LTC3310 [ADI]

5V, 12.5A Synchronous Step-Down Silent Switcher in 3mm x 3mm LQFN;
LTC3310
型号: LTC3310
厂家: ADI    ADI
描述:

5V, 12.5A Synchronous Step-Down Silent Switcher in 3mm x 3mm LQFN

文件: 总26页 (文件大小:2795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3311  
5V, 12.5A Synchronous Step-Down  
Silent Switcher in 3mm x 3mm LQFN  
FEATURES  
DESCRIPTION  
The LTC®3311 is a very small, low noise, monolithic  
step-down DC/DC converter capable of providing up to  
12.5A of output current from a 2.25V to 5.5V input supply.  
The device employs Silent Switcher 1 architecture with  
internal hot loop bypass capacitors to achieve both low  
EMI and high efficiency at switching frequencies as high  
as 5MHz. For systems with higher power requirements,  
multi-phasing parallel converters is readily implemented.  
n
Pin Compatible with LTC3310/LTC3310S and LTC3311S  
Silent Switcher® Architecture:  
n
n
Ultralow EMI Emissions  
n
n
n
n
n
n
n
n
n
n
n
n
n
n
High Efficiency—4.5mΩ NMOS and 16mΩ PMOS  
Wide Bandwidth, Fast Transient Response  
Safely Tolerates Inductor Saturation in Overload  
V Range: 2.25V to 5.5V  
IN  
OUT  
OUT  
V
V
Range: 0.5V to V  
IN  
Accuracy: 1% with Remote Sense  
The LTC3311 uses a constant frequency, peak current  
mode control architecture for fast transient response. A  
500mV reference allows for low voltage outputs. 100%  
duty cycle operation delivers low drop out.  
Peak Current Mode Control  
Minimum On-Time: 35ns  
Programmable Frequency to 5MHz  
Precision 400mV Enable Threshold, 1μA in Shutdown  
Output Soft-Start with Voltage Tracking  
Power Good Output  
Die Temperature Monitor  
Configurable for Paralleling Power Stages in Forced  
Continuous Mode  
Other features include a power good signal when the  
output is in regulation, precision enable threshold, output  
overvoltage protection, thermal shutdown, a temperature  
monitor, clock synchronization, mode selection and  
output short circuit protection. The device is available in  
a compact 18-lead 3mm x 3mm LQFN package.  
n
n
Thermally-Enhanced 3mm × 3mm LQFN Package  
AEC-Q100 Qualified for Automotive Applications  
All registered trademarks and trademarks are the property of their respective owners.  
APPLICATIONS  
n
Automotive/Industrial/Communications  
n
Servers, Telecom Power Supplies  
n
Distributed DC Power Systems (POL)  
FPGA, ASIC, µP Core Supplies  
n
TYPICAL APPLICATION  
Efficiency vs Load Current  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
0.ꢀ  
0.ꢀ  
0
1.2V 12.5A Step-Down Converter  
ꢀ ꢁꢂꢃꢄ ꢅꢆꢇꢈꢉ ꢃꢊꢂꢋ0ꢌ0 ꢍꢎꢎꢌꢋ0ꢌ00ꢏ0  
ꢀꢁ  
V
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
IN  
3.0V to 5.5V  
22µF  
22µF  
V
IN  
EN  
MODE/SYNC  
100nH  
V
OUT  
SW  
FB  
1.2V  
12.5A  
47µF  
140k  
100k  
6.8pF  
LTC3311  
PGND  
PGOOD  
SSTT  
×3  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
V
IN  
1μF  
0.1µF  
AGND  
RT  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁ  
ITH  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁꢂ  
10k  
470pF  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
274k  
0
ꢀ0 ꢀꢁ ꢀꢁ  
3311 TA01a  
ꢀꢁꢂ  
ꢀꢀꢁꢁ ꢂꢃ0ꢁꢄ  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LTC3311  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
ꢀꢁꢂ ꢃꢄꢅꢆ  
V
............................................................. –0.3V to 6V  
IN  
EN, SSTT ............. –0.3V to Lesser of (V + 0.3V) or 6V  
IN  
IN  
IN  
IN  
MODE/SYNC ........ –0.3V to Lesser of (V + 0.3V) or 6V  
ꢇꢕ ꢇꢭ ꢇꢩ ꢇꢪ  
RT........................ –0.3V to Lesser of (V + 0.3V) or 6V  
ꢅꢊ  
ꢇꢡ ꢂꢉꢁꢁꢋ  
FB ........................ –0.3V to Lesser of (V + 0.3V) or 6V  
ꢌꢉꢊꢋ  
ꢇꢙ ꢍꢁꢋꢅꢎꢏꢐꢊꢑ  
PGOOD......................................................... –0.3V to 6V  
ꢇꢈ  
ꢂꢉꢊꢋ  
ꢄꢊ  
ꢄꢊ  
ꢇꢢ  
ꢇꢇ  
ꢄꢊ  
ꢄꢊ  
I
......................................................................5mA  
PGOOD  
Operating Junction Temperature Range (Notes 2, 3)  
LTC3311J......................................... –40°C to +150°C  
LTC3311H ........................................ –40°C to +150°C  
Storage Temperature............................ –65°C to +150°C  
Maximum Reflow (Package Body) Temperature ...260°C  
ꢂꢉꢊꢋ  
ꢇ0 ꢂꢉꢊꢋ  
ꢇꢕꢖꢗꢅꢌꢋ ꢘꢙꢚꢚ ꢛ ꢙꢚꢚꢜ ꢗꢝꢒꢊ ꢂꢌꢑꢞꢌꢉꢅ  
ꢠ ꢡꢢꢣꢑꢎθ ꢠ ꢈꢣꢑꢎθ ꢠ ꢩꢢꢣꢑꢎθ ꢠ ꢇꢡꢣꢑꢎꢆ  
θ
ꢟꢌ  
ꢟꢑꢥꢦꢧꢧꢦꢚ  
ꢟꢑꢧꢦꢨ  
ꢟꢓ  
Ψ
ꢟꢀ  
ꢠ ꢇ.ꢢꢪꢣꢑꢎθ VALUES DETERMINED PER JESD51-12  
ꢅꢫꢂꢁꢏꢅꢋ ꢂꢌꢋ ꢘꢂꢄꢊ ꢇꢈꢜ ꢄꢏ ꢂꢉꢊꢋꢤ ꢍꢬꢏꢀ ꢓꢅ ꢏꢁꢗꢋꢅRꢅꢋ ꢀꢁ ꢂꢑꢓ  
ORDER INFORMATION  
LEAD FREE – TRAY/REEL  
AUTOMOTIVE PRODUCTS**  
PART MARKING PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3311JV#PBF  
LTC3311JV#WPBF  
LTC3311HV#PBF  
LTC3311HV#WPBF  
LTC3311JV#TRPBF  
LTC3311HV#TRPBF  
LTC3311JV#TRMPBF  
LTC3311HV#TRMPBF  
LTC3311JV#WTRPBF  
LTC3311HV#WTRPBF  
LTC3311JV#WTRMPBF  
LTC3311HV#WTRMPBF  
18-Lead (3mm × 3mm) LQFN  
LHMN  
–40°C to 150°C  
(Laminate Package with QFN Footprint)  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
Rev. 0  
2
For more information www.analog.com  
LTC3311  
ELECTRICAL CHARACTERISTICS The ldenotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 2, 3) VIN = 3.3V, VEN = VIN, MODE/SYNC = 0V, unless otherwise noted.  
PARAMETER  
Input Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Operating Supply Voltage (V )  
2.25  
2.0  
5.5  
2.2  
V
IN  
V
V
Undervoltage Lockout  
Undervoltage Lockout Hysteresis  
V
Rising  
IN  
2.1  
150  
V
mV  
IN  
IN  
V
V
Quiescent Current  
Quiescent Current in Shutdown  
(Note 4)  
EN  
1.3  
1
2.0  
2
mA  
μA  
IN  
IN  
V
= 0.1V  
l
EN Threshold  
EN Hysteresis  
V
Rising  
0.375  
495  
0.4  
60  
0.425  
V
EN  
mV  
EN Pin Leakage Current  
V
EN  
= 0.4V  
20  
nA  
Voltage Regulation  
l
Regulated Feedback Voltage (V  
)
500  
505  
0.025  
20  
mV  
%/V  
nA  
FB  
Feedback Voltage Line Regulation  
Feedback Pin Input Current  
Error Amp Transconductance  
Error Amp Sink/Source Current  
Top Switch Current Limit  
2.5V ≤ V ≤ 5.0V  
0.002  
IN  
V
= 0.5V  
FB  
1
mS  
µA  
45  
18  
14  
16  
4.5  
100  
26  
35  
l
l
15  
12  
21  
16  
V
/V ≤ 0.2, Current Out of SW  
A
OUT IN  
Bottom Switch Current Limit (I  
Top Switch ON-Resistance  
Bottom Switch ON-Resistance  
SW Leakage Current  
)
Current Out of SW  
A
VALLEYMAX  
mΩ  
mΩ  
nA  
V
= 0.1V  
EN  
V
ITH  
to I  
Current Gain  
A/V  
ns  
Peak  
l
l
Minimum On-Time  
60  
Maximum Duty cycle  
100  
%
Power Good/Soft-Start/Temp Monitor  
l
l
PGOOD Rising Threshold  
PGOOD Hysteresis  
As a Percentage of the Regulated V  
As a Percentage of the Regulated V  
97  
98  
1
99  
%
%
OUT  
0.5  
1.5  
l
l
Overvoltage Rising Threshold  
Overvoltage Hysteresis  
105  
1
110  
2.5  
115  
3.5  
%
%
OUT  
PGOOD Leakage Current  
PGOOD Pull Down Resistance  
PGOOD Delay  
V
V
= 5.5V  
= 0.1V  
20  
20  
nA  
Ω
PGOOD  
12  
PGOOD  
125  
µs  
l
l
PGOOD Input Threshold  
PGOOD Input Hysteresis  
Multi-Phase Mode, Rising  
= 0.5V  
390  
7
440  
130  
490  
13  
mV  
mV  
Soft-Start Charge Current  
Temp Monitor Slope  
Oscillator  
V
10  
4
µA  
SSTT  
mV/°C  
l
l
l
l
Switching Frequency Range  
Switching Frequency  
Synchronization Frequency Range  
Default Frequency  
R Programmable  
0.5  
1.8  
0.5  
1.8  
1.2  
5
MHz  
MHz  
MHz  
MHz  
T
R = 274k  
T
2
2
2.2  
2.25  
2.2  
R = V  
T
IN  
IN  
R = V  
T
l
l
SYNC Level High on MODE/SYNC  
SYNC Level Low on MODE/SYNC  
V
V
0.4  
Minimum MODE/SYNC Pulse Width  
40  
ns  
Rev. 0  
3
For more information www.analog.com  
LTC3311  
ELECTRICAL CHARACTERISTICS The ldenotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 2, 3) VIN = 3.3V, VEN = VIN, MODE/SYNC = 0V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
200  
20  
MAX  
UNITS  
kΩ  
µs  
MODE/SYNC Input Resistance  
MODE/SYNC No Clock Detect Time  
MODE/SYNC Clock Out Rise/Fall Time  
MODE/SYNC Clock Low Output Voltage  
MODE/SYNC Clock High Output Voltage  
MODE/SYNC Clock Out Duty Cycle  
C
= 50pF  
= 100µA  
= 100µA  
10  
ns  
MODE/SYNC  
MODE/SYNC  
MODE/SYNC  
I
I
0.2  
V
V
– 0.2  
V
IN  
50  
%
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LTC3311 includes overtemperature protection which protects  
the device during momentary overload conditions. Junction temperatures  
will exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
may impair device reliability.  
Note 2: The LTC3311J/ LTC3311H are guaranteed to meet performance  
specifications from –40°C to 150°C junction temperature.  
Note 4: Supply current specification does not include switching currents.  
Actual supply currents will be higher.  
VIN = 3.3V, TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOUT Line Regulation  
VOUT = 1.2V  
VOUT Load Regulation  
VOUT = 1.2V  
Efficiency, VOUT = 0.5V  
Forced Continuous Operation  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ.ꢁꢀꢁ  
ꢀ.ꢁꢀ0  
ꢀ.ꢁ0ꢂ  
ꢀ.ꢁ0ꢂ  
ꢀ.ꢁ0ꢂ  
ꢀ.ꢁ0ꢁ  
ꢀ.ꢁ00  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁ0  
ꢀ.ꢀꢁꢁ  
ꢀ.ꢁꢀꢁ  
ꢀ.ꢁꢀ0  
ꢀ.ꢁ0ꢂ  
ꢀ.ꢁ0ꢂ  
ꢀ.ꢁ0ꢂ  
ꢀ.ꢁ0ꢁ  
ꢀ.ꢁ00  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁ0  
ꢀ.ꢀꢁꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ ꢃꢋꢂꢌ0ꢍ0 ꢎꢏꢏꢍꢌ0ꢍ000ꢌꢌ  
ꢅ ꢆꢃ  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ ꢄ ꢅꢂ  
ꢀꢁꢂꢃ ꢄ ꢅꢂ  
ꢀꢁꢂꢃ ꢄ ꢅꢂ  
ꢀꢁꢂꢃ ꢄ ꢅꢆꢂ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0.00ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0 ꢀ0  
0
ꢀ0  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢁ ꢂ0ꢀ  
ꢀꢀꢁꢁ ꢂ0ꢃ  
ꢀꢀꢁꢁ ꢂ0ꢁ  
Efficiency, VOUT = 0.5V  
Pulse Skip Mode Operation  
Efficiency, VOUT = 1.2V  
Forced Continuous Operation  
Efficiency, VOUT = 1.2V  
Pulse Skip Mode Operation  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ ꢁꢂꢃꢄ ꢅꢆꢇꢈꢉ ꢃꢊꢂꢋ0ꢌ0 ꢍꢎꢎꢌꢋ0ꢌ00ꢏ0  
ꢀ ꢁꢂꢃꢄ ꢅꢆꢇꢈꢉ ꢃꢊꢂꢋ0ꢌ0 ꢍꢎꢎꢌꢋ0ꢌ00ꢏ0  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ ꢃꢋꢂꢌ0ꢍ0 ꢎꢏꢏꢍꢌ0ꢍ000ꢌꢌ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
0.00ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0 ꢀ0  
0.00ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0 ꢀ0  
0.00ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0 ꢀ0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢁ ꢂ0ꢃ  
ꢀꢀꢁꢁ ꢂ0ꢃ  
ꢀꢀꢁꢁ ꢂ0ꢃ  
Rev. 0  
4
For more information www.analog.com  
LTC3311  
VIN = 3.3V, TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency, VOUT = 1.8V  
Forced Continuous Operation  
Efficiency, VOUT = 1.8V  
Pulse Skip Mode Operation  
Feedback Reference Voltage  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0ꢀ  
ꢀ0ꢁ  
ꢀ0ꢁ  
ꢀ0ꢁ  
ꢀ0ꢁ  
ꢀ00  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ ꢅꢆꢇꢈꢉ ꢃꢊꢂꢋ0ꢌ0 ꢍꢎꢎꢌꢋ0ꢌ00ꢏ0  
ꢀ ꢁꢂꢃꢄ ꢅꢆꢇꢈꢉ ꢃꢊꢂꢋ0ꢌ0 ꢍꢎꢎꢌꢋ0ꢌ00ꢏ0  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0.00ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0 ꢀ0  
0.00ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0 ꢀ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢁ ꢂ0ꢃ  
ꢀꢀꢁꢁ ꢂ0ꢃ  
Switch On Resistance vs VIN  
Switch On Resistance  
Switch Leakage  
24  
22  
20  
18  
16  
14  
12  
10  
8
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
PMOS  
NMOS  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
6
4
0
ꢀꢁ  
2
2.0 2.5 3.0 3.5 4.0 4.5  
INPUT VOLTAGE (V)  
50  
5.5  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
3311 G10  
Default Switching Frequency  
VIN UVLO Threshold  
Switching Frequency  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
R
ꢀ ꢁꢂꢃꢄꢅꢆ  
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
Rev. 0  
5
For more information www.analog.com  
LTC3311  
VIN = 3.3V, TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
EN Pin Thresholds  
Soft-Start Current  
Soft-Start Tracking  
ꢀꢀ.0  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀ0.0  
ꢀ.ꢁ  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
00  
ꢀꢁ Rꢂꢃꢂꢁꢄ  
00  
00  
00  
00  
00  
0
ꢀꢁ ꢂꢃꢄꢄꢅꢁꢆ  
ꢀ.ꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
0
00  
00  
00  
00  
00  
00  
VIN Quiescent Current  
VIN Shutdown Current  
Switch Current Limit  
ꢀ.ꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀ ꢁ.ꢁꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂꢃ ꢄ  
0
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
0
UV PGOOD Threshold  
Minimum On-Time  
OV PGOOD Threshold  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁ.0  
ꢀꢁ.ꢂ  
ꢀꢁ.0  
ꢀꢁ.ꢂ  
ꢀꢁ.0  
ꢀꢁ.ꢂ  
ꢀꢁ.0  
ꢀ0.ꢁ  
0
ꢀ0.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢀ  
ꢀ.0  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00 ꢀꢁꢂ ꢀꢁ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀꢁꢁ ꢂꢃꢄ  
Rev. 0  
6
For more information www.analog.com  
LTC3311  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
CISPR25 Conducted EMI Performance (CISPR25  
Conducted Emission Test with Class 5 Peak Limits)  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁꢂꢃꢄRꢁꢅ ꢁꢀꢆꢃꢃꢆꢇꢈꢃ  
ꢀꢁꢂꢃꢄꢅꢆ ꢅꢇꢃꢈꢄ  
ꢀꢁ0  
ꢀꢁ0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00 ꢀꢀ0  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢁ ꢂꢃꢄ  
ꢀꢁꢂ0ꢃꢄꢅ ꢀꢆꢇꢈ ꢉꢈꢅRꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆꢂ ꢇꢂꢅR ꢂꢉꢊꢃꢋꢈꢈꢅꢌꢍ  
ꢀ.ꢀꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ.ꢉꢁ ꢇꢅꢆꢄꢅꢆ ꢊꢆ ꢈ0ꢊꢋ ꢌ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
Radiated EMI Performance (CISPR25 Radiated  
Emissions Test with Class 5 Peak Limits)  
Radiated EMI Performance (CISPR25 Radiated  
Emissions Test with Class 5 Peak Limits)  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁRꢂꢃꢁꢄꢅꢆꢇ ꢈꢁꢇꢆRꢂꢃꢆꢅꢂꢁꢄ  
ꢀꢁRꢂꢃꢄꢅꢆ ꢇꢈꢆꢅRꢃꢉꢅꢂꢃꢈꢊ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
0
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁꢂꢃꢄRꢁꢅ ꢁꢀꢆꢃꢃꢆꢇꢈꢃ  
ꢀꢁꢂꢃꢄRꢁꢅ ꢁꢀꢆꢃꢃꢆꢇꢈꢃ  
ꢀꢁꢂꢃꢄꢅꢆ ꢅꢇꢃꢈꢄ  
ꢀꢁꢂꢃꢄꢅꢆ ꢅꢇꢃꢈꢄ  
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00 ꢀ000  
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00 ꢀ000  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢁ ꢂꢃꢄ  
ꢀꢀꢁꢁ ꢂꢃꢄ  
ꢀꢁꢂ0ꢃꢄꢅ ꢀꢆꢇꢈ ꢉꢈꢅRꢀ  
ꢀꢁꢂ0ꢃꢄꢅ ꢀꢆꢇꢈ ꢉꢈꢅRꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆꢂ ꢇꢂꢅR ꢂꢉꢊꢃꢋꢈꢈꢅꢌꢍ  
ꢀꢁꢂꢃꢄ ꢅꢆꢂ ꢇꢂꢅR ꢂꢉꢊꢃꢋꢈꢈꢅꢌꢍ  
ꢀ.ꢀꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ.ꢉꢁ ꢇꢅꢆꢄꢅꢆ ꢊꢆ ꢈ0ꢊꢋ ꢌ ꢀ ꢁꢂꢃꢄ  
ꢀ.ꢀꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ.ꢉꢁ ꢇꢅꢆꢄꢅꢆ ꢊꢆ ꢈ0ꢊꢋ ꢌ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
Rev. 0  
7
For more information www.analog.com  
LTC3311  
PIN FUNCTIONS  
EN (Pin 1): The EN pin has a precision enable threshold  
with hysteresis. An external resistor divider, from V or  
from another supply, programs the threshold below which  
the LTC3311 will shut down. If the precision threshold is  
not used, directly connect the pin to VIN. When the EN pin  
is low, the LTC3311 enters a low current shutdown mode  
where all internal circuitry is disabled.  
PGOOD (Pin 14): The PGOOD pin is a power good pin and  
is the open drain output of an internal comparator. The  
PGOOD output is pulled low when VIN is above 2.25V and  
the part is in shutdown. When connecting multiple phases  
in parallel, connect the PGOOD pins together.  
IN  
RT (Pin 15): The RT pin sets the oscillator frequency  
with an external resistor to AGND or sets the phasing  
for multiphase operation. (see Multiphase Operation in  
Applications Information).  
AGND (Pin 2): The AGND pin is the output voltage remote  
ground sense. Connect the AGND pin directly to the nega-  
tive terminal of the output capacitor at the load and to the  
feedback divider resistor.  
SSTT (Pin 16): Soft-Start, Track, Temperature Monitor.  
An internal 10µA current into an external capacitor on the  
soft-start pin programs the output voltage ramp rate dur-  
ing start-up. During the soft-start cycle, the FB pin voltage  
will track the SSTT pin voltage. When the soft-start cycle  
is complete, the tracking function is disabled, the internal  
reference resumes control of the error amplifier and the  
SSTT pin servos to a voltage representative of junction  
temperature. For a clean recovery from an output short  
circuit condition, the SSTT pin is pulled down to approxi-  
VIN (Pins 3, 4, 11, 12): The VIN pins supply current to the  
internal circuitry and topside power switch. All of the V  
pins must be connected together with short, wide traces  
and bypassed to PGND with low ESR capacitors located  
as close as possible to the pins.  
IN  
PGND (Pins 5, 10, 19): The PGND pins are the return  
path of the internal bottom side power switch. Connect  
the PGND pins together and to the exposed pad. Connect  
the negative terminal of the input capacitors as close to  
the PGND pins as possible. The PGND node is the main  
thermal highway and should be connected to a large PCB  
ground plane with many large vias.  
mately 140mV above the V voltage and a new soft-start  
FB  
cycle is initiated. During shutdown and fault conditions,  
the SSTT pin is pulled to ground.  
ITH (Pin 17): The ITH pin is the compensation node for  
the output voltage regulation control loop. Compensation  
components connected to this pin are referenced to AGND.  
SW (Pins 6–9): The SW pins are the switching outputs of  
the internal power switches. Connect these pins together  
to the inductor with short, wide traces.  
FB (Pin 18): The output voltage feedback pin is externally  
connected to the output voltage via a resistive divider and  
is internally connected to the inverting input of the error  
amplifier. The LTC3311 regulates the FB pin to 500mV. A  
MODE/SYNC (Pin 13): The MODE/SYNC pin facilitates  
multiphase operation and synchronization to an external  
clock. Depending on the mode of operation, the MODE/  
SYNC pin either accepts an input clock pulse or outputs  
a clock pulse at its operating frequency. (see Multiphase  
Operation in Applications Information). The MODE/SYNC  
pin also programs the mode of operation: pulse skip or  
forced continuous.  
phase lead capacitor connected between V and V  
is  
FB  
OUT  
used to optimize the transient response.  
Rev. 0  
8
For more information www.analog.com  
LTC3311  
BLOCK DIAGRAM  
ꢖꢌ  
Rꢅ  
ꢋꢌ  
0.ꢀꢀꢁ  
0.ꢀꢁ  
0.ꢂꢃꢁ  
ꢖꢌ  
ꢖꢌꢑꢋRꢌꢎꢐ  
RꢋꢍꢋRꢋꢌꢔꢋ  
ꢖꢌ  
Rꢓ  
0.ꢂꢁ  
0.ꢅꢒꢍ  
ꢗꢓ  
ꢖꢌ  
Rꢑ  
ꢊꢘꢖꢑꢔꢝ ꢐꢕꢚꢖꢔ  
R
ꢊꢘ  
ꢖꢌ  
ꢎꢌꢇ  
ꢕꢏꢑ  
R
ꢕꢊꢔꢖꢐꢐꢎꢑꢕR  
ꢎꢌꢑꢖꢞꢊꢝꢕꢕꢑ ꢑꢝRꢕꢏꢚꢝ  
ꢕꢏꢑ  
ꢊꢋꢌꢊꢋ  
ꢊꢋꢌꢊꢋ  
ꢛꢕꢇꢋꢟꢊꢠꢌꢔ  
ꢙꢚꢌꢇ  
ꢍꢆ  
ꢊꢐꢕꢙꢋ ꢔꢕꢛꢙ  
ꢖꢑꢝ  
R
R
ꢍꢍ  
ꢋRRꢕR  
ꢎꢛꢙ  
0.ꢀꢁ  
R
ꢎꢚꢌꢇ  
ꢅ0ꢒꢎ  
ꢙꢚꢕꢕꢇ  
ꢁ  
ꢊꢊꢑꢑ  
ꢑꢋꢛꢙ  
0.ꢂꢃꢁ  
0.ꢀꢀꢁ  
ꢍꢎꢏꢑ  
ꢊꢊ  
ꢍꢎꢏꢑ  
ꢄꢄꢅꢅ ꢆꢇ  
Rev. 0  
9
For more information www.analog.com  
LTC3311  
OPERATION  
Voltage Regulation  
Synchronizing the Oscillator to an External Clock  
The LTC3311 is a monolithic, constant frequency, current  
mode step-down DC/DC converter. An oscillator turns on  
the internal top power switch at the beginning of each  
clock cycle. Current in the inductor increases until the  
top switch current comparator trips and turns off the top  
power switch. The peak inductor current at which the top  
switch turns off is controlled by the voltage on the ITH  
node. The error amplifier servos the ITH node by com-  
paring the voltage on the FB pin with an internal 500mV  
reference. When the load current increases, it causes a  
reduction in the feedback voltage relative to the reference  
leading the error amplifier to raise the ITH voltage until the  
average inductor current matches the new load current.  
When the top power switch turns off, the synchronous  
power switch turns on until the next clock cycle begins  
or, in pulse-skipping mode, inductor current falls to zero.  
If overload conditions result in excessive current flowing  
through the bottom switch, the next clock cycle will be  
delayed until switch current returns to a safe level.  
The LTC3311’s internal oscillator is synchronized through  
an internal PLL circuit to an external frequency by apply-  
ing a square wave clock signal to the MODE/SYNC pin.  
During synchronization, the top power switch turn-on is  
locked to the rising edge of the external frequency source.  
While synchronizing, the switcher operates in forced con-  
tinuous mode. The slope compensation is automatically  
adapted to the external clock frequency.  
After detecting an external clock on the first rising edge  
of the MODE/SYNC pin, the internal PLL gradually adjusts  
its operating frequency to match the frequency and phase  
of the signal on the MODE/SYNC pin. When the external  
clock is removed, the LTC3311 detects the absence of  
the external clock within approximately 20µs. During this  
time, the PLL will continue to provide clock cycles. Once  
the external clock removal has been detected, the oscilla-  
tor gradually adjusts its operating frequency back to the  
default frequency.  
The output voltage is resistively divided externally to cre-  
ate a feedback voltage for the regulator. In high current  
operation, a ground offset may be present between the  
LTC3311 local ground and ground at the load. To over-  
come this offset, AGND should have a Kelvin connec-  
tion to the load ground, and the lowest potential node of  
the resistor divider should be connected to AGND. The  
internal error amplifier senses the difference between  
this feedback voltage and a 0.5V AGND referenced volt-  
age. This scheme overcomes any ground offsets between  
local ground and remote output ground, resulting in a  
more accurate output voltage. The LTC3311 allows for  
remote output ground deviations as much as 100mV  
with respect to local ground.  
Mode Selection  
The MODE/SYNC pin either synchronizes the switch-  
ing frequency to an external clock, is a clock output, or  
sets the PWM mode. The PWM modes of operation are  
either pulse skip or forced continuous. See Table 6 in  
the Applications Information section. In pulse skip mode,  
switching cycles are skipped at light loads to regulate the  
output voltage. During forced continuous mode, the top  
switch turns on every cycle and light load regulation is  
achieved by allowing negative inductor current.  
Output Power Good  
Comparators monitoring the FB pin voltage pull the  
PGOOD pin low if the output voltage varies from the  
nominal set point or if a fault condition is present. The  
comparator includes voltage hysteresis. A time delay to  
report PGOOD is used to filter short duration output volt-  
age transients.  
If the EN pin is low, the LTC3311 is shut down and in a  
low quiescent current state. When the EN pin is above its  
threshold, the switching regulator will be enabled.  
Rev. 0  
10  
For more information www.analog.com  
LTC3311  
OPERATION  
Soft-Start/Tracking/Temperature Monitor  
Output Short-Circuit Protection and Recovery  
The soft-start tracking function facilitates supply sequenc-  
The peak inductor current level, at which the current com-  
parator shuts off the top power switch, is controlled by the  
voltage on the ITH pin. If the output current increases, the  
error amplifier raises the ITH pin voltage until the average  
inductor current matches the load current. The LTC3311  
clamps the maximum ITH pin voltage, thereby limiting the  
peak inductor current.  
ing, limits V inrush current and reduces start-up output  
IN  
overshoot. When soft-starting is completed, the SSTT pin  
parks itself at a voltage representative of the LTC3311  
die junction temperature. The SSTT capacitor is reset  
during shutdown, V UVLO and thermal shutdown. See  
IN  
Application section.  
When the output is shorted to ground, the inductor cur-  
rent decays very slowly during a single switching cycle  
because the voltage across the inductor is low. To keep  
the inductor current in control, a secondary limit is  
imposed on the valley of the inductor current. If the induc-  
tor current measured through the bottom power switch  
Dropout Operation  
As the input supply voltage approaches the output volt-  
age, the duty cycle increases. Further reduction of the  
supply voltage forces the main switch to remain on for  
more than one cycle, eventually reaching 100% duty  
cycle. The output voltage will then be determined by the  
input voltage minus the DC voltage drop across the inter-  
nal main P-channel MOSFET and the inductor.  
is greater than the I  
the top power switch will  
VALLEY(MAX)  
be held off. Subsequent switching cycles will be skipped  
until the inductor current is reduced below I  
.
VALLEY(MAX)  
In many designs when the input voltage approaches the  
output voltage, the amplitude of the output ripple volt-  
age increases from its normally low value. To avoid any  
increase in output ripple voltage under these conditions,  
it is recommended to utilize a resistor divider on the EN  
Recovery from an output short circuit goes through a  
soft-start cycle. When V  
goes below regulation, as  
defined by the PGOOD tOhUreTshold, the SSTT voltage is  
pulled to a voltage just above the FB voltage. Because  
the SSTT pin is pulled low, a soft-start cycle is initiated  
once the output short is removed.  
input and limit the V turn-on and turn-off thresholds to  
IN  
where the output ripple voltage is acceptable for the given  
application (typically 500mV above V ).  
OUT  
Low Supply Operation  
The LTC3311 is designed to operate down to an input  
supply voltage of 2.25V. An important thermal design  
consideration is that the R  
of the power switches  
DS(ON)  
increase at low VIN. Calculate the worst case LTC3311  
power dissipation and die junction temperature at the low-  
est input voltages.  
Rev. 0  
11  
For more information www.analog.com  
LTC3311  
APPLICATIONS INFORMATION  
Refer to the Block Diagram for reference.  
switching frequency (fSW(MAX)) for a given application  
can be calculated using Equation 2.  
FB Resistor Network  
V
OUT + VSW BOT  
( )  
(2)  
fSW MAX  
=
The output voltage is programmed with a resistor divider  
between the output and the FB pin. Choose the resistor  
values according to Equation 1.  
(
)
tON MIN  
V
) VSW TOP + VSW BOT  
IN MAX  
( ) ( )  
(
)
(
)
(
where VIN(MAX) is the maximum input voltage, VOUT is the  
output voltage, VSW(TOP) and VSW(BOT) are the internal  
VOUT  
500mV  
(1)  
RA =RB  
– 1  
switch drops and t  
is the minimum top switch on-  
ON(MIN)  
time. Equation 2 shows that a slower switching frequency  
is necessary to accommodate a high V /V ratio.  
as shown in Figure 1:  
IN OUT  
ꢁꢂꢃ  
The LTC3311 is capable of a maximum duty cycle of  
100%, therefore, the V -to-V dropout is limited by  
DS(ON)  
load current.  
R
R
ꢄꢄ  
ꢁꢂꢃ  
IN  
OUT  
ꢇꢂꢀꢊ  
ꢋꢌꢍꢃꢀꢎꢍꢏꢐ  
RꢑꢐꢂꢒꢅꢃꢁR  
ꢄꢇ  
the R  
of the top switch, the inductor DCR and the  
ꢓꢁꢔꢃꢍꢁꢏꢅꢒꢕ  
ꢈꢈꢉꢉ ꢄ0ꢉ  
Setting the Switching Frequency  
Figure 1. Feedback Resistor Network  
The LTC3311 uses a constant frequency PWM architec-  
ture. There are three methods to set the switching fre-  
Reference designators refer to the Block Diagram. 1%  
resistors are recommended to maintain output voltage  
accuracy. When optimizing the control loop for high band-  
width and optimal transient response add a phase-lead  
quency. The first method is with a resistor (R ) tied from  
T
the RT pin to ground. The frequency can be programmed  
to switch from 500kHz to 5MHz. Table 1 shows the neces-  
sary R value for a desired switching frequency.  
T
capacitor connected from V  
to FB.  
OUT  
The R resistor required for a desired switching frequency  
T
Operating Frequency Selection and Trade-Offs  
is calculated using Equation 3.  
Selection of the operating frequency is a trade-off between  
efficiency, component size, transient response and input  
voltage range.  
(3)  
(–1.08)  
RT = 568 • fSW  
where R is in kΩ and f is the desired switching fre-  
T
SW  
The advantage of high frequency operation is that smaller  
inductor and capacitor values may be used. Higher  
switching frequencies allow for higher control loop  
bandwidth and, therefore, faster transient response. The  
disadvantages of higher switching frequencies are lower  
efficiency, because of increased switching losses, and a  
smaller input voltage range, because of minimum switch  
on-time limitations.  
quency in MHz.  
Table 1. SW Frequency vs RT Value  
f
SW  
(MHz)  
R (kΩ)  
T
0.5  
1
1210  
549  
274  
243  
178  
130  
100  
2
2.2  
3
Although the maximum programmable switching fre-  
quency is 5MHz, the minimum on-time of the LTC3311  
imposes a minimum operating duty cycle. The highest  
4
5
Rev. 0  
12  
For more information www.analog.com  
LTC3311  
APPLICATIONS INFORMATION  
The second method to set the LTC3311 switching fre-  
quency is by synchronizing the internal PLL circuit to an  
external frequency applied to the MODE/SYNC pin. The  
synchronization frequency range is 0.5MHz to 2.25MHz.  
where I  
is the maximum output load current for  
a givenLaOpApDl(iMcaAtXio) n and ΔI is the inductor ripple current  
L
calculated using Equation 7.  
VOUT  
L • fSW  
VOUT  
VIN(MAX)  
IL =  
• 1–  
(7)  
The internal PLL starts up at the 2MHz default frequency.  
After detecting an external clock on the first rising edge  
of the MODE/SYNC pin, the internal PLL gradually adjusts  
its operating frequency to match the frequency and phase  
of the MODE/SYNC signal.  
where V  
is the maximum application input voltage.  
IN(MAX)  
To keep the efficiency high, choose an inductor with the  
lowest series resistance (DCR). The core material should  
be intended for high frequency applications.  
The LTC3311 detects when the external clock is removed  
and will gradually adjust its operating frequency to the  
2MHz default frequency. The LTC3311 operates in forced  
continuous mode when synchronized to an external clock.  
The LTC3311 limits the peak switch current in order to  
protect the switches and the system from overload faults.  
The inductor value must then be sufficiently large to sup-  
ply the desired maximum output current, IOUT(MAX), which  
is a function of the switch current limit, ILIM, and the ripple  
current (Equation 8).  
The third method of setting the LTC3311 switching fre-  
quency is to use the internal nominal 2MHz default clock.  
See Table 4 for pin configuration.  
Inductor Selection and Maximum Output Current  
IOUT MAX = ILIM IL  
(8)  
(
)
Considerations in choosing an inductor are inductance,  
RMS current rating, saturation current rating, DCR and  
core loss.  
Therefore, the maximum output current that the LTC3311  
will deliver depends on the switch current limit, the induc-  
tor value, and the input and output voltages. The inductor  
value may have to be increased if the inductor ripple cur-  
rent does not allow sufficient maximum output current  
inOpUuTt(vMoAlXta)ge used in the desired application.  
Table 2. Inductor Manufacturers  
A good first choice for the inductor value is given by  
Equation 4 and Equation 5.  
(I  
) given the switching frequency, and maximum  
VOUT  
4AfSW  
VOUT  
VOUT  
V
IN(MAX)  
L ≈  
L ≈  
1−  
for  
0.5  
(4)  
(5)  
V
IN(MAX)  
VENDOR  
Coilcraft  
Sumida  
URL  
0.25V  
VOUT  
V
IN(MAX)  
IN(MAX)  
for  
> 0.5  
www.coilcraft.com  
www.sumida.com  
www.toko.com  
www.we-online.com  
www.vishay.com  
www.xfmrs.com  
4AfSW  
Toko  
where f is the switching frequency in MHz, V is the  
SW  
IN  
Wurth Elektronik  
Vishay  
input voltage and L is the inductor value in μH.  
To avoid overheating of the inductor, choose an inductor with  
an RMS current rating that is greater than the maximum  
expected output load of the application. Overload and short  
circuit conditions may need to be taken into consideration.  
XFMRS  
Input Capacitors  
Bypass the input of the LTC3311 with at least two bulk  
storage ceramic capacitors close to the part, one on each  
In addition, the saturation current (ISAT) rating of the  
inductor must be higher than the load current plus 1/2 of  
the inductor ripple current (Equation 6).  
side from V to PGND. These capacitors should be 0603  
IN  
or 0805 in size. See layout section for more detail. X7R or  
1
I
SAT ILOAD MAX) + IL  
(6)  
(
2
Rev. 0  
13  
For more information www.analog.com  
LTC3311  
APPLICATIONS INFORMATION  
X5R capacitors are recommended for best performance  
across temperature and input voltage variations. Note that  
larger input capacitance is required when a lower switch-  
ing frequency is used. For high frequency applications,  
adding two small capacitors close to the part is recom-  
mended. If the input power source has high impedance, or  
there is significant inductance due to long wires or cables,  
additional bulk capacitance may be necessary. This can  
be provided with a low performance electrolytic capacitor.  
X5R or X7R type capacitors will provide low output ripple  
and good transient response. Transient performance is  
improved with a higher value output capacitor and the  
addition of a feedforward capacitor placed between  
V
and FB. Increasing the output capacitance will also  
OUT  
decrease the output voltage ripple. A lower value of output  
capacitor saves space and cost but transient performance  
will suffer and may cause loop instability. See the Typical  
Applications for suggested capacitor values.  
A ceramic input capacitor combined with trace or cable  
inductance forms a high quality (under damped) tank  
circuit. If the LTC3311 circuit is plugged into a live sup-  
ply, the input voltage can ring to twice its nominal value,  
possibly exceeding the LTC3311’s voltage rating. This  
situation is easily avoided (see Analog Devices Application  
Note 88).  
Multiphase Operation  
The LTC3311 is easily configurable for multiphase opera-  
tion. See Table 4.  
Connecting the RT pin, of the master phase, to a resis-  
tor to AGND programs the frequency and configures the  
MODE/SYNC pin to become clock output used to drive  
the MODE/SYNC pin of the slave phase(s).  
Table 3. Ceramic Capacitor Manufacturers  
VENDOR  
AVX  
URL  
Connecting the RT pin of the master phase to V con-  
IN  
www.avxcorp.com  
www.murata.com  
www.tdk.com  
figures the MODE/SYNC pin to become an input capable  
of accepting an external clock. The switching frequency  
defaults to the nominal 2MHz internal frequency when  
the external clock is unavailable, such as during start-up.  
Murata  
TDK  
Taiyo Yuden  
Samsung  
www.t-yuden.com  
www.samsungsem.com  
Connecting the FB pin to VIN configures a phase as a  
slave. The MODE/SYNC becomes an input and the voltage  
control loop is disabled. The slave phase current control  
loop is still active and the peak current is controlled via the  
shared ITH node. Careful consideration should be taken  
when routing the ITH node between phases. Routing the  
ITH and AGND nodes together is recommended to create  
a low inductance path. See the Multi-Phase Demo Board  
PCB layout as an example.  
Output Capacitor and Output Ripple  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave, generated  
by the LTC3311, to produce the DC output. In this role  
it determines the output ripple, thus, low impedance at  
the switching frequency is important. The second func-  
tion is to store energy in order to satisfy transient loads  
and stabilize the LTC3311’s control loop. Ceramic capaci-  
tors have very low equivalent series resistance (ESR) and  
provide the best ripple performance. For good starting  
values, see the Typical Applications section.  
Connecting the PGOOD pins together and adding an exter-  
nal pull-up resistor allows the master phase to commu-  
nicate with the slave phases on when start-up has been  
completed.  
Table 4. LTC3311 Multiphase Configuration  
Master/Slave  
Master  
RT Pin  
FB Pin  
MODE/SYNC Pin  
Clock Input  
Switching Frequency (f  
)
SW  
V
IN  
V
V
Divider  
External Clock/2MHz Default  
RT programmed  
OUT  
OUT  
Master  
Resistor to AGND  
Divider  
Divider  
Clock Output  
Clock Input  
Slave  
V
V
IN  
External Clock  
IN  
Rev. 0  
14  
For more information www.analog.com  
LTC3311  
APPLICATIONS INFORMATION  
Table 6. LTC3311 Single Phase Configuration  
The phasing of a slave phase relative to the master phase  
is programmed with a resistor divider on the RT pin. Use  
of 1% resistors is recommended. See Table 5 for more  
information.  
RT Pin  
Connection  
MODE/SYNC  
Pin Connection  
MODE of  
Operation  
Switching  
Frequency  
VIN  
VIN  
VIN  
Clock Input  
AGND  
Forced  
External Clock  
Continuous  
Table 5. LTC3311 Programming Slave Phase Angle  
SYNC  
Forced  
Continuous  
2MHz Default  
Phase  
Angle  
R3  
Ratio  
R4  
Ratio  
R3  
Example  
R4  
VIN  
Pulse Skip  
2MHz Default  
Example  
Resistor to AGND Clock Output  
Forced  
Continuous  
RT Programmed  
0°  
0Ω  
3 • R  
7 • R  
NA  
NA  
R
0Ω  
301k  
243k  
NA  
NA  
90°  
100k  
174k  
0Ω  
120°  
180°  
240°  
270°  
5 • R  
0Ω  
Synchronization  
To synchronize the LTC3311 oscillator to an external fre-  
quency, configure the MODE/SYNC pin as an input by  
5 • R  
R
7 • R  
3 • R  
174k  
100k  
243k  
300k  
connecting the RT pin to V . Drive the MODE/SYNC pin  
IN  
with a square wave in the frequency range of 500 kHz to  
2.25MHz range, an amplitude greater than 1.2V and less  
than 0.4V with a pulse width greater than 40ns.  
When configured for master/slave operation, the slave  
phases operate in forced continuous modes.  
ꢆꢇ  
The LTC3311 phase locked loop (PLL) will synchronize  
the internal oscillator to the clock applied to the MODE/  
SYNC pin. At start up, before the LTC3311 recognizes  
the external clock applied to MODE/SYNC, the LTC3311  
will switch at its default frequency of 2MHz. Once the  
externally applied clock is recognized, the switching  
frequency will gradually transition from the default fre-  
quency to the applied frequency. If the external clock is  
removed, the LTC3311 will slowly transition back to the  
default frequency.  
ꢈꢉ  
Rꢃ  
Rꢋ  
ꢂꢃꢃꢄꢄ  
Rꢁ  
ꢃꢃꢄꢄ ꢈ0ꢊ  
ꢌꢍꢇꢎ  
Figure 2. Phase Programming  
MODE of Operation  
For most configurations, the LTC3311 operates in forced  
continuous mode. While in forced continuous mode, reg-  
ulation at low currents is achieved by allowing negative  
inductor current. Switching cycles are not skipped.  
The LTC3311 operates in forced continuous mode during  
synchronization. An internal 200kΩ resistor on MODE/SYNC  
pin to AGND allows the MODE/SYNC pin to be left floating.  
Transient Response and Loop Compensation  
The LTC3311 operates in pulse skip mode when both R  
T
and MODE/SYNC pins are connected to V . In this mode,  
the switching frequency is set with theINnominal 2MHz  
internal clock. While in pulse skip mode negative current  
is disallowed and regulation at low currents is achieved  
by skipping switching cycles.  
When determining the compensation components, C ,  
FF  
R , and C , control loop stability and transient response  
C
C
are the two main considerations.  
The LTC3311 has been designed to operate at a high band-  
width for fast transient response capability. Operating at  
a high loop bandwidth reduces the output capacitance  
required to meet transient response requirements.  
Applying a load transient and monitoring the response of  
the system or using a network analyzer to measure the  
actual loop response are two ways to verify and optimize  
Rev. 0  
15  
For more information www.analog.com  
LTC3311  
APPLICATIONS INFORMATION  
the control loop stability. LTpowerCAD® is a useful tool to  
help optimize the compensation components.  
Output Voltage Sensing  
The LTC3311 AGND pin is the ground reference for the  
internal analog circuitry, including the bandgap voltage  
reference. To achieve good load regulation, connect the  
AGND pin to the negative terminal of the output capaci-  
When using the load transient response method to sta-  
bilize the control loop, apply an output current pulse of  
20% to 100% of full load current having a rise time of  
1µs. This will produce a transient on the output voltage  
and ITH pin waveforms.  
tor (C ) at the load. A drop in the high current power  
OUT  
ground return path will be compensated. All of the signal  
components, such as the FB resistor dividers and soft-  
start capacitor, should be referenced to the AGND node.  
The AGND node carries very little current and, therefore,  
can be a minimal size trace. See the example PCB Layout  
for more information.  
Switching regulators take multiple cycles to respond to  
a step in load current. When a load step occurs, V  
is  
OUT  
immediately perturbed, generating a feedback error signal  
used by the regulator to return V  
value.  
to its steady-state  
OUT  
During this recovery time, monitor VOUT for overshoot  
or ringing that would indicate a stability problem. The  
initial output voltage step may not be within the band-  
width of the feedback loop, so the standard second order  
overshoot/DC ratio cannot be used to determine phase  
margin. The gain of the loop increases with the R and the  
bandwidth of the loop increases with decreasingCCC. If RC  
Enable Threshold Programming  
The LTC3311 has a precision threshold enable pin  
to enable or disable switching. When forced low, the  
LTC3311 enters a low current shutdown mode.  
The rising threshold of the EN comparator is 400mV, with  
60mV of hysteresis. Connect the EN pin to V if the shut-  
IN  
down feature is not used. Adding a resistor divider from  
is increased by the same factor that C is decreased, the  
C
V
to EN programs the LTC3311 to regulate the output  
zero frequency will be kept the same, thereby keeping the  
phase the same in the most critical frequency range of the  
feedback loop. In addition, adding a feed forward capaci-  
tor, CFF, improves the high frequency response. Capacitor  
CFF provides phase lead by creating a high frequency zero  
IN  
only when V is above a desired voltage (see the Block  
IN  
Diagram). Typically, this threshold, V  
, is used in situ-  
IN(EN)  
ations where the input supply is current limited or has a  
relatively high source resistance. A switching regulator  
draws constant power from the source, so source current  
increases as source voltage drops. This looks like a nega-  
tive resistance load to the source and can cause the source  
to current limit or latch low under low source voltage con-  
with R to improve the phase margin. The compensation  
A
components of the typical application circuits are a good  
starting point for component values.  
The output voltage settling behavior is related to the sta-  
bility of the closed-loop system. For a detailed explanation  
of optimizing the compensation components, including  
a review of control loop theory, refer to Analog Devices  
Application Note 76.  
ditions. The V  
threshold prevents the regulator from  
IN(EN)  
operating at source voltages where problems may occur.  
This threshold can be adjusted by setting the values R1  
and R2 such that they satisfy Equation 9.  
R1  
R2  
V
=
+1 • 400mV  
(9)  
IN EN  
(
)
Output Overvoltage Protection  
During an output overvoltage event, when the FB pin volt-  
age is greater than 110% of nominal, the LTC3311 top  
power switch will be turned off. If the output remains out  
of regulation for more than 100µs, the PGOOD pin will  
be pulled low.  
where the LTC3311 will remain off until VIN is above  
VIN(EN). Due to the comparator’s hysteresis, switching  
will not stop until the input falls slightly below V  
.
IN(EN)  
Alternatively, a resistor divider from an output of another  
regulator to the enable pin of the LTC3311 provides event-  
based power-up sequencing, enabling the LTC3311 when  
An output overvoltage event should not happen under  
normal operating conditions.  
Rev. 0  
16  
For more information www.analog.com  
LTC3311  
APPLICATIONS INFORMATION  
the output of the other regulator reaches a predetermined  
level.  
The following procedure is used for a more accurate mea-  
surement of the junction temperature:  
1. Measure the ambient temperature T .  
A
Output Voltage Tracking and Soft-Start  
2. Measure the SSTT voltage while in pulse skip mode  
with the VOUT pulled up slightly higher than the  
The LTC3311 allows the user to program its output volt-  
age ramp rate by means of the SSTT pin.  
regulated V  
.
OUT  
An internal 10μA pulls up the SSTT pin. Putting an external  
capacitor on SSTT enables soft-starting the output to pre-  
vent current surge on the input supply and output voltage  
overshoot. During the soft-start ramp, the output volt-  
age will proportionally track the SSTT pin voltage. When  
the soft-start is complete, the pin will servo to a voltage  
proportional to the LTC3311 junction temperature. See  
Figure 3 showing the SSTT pin operating range.  
3. Calculate the slope of the temperature sensing circuit  
with Equation 12.  
VSSTT  
TA +273  
Slope (mV /°C)=  
(12)  
4. Calculate the junction temperature with the new cali-  
brated slope.  
When the output voltage goes out of regulation and the  
power good pin is pulled low, the soft-start pin no longer  
reports the temperature.  
The soft-start time is calculated using Equation 10.  
500mV  
t
SS = CSS •  
(10)  
10µA  
ꢍꢎ0  
ꢍꢏꢎ  
For output tracking applications, SSTT can be externally  
driven by another voltage source. From 0V to 0.5V, the  
SSTT voltage will override the internal 0.5V reference  
input to the error amplifier, thus regulating the FB pin  
voltage to that of SSTT pin. When SSTT is above 0.5V,  
tracking is disabled and the feedback voltage will regulate  
to the internal reference voltage  
ꢍ00  
ꢐꢎ  
ꢔꢔꢃꢃ ꢅꢁꢖ ꢌꢕꢜꢂ  
ꢕꢅꢂRꢛꢃꢁꢖꢜ Rꢛꢖꢜꢂ  
ꢀꢁꢂ ꢃꢂꢄꢅ  
ꢆꢇꢈꢉ  
ꢃꢂꢄꢅ  
ꢄꢕꢖꢁꢃꢕR  
ꢗꢓꢘꢌꢙꢇꢈ  
ꢎ0  
ꢏꢎ  
0.ꢑ  
0.ꢎ  
0.ꢓ  
0.ꢒ  
0.ꢏ  
0.ꢍ  
0
An active pull-down circuit is connected to the SSTT pin  
to discharge the external soft-start capacitor in the case  
of fault conditions. The ramp will restart when the fault is  
cleared. Fault conditions that clear the soft-start capacitor  
are the EN/UV pin transitioning low, VIN voltage falling too  
low or thermal shutdown.  
ꢊꢋ  
ꢆꢌꢉ  
ꢔꢕꢊꢔꢃꢛRꢃ  
ꢛꢖꢀ ꢃRꢛꢈꢞꢁꢖꢜ  
0
0.ꢍ 0.ꢏ 0.ꢒ 0.ꢓ 0.ꢎ 0.ꢑ ꢍ.ꢏ ꢍ.ꢒ ꢍ.ꢓ ꢍ.ꢎ ꢍ.ꢑ ꢍ.ꢐ ꢔꢔꢃꢃ ꢆꢌ  
ꢒꢒꢍꢍ ꢊ0ꢒ  
Figure 3. Soft-Start and Temperature Monitor Operation  
Temperature Monitor  
Output Power Good  
Once the soft-start cycle has completed and the output  
power good flag thrown, the SSTT pin reports the die  
junction temperature. The LTC3311 regulates the SSTT  
pin to a voltage proportional to the junction temperature.  
While reporting the temperature, the SSTT voltage is not  
valid below 1V. The junction temperature is calculated  
with Equation 11.  
When the LTC3311’s output voltage is within the –2/+10%  
window of the nominal regulation voltage the output is  
considered good and the open-drain PGOOD pin goes  
high impedance and is typically pulled high with an exter-  
nal resistor. Otherwise, the internal pull-down device will  
pull the PGOOD pin low. To prevent glitching both the  
upper and lower thresholds, include 1% of hysteresis as  
well as a built in time delay, typically 100µs. The PGOOD  
VSSTT  
4mV  
(11)  
TJ (°C)=  
273  
Rev. 0  
17  
For more information www.analog.com  
LTC3311  
APPLICATIONS INFORMATION  
pin is also actively pulled low during fault conditions: EN  
The LTC3311 does not have any internal bypass capacitors  
and hence requires three additional 0201 external capaci-  
pin is low, V is too low or in thermal shutdown.  
IN  
tors (C , C , and C ), as shown in Figure 4. Place  
IN5 IN6  
IN7  
For multiphase applications the PGOOD pin is used for  
communication between the master and slave phases.  
these capacitors as close as possible to the IC.  
Connect the PGOOD pins together and pull-up to V or  
To avoid noise coupling into FB, the resistor divider  
should be placed near the FB and AGND pins and physi-  
cally close to the LTC3311. The remote output and ground  
traces should be routed together as a differential pair to  
the remote output. These traces should be terminated as  
close as physically possible to the remote output point  
that is to be accurately regulated through remote differ-  
ential sensing.  
IN  
V
with an external resistor.  
OUT  
Output Short Circuit Protection and Recovery  
The peak inductor current at which the current compara-  
tor shuts off the top power switch is controlled by the  
voltage on the ITH pin. If the output current increases,  
the error amplifier raises the ITH pin voltage until the  
average inductor current matches the new load current.  
In normal operation, the LTC3311 clamps the maximum  
ITH pin voltage.  
See Figure 4 for a recommended PCB layout.  
ꢏRꢁꢂꢈꢐ ꢒꢆꢊꢈꢓ ꢁꢈ ꢆꢊꢔꢓR ꢅ  
ꢇꢈ  
When the output is shorted to ground, the inductor cur-  
rent decays very slowly during the switch off time because  
of the low voltage across the inductor. To keep the current  
in control, a secondary limit is also imposed on the valley  
inductor current. If the inductor current measured through  
ꢀꢄ  
R
ꢕꢕ  
ꢋꢋ  
R
the bottom power switch increases beyond I  
,
VALLEY(MAX)  
the top power switch will be held off and switching cycles  
will be skipped until the inductor current is reduced.  
R
ꢀꢅ  
R
ꢄꢗ  
ꢄ0  
ꢇꢈꢎ  
Recovery from a short circuit can be abrupt and because  
the output is shorted and below regulation the regulator  
is requesting the maximum current to charge the output.  
When the short circuit condition is removed, the induc-  
tor current could cause an extreme voltage overshoot in  
the output. The LTC3311 addresses this potential issue  
by regulating the SSTT voltage just above the FB volt-  
age anytime the output is out of regulation. Therefore,  
a recovery from an output short circuit goes through a  
soft-start cycle. The output ramp is controlled and the  
overshoot is minimized.  
ꢄꢘ  
ꢄꢍ  
ꢇꢈꢌ  
ꢄꢙ  
ꢇꢈꢅ  
ꢇꢈꢄ  
ꢇꢈꢍ  
ꢏꢈꢐ  
ꢏꢈꢐ  
ꢁꢂꢃꢅ  
ꢁꢂꢃꢄ  
ꢃꢁ ꢑ  
ꢚ ꢏꢈꢐ  
ꢁꢂꢃ  
Rꢓꢛꢁꢃꢓ ꢕꢓꢈꢕꢓ  
ꢁꢂꢃ  
ꢖꢖꢄ0 ꢋ0ꢗ  
Low EMI PCB Layout  
The LTC3311 is specifically designed to minimize EMI/  
EMC emissions and also to maximize efficiency when  
switching at high frequencies. For optimal performance,  
the LTC3311 requires the use of multiple VIN bypass  
capacitors.  
Figure 4. Recommended PCB Layout for the LTC3311  
Rev. 0  
18  
For more information www.analog.com  
LTC3311  
APPLICATIONS INFORMATION  
Large, switched currents flow in the LTC3311 VIN, SW and  
PGND pins and the input capacitors. The loops formed  
by the input capacitors should be as small as possible by  
placing the capacitors adjacent to the VIN and PGND pins.  
Place the input capacitors, inductor and output capaci-  
tors on the same layer of the circuit board. Place a local,  
unbroken ground plane under the application circuit on  
the layer closest to the surface layer.  
High Temperature Considerations  
For higher ambient temperatures, care should be taken  
in the layout of the PCB to ensure good heat sinking of  
the LTC3311. The PGND pins and the exposed pad on the  
bottom of the package should be soldered to a ground  
plane. This ground should be tied to large copper layers  
below with many thermal vias; these layers will spread  
heat dissipated by the LTC3311. Placing additional vias  
can reduce thermal resistance further. The maximum load  
current should be derated as the ambient temperature  
approaches the maximum junction rating. Power dissi-  
pation within the LTC3311 can be estimated by calculat-  
ing the total power loss from an efficiency measurement  
and subtracting the inductor loss. The die temperature is  
monitored with the SSTT pin.  
The SW node should be as short as possible. Finally,  
keep the FB and RT nodes small and away from the noisy  
SW node.  
TYPICAL APPLICATIONS  
Dual Phase 5V to 3.3V, 25A, Forced Continuous Mode  
ꢗꢓ  
ꢜ.ꢊꢇ ꢁꢈ ꢊ.ꢊꢇ  
ꢄꢙꢐ  
ꢆꢆꢙꢐ  
0.0ꢄꢙꢐ  
ꢒꢓ  
0.0ꢄꢙꢐ  
ꢆꢆꢙꢐ  
ꢄꢔ  
ꢋꢌꢈꢈꢍ  
ꢄ00ꢡ  
ꢗꢓ  
ꢋꢌꢈꢈꢍ  
ꢎꢏ  
ꢃ.ꢃꢇ  
ꢆꢊꢅ  
ꢆ00ꢟꢘ  
ꢈꢉꢁ  
ꢄ00ꢡ  
ꢆꢝꢜꢡ  
ꢜ.ꢝꢞꢐ  
ꢂꢃꢃꢄꢄ  
ꢔꢈꢍꢒꢕꢎꢖꢓꢂ  
ꢗꢁꢘ  
ꢆꢆꢙꢐ  
ꢛꢃ  
ꢐꢑ  
Rꢁ  
ꢜꢢ.ꢝꢡ  
ꢎꢎꢁꢁ  
ꢅꢌꢓꢍ ꢋꢌꢓꢍ  
ꢆꢝꢜꢡ  
ꢜ.ꢠꢠꢡ  
0.ꢄꢙꢐ  
ꢜꢝ0ꢞꢐ  
ꢗꢓ  
ꢆꢆꢙꢐ  
ꢄꢙꢐ  
ꢆꢆꢙꢐ  
0.0ꢄꢙꢐ  
0.0ꢄꢙꢐ  
ꢆ00ꢟꢘ  
ꢗꢓ  
ꢋꢌꢈꢈꢍ  
ꢒꢓ  
ꢋꢌꢈꢈꢍ  
ꢎꢏ  
ꢔꢈꢍꢒꢕꢎꢖꢓꢂ  
ꢆꢆꢙꢐ  
ꢚꢆ  
ꢓꢂ  
ꢎꢎꢁꢗ  
ꢗꢁꢘ  
ꢂꢃꢃꢄꢄ  
ꢐꢑ  
ꢗꢓ  
ꢄꢢ0ꢣ  
ꢅꢌꢓꢍ ꢋꢌꢓꢍ Rꢁ  
ꢃꢃꢄꢄ ꢁꢅ0ꢆ  
ꢀ ꢤ ꢂꢈꢗꢀꢂRꢅꢐꢒꢀꢜ0ꢃ0ꢧꢆ0ꢄꢔꢒ  
Rev. 0  
19  
For more information www.analog.com  
LTC3311  
TYPICAL APPLICATIONS  
Three Phase, 0.6V, 37.5A, Forced Continuous Mode  
ꢚꢖ  
ꢃ.0ꢆ ꢁꢇ ꢜ.ꢋꢆ  
0.0ꢄꢍꢎ  
ꢄ0ꢞꢎ  
ꢄꢍꢎ  
ꢌꢌꢍꢎ  
0.0ꢄꢍꢎ  
ꢌꢌꢍꢎ  
ꢄ00ꢠ  
ꢏꢐꢇꢇꢑ  
ꢚꢖ  
ꢕꢖ  
ꢗꢇꢑꢕꢘꢒꢙꢖꢂ  
ꢂꢃꢃꢄꢄ  
ꢏꢐꢇꢇꢑ  
ꢊ0ꢟꢛ  
ꢇꢈꢁ  
0.ꢉꢆ  
ꢒꢓ  
ꢃꢊ.ꢋꢅ  
ꢢꢉ.ꢉꢠ  
ꢜꢃꢌꢠ  
ꢜꢊꢍꢎ  
ꢝꢃ  
ꢚꢁꢛ  
ꢎꢔ  
Rꢁ  
ꢋ.ꢜꢡꢠ  
ꢒꢒꢁꢁ  
ꢅꢐꢖꢑ ꢏꢐꢖꢑ  
ꢌꢊꢜꢣ  
ꢄꢋ00ꢞꢎ  
0.ꢄꢍꢎ  
ꢚꢖ  
ꢌꢌꢍꢎ  
ꢄꢍꢎ  
ꢌꢌꢍꢎ  
0.0ꢄꢍꢎ  
ꢖꢂ  
0.0ꢄꢍꢎ  
ꢚꢖ  
ꢏꢐꢇꢇꢑ  
ꢊ0ꢟꢛ  
ꢕꢖ  
ꢏꢐꢇꢇꢑ  
ꢒꢓ  
ꢗꢇꢑꢕꢘꢒꢙꢖꢂ  
ꢚꢖ  
ꢜꢊꢍꢎ  
ꢝꢌ  
ꢒꢒꢁꢁ  
ꢚꢁꢛ  
ꢂꢃꢃꢄꢄ  
ꢎꢔ  
ꢌꢜꢃꢠ  
ꢄꢊꢜꢠ  
ꢄꢌ0ꢤ  
ꢅꢐꢖꢑ ꢏꢐꢖꢑ Rꢁ  
ꢚꢖ  
ꢌꢌꢍꢎ  
ꢄꢍꢎ  
ꢌꢌꢍꢎ  
0.0ꢄꢍꢎ  
ꢖꢂ  
0.0ꢄꢍꢎ  
ꢚꢖ  
ꢏꢐꢇꢇꢑ  
ꢊ0ꢟꢛ  
ꢕꢖ  
ꢏꢐꢇꢇꢑ  
ꢒꢓ  
ꢗꢇꢑꢕꢘꢒꢙꢖꢂ  
ꢚꢖ  
ꢜꢊꢍꢎ  
ꢝꢌ  
ꢒꢒꢁꢁ  
ꢚꢁꢛ  
ꢂꢃꢃꢄꢄ  
ꢎꢔ  
ꢄꢊꢜꢠ  
ꢌꢜꢃꢠ  
ꢌꢜ0ꢤ  
ꢅꢐꢖꢑ ꢏꢐꢖꢑ Rꢁ  
ꢃꢃꢄꢄ ꢁꢅ0ꢃ  
ꢀ ꢥ ꢂꢇꢚꢀꢂRꢅꢎꢁ ꢦꢕꢀꢃꢋꢌ0ꢧꢊ00ꢗꢕꢔ  
Rev. 0  
20  
For more information www.analog.com  
LTC3311  
TYPICAL APPLICATIONS  
Four Phase, 2MHz, 1.2V, 50A, Forced Continuous Mode  
ꢘꢔ  
ꢃ.0ꢇ ꢁꢈ ꢋ.ꢋꢇ  
ꢄꢚꢑ  
ꢊꢊꢚꢑ  
0.0ꢄꢚꢑ  
0.0ꢄꢚꢑ  
ꢊꢊꢚꢑ  
ꢄ00ꢝ  
ꢌꢍꢈꢈꢎ  
ꢘꢔ  
ꢓꢔ  
ꢕꢈꢎꢓꢖꢏꢗꢔꢂ  
ꢂꢃꢃꢄꢄ  
ꢌꢍꢈꢈꢎ  
ꢄ.ꢊꢇ  
ꢋ0ꢅ  
ꢄ00ꢜꢙ  
ꢈꢉꢁ  
ꢏꢐ  
ꢣ.ꢠꢟꢑ  
ꢄꢆ0ꢝ  
ꢊꢊꢚꢑ  
ꢛꢃ  
ꢘꢁꢙ  
ꢑꢒ  
Rꢁ  
ꢄ00ꢝ  
ꢃ.ꢃꢊꢝ  
ꢏꢏꢁꢁ  
ꢅꢍꢔꢎ ꢌꢍꢔꢎ  
ꢊꢞꢆꢝ  
ꢆꢞ0ꢟꢑ  
0.ꢄꢚꢑ  
ꢘꢔ  
ꢄꢚꢑ  
ꢄꢚꢑ  
ꢄꢚꢑ  
ꢊꢊꢚꢑ  
ꢊꢊꢚꢑ  
ꢊꢊꢚꢑ  
0.0ꢄꢚꢑ  
0.0ꢄꢚꢑ  
ꢊꢊꢚꢑ  
ꢘꢔ  
ꢌꢍꢈꢈꢎ  
ꢄ00ꢜꢙ  
ꢓꢔ  
ꢌꢍꢈꢈꢎ  
ꢏꢐ  
ꢕꢈꢎꢓꢖꢏꢗꢔꢂ  
ꢘꢔ  
ꢊꢊꢚꢑ  
ꢛꢊ  
ꢔꢂ  
ꢏꢏꢁꢁ  
ꢘꢁꢙ  
ꢂꢃꢃꢄꢄ  
ꢑꢒ  
ꢃ0ꢄꢝ  
ꢄ00ꢝ  
ꢢ0ꢡ  
ꢅꢍꢔꢎ ꢌꢍꢔꢎ Rꢁ  
ꢘꢔ  
ꢊꢊꢚꢑ  
0.0ꢄꢚꢑ  
0.0ꢄꢚꢑ  
ꢘꢔ  
ꢌꢍꢈꢈꢎ  
ꢄ00ꢜꢙ  
ꢓꢔ  
ꢌꢍꢈꢈꢎ  
ꢏꢐ  
ꢕꢈꢎꢓꢖꢏꢗꢔꢂ  
ꢊꢊꢚꢑ  
ꢛꢊ  
ꢔꢂ  
ꢏꢏꢁꢁ  
ꢘꢁꢙ  
ꢂꢃꢃꢄꢄ  
ꢘꢔ  
ꢑꢒ  
ꢄꢠ0ꢡ  
ꢅꢍꢔꢎ ꢌꢍꢔꢎ Rꢁ  
ꢘꢔ  
ꢊꢊꢚꢑ  
0.0ꢄꢚꢑ  
0.0ꢄꢚꢑ  
ꢘꢔ  
ꢌꢍꢈꢈꢎ  
ꢄ00ꢜꢙ  
ꢓꢔ  
ꢌꢍꢈꢈꢎ  
ꢏꢐ  
ꢕꢈꢎꢓꢖꢏꢗꢔꢂ  
ꢘꢔ  
ꢔꢂ  
ꢊꢊꢚꢑ  
ꢛꢊ  
ꢏꢏꢁꢁ  
ꢘꢁꢙ  
ꢂꢃꢃꢄꢄ  
ꢑꢒ  
ꢄ00ꢝ  
ꢃ0ꢄꢝ  
ꢊꢞ0ꢡ  
ꢅꢍꢔꢎ ꢌꢍꢔꢎ Rꢁ  
ꢃꢃꢄꢄ ꢁꢅ0ꢆ  
ꢀ ꢤ ꢂꢈꢘꢀꢂRꢅꢑꢓꢀꢆ0ꢃ0ꢧꢄ0ꢄꢕꢓ  
Rev. 0  
21  
For more information www.analog.com  
LTC3311  
TYPICAL APPLICATIONS  
Four Phase, 2MHz, 1.2V, 50A Driven with External Clock, Forced Continuous Mode  
ꢙꢃ  
ꢉ.0ꢌ ꢂꢇ ꢋ.ꢋꢌ  
ꢊꢛꢔ  
ꢎꢎꢛꢔ  
0.0ꢊꢛꢔ  
0.0ꢊꢛꢔ  
ꢎꢎꢛꢔ  
ꢙꢃ  
ꢏꢐꢇꢇꢑ  
ꢊ00ꢝꢚ  
ꢀꢃ  
ꢖꢇꢑꢀꢗꢒꢘꢃꢆ  
ꢆꢉꢉꢊꢊ  
ꢏꢐꢇꢇꢑ  
ꢊ.ꢎꢌ  
ꢋ0ꢄ  
ꢇꢍꢂ  
ꢒꢓ  
ꢀꢁꢂꢀRꢃꢄꢅ  
ꢆꢅꢇꢆꢈ  
ꢥ.ꢢꢡꢔ  
ꢊꢟ0ꢞ  
ꢎꢎꢛꢔ  
ꢜꢉ  
ꢙꢂꢚ  
ꢔꢕ  
Rꢂ  
ꢙꢃ  
ꢊ00ꢞ  
ꢉ.ꢉꢎꢞ  
ꢒꢒꢂꢂ  
ꢄꢐꢃꢑ ꢏꢐꢃꢑ  
ꢟꢠ0ꢡꢔ  
0.ꢊꢛꢔ  
ꢙꢃ  
ꢊꢛꢔ  
ꢊꢛꢔ  
ꢊꢛꢔ  
ꢎꢎꢛꢔ  
ꢎꢎꢛꢔ  
ꢎꢎꢛꢔ  
0.0ꢊꢛꢔ  
0.0ꢊꢛꢔ  
ꢎꢎꢛꢔ  
ꢙꢃ  
ꢏꢐꢇꢇꢑ  
ꢊ00ꢝꢚ  
ꢀꢃ  
ꢏꢐꢇꢇꢑ  
ꢒꢓ  
ꢖꢇꢑꢀꢗꢒꢘꢃꢆ  
ꢙꢃ  
ꢃꢆ  
ꢎꢎꢛꢔ  
ꢜꢎ  
ꢒꢒꢂꢂ  
ꢙꢂꢚ  
ꢆꢉꢉꢊꢊ  
ꢔꢕ  
ꢉ0ꢊꢞ  
ꢊ00ꢞ  
ꢤ0ꢣ  
ꢄꢐꢃꢑ ꢏꢐꢃꢑ Rꢂ  
ꢙꢃ  
ꢎꢎꢛꢔ  
0.0ꢊꢛꢔ  
0.0ꢊꢛꢔ  
ꢙꢃ  
ꢏꢐꢇꢇꢑ  
ꢊ00ꢝꢚ  
ꢀꢃ  
ꢏꢐꢇꢇꢑ  
ꢒꢓ  
ꢖꢇꢑꢀꢗꢒꢘꢃꢆ  
ꢃꢆ  
ꢒꢒꢂꢂ  
ꢙꢂꢚ  
ꢎꢎꢛꢔ  
ꢜꢎ  
ꢆꢉꢉꢊꢊ  
ꢙꢃ  
ꢔꢕ  
ꢊꢢ0ꢣ  
ꢄꢐꢃꢑ ꢏꢐꢃꢑ Rꢂ  
ꢙꢃ  
ꢎꢎꢛꢔ  
0.0ꢊꢛꢔ  
0.0ꢊꢛꢔ  
ꢙꢃ  
ꢏꢐꢇꢇꢑ  
ꢊ00ꢝꢚ  
ꢀꢃ  
ꢏꢐꢇꢇꢑ  
ꢒꢓ  
ꢖꢇꢑꢀꢗꢒꢘꢃꢆ  
ꢙꢃ  
ꢃꢆ  
ꢎꢎꢛꢔ  
ꢜꢎ  
ꢒꢒꢂꢂ  
ꢙꢂꢚ  
ꢆꢉꢉꢊꢊ  
ꢔꢕ  
ꢊ00ꢞ  
ꢉ0ꢊꢞ  
ꢎꢠ0ꢣ  
ꢄꢐꢃꢑ ꢏꢐꢃꢑ Rꢂ  
ꢉꢉꢊꢊ ꢂꢄ0ꢋ  
ꢅ ꢦ ꢆꢇꢙꢅꢆRꢄꢔꢀꢅꢟ0ꢉ0ꢨꢊ0ꢊꢖꢀ  
Rev. 0  
22  
For more information www.analog.com  
LTC3311  
TYPICAL APPLICATIONS  
5MHz, 1V, 12.5A, Forced Continuous Mode  
V
IN  
3.0V TO 3.6V  
22µF  
0.1µF  
0.1µF  
22µF  
649k  
100k  
V
IN  
EN  
PGOOD  
SW  
55nH  
V
OUT  
1V  
12.5A  
MODE/SYNC  
SSTT  
10pF 100k  
100k  
22µF  
×3  
FB  
LTC3311  
PGND  
V
1μF  
IN  
0.1µF  
AGND  
RT  
ITH  
4.12k  
680pF  
100k  
WURTH 744340300055  
3311 TA06  
2MHz, 3.3V, 12.5A, Pulse Skip Mode  
V
IN  
4.5V TO 5.5V  
22µF  
0.1µF  
0.1µF  
100k  
22µF  
1M  
V
IN  
V
EN  
PGOOD  
OUT  
PGOOD  
100k  
200nH  
V
OUT  
V
MODE/SYNC  
SSTT  
IN  
3.3V  
SW  
FB  
12.5A  
LTC3311  
PGND  
10pF 562k  
100k  
22µF  
x2  
0.1µF  
V
1μF  
IN  
ITH  
AGND  
RT  
1k  
1500pF  
V
IN  
3311 TA07  
L = COILCRAFT, XEL4030-201ME  
High Efficiency, 2MHz, 0.5V, 12.5A, Forced Continuous Mode, Low Part Count  
V
IN  
3.0V TO 4.3V  
22µF  
0.1µF  
0.1µF  
22µF  
V
IN  
EN  
PGOOD  
SW  
55nH  
V
OUT  
MODE/SYNC  
0.5V  
SSTT  
ITH  
12.5A  
0.1µF  
47µF  
×4  
FB  
1MΩ  
LTC3311  
PGND  
V
1μF  
IN  
AGND  
RT  
6.81k  
680pF  
V
IN  
3311 TA08  
WURTH 744340300055  
Rev. 0  
23  
For more information www.analog.com  
LTC3311  
TYPICAL APPLICATIONS  
2MHz, 1.0V, Forced Continuous  
1.5A DC to 7.5A Step Load 6A/µs Transient, 1.8% VOUT Deviation  
V
IN  
3.3V 10ꢀ  
22µF  
0.1µF  
0.1µF  
22µF  
1M  
100k  
V
IN  
V
EN  
PGOOD  
OUT  
PGOOD  
249k  
100nH  
V
OUT  
MODE/SYNC  
SSTT  
1V  
SW  
FB  
12.5A  
LTC3311  
PGND  
100pF 124k  
113k  
47µF  
x7  
0.1µF  
V
IN  
1μF  
ITH  
AGND  
RT  
3.3pF  
20k  
270pF  
V
IN  
3311 TA09a  
1.69M  
L = COILCRAFT, XEL4030-101ME  
ꢇꢈꢉ  
ꢀ0ꢊꢆꢃꢄꢅꢆ  
ꢇꢈꢉ  
ꢋ.ꢌꢍ  
ꢎ.ꢌꢍ  
ꢒꢓꢔꢕ Rꢍꢉꢔ ꢖ ꢗꢍꢃꢁꢂ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢏꢏꢎꢎ ꢉꢍ0ꢐꢑ  
Rev. 0  
24  
For more information www.analog.com  
LTC3311  
PACKAGE DESCRIPTION  
ꢠ ꢄ ꢄ ꢄ  
ꢯ ꢯ ꢯ  
× ꢏ ꢎ  
ꢦ ꢦ ꢤ ꢤ ꢤ  
0 . ꢨ ꢌ 0 0  
0 . ꢟ ꢌ 0 0  
0 . 0 0 0 0  
0 . ꢟ ꢌ 0 0  
0 . ꢨ ꢌ 0 0  
ꢝ ꢝ ꢝ  
× ꢟ  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
25  
LTC3311  
TYPICAL APPLICATION  
3MHz, 1.0V, 12.5A , Forced Continuous Mode  
V
IN  
3.0V TO 5.5V  
22µF  
0.1µF  
0.1µF  
22µF  
V
IN  
EN  
PGOOD  
SW  
72nH  
V
OUT  
MODE/SYNC  
1.0V  
SSTT  
ITH  
12.5A  
10pF 100k  
100k  
0.1µF  
22µF  
×3  
FB  
LTC3311  
PGND  
V
IN  
1μF  
AGND  
4.75k  
470pF  
RT  
178k  
3311 TA10a  
L = COILCRAFT, XEL3515-720MEB  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Switching Frequencies Up to 5MHz. Silent Switcher Architecture 2 for Ultralow EMI  
LTC3311S  
5V, 12.5A Synchronous Step-Down  
Silent Switcher 2 in 3mm × 3mm LQFN  
Emissions. 2.25V to 5.5V Input Operating Range. 0.5V to V Output Voltage Range with 1%  
IN  
Accuracy. PGOOD Indication, R Programming, SYNC Input. Configurable for Paralleling  
T
Power Stages. Pin Compatible with LTC3310/LTC3310S. 3mm × 3mm LQFN-18 Package.  
LTC3310/  
LTC3310S  
5V, 10A Synchronous Step-Down  
Silent Switcher/Silent Switcher 2 in  
3mm × 3mm LQFN  
Switching Frequencies Up to 5MHz. Silent Switcher/Silent Switcher 2 Architecture for  
Ultralow EMI Emissions. 2.25V to 5.5V Input Operating Range. 0.5V to V Output  
IN  
Voltage Range with 1% Accuracy. PGOOD Indication, R Programming, SYNC Input.  
T
Configurable for Paralleling Power Stages. 150°C Operation (LTC3310). Pin Compatible  
with LTC3311/LTC3311S. 3mm × 3mm LQFN-18 Package.  
LTC3315A/  
LTC3315B  
Dual 5V, 2A Synchronous Step-Down DC/DCs in Dual Monolithic Synchronous Step-Down Voltage Regulators each Capable of Supplying  
2mm × 2mm LQFN  
2A at Switching Frequencies up to 3MHz(A) and 10MHz(B). 2.25V to 5.5V Input  
Operating Range. 0.5V to V Output Voltage Range with 1% Accuracy.  
IN  
PGOOD Indication, SYNC Input. 2mm × 2mm LQFN-12.  
LTC3636/  
LTC3636-1  
Dual Channel 6A, 20V Monolithic Synchronous 95% Efficiency, V : 3.1V to 20V, V  
= 0.6V (LTC3636), 1.8V (LTC3636-1),  
OUT(MIN)  
IN  
Step-Down Regulator  
I = 1.3mA, I < 13µA, 4mm × 5mm QFN-28  
Q SD  
LTC3615/  
Dual Channel 5.5V, 3A (I ), 4MHz, Synchronous 94% Efficiency, V : 2.25V to 5.5V, V  
= 0.6V, I = 130µA, I < 1µA,  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
LTC3615-1  
Step-Down DC/DC Converter  
4mm × 4mm QFN-24 Package  
LTC3614/  
LTC3616  
5.5V, 4A/6A (I ), 4MHz, Synchronous Step-  
95% Efficiency, V : 2.25V to 5.5V, V  
= 0.6V, I = 75µA, I < 1µA,  
Q SD  
OUT  
IN  
Down DC/DC Converter with Tracking and DDR 3mm × 5mm QFN-24 Package  
LTC3612  
LTC7150S  
LT8642S  
LT8640S  
LT8650S  
LTC7151S  
5.5V, 3A (I ), 4MHz, Synchronous Step-  
95% Efficiency, V : 2.25V to 5.5V, V  
= 0.8V, I = 60µA, I < 1µA,  
Q SD  
OUT  
IN  
Down DC/DC Converter  
TSSOP-16E and 4mm × 4mm QFN-16 Packages  
20V, 20A Synchronous Step-Down  
Silent Switcher 2 Regulator  
92% Efficiency, V : 3.1V to 20V, V = 0.6V, I = 2mA, I ≤ 40µA,  
IN  
OUT(MIN)  
Q
SD  
Differential Remote Sense, 6mm × 5mm BGA  
18V, 10A Synchronous Step-Down  
Silent Switcher 2 Regulator  
96% Efficiency, V : 2.8V to 18V, V  
= 0.6V, I = 240µA, I < 1µA,  
Q SD  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
4mm × 4mm LQFN-24  
42V, 6A Synchronous Step-Down Silent Switcher 2  
with 2.5μA Quiescent Current  
96% Efficiency, V : 3.4V to 42V, V  
= 1.0V, I = 230µA, I < 1µA,  
Q SD  
IN  
4mm × 4mm LQFN-24  
Dual Channel 4A, 42V, Synchronous Step-Down 94.5% Efficiency, V : 3V to 42V, V  
Silent Switcher 2 with 6.2µA Quiescent Current 4mm × 6mm LQFN-32  
= 0.8V, I = 5mA, I < 2µA,  
Q SD  
IN  
20V, 15A Synchronous Step-Down  
Silent Switcher 2 Regulator  
92.5% Efficiency, V : 3.1V to 20V, V  
= 0.5V, I = 2mA, I < 20µA,  
IN  
OUT(MIN) Q SD  
4mm × 5mm LQFN-28  
LTC3307A/B, 3A, 4A and 6A 5V Synchronous Step-Down  
Monolithic Synchronous Step-Down DC/DC Capable of Supplying up to 6A at Switching  
LTC3308A/B, Silent Switcher DC/DC in 2mm × 2mm LQFN-12 Frequencies Up to 3MHz(A) and 10MHz(B). Silent Switcher Architecture for Ultralow EMI  
LTC3309A/B  
Emissions. 2.25V to 5.5V Input Operating Range. 0.5V to V Output Voltage Range with  
IN  
1% Accuracy. PGOOD Indication, RT Programming, SYNC Input. 2mm × 2mm LQFN-12  
Rev. 0  
01/21  
www.analog.com  
26  
ANALOG DEVICES, INC. 2021  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY