LT8636 [ADI]

42V, 5A/7A Peak Synchronous Step-Down Silent Switcher with 2.5μA Quiescent Current;
LT8636
型号: LT8636
厂家: ADI    ADI
描述:

42V, 5A/7A Peak Synchronous Step-Down Silent Switcher with 2.5μA Quiescent Current

文件: 总32页 (文件大小:2612K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8636/LT8637  
42V, 5A/7A Peak Synchronous Step-Down  
Silent Switcher with 2.5µA Quiescent Current  
FEATURES  
n
DESCRIPTION  
Silent Switcher® Architecture  
The LT®8636/LT8637 synchronous step-down regulator  
features Silent Switcher architecture designed to minimize  
EMI emissions while delivering high efficiency at high  
switching frequencies. Peak current mode control with  
a 30ns minimum on-time allows high step-down ratios  
even at high switching frequencies.  
n
Ultralow EMI Emissions  
n
Optional Spread Spectrum Modulation  
n
High Efficiency at High Frequency  
n
Up to 96% Efficiency at 1MHz, 12V to 5V  
Up to 95% Efficiency at 2MHz, 12V to 5V  
IN  
IN  
OUT  
OUT  
n
n
n
n
Wide Input Voltage Range: 3.4V to 42V  
The LT8636’s ultralow 2.5µA quiescent current—with the  
output in full regulation—enables applications requiring  
highest efficiency at very small load currents. The LT8637  
has external compensation to enable current sharing and  
fast transient response at high switching frequencies. A  
CLKOUT pin enables synchronizing other regulators to  
the LT8636/LT8637.  
5A Maximum Continuous, 7A Peak Transient Output  
Ultralow Quiescent Current Burst Mode® Operation  
n
2.5µA I Regulating 12V to 3.3V  
(LT8636)  
Q
IN  
P-P  
OUT  
n
Output Ripple < 10mV  
n
External Compensation: Fast Transient Response  
and Current Sharing (LT8637)  
n
n
n
n
n
n
n
Fast Minimum Switch On-Time: 30ns  
Low Dropout Under All Conditions: 100mV at 1A  
Forced Continuous Mode  
Adjustable and Synchronizable: 200kHz to 3MHz  
Output Soft-Start and Power Good  
Small 20-Lead 4mm × 3mm LQFN Package  
AEC-Q100 Qualified for Automotive Applications  
Burst Mode operation enables ultralow standby current  
consumption, forced continuous mode can control fre-  
quency harmonics across the entire output load range, or  
spread spectrum operation can further reduce EMI emis-  
sions. Soft-start and tracking functionality is accessed  
via the TR/SS pin, and an accurate input voltage UVLO  
threshold can be set using the EN/UV pin.  
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. patents, including 8823345.  
APPLICATIONS  
n
Automotive and Industrial Supplies  
General Purpose Step-Down  
n
TYPICAL APPLICATION  
5V, 5A Step-Down Converter  
12VIN to 5VOUT Efficiency  
ꢍꢎ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢘ.ꢚꢌ ꢁꢗ ꢙꢝꢌ  
ꢑꢎꢒꢓꢌ  
ꢍꢎ  
ꢍꢎ  
ꢙ.ꢚꢕꢔ  
ꢇꢕꢔ  
ꢇꢕꢔ  
ꢀꢁꢁꢂCꢂꢀꢃCꢄ  
ꢏꢎꢐ  
ꢏꢎꢐ  
ꢋꢉꢁ  
ꢂꢃꢄꢃ  
ꢆ.ꢇꢕꢔ ꢄ.ꢄꢕꢜ  
ꢇꢆꢛꢔ  
ꢘꢌ  
ꢘꢅ  
ꢗꢓꢁ  
ꢉꢊ  
ꢋꢍꢅꢉ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢍꢎꢁꢌ  
Rꢁ  
CC  
ꢇꢖ  
ꢇꢕꢔ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ ꢇ.ꢈꢉꢂ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ ꢇ.ꢈꢉꢂ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ ꢇꢈꢂ  
ꢇꢆꢆꢕꢔ  
ꢔꢋ  
ꢙꢇ.ꢝꢞ  
ꢏꢎꢐ  
ꢝꢙꢄꢞ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢂꢃꢄꢃ ꢁꢅꢆꢇꢈ  
ꢠ ꢇꢖꢜꢡ  
ꢀꢁꢂꢁ ꢃꢄꢅꢆꢇ  
ꢉꢊ  
Rev. C  
1
Document Feedback  
For more information www.analog.com  
LT8636/LT8637  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Operating Junction Temperature Range (Note 2)  
V , EN/UV, PG..........................................................42V  
IN  
LT8636E/LT8637E ............................. –40°C to 125°C  
LT8636J/LT8637J.............................. –40°C to 150°C  
LT8636H............................................ –40°C to 150°C  
LT8636MP......................................... –55°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Maximum Reflow (Package Body) Temperature.....260°C  
BIAS..........................................................................25V  
FB, TR/SS . .................................................................4V  
SYNC/MODE Voltage . ................................................6V  
PIN CONFIGURATION  
LT8636  
LT8637  
ꢆꢇꢈ ꢉꢊꢋꢌ  
ꢆꢇꢈ ꢉꢊꢋꢌ  
ꢄꢅ ꢀꢃ ꢀꢂ ꢀꢁ  
ꢄꢅ ꢀꢃ ꢀꢂ ꢀꢁ  
ꢈꢓ  
ꢀꢡ Cꢍꢒꢇꢝꢆ  
ꢀꢢ ꢜꢞꢐCꢟꢠꢇꢕꢋ  
ꢀꢗ ꢋꢐꢟꢝꢉ  
ꢀꢙ ꢓꢐꢕ  
ꢈꢓ  
ꢀꢦ Cꢍꢒꢇꢭꢆ  
ꢀꢥ ꢫꢮꢐCꢠꢩꢇꢕꢋ  
ꢀꢗ ꢋꢐꢠꢭꢉ  
ꢀꢙ ꢓꢐꢕ  
ꢛꢊꢑꢜ  
ꢜꢊꢑꢫ  
ꢊꢐꢆꢉ  
CC  
ꢊꢐꢆꢉ  
ꢄꢀ  
ꢓꢐꢕ  
CC  
ꢄꢀ  
ꢓꢐꢕ  
ꢓꢐꢕ  
ꢓꢐꢕ  
ꢐC  
ꢀꢄ ꢐC  
ꢐC  
ꢀꢄ ꢐC  
ꢊꢐ  
ꢀꢀ ꢉ  
ꢊꢐ  
ꢊꢐ  
ꢀꢀ ꢉ  
ꢊꢐ  
ꢀꢅ  
ꢀꢅ  
ꢍꢎꢏꢐ ꢈꢑCꢒꢑꢓꢋ  
ꢄꢅꢔꢍꢋꢑꢕ ꢖꢗꢘꢘ × ꢙꢘꢘ × ꢅ.ꢃꢗꢘꢘꢚ  
ꢍꢎꢏꢐ ꢈꢑCꢒꢑꢓꢋ  
ꢄꢅꢔꢍꢋꢑꢕ ꢖꢗꢘꢘ × ꢙꢘꢘ × ꢅ.ꢃꢗꢘꢘꢚ  
ꢛꢋꢕꢋC ꢜꢇꢑRꢕꢝ θ ꢞ ꢗꢀꢟCꢠꢌꢡ θ ꢞ ꢥꢅ.ꢦꢟCꢠꢌꢡ  
ꢣꢋꢕꢋC ꢛꢇꢑRꢕꢤ θ ꢥ ꢗꢀꢦCꢟꢌꢧ θ  
ꢣꢑ ꢣCꢖꢨꢩꢪꢚ  
ꢥ ꢢꢅ.ꢡꢦCꢟꢌꢧ  
ꢛꢑ  
ꢛCꢖꢢꢣꢤꢚ  
θ
ꢞ ꢂ.ꢅꢟCꢠꢌꢡ ꢖꢐꢇꢆꢋ ꢙꢚ  
θ
ꢥ ꢂ.ꢅꢦCꢟꢌꢧ ꢖꢐꢇꢆꢋ ꢙꢚ  
ꢛCꢖꢤꢧꢨꢚ  
ꢣCꢖꢪꢫꢬꢚ  
ꢕꢋꢩꢇ ꢜꢇꢑRꢕꢝ θ ꢞ ꢄꢦꢟCꢠꢌꢡ Ψ ꢞ ꢅ.ꢂꢟCꢠꢌ  
ꢕꢋꢠꢇ ꢛꢇꢑRꢕꢤ θ ꢥ ꢄꢡꢦCꢟꢌꢧ Ψ ꢥ ꢅ.ꢂꢦCꢟꢌ  
ꢛꢑ  
ꢛꢆ  
ꢣꢑ ꢣꢆ  
ꢋꢪꢈꢇꢫꢋꢕ ꢈꢑꢕ ꢖꢈꢊꢐ ꢄꢀꢚ ꢊꢫ ꢓꢐꢕꢡ ꢫꢬꢇꢭꢍꢕ ꢜꢋ ꢫꢇꢍꢕꢋRꢋꢕ ꢆꢇ ꢈCꢜ  
ꢋꢭꢈꢇꢜꢋꢕ ꢈꢑꢕ ꢖꢈꢊꢐ ꢄꢀꢚ ꢊꢜ ꢓꢐꢕꢧ ꢜꢮꢇꢝꢍꢕ ꢛꢋ ꢜꢇꢍꢕꢋRꢋꢕ ꢆꢇ ꢈCꢛ  
ORDER INFORMATION  
PACKAGE  
TYPE**  
MSL  
PART NUMBER  
LT8636EV#PBF  
LT8636JV#PBF  
LT8636HV#PBF  
LT8636MPV#PBF  
LT8637EV#PBF  
PART MARKING*  
FINISH CODE  
PAD FINISH  
RATING  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
–55°C to 150°C  
–40°C to 125°C  
–40°C to 150°C  
8636  
LQFN (Laminate Package  
with QFN Footprint)  
e4  
Au (RoHS)  
3
8637  
LT8637JV#PBF  
Rev. C  
2
For more information www.analog.com  
LT8636/LT8637  
ORDER INFORMATION  
PACKAGE  
TYPE**  
MSL  
RATING  
PART NUMBER  
PART MARKING*  
FINISH CODE  
PAD FINISH  
TEMPERATURE RANGE  
AUTOMOTIVE PRODUCTS***  
LT8636EV#WPBF  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
–40°C to 150°C  
–40°C to 125°C  
–40°C to 150°C  
LT8636JV#WPBF  
8636  
8637  
LT8636JV#WTRPBF  
LT8636HV#WPBF  
LQFN (Laminate Package  
with QFN Footprint)  
e4  
Au (RoHS)  
3
LT8637EV#WPBF  
LT8637JV#WPBF  
• Contact the factory for parts specified with wider operating temperature  
ranges. *Device temperature grade is identified by a label on the  
shipping container.  
Recommended PCB Assembly and Manufacturing Procedures  
Package and Tray Drawings  
• Pad finish code is per IPC/JEDEC J-STD-609.  
Parts ending with PBF are RoHS and WEEE compliant. **The LT8636/LT8637 package has the same dimensions as a standard 4mm × 3mm QFN package.  
***Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
Minimum Input Voltage  
3.0  
3.4  
V
V
Quiescent Current in Shutdown  
V
EN/UV  
V
EN/UV  
V
EN/UV  
= 0V  
1
1
3
10  
µA  
µA  
IN  
LT8636 V Quiescent Current in Sleep  
= 2V, V > 0.97V, V  
= 0V  
1.7  
1.7  
4
10  
µA  
µA  
IN  
FB  
SYNC  
(Internal Compensation)  
LT8637 V Quiescent Current in Sleep  
= 2V, V > 0.97V, V  
= 0V, V  
= 0V  
230  
230  
290  
340  
µA  
µA  
IN  
FB  
SYNC  
BIAS  
(External Compensation)  
V
V
V
= 2V, V > 0.97V, V  
= 0V, V  
= 0V, V  
= 5V  
= 5V  
19  
25  
µA  
µA  
µA  
EN/UV  
FB  
SYNC  
SYNC  
BIAS  
BIAS  
LT8637 BIAS Quiescent Current in Sleep  
= 2V, V > 0.97V, V  
200  
220  
260  
390  
EN/UV  
FB  
LT8636 V Current in Regulation  
= 0.97V, V = 6V, I  
= 1mA, V  
= 0  
IN  
OUT  
IN  
LOAD  
SYNC  
Feedback Reference Voltage  
V
V
= 6V  
0.966  
0.956  
0.970  
0.970  
0.974  
0.982  
V
V
IN  
IN  
l
l
= 6V  
Feedback Voltage Line Regulation  
Feedback Pin Input Current  
V
V
= 4.0V to 36V  
= 1V  
0.004  
0.02  
20  
%/V  
nA  
IN  
–20  
FB  
LT8637 Error Amp Transconductance  
LT8637 Error Amp Gain  
V = 1.25V  
1.7  
260  
350  
350  
5
mS  
C
LT8637 V Source Current  
V
V
= 0.77V, V = 1.25V  
µA  
µA  
A/V  
V
C
FB  
C
LT8637 V Sink Current  
= 1.17V, V = 1.25V  
C
C
FB  
LT8637 V Pin to Switch Current Gain  
C
LT8637 V Clamp Voltage  
2.6  
14  
C
BIAS Pin Current Consumption  
V
BIAS  
= 3.3V, f = 2MHz  
mA  
SW  
Rev. C  
3
For more information www.analog.com  
LT8636/LT8637  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Minimum On-Time  
I
I
= 1.5A, SYNC = 0V  
= 1.5A, SYNC = 2V  
30  
30  
50  
45  
ns  
ns  
LOAD  
LOAD  
Minimum Off-Time  
Oscillator Frequency  
80  
110  
ns  
l
l
l
R = 221k  
180  
665  
1.8  
210  
700  
1.95  
240  
735  
2.1  
kHz  
kHz  
MHz  
T
R = 60.4k  
T
R = 18.2k  
T
Top Power NMOS On-Resistance  
Top Power NMOS Current Limit  
Bottom Power NMOS On-Resistance  
SW Leakage Current  
I
= 1A  
66  
10  
27  
mΩ  
A
SW  
l
l
7.5  
12.5  
V
V
= 3.4V, I = 1A  
mΩ  
µA  
V
INTVCC  
SW  
= 42V, V = 0V, 42V  
–3  
3
IN  
SW  
EN/UV Pin Threshold  
EN/UV Rising  
0.94  
1.0  
40  
1.06  
EN/UV Pin Hysteresis  
mV  
nA  
%
EN/UV Pin Current  
V
V
V
= 2V  
–20  
5
20  
EN/UV  
l
l
PG Upper Threshold Offset from V  
Falling  
7.5  
–8  
10.25  
–5.25  
FB  
FB  
FB  
PG Lower Threshold Offset from V  
PG Hysteresis  
Rising  
–10.75  
%
FB  
0.2  
%
PG Leakage  
V
V
= 3.3V  
= 0.1V  
–80  
80  
nA  
Ω
PG  
l
PG Pull-Down Resistance  
SYNC/MODE Threshold  
700  
2000  
PG  
l
l
l
SYNC/MODE DC and Clock Low Level Voltage  
SYNC/MODE Clock High Level Voltage  
SYNC/MODE DC High Level Voltage  
0.7  
2.2  
0.9  
1.2  
2.55  
V
V
V
1.4  
2.9  
Spread Spectrum Modulation  
Frequency Range  
R = 60.4k, V  
= 3.3V  
22  
%
T
SYNC  
Spread Spectrum Modulation Frequency  
TR/SS Source Current  
V
= 3.3V  
3
kHz  
µA  
Ω
SYNC  
l
1.2  
35  
1.9  
200  
37  
2.6  
39  
TR/SS Pull-Down Resistance  
Fault Condition, TR/SS = 0.1V  
Rising  
V
IN  
to Disable Forced Continuous Mode  
V
V
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
lifetime is derated at junction temperatures greater than 125°C. The junction  
temperature (T , in °C) is calculated from the ambient temperature (T in  
J
A
°C) and power dissipation (PD, in Watts) according to the formula:  
T = T + (PD • θ )  
JA  
J
A
Note 2: The LT8636E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization, and correlation with statistical process controls. The  
LT8636J and LT8636H are guaranteed over the full –40°C to 150°C  
operating junction temperature range. High junction temperatures degrade  
operating lifetimes. The LT8636MP is 100% tested and guaranteed over  
the full –55°C to 150°C operating junction temperature range. Operating  
where θ (in °C/W) is the package thermal impedance.  
JA  
Note 3: θ values determined per JEDEC 51-7, 51-12. See the Applications  
Information section for information on improving the thermal resistance  
and for actual temperature measurements of a demo board in typical  
operating conditions.  
Note 4: This IC includes overtemperature protection that is intended to  
protect the device during overload conditions. Junction temperature will  
exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
will reduce lifetime.  
Rev. C  
4
For more information www.analog.com  
LT8636/LT8637  
TYPICAL PERFORMANCE CHARACTERISTICS  
12VIN to 5VOUT Efficiency  
vs Frequency  
12VIN to 3.3VOUT Efficiency  
vs Frequency  
Efficiency at 5VOUT  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢄꢅꢆ ꢇ.ꢈꢉꢊ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢁꢂCꢂꢀꢃCꢄ  
ꢀꢁꢁꢂCꢂꢀꢃCꢄ  
ꢀ.ꢁ  
ꢀꢁꢁꢂCꢂꢀꢃCꢄ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀ.ꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢄꢅ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢄꢅ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ ꢇ.ꢈꢉꢂ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ ꢇ.ꢈꢉꢂ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ ꢇꢈꢂ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ ꢇ.ꢇꢈꢂ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ ꢇꢈꢂ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ ꢇꢈꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢂ  
LT8636 Low Load Efficiency at  
5VOUT  
LT8637 Low Load Efficiency at  
5VOUT  
Efficiency at 3.3VOUT  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢄꢅꢆ ꢇ.ꢇꢈꢉ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢂCꢂꢀꢃCꢄ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe ꢈꢉꢊRꢋꢌꢍꢈꢎ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢄꢅꢆ ꢇ.ꢈꢉꢊ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢆꢅꢆꢇꢈꢉꢊꢋꢌ ꢍ.ꢎꢏꢃ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢉꢂꢊ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢉꢂꢊ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢁ  
LT8636 Low Load Efficiency at  
3.3VOUT  
LT8637 Low Load Efficiency at  
3.3VOUT  
Efficiency vs Frequency  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe ꢈꢉꢊRꢋꢌꢍꢈꢎ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢄꢅꢆ ꢇ.ꢈꢉꢊ  
ꢃ ꢄꢅꢀ  
ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢆꢅꢆꢇꢈꢉꢊꢋꢌ ꢍ.ꢎꢏꢃ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢆꢅꢆꢇꢈꢉꢊꢋꢌ ꢍ.ꢎꢏꢃ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢉꢂꢊ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢉꢂꢊ  
ꢀꢁꢂꢃCꢄꢂꢅꢆ ꢇRꢈꢉꢊꢈꢅCꢋ ꢌꢍꢄꢎꢏ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢀ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
Rev. C  
5
For more information www.analog.com  
LT8636/LT8637  
TYPICAL PERFORMANCE CHARACTERISTICS  
Burst Mode Operation Efficiency  
vs Inductor Value (LT8636)  
Reference Voltage  
EN Pin Thresholds  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢀ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ Rꢂꢃꢂꢁꢄ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ ꢂꢃꢄꢄꢅꢁꢆ  
ꢀꢁꢂꢃ  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢆꢅꢆꢇꢈꢉꢊꢋ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢀꢁꢂꢃCꢄꢅR ꢆꢇꢈꢃꢉ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢄ  
LT8636 Load Regulation  
LT8636 Line Regulation  
LT8637 Load Regulation  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢀ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢀ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢀ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢀ  
ꢀ.ꢀꢀ  
ꢀꢁ.ꢂꢁ  
ꢀꢁ.ꢂꢁ  
ꢀꢁ.ꢂꢁ  
ꢀꢁ.ꢂꢁ  
ꢀ.ꢀꢁ  
ꢀꢁ.ꢂꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ.ꢁꢂ  
ꢀꢁ.ꢁꢂ  
ꢀꢁ.ꢁꢂ  
ꢀꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂC  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂC  
ꢀ ꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢀꢁꢂꢁ ꢃꢄꢂ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
LT8637 Line Regulation  
LT8636 No-Load Supply Current  
LT8637 No-Load Supply Current  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
ꢀꢁ Rꢂꢃꢄꢅꢆꢇꢀꢈꢁ  
ꢀꢁ.ꢁꢂ  
ꢀꢁ.ꢁꢂ  
ꢀꢁ.ꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
ꢆꢇꢈꢉ ꢁ ꢊ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢋꢌꢍ  
ꢇꢎ Rꢏꢐꢌꢀꢈꢍꢇꢋꢎ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢀ  
ꢀꢁꢂꢁ ꢃꢄꢁ  
Rev. C  
6
For more information www.analog.com  
LT8636/LT8637  
TYPICAL PERFORMANCE CHARACTERISTICS  
Top FET Current Limit vs Duty Cycle  
Top FET Current Limit  
Switch Drop vs Temperature  
ꢀꢀ.ꢁ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂꢃCꢄ CꢅRRꢆꢇꢃ ꢈ ꢉꢊ  
ꢀ.ꢁ  
ꢀꢁꢂ ꢃꢄꢅꢀCꢆ  
ꢀ.ꢁ  
ꢀꢁ ꢂC  
ꢀ.ꢁ  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢂꢂꢁꢃ ꢄꢅꢆꢂCꢇ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃ CꢃCꢄꢅ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
Dropout Voltage  
Switch Drop vs Switch Current  
Minimum On-Time  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe ꢈꢉꢊRꢋꢌꢍꢈꢎ  
ꢀꢁRCꢂꢃ Cꢁꢄꢅꢆꢄꢇꢁꢇꢈ ꢉꢁꢃꢂ  
ꢀꢁꢂ ꢂꢃ Rꢁꢄꢅꢆꢇꢂꢁ ꢇꢂ ꢈꢉ  
ꢀꢁꢁ ꢀ ꢁ ꢂꢃꢀꢄꢅꢆꢅꢆꢇꢈꢉꢊꢋꢌ ꢋꢍꢃ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ ꢃꢄꢅꢀCꢆ  
ꢀ ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢂꢃꢄ  
ꢃ ꢄꢅꢆꢇ  
ꢀꢁꢂꢂꢁꢃ ꢄꢅꢆꢂCꢇ  
ꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢀꢁꢂꢃCꢄ CꢅRRꢆꢇꢃ ꢈꢉꢊ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢄ  
ꢀꢁꢂꢁ ꢃꢄꢂ  
Switching Frequency  
Burst Frequency  
LT8636 Soft-Start Tracking  
ꢀꢁꢂꢂ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
.
.
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀꢁ  
R
ꢀ ꢁꢂ.ꢃꢄ  
.
.
.
.
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉCꢅꢃꢉꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂ  
ꢀꢁ  
.
.
.
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
.
.
.
.
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢉꢂꢊ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
R
ꢀꢁꢂꢁ ꢃꢄꢁ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
Rev. C  
7
For more information www.analog.com  
LT8636/LT8637  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT8637 Soft-Start Tracking  
LT8637 Error Amp Output Current  
Soft-Start Current  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ  
ꢀ ꢁ.ꢂꢃꢄ  
C
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀRꢁꢂꢂ ꢃꢄꢇꢈ ꢉꢃꢊ  
ꢀꢁ ꢂꢃꢄ ꢅRRꢆR ꢇꢆꢋꢅ ꢌꢍꢇꢎ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢀꢁꢂꢁ ꢃꢄꢀ  
ꢀꢁꢂꢁ ꢃꢂꢄ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
RT Programmed Switching  
Frequency  
PG High Thresholds  
PG Low Thresholds  
ꢀꢁ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
250  
225  
200  
175  
150  
125  
100  
75  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁꢂ.ꢂ  
ꢀꢁ Rꢂꢃꢂꢄꢅ  
ꢀꢁ Rꢂꢃꢂꢄꢅ  
ꢀꢁ ꢀꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢀꢂꢃꢃꢄꢅꢆ  
50  
25  
0
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
0.2 0.6  
1.4 1.8 2.2 2.6  
3
1
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
SWITCHING FREQUENCY (MHz)  
ꢀꢁꢂꢁ ꢃꢂꢄ  
ꢀꢁꢂꢁ ꢃꢂꢄ  
8636 G33  
Minimum Input Voltage  
Bias Pin Current  
Bias Pin Current  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀ.ꢁ ꢀ.ꢁ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢀ ꢀ.ꢁ ꢀ.ꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇCꢈ  
ꢀꢁꢂꢃCꢄꢂꢅꢆ ꢇRꢈꢉꢊꢈꢅCꢋ ꢌꢍꢄꢎꢏ  
ꢀꢁꢂꢁ ꢃꢂꢄ  
ꢀꢁꢂꢁ ꢃꢂꢄ  
ꢀꢁꢂꢁ ꢃꢂꢁ  
Rev. C  
8
For more information www.analog.com  
LT8636/LT8637  
TYPICAL PERFORMANCE CHARACTERISTICS  
Case Temperature Rise vs 7A  
Pulsed Load  
Switching Rising Edge  
Case Temperature Rise  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢄ ꢅ ꢀ ꢁꢂꢃꢄ  
ꢀCꢁꢂꢃꢄꢅ ꢀꢆꢇꢈ ꢉꢈꢅRꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢄ ꢅ ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇꢈꢂꢄ ꢉ ꢊ.ꢋꢌꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉ ꢆꢊꢋꢉ ꢌ ꢍꢋ  
ꢀ ꢁꢂꢄ ꢅ ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢄ ꢅ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢃꢅRꢀ ꢆꢇ ꢈꢉꢆꢊꢊ ꢅꢆR  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢆꢅꢇ ꢈ.ꢉꢊꢋ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢁ ꢃꢂꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ CꢃCꢄꢅ ꢆꢇ ꢈꢉ ꢄꢆꢉꢀ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢀꢁꢂꢁ ꢃꢂꢀ  
ꢀꢁꢂꢁ ꢃꢂꢄ  
Switching Waveforms, Full  
Frequency Continuous Operation  
Switching Waveforms, Burst  
Mode Operation  
Switching Waveforms  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉCꢅꢃꢉꢁꢂ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉCꢅꢃꢉꢁꢂ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉCꢅꢃꢉꢁꢂ  
ꢀꢁꢂ ꢀꢁ ꢂꢃ  
ꢀꢁ ꢂꢀ  
ꢀꢁꢂ ꢀꢁ ꢂꢃ  
ꢀꢁ ꢂꢃꢄꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁ ꢂꢃ  
ꢀꢁ ꢂꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂC  
LT8637 Transient Response;  
External Compensation  
LT8636 Transient Response;  
Internal Compensation  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢂꢁ ꢃꢄꢂ  
ꢀꢁꢂꢁ ꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉCꢅꢃꢉꢁꢂ  
ꢀꢁ ꢂꢃ ꢄꢁ ꢂRꢁꢅꢆꢇꢈꢅꢂ  
ꢀꢁꢂ ꢀ ꢁꢂ  
ꢀꢁ ꢂꢃ ꢄꢁ ꢂRꢁꢅꢆꢇꢈꢅꢂ  
ꢀꢁꢂ ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
C
C
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢁꢂꢃꢅ R ꢀ ꢁ.ꢂꢃꢄ  
C
ꢀꢁ  
C
ꢀꢁꢂ  
C
ꢀ ꢁꢂꢂꢃꢅ C  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢂꢃꢅ C  
ꢀ ꢁ.ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rev. C  
9
For more information www.analog.com  
LT8636/LT8637  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT8636 Transient Response;  
100mA to 1.1A Transient  
LT8637 Transient Response;  
100mA to 1.1A Transient  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe ꢈꢉꢊRꢋꢌꢍꢈꢎ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe ꢈꢉꢊRꢋꢌꢍꢈꢎ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀCꢁ  
ꢀCꢁ  
ꢀꢁꢂꢁ ꢃꢄꢁ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
C
ꢀ ꢁꢁꢂꢃꢅ R ꢀ ꢁ.ꢂꢃꢄꢅ C  
ꢀ ꢁ.ꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉCꢅꢃꢉꢁꢂ  
ꢀꢁꢁꢂꢃ ꢄꢅ ꢀ.ꢀꢃ ꢄRꢃꢆꢇꢈꢉꢆꢄ  
ꢀꢁꢂ ꢀ ꢁꢂ ꢀ ꢁ ꢀ ꢁꢂꢃꢄ  
C
C
ꢀꢁꢁꢂꢃ ꢄꢅ ꢀ.ꢀꢃ ꢄRꢃꢆꢇꢈꢉꢆꢄ  
ꢀꢁꢂ ꢀ ꢁꢂ ꢀ ꢁ ꢀ ꢁꢂꢃꢄ  
C
ꢀꢁ ꢀꢁꢂ ꢀꢁ  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁ  
C
ꢀ ꢁꢂꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Start-Up Dropout Performance  
Start-Up Dropout Performance  
V
V
IN  
IN  
V
V
IN  
IN  
2V/DIV  
2V/DIV  
V
V
OUT  
OUT  
V
V
OUT  
2V/DIV  
OUT  
2V/DIV  
8636 G47  
8636 G48  
100ms/DIV  
100ms/DIV  
2.5Ω LOAD  
(2A IN REGULATION)  
20Ω LOAD  
(250mA IN REGULATION)  
Rev. C  
10  
For more information www.analog.com  
LT8636/LT8637  
TYPICAL PERFORMANCE CHARACTERISTICS  
Conducted EMI Performance  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄ ꢀꢁꢂCꢅRꢆꢇ ꢇꢈꢄꢂ  
ꢀꢁꢂꢃꢄ ꢀRꢃꢅꢆꢃꢇCꢈ ꢉꢊꢄꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄCꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀCꢁꢂꢃꢄꢅ ꢀꢆꢇꢈ ꢉꢈꢅRꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆꢂ ꢇꢂꢅR ꢂꢉꢊꢃꢋꢈꢈꢅꢌꢍ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ ꢇꢈ ꢉꢂ ꢈꢆꢇꢅꢆꢇ ꢊꢇ ꢉꢊꢋ ꢌ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
Radiated EMI Performance  
(CISPR25 Radiated Emission Test with Class 5 Peak Limits)  
ꢀꢁ  
ꢀꢁRꢂꢃCꢄꢅ ꢆꢇꢅꢄRꢃꢈꢄꢂꢃꢇꢉ  
ꢀꢁꢂꢃ ꢄꢁꢅꢁCꢅꢆR  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Cꢀꢁꢂꢂ ꢃ ꢄꢅꢁꢆ ꢀꢇꢈꢇꢉ  
ꢀꢁRꢂꢃꢄ ꢀꢁꢂCꢅRꢆꢇ ꢇꢈꢄꢂ  
ꢀꢁꢂꢃꢄ ꢀRꢃꢅꢆꢃꢇCꢈ ꢉꢊꢄꢃ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ ꢀꢁꢁꢁ  
ꢀRꢁꢂꢃꢁꢄCꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀCꢁꢂꢃꢄꢅ ꢀꢆꢇꢈ ꢉꢈꢅRꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆꢂ ꢇꢂꢅR ꢂꢉꢊꢃꢋꢈꢈꢅꢌꢍ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ ꢇꢈ ꢉꢂ ꢈꢆꢇꢅꢆꢇ ꢊꢇ ꢉꢊꢋ ꢌ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
Rev. C  
11  
For more information www.analog.com  
LT8636/LT8637  
PIN FUNCTIONS  
PG (Pin 1): The PG pin is the open-drain output of an  
internal comparator. PG remains low until the FB pin is  
within 8% of the final regulation voltage, and there are  
no fault conditions. PG is also pulled low when EN/UV is  
BST (Pin 7): This pin is used to provide a drive voltage,  
higher than the input voltage, to the topside power switch.  
Place a 0.1µF boost capacitor as close as possible to  
the IC.  
below 1V, INTV has fallen too low, V is too low, or  
CC  
IN  
SW (Pins 8–10): The SW pins are the outputs of the inter-  
nal power switches. Tie these pins together and connect  
them to the inductor. This node should be kept small on  
the PCB for good performance and low EMI.  
thermal shutdown. PG is valid when V is above 3.4V.  
IN  
BIAS (Pin 2): The internal regulator will draw current from  
BIAS instead of V when BIAS is tied to a voltage higher  
IN  
than 3.1V. For output voltages of 3.3V to 25V this pin  
EN/UV (Pin 14): The LT8636/LT8637 is shut down when  
this pin is low and active when this pin is high. The hyster-  
etic threshold voltage is 1.00V going up and 0.96V going  
should be tied to V . If this pin is tied to a supply other  
OUT  
than V  
use a 1µF local bypass capacitor on this pin.  
OUT  
If no supply is available, tie to GND. However, especially  
for high input or high frequency applications, BIAS should  
be tied to output or an external supply of 3.3V or above.  
down. Tie to V if the shutdown feature is not used. An  
IN  
external resistor divider from V can be used to program  
IN  
a V threshold below which the LT8636/LT8637 will shut  
IN  
INTV (Pin 3): Internal 3.4V Regulator Bypass Pin. The  
down.  
CC  
internal power drivers and control circuits are powered  
SYNC/MODE (Pin 15): For the LT8636/LT8637, this  
pin programs four different operating modes: 1) Burst  
Mode operation. Tie this pin to ground for Burst Mode  
operation at low output loads—this will result in ultralow  
quiescent current. 2) Forced Continuous mode (FCM).  
This mode offers fast transient response and full  
frequency operation over a wide load range. Float this  
pin for FCM. When floating, pin leakage currents should  
be <1µA. See Block Diagram for internal pull-up and  
pull-down resistance. 3) Spread spectrum mode. Tie  
from this voltage. INTVCC maximum output current is  
20mA. Do not load the INTV pin with external circuitry.  
CC  
INTV current will be supplied from BIAS if BIAS > 3.1V,  
CC  
otherwise current will be drawn from VIN. Voltage on  
INTVCC will vary between 2.8V and 3.4V when BIAS is  
between 3.0V and 3.6V. Place a low ESR ceramic capaci-  
tor of at least 1µF from this pin to ground close to the IC.  
GND (Pins 4, 13, Exposed Pad Pin 21): Ground. Place  
the negative terminal of the input capacitor as close to  
the GND pins as possible. The exposed pads should be  
soldered to the PCB for good thermal performance. If  
necessary due to manufacturing limitations Pin 21 may  
be left disconnected, however thermal performance will  
be degraded.  
this pin high to INTV (~3.4V) or an external supply  
CC  
of 3V to 4V for forced continuous mode with spread-  
spectrum modulation. 4) Synchronization mode. Drive  
this pin with a clock source to synchronize to an external  
frequency. During synchronization the part will operate  
in forced continuous mode.  
NC (Pins 5, 12): No Connect. This pin is not connected  
to internal circuitry and can be tied anywhere on the PCB,  
typically ground.  
CLKOUT (Pin 16): In forced continuous mode, spread  
spectrum, and synchronization modes, the CLKOUT pin  
will provide a ~200ns wide pulse at the switch frequency.  
The low and high levels of the CLKOUT pin are ground and  
INTVCC respectively, and the drive strength of the CLKOUT  
pin is several hundred ohms. In Burst Mode operation,  
the CLKOUT pin will be low. Float this pin if the CLKOUT  
function is not used.  
VIN (Pins 6, 11): The VIN pins supply current to the  
LT8636/LT8637 internal circuitry and to the internal top-  
side power switch. The LT8636/LT8637 requires the use  
of multiple V bypass capacitors. Two small 1µF capaci-  
IN  
tors should be placed as close as possible to the LT8636/  
LT8637, one capacitor on each side of the device (C  
,
IN1  
C
). A third capacitor with a larger value, 2.2µF or higher,  
RT (Pin 17): A resistor is tied between RT and ground to  
set the switching frequency.  
IN2  
should be placed near CIN1 or CIN2. See Applications  
Information section for sample layout.  
Rev. C  
12  
For more information www.analog.com  
LT8636/LT8637  
PIN FUNCTIONS  
TR/SS (Pin 18): Output Tracking and Soft-Start Pin. This  
pin allows user control of output voltage ramp rate dur-  
ing start-up. For the LT8636/LT8637, a TR/SS voltage  
below 0.97V forces it to regulate the FB pin to equal the  
TR/SS pin voltage. When TR/SS is above 0.97V, the  
tracking function is disabled and the internal reference  
resumes control of the error amplifier. For the LT8637,  
a TR/SS voltage below 1.6V forces it to regulate the FB  
pin to a function of the TR/SS pin voltage. See plot in  
the Typical Performance Characteristics section. When  
TR/SS is above 1.6V, the tracking function is disabled  
and the internal reference resumes control of the error  
FB (Pin 19, LT8636 Only): The LT8636/LT8637 regu-  
lates the FB pin to 0.970V. Connect the feedback resistor  
divider tap to this pin. Also, connect a phase lead capaci-  
tor between FB and V . Typically, this capacitor is 4.7pF  
OUT  
to 22pF.  
V (Pin 19, LT8637 Only): The V pin is the output of the  
C
C
internal error amplifier. The voltage on this pin controls  
the peak switch current. Tie an RC network from this pin  
to ground to compensate the control loop.  
FB (Pin 20): The LT8636/LT8637 regulates the FB pin to  
0.970V. Connect the feedback resistor divider tap to this  
pin. Also, connect a phase lead capacitor between FB and  
amplifier. An internal 1.9µA pull-up current from INTV  
CC  
V
. Typically, this capacitor is 4.7pF to 22pF.  
OUT  
on this pin allows a capacitor to program output voltage  
slew rate. This pin is pulled to ground with an internal  
200Ω MOSFET during shutdown and fault conditions; use  
a series resistor if driving from a low impedance output.  
This pin may be left floating if the tracking function is not  
needed.  
Corner Pins: These pins are for mechanical support only  
and can be tied anywhere on the PCB, typically ground.  
Rev. C  
13  
For more information www.analog.com  
LT8636/LT8637  
BLOCK DIAGRAM  
ꢍꢎ  
ꢝꢝ  
ꢍꢎ  
C
ꢍꢎꢖ  
ꢍꢎ  
C
ꢍꢎꢂ  
ꢍꢎꢏꢋRꢎꢐꢈ ꢑ.ꢒꢓꢔ Rꢋꢕ  
ꢇꢘꢄꢎ  
C
ꢍꢎꢝ  
ꢃꢍꢐꢇ  
ꢂ.ꢛꢔ  
Rꢋꢜ  
Rꢂ  
ꢝꢔ  
ꢉꢊꢏ  
ꢋꢎꢡꢚꢔ  
ꢝꢛ  
ꢍꢎꢏꢔ  
CC  
Rꢛ  
ꢉꢊꢏ  
ꢇꢈꢉꢊꢋ Cꢉꢌꢊ  
ꢉꢇCꢍꢈꢈꢐꢏꢉR  
C
ꢔCC  
ꢀꢁꢂꢓ ꢉꢎꢥ  
C
ꢝꢒ  
ꢖꢑꢑꢗꢘꢙ ꢏꢉ ꢂꢌꢘꢙ  
R
C
C
ꢋRRꢉR  
ꢐꢌꢊ  
ꢊꢜ  
ꢃꢇꢏ  
ꢀꢠ  
C
C
C
ꢃꢚRꢇꢏ  
ꢄꢋꢏꢋCꢏ  
ꢉꢚꢏ  
C
ꢃꢇꢏ  
ꢌꢝ  
ꢌꢖ  
ꢇꢞ  
ꢇꢘꢄꢎ  
ꢀꢆꢝꢑ  
ꢇꢞꢍꢏCꢘ ꢈꢉꢜꢍC  
ꢐꢎꢄ  
ꢐꢎꢏꢍꢟꢇꢘꢉꢉꢏ  
ꢏꢘRꢉꢚꢜꢘ  
ꢀꢁꢂꢁ  
ꢉꢎꢥ  
Cꢝ Rꢝ  
Rꢖ  
ꢏꢘꢋRꢌꢐꢈ ꢇꢘꢄꢎ  
ꢉꢚꢏ  
ꢍꢎꢏꢔ ꢚꢔꢈꢉ  
CC  
C
ꢍꢎ  
ꢚꢔꢈꢉ  
ꢉꢚꢏ  
ꢕꢃ  
ꢖꢑ  
ꢇꢘꢄꢎ  
ꢏꢘꢋRꢌꢐꢈ ꢇꢘꢄꢎ  
ꢚꢔꢈꢉ  
C
ꢇꢇ  
ꢉꢊꢏ  
ꢝ.ꢒꢤꢐ  
ꢍꢎ  
ꢏRꢡꢇꢇ  
Rꢏ  
ꢜꢎꢄ  
ꢛꢢ ꢝꢂꢢ ꢖꢝ  
ꢝꢀ  
ꢝꢓ  
R
ꢍꢎꢏꢔ  
CC  
ꢁꢑꢗ  
Cꢈꢣꢉꢚꢏ  
ꢇꢥꢎCꢡꢌꢉꢄꢋ  
ꢝꢁ  
ꢝꢦ  
ꢁꢑꢑꢗ  
ꢀꢁꢂꢁ ꢃꢄ  
Rev. C  
14  
For more information www.analog.com  
LT8636/LT8637  
OPERATION  
The LT8636/LT8637 is a monolithic, constant frequency,  
current mode step-down DC/DC converter. An oscillator,  
with frequency set using a resistor on the RT pin, turns  
on the internal top power switch at the beginning of each  
clock cycle. Current in the inductor then increases until  
the top switch current comparator trips and turns off the  
top power switch. The peak inductor current at which the  
top switch turns off is controlled by the voltage on the  
internal VC node. The error amplifier servos the VC node  
the oscillator operates continuously and positive SW tran-  
sitions are aligned to the clock. Negative inductor current  
is allowed. The LT8636/LT8637 can sink current from the  
output and return this charge to the input in this mode,  
improving load step transient response.  
To improve EMI, the LT8636/LT8637 can operate in spread  
spectrum mode. This feature varies the clock with a trian-  
gular frequency modulation of +20%. For example, if the  
LT8636/LT8637’s frequency is programmed to switch at  
2MHz, spread spectrum mode will modulate the oscillator  
between 2MHz and 2.4MHz. The SYNC/MODE pin should  
be tied high to INTVCC (~3.4V) or an external supply of 3V  
to 4V to enable spread spectrum modulation with forced  
continuous mode.  
by comparing the voltage on the V pin with an inter-  
FB  
nal 0.97V reference. When the load current increases it  
causes a reduction in the feedback voltage relative to the  
reference leading the error amplifier to raise the VC volt-  
age until the average inductor current matches the new  
load current. When the top power switch turns off, the  
synchronous power switch turns on until the next clock  
cycle begins or inductor current falls to zero. If overload  
conditions result in more than 10A flowing through the  
bottom switch, the next clock cycle will be delayed until  
switch current returns to a safe level.  
To improve efficiency across all loads, supply current to  
internal circuitry can be sourced from the BIAS pin when  
biased at 3.3V or above. Else, the internal circuitry will draw  
current from V . The BIAS pin should be connected to  
IN  
V
if the LT8636/LT8637 output is programmed at 3.3V  
OUT  
to 25V.  
If the EN/UV pin is low, the LT8636/LT8637 is shut down  
and draws 1µA from the input. When the EN/UV pin is  
above 1V, the switching regulator will become active.  
The VC pin optimizes the loop compensation of the  
switching regulator based on the programmed switch-  
ing frequency, allowing for a fast transient response. The  
VC pin also enables current sharing and a CLKOUT pin  
enables synchronizing other regulators to the LT8637.  
To optimize efficiency at light loads, the LT8636/LT8637  
operates in Burst Mode operation in light load situations.  
Between bursts, all circuitry associated with controlling  
the output switch is shut down, reducing the input supply  
current to 1.7µA (LT8636) or 230µA (LT8637 with BIAS  
= 0). In a typical application, 2.5µA (LT8636) or 120µA  
(LT8637 with BIAS = 5V ) will be consumed from the  
input supply when reguOlaUtiTng with no load. The SYNC/  
MODE pin is tied low to use Burst Mode operation and can  
be floated to use forced continuous mode (FCM). If a clock  
is applied to the SYNC/MODE pin, the part will synchronize  
to an external clock frequency and operate in FCM.  
Comparators monitoring the FB pin voltage will pull the PG  
pin low if the output voltage varies more than 8% (typi-  
cal) from the set point, or if a fault condition is present.  
The oscillator reduces the LT8636/LT8637’s operating  
frequency when the voltage at the FB pin is low. This  
frequency foldback helps to control the inductor current  
when the output voltage is lower than the programmed  
value which occurs during start-up or overcurrent condi-  
tions. When a clock is applied to the SYNC/MODE pin, the  
SYNC/MODE pin is floated, or held DC high, the frequency  
foldback is disabled and the switching frequency will slow  
down only during overcurrent conditions.  
The LT8636/LT8637 can operate in forced continuous  
mode (FCM) for fast transient response and full fre-  
quency operation over a wide load range. When in FCM  
Rev. C  
15  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
Low EMI PCB Layout  
Note that large, switched currents flow in the LT8636/  
LT8637 V and GND pins and the input capacitors. The  
IN  
The LT8636/LT8637 is specifically designed to minimize  
EMI emissions and also to maximize efficiency when  
switching at high frequencies. For optimal performance  
the LT8636/LT8637 requires the use of multiple VIN  
bypass capacitors.  
loops formed by the input capacitors should be as small  
as possible by placing the capacitors adjacent to the V  
IN  
and GND pins. Capacitors with small case size such as  
0603 are optimal due to lowest parasitic inductance.  
The input capacitors, along with the inductor and out-  
put capacitors, should be placed on the same side of the  
circuit board, and their connections should be made on  
that layer. Place a local, unbroken ground plane under the  
application circuit on the layer closest to the surface layer.  
The SW and BOOST nodes should be as small as possible.  
Finally, keep the FB and RT nodes small so that the ground  
traces will shield them from the SW and BOOST nodes.  
Two small 1µF capacitors should be placed as close as  
possible to the LT8636/LT8637, one capacitor on each  
side of the device (C , C ). A third capacitor with a  
IN1 IN2  
larger value, 2.2µF or higher, should be placed near C  
IN1  
or C  
.
IN2  
See Figure 1 for recommended PCB layouts.  
For more detail and PCB design files refer to the Demo  
Board guide for the LT8636/LT8637.  
C
C
R
R
C
C
C
C
R
C
ꢄꢄ  
R
R
ꢄꢄ  
C
R
R
C
C
ꢊCC  
ꢊCC  
C
C
ꢅꢇꢏ  
ꢅꢇꢏ  
C
C
ꢅꢇꢔ  
C
C
ꢅꢇꢔ  
ꢅꢇꢒ  
ꢅꢇꢒ  
C
C
ꢕꢄꢁ  
ꢕꢄꢁ  
C
C
ꢀꢋꢁ  
ꢀꢋꢁ  
ꢊꢅꢈ  
ꢊꢅꢈ  
ꢍꢎꢏꢎ ꢐꢑꢒꢓ  
ꢊꢅꢈ  
ꢊ ꢊꢅꢈ  
ꢀꢋꢁ  
ꢍꢎꢏꢎ ꢐꢑꢒꢓ  
ꢆRꢀꢋꢇꢌ ꢊꢅꢈ  
ꢀꢁꢂꢃR ꢄꢅꢆꢇꢈꢉ ꢊꢅꢈꢄ  
ꢆRꢀꢋꢇꢌ ꢊꢅꢈ  
ꢀꢁꢂꢃR ꢄꢅꢆꢇꢈꢉ ꢊꢅꢈꢄ  
ꢅꢇ  
ꢀꢋꢁ  
ꢅꢇ  
(a) LT8636  
(b) LT8637  
Figure 1. Recommended PCB Layouts for the LT8636  
Rev. C  
16  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
While in Burst Mode operation the current limit of the top  
switch is approximately 900mA (as shown in Figure 3),  
resulting in low output voltage ripple. Increasing the out-  
put capacitance will decrease output ripple proportion-  
ally. As load ramps upward from zero the switching fre-  
quency will increase but only up to the switching frequency  
programmed by the resistor at the RT pin as shown in  
Figure 2.  
The exposed pads on the bottom of the package should be  
soldered to the PCB to reduce thermal resistance to ambi-  
ent. To keep thermal resistance low, extend the ground  
plane from GND as much as possible, and add thermal  
vias to additional ground planes within the circuit board  
and on the bottom side.  
Burst Mode Operation  
To enhance efficiency at light loads, the LT8636/LT8637  
operates in low ripple Burst Mode operation, which keeps  
the output capacitor charged to the desired output voltage  
while minimizing the input quiescent current and minimiz-  
ing output voltage ripple. In Burst Mode operation the  
LT8636/LT8637 delivers single small pulses of current to  
the output capacitor followed by sleep periods where the  
output power is supplied by the output capacitor. While in  
sleep mode the LT8636 consumes 1.7µA, and the LT8637  
consumes 230µA.  
ꢀꢁꢂꢂ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉCꢅꢃꢉꢁꢂ  
ꢀꢁꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
As the output load decreases, the frequency of single cur-  
rent pulses decreases (see Figure 2) and the percentage  
of time the LT8636/LT8637 is in sleep mode increases,  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢉꢂꢊ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
Figure 2. SW Frequency vs Load Information  
in Burst Mode Operation  
resulting in much higher light load efficiency than for typi  
-
cal converters. By maximizing the time between pulses,  
the LT8636/LT8637’s quiescent current approaches  
2.5µA for a typical application when there is no output  
load. Therefore, to optimize the quiescent current perfor-  
mance at light loads, the current in the feedback resistor  
divider must be minimized as it appears to the output as  
load current.  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
In order to achieve higher light load efficiency, more  
energy must be delivered to the output during the sin-  
gle small pulses in Burst Mode operation such that the  
LT8636/LT8637 can stay in sleep mode longer between  
each pulse. This can be achieved by using a larger  
value inductor (i.e., 4.7µH), and should be considered  
independent of switching frequency when choosing  
an inductor. For example, while a lower inductor value  
would typically be used for a high switching frequency  
application, if high light load efficiency is desired, a  
higher inductor value should be chosen. See curve in  
Typical Performance Characteristics.  
ꢀꢁꢂꢁ ꢃꢄꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉCꢅꢃꢉꢁꢂ  
ꢀꢁꢂ ꢀꢁ ꢂꢃ  
ꢀꢁꢂC  
ꢀꢁ ꢂꢃꢄꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂ  
Figure 3. Burst Mode Operation  
Rev. C  
17  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
The output load at which the LT8636/LT8637 reaches the  
programmed frequency varies based on input voltage,  
output voltage and inductor choice. To select low ripple  
Burst Mode operation, tie the SYNC/MODE pin below 0.4V  
(this can be ground or a logic low output).  
FCM is disabled if the VIN pin is held above 37V or if the FB  
pin is held greater than 8% above the feedback reference  
voltage. FCM is also disabled during soft-start until the  
soft-start capacitor is fully charged. When FCM is disabled  
in these ways, negative inductor current is not allowed  
and the LT8636/LT8637 operates in pulse-skipping mode.  
Forced Continuous Mode  
For robust operation over a wide V and V  
range, use  
OUT  
IN  
:
The LT8636/LT8637 can operate in forced continuous  
mode (FCM) for fast transient response and full fre-  
quency operation over a wide load range. When in FCM,  
the oscillator operates continuously and positive SW  
transitions are aligned to the clock. Negative inductor  
current is allowed at light loads or under large tran-  
sient conditions. The LT8636/LT8637 can sink current  
from the output and return this charge to the input in  
this mode, improving load step transient response (see  
Figure 4). At light loads, FCM operation is less efficient  
than Burst Mode operation, but may be desirable in  
applications where it is necessary to keep switching  
harmonics out of the signal band. FCM must be used if  
the output is required to sink current. To enable FCM,  
float the SYNC/MODE pin. Leakage current on this pin  
should be <1µA. See Block Diagram for internal pull-up  
and pull-down resistance.  
an inductor value greater than L  
MIN  
VOUT  
2 • fSW  
VOUT  
V
IN,MAX  
LMIN  
=
• 1–  
Spread Spectrum Mode  
The LT8636/LT8637 features spread spectrum opera-  
tion to further reduce EMI emissions. To enable spread  
spectrum operation, the SYNC/MODE pin should be tied  
high to INTV (~3.4V)or an external supply of 3V to 4V.  
CC  
In this mode, triangular frequency modulation is used  
to vary the switching frequency between the value pro-  
grammed by RT to approximately 20% higher than that  
value. The modulation frequency is approximately 3kHz.  
For example, when the LT8636/LT8637 is programmed to  
2MHz, the frequency will vary from 2MHz to 2.4MHz at a  
3kHz rate. When spread spectrum operation is selected,  
Burst Mode operation is disabled, and the part will run in  
forced continuous mode.  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
Synchronization  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe ꢈꢉꢊRꢋꢌꢍꢈꢎ  
To synchronize the LT8636/LT8637 oscillator to an exter-  
nal frequency, connect a square wave to the SYNC/MODE  
pin. The square wave amplitude should have valleys that  
are below 0.4V and peaks above 1.5V (up to 6V) with a  
minimum on-time and off-time of 50ns.  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀCꢁ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉCꢅꢃꢉꢁꢂ  
ꢀꢁꢁꢂꢃ ꢄꢅ ꢀ.ꢀꢃ ꢄRꢃꢆꢇꢈꢉꢆꢄ  
ꢀꢁꢂ ꢅ ꢆꢂ ꢅ ꢊ ꢍ ꢀꢎꢏꢐ  
ꢃꢄ  
ꢀꢁꢂ  
ꢇꢈꢉ ꢋꢌ  
C
ꢀ ꢁꢂꢂꢃꢄ  
Figure 4. LT8636 Load Step Transient Response with  
and without Forced Continuous Mode  
Rev. C  
18  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
The LT8636/LT8637 will not enter Burst Mode operation  
at low output loads while synchronized to an external  
clock, but instead will run forced continuous mode to  
maintain regulation. The LT8636/LT8637 may be syn-  
chronized over a 200kHz to 3MHz range. The RT resistor  
should be chosen to set the LT8636/LT8637 switching  
frequency equal to or below the lowest synchronization  
input. For example, if the synchronization signal will be  
500kHz and higher, the RT should be selected for 500kHz.  
The slope compensation is set by the RT value, while  
the minimum slope compensation required to avoid sub-  
harmonic oscillations is established by the inductor size,  
input voltage and output voltage. Since the synchroniza-  
tion frequency will not change the slopes of the inductor  
current waveform, if the inductor is large enough to avoid  
subharmonic oscillations at the frequency set by RT, then  
the slope compensation will be sufficient for all synchro-  
nization frequencies.  
1M and R2 = 412k, the feedback divider draws 2.3µA.  
With V = 12V and n = 80%, this adds 0.8µA to the 1.7µA  
IN  
quiescent current resulting in 2.5µA no-load current from  
the 12V supply. Note that this equation implies that the  
no-load current is a function of V ; this is plotted in the  
IN  
Typical Performance Characteristics section.  
When using large FB resistors, a 4.7pF to 22pF phase-lead  
capacitor should be connected from V  
to FB.  
OUT  
Setting the Switching Frequency  
The LT8636/LT8637 uses a constant frequency PWM  
architecture that can be programmed to switch from  
200kHz to 3MHz by using a resistor tied from the RT pin  
to ground. A table showing the necessary R value for a  
T
desired switching frequency is in Table 1.  
The R resistor required for a desired switching frequency  
T
can be calculated using:  
46.5  
fSW  
FB Resistor Network  
RT =  
5.2  
(3)  
The output voltage is programmed with a resistor divider  
between the output and the FB pin. Choose the resistor  
values according to:  
where R is in kΩ and f is the desired switching fre-  
T
SW  
quency in MHz.  
VOUT  
0.970V  
Table 1. SW Frequency vs RT Value  
R1=R2  
–1  
(1)  
f
SW  
(MHz)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
3.0  
R (kΩ)  
T
232  
150  
Reference designators refer to the Block Diagram. 1%  
resistors are recommended to maintain output voltage  
accuracy.  
110  
88.7  
71.5  
60.4  
52.3  
41.2  
33.2  
28.0  
23.7  
20.5  
17.8  
15.8  
10.7  
For the LT8636/LT8637, if low input quiescent current and  
good light-load efficiency are desired, use large resistor  
values for the FB resistor divider. The current flowing in  
the divider acts as a load current, and will increase the no-  
load input current to the converter, which is approximately:  
VOUT  
R1+R2  
VOUT  
1
⎝ ⎠  
n
⎛ ⎞  
I =1.7µA+  
(2)  
⎜ ⎟  
Q
V
IN  
where 1.7µA is the quiescent current of the LT8636/  
LT8637 and the second term is the current in the feedback  
divider reflected to the input of the buck operating at its  
light load efficiency n. For a 3.3V application with R1 =  
Rev. C  
19  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
Operating Frequency Selection and Trade-Offs  
Inductor Selection and Maximum Output Current  
The LT8636/LT8637 is designed to minimize solution size  
by allowing the inductor to be chosen based on the output  
load requirements of the application. During overload or  
short-circuit conditions the LT8636/LT8637 safely toler-  
ates operation with a saturated inductor through the use  
of a high speed peak-current mode architecture.  
Selection of the operating frequency is a trade-off between  
efficiency, component size, and input voltage range. The  
advantage of high frequency operation is that smaller  
inductor and capacitor values may be used. The disadvan-  
tages are lower efficiency and a smaller input voltage range.  
The highest switching frequency (f  
) for a given  
SW(MAX)  
A good first choice for the inductor value is:  
application can be calculated as follows:  
V
OUT + VSW(BOT)  
V
OUT + VSW(BOT)  
L =  
• 0.7  
(6)  
fSW(MAX)  
=
(4)  
fSW  
tON(MIN) V – VSW(TOP) + VSW(BOT)  
(
)
IN  
where fSW is the switching frequency in MHz, VOUT is  
where V is the typical input voltage, V  
is the output  
OUT  
voltage,INV  
and V  
are the internal switch  
the output voltage, V  
is the bottom switch drop  
SW(BOT)  
drops (~0S.4WV(,TO~P0).15V, rSeWsp(BeOcTti)vely at maximum load)  
(~0.15V) and L is the inductor value in µH.  
and t  
is the minimum top switch on-time (see the  
To avoid overheating and poor efficiency, an inductor must  
be chosen with an RMS current rating that is greater than  
the maximum expected output load of the application.  
ON(MIN)  
Electrical Characteristics). This equation shows that a  
slower switching frequency is necessary to accommodate  
In addition, the saturation current (typically labeled I  
)
a high V /V  
ratio.  
SAT  
IN OUT  
rating of the inductor must be higher than the load current  
plus 1/2 of in inductor ripple current:  
For transient operation, V may go as high as the abso-  
IN  
lute maximum rating of 42V regardless of the R value,  
however the LT8636/LT8637 will reduce switchTing fre-  
quency as necessary to maintain control of inductor cur-  
rent to assure safe operation.  
1
2
(7)  
I
L(PEAK) =ILOAD(MAX) + ΔIL  
where I is the inductor ripple current as calculated in  
L
The LT8636/LT8637 is capable of a maximum duty cycle  
Equation 9 and I  
for a given application.  
is the maximum output load  
LOAD(MAX)  
of approximately 99%, and the V -to-V  
dropout is  
IN  
OUT  
limited by the R  
of the top switch. In this mode the  
DS(ON)  
As a quick example, an application requiring 3A output  
should use an inductor with an RMS rating of greater than  
LT8636/LT8637 skips switch cycles, resulting in a lower  
switching frequency than programmed by RT.  
3A and an I  
of greater than 4A. During long duration  
overload orSsAhTort-circuit conditions, the inductor RMS  
rating requirement is greater to avoid overheating of the  
inductor. To keep the efficiency high, the series resistance  
(DCR) should be less than 0.02Ω, and the core material  
should be intended for high frequency applications.  
For applications that cannot allow deviation from the pro-  
grammed switching frequency at low V /V  
ratios use  
IN OUT  
the following formula to set switching frequency:  
V
OUT + VSW(BOT)  
V
=
– VSW(BOT) + VSW(TOP) (5)  
IN(MIN)  
1– fSW tOFF(MIN)  
The LT8636/LT8637 limits the peak switch current in  
order to protect the switches and the system from over-  
where VIN(MIN) is the minimum input voltage without  
skipped cycles, V  
is the output voltage, V  
and  
SW(TOP)  
V
are theOinUtTernal switch drops (~0.4V, ~0.15V,  
load faults. The top switch current limit (I ) is 10A at  
LIM  
SW(BOT)  
low duty cycles and decreases linearly to 7A at DC = 0.8.  
The inductor value must then be sufficient to supply the  
respectively at maximum load), fSW is the switching  
frequency (set by RT), and tOFF(MIN) is the minimum  
switch off-time. Note that higher switching frequency will  
increase the minimum input voltage below which cycles  
will be dropped to achieve higher duty cycle.  
desired maximum output current (I  
), which is a  
OUT(MAX)  
function of the switch current limit (I ) and the ripple  
LIM  
current.  
Rev. C  
20  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
For more information about maximum output current and  
discontinuous operation, see Analog Devices Application  
Note 44.  
ΔIL  
IOUT(MAX) =ILIM  
(8)  
2
The peak-to-peak ripple current in the inductor can be  
calculated as follows:  
For duty cycles greater than 50% (VOUT/VIN > 0.5), a  
minimum inductance is required to avoid subharmonic  
oscillation (See Equation 10). See Application Note 19  
for more details.  
VOUT  
L•fSW  
VOUT  
V
IN(MAX)  
ΔIL =  
• 1–  
(9)  
(
)
2 DC – 1  
V
IN  
L
=
(10)  
MIN  
where fSW is the switching frequency of the LT8636/  
LT8637, and L is the value of the inductor. Therefore, the  
maximum output current that the LT8636/LT8637 will  
deliver depends on the switch current limit, the inductor  
value, and the input and output voltages. The inductor  
value may have to be increased if the inductor ripple cur-  
rent does not allow sufficient maximum output current  
3.5 • f  
SW  
where DC is the duty cycle ratio (V /V ) and f is the  
OUT IN  
SW  
switching frequency.  
Input Capacitors  
The V of the LT8636/LT8637 should be bypassed with at  
IN  
(I  
) given the switching frequency, and maximum  
inOpUuTt(vMoAlXta)ge used in the desired application.  
least three ceramic capacitors for best performance. Two  
small ceramic capacitors of 1µF should be placed close to  
the part; one on each side of the device (CIN1, CIN2). These  
capacitors should be 0402 or 0603 in size. For automotive  
applications requiring 2 series input capacitors, two small  
0402 or 0603 may be placed at each side of the LT8636/  
In order to achieve higher light load efficiency, more  
energy must be delivered to the output during the sin-  
gle small pulses in Burst Mode operation such that the  
LT8636/LT8637 can stay in sleep mode longer between  
each pulse. This can be achieved by using a larger value  
inductor (i.e., 4.7µH), and should be considered indepen-  
dent of switching frequency when choosing an inductor.  
For example, while a lower inductor value would typi-  
cally be used for a high switching frequency application,  
if high light load efficiency is desired, a higher inductor  
value should be chosen. See curve in Typical Performance  
Characteristics.  
LT8637 near the V and GND pins.  
IN  
A third, larger ceramic capacitor of 2.2µF or larger should  
be placed close to C or C . See layout section for  
IN1  
IN2  
more detail. X7R or X5R capacitors are recommended for  
best performance across temperature and input voltage  
variations.  
Note that larger input capacitance is required when a lower  
switching frequency is used. If the input power source has  
high impedance, or there is significant inductance due to  
long wires or cables, additional bulk capacitance may be  
necessary. This can be provided with a low performance  
electrolytic capacitor.  
The optimum inductor for a given application may dif-  
fer from the one indicated by this design guide. A larger  
value inductor provides a higher maximum load current  
and reduces the output voltage ripple. For applications  
requiring smaller load currents, the value of the induc-  
tor may be lower and the LT8636/LT8637 may operate  
with higher ripple current. This allows use of a physically  
smaller inductor, or one with a lower DCR resulting in  
higher efficiency. Be aware that low inductance may result  
in discontinuous mode operation, which further reduces  
maximum load current.  
A ceramic input capacitor combined with trace or cable  
inductance forms a high quality (under damped) tank cir-  
cuit. If the LT8636/LT8637 circuit is plugged into a live  
supply, the input voltage can ring to twice its nominal  
value, possibly exceeding the LT8636/LT8637’s voltage  
rating. This situation is easily avoided (see Analog Devices  
Application Note 88).  
Rev. C  
21  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
Output Capacitor and Output Ripple  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LT8636/LT8637.  
As previously mentioned, a ceramic input capacitor com-  
bined with trace or cable inductance forms a high quality  
(underdamped) tank circuit. If the LT8636/LT8637 circuit  
is plugged into a live supply, the input voltage can ring to  
twice its nominal value, possibly exceeding the LT8636/  
LT8637’s rating. This situation is easily avoided (see  
Analog Devices Technology Application Note 88).  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave generated by  
the LT8636/LT8637 to produce the DC output. In this role  
it determines the output ripple, thus low impedance at the  
switching frequency is important. The second function is  
to store energy in order to satisfy transient loads and sta-  
bilize the LT8636/LT8637’s control loop. Ceramic capaci-  
tors have very low equivalent series resistance (ESR) and  
provide the best ripple performance. For good starting  
values, see the Typical Applications section.  
Enable Pin  
The LT8636/LT8637 is in shutdown when the EN pin is  
low and active when the pin is high. The rising threshold  
of the EN comparator is 1.0V, with 40mV of hysteresis.  
The EN pin can be tied to V if the shutdown feature is  
not used, or tied to a logicIlNevel if shutdown control is  
required.  
Use X5R or X7R types. This choice will provide low out-  
put ripple and good transient response. Transient perfor-  
mance can be improved with a higher value output capaci-  
tor and the addition of a feedforward capacitor placed  
between V  
and FB. Increasing the output capacitance  
OUT  
will also decrease the output voltage ripple. A lower value  
of output capacitor can be used to save space and cost  
but transient performance will suffer and may cause loop  
instability. See the Typical Applications in this data sheet  
for suggested capacitor values.  
Adding a resistor divider from V to EN programs the  
IN  
LT8636/LT8637 to regulate the output only when V is  
IN  
above a desired voltage (see the Block Diagram). Typically,  
this threshold, V  
, is used in situations where the  
IN(EN)  
input supply is current limited, or has a relatively high  
source resistance. A switching regulator draws constant  
power from the source, so source current increases as  
source voltage drops. This looks like a negative resistance  
load to the source and can cause the source to current  
limit or latch low under low source voltage conditions. The  
When choosing a capacitor, special attention should be  
given to the data sheet to calculate the effective capaci-  
tance under the relevant operating conditions of voltage  
bias and temperature. A physically larger capacitor or one  
with a higher voltage rating may be required.  
V
threshold prevents the regulator from operating  
IN(EN)  
Ceramic Capacitors  
at source voltages where the problems might occur. This  
threshold can be adjusted by setting the values R3 and  
R4 such that they satisfy the following equation:  
Ceramic capacitors are small, robust and have very  
low ESR. However, ceramic capacitors can cause prob-  
lems when used with the LT8636/LT8637 due to their  
piezoelectric nature. When in Burst Mode operation, the  
LT8636/LT8637’s switching frequency depends on the  
load current, and at very light loads the LT8636/LT8637  
can excite the ceramic capacitor at audio frequencies,  
generating audible noise. Since the LT8636/LT8637 oper-  
ates at a lower current limit during Burst Mode opera-  
tion, the noise is typically very quiet to a casual ear. If  
this is unacceptable, use a high performance tantalum  
or electrolytic capacitor at the output. Low noise ceramic  
capacitors are also available.  
R3  
R4  
V
=
+1 •1.0V  
(11)  
IN(EN)  
where the LT8636/LT8637 will remain off until VIN is  
above V . Due to the comparator’s hysteresis, switch-  
IN(EN)  
ing will not stop until the input falls slightly below VIN(EN)  
.
When operating in Burst Mode operation for light load  
currents, the current through the VIN(EN) resistor network  
can easily be greater than the supply current consumed  
by the LT8636/LT8637. Therefore, the VIN(EN) resistors  
should be large to minimize their effect on efficiency at  
low loads.  
Rev. C  
22  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
INTV Regulator  
Figure 5 shows an equivalent circuit for the LT8637  
control loop. The error amplifier is a transconductance  
amplifier with finite output impedance. The power section,  
consisting of the modulator, power switches, and inductor,  
is modeled as a transconductance amplifier generating an  
CC  
An internal low dropout (LDO) regulator produces the 3.4V  
supply from V that powers the drivers and the internal  
IN  
bias circuitry. The INTV can supply enough current for  
CC  
the LT8636/LT8637’s circuitry and must be bypassed to  
ground with a minimum of 1µF ceramic capacitor. Good  
bypassing is necessary to supply the high transient cur-  
rents required by the power MOSFET gate drivers. To  
improve efficiency the internal LDO can also draw cur-  
rent from the BIAS pin when the BIAS pin is at 3.1V or  
higher. Typically the BIAS pin can be tied to the output of  
the LT8636/LT8637, or can be tied to an external supply of  
3.3V or above. If BIAS is connected to a supply other than  
output current proportional to the voltage at the V pin.  
C
Note that the output capacitor integrates this current, and  
that the capacitor on the V pin (C ) integrates the error  
C
C
amplifier output current, resulting in two poles in the loop.  
A zero is required and comes from a resistor R in series  
C
with C . This simple model works well as long as the value  
of theCinductor is not too high and the loop crossover  
frequency is much lower than the switching frequency. A  
phase lead capacitor (C ) across the feedback divider can  
be used to improve thePtrLansient response and is required  
to cancel the parasitic pole caused by the feedback node  
to ground capacitance.  
V
, be sure to bypass with a local ceramic capacitor. If  
OUT  
the BIAS pin is below 3.0V, the internal LDO will consume  
current from V . Applications with high input voltage and  
IN  
high switching frequency where the internal LDO pulls cur-  
rent from V will increase die temperature because of the  
IN  
ꢔꢕꢖꢇ  
higher power dissipation across the LDO. Do not connect  
CꢈRRꢉꢊꢋ ꢌꢍꢎꢉ  
ꢏꢍꢐꢉR ꢅꢋꢑꢒꢉ  
an external load to the INTV pin.  
CC  
Frequency Compensation (LT8637 Only)  
ꢌꢆ  
ꢍꢈꢋꢏꢈꢋ  
Loop compensation determines the stability and transient  
performance, and is provided by the components tied to  
ꢌꢜ  
C
ꢏꢓ  
Rꢆ  
Rꢜ  
ꢃ ꢄꢅ  
the V pin. Generally, a capacitor (C ) and a resistor (R )  
C
C
C
ꢃ ꢆ.ꢇꢂꢅ  
in series to ground are used. Designing the compensation  
network is a bit complicated and the best values depend  
on the application. A practical approach is to start with  
one of the circuits in this data sheet that is similar to your  
application and tune the compensation network to opti-  
mize the performance. LTspice® simulations can help in  
this process. Stability should then be checked across all  
operating conditions, including load current, input voltage  
and temperature. The LT1375 data sheet contains a more  
thorough discussion of loop compensation and describes  
how to test the stability using a transient load.  
ꢚꢛ  
Cꢆ  
C
ꢗ.ꢙꢇꢀ  
R
C
ꢆꢄꢗꢘ  
C
C
C
ꢔꢕꢖꢕ ꢚꢗꢄ  
Figure 5. Model for Loop Response  
Rev. C  
23  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
Output Voltage Tracking and Soft-Start  
Paralleling (LT8637 Only)  
T
he LT8636/LT8637 allows the user to program its output  
To increase the possible output current, two LT8637s can  
be connected in parallel to the same output. To do this, the  
VC and FB pins are connected together, and each LT8637’s  
SW node is connected to the common output through its  
own inductor. The CLKOUT pin of one LT8637 should be  
connected to the SYNC/MODE pin of the second LT8637  
to have both devices operate in the same mode. During  
FCM, spread spectrum, and synchronization modes,  
both devices will operate at the same frequency. Figure 6  
shows an application where two LT8637 are paralleled to  
get one output capable of up to 10A.  
voltage ramp rate by means of the TR/SS pin. An internal  
1.9µA pulls up the TR/SS pin to INTV . Putting an exter-  
nal capacitor on TR/SS enables softCsCtarting the output  
to prevent current surge on the input supply. During the  
soft-start ramp the output voltage will proportionally track  
the TR/SS pin voltage.  
For output tracking applications, TR/ SS can be externally  
driven by another voltage source. For the LT8636, from  
0V to 0.97V, the TR/SS voltage will override the internal  
0.97V reference input to the error amplifier, thus regulat-  
ing the FB pin voltage to that of TR/SS pin. When TR/  
SS is above 0.97V, tracking is disabled and the feedback  
voltage will regulate to the internal reference voltage.  
For the LT8637, from 0V to 1.6V, the TR/SS voltage will  
override the internal 0.97V reference input to the error  
amplifier, thus regulating the FB pin voltage to a func-  
tion of the TR/SS pin. See plot in the Typical Performance  
Characteristics section. When TR/SS is above 1.6V, track-  
ing is disabled and the feedback voltage will regulate to  
the internal reference voltage. The TR/SS pin may be left  
floating if the function is not needed. The TR/SS pin may  
be left floating if the function is not needed.  
ꢃꢄꢅꢍ  
ꢁꢀ  
ꢈꢉꢊ  
C
ꢎꢏ  
ꢀꢇꢌ  
Cꢀ  
C
ꢈꢉꢊ  
Rꢀ  
Rꢂ  
Cꢁꢑꢈꢉꢊ  
ꢆꢐ  
R
C
ꢃꢄꢅꢍ  
ꢎꢒꢓCꢔꢕꢈꢖꢗ  
C
C
ꢆꢐ  
ꢁꢂ  
C
ꢎꢏ  
ꢃꢄꢅꢄ ꢆꢇꢄ  
An active pull-down circuit is connected to the TR/SS pin  
which will discharge the external soft-start capacitor in  
the case of fault conditions and restart the ramp when the  
faults are cleared. Fault conditions that clear the soft-start  
Figure 6. Paralleling Two LT8637s  
capacitor are the EN/UV pin transitioning low, V voltage  
IN  
falling too low, or thermal shutdown.  
Rev. C  
24  
For more information www.analog.com  
LT8636/LT8637  
TYPICAL APPLICATIONS  
Output Power Good  
There is another situation to consider in systems where  
the output will be held high when the input to the LT8636/  
LT8637 is absent. This may occur in battery charging  
applications or in battery-backup systems where a bat-  
tery or some other supply is diode ORed with the LT8636/  
When the LT8636/LT8637’s output voltage is within the  
8% window of the regulation point, the output voltage  
is considered good and the open-drain PG pin goes high  
impedance and is typically pulled high with an external  
resistor. Otherwise, the internal pull-down device will pull  
the PG pin low. To prevent glitching both the upper and  
lower thresholds include 0.2% of hysteresis. PG is valid  
LT8637’s output. If the V pin is allowed to float and the  
IN  
EN pin is held high (either by a logic signal or because it  
is tied to V ), then the LT8636/LT8637’s internal circuitry  
IN  
will pull its quiescent current through its SW pin. This is  
acceptable if the system can tolerate several µA in this  
state. If the EN pin is grounded the SW pin current will  
drop to near 1µA. However, if the VIN pin is grounded while  
the output is held high, regardless of EN, parasitic body  
diodes inside the LT8636/LT8637 can pull current from  
when V is above 3.4V.  
IN  
The PG pin is also actively pulled low during several fault  
conditions: EN/UV pin is below 1V, INTV has fallen too  
CC  
low, V is too low, or thermal shutdown.  
IN  
Shorted and Reversed Input Protection  
the output through the SW pin and the V pin, which may  
IN  
damage the IC. Figure 7 shows a connection of the V and  
The LT8636/LT8637 will tolerate a shorted output. Several  
features are used for protection during output short-circuit  
and brownout conditions. The first is the switching fre-  
quency will be folded back while the output is lower than  
the set point to maintain inductor current control. Second,  
the bottom switch current is monitored such that if induc-  
tor current is beyond safe levels switching of the top switch  
will be delayed until such time as the inductor current falls  
to safe levels.  
IN  
EN/UV pins that will allow the LT8636/LT8637 to run only  
when the input voltage is present and that protects against  
a shorted or reversed input.  
ꢃꢄ  
ꢁꢂ  
ꢁꢂ  
ꢇꢈꢉꢈꢊ  
ꢇꢈꢉꢋ  
ꢌꢂꢊꢍꢀ  
ꢐꢂꢃ  
ꢇꢈꢉꢈ ꢎꢏꢋ  
Frequency foldback behavior depends on the state of the  
SYNC pin: If the SYNC pin is low the switching frequency  
will slow while the output voltage is lower than the pro-  
grammed level. If the SYNC pin is connected to a clock  
source, floated or tied high, the LT8636/LT8637 will stay  
at the programmed frequency without foldback and only  
slow switching if the inductor current exceeds safe levels.  
Figure 7. Reverse VIN Protection  
Rev. C  
25  
For more information www.analog.com  
LT8636/LT8637  
APPLICATIONS INFORMATION  
Thermal Considerations and Peak Output Current  
The LT8636/LT8637’s internal power switches are capa-  
ble of safely delivering up to 7A of peak output current.  
However, due to thermal limits, the package can only han-  
dle 7A loads for short periods of time. This time is deter-  
mined by how quickly the case temperature approaches  
the maximum junction rating. Figure 9 shows an example  
of how case temperature rise changes with the duty cycle  
of a 1kHz pulsed 7A load.  
For higher ambient temperatures, care should be taken  
in the layout of the PCB to ensure good heat sinking of  
the LT8636/LT8637. The ground pins on the bottom of  
the package should be soldered to a ground plane. This  
ground should be tied to large copper layers below with  
thermal vias; these layers will spread heat dissipated by the  
LT8636/LT8637. Placing additional vias can reduce thermal  
resistance further. The maximum load current should be  
derated as the ambient temperature approaches the maxi-  
mum junction rating. Power dissipation within the LT8636/  
LT8637 can be estimated by calculating the total power  
loss from an efficiency measurement and subtracting the  
inductor loss. The die temperature is calculated by multiply-  
ing the LT8636/LT8637 power dissipation by the thermal  
resistance from junction to ambient.  
ꢀꢁꢂ  
ꢀCꢁꢂꢃꢄꢅ ꢀꢆꢇꢈ ꢉꢈꢅRꢀ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇꢈꢂꢄ ꢉ ꢊ.ꢋꢌꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉ ꢆꢊꢋꢉ ꢌ ꢍꢋ  
The internal overtemperature protection monitors the  
junction temperature of the LT8636/LT8637. If the junc-  
tion temperature reaches approximately 180°C, the  
LT8636/LT8637 will stop switching and indicate a fault  
condition until the temperature drops about 10°C cooler.  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ CꢃCꢄꢅ ꢆꢇ ꢈꢉ ꢄꢆꢉꢀ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
Figure 9. Case Temperature Rise vs 7A Pulsed Load  
Temperature rise of the LT8636/LT8637 is worst when oper-  
ating at high load, high V , and high switching frequency.  
IN  
The LT8636/LT8637’s top switch current limit decreases  
with higher duty cycle operation for slope compensa-  
tion. This also limits the peak output current the LT8636/  
LT8637 can deliver for a given application. See curve in  
Typical Performance Characteristics.  
If the case temperature is too high for a given application,  
then either V , switching frequency, or load current can be  
IN  
decreased to reduce the temperature to an acceptable level.  
Figure 8 shows examples of how case temperature rise can  
be managed by reducing VIN, switching frequency, or load.  
ꢀꢁ  
ꢀ ꢁꢂꢄ ꢅ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢄ ꢅ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢄ ꢅ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁꢂꢄ ꢅ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢃꢅRꢀ ꢆꢇ ꢈꢉꢆꢊꢊ ꢅꢆR  
ꢀ ꢁ ꢂꢃꢀꢄꢅꢆꢅꢇ ꢈ.ꢉꢊꢋ  
ꢀꢁꢂꢃ CꢄRRꢅꢆꢇ ꢈꢂꢉ  
ꢀꢁꢂꢁ ꢃꢄꢀ  
Figure 8. Case Temperature Rise  
Rev. C  
26  
For more information www.analog.com  
LT8636/LT8637  
TYPICAL APPLICATIONS  
ꢁꢂ  
ꢢ.ꢍꢀ ꢉꢈ ꢜꢠꢀ  
ꢜ.ꢍꢛꢎ  
ꢃꢂꢄꢅꢀ  
ꢁꢂ  
ꢁꢂ  
ꢏꢛꢎ  
ꢐꢋꢐꢌ  
ꢏꢛꢎ  
ꢐꢋꢐꢌ  
ꢘꢂꢕ  
ꢘꢂꢕ  
ꢊꢋꢌꢋ  
ꢊꢋꢌꢍ  
Cꢆꢇꢈꢅꢉ  
ꢑꢒꢉ  
ꢌ.ꢌꢛꢥ  
ꢐ.ꢏꢛꢎ  
ꢏꢐꢐꢣ  
ꢢꢀ  
ꢢꢚ  
ꢈꢅꢉ  
ꢒꢓꢂCꢄꢔꢈꢕꢃ  
ꢒꢙ  
ꢗꢘ  
ꢋ.ꢜꢦꢣ  
ꢀ ꢖ  
C
ꢏꢐꢤꢎ  
ꢌꢌꢐꢝꢎ  
ꢉRꢄꢒꢒ  
ꢑꢁꢚꢒ  
ꢜ.ꢍꢝꢎ ꢞꢊꢋꢌꢍꢟ  
ꢏꢐꢝꢎ ꢞꢊꢋꢌꢋꢟ  
ꢏꢛꢎ  
ꢏꢔ  
ꢏꢐꢐꢛꢎ  
ꢏꢠꢏꢐ  
ꢡꢢRꢄꢡꢍR  
ꢁꢂꢉꢀ  
Rꢉ  
ꢎꢑ  
CC  
ꢜꢏ.ꢠꢣ  
ꢠꢜꢌꢣ  
ꢘꢂꢕ  
ꢊꢋꢌꢋ ꢎꢏꢐ  
ꢨ ꢏꢔꢥꢩ  
ꢒꢙ  
ꢆꢪ ꢡꢃꢆꢋꢐꢌꢐ  
Figure 10. 5V, 5A Step-Down Converter with Soft-Start and Power Good  
ꢁꢂ  
ꢜꢀ ꢉꢈ ꢜꢠꢀ  
ꢜ.ꢍꢛꢎ  
ꢃꢂꢄꢅꢀ  
ꢁꢂ  
ꢁꢂ  
ꢏꢛꢎ  
ꢚꢋꢚꢌ  
ꢏꢛꢎ  
ꢚꢋꢚꢌ  
ꢗꢂꢔ  
ꢗꢂꢔ  
ꢊꢋꢌꢋ  
ꢊꢋꢌꢍ  
Cꢆꢇꢈꢅꢉ  
ꢐꢑꢉ  
ꢠ.ꢠꢛꢥ  
ꢚ.ꢏꢛꢎ  
ꢏꢚꢚꢣ  
ꢌ.ꢌꢀ  
ꢢꢙ  
ꢈꢅꢉ  
ꢑꢒꢂCꢄꢓꢈꢔꢃ  
ꢑꢘ  
ꢖꢗ  
ꢊ.ꢜꢢꢣ  
ꢀ ꢕ  
C
ꢏꢚꢤꢎ  
ꢌꢌꢚꢝꢎ  
ꢉRꢄꢑꢑ  
ꢐꢁꢙꢑ  
ꢜ.ꢍꢝꢎ ꢞꢊꢋꢌꢍꢟ  
ꢏꢚꢝꢎ ꢞꢊꢋꢌꢋꢟ  
ꢏꢛꢎ  
ꢏꢓ  
ꢏꢚꢚꢛꢎ  
ꢏꢠꢏꢚ  
ꢡꢢRꢄꢡꢍR  
ꢁꢂꢉꢀ  
Rꢉ  
ꢎꢐ  
CC  
ꢜꢏ.ꢠꢣ  
ꢜꢏꢠꢣ  
ꢗꢂꢔ  
ꢊꢋꢌꢋ ꢎꢏꢏ  
ꢧ ꢏꢓꢥꢨ  
ꢑꢘ  
ꢆꢩ ꢡꢃꢆꢋꢚꢌꢚ  
Figure 11. 3.3V, 5A Step-Down Converter with Soft-Start and Power Good  
* V pin and components only apply to LT8637.  
C
Rev. C  
27  
For more information www.analog.com  
LT8636/LT8637  
TYPICAL APPLICATIONS  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀ.ꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈ ꢁꢂ  
ꢅꢉꢁꢃ CꢁRCꢆꢁꢊ  
ꢂꢃꢄꢃ  
ꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
Cꢀꢁꢂꢃꢇꢅ ꢄRꢈꢉꢉ  
ꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
CC  
ꢀꢁ  
ꢀꢁꢂCꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ ꢄꢇꢈꢉꢁꢊ  
ꢋꢌꢂꢃ ꢄꢇꢈꢉꢈꢊ  
ꢀꢁ  
ꢀ ꢁ  
C
ꢀꢁꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁRꢂꢀꢃR  
Rꢀ  
ꢀꢁ  
ꢀꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
L: XEL6030  
FB1 BEAD: WE-MPSB 100Ω 8A 1812  
ꢀꢁꢂꢁ ꢃꢄꢅ  
Figure 12. Ultralow EMI 5V, 5A Step-Down Converter with Spread Spectrum  
ꢁꢂ  
ꢠ.ꢋꢀ ꢇꢒ ꢚꢞꢀ  
ꢚ.ꢋꢙꢌ  
ꢃꢂꢄꢅꢀ  
ꢁꢂ  
ꢁꢂ  
ꢍꢙꢌ  
ꢍꢙꢌ  
ꢘꢉꢘꢊ  
ꢘꢉꢘꢊ  
ꢗꢂꢓ  
ꢗꢂꢓ  
ꢈꢉꢊꢉ  
ꢈꢉꢊꢋ  
ꢎꢏꢇ  
ꢏꢕ  
ꢈ.ꢚꢠꢡ  
ꢍ.ꢠꢙꢢ  
ꢘ.ꢍꢙꢌ  
ꢒꢅꢇ  
ꢀ ꢔ  
C
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈ ꢁꢂ  
ꢅꢉꢁꢃ CꢁRCꢆꢁꢊ  
ꢠꢀ  
ꢠꢖ  
ꢏꢐꢂCꢄꢑꢒꢓꢃ  
ꢊꢊꢘꢛꢌ  
Cꢀꢁꢂꢃꢇꢅ ꢄRꢈꢉꢉ  
ꢎꢁꢖꢏ  
ꢚ.ꢋꢛꢌ ꢜꢈꢉꢊꢋꢝ  
ꢍꢘꢛꢌ ꢜꢈꢉꢊꢉꢝ  
ꢍꢙꢌ  
ꢍꢑ  
ꢍꢘꢘꢙꢌ  
ꢍꢞꢍꢘ  
ꢟꢠRꢄꢟꢋR  
ꢁꢂꢇꢀ  
Rꢇ  
ꢌꢎ  
CC  
ꢍꢋ.ꢈꢡ  
ꢞꢚꢊꢡ  
ꢗꢂꢓ  
ꢈꢉꢊꢉ ꢌꢍꢊ  
ꢤ ꢞꢑꢢꢥ  
ꢏꢕ  
ꢆꢦ ꢟꢃꢆꢉꢘꢊꢘ  
Figure 13. 2MHz 5V, 5A Step-Down Converter with Spread Spectrum  
* V pin and components only apply to LT8637.  
C
Rev. C  
28  
For more information www.analog.com  
LT8636/LT8637  
TYPICAL APPLICATIONS  
ꢁꢂ  
ꢎꢀ ꢇꢓ ꢎꢞꢀ  
ꢎ.ꢋꢚꢌ  
ꢃꢂꢄꢅꢀ  
ꢁꢂ  
ꢁꢂ  
ꢍꢚꢌ  
ꢍꢚꢌ  
ꢙꢉꢙꢊ  
ꢙꢉꢙꢊ  
ꢘꢂꢔ  
ꢘꢂꢔ  
ꢈꢉꢊꢉ  
ꢈꢉꢊꢋ  
ꢏꢐꢇ  
ꢐꢖ  
ꢍꢉ.ꢞꢡ  
ꢍꢚꢢ  
ꢙ.ꢍꢚꢌ  
ꢊ.ꢊꢀ  
ꢠꢗ  
ꢓꢅꢇ  
ꢀ ꢕ  
C
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈ ꢁꢂ  
ꢅꢉꢁꢃ CꢁRCꢆꢁꢊ  
ꢐꢑꢂCꢄꢒꢓꢔꢃ  
ꢞꢞꢙꢛꢌ  
ꢏꢁꢗꢐ  
Cꢀꢁꢂꢃꢇꢅ ꢄRꢈꢉꢉ  
ꢎ.ꢋꢛꢌ ꢜꢈꢉꢊꢋꢝ  
ꢍꢙꢛꢌ ꢜꢈꢉꢊꢉꢝ  
ꢍꢚꢌ  
ꢍꢒ  
ꢍꢙꢙꢚꢌ  
ꢍꢞꢍꢙ  
ꢟꢠRꢄꢟꢋR  
ꢁꢂꢇꢀ  
Rꢇ  
ꢌꢏ  
CC  
ꢍꢋ.ꢈꢡ  
ꢎꢍꢞꢡ  
ꢘꢂꢔ  
ꢈꢉꢊꢉ ꢌꢍꢎ  
ꢤ ꢞꢒꢢꢥ  
ꢐꢖ  
ꢆꢦ ꢟꢃꢆꢉꢙꢊꢙ  
Figure 14. 2MHz 3.3V, 5A Step-Down Converter with Spread Spectrum  
ꢁꢂ  
ꢄꢃ.ꢠꢀ ꢉꢒ ꢟꢃꢀ  
ꢟ.ꢠꢞꢍ  
ꢄꢞꢍ  
ꢝꢋꢝꢌ  
ꢅꢂꢆꢇꢀ  
ꢁꢂꢃ  
ꢁꢂꢄ  
ꢄꢞꢍ  
ꢝꢋꢝꢌ  
ꢘꢂꢓꢄ  
ꢘꢂꢓꢃ  
ꢏꢐꢉ  
ꢊꢋꢌꢋ  
ꢟ.ꢠꢞꢔ  
ꢝ.ꢄꢞꢍ  
ꢟ.ꢠꢡꢍ  
ꢄꢃꢀ  
ꢎꢜ  
ꢒꢇꢉ  
ꢐꢛ  
ꢄꢝꢣꢍ  
ꢏꢁꢜꢐ  
ꢉRꢆꢐꢐ  
ꢄꢞꢍ  
ꢄꢚ  
ꢟꢠꢞꢍ  
ꢄꢃꢄꢝ  
ꢁꢂꢉꢀ  
Rꢉ  
ꢍꢏ  
CC  
ꢟꢄ.ꢃꢤ  
ꢢꢎRꢆꢢꢠR  
ꢊꢊ.ꢠꢤ  
ꢘꢂꢓ  
ꢊꢋꢌꢋ ꢍꢄꢎ  
ꢦ ꢄꢚꢔꢧ  
ꢐꢛ  
ꢈꢕ ꢢꢅꢈꢋꢝꢋꢝ  
ꢑꢁꢂꢐ ꢂꢒꢉ ꢇꢐꢅꢓ ꢁꢂ ꢉꢔꢁꢐ CꢁRCꢇꢁꢕ  
Cꢈꢖꢒꢇꢘꢗ ꢐꢙꢂCꢆꢚꢒꢓꢅ  
Figure 15. 12V, 5A Step-Down Converter  
* V pin and components only apply to LT8637.  
C
Rev. C  
29  
For more information www.analog.com  
LT8636/LT8637  
PACKAGE DESCRIPTION  
ꢡ ꢄ ꢄ ꢄ  
ꢪ ꢪ ꢪ  
× ꢑ ꢋ  
ꢥ ꢥ ꢟ ꢟ ꢟ  
ꢋ . ꢧ ꢌ ꢋ ꢋ  
ꢋ . ꢑ ꢌ ꢋ ꢋ  
ꢋ . ꢋ ꢋ ꢋ ꢋ  
ꢋ . ꢑ ꢌ ꢋ ꢋ  
ꢋ . ꢧ ꢌ ꢋ ꢋ  
ꢝ ꢝ ꢝ  
× ꢑ  
Rev. C  
30  
For more information www.analog.com  
LT8636/LT8637  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/19 Replaced 5A with 5/7A Peak in Title  
Replaced 7A Peak Output with 7A Peak Transient Output  
Replace Tracking with Power Good  
1
1
1
Added AEC-Q100 Quaified for Automotive Applications  
Clarified GND pin numbers in Pin Functions  
Clarified Equations 7, 8, 9  
1
10  
16-17  
2
B
C
04/20 Added LT8636JV#WTRPBF to the Order Information Table  
12/20 Added LT8637  
Added 8636MP  
All  
2, 4  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license isgrantedbyimplicationor otherwiseunderany patent or patent rights of Analog Devices.  
31  
LT8636/LT8637  
TYPICAL APPLICATIONS  
2MHz 1.8V, 5A Step-Down Converter  
ꢁꢂ  
ꢌ.ꢥꢀ ꢉꢒ ꢃꢃꢀ  
ꢦꢥꢃꢀ ꢉRꢍꢂꢐꢁꢅꢂꢉꢧ  
ꢥ.ꢢꢝꢜ  
ꢅꢂꢆꢇꢀ  
ꢁꢂꢃ  
ꢁꢂꢄ  
ꢄꢝꢜ  
ꢎꢋꢎꢌ  
ꢄꢝꢜ  
ꢎꢋꢎꢌ  
ꢘꢂꢓꢄ  
ꢘꢂꢓꢃ  
ꢏꢐꢉ  
ꢄꢝꢔ  
ꢎ.ꢄꢝꢜ  
ꢄꢝꢜ  
ꢄ.ꢊꢀ  
ꢡꢍ  
ꢊꢋꢌꢋ  
ꢒꢇꢉ  
ꢐꢛ  
ꢄꢎꢣꢜ  
ꢅꢟꢉꢅRꢂꢍꢈ  
ꢐꢒꢇRCꢅ ꢠꢌ.ꢄꢀ  
ꢒR ꢘꢂꢓ  
ꢏꢁꢍꢐ  
ꢉRꢆꢐꢐ  
ꢄꢎꢞꢜ  
ꢊꢋꢋꢤ  
ꢄꢚ  
ꢄꢝꢜ  
ꢄꢎꢎꢝꢜ  
ꢄꢃꢄꢎ  
ꢟꢡRꢆꢟꢢR  
ꢁꢂꢉꢀ  
Rꢉ  
ꢜꢏ  
CC  
ꢄꢢ.ꢊꢤ  
ꢘꢂꢓ  
ꢊꢋꢌꢋ ꢉꢍꢎꢃ  
ꢩ ꢃꢚꢔꢪ  
ꢐꢛ  
ꢈꢕ ꢟꢅꢈꢋꢎꢌꢎ  
ꢑꢁꢂꢐ ꢂꢒꢉ ꢇꢐꢅꢓ ꢁꢂ ꢉꢔꢁꢐ CꢁRCꢇꢁꢕ  
Cꢈꢖꢒꢇꢘꢗ ꢐꢙꢂCꢆꢚꢒꢓꢅ  
RELATED PARTS  
PART  
DESCRIPTION  
COMMENTS  
= 3.4V, V  
LT8640S/  
LT8643S  
42V, 6A Synchronous Step-Down Silent Switcher 2 with I = 2.5μA  
V
I
= 42V, V  
= 0.97V, I = 2.5µA,  
Q
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
< 1µA, 4mm × 4mm LQFN-24  
SD  
LT8640/  
LT8640-1  
42V, 5A, 96% Efficiency, 3MHz Synchronous MicroPower Step-Down  
V
SD  
= 3.4V, V  
= 42V, V  
= 0.97V, I = 2.5µA,  
Q
IN(MIN)  
IN(MAX)  
DC/DC Converter with I = 2.5μA  
I
< 1µA, 3mm × 4mm QFN-18  
Q
LT8645S/  
LT8646S  
65V, 8A, Synchronous Step-Down Silent Switcher 2 with I = 2.5μA  
V
SD  
= 3.4V, V  
= 65V, V  
= 0.97V, I = 2.5µA,  
Q
Q
IN(MIN)  
IN(MAX)  
I
< 1µA, 4mm × 6mm LQFN-32  
LT8641  
65V, 3.5A, 95% Efficiency, 3MHz Synchronous MicroPower Step-Down  
V
SD  
= 3V, V  
= 65V, V  
= 0.81V, I = 2.5µA,  
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
DC/DC Converter with I = 2.5μA  
I
< 1µA, 3mm × 4mm QFN-18  
Q
LT8609/  
LT8609A  
42V, 2A, 94% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V
SD  
= 3V, V  
= 42V, V  
= 0.8V, I = 2.5µA,  
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
DC/DC Converter with I = 2.5µA  
I
< 1µA, MSOP-10E  
Q
LT8610A/  
LT8610AB  
42V, 3.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-  
V
SD  
= 3.4V, V  
= 42V, V = 0.97V, I = 2.5µA,  
OUT(MIN) Q  
IN(MIN)  
IN(MAX)  
Down DC/DC Converter with I = 2.5µA  
I
< 1µA, MSOP-16E  
Q
LT8610AC  
LT8610  
LT8616  
LT8620  
LT8614  
LT8612  
LT8602  
42V, 3.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-  
V
SD  
= 3V, V  
= 42V, V  
= 0.8V, I = 2.5µA,  
IN(MIN)  
IN(MAX)  
OUT(MIN) Q  
Down DC/DC Converter with I = 2.5µA  
I
< 1µA, MSOP-16E  
Q
42V, 2.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-  
V
= 3.4V, V  
< 1µA, MSOP-16E  
= 42V, V  
= 0.97V, I = 2.5µA,  
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
OUT(MIN)  
Down DC/DC Converter with I = 2.5µA  
I
SD  
Q
42V, Dual 2.5A + 1.5A, 95% Efficiency, 2.2MHz Synchronous  
V
= 3.4V, V  
= 42V, V  
= 0.8V, I = 5µA,  
Q
IN(MIN)  
IN(MAX)  
MicroPower Step-Down DC/DC Converter with I = 5µA  
I
SD  
< 1µA, TSSOP-28E, 3mm × 6mm QFN-28  
Q
65V, 2.5A, 94% Efficiency, 2.2MHz Synchronous MicroPower Step-  
V
= 3.4V, V  
= 65V, V  
= 0.97V, I = 2.5µA,  
OUT(MIN) Q  
IN(MIN)  
IN(MAX)  
Down DC/DC Converter with I = 2.5µA  
I
SD  
< 1µA, MSOP-16E, 3mm × 5mm QFN-24  
Q
42V, 4A, 96% Efficiency, 2.2MHz Synchronous Silent Switcher Step-  
V
= 3.4V, V  
< 1µA, 3mm × 4mm QFN18  
= 42V, V  
= 0.97V, I = 2.5µA,  
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
Down DC/DC Converter with I = 2.5µA  
I
SD  
Q
42V, 6A, 96% Efficiency, 2.2MHz Synchronous MicroPower Step-Down  
V
= 3.4V, V  
< 1µA, 3mm × 6mm QFN-28  
= 42V, V  
= 0.97V, I = 3.0µA,  
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
DC/DC Converter with I = 2.5µA  
I
SD  
Q
42V, Quad Output (2.5A + 1.5A + 1.5A + 1.5A) 95% Efficiency, 2.2MHz  
V
= 3V, V  
< 1µA, 6mm × 6mm QFN-40  
= 42V, V  
= 0.8V, I = 2.5µA,  
OUT(MIN) Q  
IN(MIN)  
IN(MAX)  
Synchronous MicroPower Step-Down DC/DC Converter with I = 25µA  
I
SD  
Q
Rev. C  
12/20  
www.analog.com  
32  
ANALOG DEVICES, INC. 2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY