LTC4361 [ADI]

100V UV/OV and Reverse Protection Controller with Bidirectional Circuit Breaker;
LTC4361
型号: LTC4361
厂家: ADI    ADI
描述:

100V UV/OV and Reverse Protection Controller with Bidirectional Circuit Breaker

文件: 总22页 (文件大小:1378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4368  
100V UV/OV and Reverse Protection  
Controller with Bidirectional Circuit Breaker  
FEATURES  
DESCRIPTION  
The LTC®4368 protects applications from power supply  
voltages that may be too high, too low, or even negative  
and from overcurrent faults in both forward and reverse  
directions. The LTC4368 controls the gate voltage of a pair  
of external N-channel MOSFETs to ensure that the load  
is connected to the input supply only when there are no  
voltage or current faults.  
n
Wide Operating Voltage Range: 2.5V to 60V  
n
Overvoltage Protection to 100V  
n
Reverse Supply Protection to –40V  
n
Bidirectional Electronic Circuit Breaker:  
n
+50mV Forward Sense Threshold  
n
–50mV Reverse (LTC4368-1)  
n
–3mV Reverse (LTC4368-2)  
n
Adjustable 1.5% Undervoltage and Overvoltage  
Two comparator inputs allow configuration of the over-  
voltage (OV) and undervoltage (UV) set points using an  
external resistive divider. A current sense resistor sets the  
forward and reverse circuit breaker current thresholds.  
After a forward current fault, the LTC4368 will either latch-  
off power, or retry after a user adjustable delay. After a  
reverse current fault, the LTC4368 waits for the output to  
fall 100mV below the input to reconnect power to the load.  
Thresholds  
n
Low Operating Current: 80µA  
n
Low Shutdown Current: 5µA  
n
Controls Back-to-Back N-Channel MOSFETs  
n
Blocks 50Hz and 60Hz AC Power  
Hot Swappable Supply Input  
n
n
Pin-Selectable Overcurrent Auto-Retry Timer or Latchoff  
n
10-Pin MSOP and 3mm × 3mm DFN Packages  
The LTC4368 has a 32ms turn-on delay that debounces  
live supply input connections and blocks 50Hz and 60Hz  
AC power. UV/OV faults also trigger the 32ms recovery  
delay before the external MOSFETs are turned back on.  
All registered trademarks and trademarks are the property of their respective owners.  
n
AEC-Q100 Qualified for Automotive Applications  
APPLICATIONS  
n
Reverse Battery Protection  
n
Portable Instrumentation  
n
Automotive and Industrial Surge Protection  
Energy Storage Systems  
n
TYPICAL APPLICATION  
Load Protected from Reverse and Overvoltage at VIN  
24V Application with 10A Circuit Breaker  
+50mV  
V
OUT  
–40V TO 100V  
0.005Ω  
–3mV  
7V TO 36V  
ꢀꢁ ꢂ ꢃꢄꢁ  
ꢅꢁ ꢂ ꢆꢁ  
SiR870  
SiR870  
V
I
IN  
OUT  
ꢀꢁꢂꢃ  
ꢄꢂꢃꢅꢆꢇꢃ  
24V  
–0.6A TO 10A  
+
INRUSH  
CONTROL  
ꢀꢁ  
100µF  
22k  
ꢀꢁꢂꢃꢄ ꢅꢃꢆꢄꢇꢅ  
3.3nF  
SENSE  
V
OUT  
GATE  
V
ꢀꢁꢂ  
IN  
ꢀꢁꢂ  
ꢀꢁꢂ  
464k  
1500k  
121k  
FAULT  
SHDN  
UV  
ꢀꢁꢂꢃ  
ꢄꢂꢃꢅꢆꢇꢃ  
LTC4368-2  
GND  
ꢀꢁ  
1200ms COOLDOWN  
AFTER FORWARD  
OC FAULT  
OV = 36V  
UV = 7V  
OV  
RETRY  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
29.4k  
0.22µF  
4368 TA01a  
Rev. B  
1
Document Feedback  
For more information www.analog.com  
LTC4368  
ABSOLUTE MAXIMUM RATINGS  
(Note 1, Note 2)  
Supply Voltage  
Output Voltages  
V ........................................................ –40V to 100V  
FAULT (Note 3)....................................... –0.3V to 80V  
IN  
Input Voltages  
GATE.............................................. –40V to V + 14V  
Input Currents  
RETRY, UV, OV ,SHDN, FAULT ...........................1mA  
Operating Ambient Temperature Range  
IN  
UV, SHDN (Note 3) ........................…….–0.3V to 80V  
OV (Note 3)............................................ –0.3V to 20V  
RETRY (Note 3) ....................................... –0.3V to 5V  
V
V
IN  
, SENSE............................................–10V to 80V  
to SENSE.........................................10V to 10V  
LTC4368C............................................... 0°C to 70°C  
LTC4368I............................................ –40°C to 85°C  
LTC4368H........................................ . –40°C to 125°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
OUT  
OUT  
V to V  
........................................... –60V to 100V  
OUT  
MSOP Package .................................................300°C  
PIN CONFIGURATION  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢌꢍ ꢋꢈꢀꢅ  
ꢋꢉꢖ ꢅꢆꢊꢗ  
ꢄꢖ  
ꢞꢃ  
ꢁꢃ  
ꢔꢅꢖꢔꢅ  
ꢈꢅ  
ꢉꢅ  
RꢊꢋRꢌ  
ꢍꢇꢎ  
ꢀꢏ ꢍꢔꢋꢊ  
ꢆꢇ  
ꢕꢊꢇꢕꢊ  
ꢁꢞꢀ  
ꢉꢈꢋ  
FAULT  
SHDN  
RꢅꢀRꢟ  
ꢋꢖꢇ  
FAULT  
SHDN  
ꢘꢕꢀꢏ ꢖꢔꢙꢚꢔꢍꢊ  
ꢀꢏꢛꢜꢊꢔꢎ ꢖꢜꢔꢕꢋꢆꢙ ꢘꢕꢉꢖ  
ꢇꢇ ꢂꢈꢉꢊꢈꢋꢅ  
ꢌꢍꢎꢏꢅꢈꢇ ꢐꢑꢒꢒ × ꢑꢒꢒꢓ ꢂꢏꢈꢔꢀꢄꢉ ꢇꢕꢖ  
T
= 150°C, θ = 160°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 11) PCB GROUND CONNECTION OPTIONAL  
T
= 150°C, θ = 43°C/W  
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC4368CDD-1#PBF  
LTC4368CDD-2#PBF  
LTC4368IDD-1#PBF  
LTC4368IDD-2#PBF  
LTC4368HDD-1#PBF  
LTC4368HDD-2#PBF  
LTC4368CMS-1#PBF  
LTC4368CMS-2#PBF  
LTC4368IMS-1#PBF  
LTC4368IMS-2#PBF  
LTC4368HMS-1#PBF  
LTC4368HMS-2#PBF  
TAPE AND REEL  
PART MARKING*  
LGTH  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC4368CDD-1#TRPBF  
LTC4368CDD-2#TRPBF  
LTC4368IDD-1#TRPBF  
LTC4368IDD-2#TRPBF  
LTC4368HDD-1#TRPBF  
LTC4368HDD-2#TRPBF  
LTC4368CMS-1#TRPBF  
LTC4368CMS-2#TRPBF  
LTC4368IMS-1#TRPBF  
LTC4368IMS-2#TRPBF  
LTC4368HMS-1#TRPBF  
LTC4368HMS-2#TRPBF  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
LGTK  
0°C to 70°C  
LGTH  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
0°C to 70°C  
LGTK  
LGTH  
LGTK  
LTGTG  
LTGTJ  
10-Lead Plastic MSOP  
0°C to 70°C  
LTGTG  
LTGTJ  
10-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
10-Lead Plastic MSOP  
LTGTG  
LTGTJ  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
Rev. B  
2
For more information www.analog.com  
LTC4368  
ORDER INFORMATION  
AUTOMOTIVE PRODUCTS**  
LTC4368IMS-1#WPBF  
LTC4368IMS-2#WPBF  
LTC4368HMS-1#WPBF  
LTC4368HMS-2#WPBF  
LTC4368IMS-1#WTRPBF  
LTC4368IMS-2#WTRPBF  
LTC4368HMS-1#WTRPBF  
LTC4368HMS-2#WTRPBF  
LTGTG  
LTGTJ  
LTGTG  
LTGTJ  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
*Temperature grades are identified by a label on the shipping container. Consult ADI Marketing for parts specified with wider operating temperature ranges.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 2.5V to 60V, unless otherwise noted (Note 2). UV = 2.5V, OV = 0V,  
SHDN = 2.5V, SENSE = VOUT = VIN unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V , V , SENSE  
IN OUT  
l
l
V
V
Input Voltage: Operating Range  
Protection Range  
2.5  
60  
V
V
IN  
–40  
100  
l
Input Supply Undervoltage Lockout  
V
Rising  
1.8  
2.2  
2.4  
V
IN(UVLO)  
VIN  
IN  
l
l
I
Input Supply Current: On  
Off  
SHDN = 2.5V, SENSE = V  
SHDN = 0V, SENSE = V  
= V  
30  
5
100  
25  
µA  
µA  
OUT  
OUT  
IN  
= V  
IN  
l
I
Reverse Input Supply Current  
V
V
V
= –40V, SENSE = V = 0V  
OUT  
–1.5  
2.2  
–2.5  
2.4  
mA  
V
VIN(R)  
IN  
l
l
V
V
OUT  
V
OUT  
V
OUT  
Undervoltage Lockout  
Rising, V  
– SENSE = 100mV, V = 12V  
1.8  
40  
OUT(UVLO)  
VOUT(UVLO)  
VOUT  
OUT  
OUT  
IN  
t
I
Undervoltage Lockout Delay  
= 12V, V :0V12V, V – SENSE = 100mV  
OUT  
120  
280  
µs  
IN  
OUT  
l
l
l
Input Current: On  
SHDN = 2.5V, SENSE = V  
= V  
50  
3
20  
125  
20  
50  
µA  
µA  
µA  
OUT  
OUT  
OUT  
IN  
Off  
SHDN = 0V, SENSE = V  
= V  
IN  
Reverse  
V
= –40V, SENSE = V  
= 0V  
IN  
Current Sense  
l
l
l
I
SENSE Input Current: On  
Off  
SHDN = 2.5V, SENSE = V  
= V  
1.2  
0.1  
1
2
2
10  
µA  
µA  
µA  
SENSE  
OUT  
IN  
SHDN = 0V, SENSE = V  
= V  
IN  
OUT  
OUT  
Reverse  
V
= –40V, SENSE = V  
= 0V  
IN  
l
l
l
ΔV  
Overcurrent Fault Threshold, Forward  
(SENSE – V  
V
V
V
= V  
IN  
40  
40  
30  
50  
50  
50  
60  
60  
70  
mV  
mV  
mV  
SENSE,F  
OUT  
)
= 12V, V  
= 12V, V  
= 0.5V  
= 0V  
OUT  
IN  
IN  
OUT  
OUT  
l
l
ΔV  
ΔV  
Overcurrent Fault Threshold, Reverse  
(SENSE – V  
LTC4368-1  
LTC4368-2  
V
V
= V  
= V  
–42  
–1  
–50  
–3  
–58  
–5  
mV  
mV  
SENSE,R  
RR  
OUT  
OUT  
IN  
IN  
)
OUT  
l
l
Reverse Overcurrent Re-Enable  
Turn-On Threshold (V – V  
V
IN  
V
IN  
= SENSE = 6V to 60V  
= SENSE = 2.5V to <6V  
75  
20  
100  
50  
125  
125  
mV  
mV  
)
OUT  
IN  
GATE  
ΔV  
l
l
l
Gate Drive (GATE – V  
)
V
V
V
= 2.5V, I = 0µA, –1µA  
GATE  
3
7.2  
10  
4
8.7  
11  
5.5  
10.8  
13.1  
V
V
V
GATE  
OUT  
IN  
IN  
IN  
= 5V, I  
= 0µA, –1µA  
GATE  
= 12V to 60V, I  
= 0µA, –1µA  
GATE  
Rev. B  
3
For more information www.analog.com  
LTC4368  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 2.5V to 60V, unless otherwise noted (Note 2). UV = 2.5V, OV = 0V,  
SHDN = 2.5V, SENSE = VOUT = VIN unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
GATE = 15V, V = 12V  
MIN  
–20  
40  
TYP  
–35  
90  
60  
2
MAX  
–60  
160  
90  
UNITS  
µA  
l
l
l
I
Gate Pull Up Current  
GATE(UP)  
IN  
IGATE(SLOW) Gate Slow Pull Down Current  
GATE = 20V, V = 12V  
µA  
IN  
I
t
t
t
t
Gate Fast Pull Down Current  
Gate Fast Turn Off Delay  
GATE = 20V, SENSE = V = 12V  
30  
mA  
µs  
GATE(FAST)  
D(FAST)  
D(SLOW)  
D(ON)  
IN  
l
l
C
C
V
C
= 2.2nF: UV, OV Fault  
6
GATE  
GATE  
Gate Slow Turn Off Delay  
= 2.2nF, SHDN Falling, V = 12V  
150  
22  
3
275  
32  
8
575  
45  
µs  
IN  
l
l
Gate Turn-On Delay Time  
= 12V, Power Good to ΔV  
> 0V  
ms  
µs  
IN  
GATE  
Overcurrent Fault Propagation Delay  
= 2.2nF, Overcurrent Fault to ΔV = 0V  
GATE  
18  
p(GATE)  
GATE  
SENSE – V : 0 to +100mV, or  
OUT  
SENSE – V : 0 to –100mV (LTC4368-1)  
OUT  
SENSE – V : 0 to –10mV (LTC4368-2)  
OUT  
UV, OV  
l
l
l
l
l
l
V
V
V
V
UV Input Threshold Voltage  
OV Input Threshold Voltage  
UV Input Hysteresis  
UV Falling  
OV Rising  
492.5  
492.5  
20  
500  
500  
25  
507.5  
507.5  
32  
mV  
mV  
mV  
mV  
nA  
UV  
OV  
UVHYST  
OVHYST  
LEAK  
OV Input Hysteresis  
20  
25  
32  
I
t
UV, OV Leakage Current  
UV, OV Fault Propagation Delay  
V = 0.5V, V = 60V  
10  
IN  
Overdrive = 50mV, V = 12V  
1
2
µs  
FAULT  
IN  
SHDN  
l
l
l
l
l
V
SHDN Input Threshold  
SHDN Falling  
0.4  
400  
20  
0.75  
1.2  
15  
V
nA  
µs  
SHDN  
I
t
t
t
SHDN Input Current  
SHDN = 10V, V = 60V  
IN  
SHDN  
Delay Coming Out of Shutdown Mode  
SHDN To FAULT Asserted  
SHDN Rising to FAULT, V = 12V  
800  
1.5  
32  
1400  
3
START  
IN  
V
IN  
V
IN  
= 12V  
= 12V  
µs  
SHDN(F)  
LOWPWR  
Delay From Turn Off to Low Power  
Operation  
48  
ms  
FAULT  
l
l
V
FAULT Output Voltage Low  
FAULT Leakage Current  
I
= 500µA, V = 12V  
0.15  
1
0.4  
20  
V
OL  
FAULT  
IN  
I
FAULT = 5V, V = 60V  
nA  
FAULT  
IN  
RETRY  
l
V
Configuration Threshold for GATE  
Latch-Off  
RETRY Falling to ΔI  
V
> 2µA  
0.5  
1.5  
V
RETRY  
RETRY  
CLEAR  
RETRY  
RETRY  
= 12V  
IN  
l
l
I
t
t
Output Current for RETRY Timer  
RETRY = 2V, V = 12V  
RETRY = 0V, V = 12V  
2.5  
–10  
3.5  
–17  
4.5  
–25  
µA  
µA  
IN  
IN  
l
Minimum SHDN Pulse to Clear Forward  
Overcurrent RETRY Latch  
RETRY = 0V, V = 12V  
15  
80  
µs  
IN  
l
Forward Overcurrent Cool-Down Delay  
FAULT Asserted to FAULT Released, C  
SENSE = V  
= 22nF  
120  
150  
ms  
RETRY  
= V = 12V  
IN  
OUT  
Note 1. Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2. All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
Note 3. These pins can be tied to voltages below –0.3V through a resistor  
that limits the current below 1mA.  
Rev. B  
4
For more information www.analog.com  
LTC4368  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN Operating Current vs  
VIN Supply Current vs Voltage  
Temperature  
VIN Shutdown Current vs Voltage  
(–40V to 100V)  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
SHDN ꢀ ꢁ.ꢂꢃ  
SHDN  
SHDN  
ꢀꢁ  
ꢀ ꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂꢂ  
ꢀꢁꢂꢃꢃ  
ꢀꢁꢂꢂꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
VOUT Operating Current vs  
Temperature  
VOUT Shutdown Current vs  
Temperature  
VOUT Current vs Reverse VIN  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
SHDN ꢀ ꢁ.ꢂꢃ  
ꢀꢁ  
SHDN  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀ ꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
GATE Drive vs GATE Current  
GATE Drive vs VIN Supply Voltage  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢅꢉꢂꢈ  
ꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
Rev. B  
5
For more information www.analog.com  
LTC4368  
TYPICAL PERFORMANCE CHARACTERISTICS  
UV, OV Thresholds vs  
∆VRR Threshold vs VOUT  
FAULT Leakage vs Temperature  
Temperature  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
FAULT  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
UV/OV Propagation Delay vs  
Overdrive  
FAULT Output Current vs Voltage  
GATE Turn-On Delay Time vs VIN  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
SHDN  
ꢂ ꢃꢄꢅꢆꢇ  
ꢂ ꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃ  
ꢂ ꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂRꢃRꢄꢁꢂ ꢅꢆꢁꢇ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
AC Blocking  
Turn-On Timing  
Turn-Off Timing  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂ  
DUAL Si7942 MOSFET  
100µF, 12Ω LOAD  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢁ  
V
= 12V  
IN  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
V
= 12V  
ꢀꢁꢂ  
IN  
DUAL Si7942 MOSFET  
100µF, 12Ω LOAD  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉ  
ꢊꢋꢌ ꢊꢍꢎꢏ ꢃꢐꢂꢀ ꢐꢑ ꢒ  
ꢐꢁꢓ  
SHDN  
ꢀꢁꢂꢃꢄꢁ  
SHDN  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆ  
Rev. B  
6
For more information www.analog.com  
LTC4368  
PIN FUNCTIONS  
Exposed Pad: The exposed pad may be left open or con-  
nected to device ground.  
current sink pulls down on the GATE output, thus quickly  
disconnecting the load from the input. After a reverse cur-  
rent fault, when V  
falls 100mV below V , the LTC4368  
OUT  
IN  
FAULT: Fault Indication Output. Connect to a pull-up resis-  
tor. This high voltage open drain output is pulled low if  
there is a voltage or current fault, if SHDN is low, or if  
automatically turns on the external MOSFETs. A forward  
overcurrent fault uses the RETRY pin to set the conditions  
for reconnecting power to the load. Connect to VOUT if  
unused.  
V has not risen above V  
. Leave unconnected if  
IN  
IN(UVLO)  
unused.  
SHDN: Shutdown Control Input. Assuming no voltage or  
current faults, SHDN high enables the GATE charge pump  
which in turn enhances the gate of the external N-channel  
MOSFETs. A low on SHDN generates a pull down on the  
GATE output with a 90µA current sink and places the  
LTC4368 in low current mode (5µA). If a forward overcur-  
rent condition latches off the external MOSFETs (RETRY  
grounded), the SHDN pin must be toggled low then high  
to re-enable the charge pump that enhances the external  
GATE: Gate Drive Output for External N-channel MOSFETs.  
An internal charge pump provides 35µA of pull-up current  
and up to 13.1V of enhancement to the gate of an external  
MOSFET. When turned off, GATE is pulled just below the  
lower of V or V . When V goes negative, GATE is  
IN  
OUT  
IN  
automatically connected to V .  
IN  
GND: Device Ground.  
OV: Overvoltage Comparator Input. Connect this pin to an  
MOSFETs. If V goes above 80V, the SHDN pin voltage  
IN  
external resistive divider to set the desired V overvolt-  
IN  
must be kept below 80V.  
age fault threshold. This input connects an accurate, fast  
(1µs) comparator with a 0.5V rising threshold and 25mV  
of hysteresis. When OV rises above its threshold, a 60mA  
current sink pulls down on the GATE output. When OV  
falls back below 0.475V, and after a 32ms GATE turn-on  
delay waiting period, the GATE charge pump is enabled.  
The low leakage current on this input allows the use of  
large valued resistors for the external resistive divider.  
Connect to GND if unused.  
UV: Undervoltage Comparator Input. Connect this pin to  
an external resistive divider to set the desired V under-  
IN  
voltage fault threshold. This input connects to an accu-  
rate, fast (1µs) comparator with a 0.5V falling threshold  
and 25mV of hysteresis. When UV falls below its thresh-  
old, a 60mA current sink pulls down on the GATE output.  
When UV rises back above 0.525V, and after a 32ms GATE  
turn-on delay waiting period, the GATE charge pump is  
enabled. The low leakage current on this input allows the  
use of large valued resistors for the external resistive  
RETRY: Retry or Latch-Off Selection Input. Connect to  
ground to latch off the MOSFETs after a forward over-  
current fault. To turn the external MOSFETs back on, the  
SHDN pin must be toggled low then high. Connect RETRY  
to an external capacitor to configure a 5.5ms/nF delay  
before the MOSFETs automatically turn on again. Leave  
unconnected if unused.  
divider. If unused and V is less than 80V, connect to  
IN  
V with a 510k resistor.  
IN  
VIN: Power Supply Input. Maximum protection range:  
–40V to 100V. Operating range: 2.5V to 60V. This pin  
can be hot swapped and has a 2.2V UVLO.  
SENSE: Overcurrent Sense Input. Connect a current  
sense resistor between SENSE and VOUT. This input  
detects overcurrent faults in both directions: forward  
VOUT: Output Voltage Sense Input. Connect a current  
sense resistor between VOUT and SENSE. The GATE  
charge pump voltage is referenced to V . It is used as  
OUT  
at ΔV  
= 50mV, and reverse at ΔV  
= –50mV  
the charge pump input when V  
is greater than approxi-  
SENSE  
SENSE  
mately 5V. The reverse currenOt UfaTult comparators require  
(LTC4368-1 option) or ΔVSENSE = –3mV (LTC4368-2  
option). When an overcurrent fault is detected, a 60mA  
that V  
rise above its 2.2V UVLO. V  
cannot be hot  
OUT  
OUT  
swapped with supplies above 24V. Place at least 1µF from  
to GND.  
V
OUT  
Rev. B  
7
For more information www.analog.com  
LTC4368  
BLOCK DIAGRAM  
ꢖꢗꢒꢓ  
ꢑꢓꢇꢑꢓ  
ꢋꢉꢒ  
ꢆꢇ  
ꢔꢀꢌꢅ ꢒꢋ ꢕꢌꢌꢅ  
ꢍꢌꢎꢅ  
RꢓꢅꢓRꢑꢓ  
ꢙRꢋꢒꢓꢚꢒꢆꢋꢇ  
ꢋꢚꢢRꢓꢅ  
ꢋꢚꢢꢡꢛꢄ  
+
ꢍꢌꢎꢅ ꢥꢀꢁꢂꢃꢦꢕꢧ  
ꢁꢎꢅ ꢥꢀꢁꢂꢃꢦꢈꢧ  
ꢋꢅꢓRꢚꢉRRꢓꢇꢒ  
ꢚꢋꢜꢙꢗRꢗꢒꢋRꢑ  
ꢚꢊꢋꢑꢓꢑ ꢑꢛꢆꢒꢚꢏ  
ꢛꢏꢓꢇ ꢅ ꢆꢑ ꢇꢓꢖꢗꢒꢆꢅꢓ  
ꢋꢉꢒ  
ꢆꢇ  
RꢓꢅꢢRꢓꢑꢓꢒ  
ꢆꢇ  
ꢕꢌꢌꢎꢅ  
ꢊꢄꢋ  
ꢖꢗꢒꢓ  
ꢍꢅ  
ꢁꢍꢘꢗ  
ꢖꢗꢒꢓ  
ꢚꢏꢗRꢖꢓ  
ꢙꢉꢜꢙ  
ꢋꢉꢒ  
ꢓꢇꢗBꢊꢓ  
ꢝ ꢞ ꢀꢌꢌꢟꢏꢠ  
ꢕꢨꢘꢗ  
ꢑꢒꢗRꢒ ꢒꢆꢜꢓR  
ꢁꢕ ꢚꢐꢚꢊꢓꢑ  
ꢑꢊꢋꢛ  
ꢋꢡꢡ  
ꢡꢗꢑꢒ  
ꢋꢡꢡ  
ꢡꢛꢄꢢRꢓꢑꢓꢒ  
RꢓꢒRꢐ  
ꢁ.ꢍꢘꢗ  
ꢣꢌꢘꢗ  
ꢂꢌꢎꢗ  
ꢖꢗꢒꢓ ꢙꢉꢊꢊꢄꢋꢛꢇ  
ꢊꢋꢖꢆꢚ  
ꢡꢋRꢛꢗRꢄ ꢋꢅꢓRꢚꢉRRꢓꢇꢒ  
ꢒꢆꢜꢓR  
SHDN  
ꢆꢇ  
ꢄꢓꢊꢗꢐ ꢒꢆꢜꢓRꢑ  
ꢊꢋꢖꢆꢚ  
ꢈ.ꢈꢅ  
ꢉꢅꢊꢋ  
ꢉꢅ  
FAULT  
+
ꢌ.ꢍꢅ  
ꢋꢅ  
ꢈꢍꢎꢅ  
ꢏꢐꢑꢒꢓRꢓꢑꢆꢑ  
+
ꢌ.ꢍꢅ  
ꢖꢇꢄ  
ꢀꢁꢂꢃ Bꢄ  
Rev. B  
8
For more information www.analog.com  
LTC4368  
OPERATION  
Many of today’s electronic systems get their power from  
external sources such as wall adapters, batteries and cus-  
tom power supplies. Figure 1 shows a supply arrange-  
ment using a DC barrel connector. Power is supplied by  
an AC adapter or, if the plug is withdrawn, by a removable  
battery. Note that the polarity of the AC adapter and barrel  
connector varies by manufacturer. Trouble arises when  
any of the following occurs:  
of a single catastrophic event, or over time as devices  
degrade from repeated overstress.  
The LTC4368 limits these errant overvoltage and overcur-  
rent conditions and helps extend the life of the electronic  
systems it protects. When the part detects an overcurrent  
or overvoltage fault, it isolates the input supply from the  
load by turning off the external back-to-back MOSFETs.  
The LTC4368 provides accurate overvoltage and under-  
voltage comparators to ensure that power is applied to  
the load only if the input supply meets the user selectable  
voltage window. Additionally, two accurate overcurrent  
comparators disconnect the load from the supply when  
excessive current flows in either the forward (+50mV/  
The battery is installed backwards  
A wall adapter of opposite polarity is attached  
A wall adapter of excessive voltage is attached  
A wall adapter with an AC output is attached  
The battery is discharged below a safe level  
R
) or reverse (–50mV or –3mV/R  
) direction.  
SENSE  
SENSE  
Reverse supply voltage protection circuits automatically  
isolate the load from negative input voltages. During nor-  
mal operation, a high voltage charge pump enhances the  
gate of dual external N-channel power MOSFETs, thus  
providing a low loss path for qualified power. Power con-  
sumption is 5µA during shutdown and 80µA while operat-  
ing. The LTC4368 integrates all these functions in small  
10-lead 3mm × 3mm DFN and MSOP packages.  
The load or the input is shorted to ground or to  
another supply  
Excessive current flows from the supply to the load  
or from the load to the supply  
These conditions, if unchecked, can damage electronic  
systems and their connectors. Damage can take the form  
BꢐꢝꢓꢐRꢉꢏꢈꢐꢌꢑꢇꢘ  
ꢌꢄꢉRꢏꢔRRꢉꢑꢈ ꢎRꢌꢈꢉꢏꢈꢐꢌꢑ  
ꢀꢁꢂꢃꢄ  
ꢅꢋꢂꢄ ꢈꢌ ꢍꢂꢂꢄ ꢎRꢌꢈꢉꢏꢈꢐꢌꢑ Rꢇꢑꢒꢉ  
ꢞꢍ  
ꢞꢚ  
+
ꢚ.ꢁꢄ ꢈꢌ ꢛꢂꢄ  
ꢐꢑRꢔꢗꢖ  
ꢌꢎꢉRꢇꢈꢐꢑꢒ Rꢇꢑꢒꢉ ꢏꢌꢑꢈRꢌꢘ  
ꢅꢆꢃꢄ  
ꢘꢌꢇꢓ  
ꢏꢐRꢏꢔꢐꢈ  
ꢇꢏ  
ꢇꢓꢇꢎꢈꢉR  
ꢐꢑꢎꢔꢈ  
R
BꢇꢈꢈꢉRꢊ  
ꢒꢇꢈꢉ  
ꢒꢇꢈꢉ  
ꢒꢇꢈꢉ  
ꢗꢉꢑꢗꢉ  
ꢌꢔꢈ  
ꢐꢑ  
Rꢋ  
Rꢆ  
Rꢚ  
SHDN  
ꢔꢄ  
ꢌꢄꢕ ꢔꢄ ꢎRꢌꢈꢉꢏꢈꢐꢌꢑ  
ꢈꢖRꢉꢗꢖꢌꢘꢓꢗ ꢗꢉꢈ ꢈꢌ  
ꢗꢇꢈꢐꢗꢙꢊ ꢘꢌꢇꢓ ꢏꢐRꢏꢔꢐꢈ  
ꢘꢈꢏꢋꢆꢛꢜꢝꢚ  
FAULT  
ꢌꢄ  
RꢉꢈRꢊ  
Rꢍ  
ꢒꢑꢓ  
RꢉꢈRꢊ  
ꢋꢆꢛꢜ ꢙꢂꢍ  
Figure 1. Polarity Protection for DC Barrel Connectors  
Rev. B  
9
For more information www.analog.com  
LTC4368  
APPLICATIONS INFORMATION  
+50mV  
0.004Ω  
M1  
M2  
V
PSMN4R8-100BSE SiR662  
OUT  
V
IN  
7V TO 36V  
24V  
INRUSH  
CONTROL  
–0.75A TO 12.5A  
–3mV  
22k  
2.2nF  
GATE  
SENSE  
V
OUT  
V
IN  
R4  
464k  
SHDN  
UV  
R3  
1500k  
OV = 36V  
UV = 7V  
LTC4368-2  
FAULT  
1200ms COOLDOWN  
AFTER FORWARD  
OC FAULT  
R2  
121k  
OV  
RETRY  
R1  
29.4k  
0.22µF  
GND  
4368 F02  
Figure 2. LTC4368-2 Protects Load from Voltage (–40V to 100V) and Current (–0.75A to 12.5A) Faults  
The LTC4368 is an N-channel MOSFET controller that pro-  
GATE Drive  
tects a load from overvoltage faults (both positive and  
negative) and from overcurrent faults (both forward and  
reverse). A typical application circuit using the LTC4368-2  
is shown in Figure 2. The circuit provides a low loss con-  
The LTC4368 turns on the external N-channel MOSFETs  
by driving the GATE pin above V . The voltage differ-  
OUT  
ence between the GATE and V  
pins (gate drive) is a  
OUT  
function of V and V  
.
IN  
OUT  
nection from V to V  
as long as there are no voltage  
IN  
OUT  
Figure 3 highlights the dependence of the gate drive on  
VIN and VOUT. When system power is first turned on  
or current faults.  
Voltages at VIN outside of the 7V to 36V range are  
prevented from getting to the load and can be as high as  
100V and as negative as –40V. Load currents (including  
(SHDN low to high, SENSE = V  
= 0V), gate drive is  
at a maximum for all values of OVUT. This helps prevent  
IN  
startup problems into heavy loads by ensuring that there  
is enough gate drive to support the load.  
inrush currents) above 12.5A (forward from V to V  
)
IN  
OUT  
and below –0.75A (reverse from VOUT to VIN) will cause the  
14  
load to be disconnected from V . The circuit of Figure 2  
IN  
T
GATE  
= 25°C  
= –1µA  
A
I
protects against negative voltages at V as shown. Note  
IN  
12  
10  
8
V
= 12V, 60V  
IN  
that the SOA and voltage requirements are not the same  
for the two external MOSFETs. During power-up, the input  
MOSFET (M1) will stand off more voltage (up to V ) than  
IN  
V
IN  
= 5V  
the output MOSFET (M2). The body diode of M2 will limit  
its drain to source voltage. This allows the use of smaller  
MOSFETs at the output.  
6
V
= 3.3V  
IN  
4
V
= 2.5V  
IN  
2
During normal operation, the LTC4368 provides up to  
13.1V of gate enhancement to the external back-to-back  
N-channel MOSFETs. This turns on the MOSFETs, thus  
0
15  
0
5
10  
V
(V)  
OUT  
4365 F03  
connecting the load at V  
to the supply at V .  
OUT  
IN  
Figure 3. Gate Drive (GATE – VOUT) vs VOUT  
Rev. B  
10  
For more information www.analog.com  
LTC4368  
APPLICATIONS INFORMATION  
As VOUT ramps up from 0V, the absolute value of the GATE  
The external resistive divider allows the user to select  
an input supply range that is compatible with the load  
voltage remains fixed until V  
is greater than the lower  
crosses this threshold,  
OUT  
OUT  
at V . Furthermore, the UV and OV inputs have very  
of (V – 1V) or 5V. Once V  
OUT  
IN  
low leakage currents (typically < 1nA at 100°C), allow-  
ing for large values in the external resistive divider. In  
the application of Figure 4, the load is connected to the  
gate drive begins to increase up to a maximum of 13.1V.  
The curves of Figure 3 were taken with a GATE load of  
–1µA. If there were no DC load on GATE, the gate drive  
supply only if V lies between 3.5V and 18V. In the event  
for each V would be slightly higher.  
IN  
IN  
that V goes above 18V or below 3.5V, the gate of the  
IN  
Note that when V is at the lower end of the operating  
IN  
external N-channel MOSFET is immediately discharged  
with a 60mA current sink, thus isolating the load from  
the supply.  
range, the external N-channel MOSFET must be selected  
with a correspondingly lower threshold voltage.  
Overvoltage and Undervoltage Protection  
Figure 5 shows the timing associated with the UV pin.  
Once a UV fault propagates through the UV comparator  
(tFAULT), the FAULT output is asserted low and a 60mA  
The LTC4368 provides two accurate comparators to moni-  
tor for overvoltage (OV) and undervoltage (UV) conditions  
at V . If the input supply rises above the user adjust-  
ableINOV threshold, the gates of the external MOSFETs  
are quickly turned off, thus disconnecting the load from  
the input. Similarly, if the input supply falls below the  
user adjustable UV threshold, the gates of the external  
MOSFETs are quickly turned off. Figure 4 shows a UV/OV  
application for an input supply of 12V.  
current sink discharges the GATE pin. As V  
falls, the  
OUT  
GATE pin tracks V  
.
OUT  
ꢓ ꢒ  
ꢌꢒ ꢌꢒꢔꢕꢐꢉ  
ꢌꢒ  
ꢌꢒ  
ꢄꢈꢌꢉ  
FAULT  
ꢎꢏꢄꢈꢐꢉꢑ  
ꢎꢏꢖꢗꢑ  
ꢚꢆꢓꢍꢉꢎꢌ  
ꢊꢘꢉꢊRꢗꢈꢍ ꢗꢙꢚꢔꢈꢗꢗꢊꢍ ꢛꢖꢐꢄꢊꢉꢐ  
ꢉꢌRꢗ ꢖꢄꢄ  
ꢃꢄꢀ  
ꢁꢂ  
ꢇꢈꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢅꢀ  
Rꢉ  
ꢃꢌꢄꢐꢝ  
ꢓꢋꢛꢜꢔRꢔꢆꢋR  
ꢅꢀ  
Figure 5. UV Timing (OV < (VOV – VOVHYST), SHDN > 1.2V)  
ꢅꢀ ꢈ ꢉ.ꢊꢀ  
ꢆꢇ  
ꢄꢊꢘꢀ  
ꢋꢀ  
+
Figure 6 shows the timing associated with the OV pin.  
Once an OV fault propagates through the OV comparator  
(tFAULT), the FAULT output is asserted low and a 60mA  
Rꢄ  
ꢐ.ꢊꢀ  
ꢑꢁꢒꢓꢇꢔRꢕꢖ ꢕꢔꢆꢖ  
ꢗꢁꢆꢇ ꢎꢐꢘꢔ ꢒꢁꢂꢙ  
ꢄꢍꢉꢝ  
ꢓꢋꢛꢜꢔRꢔꢆꢋR  
ꢋꢀ  
ꢋꢀ ꢈ ꢃꢌꢀ  
ꢆꢇ  
+
current sink discharges the GATE pin. As V  
falls, the  
OUT  
ꢄꢊꢘꢀ  
GATE pin tracks V  
.
Rꢃ  
ꢊꢞꢝ  
OUT  
ꢐ.ꢊꢀ  
ꢐꢏ  
ꢐꢏ  
ꢑ ꢏ  
ꢐꢏꢒꢓꢍꢊ  
ꢐꢏ  
ꢍꢉꢎꢌ ꢏꢐꢍ  
ꢄꢇꢈꢊ  
Figure 4. UV, OV Comparators Monitor 12V Supply  
FAULT  
ꢋꢌꢐꢔꢎ  
ꢋꢌꢄꢇꢍꢊꢎ  
ꢕꢖꢊꢕRꢔꢇꢉ ꢔꢗꢘꢒꢇꢔꢔꢕꢉ ꢙꢐꢍꢄꢕꢊ  
ꢊꢈRꢔꢍ ꢐꢄꢄ  
ꢚꢇꢊꢕ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
Figure 6. OV Timing (UV > (VUV + VUVHYST), SHDN > 1.2V)  
Rev. B  
11  
For more information www.analog.com  
LTC4368  
APPLICATIONS INFORMATION  
When both the UV and OV faults are removed, the exter-  
nal MOSFETs are not immediately turned on. The input  
supply must remain within the user selected power good  
window for typically 32ms (tD(ON)) before the load is again  
connected to the supply. This recovery timeout period  
filters noise (including line noise) at the input supply and  
prevents chattering of power at the load.  
The example of Figure 4 uses standard 1% resistor values.  
The following parameters were selected:  
V
I
= 3mV  
OS(UV)  
= 10nA  
UV  
UV = 3.5V  
TH  
OV = 18V  
TH  
Procedure for Selecting UV/OV External Resistor Values  
The resistor values can then be solved:  
3mV  
The following 3-step procedure helps select the resistor  
values for the resistive divider of Figure 4. This procedure  
minimizes UV and OV offset errors caused by leakage  
currents at the respective pins.  
1. R1+ R2 =  
= 300k  
10nA  
3mV  
2. R3 = 2 •  
• (3.5V – 0.5V) = 1.8M  
10nA  
1. Choose maximum tolerable offset at the UV pin,  
V
. Divide by the worst case leakage current at  
OS(UV)  
The closest 1% value: R3 = 1.82M  
the UV pin, I (10nA). Set the sum of R1 + R2 equal  
UV  
300k + 1.82M  
to V  
divided by 10nA. Note that due to the pres-  
OS(UV)  
3. R1 =  
= 58.9k  
ence of R3, the actual offset at UV will be slightly  
2 • 18V  
lower.  
The closest 1% value: R1 = 59K  
R2 = 300K – 59K = 241K  
V
OS(UV)  
R1+ R2 =  
I
UV  
The closest 1% value: R2 = 243K  
Therefore: OV = 17.93V, UV = 3.51V.  
2. Select the desired V UV trip threshold, UV . Find  
IN  
TH  
the value of R3:  
Limiting Inrush Current During Turn On  
V
UV – 0.5V  
OS(UV)  
TH  
R3 =  
Charging large capacitors on V  
can lead to excessive  
OUT  
I
0.5V  
UV  
inrush currents when LTC4368 turns on the external  
N-channel MOSFET. The maximum slew rate at the GATE  
pin can be reduced by adding a capacitor on the GATE pin:  
3. Select the desired V OV trip threshold, OV . Find  
IN  
TH  
the values of R1 and R2:  
I
GATE(UP)  
V
Slew Rate =  
OS(UV)  
+R3  
C
GATE  
I
UV  
R1 =  
R2 =  
• 0.5V  
OV  
TH  
V
OS(UV)  
– R1  
I
UV  
Rev. B  
12  
For more information www.analog.com  
LTC4368  
APPLICATIONS INFORMATION  
Since the MOSFET acts like a source follower, the slew  
Forward Overcurrent Fault  
Forward overcurrent protection prevents large currents  
from flowing from V to V . This threshold current is  
rate at V  
equals the slew rate at GATE. Therefore, the  
OUT  
inrush current due to the capacitance on VOUT is given by:  
IN  
OUT  
determined by the external sense resistor (R  
) and an  
C
SENSE  
OUT  
I
=
•I  
GATE(UP)  
INRUSH  
internal comparator (Figure 7, U1) with a 50mV threshold:  
C
GATE  
50mV  
I
=
For example, a 1A inrush current into a 100µF output  
capacitance requires a GATE capacitance of (using  
GATE(UP)  
OC,FWD  
R
SENSE  
I
= 35µA):  
For the example of Figure 7, if 2.5A flows to the output  
across the 20mΩ sense resistor, the external MOSFETs  
(M1, M2) are immediately (8µs) turned off. This discon-  
nects the load from the input supply.  
35µA • C  
OUT  
C
C
=
=
GATE  
I
INRUSH  
35µA • 100µF  
1A  
Note that during initial startup, the output capacitance  
(COUT) charges from ground to VIN. To prevent this  
capacitive inrush current (I  
ing the forward overcurrent comparator, place an inrush  
limiting capacitor (C ) on the GATE pin (see Limiting  
Inrush Current During Turn On). This inrush current plus  
the output current must be less than the desired forward  
overcurrent threshold:  
= 3.5nF  
GATE  
) from falsely trigger-  
INRUSH  
The 3.3nF CGATE capacitor in the application circuit of  
Figure 7 limits the inrush current to just over 1A. R  
GATE  
GATE  
prevents C  
from slowing down the reverse polarity  
protection GcAirTcEuits. It also stabilizes the fast pull-down  
circuits and prevents chatter during fault conditions. Set  
R
GATE  
to 22k for most applications.  
2.5A  
I
> I  
+ I  
OC,FWD  
INRUSH OUT  
FDS3992  
R
SENSE  
100V DUAL  
I
< 2.5A  
I
OUT  
0.02Ω  
For the example of Figure 7, the 3.3nF GATE capacitor  
and the 100µF output capacitor limit the inrush current  
(IINRUSH) to approximately 1A. This means that the output  
M1  
M2  
V
IN  
24V  
R
GATE  
22k  
+
–0.15A  
C
OUT  
100µF  
OUT  
INRUSH  
CONTROL:  
~1A  
C
3.3nF  
GATE  
current (I ) must be less than 1.5A during turn on in  
OUT  
order to avoid a forward overcurrent fault during turn on.  
V
IN  
GATE  
SENSE  
V
OUT  
Once V  
has ramped to its final value, the output cur-  
OUT  
50mV  
rent is limited to 2.5A.  
TURN OFF  
MOSFETS  
+
+
+
U2  
U1  
Once a forward overcurrent fault is triggered, there are  
two application choices for turning the external MOSFETs  
back on:  
+
3mV  
TURN MOSFETS  
BACK ON  
+
V
V
OUT  
U3  
LTC4368-2  
+
100mV  
IN  
1. Automatically restart by placing an external capaci-  
tor on the RETRY pin. An internal cool-down timer  
will charge/discharge this capacitor 31 times with  
a 5.5ms/nF total delay. At the end of this delay, the  
external MOSFETs are turned back on, thus reconnect-  
ing the load to the input supply. The 0.22µF capaci-  
tor (CRETRY) in the application of Figure 7 yields a  
1200ms cool-down timer delay. Note that the adjust-  
able cool-down period provides the user with a means  
of keeping the external MOSFETs within the rated SOA  
START  
TIMER  
TURN MOSFETS  
BACK ON AFTER  
31 CYCLES  
31 CYCLES  
SHDN  
RETRY  
RESET FORWARD  
OC LATCH  
C
RETRY  
0.22µF  
OC FORWARD TIMER/LATCH  
4368 F07  
Figure 7. Overcurrent Comparators Monitor 2.5A/–0.15A  
Current Faults  
(safe operating area). See Figure 8 timing diagram.  
Rev. B  
13  
For more information www.analog.com  
LTC4368  
APPLICATIONS INFORMATION  
2. Latch off the MOSFETs by grounding the RETRY pin  
(no external RETRY capacitor needed). This latches  
the forward overcurrent fault. The external MOSFETs  
are kept in the off condition until the SHDN input pin is  
toggled low then high (tCLEAR pulse width < tLOWPWR).  
See Figure 9 timing diagram.  
ꢜꢔꢕꢄ  
ꢀꢁꢂꢀꢁ ꢃ ꢄ  
ꢅꢆꢇ  
ꢛꢂRꢆꢀꢞ  
ꢒꢛꢟꢛꢇꢁꢘ  
ꢔꢕꢄ  
ꢀꢇꢁꢍꢘꢈ ꢀꢇꢍꢇꢁ ꢒꢅꢍꢘ  
ꢀꢇꢁꢍꢘꢈ ꢀꢇꢍꢇꢁ ꢒꢅꢍꢘ  
ꢊꢋꢌꢍꢇꢁꢎ  
ꢁꢝꢇꢁRꢂꢍꢒ ꢂꢗꢑꢞꢍꢂꢂꢁꢒ  
ꢟꢅꢀꢠꢁꢇꢖ ꢇꢆRꢂ ꢅꢠꢠ  
ꢌꢍꢇꢁ  
RꢁꢇRꢈ  
FAULT  
ꢁꢝꢇꢁRꢂꢍꢒ ꢂꢗꢑꢞꢍꢂꢂꢁꢒ  
ꢟꢅꢀꢠꢁꢇꢖ ꢇꢆRꢂ Bꢍꢑꢡ ꢅꢂ  
ꢏꢐ ꢑꢈꢑꢒꢁꢀ  
ꢋꢐꢓꢔꢔꢕꢖ ꢑꢅꢅꢒꢗꢘꢅꢙꢂ ꢚꢁRꢛꢅꢘꢎ  
Reverse Overcurrent Protection  
RꢁꢇRꢈ  
Reverse overcurrent protection prevents large currents  
from flowing from V  
to V . There are two options for  
OUT  
IN  
reverse overcurrent protection thresholds. The LTC4368-1  
(–50mV) bidirectional circuit breaker allows load current  
ꢢꢏꢣꢤ ꢠꢔꢤ  
Figure 8. Forward Overcurrent Fault with 0.22µF RETRY Capacitor  
to flow in either direction: from V to V  
or from V  
to VIN. The LTC4368-2 providesINdiodeO-lUikTe behaviorObUyT  
making the reverse overcurrent threshold (–3mV) sig-  
nificantly smaller than the forward overcurrent thresh-  
old (+50mV). The reverse overcurrent fault threshold is  
ꢖꢅꢗꢊ  
ꢆꢇꢈꢆꢇ ꢉ ꢊ  
ꢋꢌꢍ  
ꢞꢈRꢌꢆꢚ  
ꢐꢞꢛꢞꢍꢇꢟ  
ꢅꢗꢊ  
ꢆꢍꢇꢑꢟꢠ ꢆꢍꢑꢍꢇ ꢐꢋꢑꢟ  
ꢆꢍꢇꢑꢟꢠ ꢆꢍꢑꢍꢇ ꢐꢋꢑꢟ  
ꢡꢢꢕꢑꢍꢇꢣ  
determined by the external sense resistor (R  
) and  
SENSE  
ꢇꢘꢍꢇRꢈꢑꢐ ꢈꢙꢏꢚꢑꢈꢈꢇꢐ  
ꢛꢋꢆꢄꢇꢍꢜ ꢍꢌRꢈ ꢋꢄꢄ  
ꢕꢑꢍꢇ  
SHDN  
FAULT  
ꢇꢘꢍꢇRꢈꢑꢐ ꢈꢙꢏꢚꢑꢈꢈꢇꢐ  
ꢛꢋꢆꢄꢇꢍꢜ ꢍꢌRꢈ Bꢑꢏꢝ ꢋꢈ  
an internal comparator (Figure 7, U2). For the LTC4368-2  
application of Figure 7:  
–3mV  
–3mV  
I
=
=
= –0.15A  
OC,REV  
R
20mΩ  
SENSE  
ꢒ ꢎ ꢒ ꢎ  
ꢏꢐꢇꢑR ꢐꢋꢓꢔꢓR  
If –0.15A flows from the output across the 20mΩ sense  
resistor, the external MOSFETs (M1,M2) are immediately  
(8µs) turned off.  
ꢀꢁꢂꢃ ꢄꢅꢃ  
To turn the MOSFETs back on, an internal comparator  
Figure 9. Forward Overcurrent Fault with RETRY Pin Grounded  
(Figure 7, U3) detects when V  
drops 100mV below  
OUT  
V :  
IN  
ꢄꢓꢍꢎ  
ꢇꢎꢈꢓꢟꢠ ꢇꢎꢓꢎꢈ ꢗꢌꢓꢟ  
ꢆꢕꢋ  
ꢊꢁꢕꢋ  
V
OUT  
< V – 100mV  
IN  
ꢞꢉRꢍꢇꢚ  
ꢗꢞꢛꢞꢎꢈꢟ  
ꢇꢈꢉꢇꢈ ꢊ ꢋ  
ꢌꢍꢎ  
Once this condition is met, the gates of the external  
MOSFETs are turned on again to reconnect the input sup-  
ply to the load. See timing diagrams of Figure 10. Note  
that if the LTC4368-1 option is used, the reverse current  
threshold becomes:  
ꢐꢑꢒꢓꢎꢈꢔ  
ꢅꢅꢋ  
ꢒꢓꢎꢈ ꢊ ꢋ  
ꢌꢍꢎ  
ꢆꢋ  
ꢈꢖꢎꢈRꢉꢓꢗ ꢉꢘꢙꢚꢓꢉꢉꢈꢗ  
ꢛꢌꢇꢄꢈꢎꢜ ꢎꢍRꢉ Bꢓꢙꢝ ꢌꢉ  
ꢊ ꢅꢆꢆꢕꢋ  
ꢞꢉ  
ꢌꢍꢎ  
–50mV  
I
=
OC,REV  
R
SENSE  
FAULT  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Figure 10. Reverse Overcurrent Fault: SENSE – VOUT < –3mV  
(LTC4368-2)  
Rev. B  
14  
For more information www.analog.com  
LTC4368  
APPLICATIONS INFORMATION  
Reverse V Protection  
parasitic inductance of the V and GATE connections, the  
IN  
voltage at the V and GATEIpNins ring significantly below  
IN  
The LTC4368’s rugged and hot swappable V helps pro-  
IN  
–20V. Therefore, hot swapping a negative input voltage  
more negative than –20V should not be performed with-  
out additional overshoot mitigation techniques in place.  
The front page application was used to generate the wave-  
forms of Figure 12.  
tect the more sensitive circuits at the output load. If the  
input supply is plugged in backwards, or a negative sup-  
ply is inadvertently connected, the LTC4368 prevents this  
negative voltage from passing to the output load.  
As shown in Figure 11, external back-to-back N-channel  
MOSFETs are required for reverse supply protection. When  
V goes negative, the reverse V comparator closes the  
ꢀꢁꢂ  
IN  
IN  
internal switch, which in turn connects the gates of the  
external MOSFETs to the negative V voltage. The body  
ꢀꢁꢂꢃꢄꢁ  
IN  
ꢀꢁꢂꢃ  
diode (D1) of M1 turns on, but the body diode (D2) of M2  
remains in reverse blocking mode. This means that the  
common source connection of M1 and M2 remains about  
ꢀꢁꢂꢃ  
ꢀꢁ  
a diode drop higher than V . Since the gate voltage of  
ꢂꢃꢄꢅꢆ ꢇꢈꢉ  
IN  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
M2 is shorted to V , M2 will be turned off and no current  
IN  
Figure 12. Hot Swapping VIN to –20V  
can flow from V  
to V . Note that the voltage rating of  
OUT  
IN  
M2 must withstand the reverse voltage excursion at V .  
IN  
The speed of the LTC4368 reverse protection circuits is  
ꢋꢌꢍꢎꢄꢏ ꢐꢅꢅꢀ ꢊꢑꢉꢈ  
ꢊꢐ  
ꢊꢏ  
evident by how closely the GATE pin follows V during  
IN  
the negative transients. The two waveforms are almost  
ꢛꢐ  
ꢛꢏ  
ꢆꢇ  
ꢁꢂ  
indistinguishable on the scale shown.  
ꢃꢄꢅꢀ  
ꢈꢇꢉꢊ  
ꢁꢂRꢑꢋꢙ  
+
ꢒꢇꢂꢆRꢇꢈ  
ꢇꢑꢆ  
ꢙꢇꢆꢋꢜꢉꢝ  
ꢞꢇꢝꢆꢁꢇꢂꢉꢈ  
ꢄ.ꢄꢘꢔꢟ  
The trace at V , on the other hand, does not respond  
ꢐꢅꢅꢓꢔ  
OUT  
R
ꢏꢏꢚ  
ꢖꢉꢆꢕ  
to the negative voltage at V , demonstrating the desired  
reverse supply protection. ITNhe waveforms of Figure 12  
were captured using a 40V dual N-channel MOSFET, a  
10µF ceramic output capacitor and no load current on  
ꢖꢉꢆꢕ  
ꢗ.ꢗꢘꢔ  
ꢖꢉꢆꢕ  
ꢋꢕꢂꢋꢕ  
ꢇꢑꢆ  
ꢁꢂ  
V
.
OUT  
RꢕꢀꢕRꢋꢕ ꢀ  
ꢁꢂ  
LTC4368  
ꢒꢇꢛꢝꢉRꢉꢆꢇR  
Hot Swap V Protection  
IN  
The V input of the LTC4368 can be live inserted or hot  
ꢒꢈꢇꢋꢕꢋ ꢋꢜꢁꢆꢒꢙ  
IN  
ꢜꢙꢕꢂ ꢀ ꢁꢋ ꢂꢕꢖꢉꢆꢁꢀꢕ  
ꢖꢂꢊ  
ꢁꢂ  
swapped into a backplane with minor disturbance to the  
ꢄꢗꢡꢢ ꢔꢐꢐ  
V supply. The idea is to keep the parasitic capacitances  
IN  
Figure 11. Reverse VIN Protection Circuits  
of the external MOSFETs (C ) from coupling onto the  
GATE pin and enhancing tGhDe MOSFETs. To improve  
positive VIN hot swap capability (without jeopardizing  
To avoid large currents when the reverse voltage is hot  
plugged, set RGATE to 22k. To further improve reverse  
hot swap performance, place the optional C  
4.4nF capacitor across the gate and source terminals of  
the external MOSFETs.  
reverse polarity protection), place C  
across the  
HOTSWAP  
HOTSWAP  
gate and source terminals of the back-to-back MOSFETs.  
Figure 13 illustrates the waveforms that result when  
the V of the front page application is hot plugged to  
IN  
Figure 12 illustrates the waveforms that result when V  
+48V. The top trace is V . The bottom two traces are the  
IN  
IN  
is hot plugged to –20V. V , GATE and V  
start out at  
MOSFETs gate and source terminals. Note that the bottom  
two traces ring together and thus keep the MOSFETs off  
IN  
OUT  
ground just before the connection is made. Due to the  
Rev. B  
15  
For more information www.analog.com  
LTC4368  
APPLICATIONS INFORMATION  
Slow Shutdown  
ꢀꢁ  
The SHDN input turns off the external MOSFETs in a  
slow, controlled manner. When SHDN is asserted low, a  
90µA current sink slowly begins to turn off the external  
MOSFETs.  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀRꢁꢁꢂ ꢃꢄꢅꢆꢇꢈ ꢉꢅꢊꢋꢁꢄ ꢀꢌꢄꢁ  
Bꢀꢁꢂ ꢃBꢄꢅꢅꢄꢆꢇꢈ ꢆꢄꢉꢊꢂꢅ ꢉꢄꢁRꢋꢂ  
Once the voltage at the GATE pin falls below the voltage  
at the V  
pin, the current sink is throttled back and a  
OUT  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
feedback loop takes over. This loop forces the GATE volt-  
age to track V , thus keeping the external MOSFETs off  
OUT  
Figure 13. Hot Swapping VIN to +48V  
as V  
decays. Note that when V  
pin is pulled all the way to ground.  
< 2.5V, the GATE  
OUT  
OUT  
during the fast transients. To further improve positive  
hot swap, place the optional C = 6.8nF capacitor  
Slow gate turn off reduces load current slew rates and  
mitigates voltage spikes due to parasitic inductances. To  
further decrease GATE pin slew rate, place a capacitor  
HOTSWAP  
across the gate/source of the external MOSFETs. For even  
more hot swap protection, add a diode (MBR0540) across  
(C  
, see Figure 11) across the gate and source  
HOTSWAP  
R
GATE  
(connect cathode to C  
). Make sure this diode  
GATE  
terminals of the external MOSFETs. The waveforms of  
Figure 15 were captured using the Si7942 Dual N-channel  
MOSFETs, and a 2A load with 100µF output capacitor.  
has a reverse breakdown of at least 40V.  
Recovery Delay Timer  
The LTC4368 has a recovery delay timer that filters noise  
at V and helps prevent chatter at V . After either an OV  
100µF, 6Ω LOAD ON V  
OUT  
ꢀꢁꢂꢃ  
DUAL Si7942 MOSFET  
ꢀ ꢁꢂꢃ  
IN  
OUT  
ꢀꢁ  
or UV fault has occurred, the input supply must return to  
the desired operating voltage window for typically 32ms  
ꢀꢁꢂ  
(t ) in order to turn the external MOSFET back on, as  
D(ON)  
ꢀꢁꢂꢃꢄꢁ  
illustrated in Figure 5 and Figure 6. Going out of and then  
back into fault in fewer than 32ms will keep the MOSFET  
off continuously. Similarly, coming out of shutdown (SHDN  
SHDN  
ꢀꢁꢂ  
low to high) triggers an 800µs startup delay timer (t  
see Figure 16).  
,
START  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
The recovery delay timer is also active while the LTC4368  
is powering up. The 32ms timer starts once VIN rises  
Figure 15. Slow Shutdown: GATE Tracks VOUT as VOUT Decays  
above V  
and V lies within the user selectable  
IN(UVLO)  
IN  
UV/OV power good window. See Figure 14.  
SHDN  
ꢊꢂꢁRꢂ  
ꢈꢉꢊꢋꢅꢌꢍ  
ꢑꢎ  
ꢏꢍ  
ꢏꢍꢐꢑꢎꢒꢋꢓ  
ꢀꢁꢂꢃ  
Δꢄ  
ꢀꢁꢂꢃ  
ꢕꢐꢋꢍꢓ  
ꢀꢁꢂꢃ ꢎ ꢄ  
ꢅꢆꢂ  
ꢆꢇꢈꢉ  
ꢊꢋꢌꢄꢉꢈ ꢋꢄꢄ  
ꢊꢋꢌꢄꢉꢈ ꢋꢍ  
ꢅꢆꢂ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
ꢊꢏꢈꢐꢉꢑꢍ  
Figure 14. Recovery Timing During Power-On  
OV = GND, UV = SHDN = VIN  
FAULT  
ꢒꢓꢔꢕ ꢑꢖꢔ  
Figure 16. Slow Shutdown Timing  
Rev. B  
16  
For more information www.analog.com  
LTC4368  
APPLICATIONS INFORMATION  
FAULT Status  
By driving the SHDN pins separately, this potential back-  
flow can be avoided. VOUT can then be selected from either  
V1 or V2, irrespective of which supply voltage is higher or  
lower. While in shutdown, the LTC4368-2 drives the GATE  
The FAULT high voltage open drain output is driven low  
if SHDN is asserted low, if V is outside the desired UV/  
IN  
OV voltage window, if there is an overcurrent fault, or if  
pin just below the lower of V and V , thus allowing  
IN  
OUT  
V has not risen above V  
. Figures 5, 6, 8, 9, 10  
IN  
IN(UVLO)  
V
to be larger than V while in the off condition.  
OUT  
IN  
and 16 show the FAULT output timing.  
Single MOSFET Higher Power Application  
Ideal Diode Alternative  
When reverse V protection is not needed, only a single  
IN  
Figure 17 shows two LTC4368-2 connected in parallel.  
With both devices turned on, the output will be the higher  
of V1 or V2. Unlike ideal diode controllers, the LTC4368  
always fully enhances the MOSFETs, even at light loads.  
Note, however, that if the voltage difference between V1  
and V2 is less than 3mV, the reverse overcurrent com-  
parators will not detect a fault and up to 150mA can flow  
from the higher to the lower supply. Similarly, disconnect-  
ing the higher supply may not generate sufficient reverse  
current to turn off the MOSFETs. A subsequent reconnec-  
tion may result in an inrush current that temporarily trips  
the circuit breakers.  
external N-channel MOSFET is necessary. This provides  
the user with a larger selection of MOSFETs (not just dual  
packages), especially for higher power applications. Note  
that care must be taken to stay within the SOA of the  
external MOSFET. The RETRY pin of the LTC4368 can be  
used to help keep the MOSFET within its SOA. The user  
can ground the RETRY pin to latch off the MOSFET after a  
forward current fault. For automatic retry after a forward  
current fault, C  
must be large enough to maintain a  
RETRY  
low on duty cycle for the MOSFET. See Figure 18.  
+50mV  
V
I
OUT  
OUT  
PSMN4R8-100BSE 0.003Ω 3.5V TO 18V –1A TO 16.67A  
V
IN  
MOSFETs TURN OFF WHEN REVERSE CURRENT EXCEEDS –150mA  
12V  
R
INRUSH  
CONTROL  
SENSE  
+
–3mV  
0.02Ω  
22k  
100µF  
V1  
2.2nF  
–3mV  
SENSE  
GATE  
SENSE  
V
OUT  
V
IN  
GATE  
V
OUT  
V
IN  
453k  
1330k  
243k  
SHDN  
UV  
SEL V1  
SHDN  
V
OUT  
LTC4368-2  
FAULT  
LTC4368-2  
1200ms COOLDOWN  
AFTER FORWARD  
OC FAULT  
MOSFETs TURN OFF WHEN REVERSE CURRENT EXCEEDS –150mA  
OV  
RETRY  
R
SENSE  
0.22µF  
59k  
GND  
0.02Ω  
V2  
4368 F18  
–3mV  
Figure 18. Single MOSFET High Power Application  
GATE  
SENSE  
V
OUT  
V
IN  
SEL V2  
SHDN  
LTC4368-2  
4368 F17  
Figure 17. Alternative to Ideal Diode  
Rev. B  
17  
For more information www.analog.com  
LTC4368  
APPLICATIONS INFORMATION  
300nH  
(12 INCH WIRE LENGTH)  
FDS3992  
100V DUAL  
R
SENSE  
0.02Ω  
V
IN  
48V  
INRUSH  
+
C
CONTROL: ~1A  
OUT  
48Ω  
ꢀꢁꢂꢃ  
100µF  
R
GATE  
22k  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢂ  
C
GATE  
3.3nF  
D1  
ꢀꢁ  
GATE  
SENSE  
V
OUT  
ꢀꢁꢂꢃꢄꢅꢂ  
V
IN  
R4  
100k  
SHDN  
UV  
FAULT  
LTC4368-2  
1200ms COOLDOWN  
AFTER FORWARD  
OC FAULT  
R2  
2430k  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢁꢃ  
OV = 60V  
OV  
RETRY  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
C
R1  
20.5k  
RETRY  
GND  
0.22µF  
4368 F19  
Figure 20. Transients During 0V Fault when  
No TransZorb (TVS) Is Used  
Figure 19. OV Fault with Large VIN Inductance  
Transients During OV Fault  
Layout Considerations  
The circuit of Figure 19 is used to illustrate transients The trace length between the V pin and the drain of the  
IN  
commonly encountered during an overvoltage condition. external MOSFET should be minimized, as well as the  
The nominal input supply is 48V and it has an overvoltage trace length between the GATE pin of the LTC4368 and  
threshold of 60V. The parasitic inductance is that of a 1 the gates of the external MOSFETs. The SENSE and V  
OUT  
foot wire (roughly 300nH). Figure 20 shows the wave- pins must be connected with traces that tie directly and  
forms during on overvoltage condition at VIN. These tran- solely to the sense resistor.  
sients depend on the parasitic inductance and resistance  
Place the bypass capacitors at V  
as close as possible  
OUT  
of the wire along with the capacitance at the VIN node.  
D1 is an optional power clamp (TVS, TransZorb) recom-  
mended for applications where the DC input voltage can  
to the external MOSFET. Use high frequency ceramic  
capacitors in addition to bulk capacitors to mitigate hot  
swap ringing. Place the high frequency capacitors closest  
to the MOSFET. Note that bulk capacitors mitigate ringing  
by virtue of their ESR. Ceramic capacitors have low ESR  
and can thus ring near their resonant frequency. The trace  
length of the GATE pin should be kept as small as pos-  
sible, and the number of components connected to the  
GATE pin should also be minimized.  
exceed 24V and with large V parasitic inductance. No  
IN  
clamp was used to capture the waveforms of Figure 20. In  
order to maintain reverse supply protection, D1 must be  
a bidirectional clamp with appropriate voltage and power  
ratings.  
The SOA of the external MOSFET might require the board  
to have a minimum total area as well as a minimum amount  
of trace volume connected to the drain and source pins.  
Rev. B  
18  
For more information www.analog.com  
LTC4368  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1ꢀꢀ1 Rev F)  
0.889 0.127  
(.035 .005)  
5.10  
(.201)  
MIN  
3.20 – 3.45  
(.12ꢀ – .13ꢀ)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
(.0197)  
0.497 0.07ꢀ  
(.019ꢀ .003)  
REF  
0.50  
5
0
0.038  
.0015)  
10 9  
8
7 ꢀ  
BSC  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 0.152  
(.021 .00ꢀ)  
0.8ꢀ  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.101ꢀ 0.0508  
(.004 .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0213 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
Rev. B  
19  
For more information www.analog.com  
LTC4368  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
ꢃReꢩeꢪeꢫꢬe ꢗꢌꢓ ꢇꢏꢐ ꢭ ꢁꢠꢘꢁꢧꢘꢂꢣꢚꢚ Rev ꢓꢉ  
ꢁ.ꢥꢁ ±ꢁ.ꢁꢠ  
±ꢁ.ꢁꢠ  
ꢙ.ꢂꢠ ±ꢁ.ꢁꢠ ꢃꢙ ꢅꢆꢇꢈꢅꢉ  
ꢂ.ꢣꢠ ±ꢁ.ꢁꢠ  
ꢔꢎꢓꢕꢎꢐꢈ  
ꢋꢖꢌꢗꢆꢊꢈ  
ꢁ.ꢙꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢠꢁ  
Bꢅꢓ  
ꢙ.ꢀꢧ ±ꢁ.ꢁꢠ  
ꢃꢙ ꢅꢆꢇꢈꢅꢉ  
RECOMMENDED ꢅꢋꢗꢇꢈR ꢔꢎꢇ ꢔꢆꢌꢓꢝ ꢎꢊꢇ ꢇꢆꢑꢈꢊꢅꢆꢋꢊꢅ  
R ꢦ ꢁ.ꢂꢙꢠ  
ꢁ.ꢄꢁ ±ꢁ.ꢂꢁ  
ꢌꢢꢔ  
ꢂꢁ  
ꢀ.ꢁꢁ ±ꢁ.ꢂꢁ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢂ.ꢣꢠ ±ꢁ.ꢂꢁ  
ꢃꢙ ꢅꢆꢇꢈꢅꢉ  
ꢔꢆꢊ ꢂ ꢊꢋꢌꢓꢝ  
R ꢦ ꢁ.ꢙꢁ ꢋR  
ꢔꢆꢊ ꢂ  
ꢌꢋꢔ ꢑꢎRꢕ  
ꢃꢅꢈꢈ ꢊꢋꢌꢈ ꢣꢉ  
ꢁ.ꢀꢠ × ꢄꢠ°  
ꢓꢝꢎꢑꢜꢈR  
ꢃꢇꢇꢉ ꢇꢜꢊ Rꢈꢛ ꢓ ꢁꢀꢂꢁ  
ꢁ.ꢙꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢠꢁ Bꢅꢓ  
ꢁ.ꢥꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢙꢁꢁ Rꢈꢜ  
ꢙ.ꢀꢧ ±ꢁ.ꢂꢁ  
ꢃꢙ ꢅꢆꢇꢈꢅꢉ  
ꢁ.ꢁꢁ ꢨ ꢁ.ꢁꢠ  
Bꢋꢌꢌꢋꢑ ꢛꢆꢈꢏꢤꢈꢞꢔꢋꢅꢈꢇ ꢔꢎꢇ  
ꢊꢋꢌꢈꢍ  
ꢂ. ꢇRꢎꢏꢆꢊꢐ ꢌꢋ Bꢈ ꢑꢎꢇꢈ ꢎ ꢒꢈꢇꢈꢓ ꢔꢎꢓꢕꢎꢐꢈ ꢋꢖꢌꢗꢆꢊꢈ ꢑꢁꢘꢙꢙꢚ ꢛꢎRꢆꢎꢌꢆꢋꢊ ꢋꢜ ꢃꢏꢈꢈꢇꢘꢙꢉ.  
ꢓꢝꢈꢓꢕ ꢌꢝꢈ ꢗꢌꢓ ꢏꢈBꢅꢆꢌꢈ ꢇꢎꢌꢎ ꢅꢝꢈꢈꢌ ꢜꢋR ꢓꢖRRꢈꢊꢌ ꢅꢌꢎꢌꢖꢅ ꢋꢜ ꢛꢎRꢆꢎꢌꢆꢋꢊ ꢎꢅꢅꢆꢐꢊꢑꢈꢊꢌ  
ꢙ. ꢇRꢎꢏꢆꢊꢐ ꢊꢋꢌ ꢌꢋ ꢅꢓꢎꢗꢈ  
ꢀ. ꢎꢗꢗ ꢇꢆꢑꢈꢊꢅꢆꢋꢊꢅ ꢎRꢈ ꢆꢊ ꢑꢆꢗꢗꢆꢑꢈꢌꢈRꢅ  
ꢄ. ꢇꢆꢑꢈꢊꢅꢆꢋꢊꢅ ꢋꢜ ꢈꢞꢔꢋꢅꢈꢇ ꢔꢎꢇ ꢋꢊ Bꢋꢌꢌꢋꢑ ꢋꢜ ꢔꢎꢓꢕꢎꢐꢈ ꢇꢋ ꢊꢋꢌ ꢆꢊꢓꢗꢖꢇꢈ  
ꢑꢋꢗꢇ ꢜꢗꢎꢅꢝ. ꢑꢋꢗꢇ ꢜꢗꢎꢅꢝꢟ ꢆꢜ ꢔRꢈꢅꢈꢊꢌꢟ ꢅꢝꢎꢗꢗ ꢊꢋꢌ ꢈꢞꢓꢈꢈꢇ ꢁ.ꢂꢠꢡꢡ ꢋꢊ ꢎꢊꢢ ꢅꢆꢇꢈ  
ꢠ. ꢈꢞꢔꢋꢅꢈꢇ ꢔꢎꢇ ꢅꢝꢎꢗꢗ Bꢈ ꢅꢋꢗꢇꢈR ꢔꢗꢎꢌꢈꢇ  
ꢣ. ꢅꢝꢎꢇꢈꢇ ꢎRꢈꢎ ꢆꢅ ꢋꢊꢗꢢ ꢎ RꢈꢜꢈRꢈꢊꢓꢈ ꢜꢋR ꢔꢆꢊ ꢂ ꢗꢋꢓꢎꢌꢆꢋꢊ ꢋꢊ ꢌꢝꢈ  
ꢌꢋꢔ ꢎꢊꢇ Bꢋꢌꢌꢋꢑ ꢋꢜ ꢔꢎꢓꢕꢎꢐꢈ  
Rev. B  
20  
For more information www.analog.com  
LTC4368  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
06/18 Attached Note 3 to OV and FAULT Absolute Maximum Ratings  
2
B
06/19 Added AEC-Q100 qualification and “W” part numbers  
1,3  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
21  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC4368  
TYPICAL APPLICATION  
LTC2966 Extends UV/OV Hysteresis Window  
Si7942DP  
0.02Ω  
V
IN  
V
OUT  
12V  
+
1.96k  
100µF  
3.3nF  
22k  
100k  
V
INA  
V
INB  
RS1A  
REF  
100k  
GATE  
SENSE  
V
OUT  
1nF  
RS2A  
RS1B  
RS2B  
200k  
301k  
698k  
V
IN  
510k  
100k  
INHA  
SHDN  
UV  
FAULT  
LTC2966  
U1  
LTC4368-2  
U2  
INLA  
INHB  
OUTA  
PSA  
RETRY  
301k  
0.22µF  
150k  
750k  
OUTB  
PSB  
OV  
GND  
INLB  
UV: OFF AT 7V  
ON AT 10V  
4368 TA02  
GND  
OV: OFF AT 18V  
ON AT 15V  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC4365  
Overvoltage, Undervoltage and Reverse Supply  
Protection Controller  
Wide Operating Range: 2.5V to 34V, Protection Range: –40V to 60V,  
No TVS Required for Most Applications  
LTC4367  
LT4363  
100V Overvoltage, Undervoltage and Reverse Supply Wide Operating Range: 2.5V to 60V, Protection Range: –40V to 100V,  
Protection Controller  
No TVS Required for Most Applications  
High Voltage Surge Stopper with Current Limit  
Wide Operating Range: 4V to 80V, Reverse Protection to –60V, Adjustable  
Output Clamp Voltage  
LTC4380  
8µA I Surge Stopper  
4V to 72V Operation, Pin Selectable Clamp Voltage  
Q
LTC4364  
Surge Stopper with Ideal Diode  
High Voltage Surge Stopper  
4V to 80V Operation, –40V Reverse Input, –20V Reverse Output  
9V to >500V Operation, 8-Pin TSOT and 3mm × 2mm DFN Packages  
5.8V Overvoltage Threshold, 85V Absolute Maximum  
Pin Selectable Input Polarity Allows Negative and OV Monitoring  
Adjustable UV and OV Trip Values, 1.5% Threshold Accuracy  
For Positive and Negative Supplies  
LTC4366  
LTC4361  
Overvoltage/Overcurrent Protection Controllers  
Triple/Dual Inputs UV/OV Negative Monitor  
Single/Dual UV/OV Voltage Monitor  
Quad UV/OV Monitor  
LTC2909  
LTC2912/LTC2913  
LTC2914  
LTC2955  
Pushbutton On/Off Controller  
Automatic Turn-On, 1.5V to 36V Input, 36V PB Input  
LT4256  
Positive 48V Hot Swap Controller with  
Open-Circuit Detect  
Foldback Current Limiting, Open-Circuit and Overcurrent Fault Output,  
Up to 80V Supply  
LTC4260  
Positive High Voltage Hot Swap Controller with  
Wide Operating Range 8.5V to 80V  
2
ADC and I C  
LTC4352  
LTC4371  
LTC4355  
LT1913  
Ideal Diode Controller  
External N-Channel MOSFETs Replace ORing Diodes, 0V to 18V Operation  
External N-Channel MOSFETs, –4.5V to > –100V Operation  
External N-Channel MOSFETs, 0.4µs Turn-Off, 80V Operation  
3.6V to 25V Input, 3.5A Maximum Current, 200kHz to 2.4MHz  
Dual Negative Voltage Ideal Diode-OR Controller  
Dual Positive Voltage Ideal Diode-OR Controller  
Step-Down Switching Regulator  
Rev. B  
D17021-0-6/18(B)  
www.analog.com  
22  
ANALOG DEVICES, INC. 2017-2019  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY