures 1, 3  
Clarified Applications to include DFN B version  
Clarified PCB Layout  
10  
15  
16  
D
01/21 Added AEC-Q100 Qualified for Automotive Applications  
Added Fixed 5V Output  
1
1
Replaced table  
1
Added new Pin Configuration  
Fixed ordering information for DC package  
Added #W Materials  
2
2
3
Updated EC Table  
3-4  
5-6  
9
Added V  
Added V  
Voltage and Load Supply graphs  
comment for LT8607-5  
OUT  
OUT  
Added FB comment for LT8607/LT8607B only  
Added TR/SS  
9
9
10  
11  
13  
16  
20  
Updated Block diagram  
Updated Operations  
Updated Applications information  
Output Voltage Tracking and Soft-Start (MSOP Only)  
Added 5V, 2MHz Step-Down Typical Application  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license Fisogrrmanoterdebiynfimorpmlicaattiioonnowrwotwhe.rawniaselougn.dceormany patent or patent rights of Analog Devices.  
23  
LT8607/LT8607B  
TYPICAL APPLICATION  
5V and 3.3V with Ratio Tracking  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢂ.ꢁꢃꢄ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢂ.ꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀꢁꢂꢃ  
Rꢀ  
ꢀꢁꢂꢃꢄ  
ꢂꢃꢄꢅ  
ꢆꢇꢈꢉꢊꢋ  
ꢁꢂꢂꢃ  
ꢀꢁꢂꢃR  
ꢀꢁꢁD  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁ  
ꢂꢃꢄ  
ꢀRꢁꢂꢂ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
R2  
1MΩ  
Rꢀ  
ꢀꢁD  
ꢀꢁ  
ꢂꢂꢃꢄ  
Rꢀ  
ꢁꢂꢃꢄ  
Rꢀ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄꢀꢅꢆꢇꢆꢈꢅꢉꢇꢊꢋ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢁ.ꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀꢁꢂꢃ  
Rꢀ  
ꢁꢂꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢂꢃꢄꢅ  
ꢆꢇꢈꢉꢊꢋ  
Rꢀ  
ꢁꢂ.ꢃꢄ  
ꢀꢁꢂꢃR  
ꢀꢁꢁD  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢁ  
ꢁꢂꢃꢄ  
ꢀRꢁꢂꢂ  
Rꢀꢁ  
ꢂꢂꢃ  
ꢀꢁ  
Rꢀ  
R6  
1MΩ  
ꢀꢁD  
ꢀꢁꢂ  
ꢃꢃꢄꢅ  
Rꢀ  
ꢁꢂꢃꢄ  
Rꢀ  
ꢁꢂ.ꢃꢄ  
ꢀꢁꢂ  
ꢁꢃꢄ  
ꢀꢁꢂꢃ ꢄꢅꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄꢀꢅꢆꢇꢁꢈꢁꢁꢁꢉꢊ  
ꢋꢁꢌ ꢋꢍꢌ ꢋꢎꢌ ꢋꢇꢆꢂ ꢃꢏR ꢇꢁꢆꢐ  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 3V to 42V, V  
LT8606  
42V, 350mA, 92% Efficiency, 2.2MHz Synchronous MicroPower  
Step-Down DC/DC Converter with I = 3µA  
= 0.778V, I = 3µA, I = <1µA,  
OUT Q SD  
IN  
MSOP-10E Package  
V : 3V to 42V, V = 0.778V, I = 2.5µA, I = <1µA,  
OUT Q SD  
Q
LT8608  
42V, 1.5A, 92% Efficiency, 2.2MHz Synchronous MicroPower  
Step-Down DC/DC Converter with I = 2.5µA  
IN  
MSOP-10E Package  
Q
LT8609/LT8609A/  
LT8609B  
42V, 2A/3A Peak, 93% Efficiency, 2.2MHz Synchronous MicroPower Step- V : 3V to 42V, V  
= 0.782V, I = 2.5µA, I = <1µA,  
Q SD  
IN  
OUT  
Down DC/DC Converter with I = 2.5µA  
MSOP-10E Package  
Q
LT8609S  
42V, 2A/3A Peak, 93% Efficiency, 2.2MHz Synchronous Silent Switcher® 2 V : 3V to 42V, V  
= 0.774V, I = 2.5µA, I = <1µA,  
Q SD  
IN  
OUT  
Step-Down DC/DC Converter with I = 2.5µA  
3mm × 3mm LQFN-16 Package  
Q
LT8610A/LT8610AB/ 42V, 3.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower  
V : 3.4V to 42V, V = 0.97V, I = 2.5µA, I = <1µA,  
IN  
OUT  
Q
SD  
LT8610AC  
Step-Down DC/DC Converter with I = 2.5µA  
MSOP-16E Package  
Q
LT8616  
42V, Dual 2.5A + 1.5A, 95% Efficiency, 2.2MHz Synchronous MicroPower V : 3.4V to 42V, V  
= 0.8V, I = 5µA, I = <1µA,  
Q SD  
IN  
OUT  
Step-Down DC/DC Converter with I = 5µA  
TSSOP-28E, 3mm × 6mm QFN-28 Packages  
Q
LT8620  
LT8614  
LT8612  
LT8640  
LT8640S  
LT8645S  
LT8602  
65V, 2.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower  
V : 3.4V to 65V, V = 0.97V, I = 2.5µA, I = <1µA,  
IN  
OUT  
Q
SD  
Step-Down DC/DC Converter with I = 2.5µA  
MSOP-16E 3mm × 5mm QFN-24 Packages  
Q
42V, 4A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V : 3.4V to 42V, V = 0.97V, I = 2.5µA, I = <1µA,  
IN  
OUT  
Q
SD  
DC/DC Converter with I = 2.5µA  
3mm × 4mm QFN-18 Package  
Q
42V, 6A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V : 3.4V to 42V, V = 0.97V, I = 3µA, I = <1µA,  
IN  
OUT  
Q
SD  
DC/DC Converter with I = 2.5µA  
3mm × 6mm QFN-28 Package  
Q
42V, 5A, 96% Efficiency, 3MHz Synchronous MicroPower Step-Down DC/ V : 3.4V to 42V, V  
= 0.97V, I = 2.5µA, I = <1µA,  
IN  
OUT  
Q
SD  
DC Converter with I = 2.5µA  
3mm × 4mm QFN-18 Package  
Q
42V, 6A, 96% Efficiency, 3MHz Synchronous Silent Switcher 2  
V : 3.4V to 42V, V = 0.97V, I = 2.5µA, I = <1µA,  
IN  
OUT  
Q
SD  
Step-Down DC/DC Converter with I = 2.5µA  
4mm × 4mm LQFN-24 Package  
Q
65V, 8A, 96% Efficiency, 3MHz Synchronous Silent Switcher 2  
V : 3.4V to 65V, V = 0.97V, I = 2.5µA, I = <1µA,  
IN  
OUT  
Q
SD  
Step-Down DC/DC Converter with I = 2.5µA  
4mm × 6mm LQFN-32 Package  
Q
42V, Quad Output (2.5A+1.5A+1.5A+1.5A) 95% Efficiency, 2.2MHz  
Synchronous MicroPower Step-Down DC/DC Converter with I = 25µA  
V : 3V to 42V, V = 0.8V, I = 25µA, I = <1µA,  
IN  
OUT  
Q
SD  
6mm × 6mm QFN-40 Package  
Q
Rev. D  
01/21  
www.analog.com  
ANALOG DEVICES, INC. 2017-2021  
24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY