LTC2635HMSE-LZ10#TRPBF [ADI]

Quad 12-/10-/8-Bit I<sup>2</sup>C VOUT DACs with 10ppm/&deg;C Reference;
LTC2635HMSE-LZ10#TRPBF
型号: LTC2635HMSE-LZ10#TRPBF
厂家: ADI    ADI
描述:

Quad 12-/10-/8-Bit I<sup>2</sup>C VOUT DACs with 10ppm/&deg;C Reference

光电二极管 转换器
文件: 总32页 (文件大小:728K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2635  
2
Quad 12-/10-/8-Bit I C V  
OUT  
DACs with 10ppm/°C Reference  
FEATURES  
DESCRIPTION  
The LTC®2635 is a family of quad 12-, 10-, and 8-bit  
voltage-output DACs with an integrated, high-accuracy,  
low-drift reference in a 16-pin QFN or a 10-lead MSOP  
package. It has rail-to-rail output buffers and is guaran-  
teed monotonic. The LTC2635-L has a full-scale output  
of 2.5V, and operates from a single 2.7V to 5.5V supply.  
The LTC2635-H has a full-scale output of 4.096V, and  
operates from a 4.5V to 5.5V supply. Each DAC can also  
operate with an external reference, which sets the full-  
scale output to the external reference voltage.  
n
Integrated Precision Reference  
2.5V Full-Scale 10ppm/°C (LTC2635-L)  
4.096V Full-Scale 10ppm/°C (LTC2635-H)  
n
Maximum INL Error: 2.5 LSꢀ (LTC2635-12)  
n
Power-On-Reset to Zero-Scale/Mid-Scale/Hi-Z  
n
Low Noise: 0.75mV 0.1Hz to 200kHz  
P-P  
n
Guaranteed Monotonic Over –40°C to 125°C  
Automotive Temperature Range  
n
n
n
n
n
n
Selectable Internal or External Reference  
2.7V to 5.5V Supply Range (LTC2635-L)  
Ultralow Crosstalk ꢀetween DACs (3nV•s)  
Low Power: 0.6mA at 3V  
These DACs communicate via a 2-wire I2C-compatible  
serial interface. The LTC2635 operates in both the stan-  
dard mode (clock rate of 100kHz) and the fast mode (clock  
rate of 400kHz). The LTC2635 incorporates a power-on  
reset circuit. Options are available for reset to zero-scale,  
reset to mid-scale in internal reference mode, reset to  
mid-scale in external reference mode, or reset with all  
DAC outputs in a high-impedance state after power-up.  
Double-ꢀuffered Data Latches  
Small 16-Pin 3mm × 3mm QFN and 10-Lead MSOP  
Packages  
APPLICATIONS  
n
n
n
n
n
Mobile Communications  
Process Control and Industrial Automation  
Power Supply Margining  
Portable Equipment  
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. patents, including 5396245, 5859606, 6891433, 6937178, 7414561.  
Automotive  
BLOCK DIAGRAM  
Integral Nonlinerity  
Rꢀꢋ  
ꢂꢒꢄꢀRꢒꢅꢌ  
RꢀꢋꢀRꢀꢒꢆꢀ  
ꢁꢒD  
ꢘ ꢏꢗ  
ꢀꢀ  
ꢄꢅꢓꢂRꢅꢔꢆ Rꢂ ꢚ  
ꢃꢗꢂꢄꢆꢘ  
Rꢀꢋ  
ꢊRꢀꢋꢌꢈꢍ  
ꢆꢆ  
ꢈꢉꢄꢅ  
ꢈꢉꢄD  
Dꢅꢆ ꢅ  
Dꢅꢆ D  
Dꢅꢆ ꢆ  
Rꢀꢋ  
Rꢀꢋ  
ꢈꢉꢄꢆ  
ꢈꢉꢄꢖ  
Dꢅꢆ ꢖ  
ꢍꢌ  
ꢍꢋ  
LDACꢍ  
DꢀꢆꢈDꢀ  
ꢓꢈꢗꢀRꢙꢈꢒ  
Rꢀꢃꢀꢄ  
ꢆꢅꢎ  
ꢌꢃꢋꢎ  
ꢋꢃꢎꢖ  
ꢏꢃꢐꢋ  
ꢎꢃꢕꢒ  
ꢀꢁDꢂ  
ꢂ ꢆ  
ꢊꢆꢅꢏꢍ  
ꢊꢆꢅꢐꢍ  
ꢋꢑꢏꢒ ꢓꢔꢃꢌ  
ꢅDDRꢀꢃꢃ  
DꢀꢆꢈDꢀ  
ꢃꢆꢌ  
ꢃDꢅ  
ꢂ ꢆ ꢂꢒꢄꢀRꢋꢅꢆꢀ  
ꢐꢚꢛꢜ ꢖD  
ꢊ ꢍ ꢑꢋꢒ ꢓꢅꢆꢔꢅꢁꢀ ꢈꢒꢕ  
Rev D  
1
Document Feedback  
For more information www.analog.com  
LTC2635  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
Supply Voltage (V ) ................................... –0.3V to 6V  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
CC  
SCL, SDA, REFLO, LDAC .............................. –0.3V to 6V  
V
, CA0, CA1, CA2..... –0.3V to Min (V + 0.3V, 6V)  
OUTA-D  
CC  
REF ................................... –0.3V to Min (V + 0.3V, 6V)  
MS Package......................................................300°C  
CC  
Operating Temperature Range  
LTC2635C................................................ 0°C to 70°C  
LTC2635H (Note 3)............................ –40°C to 125°C  
PIN CONFIGURATION  
ꢇꢈꢉ ꢊꢋꢌꢍ  
ꢉꢇꢗ ꢅꢘꢕꢙ  
ꢀꢁ ꢀꢂ ꢀꢃ ꢀꢄ  
ꢇꢈꢉꢊ  
ꢇꢈꢉꢋ  
ꢆꢊꢌ  
ꢍꢆꢎ  
ꢀꢌ ꢓꢔD  
ꢀꢧ  
ꢀꢀ  
ꢀꢡ  
ꢆꢆ  
ꢈꢐꢇꢑ  
ꢈꢐꢇD  
ꢇꢈꢉD  
ꢇꢈꢉꢆ  
ꢀꢀ  
ꢓꢔD  
ꢈꢐꢇꢥ  
ꢈꢐꢇꢒ  
ꢀꢅ  
ꢎꢏD  
Rꢕꢖ  
LDAC  
Rꢌꢜ  
ꢒꢑꢀ  
ꢍDꢊ  
ꢒꢑꢡ  
ꢚꢍꢕ ꢗꢊꢆꢛꢊꢓꢕ  
ꢀꢌꢜꢎꢕꢊD ꢗꢎꢊꢍꢉꢘꢆ ꢚꢍꢇꢗ  
ꢟ ꢀꢄꢌꢠꢆꢡ θ ꢟ ꢂꢄꢠꢆꢢꢙ  
ꢝꢚꢊꢞ  
ꢝꢊ  
ꢕꢞꢗꢇꢍꢕD ꢗꢊD ꢣꢗꢘꢔ ꢀꢀꢤ ꢘꢍ ꢓꢔDꢡ ꢚꢈꢍꢉ ꢋꢕ ꢍꢇꢎDꢕRꢕD ꢉꢇ ꢗꢆꢋ  
ꢐD ꢉꢑꢒꢓꢑꢎꢌ  
ꢀꢁꢔꢕꢌꢑD ꢖꢄꢗꢗ ꢘ ꢄꢗꢗꢙ ꢉꢕꢑꢚꢇꢋꢒ ꢛꢜꢏ  
ꢠ ꢀꢂꢡꢢꢒꢣ θ ꢠ ꢁꢆꢢꢒꢤꢍ  
ꢝꢞꢑꢟ  
ꢝꢑ  
ꢌꢟꢉꢈꢚꢌD ꢉꢑD ꢖꢉꢋꢏ ꢀꢅꢙ ꢋꢚ ꢎꢏDꢣ ꢞꢐꢚꢇ ꢥꢌ ꢚꢈꢕDꢌRꢌD ꢇꢈ ꢉꢒꢥ  
Rev D  
2
For more information www.analog.com  
LTC2635  
ORDER INFORMATION http://www.linear.com/product/LTC2635#orderinfo  
LTC2635  
C
UD  
–L  
Z
12  
#TR  
PBF  
LEAD FREE DESIGNATOR  
PꢀF = Lead Free  
TAPE AND REEL  
TR = 2,500-Piece Tape and Reel  
RESOLUTION  
12 = 12-ꢀit  
10 = 10-ꢀit  
8 = 8-ꢀit  
POWER-0N RESET  
MI = Reset to Mid-Scale in Internal Reference Mode  
MX = Reset to Mid-Scale in External Reference Mode (LMX Only)  
MO = Reset to Mid-Scale in Internal Reference Mode, DAC Outputs Hi-Z (LMO Only)  
Z = Reset to Zero-Scale in Internal Reference Mode  
FULL-SCALE VOLTAGE, INTERNAL REFERENCE MODE  
L = 2.5V  
H = 4.096V  
PACKAGE TYPE  
UD = 16-Pin QFN  
MSE = 10-Lead MSOP  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
H = Automotive Temperature Range (–40°C to 125°C)  
PRODUCT PART NUMBER  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPꢀF suffix.  
Rev D  
3
For more information www.analog.com  
LTC2635  
PRODUCT SELECTION GUIDE  
PART MARKING*  
POWER-ON  
REFERENCE  
MODE  
VFS WITH INTERNAL  
POWER-ON  
RESET TO CODE  
MAXIMUM  
INL  
PART NUMBER  
QFN  
MSOP  
REFERENCE  
RESOLUTION  
V
CC  
LTC2635-LMI12  
LTC2635-LMI10  
LTC2635-LMI8  
LDZꢀ  
LDZJ  
LDZR  
LTDZY  
LTFꢀG  
LTFꢀP  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-LMX12  
LTC2635-LMX10  
LTC2635-LMX8  
LDYZ  
LDZH  
LDZQ  
LTDZX  
LTFꢀF  
LTFꢀN  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
External  
External  
External  
12-ꢀit  
10-ꢀit  
8-ꢀit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-LZ12  
LTC2635-LZ10  
LTC2635-LZ8  
LDYY  
LDZG  
LDZP  
LTDZW  
LTFꢀD  
LTFꢀM  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
Zero-Scale  
Zero-Scale  
Zero-Scale  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-LMO12**  
LTC2635-LMO10**  
LTC2635-LMO8**  
LFꢀT  
LFꢀV  
LFꢀW  
LTFꢀX  
LTFꢀY  
LTFꢀZ  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
High Impedance  
High Impedance  
High Impedance  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-HMI12  
LTC2635-HMI10  
LTC2635-HMI8  
LDZF  
LDZN  
LDZV  
LTFꢀC  
LTFꢀK  
LTFꢀS  
4.096V • (4095/4096)  
4.096V • (1023/1024)  
4.096V • (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
4.5V to 5.5V  
4.5V to 5.5V  
4.5V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-HZ12  
LTC2635-HZ10  
LTC2635-HZ8  
LDZC  
LDZK  
LDZS  
LTDZZ  
LTFꢀH  
LTFꢀQ  
4.096V • (4095/4096)  
4.096V • (1023/1024)  
4.096V • (255/256)  
Zero-Scale  
Zero-Scale  
Zero-Scale  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
4.5V to 5.5V  
4.5V to 5.5V  
4.5V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
*Above options are available in a 16-pin QFN package (LTC2635xUD) or 10-lead MSOP package (LTC2635xMSE).  
**Contact Linear Technology for other Hi-Z options.  
Rev D  
4
For more information www.analog.com  
LTC2635  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8/-LMO12/-LMO10/-LM08 (VFS = 2.5V)  
LTC2635-8  
LTC2635-10  
LTC2635-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN  
TYP MAX MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
l
8
8
10  
10  
12  
12  
ꢀits  
ꢀits  
Monotonicity  
V
V
V
V
V
V
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref., Code=0  
= 3V, Internal Ref. (Note 5)  
= 3V, Internal Ref.  
CC  
CC  
CC  
CC  
CC  
CC  
DNL  
INL  
Differential Nonlinearity  
0.5  
0.5  
5
0.5  
1
1
2.5  
5
LSꢀ  
LSꢀ  
mV  
Integral Nonlinearity  
Zero-Scale Error  
Offset Error  
0.05  
0.5  
0.5  
10  
0.2  
0.5  
0.5  
10  
1
0.5  
0.5  
10  
ZSE  
5
V
V
5
5
5
mV  
OS  
V
Temperature  
OS  
µV/°C  
OSTC  
Coefficient  
l
GE  
GE  
Gain Error  
V
V
= 3V, Internal Ref.  
0.2  
0.8  
0.2  
0.8  
0.2  
0.8  
%FSR  
CC  
Gain Temperature  
Coefficient  
= 3V, Internal Ref. (Note 10)  
C-Grade  
H-Grade  
TC  
CC  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
10  
10  
Load Regulation  
Internal Ref., Mid-Scale,  
= 3V 10%,  
l
l
0.009 0.016  
0.009 0.016  
0.035 0.064  
0.035 0.064  
0.14 0.256  
0.14 0.256  
LSꢀ/  
mA  
V
CC  
–5mA ≤ I  
≤ 5mA  
OUT  
V
= 5V 10%,  
CC  
LSꢀ/  
mA  
–10mA ≤ I  
≤ 10mA  
OUT  
R
DC Output Impedance  
Internal Ref., Mid-Scale,  
= 3V 10%,  
OUT  
l
l
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
Ω
V
CC  
–5mA ≤ I  
≤ 5mA  
OUT  
V
= 5V 10%,  
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OUT  
DAC Output Span  
External Reference  
Internal Reference  
0 to V  
V
V
REF  
0 to 2.5  
PSR  
Power Supply Rejection  
V
CC  
= 3V 10% or 5V 10%  
–80  
dꢀ  
I
Short Circuit Output Current (Note 6)  
V
= V = 5.5V  
CC  
SC  
FS  
l
l
Sinking  
Zero-Scale; V  
Shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
CC  
Sourcing  
Full-Scale; V  
Shorted to GND  
OUT  
DAC I  
DAC Output Current in High Impedance Mode MO Options Only  
SD  
l
l
Sinking  
0.05  
–0.001  
2
–0.1  
µA  
µA  
Sourcing  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
2.7  
5.5  
V
CC  
l
l
l
l
I
CC  
V
V
V
V
= 3V, V = 2.5V, External Reference  
0.5  
0.6  
0.6  
0.7  
0.7  
0.8  
0.8  
0.9  
mA  
mA  
mA  
mA  
CC  
CC  
CC  
CC  
REF  
= 3V, Internal Reference  
= 5V V = 2.5V, External Reference  
REF  
= 5V, Internal Reference  
l
l
I
Supply Current in Power-Down Mode  
(Note 7)  
V
V
= 5V, C-Grade  
= 5V, H-Grade  
1
1
20  
30  
µA  
µA  
SD  
CC  
CC  
Rev D  
5
For more information www.analog.com  
LTC2635  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8/-LMO12/-LMO10/-LM08 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
l
l
Input Voltage Range  
Resistance  
1
V
V
kΩ  
pF  
CC  
120  
160  
14  
200  
Capacitance  
l
l
I
Reference Current, Power-Down Mode  
DAC Powered Down  
0.005  
1.5  
µA  
REF  
Reference Output  
Output Voltage  
1.24  
–0.5  
1.25  
10  
1.26  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short Circuit Current  
µF  
V
CC  
= 5.5V, REF Shorted to GND  
2.5  
mA  
Digital I/O  
l
l
l
l
l
l
l
V
V
V
V
Low Level Input Voltage  
(SDA and SCL)  
(Note 14)  
0.3V  
V
V
IL  
CC  
High Level Input Voltage  
(SDA and SCL)  
(Note 11)  
0.7V  
CC  
IH  
Low Level Input Voltage on CAn  
(n = 0, 1,2)  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.15V  
V
IL(CAn)  
IH(CAn)  
CC  
High Level Input Voltage on CAn  
(n = 0, 1,2)  
0.85V  
V
CC  
R
R
R
Resistance from CAn (n = 0, 1,2)  
10  
10  
kΩ  
kΩ  
MΩ  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1,2)  
to GND to Set CAn = GND  
Resistance from CAn (n = 0, 1,2)  
2
0
to V or GND to Set CAn = Float  
CC  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
C = 10pF to 400pF (Note 12)  
l
Pulse Width of Spikes Suppressed  
by Input Filter  
0
50  
ns  
SP  
IN  
l
l
l
l
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
µA  
pF  
pF  
pF  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 8)  
10  
IN  
Capacitive Load for Each ꢀus Line  
400  
10  
External Capacitive Load on Address  
Pin CAn (n = 0, 1,2)  
CAn  
Rev D  
6
For more information www.analog.com  
LTC2635  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8/-LMO12/-LMO10/-LM08 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC Performance  
t
Settling Time  
V
= 3V (Note 9)  
S
CC  
0.39% ( 1LSꢀ at 8 ꢀits)  
0.098% ( 1LSꢀ at 10 ꢀits)  
0.024% ( 1LSꢀ at 12 ꢀits)  
3.5  
4.1  
4.4  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1
V/µs  
pF  
500  
2.1  
2.6  
320  
At Mid-Scale Transition  
nV • s  
nV • s  
kHz  
DAC-to-DAC Crosstalk  
Multiplying ꢀandwidth  
Output Voltage Noise Density  
1 DAC Held at FS, 1 DAC Switched 0 to FS  
External Reference  
e
n
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
180  
160  
200  
180  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference  
35  
40  
680  
730  
µV  
P-P  
µV  
P-P  
µV  
P-P  
µV  
P-P  
C
= 0.1µF  
REF  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V. (See Figure 1) (Note 13)  
LTC2635-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8/-LMO12/-LMO10/-LM08 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
µs  
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
0.6  
HD(STA)  
LOW  
1.3  
µs  
0.6  
µs  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
µs  
0
0.9  
µs  
Data Set-Up Time  
100  
ns  
Rise Time of ꢀoth SDA and SCL Signals  
Fall Time of ꢀoth SDA and SCL Signals  
Set-Up Time for Stop Condition  
ꢀus Free Time ꢀetween a Stop and Start Condition  
(Note 12)  
(Note 12)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
ns  
ns  
f
µs  
SU(STO)  
ꢀUF  
1.3  
µs  
th  
rd  
Falling Edge of 9 Clock of the 3 Input ꢀyte to LDAC  
High or Low Transition  
400  
ns  
1
l
t
LDAC Low Pulse Width  
20  
ns  
2
Rev D  
7
For more information www.analog.com  
LTC2635  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-HMI12/-HMI10/-HMI8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
LTC2635-8  
LTC2635-10  
LTC2635-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN  
TYP MAX MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
l
8
8
10  
10  
12  
12  
ꢀits  
ꢀits  
Monotonicity  
V
V
V
V
V
V
= 5V, Internal Ref. (Note 4)  
= 5V, Internal Ref. (Note 4)  
= 5V, Internal Ref. (Note 4)  
= 5V, Internal Ref., Code=0  
= 5V, Internal Ref. (Note 5)  
= 5V, Internal Reference  
CC  
CC  
CC  
CC  
CC  
CC  
DNL  
INL  
Differential Nonlinearity  
0.5  
0.5  
5
0.5  
1
1
2.5  
5
LSꢀ  
LSꢀ  
mV  
Integral Nonlinearity  
Zero-Scale Error  
Offset Error  
0.05  
0.5  
0.5  
10  
0.2  
0.5  
0.5  
10  
1
0.5  
0.5  
10  
ZSE  
5
V
V
5
5
5
mV  
OS  
V
Temperature  
OS  
µV/°C  
OSTC  
Coefficient  
l
GE  
GE  
Gain Error  
V
V
= 5V, Internal Reference  
0.2  
0.8  
0.2  
0.8  
0.2  
0.8  
%FSR  
CC  
Gain Temperature  
Coefficient  
= 5V, Internal Ref. (Note 10)  
C-Grade  
H-Grade  
TC  
CC  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
10  
10  
l
l
Load Regulation  
DC Output  
Internal Reference, Mid-Scale,  
= 5V 10%,  
0.006 0.01  
0.022 0.04  
0.09 0.16 LSꢀ/mA  
V
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
R
OUT  
Internal Reference, Mid-Scale,  
= 5V 10%,  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
V
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0 to V  
MAX  
UNITS  
V
DAC Output Span  
External Reference  
Internal Reference  
V
V
OUT  
REF  
0 to 4.096  
PSR  
Power Supply Rejection  
V
V
= 5V 10%  
–80  
dꢀ  
CC  
I
Short Circuit Output Current (Note 6)  
Sinking  
Sourcing  
= V = 5.5V  
CC  
SC  
FS  
l
l
Zero-Scale; V  
Shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
OUT  
CC  
Full-Scale; V  
Shorted to GND  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
4.5  
5.5  
V
CC  
l
l
I
V
CC  
V
CC  
= 3V, V = 4.096V, External Reference  
0.6  
0.7  
0.8  
0.9  
mA  
mA  
CC  
REF  
= 3V, Internal Reference  
l
l
I
Supply Current in Power-Down Mode  
(Note 7)  
V
CC  
V
CC  
= 5V, C-Grade  
= 5V, H-Grade  
1
1
20  
30  
µA  
µA  
SD  
Rev D  
8
For more information www.analog.com  
LTC2635  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-HMI12/-HMI10/-HMI8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
l
l
Input Voltage Range  
Resistance  
1
V
V
kΩ  
pF  
CC  
120  
160  
14  
200  
Capacitance  
l
l
I
Reference Current, Power-Down Mode  
DAC Powered Down  
0.005  
1.5  
µA  
REF  
Reference Output  
Output Voltage  
2.032  
2.048  
10  
2.064  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short Circuit Current  
µF  
V
= 5.5V, REF Shorted to GND  
4
mA  
CC  
Digital I/O  
l
l
l
l
l
l
l
V
V
V
V
Low Level Input Voltage  
(SDA and SCL)  
(Note 14)  
–0.5  
0.7V  
0.3V  
V
V
IL  
CC  
High Level Input Voltage  
(SDA and SCL)  
(Note 11)  
IH  
CC  
Low Level Input Voltage on CAn  
(n = 0, 1,2)  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.15V  
V
IL(CAn)  
IH(CAn)  
CC  
High Level Input Voltage on CAn  
(n = 0, 1,2)  
0.85V  
V
CC  
R
R
R
Resistance from CAn (n = 0, 1,2)  
10  
10  
kΩ  
kΩ  
MΩ  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1,2)  
to GND to Set CAn = GND  
Resistance from CAn (n = 0, 1,2)  
2
0
to V or GND to Set CAn = Float  
CC  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
C = 10pF to 400pF (Note 12)  
l
Pulse Width of Spikes Suppressed  
by Input Filter  
0
50  
ns  
SP  
IN  
l
l
l
l
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
µA  
pF  
pF  
pF  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 8)  
10  
IN  
Capacitive Load for Each ꢀus Line  
400  
10  
External Capacitive Load on Address  
Pin CAn (n=0, 1,2)  
CAn  
Rev D  
9
For more information www.analog.com  
LTC2635  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-HMI12/-HMI10/-HMI8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC Performance  
t
Settling Time  
V
= 5V (Note 9)  
S
CC  
0.39% ( 1LSꢀ at 8 ꢀits)  
0.098% ( 1LSꢀ at 10 ꢀits)  
0.024% ( 1LSꢀ at 12 ꢀits)  
3.9  
4.3  
5
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1
500  
3
V/µs  
pF  
At Mid-Scale Transition  
nV • s  
nV • s  
kHz  
DAC-to-DAC Crosstalk  
Multiplying ꢀandwidth  
Output Voltage Noise Density  
1 DAC Held at FS, 1 DAC Switched 0 to FS  
External Reference  
3
320  
e
n
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
180  
160  
250  
230  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference  
35  
50  
680  
750  
µV  
P-P  
µV  
P-P  
µV  
P-P  
µV  
P-P  
C
= 0.1µF  
REF  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V. (See Figure 1) (Note 13)  
LTC2635-HMI12/-HMI10/-HMI8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
µs  
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
0.6  
HD(STA)  
LOW  
1.3  
µs  
0.6  
µs  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
µs  
0
0.9  
µs  
Data Set-Up Time  
100  
20+0.1C  
20+0.1C  
0.6  
ns  
Rise Time of ꢀoth SDA and SCL Signals  
Fall Time of ꢀoth SDA and SCL Signals  
Set-Up Time for Stop Condition  
ꢀus Free Time ꢀetween a Stop and Start Condition  
(Note 12)  
(Note 12)  
300  
300  
ns  
ns  
f
µs  
SU(STO)  
ꢀUF  
1.3  
µs  
th  
rd  
Falling Edge of 9 Clock of the 3 Input ꢀyte to LDAC  
High or Low Transition  
400  
ns  
1
l
t
LDAC Low Pulse Width  
20  
ns  
2
Rev D  
10  
For more information www.analog.com  
LTC2635  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device reliability  
and lifetime.  
the specified maximum operating junction temperature may impair device  
reliability.  
Note 7: Digital inputs at 0V or V  
.
CC  
Note 8: Guaranteed by design and not production tested.  
Note 2: All voltages are with respect to GND.  
Note 9: Internal Reference mode. DAC is stepped 1/4 scale to 3/4 scale and  
3/4 scale to 1/4 scale. Load is 2kΩ in parallel with 100pF to GND.  
Note 3: Operating at temperatures above 90°C and with V > 4V requires  
CC  
CC  
V
slew rates to be no greater than 73mV/us.  
Note 10: Temperature coefficient is calculated by dividing the maximum  
N
Note 4: Linearity and monotonicity are defined from code k to code 2 – 1,  
L
change in output voltage by the specified temperature range.  
N
where N is the resolution and k is given by k = 0.016 • (2 / V ),  
L
L
FS  
rounded to the nearest whole code. For V = 2.5V and N = 12, k = 26  
FS  
L
Note 11: Maximum V = V  
+ 0.5V.  
IH  
CC(MAX)  
and linearity is defined from code 26 to code 4,095. For V = 4.096V and  
FS  
Note 12: C = capacitance of one bus line in pF.  
N = 12, k = 16 and linearity is defined from code 16 to code 4,095.  
L
Note 13: All values refer to V = V  
and V = V  
levels.  
IH  
IH(MIN)  
IL  
IL(MAX)  
Note 5: Inferred from measurement at code 16 (LTC2635-12), code 4  
(LTC2635-10) or code 1 (LTC2635-8), and at full-scale.  
Note 14: Minimum VIL exceeds the Absolute Maximum rating. This condition  
won’t damage the IC, but could degrade performance.  
Note 6: This IC includes current limiting that is intended to protect the device  
during momentary overload conditions. Junction temperature can exceed  
the rated maximum during current limiting. Continuous operation above  
Rev D  
11  
For more information www.analog.com  
LTC2635  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2635-L12 (Internal Reference, VFS = 2.5V)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
ꢋꢌꢃ  
ꢃꢌꢍ  
ꢊꢋꢃ  
ꢃꢋꢌ  
ꢘ ꢑꢗ  
ꢗ ꢐꢖ  
ꢀꢀ  
ꢀꢀ  
ꢎꢃꢌꢍ  
ꢎꢋꢌꢃ  
ꢍꢃꢋꢌ  
ꢍꢊꢋꢃ  
ꢋꢃꢏꢐ  
ꢏꢃꢐꢖ  
ꢑꢃꢒꢏ  
ꢐꢃꢕꢍ  
ꢊꢃꢎꢏ  
ꢎꢃꢏꢕ  
ꢐꢃꢑꢎ  
ꢏꢃꢔꢌ  
ꢀꢁDꢂ  
ꢀꢁDꢂ  
ꢏꢓꢑꢍ ꢔꢃꢋ  
ꢎꢒꢐꢌ ꢓꢃꢎ  
Reference Output Voltage vs  
Temperature  
INL vs Temperature  
DNL vs Temperature  
ꢑꢒꢌ  
ꢒꢓꢌ  
ꢌꢓꢋ  
ꢏꢐꢑꢒꢌ  
ꢏꢐꢑꢋꢋ  
ꢏꢐꢑꢋꢌ  
ꢏꢐꢑꢓꢋ  
ꢏꢐꢑꢓꢌ  
ꢈꢈ  
ꢚ ꢖꢙ  
ꢚ ꢗꢙ  
ꢗ ꢕꢍ  
ꢈꢈ  
ꢈꢈ  
ꢌꢒꢋ  
ꢍꢎꢏ ꢆꢃꢛꢐꢉ  
Dꢍꢎ ꢆꢃꢛꢏꢉ  
Dꢍꢎ ꢆꢍꢁꢗꢉ  
ꢊꢌꢒꢋ  
ꢊꢌꢓꢋ  
ꢍꢎꢏ ꢆꢎꢁꢘꢉ  
ꢊꢑꢒꢌ  
ꢊꢒꢓꢌ  
ꢊꢋꢌ ꢊꢓꢋ  
ꢓꢋ ꢋꢌ ꢔꢋ ꢑꢌꢌ ꢑꢓꢋ ꢑꢋꢌ  
ꢊꢋꢌ ꢊꢔꢋ  
ꢔꢋ ꢋꢌ ꢕꢋ ꢒꢌꢌ ꢒꢔꢋ ꢒꢋꢌ  
ꢊꢋꢌ ꢊꢑꢋ  
ꢑꢋ ꢋꢌ ꢔꢋ ꢏꢌꢌ ꢏꢑꢋ ꢏꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢓꢕꢖꢋ ꢗꢌꢘ  
ꢔꢖꢗꢋ ꢘꢌꢗ  
ꢑꢒꢕꢋ ꢖꢌꢋ  
Settling to 1 LSB Rising  
Settling to 1 LSB Falling  
ꢔꢕꢖ ꢍꢊꢆꢍꢗ ꢆꢘ ꢐꢙꢚ  
Dꢛꢈꢛ ꢌꢜꢈꢝ  
ꢐꢃꢔ ꢋꢍꢕꢊꢖ ꢈꢆ ꢉꢃꢔ ꢋꢍꢕꢊꢖ ꢋꢈꢖꢗ  
ꢘ ꢐ ꢙ ꢅ ꢘ ꢀꢛꢎꢅ  
ꢋꢍꢊ  
ꢎꢅꢃDꢄꢅ  
ꢍꢍ  
ꢚꢋ  
ꢆꢇꢈ  
R ꢘ ꢀꢜꢙ ꢍ ꢘ ꢉꢒꢒꢝꢚ  
ꢉ ꢊꢋꢌꢃDꢄꢅ  
ꢕꢅꢖRꢕꢑꢖ ꢆꢚ ꢀꢎꢏ ꢖꢅꢖꢞꢈꢋ  
ꢔꢛꢔꢁꢂ  
ꢐꢓꢐꢁꢂ  
ꢆꢇꢈ  
ꢉꢃꢞ ꢋꢍꢛꢊꢝ ꢈꢆ ꢐꢃꢞ ꢋꢍꢛꢊꢝ ꢋꢈꢝꢟ  
ꢠ ꢐ ꢡ ꢅ ꢠ ꢀꢓꢎꢅ  
ꢟꢠꢡ ꢍꢊꢆꢍꢢ ꢆꢚ ꢐꢣꢤ  
Dꢕꢈꢕ ꢌꢥꢈꢖ  
ꢉ ꢊꢋꢌꢃDꢄꢅ  
ꢍꢍ  
ꢘꢋ  
ꢋꢍꢊ  
ꢎꢅꢃDꢄꢅ  
R ꢠ ꢀꢢꢡ ꢍ ꢠ ꢉꢒꢒꢣꢘ  
ꢛꢅꢝRꢛꢑꢝ ꢆꢘ ꢀꢎꢏ ꢝꢅꢝꢤꢈꢋ  
ꢀꢏꢐꢎ ꢑꢒꢏ  
ꢀꢏꢐꢎ ꢑꢒꢓ  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢂꢃDꢄꢅ  
Rev D  
12  
For more information www.analog.com  
LTC2635  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2635-H12 (Internal Reference, VFS = 4.096V)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
ꢋꢌꢃ  
ꢊꢋꢃ  
ꢃꢋꢌ  
ꢘ ꢍꢗ  
ꢗ ꢌꢖ  
ꢀꢀ  
ꢀꢀ  
ꢃꢌꢍ  
ꢎꢃꢌꢍ  
ꢎꢋꢌꢃ  
ꢍꢃꢋꢌ  
ꢍꢊꢋꢃ  
ꢋꢃꢏꢐ  
ꢏꢃꢐꢕ  
ꢑꢃꢒꢏ  
ꢐꢃꢖꢍ  
ꢊꢃꢎꢏ  
ꢎꢃꢏꢕ  
ꢐꢃꢑꢎ  
ꢏꢃꢔꢌ  
ꢀꢁDꢂ  
ꢀꢁDꢂ  
ꢏꢓꢑꢍ ꢔꢃꢕ  
ꢎꢒꢐꢌ ꢓꢃꢔ  
Reference Output Voltage vs  
Temperature  
INL vs Temperature  
DNL vs Temperature  
ꢒꢓꢌ  
ꢌꢓꢋ  
ꢑꢒꢌ  
ꢏꢐꢌꢑꢒ  
ꢏꢐꢌꢋꢒ  
ꢏꢐꢌꢓꢒ  
ꢏꢐꢌꢔꢒ  
ꢏꢐꢌꢏꢒ  
ꢚ ꢋꢙ  
ꢈꢈ  
ꢙ ꢋꢘ  
ꢈꢈ  
ꢘ ꢋꢍ  
ꢈꢈ  
ꢍꢎꢏ ꢆꢃꢛꢐꢉ  
ꢌꢒꢋ  
Dꢍꢎ ꢆꢃꢚꢏꢉ  
Dꢍꢎ ꢆꢍꢁꢗꢉ  
ꢍꢎꢏ ꢆꢎꢁꢘꢉ  
ꢊꢌꢓꢋ  
ꢊꢌꢒꢋ  
ꢊꢒꢓꢌ  
ꢊꢑꢒꢌ  
ꢊꢋꢌ ꢊꢔꢋ  
ꢔꢋ ꢋꢌ ꢕꢋ ꢒꢌꢌ ꢒꢔꢋ ꢒꢋꢌ  
ꢊꢋꢌ ꢊꢓꢋ  
ꢓꢋ ꢋꢌ ꢔꢋ ꢑꢌꢌ ꢑꢓꢋ ꢑꢋꢌ  
ꢊꢋꢌ ꢊꢏꢋ  
ꢏꢋ ꢋꢌ ꢖꢋ ꢕꢌꢌ ꢕꢏꢋ ꢕꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢔꢖꢗꢋ ꢘꢒꢌ  
ꢓꢕꢖꢋ ꢗꢑꢑ  
ꢏꢑꢔꢋ ꢗꢕꢏ  
Settling to 1 LSB Rising  
Settling to 1 LSB Falling  
ꢐꢃꢒ ꢋꢍꢓꢊꢔ ꢈꢆ  
ꢛꢟꢠ ꢍꢊꢆꢍꢡ ꢆꢘ ꢐꢢꢣ  
Dꢓꢈꢓ ꢌꢤꢈꢔ  
ꢉꢃꢒ ꢋꢍꢓꢊꢔ ꢋꢈꢔꢕ  
ꢋꢍꢊ  
ꢎꢅꢃDꢄꢅ  
ꢖ ꢎ ꢗ ꢅ ꢖ ꢒꢙꢚꢛꢎꢅ  
ꢍꢍ  
ꢘꢋ  
R
ꢖ ꢀꢜꢗ ꢍ ꢖ ꢉꢚꢚꢝꢘ  
ꢆꢇꢈ  
ꢉ ꢊꢋꢌꢃDꢄꢅ  
ꢓꢅꢔRꢓꢑꢔ ꢆꢘ ꢀꢎꢏ ꢔꢅꢔꢞꢈꢋ  
ꢐꢙꢛꢁꢂ  
ꢎꢁꢂ  
ꢛꢟꢠ ꢍꢊꢆꢍꢡ ꢆꢘ ꢐꢢꢣ  
Dꢓꢈꢓ ꢌꢤꢈꢔ  
ꢋꢍꢊ  
ꢎꢅꢃDꢄꢅ  
ꢆꢇꢈ  
ꢉꢃꢒ ꢋꢍꢓꢊꢔ ꢈꢆ ꢐꢃꢒ ꢋꢍꢓꢊꢔ ꢋꢈꢔꢕ  
ꢖ ꢎ ꢗ ꢅ ꢖ ꢒꢙꢚꢛꢎꢅ  
ꢉ ꢊꢋꢌꢃDꢄꢅ  
ꢍꢍ  
ꢘꢋ  
R ꢖ ꢀꢜꢗ ꢍ ꢖ ꢉꢚꢚꢝꢘ  
ꢓꢅꢔRꢓꢑꢔ ꢆꢘ ꢀꢎꢏ ꢔꢅꢔꢞꢈꢋ  
ꢀꢏꢐꢎ ꢑꢉꢐ  
ꢀꢏꢐꢎ ꢑꢉꢒ  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢂꢃDꢄꢅ  
Rev D  
13  
For more information www.analog.com  
LTC2635  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2635-10  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
ꢋꢌꢃ  
ꢃꢌꢍ  
ꢊꢋꢃ  
ꢃꢋꢌ  
ꢀꢀ  
ꢖꢇ  
ꢕ ꢒꢔ  
ꢕ ꢎꢋꢌꢔ  
ꢀꢀ  
ꢗꢈ  
ꢖ ꢓꢕ  
ꢖ ꢏꢌꢍꢕ  
ꢗꢄꢘꢂRꢄꢙꢅ Rꢂꢖ  
ꢄꢅꢘꢂRꢅꢙꢆ Rꢂꢗ  
ꢎꢃꢌꢍ  
ꢎꢋꢌꢃ  
ꢍꢃꢋꢌ  
ꢍꢊꢋꢃ  
ꢏꢍꢐ  
ꢍꢋꢏ  
ꢑꢐꢒ  
ꢋꢃꢏꢓ  
ꢎꢌꢏ  
ꢌꢊꢎ  
ꢐꢏꢑ  
ꢊꢃꢎꢒ  
ꢀꢁDꢂ  
ꢀꢁDꢂ  
ꢏꢐꢓꢍ ꢔꢋꢍ  
ꢎꢏꢒꢌ ꢓꢊꢏ  
LTC2635-8  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
ꢃꢋꢌꢃ  
ꢃꢋꢍꢌ  
ꢃꢊꢋꢃ  
ꢃꢊꢌꢋ  
ꢀꢀ  
ꢙꢈ  
ꢘ ꢓꢗ  
ꢘ ꢍꢋꢌꢗ  
ꢀꢀ  
ꢗꢇ  
ꢖ ꢒꢕ  
ꢖ ꢌꢊꢋꢕ  
ꢄꢅꢚꢂRꢅꢛꢆ Rꢂꢙ  
ꢘꢄꢙꢂRꢄꢚꢅ Rꢂꢗ  
ꢎꢃꢋꢍꢌ  
ꢎꢃꢋꢌꢃ  
ꢍꢃꢊꢌꢋ  
ꢍꢃꢊꢋꢃ  
ꢏꢐ  
ꢑꢍꢖ  
ꢑꢒꢍ  
ꢍꢌꢌ  
ꢎꢏ  
ꢐꢌꢔ  
ꢐꢑꢌ  
ꢌꢋꢋ  
ꢀꢁDꢂ  
ꢀꢁDꢂ  
ꢍꢏꢓꢌ ꢔꢑꢕ  
ꢌꢎꢒꢋ ꢓꢐꢔ  
LTC2635  
Load Regulation  
Current Limiting  
Offset Error vs Temperature  
ꢊꢌꢍꢊ  
ꢊꢌꢎꢏ  
ꢊꢌꢎꢊ  
ꢊꢌꢊꢏ  
ꢌꢊ  
ꢒꢒ  
ꢒꢒ  
ꢒꢒ  
ꢓ ꢏꢋ ꢄꢒꢍꢐꢉꢏꢕꢖꢇ  
ꢓ ꢏꢋ ꢄꢒꢍꢐꢉꢏꢕꢔꢇ  
ꢓ ꢉꢋ ꢄꢒꢍꢐꢉꢏꢕꢔꢇ  
ꢔꢔ  
ꢔꢔ  
ꢔꢔ  
ꢕ ꢑꢋ ꢄꢔꢐꢎꢉꢑꢗꢘꢇ  
ꢕ ꢑꢋ ꢄꢔꢐꢎꢉꢑꢗꢖꢇ  
ꢕ ꢉꢋ ꢄꢔꢐꢎꢉꢑꢗꢖꢇ  
ꢈꢐ  
ꢈꢏ  
ꢈꢎ  
ꢈꢍ  
ꢈꢌꢊ  
ꢈꢊꢌꢊꢏ  
ꢈꢊꢌꢊꢎ  
ꢈꢊꢌꢎꢏ  
ꢈꢊꢌꢍꢊ  
ꢊꢔ  
ꢊꢓ  
ꢊꢒ  
ꢀꢗꢃꢘRꢗꢆꢔ Rꢘꢙꢌ  
ꢒꢁDꢘ ꢓ ꢚꢀDꢕꢛꢒꢆꢔꢘ  
ꢀꢙꢃꢚRꢙꢆꢖ Rꢚꢛꢜ  
ꢔꢁDꢚ ꢕ ꢝꢀDꢗꢞꢔꢆꢖꢚ  
ꢈꢉꢊ  
ꢈꢍꢊ  
ꢈꢎꢊ  
ꢎꢊ ꢍꢊ ꢉꢊ  
ꢊꢋꢌ ꢊꢓꢋ  
ꢓꢋ ꢋꢌ ꢕꢋ ꢔꢌꢌ ꢔꢓꢋ ꢔꢋꢌ  
ꢈꢉꢊ  
ꢈꢐꢊ  
ꢈꢌꢊ  
ꢌꢊ ꢐꢊ ꢉꢊ  
ꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢄꢅꢆꢇ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢍꢐꢉꢏ ꢑꢍꢊ  
ꢓꢖꢒꢋ ꢗꢓꢔ  
ꢐꢎꢉꢑ ꢒꢌꢓ  
Rev D  
14  
For more information www.analog.com  
LTC2635  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2635  
Large-Signal Response  
Mid-Scale Glitch Impulse  
Power-On Reset Glitch  
ꢌꢀꢍꢎꢊꢒꢑ  
ꢑꢒꢓ ꢌꢍꢆꢌꢔ ꢆꢕ ꢏꢖꢗ  
Dꢘꢈꢘ ꢙꢚꢈꢛ  
ꢋꢌꢍ  
ꢉꢅꢃDꢄꢅ  
ꢌꢌ  
ꢀꢆꢄDꢅꢆ  
ꢆꢇꢈ  
ꢌꢀꢎꢏꢉꢜꢝꢞꢀꢟ ꢅ ꢠ ꢉꢅ  
ꢌꢌ  
ꢏꢡꢅ ꢢ ꢂ ꢈꢚꢣ  
ꢉꢊꢋꢅꢃDꢄꢅ  
ꢓꢔRꢇ ꢕꢌꢖꢑꢔ  
ꢆꢇꢈ  
ꢇꢈꢉ  
ꢉꢊꢅꢃDꢄꢅ  
ꢊꢋꢆꢄDꢅꢆ  
ꢌꢀꢎꢏꢉꢜꢍꢞꢀꢟ ꢅ ꢠ ꢏꢅ  
ꢌꢌ  
ꢀꢤꢞꢡꢅ ꢢ ꢂ ꢈꢚꢣ  
ꢑ ꢅ ꢑ ꢋꢅ  
ꢒꢒ  
ꢏꢐ  
ꢓꢃꢔ ꢐꢒꢕꢖꢗ ꢘꢙ ꢍꢃꢔ ꢐꢒꢕꢖꢗ  
ꢀꢎꢏꢉ ꢐꢀꢏ  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
ꢀꢌꢍꢋ ꢎꢀꢀ  
ꢀꢍꢎꢊ ꢏꢀꢐ  
Headroom at Rails vs  
Output Current  
Exiting Power-Down to Mid-Scale  
Power-On Reset to Mid-Scale  
ꢊꢋꢈ  
ꢌꢋꢊ  
ꢌꢋꢈ  
ꢏꢋꢊ  
ꢏꢋꢈ  
ꢎꢋꢊ  
ꢎꢋꢈ  
ꢍꢋꢊ  
ꢍꢋꢈ  
ꢈꢋꢊ  
ꢣ ꢀꢅ  
ꢌꢌ  
ꢊꢉ ꢕꢁꢂRꢖꢀꢗꢔ  
ꢄꢟꢈꢜRꢟꢙꢍ  
RꢜꢖꢜRꢜꢟꢌꢜ  
ꢇꢇ  
ꢀꢆꢄDꢅꢆ  
ꢋꢌꢍ  
ꢀꢅꢃDꢄꢅ  
ꢒꢓꢔ ꢌꢍꢆꢌꢕ ꢆꢖ ꢐꢗꢘ  
Dꢙꢈꢙ ꢚꢛꢈꢜ  
ꢏꢉ ꢄꢖꢎꢓꢏꢊꢙꢘꢇ ꢕꢁꢂRꢖꢀꢗꢔ  
ꢇꢀꢍꢎꢌꢒꢓ  
Dꢙꢌꢂ ꢙꢝꢌ ꢄꢟ  
ꢠꢆꢡꢜRꢝDꢆꢡꢟ  
ꢢꢆDꢜ  
ꢆꢇꢈ  
ꢉꢊꢀꢅꢃDꢄꢅ  
ꢊꢉ ꢕꢀꢗꢚꢀꢗꢔ  
ꢏꢉ ꢄꢖꢎꢓꢏꢊꢙꢘꢇ ꢕꢀꢗꢚꢀꢗꢔ  
ꢇꢀꢍꢎꢌꢒꢑ  
ꢈꢉꢊ  
ꢁꢋꢌꢆꢄDꢅꢆ  
ꢌꢎꢏꢐꢀꢝꢞ  
ꢎꢏꢐꢀ ꢑꢎꢏ  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
ꢍꢈ  
ꢀꢍꢎꢌ ꢏꢀꢐ  
ꢄꢅꢆꢇ  
ꢁꢂꢃ  
ꢎꢓꢏꢊ ꢔꢎꢊ  
Exiting Power-Down for Hi-Z  
Option  
Supply Current vs Logic Voltage  
ꢐꢌꢎ  
ꢐꢌꢍ  
ꢐꢌꢑ  
ꢐꢌꢋ  
ꢋꢌꢏ  
ꢋꢌꢎ  
ꢋꢌꢍ  
ꢕꢖꢈꢈꢗ ꢕDꢇꢘ ꢕꢄꢀ  
ꢙꢈꢆꢖꢈꢈꢚ  
ꢟꢣꢤ ꢈꢆꢎꢈꢥ ꢎꢦ ꢊꢧꢨ  
Dꢑꢇꢑ ꢖꢗꢇꢔ  
ꢋꢅ ꢇꢚD ꢅ  
ꢄꢄ  
ꢙꢈꢆ  
ꢋꢅꢃDꢄꢅ  
Dꢑꢈ ꢎꢒꢇꢓꢒꢇ ꢙꢔꢇ  
ꢇꢎ ꢍꢄDꢌꢙꢈꢑꢆꢔ  
ꢚꢄꢛꢚꢌꢄꢍꢓꢔDꢑꢕꢈꢔ  
ꢠꢓꢎꢡꢔRꢌDꢎꢡꢕꢢ ꢍꢎDꢔ  
ꢛ ꢓꢅ  
ꢄꢄ  
ꢎꢒꢇ  
ꢋꢝꢝꢞꢅꢃDꢄꢅ  
ꢛ ꢒꢅ  
ꢄꢄ  
ꢄꢑꢎꢒꢓꢜꢀꢊ  
ꢀꢉꢊꢋ ꢛꢀꢟ  
ꢀꢁꢂꢃDꢄꢅ  
ꢈꢀꢉꢊꢋꢌꢆꢍꢎꢏ ꢅ ꢐ ꢊꢅ  
ꢈꢈ  
ꢀꢁꢂꢃꢄ ꢅꢁꢂꢈ ꢉꢅꢊ  
ꢑꢎꢒꢓ ꢂꢑꢏ  
Dꢑꢈ ꢎꢒꢇꢓꢒꢇ DRꢄꢅꢔꢕ ꢖꢗ  
ꢘꢅ ꢙꢎꢒRꢈꢔ ꢇꢚRꢎꢒꢛꢚ  
ꢘꢋꢜ RꢔꢙꢄꢙꢇꢎR  
Rev D  
15  
For more information www.analog.com  
LTC2635  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2635  
Mulitplying Bandwidth  
Noise Voltage vs Frequency  
Gain Error vs Reference Input  
ꢌꢐꢑ  
ꢑꢐꢒ  
500  
400  
300  
200  
100  
0
V
= 5V  
CC  
ꢙ ꢗꢐꢗꢄ  
ꢃꢃ  
CODE = MID-SCALE  
INTERNAL REF  
ꢉꢈꢍꢂ ꢀRRꢅR ꢅꢁ ꢔ ꢃꢚꢈꢂꢂꢀꢆꢏ  
ꢔꢍ  
ꢑꢐꢓ  
ꢔꢕ  
ꢑꢐꢔ  
ꢔꢎ  
ꢑꢐꢖ  
ꢔꢖ  
LTC2635-H  
ꢔꢒꢓ  
ꢔꢒꢍ  
ꢔꢒꢕ  
ꢔꢒꢎ  
ꢔꢒꢖ  
ꢕꢑꢐꢖ  
ꢕꢑꢐꢔ  
ꢕꢑꢐꢓ  
ꢕꢑꢐꢒ  
ꢕꢌꢐꢑ  
LTC2635-L  
ꢚ ꢐꢙ  
RꢁꢀꢇDꢅꢊ  
Rꢁꢀꢇꢛꢅꢊ  
ꢅꢟDꢁ ꢚ ꢀꢃꢠꢠꢞꢡꢅꢛꢠꢁ  
ꢅꢅ  
ꢚ ꢍꢙ  
ꢚ ꢓꢜꢍꢙ  
ꢝꢞꢝ  
ꢒꢗ  
ꢒꢓꢗ  
ꢒꢓꢓꢗ  
ꢒꢘ  
ꢌꢐꢗ  
ꢖꢐꢗ  
ꢘꢐꢗ  
ꢔꢐꢗ  
ꢗꢐꢗ  
100  
1k  
10k  
100k  
1M  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
RꢀꢁꢀRꢀꢂꢃꢀ ꢄꢅꢉꢀ ꢊꢄꢋ  
FREQUENCY (Hz)  
ꢍꢎꢏꢐ ꢑꢏꢒ  
ꢖꢓꢘꢗ ꢉꢘꢘ  
2634 G32  
0.1Hz to 10Hz Voltage Noise  
DAC-to-DAC Crosstalk (Dynamic)  
Gain Error vs Temperature  
ꢔꢕꢌ  
ꢌꢕꢋ  
ꢎ ꢊ ꢏ ꢄ ꢎ ꢇꢒꢊꢄ  
ꢐꢑ  
ꢍꢍ  
ꢘꢙꢚ ꢈꢓꢐꢈꢛ ꢐꢏ ꢖꢜꢝ  
Dꢇꢋꢇ ꢞꢟꢋꢠ  
ꢍꢓDꢔ ꢎ ꢕꢃDꢖꢑꢍꢗꢘꢔ  
ꢃꢙꢚꢔRꢙꢗꢘ Rꢔꢐ  
ꢉꢈꢓ  
ꢔꢅꢃDꢄꢅ  
ꢆ Dꢇꢈ  
ꢉꢊꢄꢋꢈꢌ ꢍꢎꢏꢉ  
ꢀꢅꢃDꢄꢅ  
ꢀꢅꢆꢄꢂDꢃꢄ  
ꢐꢑꢋ  
ꢊꢌꢕꢋ  
ꢀꢒꢅꢃDꢄꢅ  
ꢈꢀꢕꢖꢔꢎꢌꢆꢀꢡ ꢅ ꢢ ꢔꢅ  
ꢈꢈ  
ꢖꢣꢅ ꢤ ꢂ ꢋꢟꢥꢄꢈꢇꢓ ꢈ ꢢ ꢍꢦꢆꢁꢏ  
Rꢠꢏ  
ꢊꢔꢕꢌ  
ꢀꢕꢖꢔ ꢗꢖꢔ  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢂDꢃꢄ  
ꢊꢋꢌ ꢊꢖꢋ  
ꢖꢋ ꢋꢌ ꢗꢋ ꢔꢌꢌ ꢔꢖꢋ ꢔꢋꢌ  
ꢇꢈꢉꢊ ꢋꢉꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢖꢘꢙꢋ ꢍꢙꢘ  
Rev D  
16  
For more information www.analog.com  
LTC2635  
PIN FUNCTIONS (MSOP/QFN)  
V
(Pin 1/Pin 16): Supply Voltage Input. 2.7V ≤ V  
REF (Pin 7/Pin 10): Reference Voltage Input or Output.  
When External Reference mode is selected, REF is an  
input (1V ≤ VREF ≤ VCC) where the voltage supplied  
sets the full-scale DAC output voltage. When Internal  
Reference is selected, the 10ppm/°C 1.25V (LTC2635-L)  
or 2.048V (LTC2635-H) internal reference (half full-scale)  
is available at the pin. This output may be bypassed to  
GND with up to 10µF, and must be buffered when driving  
an external DC load current.  
CC  
CC  
5.5V (LTC2635-L) or 4.5V ≤ V ≤ 5.5V (LTC2635-H).  
CC  
ꢀypass to GND with a 0.1µF capacitor.  
V
to V  
(Pins 2, 3, 8, 9/Pins 1, 2, 11, 12): DAC  
OUTA  
OUTD  
Analog Voltage Outputs.  
LDAC (Pin 3, QFN Only): Asynchronous DAC Update. A  
falling edge on this input after four bytes (slave address  
byte plus three data bytes) have been written into the part  
immediately updates the DAC registers with the contents  
of the input registers (similar to a software update). A  
low on this input without a complete 32-bit (four bytes  
including the slave address) data write transfer to the part  
does not update the DAC output. A low on the LDAC pin  
powers up the DACs. A software power down command  
is ignored if LDAC is low.  
DNC (Pins 6, 15, QFN Only): Do Not Connect These Pins.  
CA2 (Pin 7, QFN Only): Chip Address ꢀit 2. Tie this pin to  
VCC, GND or leave it floating to select an I2C slave address  
for the part (see Table 1).  
CA1 (Pin 9, QFN Only): Chip Address ꢀit 1. Tie this pin to  
VCC, GND or leave it floating to select an I2C slave address  
for the part (see Table 1).  
CA0 (Pin 4/Pin 4): Chip Address ꢀit 0. Tie this pin to V ,  
CC  
2
GND or leave it floating to select an I C slave address for  
GND (Pin 10, Exposed Pad Pin 11/Pin 14, Exposed Pad  
Pin 17): Ground. Must be soldered to PCꢀ ground.  
the part (see Tables 1 and 2).  
SCL (Pin 5/Pin 5): Serial Clock Input Pin. Data is shifted  
into the SDA pin at the rising edges of the clock. This  
high-impedance pin requires a pull-up resistor or current  
REFLO (Pin 13, QFN Only): Reference Low Pin. The volt-  
age at this pin sets the zero-scale voltage of all DACs. This  
pin must be tied to GND.  
source to V .  
CC  
SDA (Pin 6/Pin 8): Serial Data ꢀidirectional Pin. Data is  
shifted into the SDA pin and acknowledged by the SDA  
pin. This pin is high impedance while data is shifted in.  
Open drain N-channel output during acknowledgment.  
SDA requires a pull-up resistor or current source to V .  
CC  
Rev D  
17  
For more information www.analog.com  
LTC2635  
BLOCK DIAGRAM  
Rꢀꢋ  
ꢂꢒꢄꢀRꢒꢅꢌ  
RꢀꢋꢀRꢀꢒꢆꢀ  
ꢁꢒD  
ꢃꢗꢂꢄꢆꢘ  
Rꢀꢋ  
ꢊRꢀꢋꢌꢈꢍ  
ꢆꢆ  
ꢈꢉꢄꢅ  
ꢈꢉꢄD  
Dꢅꢆ ꢅ  
Dꢅꢆ ꢖ  
Dꢅꢆ D  
Dꢅꢆ ꢆ  
Rꢀꢋ  
Rꢀꢋ  
ꢈꢉꢄꢆ  
ꢈꢉꢄꢖ  
LDACꢍ  
DꢀꢆꢈDꢀ  
ꢓꢈꢗꢀRꢙꢈꢒ  
Rꢀꢃꢀꢄ  
ꢆꢅꢎ  
ꢂ ꢆ  
ꢅDDRꢀꢃꢃ  
DꢀꢆꢈDꢀ  
ꢊꢆꢅꢏꢍ  
ꢊꢆꢅꢐꢍ  
ꢃꢆꢌ  
ꢃDꢅ  
ꢂ ꢆ ꢂꢒꢄꢀRꢋꢅꢆꢀ  
ꢐꢚꢛꢜ ꢖD  
ꢊ ꢍ ꢑꢋꢒ ꢓꢅꢆꢔꢅꢁꢀ ꢈꢒꢕ  
Rev D  
18  
For more information www.analog.com  
LTC2635  
TEST CIRCUITS  
Test Circuits for I2C Digital I/O (See Electrical Characteristics)  
Test Circuit 1  
Test Circuit 2  
DD  
100Ω  
/V  
CAn  
R
ꢊR ꢊR  
ꢇꢈꢉ ꢇꢈꢋ ꢇꢈꢌ  
ꢅꢏn  
V
IH(CAn) IL(CAn)  
2635 TC01  
ꢀꢁꢂꢃ ꢄꢅꢆꢀ  
ꢎꢈD  
TIMING DIAGRAMS  
SDA  
t
SU(DAT)  
t
BUF  
t
f
t
SP  
t
r
t
LOW  
t
t
t
r
HD(STA)  
r
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
S
HIGH  
Sr  
P
S
t
HD(DAT)  
2635 F01  
ꢀꢁꢁ ꢂꢃꢅꢆ ꢁꢆꢂꢆꢁꢇ RꢆꢈꢆR ꢄꢃ ꢂ  
ꢀꢍD ꢂ  
ꢁꢆꢂꢆꢁꢇ  
ꢉꢊꢋꢌꢉꢍꢎ  
ꢉꢁꢋꢌꢀꢏꢎ  
Figure 1. I2C Timing  
Rev D  
19  
For more information www.analog.com  
LTC2635  
TIMING DIAGRAMS  
ꢍꢏꢅꢐꢑ ꢅDDRꢑꢍꢍ  
ꢍꢎꢅRꢎ  
ꢃꢍꢎ Dꢅꢎꢅ ꢒꢓꢎꢑ  
ꢂꢔD Dꢅꢎꢅ ꢒꢓꢎꢑ  
ꢁRD Dꢅꢎꢅ ꢒꢓꢎꢑ  
ꢍDꢅ  
ꢍꢀꢏ  
ꢅꢉ ꢅꢈ ꢅꢇ ꢅꢁ ꢅꢂ ꢅꢃ ꢅꢄ  
W
ꢅꢀꢆ ꢀꢁ ꢀꢂ ꢀꢃ ꢀꢄ ꢅꢁ ꢅꢂ ꢅꢃ ꢅꢄ ꢅꢀꢆ  
ꢅꢀꢆ  
ꢅꢀꢆ  
t
1
t
2
LDAC  
ꢂꢉꢁꢈ ꢕꢄꢂꢖ  
Figure 2a. Typical LTC2635 Write Transaction  
ꢀꢁꢂ ꢃꢄꢅꢃꢆ  
ꢅꢇ ꢈRD  
Dꢉꢁꢉ ꢊꢋꢁꢌ  
ꢍꢃꢄ  
t
1
LDAC  
2635 F02b  
Figure 2b. LTC2635 LDAC Timing (QFN Package Only)  
Rev D  
20  
For more information www.analog.com  
LTC2635  
OPERATION  
The LTC2635 is a family of quad voltage output DACs in  
16-pin QFN and 10-lead MSOP packages. Each DAC can  
operate rail-to-rail using an external reference, or with its  
full-scale voltage set by an integrated reference. Eighteen  
combinations of accuracy (12-, 10-, and 8-bit), power-on  
reset value (zero-scale, mid-scale in internal reference  
mode, or mid-scale in external reference mode), DAC  
power-down output load (high impedance or 200kΩ),  
and full-scale voltage (2.5V or 4.096V) are available. The  
taken to observe these limits during power supply turn-on  
and turn-off sequences, when the voltage at VCC is in  
transition.  
Transfer Function  
The digital-to-analog transfer function is  
k
V
=
V
– V  
+ V  
(
)
OUT(IDEAL)  
REF  
REFLO REFLO  
N
2
2
LTC2635 is controlled using a 2-wire I C interface.  
where k is the decimal equivalent of the binary DAC  
input code, N is the resolution, and V is either 2.5V  
Power-On Reset  
REF  
(LTC2635-LMI/-LMX/-LMO/-LZ) or 4.096V (LTC2635-  
HMI/-HZ) when in Internal Reference mode, and the volt-  
age at REF when in External Reference mode.  
The LTC2635-HZ/-LZ clear the output to zero-scale  
when power is first applied, making system initialization  
con-sistent and repeatable.  
2
I C Serial Interface  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2635  
contains circuitry to reduce the power-on glitch: the  
analog output typically rises less than 5mV above zero-  
scale during power on. In general, the glitch amplitude  
decreases as the power supply ramp time is increased.  
See “Power-On Reset Glitch” in the Typical Performance  
Characteristics section.  
The LTC2635 communicates with a host using the stan-  
2
dard 2-wire I C interface. The timing diagrams (Figures  
1 and 2) show the timing relationship of the signals on  
the bus. The two bus lines, SDA and SCL, must be high  
when the bus is not in use. External pull-up resistors or  
current sources are required on these lines. The value of  
these pull-up resistors is dependent on the power supply  
2
and can be obtained from the I C specifications. For an  
2
I C bus operating in the fast mode, an active pull-up will  
The LTC2635-HMI/-LMI/-LMX provide an alternative  
reset, setting the output to mid-scale when power is first  
applied. The LTC2635-LMI and LTC2635-HMI power  
up in internal reference mode, with the output set to a  
mid-scale voltage of 1.25V and 2.048V, respectively. The  
LTC2635-LMX power-up in external reference mode, with  
the output set to mid-scale of the external reference. The  
LTC2635-LMO powers up in internal reference mode with  
all the DAC channels placed in the high-impedance state  
(powered-down). Input and DAC registers are set to the  
mid-scale code, and only the internal reference is powered  
up, causing supply current to be typically 100µA upon  
power up. Default reference mode selection is described  
in the Reference Modes section.  
be necessary if the bus capacitance is greater than 200pF.  
The LTC2635 is a receive-only (slave) device. The master  
can write to the LTC2635. The LTC2635 will not acknowl-  
edge (NAK) a read request from the master.  
START (S) and STOP (P) Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition. A  
START condition is generated by transitioning SDA from  
high to low while SCL is high.  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generated by transitioning SDA from low to high while  
SCL is high. The bus is then free for communication with  
Power Supply Sequencing  
The voltage at REF (Pin 10 – QFN, Pin 7 – MSOP) must  
2
another I C device.  
be kept within the range –0.3V ≤ V  
≤ V + 0.3V (see  
Absolute Maximum Ratings). PartiRcEuFlar cCaCre should be  
Rev D  
21  
For more information www.analog.com  
LTC2635  
OPERATION  
Acknowledge  
Table 1. Slave Address Map (QFN Package)  
CA2  
CA1  
CA0  
A6  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A5  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A4  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
The Acknowledge (ACK) signal is used for handshaking  
between the master and the slave. An ACK (active LOW)  
generated by the slave lets the master know that the lat-  
est byte of information was properly received. The ACK  
related clock pulse is generated by the master. The mas-  
ter releases the SDA line (HIGH) during the ACK clock  
pulse. The slave-receiver must pull down the SDA bus  
line during the ACK clock pulse so that it remains a sta-  
ble LOW during the HIGH period of this clock pulse. The  
LTC2635 responds to a write by a master in this manner  
but does not acknowledge a read operation; in that case,  
SDA is retained HIGH during the period of the ACK clock  
pulse.  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND FLOAT  
GND  
V
CC  
FLOAT GND  
FLOAT FLOAT  
FLOAT  
V
CC  
V
GND  
CC  
V
FLOAT  
CC  
V
V
CC  
CC  
FLOAT GND  
FLOAT GND FLOAT  
FLOAT GND  
GND  
V
CC  
FLOAT FLOAT GND  
FLOAT FLOAT FLOAT  
Chip Address  
FLOAT FLOAT  
V
CC  
The state of pins CA0, CA1 and CA2 (CA1 and CA2 are  
only available on the QFN package) determines the slave  
address of the part. These pins can be each set to any one  
FLOAT  
FLOAT  
FLOAT  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
of three states: V , GND or float. This results in 27 (QFN  
V
CC  
CC  
Package) or 3 (MSOP Package) selectable addresses for  
the part. The slave address assignments are shown in  
Tables 1 and 2.  
V
V
V
V
V
V
V
V
V
GND  
GND FLOAT  
GND  
GND  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
CC  
FLOAT GND  
FLOAT FLOAT  
In addition to the address selected by the address pins,  
the part also responds to a global address. This address  
allows a common write to all LTC2635 parts to be ac-com-  
FLOAT  
V
CC  
2
V
CC  
V
CC  
V
CC  
GND  
plished using one 3-byte write transaction on the I C bus.  
FLOAT  
The global address, listed at the end of Tables 1 and 2,  
is a 7-bit hardwired address not selectable by CA0, CA1  
or CA2. If another address is required, please consult the  
factory.  
V
CC  
GLOꢀAL ADDRESS  
The maximum capacitive load allowed on the address pins  
(CA0, CA1 and CA2) is 10pF, as these pins are driven  
during address detection to determine if they are floating.  
Table 2. Slave Address Map (MSOP Package)  
CA0  
GND  
A6  
0
A5  
0
A4  
1
A3  
0
A2  
A1  
A0  
0
0
0
0
0
0
0
1
1
FLOAT  
0
0
1
0
1
V
0
0
1
0
0
CC  
GLOꢀAL ADDRESS  
1
1
1
0
1
Rev D  
22  
For more information www.analog.com  
LTC2635  
OPERATION  
Write Word Protocol  
DAC if it had been in power-down mode. The data path  
and registers are shown in the ꢀlock Diagram.  
The master initiates communication with the LTC2635  
with a START condition and a 7-bit slave address followed  
by the Write bit (W) = 0. The LTC2635 acknowledges by  
pulling the SDA pin low at the 9th clock if the 7-bit slave  
address matches the address of the part (set by CA0, CA1  
or CA2) or the global address. The master then transmits  
three bytes of data. The LTC2635 acknowledges each byte  
of data by pulling the SDA line low at the 9th clock of each  
data byte transmission. After receiving three complete  
bytes of data, the LTC2635 executes the command spec-  
ified in the 24-bit input word.  
Table 3. Command Codes  
COMMAND*  
C3 C2 C1 C0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All  
Write to and Update (Power Up) DAC Register n  
Power Down n  
Power Down Chip (All DAC’s and Reference)  
Select Internal Reference (Power Up Reference)  
Select External Reference (Power Down Internal  
Reference)  
If more than three data bytes are transmitted after a valid  
7-bit slave address, the LTC2635 does not acknowledge  
(NAK) the extra bytes of data (SDA is high during the 9th  
clock).  
1
1
1
1
No Operation  
*Command codes not shown are reserved and should not be used.  
The format of the three data bytes is shown in Figure 3.  
The first byte of the input word consists of the 4-bit com-  
mand, followed by the 4-bit DAC address. The next two  
bytes contain the 16-bit data word, which consists of the  
12-, 10- or 8-bit input code, MSꢀ to LSꢀ, followed by 4,  
6 or 8 don’t-care bits (LTC2635-12, -10 and -8, respec-  
tively). A typical LTC2635 write transaction is shown in  
Figure 4.  
Table 4. Address Codes  
ADDRESS (n)*  
A3 A2 A1 A0  
0
0
0
0
1
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
DAC A  
DAC ꢀ  
DAC C  
DAC D  
ALL DACs  
The command bit assignments (C3-C0) and address (A3-  
A0) assignments are shown in Tables 3 and 4. The first  
four commands in the table consist of write and update  
operations. A write operation loads a 16-bit data word  
from the 32-bit shift register into the input register. In an  
update operation, the data word is copied from the input  
register to the DAC register. Once copied into the DAC  
register, the data word becomes the active 12-, 10-, or  
8-bit input code, and is converted to an analog voltage at  
the DAC output. Write to and Update combines the first  
two commands. The Update operation also powers up the  
* Address codes not shown are reserved and should not be used.  
Reference Modes  
For applications where an accurate external reference is  
either not available, or not desirable due to limited space,  
the LTC2635 has a user-selectable, integrated reference.  
The integrated reference voltage is internally amplified  
by 2x to provide the full-scale DAC output voltage range.  
The LTC2635-LMI/-LMX/-LMO/-LZ provides a full-scale  
output of 2.5V. The LTC2635-HMI/-HZ provides a full-  
scale output of 4.096V. The internal reference can be  
useful in applications where the supply voltage is poorly  
regulated. Internal Reference mode can be selected by  
Rev D  
23  
For more information www.analog.com  
LTC2635  
OPERATION  
Write Word Protocol for LTC2635  
W
ꢅꢀꢚ  
ꢅꢂ  
ꢂꢃꢄ Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢅꢀꢚ  
ꢉꢊD Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢓꢊꢔꢕꢄ ꢖꢗRD  
ꢅꢀꢚ  
Dꢐ  
ꢁRD Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢅꢀꢚ  
Dꢂ  
ꢃꢘꢅꢙꢈ ꢅDDRꢈꢃꢃ  
Input Word (LTC2635-12)  
ꢀꢁ  
ꢅꢁ  
ꢅꢉ  
ꢅꢋ  
ꢅꢋ  
ꢅꢋ  
Dꢍ  
ꢀꢂ  
ꢀꢂ  
ꢀꢂ  
Dꢎ  
Dꢏ  
Dꢑ  
Dꢉ  
Dꢑ  
Dꢂꢂ Dꢂꢋ Dꢌ  
Dꢁ  
Dꢂ  
Dꢉ  
Dꢋ  
Dꢋ  
ꢀꢉ  
ꢀꢋ  
ꢂꢃꢄ Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢉꢊD Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢁRD Dꢅꢄꢅ ꢆꢇꢄꢈ  
Input Word (LTC2635-10)  
ꢅꢁ  
ꢀꢋ  
ꢅꢉ  
ꢅꢉ  
Dꢏ  
ꢀꢁ  
ꢀꢉ  
ꢅꢂ  
ꢅꢂ  
Dꢐ  
Dꢁ  
Dꢂ  
Dꢉ  
Dꢋ  
Dꢌ  
Dꢎ  
Dꢍ  
Dꢏ  
Dꢎ  
Dꢐ  
ꢂꢃꢄ Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢉꢊD Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢁRD Dꢅꢄꢅ ꢆꢇꢄꢈ  
Input Word (LTC2635-8)  
ꢅꢁ  
ꢀꢋ  
Dꢑ  
ꢀꢁ  
ꢀꢉ  
Dꢁ  
ꢂꢃꢄ Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢉꢊD Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢁRD Dꢅꢄꢅ ꢆꢇꢄꢈ  
ꢉꢏꢁꢐ ꢛꢋꢁ  
Figure 3. Command and Data Input Format  
using command 0110b, and is the power-on default for  
LTC2635-HZ/-LZ, as well as for LTC2635-HMI/-LMI/-LMO.  
by software command after power up. The same is true  
for LTC2635-LMX (External Reference power-on default).  
The 10ppm/°C, 1.25V (LTC2635-LMI/-LMX/-LMO/-LZ) or  
2.048V (LTC2635-HMI/-HZ) internal reference is available  
at the REF pin. Adding bypass capacitance to the REF pin  
will improve noise performance; and up to 10µF can be  
driven without oscillation. This output must be buffered  
when driving an external DC load current.  
Power-Down Mode  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever less  
than four DAC outputs are needed. When in power-down,  
the buffer amplifiers, bias circuits, and integrated reference  
circuits are disabled, and draw essentially zero current.  
The DAC amplifier outputs are put into a high-impedance  
state, and the output pins are passively pulled to ground  
through individual 200k resistors (LTC2635-LMI/-LMX/  
-LZ/-HMI/-HZ). For the LTC2635-LMO options, the out-  
put pins are not passively pulled to ground, but are also  
placed in a high-impedance state (open-circuited state)  
during power-down, typically drawing less than 0.1µA.  
The LTC2635-LMO options power-up with all DAC outputs  
in this high-impedance state. They remain that way until  
Alternatively, the DAC can operate in External Reference  
mode using command 0111b. In this mode, an input  
voltage supplied externally to the REF pin provides the  
reference (1V ≤ V  
≤ V ) and the supply current is  
REF  
CC  
reduced. The external reference voltage supplied sets the  
full-scale DAC output voltage. External Reference mode  
is the power-on default for LTC2635-LMX.  
The reference mode of LTC2635-HZ/-LZ/-HMI/-LMI/-LMO  
(Internal Reference power-on default), can be changed  
Rev D  
24  
For more information www.analog.com  
LTC2635  
OPERATION  
given a software or hardware update command. For all  
LTC2635 options, input- and DAC-register contents are  
not disturbed during power-down.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load current. The measured change in output voltage per  
change in forced load current is expressed in LSꢀ/mA.  
Any channel or combination of channels can be put into  
power-down mode by using command 0100b in com  
-
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change  
in units from LSꢀ/mA to Ω. The amplifier’s DC output  
impedance is 0.1Ω when driving a load well away from  
the rails.  
bi-nation with the appropriate DAC address, (n). The sup-  
ply current is reduced approximately 20% for each DAC  
powered down. The integrated reference is automatically  
powered down when external reference is selected using  
command 0111b. In addition, all the DAC channels and  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by the  
50Ω typical channel resistance of the output devices (e.g.,  
when sinking 1mA, the minimum output voltage is 50Ω  
• 1mA, or 50mV). See the graph Headroom at Rails vs.  
Output Current in the Typical Performance Characteristics  
section.  
the integrated reference together can be put into pow  
-
er-down mode using Power Down Chip command 0101b.  
When the integrated reference is in power-down mode,  
the REF pin becomes high impedance (typically > 1GΩ).  
For all power-down commands the 16-bit data word is  
ignored.  
Normal operation resumes after executing any command  
that includes a DAC update, (as shown in Table 1) or pull-  
ing the asynchronous LDAC pin low (QFN package only).  
The selected DAC is powered up as its voltage output is  
updated. When a DAC which is in a powered-down state  
is powered up and updated, normal settling is delayed. If  
less than four DACs are in a powered-down state prior to  
the update command, the power-up delay time is 10µs.  
However, if all four DACs and the integrated reference are  
powered down, then the main bias generation circuit block  
has been automatically shut down in addition to the DAC  
amplifiers and reference buffers. In this case, the power  
up delay time is 12µs. The power-up of the integrated  
reference depends on the command that powered it down.  
If the reference is powered down using the Select External  
Reference Command (0111b), then it can only be pow-  
ered back up using Select Internal Reference Command  
(0110b). However, if the reference was powered down  
using Power Down Chip Command (0101b), then in addi-  
tion to Select Internal Reference Command (0110b), any  
command (in software or using the LDAC pin) that powers  
up the DACs will also power up the integrated reference.  
The amplifier is stable driving capacitive loads of up to  
500pF.  
Rail-to-Rail Output Considerations  
In any rail-to-rail voltage output device, the output is lim-  
ited to voltages within the supply range.  
Since the analog output of the DAC cannot go below  
ground, it may limit for the lowest codes as shown in  
Figure 5b. Similarly, limiting can occur near full-scale  
when the REF pin is tied to V . If V  
= V and the  
CC  
REF  
CC  
DAC full-scale error (FSE) is positive, the output for the  
highest codes limits at VCC, as shown in Figure 5c. No  
full-scale limiting can occur if V is less than V – FSE.  
REF  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
Board Layout  
The PC board should have separate areas for the analog  
and digital sections of the circuit. A single, solid ground  
plane should be used, with analog and digital signals care-  
fully routed over separate areas of the plane. This keeps  
digital signals away from sensitive analog signals and  
minimizes the interaction between digital ground currents  
and the analog section of the ground plane. The resistance  
Voltage Output  
The LTC2635’s integrated rail-to-rail amplifier has  
guar-anteed load regulation when sourcing or sinking up  
to 10mA at 5V, and 5mA at 3V.  
Rev D  
25  
For more information www.analog.com  
LTC2635  
OPERATION  
from the LTC2635 GND pin to the ground plane should  
be as low as possible. Resistance here will add directly to  
the effective DC output impedance of the device (typically  
0.1Ω). Note that the LTC2635 is no more susceptible to  
this effect than any other parts of this type; on the con-  
trary, it allows layout-based performance improvements  
to shine rather than limiting attainable performance with  
excessive internal resistance.  
supply is connected to the board and the DAC ground pin.  
Thus the DAC ground pin becomes the common point for  
analog ground, digital ground, and power ground. When  
the LTC2635 is sinking large currents, this current flows  
out the ground pin and directly to the power ground trace  
without affecting the analog ground plane voltage.  
It is sometimes necessary to interrupt the ground plane  
to confine digital ground currents to the digital portion of  
the plane. When doing this, make the gap in the plane only  
as long as it needs to be to serve its purpose and ensure  
that no traces cross over the gap.  
Another technique for minimizing errors is to use a sepa-  
rate power ground return trace on another board layer.  
The trace should run between the point where the power  
ꢋꢌꢅꢍꢊ ꢅDDRꢊꢋꢋ  
ꢀꢆꢇꢇꢅꢈDꢉꢅDDRꢊꢋꢋ  
ꢇꢋ Dꢅꢎꢅ  
ꢌꢋ Dꢅꢎꢅ  
ꢅꢒ ꢅꢓ ꢅꢔ ꢅꢁ ꢅꢂ ꢅꢃ ꢅꢄ  
W
ꢀꢁ ꢀꢂ ꢀꢃ ꢀꢄ ꢅꢁ ꢅꢂ ꢅꢃ ꢅꢄ  
Dꢃꢃ Dꢃꢄ Dꢏ Dꢐ Dꢑ Dꢒ Dꢓ Dꢔ  
Dꢁ Dꢂ Dꢃ Dꢄ  
ꢋꢎꢆꢗ  
ꢋꢎꢅRꢎ  
ꢋDꢅ  
ꢋꢀꢌ  
ꢅꢒ ꢅꢓ ꢅꢔ ꢅꢁ ꢅꢂ ꢅꢃ ꢅꢄ  
W
ꢅꢀꢕ ꢀꢁ ꢀꢂ ꢀꢃ ꢀꢄ ꢅꢁ ꢅꢂ ꢅꢃ ꢅꢄ ꢅꢀꢕ  
ꢅꢀꢕ  
ꢅꢀꢕ  
ꢘꢙꢌꢌꢚꢋꢀꢅꢌꢊ  
ꢍꢆꢛꢊ  
ꢆꢙꢎ  
ꢜꢊRꢆꢚꢋꢀꢅꢌꢊ  
ꢍꢆꢛꢊ  
ꢖ ꢝ DꢆꢈꢅRꢊ  
ꢂꢒꢁꢓ ꢘꢄꢔ  
Figure 4. Typical LTC2635 Input Waveform—Programming DAC Output for Full-Scale  
Rev D  
26  
For more information www.analog.com  
LTC2635  
OPERATION  
ꢈꢌꢒꢆꢊꢆꢎꢍ  
ꢄꢒꢍ  
Rꢍꢄ  
ꢗ ꢎ  
ꢋꢋ  
ꢗ ꢎ  
ꢋꢋ  
Rꢍꢄ  
ꢌꢉꢊꢈꢉꢊ  
ꢎꢌꢏꢊꢐꢑꢍ  
ꢌꢉꢊꢈꢉꢊ  
ꢎꢌꢏꢊꢐꢑꢍ  
ꢆꢇꢈꢉꢊ ꢋꢌDꢍ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
ꢌꢉꢊꢈꢉꢊ  
ꢎꢌꢏꢊꢐꢑꢍ  
(c)  
ꢅꢎ  
ꢀꢓꢅꢔꢕ  
ꢔꢓꢅꢖꢃ  
ꢆꢇꢈꢉꢊ ꢋꢌDꢍ  
(a)  
ꢅꢎ  
ꢇꢍꢑꢐꢊꢆꢎꢍ  
ꢌꢄꢄꢒꢍꢊ  
ꢆꢇꢈꢉꢊ ꢋꢌDꢍ  
(b)  
Figure 5. Effects of Rail-to-Rail On a DAC Transfer Curve (Shown for 12 Bits).  
(a) Overall Transfer Function  
(b) Effect of Negative Offset for Codes Near Zero  
(c) Effect of Positive Full-Scale Error for Codes Near Full-Scale  
Rev D  
27  
For more information www.analog.com  
LTC2635  
APPLICATION INFORMATION  
Voltage Margining Application with LTC3850 (1.2V 5%) –LTC2635– LMO Option Only  
V
IN  
6.5V TO 14V  
0.1µF  
4.7µF  
2.2Ω  
100k  
0.1µF  
INTV  
PGOOD  
V
CC  
IN  
I
TG1  
LIM  
0.1µF  
10k  
BOOST1  
SW1  
FREQ  
2.2µH  
0.008Ω  
V
OUT  
1.2V 5ꢀ  
LTC3850EUF  
3.32k  
1nF  
BG1  
PGND  
10Ω  
10Ω  
I
TH1  
+
SENSE  
RUN1  
1nF  
500kHz  
MODE/PLLIN  
TK/SS1  
1nF  
100pF  
SENSE  
10k  
10nF  
V
FB1  
SGND  
15pF  
63.4k  
5V  
2635 TA02  
20k  
DAC D  
OUTPUT DAC CODE  
1
9
7
REF  
V
CC  
V
OUT  
0.1µF  
LTC2635CMSE-LMOI2  
1.26V  
1.2V  
1.14V  
0.5V  
0.8V  
1.1V  
819  
1311  
1802  
10k  
15k  
0.22µF  
2
3
DAC A  
DAC B  
DAC D  
DAC C  
8
10  
4
5
6
CAO  
SCL  
SDA  
GND  
2
TO I C  
BUS  
2635 TA02  
Rev D  
28  
For more information www.analog.com  
LTC2635  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC2635#packaging for the most recent package drawings.  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
ꢄReꢪeꢫeꢬꢭe ꢎꢑꢊ Dꢕꢖ ꢮ ꢂꢓꢛꢂꢯꢛꢃꢣꢩꢃ Rev ꢰꢉ  
ꢂꢁꢥꢂ ±ꢂꢁꢂꢓ  
ꢀꢁꢓꢂ ±ꢂꢁꢂꢓ  
ꢜꢁꢃꢂ ±ꢂꢁꢂꢓ  
ꢃꢁꢅꢓ ±ꢂꢁꢂꢓ  
ꢄꢅ ꢆꢇDꢈꢆꢉ  
ꢏꢐꢊꢙꢐꢖꢈ ꢋꢚꢑꢎꢇꢍꢈ  
ꢂꢁꢜꢓ ±ꢂꢁꢂꢓ  
ꢂꢁꢓꢂ ꢟꢆꢊ  
RꢈꢊꢋꢌꢌꢈꢍDꢈD ꢆꢋꢎDꢈR ꢏꢐD ꢏꢇꢑꢊꢒ ꢐꢍD Dꢇꢌꢈꢍꢆꢇꢋꢍꢆ  
ꢟꢋꢑꢑꢋꢌ ꢝꢇꢈꢕꢤꢈꢞꢏꢋꢆꢈD ꢏꢐD  
ꢏꢇꢍ ꢃ ꢍꢋꢑꢊꢒ R ꢦ ꢂꢁꢜꢂ ꢑꢢꢏ  
ꢋR ꢂꢁꢜꢓ × ꢅꢓ° ꢊꢒꢐꢌꢗꢈR  
R ꢦ ꢂꢁꢃꢃꢓ  
ꢑꢢꢏ  
ꢂꢁꢥꢓ ±ꢂꢁꢂꢓ  
ꢀꢁꢂꢂ ±ꢂꢁꢃꢂ  
ꢄꢅ ꢆꢇDꢈꢆꢉ  
ꢃꢓ ꢃꢣ  
ꢏꢇꢍ ꢃ  
ꢑꢋꢏ ꢌꢐRꢙ  
ꢄꢍꢋꢑꢈ ꢣꢉ  
ꢂꢁꢅꢂ ±ꢂꢁꢃꢂ  
ꢃꢁꢅꢓ ± ꢂꢁꢃꢂ  
ꢄꢅꢛꢆꢇDꢈꢆꢉ  
ꢄꢚDꢃꢣꢉ ꢨꢗꢍ ꢂꢩꢂꢅ  
ꢂꢁꢜꢂꢂ Rꢈꢗ  
ꢂꢁꢜꢓ ±ꢂꢁꢂꢓ  
ꢂꢁꢂꢂ ꢧ ꢂꢁꢂꢓ  
ꢂꢁꢓꢂ ꢟꢆꢊ  
ꢍꢋꢑꢈꢔ  
ꢃꢁ DRꢐꢕꢇꢍꢖ ꢊꢋꢍꢗꢋRꢌꢆ ꢑꢋ ꢘꢈDꢈꢊ ꢏꢐꢊꢙꢐꢖꢈ ꢋꢚꢑꢎꢇꢍꢈ ꢌꢋꢛꢜꢜꢂ ꢝꢐRꢇꢐꢑꢇꢋꢍ ꢄꢕꢈꢈDꢛꢜꢉ  
ꢜꢁ DRꢐꢕꢇꢍꢖ ꢍꢋꢑ ꢑꢋ ꢆꢊꢐꢎꢈ  
ꢀꢁ ꢐꢎꢎ Dꢇꢌꢈꢍꢆꢇꢋꢍꢆ ꢐRꢈ ꢇꢍ ꢌꢇꢎꢎꢇꢌꢈꢑꢈRꢆ  
ꢅꢁ Dꢇꢌꢈꢍꢆꢇꢋꢍꢆ ꢋꢗ ꢈꢞꢏꢋꢆꢈD ꢏꢐD ꢋꢍ ꢟꢋꢑꢑꢋꢌ ꢋꢗ ꢏꢐꢊꢙꢐꢖꢈ Dꢋ ꢍꢋꢑ ꢇꢍꢊꢎꢚDꢈ  
ꢌꢋꢎD ꢗꢎꢐꢆꢒꢁ ꢌꢋꢎD ꢗꢎꢐꢆꢒꢠ ꢇꢗ ꢏRꢈꢆꢈꢍꢑꢠ ꢆꢒꢐꢎꢎ ꢍꢋꢑ ꢈꢞꢊꢈꢈD ꢂꢁꢃꢓꢡꢡ ꢋꢍ ꢐꢍꢢ ꢆꢇDꢈ  
ꢓꢁ ꢈꢞꢏꢋꢆꢈD ꢏꢐD ꢆꢒꢐꢎꢎ ꢟꢈ ꢆꢋꢎDꢈR ꢏꢎꢐꢑꢈD  
ꢣꢁ ꢆꢒꢐDꢈD ꢐRꢈꢐ ꢇꢆ ꢋꢍꢎꢢ ꢐ RꢈꢗꢈRꢈꢍꢊꢈ ꢗꢋR ꢏꢇꢍ ꢃ ꢎꢋꢊꢐꢑꢇꢋꢍ  
ꢋꢍ ꢑꢒꢈ ꢑꢋꢏ ꢐꢍD ꢟꢋꢑꢑꢋꢌ ꢋꢗ ꢏꢐꢊꢙꢐꢖꢈ  
Rev D  
29  
For more information www.analog.com  
LTC2635  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC2635#packaging for the most recent package drawings.  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev I)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.88 ±0.102  
(.074 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
0.29  
REF  
1.68  
(.066)  
0.05 REF  
5.10  
(.201)  
MIN  
1.68 ±0.102  
3.20 – 3.45  
DETAIL “B”  
(.066 ±.004) (.126 – .136)  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
10  
NO MEASUREMENT PURPOSE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ±.0015)  
TYP  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 3)  
0.497 ±0.076  
(.0196 ±.003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0213 REV I  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
Rev D  
30  
For more information www.analog.com  
LTC2635  
REVISION HISTORY  
REV  
DATE  
12/09 Revise QFN pin names.  
Minor text edit in Operations section.  
DESCRIPTION  
PAGE NUMBER  
A
2, 17  
21, 24  
11  
06/10 Revised Note 3 in the Electrical Characteristics section.  
Added Typical Application drawing and revised Related Parts List.  
32  
C
D
05/17 Corrected V slew rate requirement when operating above 90°C and with V > 4V.  
11  
CC  
CC  
04/18 Edits to Note 3.  
11  
Rev D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
31  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC2635  
TYPICAL APPLICATION  
Voltage Margining Application with LTC3850 (1.2V 5%) –LTC2635– LMO Option Only  
V
IN  
6.5V TO 14V  
0.1µF  
4.7µF  
2.2Ω  
100k  
0.1µF  
INTV  
PGOOD  
V
CC  
TG1  
IN  
I
LIM  
0.1µF  
10k  
FREQ  
BOOST1  
SW1  
2.2µH  
0.008Ω  
V
OUT  
1.2V 5ꢀ  
3.32k  
1nF  
BG1  
LTC3850EUF  
PGND  
10Ω  
10Ω  
+
SENSE  
I
TH1  
RUN1  
1nF  
1nF  
SENSE  
500kHz  
MODE/PLLIN  
TK/SS1  
100pF  
V
10k  
FB1  
SGND  
10nF  
15pF  
63.4k  
5V  
1
9
7
REF  
V
CC  
LTC2635CMSE-LMOI2  
0.1µF  
2635 TA02  
20k  
10k  
15k  
0.22µF  
DAC D  
OUTPUT DAC CODE  
2
3
DAC A  
DAC B  
DAC D  
DAC C  
V
OUT  
1.26V  
1.2V  
1.14V  
0.5V  
0.8V  
1.1V  
819  
1311  
1802  
8
10  
4
5
6
CAO  
SCL  
SDA  
GND  
2
TO I C  
BUS  
2635 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
2
LTC2654/LTC2655 Quad 16-/12 ꢀit, SPI/I C V  
Maximum Reference  
DACs with 10ppm/°C  
4LSꢀ INL Maximum at 16 ꢀits and 2mV Offset Error, Rail-to-Rail Output,  
20-Lead 4mm × 4mm QFN and 16-Lead Narrow SSOP Packages  
OUT  
2
LTC2609/  
LTC2619/ LTC2629  
Quad 16-/14-/12-ꢀit V  
DACs with I C Interface  
250µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail Output with  
OUT  
Separate V Pins for Each DAC  
REF  
LTC2604/  
Quad 16-/14-/12-ꢀit, SPI V  
DACs with External  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output, 16-Lead  
SSOP Package  
OUT  
LTC2614/LTC2624 Reference  
LTC2634  
Quad 12-/10-/8-ꢀit SPI V  
DACs with 10ppm/°C  
125µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, External  
REF Mode, Rail-to-Rail Output, 16-Pin 3mm × 3mm QFN and 10-Lead MSOP  
Packages  
OUT  
Reference  
2
LTC2656/LTC2657 Octal 16-/12 ꢀit, SPI/I C V  
DACs with 10ppm/°C  
4LSꢀ INL Maximum at 16 ꢀits and 2mV Offset Error, Rail-to-Rail Output,  
20-Lead 4mm × 5mm QFN and 16-Lead TSSOP Packages  
OUT  
Maximum Reference  
2
LTC2636/LTC2637 Octal 12-/10-/8-ꢀit, SPI/I C V  
10ppm/°C Reference  
DACs with  
125µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, External  
REF Mode, Rail-to-Rail Output, 14-Lead 4mm × 3mm DFN and 16-Lead  
MSOP Packages  
OUT  
2
LTC2630/LTC2631 Single 12-/10-/8-ꢀit, SPI/ I C V  
10ppm/°C Reference  
DACs with  
180µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
Rail-to-Rail Output, SC70 (LTC2630)/ThinSOT™ (LTC2631) Packages  
OUT  
LTC2640  
Single 12-/10-/8-ꢀit, SPI V  
Reference  
DACs with 10ppm/°C 180µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, External  
REF Mode, Rail-to-Rail Output, ThinSOT Package  
OUT  
LTC1664  
Quad 10-ꢀit, Serial V  
DAC  
V
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output, 16-Pin Narrow SSOP  
CC  
OUT  
Rev D  
D16867-0-5/18(D)  
www.analog.com  
32  
ANALOG DEVICES, INC. 2009-2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY