LTC6806 [ADI]

36 Channel Fuel Cell Monitor;
LTC6806
型号: LTC6806
厂家: ADI    ADI
描述:

36 Channel Fuel Cell Monitor

文件: 总90页 (文件大小:4015K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6810-1/LTC6810-2  
6 Channel Battery Stack Monitors  
FEATURES  
DESCRIPTION  
The LTC®6810 is a multicell battery stack monitor. The  
LTC6810 measures up to 6 series-connected battery cells  
with a total measurement error of less than 1.8mV. The  
cell measurement range of 0V to 5V makes the LTC6810  
suitable for most battery chemistries. All 6 cells can be  
measured in 290µs, and lower data acquisition rates can  
be selected for high noise reduction.  
n
AEC-Q100 Qualified for Automotive Applications  
Measures Up to 6 Battery Cells in Series  
1.8mV Maximum Total Measurement Error  
Stackable Architecture for High Voltage Systems  
290µs to Measure All Cells in a System.  
Built-in isoSPI™ Interface  
n
n
n
n
n
n
1Mb Isolated Serial Communications  
n
Uses Single Twisted Pair, Up to 100 Meters  
Multiple LTC6810-1 devices can be connected in series,  
permitting simultaneous cell monitoring of long, high  
voltage battery strings. Each LTC6810 has an isoSPI  
interface for high speed, RF-immune, long distance com-  
munications. Using the LTC6810-1, multiple devices are  
connected in a daisy chain with one host processor con-  
nection for all devices. The LTC6810-1 supports bidi-  
rectional operation, allowing communication even with  
a broken wire. Using the LTC6810-2, multiple devices  
are connected in parallel to the host processor, with each  
device individually addressed.  
n
Low EMI Susceptibility and Emissions  
n
Bidirectional for Broken Wire Protection  
n
n
n
n
n
Guaranteed Performance Down to 5V  
Performs Redundant Cell Measurements.  
Engineered for ISO 26262 Compliant Systems  
Passive Cell Balancing with Programmable PWM  
4 General Purpose Digital I/O or Analog Inputs  
n
Temperature or Other Sensor Inputs  
Configurable as an I C or SPI master  
2
n
n
n
4μA Sleep Mode Supply Current  
44-Lead SSOP Package  
The LTC6810 can be powered directly from the battery  
stack or from an isolated supply. The LTC6810 includes  
passive balancing for each cell, with PWM duty cycle  
control for each cell and the ability to perform redundant  
cell measurements. Other features include an onboard 5V  
regulator, 4 general purpose I/O lines and a sleep mode in  
which current consumption is reduced to 4µA.  
APPLICATIONS  
n
Electric and Hybrid Electric Vehicles  
n
Backup Battery Systems  
Grid Energy Storage  
n
n
High Power Portable Equipment  
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
REVERSIBLE  
LTC6810  
Measurement Error vs V+  
+
SERIAL  
PORT B  
ꢀ.ꢁ  
ꢀ.ꢁ  
isoSPI  
isoSPI  
16-BIT ∆ċ WITH  
PROGRAMMABLE  
NOISE FILTER  
ꢀꢁAꢂꢃRꢁꢀꢁꢄꢅ ꢁRRꢆR ꢆꢇ  
ꢈꢁꢉꢉꢊ ꢋꢌꢅꢍ ꢎ.ꢎꢏ ꢌꢄꢐꢃ ꢑ  
LOGIC  
ꢌꢄꢅꢁRꢄAꢉꢁꢄꢁRAꢅꢁꢔꢑ  
Rꢁꢒ  
SERIAL  
PORT A  
ꢀ.ꢁ  
ꢇꢌꢒꢃRꢁ ꢕ  
4-WIRE  
SPI  
ꢀ.ꢁ  
UNIQUE ID  
DIE TEMP  
MUX  
OPTIONAL  
EEPROM  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
CURRENT  
SENSOR  
MUX  
ꢀꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢅꢆꢇꢃꢄ  
4 GENERAL PURPOSE  
ANALOG IN AND  
DIGITAL IN/OUT  
SECOND  
REFERENCE  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
10k  
NTC  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄAꢃꢂꢅ  
FIRST  
REFERENCE  
68101 TA01a  
Rev. A  
1
Document Feedback  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
TABLE OF CONTENTS  
Features............................................................................................................................ 1  
Applications ....................................................................................................................... 1  
Typical Application ............................................................................................................... 1  
Description......................................................................................................................... 1  
Absolute Maximum Ratings..................................................................................................... 3  
Pin Configuration ................................................................................................................. 3  
Order Information................................................................................................................. 4  
Electrical Characteristics........................................................................................................ 4  
Typical Performance Characteristics .........................................................................................10  
Pin Functions.....................................................................................................................17  
Block Diagram....................................................................................................................18  
Operation..........................................................................................................................20  
State Diagram....................................................................................................................................................... 20  
Core LTC6810 State Descriptions......................................................................................................................... 20  
isoSPI State Descriptions ..................................................................................................................................... 21  
Power Consumption ............................................................................................................................................. 22  
V
REG  
Configurations ............................................................................................................................................. 23  
ADC Operation...................................................................................................................................................... 24  
Data Acquisition System Diagnostics ................................................................................................................... 29  
Watchdog and Discharge Timer............................................................................................................................ 37  
Reset Behaviors.................................................................................................................................................... 39  
S Pin Pulse Width Modulation for Cell Balancing.................................................................................................. 40  
Discharge Timer Monitor...................................................................................................................................... 40  
2
I C/SPI Master on LTC6810 Using GPIOs............................................................................................................. 40  
S Pin Muting......................................................................................................................................................... 44  
Serial ID and Authentication ................................................................................................................................. 45  
Serial Interface Overview...................................................................................................................................... 45  
4-Wire Serial Peripheral Interface (SPI) Physical Layer........................................................................................ 45  
Data Link Layer..................................................................................................................................................... 55  
Network Layer....................................................................................................................................................... 55  
Applications Information .......................................................................................................70  
Providing DC Power.............................................................................................................................................. 70  
Internal Protection and Filtering............................................................................................................................ 71  
Cell Balancing ....................................................................................................................................................... 72  
Discharge Control During Cell Measurements ...................................................................................................... 74  
Digital Communications........................................................................................................................................ 76  
Enhanced Applications.......................................................................................................................................... 86  
Reading External Temperature Probes.................................................................................................................. 86  
Package Description ............................................................................................................88  
Revision History .................................................................................................................89  
Typical Application ..............................................................................................................90  
Related Parts.....................................................................................................................90  
Rev. A  
2
For more information www.analog.com  
LTC6810-1/LTC6810-2  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage, V to V ................................ 37.5V  
S6 to S4................................................. –0.3V to 21V  
S4 to S2................................................. –0.3V to 21V  
S2 to S0................................................. –0.3V to 21V  
S6 to C3................................................. –0.3V to 21V  
Current In/Out of Pins  
Input Voltage (Relative to V )  
C0............................................................ –0.3V to 5V  
S0.......................................................... –0.3V to 21V  
C(n), S(n) n = 1 TO 3.............................. –0.3V to 21V  
C(n), S(n) n = 4 TO 5............................–0.3V to 37.5V  
C(6), S(6) ...................–0.3V to min(V+ + 5.5V, 37.5V)  
All Pins Except V , IPA, IMA, IPB, IMB, S(n)..10mA  
REG  
IPA, IMA, IPB, IMB.............................................30mA  
IPA, IMA, IPB, IMB............ –0.3V to V  
+ 0.3V, ≤6V  
Operating Temperature Range  
REG  
DRIVE ...................................................... –0.3V to 7V  
All Other Pins........................................... –0.3V to 6V  
Voltage Between Inputs  
LTC6810I .............................................–40°C to 85°C  
LTC6810H.......................................... –40°C to 125°C  
Specified Temperature Range  
LTC6810I .............................................–40°C to 85°C  
LTC6810H.......................................... –40°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
C(n) to C(n – 1) ...................................... –0.3V to 21V  
S(n) to C(n – 1) ...................................... –0.3V to 21V  
C6 to C3................................................. –0.3V to 21V  
C3 to C0................................................. –0.3V to 21V  
PIN CONFIGURATION  
LTC6810-1  
LTC6810-2  
TOP VIEW  
TOP VIEW  
1
2
V *  
1
2
V *  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
V *  
V *  
V *  
V *  
NC  
NC  
+
+
3
WDT  
3
WDT  
V
V
4
SDI (NC)**  
SDO (NC)**  
IPB  
4
SDI (ICMP)**  
C6  
S6  
C6  
S6  
5
5
SDO (IBIAS)**  
6
6
A3  
C5  
C5  
7
IMB  
7
A2  
S5  
S5  
8
SCK (IPA)**  
CSB (IMA)**  
ICMP  
8
SCK (IPA)**  
CSB (IMA)**  
A1  
C4  
C4  
9
9
S4  
S4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
C3  
C3  
IBIAS  
A0  
S3  
S3  
DRIVE  
DRIVE  
C2  
C2  
V
V
S2  
S2  
REG  
REG  
V
V
REF2  
C1  
C1  
REF2  
V
V
REF1  
S1  
S1  
REF1  
V
V
C0  
C0  
V
V
S0  
S0  
ISOMD  
DTEN  
ISOMD  
DTEN  
GPIO1  
GPIO2  
GPIO3  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO4  
V *  
V *  
V *  
V *  
V *  
V *  
V *  
V *  
G PACKAGE  
44-LEAD PLASTIC SSOP  
= 150°C, θ = 50°C/W  
G PACKAGE  
44-LEAD PLASTIC SSOP  
T = 150°C, θ = 50°C/W  
JMAX  
T
JMAX  
JA  
JA  
**PINS 1, 21–24, 43 AND 44 ARE FUSED TO THE LEADFRAME.  
**PINS 1, 21–24, 43 AND 44 ARE FUSED TO THE LEADFRAME.  
THEY SHOULD BE CONNECTED TO V PIN 29  
THEY SHOULD BE CONNECTED TO V PIN 29  
**THE FUNCTION OF THESE PINS DEPENDS ON THE CONNECTION OF ISOMD  
**THE FUNCTION OF THESE PINS DEPENDS ON THE CONNECTION OF ISOMD  
ISOMD TIED TO V : CSB, SCK, SDI, SDO  
ISOMD TIED TO V : CSB, SCK, SDI, SDO  
ISOMD TIED TO V : IMA, IPA, NC, NC  
ISOMD TIED TO V : IMA, IPA, ICMP, IBIAS  
REG  
REG  
Rev. A  
3
For more information www.analog.com  
LTC6810-1/LTC6810-2  
ORDER INFORMATION  
AUTOMOTIVE PRODUCTS**  
SPECIFIED  
TEMPERATURE RANGE  
TUBE (37PC)  
TAPE AND REEL (2000PC)  
PART MARKING  
PACKAGE DESCRIPTION  
MSL RATING  
LTC6810IG-1#3ZZPBF  
LTC6810HG-1#3ZZPBF  
LTC6810IG-2#3ZZPBF  
LTC6810HG-2#3ZZPBF  
LTC6810IG-1#3ZZTRPBF  
LTC6810HG-1#3ZZTRPBF  
LTC6810IG-2#3ZZTRPBF  
LTC6810HG-2#3ZZTRPBF  
LTC6810G-1  
LTC6810G-1  
LTC6810G-2  
LTC6810G-2  
44-Lead Plastic SSOP  
44-Lead Plastic SSOP  
44-Lead Plastic SSOP  
44-Lead Plastic SSOP  
1
1
1
1
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. The test conditions are V+ = 19.8V, VREG = 5.0V unless otherwise noted.  
The ISOMD pin is tied to the Vpin, unless otherwise noted.  
SYMBOL PARAMETER  
ADC DC Specifications  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Measurement Resolution  
0.1  
0.1  
mV/bit  
mV  
ADC Offset Voltage  
ADC Gain Error  
(Note 2)  
(Note 2)  
0.03  
0.06  
%
%
l
Total Measurement Error (TME) in  
Normal Mode (Note 3)  
C(n) to C(n–1), S(n) to S(n–1), GPIO(n) to V = 0  
0.2  
0.1  
mV  
C(n) to C(n–1) = 2.0, GPIO(n) to V = 2.0  
1.2  
1.7  
mV  
mV  
S(n) to S(n–1) = 2.0  
l
l
C(n) to C(n–1), GPIO(n) to V = 2.0  
1.6  
2.2  
mV  
mV  
S(n) to S(n–1) = 2.0  
C(n) to C(n–1), GPIO(n) to V = 3.3  
0.2  
0.3  
1.8  
2.5  
mV  
mV  
S(n) to S(n–1) = 3.3  
l
l
C(n) to C(n–1), GPIO(n) to V = 3.3  
2.4  
3.2  
mV  
mV  
S(n) to S(n–1) = 3.3  
C(n) to C(n–1) = 4.2  
S(n) to S(n–1) = 4.2  
2.3  
3.2  
mV  
mV  
l
l
C(n) to C(n–1), GPIO(n) to V = 4.2  
3.1  
4.1  
mV  
mV  
S(n) to S(n–1) = 4.2  
C(n) to C(n–1), S(n) to S(n–1), GPIO(n) to V = 5.0  
1
0.1  
5
mV  
%
l
Sum of Cells  
0.6  
Internal Temperature, T = Maximum Specified  
Temperature  
°C  
l
l
l
V
V
Pin  
Pin  
0.1  
0.02  
0.1  
0.25  
0.1  
1
%
%
%
REG  
REF2  
Digital Supply Voltage, V  
REGD  
Rev. A  
4
For more information www.analog.com  
LTC6810-1/LTC6810-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. The test conditions are V+ = 19.8V, VREG = 5.0V unless otherwise noted.  
The ISOMD pin is tied to the Vpin, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
0.1  
0.1  
MAX  
UNITS  
Total Measurement Error (TME) in  
Filtered Mode (Note 3)  
C(n) to C(n–1), S(n) to S(n–1), GPIO(n) to V = 0  
mV  
C(n) to C(n–1) = 2.0, GPIO(n) to V = 2.0  
S(n) to S(n–1) = 2.0  
1.2  
1.7  
mV  
mV  
l
l
C(n) to C(n–1), GPIO(n) to V = 2.0  
1.6  
2.2  
mV  
mV  
S(n) to S(n–1) = 2.0  
C(n) to C(n–1) = 3.3  
S(n) to S(n–1) = 3.3  
0.2  
0.3  
1.8  
2.5  
mV  
mV  
l
l
C(n) to C(n–1), GPIO(n) to V = 3.3  
S(n) to S(n–1) = 3.3  
2.4  
3.2  
mV  
mV  
C(n) to C(n–1) = 4.2  
S(n) to S(n–1) = 4.2  
2.3  
3.2  
mV  
mV  
l
l
C(n) to C(n–1), GPIO(n) to V = 4.2  
3.1  
4.1  
mV  
mV  
S(n) to S(n–1) = 4.2  
C(n) to C(n–1), S(n) to S(n–1), GPIO(n) to V = 5.0  
1
0.1  
5
mV  
%
l
Sum of Cells  
0.6  
Internal Temperature, T = Maximum Specified  
Temperature  
°C  
l
l
l
V
V
Pin  
Pin  
0.1  
0.02  
0.1  
2
0.25  
0.1  
1
%
%
REG  
REF2  
Digital Supply Voltage, V  
%
REGD  
Total Measurement Error (TME) in  
Fast Mode (Note 3)  
C(n) to C(n–1), S(n) to S(n–1), GPIO(n) to V = 0  
mV  
l
l
C(n) to C(n–1), GPIO(n) to V = 2.0  
4
5
mV  
mV  
S(n) to S(n–1) = 2.0  
l
l
C(n) to C(n–1), GPIO(n) to V = 3.3  
5.5  
6.5  
mV  
mV  
S(n) to S(n–1) = 3.3  
l
l
C(n) to C(n–1), GPIO(n) to V = 4.2  
8
9
mV  
mV  
S(n) to S(n–1) = 4.2  
C(n) to C(n–1), GPIO(n) to V = 5.0, S(n) to S(n–1) = 5.0  
10  
0.15  
5
mV  
%
l
Sum of Cells  
1
Internal Temperature, T = Maximum Specified  
Temperature  
°C  
l
l
l
l
l
l
l
V
V
Pin  
Pin  
0.3  
0.1  
0.2  
1
%
%
%
V
REG  
0.25  
REF2  
Digital Supply Voltage, V  
C(n) n = 1 to 6  
S(n) n = 1 to 6  
C0/S0  
2
REGD  
Input Range  
C(n–1)  
C(n–1) + 5  
C(n–1)  
C(n+1)  
V
0
0
5
5
V
GPIO(n) n = 1 to 4  
V
l
l
I
L
Input Leakage Current When Inputs  
Are Not Being Measured (State:  
Core = STANDBY)  
C(n), S(n), n = 0 to 6  
GPIO(n) n = 1 to 4  
10  
10  
250  
250  
nA  
nA  
Input Current When Inputs Are Being C(n)/S(n) n = 0 to 6  
1
1
µA  
µA  
Measured  
GPIO(n) n = 1 to 4  
l
Input Current During Open Wire  
Detection  
70  
110  
140  
µA  
Rev. A  
5
For more information www.analog.com  
LTC6810-1/LTC6810-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. The test conditions are V+ = 19.8V, VREG = 5.0V unless otherwise noted.  
The ISOMD pin is tied to the Vpin, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Voltage Reference Specifications  
l
V
1st Reference Voltage  
V
REF1  
V
REF1  
V
REF1  
V
REF1  
V
REF2  
V
REF2  
V
REF2  
V
REF2  
V
REF2  
Pin, No Load  
Pin, No Load  
Pin, No Load  
Pin, No Load  
Pin, No Load  
Pin, 5k Load to V  
Pin, No Load  
Pin, No Load  
Pin, No Load  
3.1  
3.2  
3
3.3  
V
ppm/°C  
ppm  
REF1  
1st Reference Voltage TC  
1st Reference Voltage Hysteresis  
1st Reference V. Long Term Drift  
2nd Reference Voltage  
20  
25  
3
ppm/√khr  
V
l
l
V
2.995  
2.994  
3.005  
3.006  
REF2  
3
V
2nd Reference Voltage TC  
10  
100  
60  
ppm/°C  
ppm  
2nd Reference Voltage Hysteresis  
2nd Reference V. Long Term Drift  
ppm/√khr  
General DC Specifications  
+
I
V Supply Current  
(See Figure 1: Operation State  
Diagram)  
State: Core = SLEEP, isoSPI = IDLE  
V
V
V
V
= 0V  
= 0V  
= 5V  
= 5V  
5.7  
5.7  
3.5  
3.5  
22  
10  
15  
5.5  
9
µA  
µA  
µA  
µA  
VP  
REG  
REG  
REG  
REG  
l
l
l
l
l
l
State: Core = STANDBY  
Internal REG Disabled  
14  
10  
35  
45  
µA  
µA  
State: Core = REFUP  
25  
20  
35  
50  
60  
µA  
µA  
State: Core = MEASURE  
30  
25  
50  
50  
70  
80  
µA  
µA  
+
I
I
Total V Current when Internal REG  
Enabled = I +I  
State: Core = STANDBY  
Internal REG Enabled  
70  
60  
130  
175  
200  
µA  
µA  
VP_INTREG  
VP REG  
V
Supply Current  
State: Core = SLEEP, isoSPI = IDLE  
V
V
= 5V  
= 5V  
3.5  
3.5  
48  
6.5  
9
µA  
µA  
REG(CORE)  
REG  
REG  
(See Figure 1: Operation State  
Diagram)  
l
l
l
REG  
State: Core = STANDBY  
State: Core = REFUP  
20  
18  
75  
85  
µA  
µA  
1.2  
1.1  
1.7  
2.2  
2.3  
mA  
mA  
State: Core = MEASURE  
LTC6810-2: ISOMD = 1,  
5.7  
5.5  
6.2  
6.2  
6.6  
6.8  
mA  
mA  
l
l
l
l
l
l
l
l
l
l
l
l
l
I
Additional V  
Supply Current  
READY  
ACTIVE  
READY  
ACTIVE  
READY  
ACTIVE  
READY  
ACTIVE  
READY  
ACTIVE  
READY  
ACTIVE  
3.6  
4.6  
3.6  
5.6  
4.0  
7.0  
1.0  
1.2  
1.0  
1.3  
1.6  
1.8  
4.5  
5.8  
4.5  
6.8  
5.2  
8.5  
1.8  
2.2  
1.8  
2.3  
2.5  
3.1  
5.4  
7.0  
5.2  
8.1  
6.5  
10.5  
2.6  
3.2  
2.6  
3.3  
3.5  
4.8  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
REG(isoSPI)  
REG  
If isoSPI in READY/ACTIVE States  
Note: ACTIVE State Current  
R
+ R = 2k  
B1 B2  
LTC6810-1: ISOMD = 0,  
+ R = 2k  
Assumes t  
= 1µs, (Note 3)  
CLK  
R
B1  
B2  
LTC6810-1: ISOMD = 1,  
+ R = 2k  
R
B1  
B2  
LTC6810-2: ISOMD = 1,  
+ R = 20k  
R
B1  
B2  
LTC6810-1: ISOMD = 0,  
+ R = 20k  
R
B1  
B2  
LTC6810-1: ISOMD = 1,  
R
B1  
+ R = 20k  
B2  
mA  
Rev. A  
6
For more information www.analog.com  
LTC6810-1/LTC6810-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. The test conditions are V+ = 19.8V, VREG = 5.0V unless otherwise noted.  
The ISOMD pin is tied to the Vpin, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
5.0  
TYP  
MAX  
UNITS  
+
l
l
l
l
l
V Supply Voltage  
TME Specifications Met  
TME Specifications Met  
TME Supply Rejection < 1mV/V  
DRIVE Pin Current > 25µA  
20  
27.5  
V
V
V
V
V
+
V to C6 Voltage  
Supply Voltage  
–0.3  
4.5  
V
REG  
V
5
4.6  
5
5.5  
4.8  
5.3  
REG  
Internal Regulator Voltage  
4.5  
Allowed V  
Driven  
Range When Externally DRIVE Pin Is High Z  
4.7  
REG  
+
l
l
l
V
DRIVE  
DRIVE Output Voltage  
V > 12V, Sourcing 1µA  
5.5  
5.3  
25  
5.7  
5.5  
6.2  
6
V
V
+
V > 12V, Sourcing 1mA  
Drive Pin Current to Enable Internal  
µA  
V
REGA  
l
Maximum DRIVE Pin Current that  
1
µA  
Does Not Power Up Internal V  
REGA  
l
l
V
Digital Supply Voltage  
2.7  
3
5
3.6  
10  
V
Ω
°C  
V
REGD  
Discharge Switch ON Resistance  
Thermal Shutdown Temperature  
V
CELL  
= 3.3V  
150  
l
l
V
V
Watch Dog Timer (WDT) Pin Voltage WDT Pin Sinking 4mA  
General Purpose I/O Pin Low GPIO Pin Sinking 4mA (Used as Digital Output)  
0.4  
0.4  
OL(WDT)  
V
OL(GPIO)  
ADC Timing Specifications  
l
l
l
l
l
l
l
l
l
t
Measurement + Calibration Cycle Time Measure 6 Cells  
1098  
381  
1411  
172  
31  
1165  
404  
1497  
183  
34  
1281  
444  
1647  
201  
37  
µs  
µs  
CYCLE  
(Figure 6) When Starting from the REFUP State in  
Normal Mode, SCONV = 0, MCAL = 0  
Measure 1 Cells  
Measure 6 Cells and 2 GPIO Inputs  
µs  
Measurement + Calibration Cycle Time Measure 6 Cells  
ms  
ms  
ms  
µs  
When Starting from the REFUP State in  
Filtered Mode, SCONV = 0, MCAL = 0  
Measure 1 Cells  
Measure 6 Cells and 2 GPIO Inputs  
228  
495  
189  
643  
242  
524  
200  
682  
267  
577  
220  
750  
Measurement + Calibration Cycle Time Measure 6 Cells  
When Starting from the REFUP State  
in Fast Mode, SCONV = 0, MCAL = 0  
Measure 1 Cells  
µs  
Measure 6 Cells and 2 GPIO Inputs  
Fast Mode  
µs  
l
l
t
Skew Time. The Time Difference  
182  
511  
194  
543  
214  
598  
µs  
µs  
SKEW1  
(Figure 9) Between C6 and GPIO1 Measurements,  
Command = ADCVAX  
Normal Mode  
l
l
t
Skew Time. The Time Difference  
Fast Mode  
220  
631  
233  
670  
257  
737  
µs  
µs  
SKEW2  
(Figure 6) Between C6 and C1 Measurements,  
Command = ADCV  
Normal Mode  
l
l
l
t
Drive Start-Up Time (Note 5)  
Internal Regulator Start-Up Time  
Watchdog or Discharge Timer  
V
V
Generated from Drive Pin, See Figure 3  
Generated Internally, See Figure 2  
150  
200  
2
300  
400  
2.2  
32  
µs  
µs  
WAKE  
REG  
REG  
t
DTEN Pin = 0 or DCTO[3:0] = 0000  
DTEN Pin = 1 and DCTO[3:0] = 0001  
DTEN Pin = 1 and DCTO[3:0] = 1111  
1.8  
28  
sec  
sec  
min  
ms  
SLEEP  
(Figure 17)  
30  
112  
2.7  
120  
3.5  
128  
4.4  
l
t
Reference Wake-up Time. Added to  
t
Is Independent of the Number of Channels  
REFUP  
REFUP  
(Figure 6,  
t
Time When Starting from the  
Measured and the ADC Mode  
CYCLE  
Figure 30) STANDBY State. t  
= 0 When  
REFUP  
Starting from Other States.  
f
S
ADC Clock Frequency  
3.0  
3.3  
3.5  
MHz  
Rev. A  
7
For more information www.analog.com  
LTC6810-1/LTC6810-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. The test conditions are V+ = 19.8V, VREG = 5.0V unless otherwise noted.  
The ISOMD pin is tied to the Vpin, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SPI Interface DC Specifications  
l
l
l
l
l
l
V
V
V
V
SPI Pin Digital Input Voltage High  
SPI Pin Digital Input Voltage Low  
Pins CSB, SCK, SDI  
Pins CSB, SCK, SDI  
2.3  
V
V
IH(SPI)  
0.8  
IL(SPI)  
Address Pin Digital Input Voltage High Pins ISOMD, DTEN, GPIO1 to GPIO4, A0–A3  
Address Pin Digital Input Voltage Low Pins ISOMD, DTEN, GPIO1 to GPIO4, A0–A3  
2.7  
V
IH(ADDR)  
IL(ADDR)  
LEAK(DIG)  
1.2  
1
V
I
Digital Input Current  
Digital Output Low  
Pins CSB, SCK, SDI, ISOMD, DTEN, A0 to A3  
Pins SDO sinking 1mA  
µA  
V
V
0.3  
OL(SDO)  
isoSPI DC Specifications (see Figure 23)  
l
V
BIAS  
Voltage on IBIAS Pin  
READY/ACTIVE State  
IDLE State  
1.9  
2
0
2.1  
V
V
l
l
l
l
l
I
Isolated Interface Bias Current  
Isolated Interface Current Gain  
I = V  
/(R + R )  
B2  
0.1  
18  
18  
1
mA  
mA/mA  
mA/mA  
V
B
B
BIAS  
B1  
A
V ≤ 1.6V  
A
I = 1mA  
20  
20  
22  
23  
1.6  
1.5  
IB  
B
I = 0.1mA  
B
V
V
Transmitter Pulse Amplitude  
V = |V – V  
A
|
IM  
A
IP  
Threshold-Setting Voltage on  
ICMP Pin  
V
= A  
• V  
ICMP  
0.2  
V
ICMP  
TCMP  
TCMP  
l
l
l
I
I
Input Leakage Current on ICMP Pin  
Leakage Current on IP and IM Pins  
1
1
µA  
µA  
LEAK(ICMP)  
IDLE State, V or V , 0V to V  
LEAK(IP/IM)  
IP  
IM  
REG  
A
Receiver Comparator Threshold  
Voltage Gain  
V
= 2.5V to V – 0.2  
REG  
0.4  
0.5  
0.6  
V/V  
TCMP  
CM  
CM  
V
Receiver Common-Mode Bias  
Receiver Input Resistance  
IP/IM Not Driving  
Single-Ended to IPA, IMA, IPB, IMB  
(V  
REG  
– V  
/3 – 167mV)  
V
ICMP  
l
R
26  
35  
45  
kΩ  
IN  
isoSPI Idle/Wake-up Specifications (see Figure 30)  
l
l
V
Differential Wake-up Voltage  
V
= |V – V |  
IMA  
250  
240  
mV  
ns  
WAKE  
WAKE  
IPA  
t
Dwell Time at V Before Wake  
WAKE  
DWELL  
Detection  
l
l
t
t
Start-Up Time After Wake Detection  
Idle Timeout Duration  
10  
µs  
READY  
4.3  
5.5  
6.7  
ms  
IDLE  
isoSPI Pulse Timing Specifications (see Figure 28)  
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
Chip-Select Half-Pulse Width  
Chip-Select Signal Filter  
Chip-Select Pulse Inversion Delay  
Chip-Select Valid Pulse Window  
Data Half-Pulse Width  
Transmitter  
Receiver  
120  
70  
150  
90  
180  
110  
190  
330  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
½PW(CS)  
FILT(CS)  
INV(CS)  
WNDW(CS)  
½PW(D)  
FILT(D)  
Transmitter  
Receiver  
120  
220  
40  
155  
270  
50  
Transmitter  
Receiver  
Data Signal Filter  
10  
25  
35  
Data Pulse Inversion Delay  
Data Valid Pulse Window  
Transmitter  
Receiver  
40  
55  
65  
INV(D)  
70  
90  
110  
WNDW(D)  
Rev. A  
8
For more information www.analog.com  
LTC6810-1/LTC6810-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. The test conditions are V+ = 19.8V, VREG = 5.0V unless otherwise noted.  
The ISOMD pin is tied to the Vpin, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SPI Timing Requirements (see Figure 22 and Figure 29)  
l
l
t
t
SCK Period  
(Note 6)  
1
µs  
ns  
CLK  
SDI Setup Time Before SCK Rising  
Edge  
25  
1
l
l
l
l
l
l
t
2
t
3
t
4
t
5
t
6
t
7
SDI Hold Time After SCK Rising Edge  
SCK Low  
25  
200  
200  
0.6  
0.8  
1
ns  
ns  
ns  
µs  
µs  
µs  
t
t
= t + t ³ 1µs  
3 4  
CLK  
CLK  
SCK High  
= t + t ³ 1µs  
3
4
CS Rising Edge to CS Falling Edge  
SCK Rising Edge to CS Rising Edge  
CS Falling Edge to SCK Rising Edge  
(Note 6)  
(Note 6)  
isoSPI Timing Specifications (see Figure 29)  
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
SCK Falling Edge to SDO Valid  
SCK Rising Edge to Short 1 Transmit  
CS Transition to Long 1 Transmit  
CS Rising Edge to SDO Rising  
Data Return Delay  
(Note 7)  
(Note 7)  
60  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
8
9
60  
10  
200  
425  
180  
300  
70  
11  
325  
375  
120  
250  
55  
RTN  
DSY(CS)  
DSY(D)  
LAG  
5(GOV)  
Chip-Select Daisy-Chain Delay  
Data Daisy-Chain Delay  
200  
0
Data Daisy-Chain Lag (vs. Chip-Select) = [t  
+ t  
] – [t  
+ t  
½PW(CS)  
]
DSY(D)  
½PW(D)  
DSY(CS)  
Chip-Select High-to-Low Pulse  
Governor  
0.6  
0.82  
l
l
t
t
Data to Chip-Select Pulse Governor  
isoSPI Port Reversal Blocking Window  
0.8  
2
1.05  
10  
µs  
µs  
6(GOV)  
BLOCK  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The ADC specifications are guaranteed by the Total Measurement  
Error specification.  
Note 3: S pin TME may differ from C pin TME by several bits due to the  
quantization noise of the ADC and the different external filtering on the  
C and S pins.  
Note 5: V  
transistor, see Figure 3.  
Note 6: These timing specifications are dependent on the delay through  
the cable, and include allowances for 50ns of delay each direction. 50ns  
corresponds to 10m of CAT-5 cable (which has a velocity of propagation of  
66% the speed of light). Use of longer cables would require derating these  
specs by the amount of additional delay.  
is generated from the Drive pin and an external NPN  
REG  
Note 7: These specifications do not include rise or fall time of SDO. While  
fall time (typically 5ns due to the internal pull-down transistor) is not a  
concern, rising-edge transition time t  
resistance and load capacitance on the SDO pin. The time constant must  
be chosen such that SDO meets the setup time requirements of the MCU.  
is dependent on the pull-up  
RISE  
Note 4: The ACTIVE state current is calculated from DC measurements.  
The ACTIVE state current is the additional average supply current into  
V
when there is continuous 1MHz communications on the isoSPI ports  
REG  
with 50% data 1s and 50% data 0s. Slower clock rates reduce the supply  
current. See Applications Information section for additional details.  
Rev. A  
9
For more information www.analog.com  
LTC6810-1/LTC6810-2  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Measurement Error vs  
Temperature  
Measurement Error Due to IR  
Reflow  
Measurement Error Long Term  
Drift  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂ ꢃꢄAꢆꢁ ꢇ ꢈ.ꢈꢃ  
ꢀ ꢁꢂꢃꢄꢅAꢆ ꢇꢈꢄꢁꢉ  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢂꢂ  
ꢀꢁꢁꢁ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁAꢂꢃꢄ ꢅꢂ ꢃAꢅꢂ ꢄRRꢆR ꢇꢈꢈꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇRꢈꢉ  
ꢀꢁꢂꢃ ꢄꢃꢂ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
Measurement Error vs Input  
Normal Mode  
Measurement Error vs Input  
Filtered Mode  
Measurement Error vs Input  
Fast Mode  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ Aꢂꢃ ꢄꢅAꢆꢇRꢅꢄꢅꢈꢉꢆ  
AꢀꢁRAꢂꢁꢃ Aꢄ ꢁAꢅꢆ ꢇꢈꢉꢊꢄ  
ꢀꢁ Aꢂꢃ ꢄꢅAꢆꢇRꢅꢄꢅꢈꢉꢆ  
AꢀꢁRAꢂꢁꢃ Aꢄ ꢁAꢅꢆ ꢇꢈꢉꢊꢄ  
ꢀꢁ Aꢂꢃ ꢄꢅAꢆꢇRꢅꢄꢅꢈꢉꢆ  
AꢀꢁRAꢂꢁꢃ Aꢄ ꢁAꢅꢆ ꢇꢈꢉꢊꢄ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁꢂ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢃ ꢄꢃꢀ  
Measurement Noise vs Input  
Normal Mode  
Measurement Noise vs Input  
Filtered Mode  
Measurement Noise vs Input  
Fast Mode  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢃ ꢄꢃꢁ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
Rev. A  
10  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Measurement Gain Error  
Hysteresis, Hot  
Measurement Gain Error  
Hysteresis, Cold  
Noise Filter Response  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ ꢅꢆ ꢇꢈꢉꢃꢄ  
ꢀ ꢁꢂꢃꢄ ꢅꢆ ꢇꢂꢃꢄ  
A
A
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ  
ꢀꢁꢂꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀꢁAꢂꢃꢄ ꢅꢂ ꢃAꢅꢂ ꢄRRꢆR ꢇꢈꢈꢉꢊ  
ꢀꢁAꢂꢃꢄ ꢅꢂ ꢃAꢅꢂ ꢄRRꢆR ꢇꢈꢈꢉꢊ  
ꢀꢁꢂꢃꢄ ꢅRꢆꢇꢃꢆꢁꢈꢉ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃ ꢄꢂꢃ  
ꢀꢁꢂꢃ ꢄꢂꢂ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
Measurement Error vs VREG  
Measurement Error vs V+  
Top Cell Measurement Error vs V+  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ ꢂ ꢀꢃ ꢄ ꢅ.ꢅꢆ  
ꢀꢁ ꢄ ꢇꢈ.ꢉꢆ  
ꢀꢁAꢂꢃRꢁꢀꢁꢄꢅ ꢁRRꢆR ꢆꢇ  
ꢈꢁꢉꢉꢊ ꢋꢌꢅꢍ ꢎ.ꢎꢏ ꢌꢄꢐꢃ ꢑ  
ꢌꢄꢅꢁRꢄAꢉꢁꢄꢁRAꢅꢁꢔꢑ  
Rꢁꢒ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢇꢌꢒꢃRꢁ ꢕ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢃ ꢄꢀ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢃ ꢄ.ꢄꢀ  
ꢃ ꢄ.ꢅꢀ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
Measurement Error vs Common  
Mode Voltage  
Measurement Error Due to a VREG  
AC Disturbance  
Measurement Error Due to a V+  
AC Disturbance  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
.
.
.
.
A
A
A
A
ꢀ.ꢁ  
RA  
R
R
R
R
ꢀ.ꢁ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ ꢂꢃAꢆꢇ ꢈꢂꢉ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃ ꢄꢂꢀ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢁ  
Rev. A  
11  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Measurement Error CMRR vs  
Frequency  
Cell Measurement Error vs Input  
GPIO Measurement Error vs Input  
RC Values  
RC Values  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢇ ꢈꢀ  
ꢉꢊꢉ  
ꢀꢁꢂꢃ ꢄꢃꢀꢅꢃꢃꢆ ꢂꢃAꢇꢈRꢃꢂꢃꢆꢀꢇ ꢉ ꢊRꢋ  
ꢁꢂꢃꢄꢅꢆ  
ꢅꢋRꢂAꢌ ꢂꢋꢍꢎ ꢁꢋꢅꢀꢎRꢏꢄꢋꢅꢏ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
INPUT RESISTANCE (Ω)  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
INPUT RESISTANCE (Ω)  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
Measurement Time vs  
Temperature  
Standby Supply Current vs V+  
Internal REG Enabled  
Sleep Mode Supply Current vs V+  
ꢀ.ꢁꢀꢂ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀꢁ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢁꢁ  
ꢀ ꢁ  
ꢀꢁ Rꢀꢁ  
ꢀꢁꢂꢃꢄꢅRꢆꢇ  
ꢃ ꢄ.ꢅꢀ  
Rꢁꢂ  
Rꢁꢂ  
Rꢁꢂ  
ꢃ ꢄꢀ  
ꢃ ꢄ.ꢄꢀ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Standby Supply Current vs V+  
Internal REG Disabled  
REFUP Supply Current vs V+  
Internal REG Disabled  
Measure Supply Current vs V+  
Internal REG Disabled  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢀ  
ꢀ ꢁ  
ꢀꢁ Rꢀꢁ  
ꢀ ꢁ  
ꢀꢁ Rꢀꢁ  
ꢀ ꢁ  
ꢀꢁ Rꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Rev. A  
12  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
VREF1 vs Temperature  
VREF2 vs Temperature  
VREF2 VREG Line Regulation  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢂ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢀꢂ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢀ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢁ  
ꢀ.ꢁꢁꢁ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢂ  
ꢀꢁꢁ  
ꢀ ꢁꢂꢃꢄꢅAꢆ ꢇꢈꢄꢁꢉ  
ꢀ ꢁꢂꢃꢄꢅAꢆ ꢇꢈꢄꢁꢉ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢀ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
Rꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
V
REF2 V+ Line Regulation  
VREF2 Load Regulation  
VREF2 Long-Term Drift  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
.
ꢀ ꢁꢂꢃꢄꢅAꢆ ꢇꢈꢄꢁꢉ  
R
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀ.ꢁ ꢀ.ꢁ ꢀꢁ.ꢂ ꢀꢁ.ꢂ ꢀꢀ.ꢁ ꢀꢁ.ꢂ ꢀꢁ.ꢂ ꢀꢁ.ꢂ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢂꢂ  
ꢀꢁꢁꢁ  
ꢀꢁꢂꢂ  
ꢀꢁAꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇRꢈꢉ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
Measurement Gain Error  
Hysteresis, Hot  
Measurement Gain Error  
Hysteresis, Cold  
VREF2 Change Due to IR Reflow  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ ꢅꢆ ꢇꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ ꢅꢆ ꢇꢈꢉꢃꢄ  
A
A
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ  
ꢀꢁꢂꢂ ꢀꢁꢂꢂ ꢀꢁꢂꢂ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁAꢂꢃꢄ ꢅꢂ ꢃAꢅꢂ ꢄRRꢆR ꢇꢈꢈꢉꢊ  
ꢀꢁAꢂꢃꢄ ꢅꢂ ꢃAꢅꢂ ꢄRRꢆR ꢇꢈꢈꢉꢊ  
ꢀꢁAꢂꢃꢄ ꢅꢂ ꢆ  
ꢀꢁꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
Rev. A  
13  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDRIVE vs Temperature  
VDRIVE V+ Line Regulation  
VDRIVE Load Regulation  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁARꢂꢃ ꢄꢅ ꢆꢅAꢇꢈ ꢉꢊA ꢆꢅAꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅ ꢀꢁ  
ꢀRꢁꢂꢃ ꢄꢁꢅ ꢆꢇAꢀ ꢈꢉRRꢃꢅꢊ ꢋꢌAꢍ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
VREG Pin Voltage vs  
Internal VREG Load Regulation  
Internal VREG Load Regulation  
V+ Pin Voltage  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁꢀ ꢂꢃꢄꢅꢆꢀꢀꢇꢅꢈꢇꢂ ꢉRꢆꢊ ꢋ  
Rꢇꢌ  
ꢀꢁꢀ ꢂꢃꢀꢀꢄꢂꢅꢄꢆ ꢅꢃ ꢇ  
Rꢄꢈ  
Rꢄꢈ  
ꢍꢆAꢂ ꢅꢎRRꢇꢀꢈ ꢃꢀꢅꢍꢎꢂꢇꢄ ꢃ  
ꢆꢉ ꢈꢏꢇ ꢅꢏꢃꢁ  
ꢉꢃAꢆ ꢂꢊRRꢄꢀꢅ ꢋ ꢌꢍꢎA ꢏꢐꢀꢂꢉꢊꢆꢄꢑ ꢐ  
ꢋRꢇꢌ  
ꢇRꢄꢈ  
ꢀeꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ  
ꢀꢁꢂve ꢃꢄꢅ  
ꢀRAꢁꢂꢃꢀꢃꢄꢁ ꢅꢆꢀꢇꢆꢆꢁ ꢃꢁꢀꢆRꢁAꢈ ꢈꢉꢄ  
Aꢁꢉ ꢆꢊꢀꢆRꢁAꢈ ꢁꢋꢁ ꢋꢄꢇꢆRꢆꢉ ꢌ  
Rꢆꢍ  
R A  
R
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁAꢂ  
ꢀꢁAꢂ ꢃꢄRRꢅꢆꢇ ꢈꢉAꢊ  
Rꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢃꢄAꢇꢈ ꢉꢃꢊ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Internal Die Temperature  
Discharge Switch On-Resistance  
vs Cell Voltage  
Internal Die Temperature  
Measurement Error vs Temperature  
Increase vs Discharge Current  
ꢀꢁ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄꢅAꢆ ꢇꢈꢄꢁꢉ  
ꢀꢁꢂRꢃꢄꢅꢄꢆAꢁꢇꢃ ꢀꢈ ꢅꢁꢆꢃRꢁAꢉ  
ꢊꢅꢄꢇꢋARꢌꢃ ꢄꢍꢅꢆꢇꢋ ꢎꢃAꢄꢏRꢃꢊ  
ꢐꢃꢆꢍꢃꢃꢁ ꢄꢑꢒꢓ Aꢁꢊ ꢄꢑꢒꢂꢔꢓ  
ꢀ ꢁꢂꢃꢃ ꢄ ꢀꢅꢅꢆ  
ꢀ ꢁꢂꢃꢃꢄ ꢅꢆꢆꢇ  
ꢀ ꢁꢂꢃꢃꢄ ꢅꢆꢇ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢃꢄAꢆꢁ ꢇꢃꢈ  
ꢀꢁꢂꢃRꢁAꢄ ꢅꢀꢆꢇꢈARꢉꢃ ꢇꢊRRꢃꢁꢂ ꢋꢌAꢍꢇꢃꢄꢄꢎ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
Rev. A  
14  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
isoSPI Current (READY) vs  
VREF1 and VREF2 Power-Up  
VREG and VDRIVE Power-Up  
Temperature  
ꢀ.ꢁ  
ꢀ ꢁꢂA  
Rꢀꢁꢂ  
ꢀRꢁꢂꢃ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀRꢁꢂꢃ  
ꢀAꢁꢂꢃꢄ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
Rꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
Rꢀꢁ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢂꢃꢄꢅꢆꢇꢅꢈ ꢉꢊꢋꢌꢍ ꢎ ꢏ  
ꢂꢁꢃꢁRAꢄꢁꢅ ꢆRꢇꢈ ꢅRꢉꢀꢁ ꢊꢉꢃ  
R
R
ꢂꢃꢄꢅꢆꢇꢅꢈ ꢉꢊꢋꢌꢍ ꢎ ꢏ  
Rꢁꢂ  
Rꢁꢂ  
Rꢐꢑ  
R
ꢋ ꢌ ꢎ ꢏꢐꢆ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
isoSPI Current (ACTIVE) vs  
isoSPI Clock Frequency  
IBIAS Voltage vs Temperature  
IBIAS Voltage Load Regulation  
ꢀꢁ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂꢁ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢁ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢂ  
ꢀ ꢁꢂA  
ꢀꢁꢂꢃꢄ ꢅ ꢆ  
Rꢀꢁ  
ꢀ ꢁARꢂꢃ  
ꢀ ꢁꢂA  
R
R A  
R
R A  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢂꢁꢃꢀ ꢄꢅꢂꢄꢆ ꢇRꢈꢉꢊꢈꢋꢄꢌ ꢍꢎꢏꢐꢑ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢀAꢂ ꢃꢄRRꢅꢆ ꢈ ꢀ ꢀꢁAꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
isoSPI Driver Current Gain  
(Port A/Port B) vs IBIAS Current  
isoSPI Driver Current Gain  
(Port A/Port B) vs Temperature  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
.
.
A
A
A
A
A
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢀAꢂ ꢃꢄRRꢅꢆ ꢈ ꢀ ꢀꢁAꢂ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Rev. A  
15  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
isoSPI Driver Common Mode  
Voltage (Port A/Port B) vs Pulse  
Amplitude  
isoSPI Comparator Threshold  
isoSPI Comparator Threshold  
Gain (Port A/Port B) vs ICMP  
Voltage  
Gain (Port A/Port B) vs Receiver  
Common Mode  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ ꢁARꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆ.ꢇꢀ  
ꢀꢁꢂꢃꢄꢅꢆꢀ  
ꢀꢁꢂꢃꢄꢄꢅA  
ꢀꢁꢂꢃꢄA  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ  
ꢀꢁꢂꢃꢄ Aꢅꢀꢂꢆꢇꢁꢈꢄꢉ ꢊ ꢀꢁꢂ  
RꢀꢁꢀꢂꢃꢀR ꢁꢄꢅꢅꢄꢆ ꢅꢄꢇꢀꢈ ꢃ ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅAꢈꢉ ꢊꢄꢋ  
A
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
isoSPI Comparator Threshold Gain  
(Port A/Port B) vs Temperature  
Typical Wake-Up Pulse Amplitude  
(Port A/Port B) vs Dwell Time  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁARAꢂꢃꢄꢄꢅ  
ꢀAꢁꢂꢃꢄꢅ Rꢂꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢀ  
ꢀꢁꢂꢃꢄꢅꢆ.ꢇꢀ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢁ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀAꢁꢂꢃꢄꢅ ꢆꢀꢂꢇꢇ ꢈꢉꢊꢂꢋ ꢈ  
ꢀꢁꢂꢃꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
Rev. A  
16  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
PIN FUNCTIONS  
C0 – C6: Cell Inputs.  
Serial Port Pins  
LTC6810-1  
LTC6810-2  
S0 – S6: Balance Inputs/Outputs Redundant Cell  
Measurement. 6 NMOSFETs are connected between S(n)  
and S(n–1) for discharging cells. Additionally S pins can  
be used for redundant cell measurement.  
(DAISY-CHAINABLE)  
(ADDRESSABLE)  
ISOMD = V  
ISOMD = V ISOMD = V  
ISOMD = V  
A3  
REG  
REG  
PORT B  
IPB  
IMB  
IPB  
IMB  
A3  
A2  
(Pins 39,  
38, 35  
and 34)  
A2  
+
V : Positive Supply Pin.  
ICMP  
IBIAS  
(NC)  
(NC)  
IPA  
ICMP  
IBIAS  
SDO  
SDI  
A1  
A1  
A0  
A0  
V : Negative Supply Pins. The V pins must be shorted  
PORT A  
(Pins 40,  
41, 37  
IBIAS  
ICMP  
IPA  
SDO  
SDI  
together, external to the IC.  
V*: These pins are fused to the leadframe, connect to V.  
SCK  
CSB  
SCK  
CSB  
and 36)  
V
: Buffered 2nd reference voltage for driving thermis-  
IMA  
IMA  
REF2  
tors. Bypass with an external 1µF capacitor.  
CSB, SCK, SDI, SDO: 4-Wire Serial Peripheral Interface  
(SPI). Active low chip select (CSB), serial clock (SCK),  
serial data in (SDI), are digital inputs. Serial data out  
(SDO) is an open drain NMOS output. SDO requires a 5K  
pull-up resistor  
V
: ADC Reference Voltage. Bypass with an external  
REF1  
1µF capacitor. No DC loads allowed.  
GPIO[1:4]: General Purpose I/O. Can be used as digital  
inputs or digital outputs, or as analog inputs with a mea-  
surement range from V to 5V. GPIO[2:4] can be used as  
A0–A3: Address Pins. These digital inputs are connected  
to VREG or Vto set the chip address for addressable  
serial commands.  
2
an I C or SPI port.  
DTEN: Discharge Timer Enable. Connect this pin to V  
to enable the Discharge Timer.  
REG  
IPA, IMA: Isolated 2-Wire Serial Interface Port A. IPA  
(plus) and IMA (minus) are a differential input/output pair.  
DRIVE: Connect the base of an NPN to this pin. Connect  
+
the collector to V and the emitter to V  
.
IPB, IMB: Isolated 2-Wire Serial Interface Port B. IPB  
(plus) and IMB (minus) are a differential input/output pair.  
REG  
VREG: 5V Regulator Input. Bypass with an external 1μF  
capacitor.  
IBIAS: Isolated Interface Current Bias. Tie IBIAS to V  
through a resistor divider to set the interface output cur-  
rent level. When the isoSPI interface is enabled, the IBIAS  
pin voltage is 2V. The IPA/IMA or IPB/IMB output current  
ISOMD: Serial Interface Mode. Connecting ISOMD to  
VREG configures the LTC6810 for 2-wire isolated interface  
(isoSPI) mode. Connecting ISOMD to V configures the  
drive is set to 20 times the current, I , sourced from the  
B
LTC6810 for 4-wire SPI mode.  
IBIAS pin.  
WDT: Watchdog Timer Output Pin. This is an open drain  
ICMP: Isolated Interface Comparator Voltage Threshold  
NMOS digital output. It can be left unconnected, or con-  
Set. Tie this pin to the resistor divider between IBIAS  
nected with a 1M resistor to V . If the LTC6810 does  
REG  
and V to set the voltage threshold of the isoSPI receiver  
not receive a valid command within 2 seconds, the watch-  
dog timer circuit will reset the LTC6810 and the WDT pin  
will go high impedance.  
comparators. The comparator thresholds are set to ½ the  
voltage on the ICMP pin.  
Rev. A  
17  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
BLOCK DIAGRAM  
LTC6810-1  
ꢋꢋ  
ꢋꢀ  
ꢋꢌ  
ꢋꢍ  
ꢋꢎ  
ꢀꢡ  
ꢀꢇ  
ꢀꢈ  
ꢀꢉ  
ꢀꢊ  
ꢀꢋ  
ꢀꢀ  
ꢀꢌ  
ꢀꢍ  
ꢀꢎ  
ꢌꢡ  
ꢌꢇ  
ꢌꢈ  
ꢌꢉ  
ꢌꢊ  
ꢌꢋ  
ꢌꢀ  
ꢗꢏ  
ꢉ ꢐAꢠAꢗꢏꢄ ꢛꢄꢔꢦ  
ꢕꢖꢧꢘ  
ꢓꢑꢔ  
ꢕꢑꢆꢖꢗꢏꢘ  
ꢏꢉ  
ꢕꢉ  
ꢏꢊ  
ꢕꢊ  
ꢏꢋ  
ꢕꢋ  
ꢕꢖꢧꢒꢍꢘ  
ꢑꢆꢅꢆꢔAꢠ  
ꢛꢆꢄR  
ꢕꢑꢃꢖꢗꢏꢘ  
ꢆꢂꢐ  
ꢠꢃꢅꢆꢏ  
Aꢗꢑ  
ꢕꢄRꢆAꢠ ꢆꢣꢃ  
ꢙꢄꢙꢃRꢢ  
ꢏꢉ  
ꢏꢊ  
ꢏꢋ  
ꢏꢀ  
ꢏꢌ  
ꢏꢍ  
ꢏꢎ  
ꢆꢙꢐ  
ꢑꢆꢅꢆꢔAꢠ  
ꢛꢆꢄR  
ꢏ ꢂꢆꢗ  
ꢙꢤꢥ  
Aꢑꢏ  
ꢕꢏꢚꢖꢆꢂAꢘ  
ꢏꢕꢐꢖꢆꢙAꢘ  
ꢆꢏꢙꢂ  
ꢕꢄRꢆAꢠꢝꢍꢞꢡꢟ  
ꢕꢉ  
ꢕꢊ  
ꢕꢋ  
ꢕꢀ  
ꢕꢌ  
ꢕꢍ  
ꢕꢎ  
ꢍꢎ ꢏꢀ  
ꢍꢍ ꢕꢀ  
ꢍꢌ ꢏꢌ  
ꢍꢀ ꢕꢌ  
ꢍꢋ ꢏꢍ  
ꢍꢊ ꢕꢍ  
ꢍꢉ ꢏꢎ  
ꢍꢈ ꢕꢎ  
ꢕ ꢂꢆꢗ  
ꢙꢤꢥ  
ꢆꢐꢆAꢕ  
ꢍꢕꢔ  
RꢄꢛꢄRꢄꢗꢏꢄ  
ꢑRꢆꢁꢄ  
ꢠꢑꢃ ꢖꢑRꢆꢁꢄꢘ  
ꢠꢑꢃ ꢖꢁ  
ꢑꢆꢄ  
Rꢄꢅ  
Rꢄꢅ  
ꢔꢄꢙꢂꢄRAꢔꢤRꢄ  
ꢀꢁ  
ꢠꢑꢃꢍ  
ꢂꢃR  
Rꢄꢛꢌ  
Rꢄꢛꢍ  
ꢌꢗꢑ  
RꢄꢛꢄRꢄꢗꢏꢄ  
ꢆꢇ  
ꢆꢈ  
ꢆꢉ  
ꢆꢊ  
ꢆꢋ  
ꢆꢀ  
ꢆꢌ  
ꢆꢍ  
ꢆꢎ  
ꢀꢁ  
Rꢄꢅ  
Aꢤꢥ  
ꢙꢤꢥ  
ꢕꢏ  
ꢆꢕꢃꢙꢑ  
ꢑꢔꢄꢗ  
ꢅꢂꢆꢃꢍ  
ꢍꢇ  
ꢍꢡ  
ꢌꢎ  
ꢌꢍ  
ꢌꢌ  
ꢅꢂꢆꢃꢌ  
ꢅꢂꢆꢃꢀ  
ꢑꢆꢕꢏꢨARꢅꢄ  
ꢔꢆꢙꢄR  
ꢅꢂꢆꢃꢋ  
ꢅꢂꢆꢃꢝꢋꢞꢍꢟ  
ꢉꢇꢍꢎꢍ ꢐꢑꢍ  
Rev. A  
18  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
BLOCK DIAGRAM  
LTC6810-2  
ꢋꢋ  
ꢛꢏ  
ꢋꢀ  
ꢉ ꢐAꢠAꢛꢏꢄ ꢚꢄꢔꢥ  
ꢕꢖꢦꢗ  
ꢋꢌ  
ꢋꢍ  
ꢋꢎ  
ꢀꢡ  
ꢀꢇ  
ꢀꢈ  
ꢀꢉ  
ꢀꢊ  
ꢀꢋ  
ꢀꢀ  
ꢀꢌ  
ꢀꢍ  
ꢀꢎ  
ꢌꢡ  
ꢌꢇ  
ꢌꢈ  
ꢌꢉ  
ꢌꢊ  
ꢌꢋ  
ꢌꢀ  
ꢓꢑꢔ  
ꢕꢑꢆꢖꢆꢐꢆAꢕꢗ  
ꢏꢉ  
ꢕꢉ  
ꢏꢊ  
ꢕꢊ  
ꢏꢋ  
ꢕꢋ  
ꢕꢖꢦꢒꢍꢗ  
ꢑꢆꢅꢆꢔAꢠ  
ꢚꢆꢄR  
ꢕꢑꢃꢖꢆꢏꢘꢂꢗ  
Aꢀ  
ꢠꢃꢅꢆꢏ  
Aꢛꢑ  
ꢕꢄRꢆAꢠ ꢆꢨꢃ  
ꢘꢄꢘꢃRꢢ  
ꢏꢉ  
ꢏꢊ  
ꢏꢋ  
ꢏꢀ  
ꢏꢌ  
ꢏꢍ  
ꢏꢎ  
Aꢌ  
ꢑꢆꢅꢆꢔAꢠ  
ꢚꢆꢄR  
ꢏ ꢂꢆꢛ  
ꢘꢣꢤ  
Aꢑꢏ  
ꢕꢏꢙꢖꢆꢂAꢗ  
ꢏꢕꢐꢖꢆꢘAꢗ  
Aꢍ  
ꢕꢄRꢆAꢠꢝꢍꢞꢡꢟ  
ꢕꢉ  
ꢕꢊ  
ꢕꢋ  
ꢕꢀ  
ꢕꢌ  
ꢕꢍ  
ꢕꢎ  
ꢍꢎ ꢏꢀ  
ꢍꢍ ꢕꢀ  
ꢍꢌ ꢏꢌ  
ꢍꢀ ꢕꢌ  
ꢍꢋ ꢏꢍ  
ꢍꢊ ꢕꢍ  
ꢍꢉ ꢏꢎ  
ꢍꢈ ꢕꢎ  
ꢕ ꢂꢆꢛ  
ꢘꢣꢤ  
Aꢎ  
ꢍꢕꢔ  
RꢄꢚꢄRꢄꢛꢏꢄ  
ꢑRꢆꢁꢄ  
ꢠꢑꢃ ꢖꢑRꢆꢁꢄꢗ  
ꢠꢑꢃ ꢖꢁ  
ꢑꢆꢄ  
Rꢄꢅ  
Rꢄꢅ  
ꢔꢄꢘꢂꢄRAꢔꢣRꢄ  
ꢀꢁ  
ꢠꢑꢃꢍ  
ꢂꢃR  
Rꢄꢚꢌ  
Rꢄꢚꢍ  
ꢌꢛꢑ  
RꢄꢚꢄRꢄꢛꢏꢄ  
ꢆꢇ  
ꢆꢈ  
ꢆꢉ  
ꢆꢊ  
ꢆꢋ  
ꢆꢀ  
ꢆꢌ  
ꢆꢍ  
ꢆꢎ  
ꢀꢁ  
Rꢄꢅ  
Aꢣꢤ  
ꢘꢣꢤ  
ꢕꢏ  
ꢆꢕꢃꢘꢑ  
ꢑꢔꢄꢛ  
ꢅꢂꢆꢃꢍ  
ꢍꢇ  
ꢍꢡ  
ꢌꢎ  
ꢌꢍ  
ꢌꢌ  
ꢅꢂꢆꢃꢌ  
ꢅꢂꢆꢃꢀ  
ꢑꢆꢕꢏꢧARꢅꢄ  
ꢔꢆꢘꢄR  
ꢅꢂꢆꢃꢋ  
ꢅꢂꢆꢃꢝꢋꢞꢍꢟ  
ꢉꢇꢍꢎꢍ ꢐꢑꢌ  
Rev. A  
19  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
STATE DIAGRAM  
this case, the internal regulator must be disabled to avoid  
contention by floating the DRIVE pin. For more details see  
REG  
The operation of the LTC6810 is divided into two separate  
sections: the Core circuit and the isoSPI circuit. Both sec-  
tions have an independent set of operating states, as well  
as a shutdown timeout.  
V
Configurations.  
When a valid ADC command is received or the REFON  
bit is set to 1 in the Configuration Register Group, the  
IC pauses for t  
to allow for the references to power  
REFUP  
up and then enters either the REFUP or MEASURE state.  
Otherwise, if no valid commands are received for t  
the IC returns to the SLEEP state if DTEN = 0 or enters  
the EXTENDED BALANCING state if DTEN = 1.  
CORE LTC6810 STATE DESCRIPTIONS  
SLEEP State  
,
SLEEP  
The references and ADC modulator are powered down.  
The watchdog timer (see Watchdog and Discharge Timer)  
has timed out. The discharge timer is either disabled or  
timed out. The supply currents are reduced to minimum  
levels. The isoSPI ports will be in the IDLE state. The Drive  
pin is 0V. All state machines are reset to their default state  
REFUP State  
To reach this state the REFON bit in the Configuration  
Register Group must be set to 1 (using the WRCFG com-  
mand, see Table 40). The ADCs are off. The references  
are powered up so that the LTC6810 can initiate ADC  
conversions more quickly than from the STANDBY state.  
If a WAKEUP signal is received (see Waking Up the Serial  
Interface), the LTC6810 will enter the STANDBY state.  
When a valid ADC command is received, the IC goes to  
the MEASURE state to begin the conversion. Otherwise,  
the LTC6810 will return to the STANDBY state when the  
REFON bit is set to 0, (using WRCFGA command). If no  
STANDBY State  
The references and the ADC are off. The watchdog timer  
and/or the discharge timer is running. V  
pin is pow-  
REG  
valid commands are received for t  
, the IC returns  
SLEEP  
ered to 5.2V through an external transistor controlled by  
to the SLEEP state if DTEN = 0 or enters the EXTENDED  
+
the DRIVE pin. Alternatively, when V is less than 12V,  
BALANCING state if DTEN = 1  
V
V
can be powered through the internal LDO to 4.7V.  
can also be powered through an external source. In  
REG  
REG  
CORE LTC6810  
isoSPI PORT  
ꢔꢗꢊꢊꢓ  
ꢕꢉꢗꢊ  
ꢏꢉ ꢙꢕꢎꢊꢆꢒꢙ  
Aꢇꢉ ꢉꢙꢊꢇ ꢌ ꢃ  
ꢏAꢐꢊꢑꢒꢓ  
ꢔꢕꢖꢇAꢗ  
ꢏAꢐꢊꢑꢒꢓ ꢔꢕꢖꢇAꢗ  
ꢏAꢐꢊꢑꢒꢓ ꢔꢕꢖꢇAꢗ  
ꢕꢉꢗꢊ ꢙꢕꢎꢊꢆꢒꢙ  
ꢋꢘ  
ꢋꢅꢆRꢊ ꢌ ꢔꢗꢊꢊꢓꢍ  
ꢋꢘ  
ꢋꢅꢆRꢊ ꢌ ꢔꢙAꢇꢉꢚꢛꢍ  
ꢋꢘ  
ꢋꢘ  
ꢔꢗꢊꢊꢓ  
ꢏAꢐꢊ  
ꢋꢘ  
ꢕꢉꢗꢊ  
ꢏAꢐꢊ  
ꢉꢅꢙꢆ RꢊAꢅꢢꢊꢔ ꢃ  
ꢏꢉ ꢙꢕꢎꢊꢆꢒꢙ  
Aꢇꢉ ꢉꢙꢊꢇ ꢌ ꢂ  
RꢊAꢉꢛ  
ꢏꢉ ꢙꢕꢎꢊꢆꢒꢙ  
Aꢇꢉ ꢉꢙꢊꢇ ꢌ ꢃ  
ꢊꢞꢙꢊꢇꢉꢊꢉ  
ꢚAꢗAꢇꢅꢕꢇꢖ  
ꢋꢘ  
ꢔꢙAꢇꢉꢚꢛ  
ꢔꢗꢊꢊꢓ  
RꢊAꢉꢛ  
Aꢅꢙꢕꢈꢊ  
ꢏAꢐꢊꢑꢒꢓ  
ꢔꢕꢖꢇAꢗ ꢋꢘ  
Rꢊꢄꢆꢇ ꢌ ꢃ  
Rꢊꢄꢆꢇ ꢌ ꢂ  
ꢏAꢐꢊ  
ꢋꢘ  
Rꢊꢄꢒꢓ Aꢉꢅ  
ꢊꢈꢊRꢛ ꢣꢃꢠ  
Aꢇꢉ ꢉꢙꢎꢊꢇꢌꢂ  
ꢇꢆ Aꢅꢙꢕꢈꢕꢙꢛ ꢆꢇ  
ꢟꢠꢡꢔꢓꢕ ꢓꢆRꢙ  
ꢙRAꢇꢔꢎꢕꢙꢜRꢊꢅꢊꢕꢈꢊ  
ꢅꢆꢎꢎ  
Rꢊꢄꢒꢓ  
ꢋꢘ  
Rꢊꢄꢒꢓ  
Aꢉꢅ  
ꢏAꢐꢊꢑꢒꢓ  
ꢔꢕꢖꢇAꢗ  
ꢅꢆꢎꢎAꢇꢉ  
ꢅꢆꢇꢈ  
ꢉꢆꢇꢊ  
ꢇꢆꢙꢊꢝ ꢔꢙAꢙꢊ ꢙRAꢇꢔꢕꢙꢕꢆꢇ  
ꢉꢊꢗAꢛꢔ ꢉꢊꢇꢆꢙꢊꢉ ꢚꢛ ꢋꢘ ꢍ  
ꢅꢆꢇꢈ ꢉꢆꢇꢊ  
ꢋRꢊꢄꢆꢇ ꢌ ꢃꢍ  
ꢋꢘ  
ꢏAꢐꢊ  
ꢅꢆꢇꢈ ꢉꢆꢇꢊ  
ꢋRꢊꢄꢆꢇ ꢌ ꢂꢍ  
ꢀꢁꢂꢃꢂ ꢄꢃꢂ  
ꢏꢉ ꢙꢕꢎꢊꢆꢒꢙ  
Aꢇꢉ ꢉꢙꢊꢇ ꢌ ꢂ  
ꢉꢙꢎ  
ꢎꢊAꢔꢒRꢊ  
ꢎꢊAꢔꢒRꢊ  
Figure 1. LTC6810 Operation State Diagram  
Rev. A  
20  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
MEASURE State  
isoSPI STATE DESCRIPTIONS  
The LTC6810 performs ADC conversions in this state. The  
references and ADCs are powered up.  
Note: The LTC6810-1 has two isoSPI ports (A and B), for  
daisy-chain communication. The LTC6810-2 has only one  
isoSPI port (A), for parallel-addressable communication.  
After ADC conversions are complete the LTC6810 will  
transition to either the REFUP or STANDBY states,  
depending on the REFON bit. Additional ADC conversions  
can be initiated more quickly by setting REFON = 1 to take  
advantage of the REFUP state.  
IDLE State  
The isoSPI ports are powered down.  
When isoSPI port A or port B (LTC6810-1 only) receives a  
WAKEUP signal (see Waking up the Serial Interface), the  
isoSPI enters the READY state. This transition happens  
quickly (within tREADY) if the Core is in the STANDBY state.  
If the Core is in the SLEEP state when the isoSPI receives  
a WAKEUP signal, the it transitions to the READY state  
Note: Non-ADC commands do not cause a Core state tran-  
sition. Only an ADC Conversion or DIAGN command will  
place the Core in the MEASURE state.  
EXTENDED BALANCING State  
within t  
.
WAKE  
The watchdog timer has timed out, but the discharge timer  
has not yet timed out (DTEN = 1). Discharge by PWM may  
be in progress. If the Discharge Timer Monitor is enabled  
then the LTC6810 will transition to the DTM MEASURE  
state every 30 seconds to measure the cell voltages. If a  
WAKEUP signal is received, the LTC6810 will transition  
from EXTENDED BALANCING state to STANDBY state.  
READY State  
The isoSPI port(s) are ready for communication. Port  
B is enabled only for LTC6810-1, and is not present on  
the LTC6810-2. The serial interface current in this state  
depends on if the part is LTC6810-1 or LTC6810-2, the  
status of the ISOMD pin, and RBIAS = RB1 + RB2 (the  
Discharge Timer Monitor MEASURE State  
external resistors tied to the I  
pin).  
BIAS  
The watchdog timer has timed out but background moni-  
toring has been enabled (DTMEN = 1 in the Configuration  
Register). The LTC6810 enters this state from the  
EXTENDED BALANCING state once every 30 seconds to  
measure the cell voltages. The LTC6810 is in the highest  
core power state and an A/D conversion is in progress. If  
a WAKEUP signal is received, the LTC6810 will transition  
from DTM MEASURE state to STANDBY state.  
If there is no activity (i.e. no WAKEUP signal) for greater  
than t = 5.5ms, the LTC6810 goes to the IDLE state.  
IDLE  
When the serial interface is transmitting or receiving data  
the LTC6810 goes to the ACTIVE state.  
ACTIVE State  
The LTC6810 is transmitting/receiving data using one  
or both of the isoSPI ports. The serial interface con-  
sumes maximum power in this state. The supply current  
increases with clock frequency as the density of isoSPI  
pulses increases.  
Rev. A  
21  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
POWER CONSUMPTION  
Table 1 provides typical values for I and I  
sup-  
VP  
REG(Core)  
ply currents in each of the Core states. Table 2 provides  
+
The LTC6810 is powered via two pins: V and V . The  
REG  
equations to approximate I  
supply pin currents  
+
REG(isoSPI)  
in each of the isoSPI states.  
V input requires voltage greater than or equal to the top  
cell voltage minus 0.3V, and it provides power to the high  
voltage elements of the core circuitry. The VREG input  
requires 5V and provides power to the remaining core  
circuitry and the isoSPI circuitry.  
Table 1. Core Supply Current  
STATE  
I
I
REG(CORE)  
VP  
V
V
= 0V  
= 5V  
5.7µA  
3.5µA  
75µA  
20µA  
30µA  
50µA  
0µA  
REG  
REG  
SLEEP  
The power consumption varies according to the opera-  
3.3µA  
55µA  
tional states. The V  
input can be powered through an  
REG  
STANDBY, Int Regulator Enabled  
STANDBY, Int Regulator Disabled  
REFUP  
external transistor that is driven by the regulated DRIVE  
output pin, through the internal LDO, or through an exter-  
55µA  
1.7mA  
6.1mA  
+
+
nal supply. The internal LDO is powered from V , so in  
MEASURE  
this configuration V  
current also comes from V . Total  
REG  
+
V current when using the internal LDO to power V  
is  
REG  
Table 2. isoSPI Supply Current Equations  
given by,  
isoSPI  
STATE  
ISOMD  
CONNECTION  
I
REG(isoSPI)  
I
= I + I  
VP REG  
VP_INTREG  
IDLE  
N/A  
0mA  
I
current depends only on the Core state. However, I  
REG  
VP  
READY  
V
2.2mA + 3 • I  
1.5mA + 3 • I  
REG  
B
B
current depends on both the Core state and isoSPI state,  
V
and can therefore be divided into two components. The  
isoSPI interface draws current only from the V  
ACTIVE  
V
REG  
100ns  
pin.  
Write: 2.5mA + 3+ 20 •  
•I  
B
REG  
t
CLK  
I
= I  
+ I  
REG(Core) REG(isoSPI)  
REG  
100ns • 1.5  
Read: 2.5mA + 3+ 20 •  
•I  
B
t
CLK  
V
100ns  
1.8mA + 3+ 20 •  
•I  
B
t
CLK  
Rev. A  
22  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
V
CONFIGURATIONS  
Figure 3 shows a typical configuration for LTC6810 that  
REG  
uses an external transistor to power V . Note that this  
REG  
This section describes the different configurations that  
can be used to power V  
pin voltage is less than 12V, the DRIVE pin voltage drops  
below its nominal value as the regulator on the DRIVE pin  
does not have sufficient headroom. Under these condi-  
+
configuration can still be used if V drops below 12V,  
+
on the LTC6810. When V  
REG  
but when V  
pin voltage set by the external transistor  
REG  
drops below the internal LDO level, the internal LDO will  
take over and power V  
.
REG  
tions V  
pin cannot be powered through an external  
transistRoEr.GTo overcome this problem, LTC6810 has an  
ꢊꢀꢉꢈ  
ꢇ.ꢄꢈ  
ꢇ.ꢉꢈ  
ꢒꢓꢔꢃꢄꢀꢅ  
internal LDO that powers the V  
pin to 4.7V typically.  
REG  
ꢍRꢎꢈꢏ  
+
The internal LDO can operate for V pin voltage as low as  
5V. The internal LDO is enabled by applying a load current  
greater than 15µA on the DRIVE pin. Figure 2 shows a  
typical configuration for LTC6810 using the internal LDO  
ꢀꢅꢅꢋ  
Rꢏꢐ  
ꢀꢁꢂ  
ꢃꢄꢀꢅꢀ ꢂꢅꢆ  
Figure 3. VREG Powered by External Transistor  
+
when V is less than 12V. The suggested 100K resistor on  
the DRIVE pin draws a minimum of 30µA from the DRIVE  
pin. This keeps the internal regulator enabled.  
Alternatively, V  
pin can also be powered from an exter-  
nal source. In tRhEisGconfiguration, it is important to ensure  
that the internal LDO is always shutdown so there is no  
contention problem. This can be achieved by floating the  
DRIVE pin. Figure 4 shows a typical configuration for  
ꢕꢐꢖꢅꢆꢀꢃ  
ꢒꢈ ꢐꢑ ꢀꢇꢈ  
ꢏꢈ ꢐꢑ ꢒ.ꢆꢈ  
ꢊRꢋꢈꢌ  
ꢓ.ꢔꢈ  
LTC6810 when V  
is powered from an external source.  
REG  
ꢀꢃꢃꢄ  
Rꢌꢍ  
ꢀꢁꢂ  
ꢅꢆꢀꢃꢀ ꢂꢃꢇ  
ꢎꢏꢐꢀꢁꢂꢃ  
Figure 2. VREG Powered by Internal LDO  
ꢉRꢊꢇꢋ  
ꢆꢇ  
ꢊꢑꢒꢎAꢏꢋꢉ  
Rꢋꢌ  
ꢓꢒꢔꢋR ꢑꢕꢓꢓꢖ  
The power dissipation across the pass transistor in the  
internal LDO is (V+ – VREG ) • IREG. To limit the power  
ꢀꢁꢂꢃꢂ ꢄꢃꢅ  
dissipation inside the part it is recommended to power  
Figure 4. VREG Powered by an Independent Supply  
+
V
using an external transistor when V pin voltage is  
REG  
greater than 12V. The external transistor is driven by the  
regulated DRIVE pin voltage that sets V pin voltage to  
REG  
5.2V typically. The internal LDO is designed to only source  
current, so when V pin is driven to 5.2V by the external  
REG  
transistor the internal regulator is gracefully shutdown.  
Rev. A  
23  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
ADC OPERATION  
in STANDBY state, an additional t  
time is required to  
REFUP  
power up the reference before beginning the ADC conver-  
sions. The reference can remain powered up between ADC  
conversions if the REFON bit in Configuration Register  
Group is set to 1 so the Core is in REFUP state after a  
There is one ADC inside the LTC6810. The ADC is used to  
measure the cell voltages via the C or S pins and general  
purpose inputs.  
delay t  
. If REFON is set to 1 the Core will go from  
REFUP  
ADC Modes  
STANDBY to the REFUP state after a delay t  
. Then,  
REFUP  
The ADCOPT bit (CFGR0[0]) in the Configuration Register  
Group and the mode selection bits MD[1:0] in the conver-  
sion command together provide eight modes of operation  
for the ADC which correspond to different oversampling  
ratios (OSR). The accuracy and timing of these modes  
are summarized in Table 3. In each mode, the ADC first  
measures the inputs, and then performs a calibration. The  
names of the modes are based on the –3dB bandwidth of  
the ADC measurement.  
the subsequent ADC commands will not have the t  
delay before beginning ADC conversions.  
REFUP  
ADC Range and Resolution  
The cell inputs and GPIO inputs have the same range and  
resolution. The ADC inside the LTC6810 has an approxi-  
mate range from –0.82V to +5.73V. Negative readings are  
rounded to 0V. The format of the data is a 16-bit unsigned  
integer where the LSB represents 100µV. Therefore, a  
reading of 0x80E8 (33,000 decimal) indicates a measure-  
ment of 3.3V.  
Mode 7kHz (Normal Mode): In this mode, the ADC has  
high resolution and low TME (total measurement error).  
This is considered the normal operating mode because of  
the optimum combination of speed and accuracy.  
ꢃꢈRꢜAꢉ ꢜꢈꢀꢋ  
ꢛꢂꢋRꢋꢀ ꢜꢈꢀꢋ  
ꢎ.ꢓ  
Mode 27kHz (Fast Mode): In this mode, the ADC has  
maximum throughput but has some increase in TME (total  
measurement error). So this mode is also referred to as  
the fast mode. The increase in speed comes from a reduc-  
tion in the oversampling ratio. This results in an increase  
in noise and average measurement error.  
ꢎ.ꢗ  
ꢎ.ꢔ  
ꢎ.ꢘ  
ꢎ.ꢕ  
ꢎ.ꢙ  
ꢎ.ꢖ  
ꢎ.ꢚ  
ꢎ.ꢒ  
Mode 26Hz (Filtered Mode): In this mode, the ADC digital  
filter –3dB frequency is lowered to 26Hz by increasing the  
OSR. This mode is also referred to as the filtered mode  
due to its low –3dB frequency. The accuracy is similar to  
the 7kHz (normal) mode with lower noise.  
ꢎ.ꢕ  
ꢒ.ꢕ  
ꢚ.ꢕ  
ꢖ.ꢕ  
ꢙ.ꢕ  
Aꢀꢁ ꢂꢃꢄꢅꢆ ꢇꢈAꢊꢋ ꢌꢇꢍ  
ꢘꢗꢒꢎꢒ ꢛꢎꢕ  
Figure 5.  
Modes 14kHz, 3kHz, 2kHz, 1kHz and 422Hz: Modes  
14kHz, 3kHz, 2kHz, 1kHz and 422Hz provide additional  
options to set the ADC digital filter –3dB at 13.5kHz,  
3.4kHz, 1.7kHz, 845Hz and 422Hz respectively. The accu-  
racy of the 14kHz mode is similar to the 27kHz (fast)  
mode. The accuracy of 3kHz, 2kHz, 1kHz and 422Hz  
modes is similar to the 7kHz (normal) mode.  
Delta-Sigma ADCs have quantization noise which depends  
on the input voltage, especially at low Over Sampling  
Ratios (OSR), such as in fast mode. In some of the ADC  
modes, the quantization noise increases as the input volt-  
age approaches the upper and lower limits of the ADC  
range. For example, the total measurement noise versus  
input voltage in normal and filtered modes is shown in  
Figure 5.  
The filter bandwidths and the conversion times for these  
modes are provided in Table 3 and Table 5. If the Core is  
Rev. A  
24  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Table 3. ADC Filter Bandwidth, Accuracy and Speed  
MODE  
27kHz (Fast Mode)  
14kHz  
–3dB FILTER BW  
27kHz  
–40dB FILTER BW  
84kHz  
TME SPEC AT 3.3V, 25°C  
TME SPEC AT 3.3V, –40°C, 125°C  
5.5mV  
5.5mV  
1.8mV  
1.8mV  
1.8mV  
1.8mV  
1.8mV  
1.8mV  
5.5mV  
5.5mV  
2.4mV  
2.4mV  
2.4mV  
2.4mV  
2.4mV  
2.4mV  
13.5kHz  
6.8kHz  
42kHz  
7kHz (Normal Mode)  
3kHz  
21kHz  
3.4kHz  
10.5kHz  
5.3kHz  
2kHz  
1.7kHz  
1kHz  
845Hz  
2.6kHz  
422Hz  
422Hz  
1.3kHz  
26Hz (Filtered Mode)  
26Hz  
82Hz  
Note: TME is the total measurement error.  
Table 4. ADC Range and Resolution  
SPECIFIED  
RANGE  
PRECISION  
NOISE FREE  
1
2
3
MODE  
27kHz (fast)  
14kHz  
FULL RANGE  
RANGE  
LSB  
FORMAT  
MAX NOISE  
RESOLUTION  
4mV  
1mV  
10 Bits  
P-P  
P-P  
12 Bits  
7kHz (normal)  
3kHz  
250µV  
150µV  
100µV  
100µV  
100µV  
14 Bits  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
14 Bits  
–0.8192V to  
5.7344V  
0V to 5V  
0.5V to 4.5V  
100µV  
Unsigned 16 Bits  
2kHz  
15 Bits  
1kHz  
15 Bits  
422Hz  
15 Bits  
26Hz (filtered)  
50µV  
16 Bits  
1. Negative readings are rounded to 0V.  
2. PRECISION RANGE is the range over which the noise is less than MAX NOISE.  
3. NOISE FREE RESOLUTION is a measure of the noise level within the PRECISION RANGE.  
The specified range of the ADC is 0V to 5V. In Table 4, the  
precision range of the ADC is arbitrarily defined as 0.5V  
to 4.5V. This is the range where the quantization noise is  
relatively constant even in the lower OSR modes (see  
Figure 5). Table 4 summarizes the total noise in this range  
for all eight ADC operating modes. Also shown is the  
noise free resolution. For example, 14-bit noise free reso-  
lution in normal mode implies that the top 14 bits will be  
noise free with a DC input, but that the 15th and 16th least  
significant bits (LSB) will flicker.  
Rev. A  
25  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
ꢇꢉꢇꢃꢁ  
Rꢁꢆꢒꢐ  
ꢀꢊꢁꢋꢌ  
ꢀꢁRꢂAꢃ  
ꢂꢄꢅꢁRꢆAꢇꢁ  
Aꢍꢇꢎ ꢏ ꢐꢁꢇ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢘ ꢅꢔ ꢇꢙ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢌ ꢅꢔ ꢇꢘ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢗ ꢅꢔ ꢇꢌ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢕ ꢅꢔ ꢇꢗ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢓ ꢅꢔ ꢇꢕ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢖ ꢅꢔ ꢇꢓ  
Aꢍꢇꢘ  
ꢇAꢃꢂꢚRAꢅꢁ  
ꢕꢑ  
ꢓꢑ  
ꢖꢑ  
ꢖꢛꢘꢙꢘ ꢆꢙꢖ  
ꢘꢑ  
ꢌꢑ  
ꢗꢑ  
Figure 6. Timing for ADCV Command Measuring All 6 Cells, SCONV = 0  
Table 5. Conversion and Synchronization Times for ADCV Command Measuring All Six Cells, SCONV = 0  
CONVERSION TIMES (in µs)  
SYNCHRONIZATION TIME  
(IN µs)  
MODE  
27kHz  
14kHz  
7kHz  
t
t
t
t
t
t
t
t
SKEW2  
0
1M  
2M  
5M  
6M  
C,MCAL = 0  
C,MCAL = 1  
0
0
0
0
0
0
0
0
57  
87  
104  
162  
244  
390  
291  
465  
524  
1,106  
233  
699  
1,165  
1,281  
2,328  
379  
670  
145  
279  
681  
815  
3kHz  
261  
511  
1,262  
2,426  
4,753  
9,408  
149,044  
1,513  
2,909  
5,702  
11,287  
178,851  
1,863  
3,026  
1,252  
2,415  
2kHz  
494  
977  
3,259  
4,423  
1kHz  
959  
1,908  
3,770  
59,624  
6,052  
7,215  
4,742  
422Hz  
26Hz  
1,890  
29,818  
11,637  
182,692  
12,801  
201,310  
9,397  
149,033  
Table 5 shows the conversion times for the ADCV com-  
mand measuring all six cells. The total conversion time is  
Table 6 shows the conversion time for ADCV command  
measuring only 1 cell. t indicates the total conversion  
C
given by t which indicates the end of the calibration step.  
time for this command.  
C
Table 6. Conversion Times for ADCV Command Measuring Only  
One Cell, SCONV = 0  
Figure 7 illustrates the timing of the ADCV command that  
measures only one cell.  
CONVERSION TIMES (in μs)  
MODE  
27kHz  
t
t
t
C
0
1M  
Rꢁꢆꢎꢋ  
ꢇꢗꢇꢃꢁ  
0
0
0
0
0
0
0
0
57  
87  
200  
229  
ꢀꢁRꢂAꢃ  
Aꢈꢇꢉ ꢊ ꢋꢁꢇ  
14kHz  
7kHz  
3kHz  
2kHz  
1kHz  
422Hz  
26Hz  
ꢂꢄꢅꢁRꢆAꢇꢁ  
145  
404  
ꢍꢁAꢀꢎRꢁ  
ꢇꢏ ꢅꢐ ꢇꢑ  
Aꢈꢇꢑ  
ꢇAꢃꢂꢌRAꢅꢁ  
261  
520  
494  
753  
ꢑꢍ  
ꢔꢕꢑꢓꢑ ꢆꢓꢖ  
959  
1,218  
2,149  
33,567  
1,890  
29,817  
Figure 7. Timing for ADCV command measuring 1 cell,  
SCONV = 0  
Rev. A  
26  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Under/Over Voltage Monitoring  
the GPIOs and the 2nd reference separately or to mea-  
sure S0, all four GPIOs and the 2nd reference in a single  
command. See the section on Commands for the ADAX  
command format. All auxiliary measurements are relative  
Whenever the C inputs are measured, the results are  
compared to under voltage and over voltage thresholds  
stored in memory. If the reading of a cell is above the over  
voltage limit, a bit in memory is set as a flag. Similarly,  
measurement results below the under voltage limit cause  
a flag to be set. The over voltage and under voltage thresh-  
olds are stored in the Configuration Register Group. The  
flags are stored in Status Register Group B.  
to the V pin voltage. This command can be used to read  
external temperature by connecting the temperature sen-  
sors to the GPIOs. These sensors can be powered from  
the 2nd reference which is also measured by the ADAX  
command, resulting in precise ratiometric measurements.  
Figure 8 illustrates the timing of the ADAX command mea-  
suring S0, all GPIOs and the 2nd reference. The 2nd refer-  
ence is measured after GPIO4.  
Auxiliary (GPIO) Measurements (ADAX Command)  
The ADAX command initiates the measurement of the  
GPIO inputs. This command has options to select which  
GPIO input to measure (GPIO1–4) and which ADC mode  
to use. The ADAX command also measures the S0 pin and  
Table 7 shows the conversion time for the ADAX com-  
mand measuring S0, all the GPIOs and the 2nd reference.  
t indicates the total conversion time.  
C
the 2nd reference relative to the V pin voltage. There are  
The timing for ADAX measuring a single auxiliary is the  
same as ADCV measuring a single cell.  
options in the ADAX command to measure subsets of S0,  
ꢇꢉꢇꢃꢁ  
Rꢁꢆꢑꢏ  
ꢀꢊꢁꢋ  
ꢀꢁRꢂAꢃ  
ꢂꢄꢅꢁRꢆAꢇꢁ  
Aꢌꢇꢍ ꢎ ꢏꢁꢇ  
ꢐꢁAꢀꢑRꢁ  
ꢀꢘ  
ꢐꢁAꢀꢑRꢁ  
ꢒꢏꢂꢓꢗ  
ꢐꢁAꢀꢑRꢁ  
ꢒꢏꢂꢓꢕ  
ꢐꢁAꢀꢑRꢁ  
ꢒꢏꢂꢓꢖ  
ꢐꢁAꢀꢑRꢁ  
ꢒꢏꢂꢓꢔ  
ꢐꢁAꢀꢑRꢁ  
ꢕꢄꢌ Rꢁꢆ  
Aꢌꢇꢗ  
ꢇAꢃꢂꢛRAꢅꢁ  
ꢙꢐ  
ꢚꢜꢗꢘꢗ ꢆꢘꢜ  
ꢗꢐ  
ꢕꢐ  
ꢖꢐ  
ꢔꢐ  
ꢚꢐ  
Figure 8. Timing for ADAX Command Measuring All GPIOs and 2nd Reference  
Table 7. Conversion and Synchronization Times for ADAX Command Measuring S0, All GPIOs and 2nd Reference  
CONVERSION TIMES (in µs)  
MODE  
27kHz  
14kHz  
7kHz  
t
t
t
t
t
t
t
t
t
C,MCAL = 1  
0
1M  
2M  
3M  
4M  
5M  
6M  
C,MCAL = 0  
0
0
0
0
0
0
0
0
57  
87  
104  
162  
151  
238  
197  
314  
244  
390  
291  
465  
521  
695  
1,103  
1,277  
2,324  
145  
279  
413  
547  
681  
815  
1,161  
1,859  
3,255  
6,048  
11,634  
182,688  
3kHz  
261  
511  
762  
1,012  
1,943  
3,805  
7,529  
119,238  
1,262  
2,426  
4,753  
9,408  
149,044  
1,513  
2,909  
5,702  
11,287  
178,851  
3,023  
2kHz  
494  
977  
1,460  
2,856  
5,649  
89,431  
4,419  
1kHz  
959  
1,908  
3,770  
59,624  
7,212  
422Hz  
26Hz  
1,890  
29,818  
12,797  
201,306  
Rev. A  
27  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Auxiliary (GPIO) Measurements with Digital  
Redundancy (ADAXD Command)  
simplifies the synchronization of battery cell voltage and  
current measurements when a current sensor is con-  
nected to the GPIO1 input. Figure 9 illustrates the timing  
of ADCVAX command with SCONV set to 0. See the sec-  
tion on Commands for the ADCVAX command format. The  
time values in Figure 9 assume the ADC is operating in  
the 27kHz (fast) mode. The synchronization of the current  
and voltage measurements, tSKEW1, in fast mode is  
within 196µs.  
The ADAXD command operates similarly to the ADAX  
command except that an additional diagnostic is per-  
formed using digital redundancy. See A/D Conversion  
with Digital Redundancy.  
The execution time of ADAX and ADAXD is the same.  
Measuring Cell Voltages and GPIOs (ADCVAX  
Command)  
Table 8 shows the conversion and synchronization  
time for the ADCVAX command in different modes with  
SCONV = 0. The total conversion time for the command  
The ADCVAX command combines six cell measurements  
with measurements of S0 and GPIO1. This command  
is given by t .  
C
ꢇꢉꢇꢃꢁ  
Rꢁꢆꢓꢐ  
ꢀꢊꢁꢋꢌ  
ꢀꢁRꢂAꢃ  
ꢂꢄꢅꢁRꢆAꢇꢁ  
Aꢍꢇꢎ ꢏ ꢐꢁꢇ  
ꢒꢁAꢀꢓRꢁ  
ꢇꢌ ꢅꢕ ꢇꢚ  
ꢒꢁAꢀꢓRꢁ  
ꢇꢛ ꢅꢕ ꢇꢌ  
ꢒꢁAꢀꢓRꢁ  
ꢇꢘ ꢅꢕ ꢇꢛ  
ꢒꢁAꢀꢓRꢁ  
ꢀꢚ  
ꢒꢁAꢀꢓRꢁ  
ꢙꢐꢂꢕꢌ  
ꢒꢁAꢀꢓRꢁ  
ꢇꢗ ꢅꢕ ꢇꢘ  
ꢒꢁAꢀꢓRꢁ  
ꢇꢖ ꢅꢕ ꢇꢗ  
ꢒꢁAꢀꢓRꢁ  
ꢇꢔ ꢅꢕ ꢇꢖ  
Aꢍꢇ  
ꢇAꢃꢂꢑRAꢅꢁ  
ꢗꢒ  
ꢖꢒ  
ꢔꢒ  
ꢔꢝꢌꢚꢌ ꢆꢚꢞ  
ꢌꢒ  
ꢛꢒ  
ꢘꢒ  
ꢜꢒ  
ꢝꢒ  
Figure 9. Timing of ADCVAX command, SCONV = 0  
Table 8. Conversion and Synchronization Times for ADCVAX Command, SCONV = 0  
SYNCHRONIZATION  
TIME (IN µs)  
CONVERSION TIMES (in µs)  
MODE  
27kHz  
14kHz  
7kHz  
t
t
t
t
t
t
t
t
t
t
t
t
SKEW1  
0
1M  
2M  
3M  
4M  
5M  
6M  
7M  
8M  
C,MCAL = 0 C,MCAL = 1  
0
0
0
0
0
0
0
0
57  
87  
104  
162  
151  
238  
205  
321  
251  
397  
305  
480  
352  
556  
399  
631  
682  
915  
1,497  
1,730  
194  
310  
543  
145  
261  
494  
959  
1,890  
279  
413  
554  
688  
829  
963  
1,097  
2,028  
3,890  
7,613  
1,497  
2,427  
4,289  
8,013  
15,460  
3,126  
3kHz  
511  
762  
1,019  
1,950  
3,812  
7,536  
1,270  
2,433  
4,760  
9,415  
1,527  
2,923  
5,716  
1,777  
3,407  
6,665  
4,057  
1,008  
1,939  
2kHz  
977  
1,460  
2,856  
5,649  
5,918  
1kHz  
1,908  
3,770  
9,642  
3,801  
422Hz  
26Hz  
11,302 13,181 15,060  
17,089  
268,435  
7,525  
29,817 59,624 89,431 119,245 149,051 178,865 208,672 238,479 242,369  
119,234  
Rev. A  
28  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
DATA ACQUISITION SYSTEM DIAGNOSTICS  
the total conversion time for the ADSTAT command. When  
ADSTAT is performed measuring all 4 internal parameters,  
the LTC6810 will always perform four calibration cycles,  
regardless of MCAL.  
The battery monitoring data acquisition system is com-  
prised of a multiplexer, an ADC, 1st reference, digital  
filters, and memory. To ensure long term reliable perfor-  
mance there are several diagnostic commands which can  
be used to verify the proper operation of these circuits.  
The timing for ADSTAT measuring a single status param-  
eter is the same as ADCV measuring a single cell.  
Sum of All Cells Measurement: The Sum of All Cells mea-  
Measuring Internal Device Parameters (ADSTAT  
Command)  
+
surement is the voltage between V and V with a 10:1  
+
attenuation. The V to V voltage is the same as the total  
battery voltage when the IC is powered by the battery cells.  
The 16-bit ADC value of Sum of All Cells measurement (SC)  
is stored in Status Register Group A. From the SC value, the  
sum of all cell voltage measurements is given by,  
The ADSTAT command is a diagnostic command that  
measures the following internal device parameters: Sum  
of All Cells (SC), Internal Die Temperature (ITMP), Analog  
Power Supply (VA) and Digital Power Supply (VD). These  
parameters are described in the section below. All the 8  
ADC modes described earlier are available for these con-  
versions. See the section on Commands for the ADSTAT  
command format.  
Sum of All Cells = SC • 10 • 100µV  
Internal Die Temperature: The ADSTAT command can  
measure the internal die temperature. The 16 bit ADC  
value of the die temperature measurement (ITMP) is  
stored in Status Register Group A. From ITMP, the actual  
die temperature is calculated using the expression,  
Figure 10 illustrates the timing of the ADSTAT command  
measuring all the 4 internal device parameters.  
Table 9 shows the conversion time of the ADSTAT com-  
mand measuring all the 4 internal parameters. tC indicates  
100µV  
Internal Die Temperature (°C) =  
ITMP •  
°C – 273°C  
7.5mV  
ꢇꢉꢇꢃꢁ  
Rꢁꢆꢑꢏ  
ꢀꢊꢁꢋ  
ꢀꢁRꢂAꢃ  
ꢂꢄꢅꢁRꢆAꢇꢁ  
Aꢌꢇꢍ ꢎ ꢏꢁꢇ  
ꢐꢁAꢀꢑRꢁ  
ꢀꢇ  
ꢐꢁAꢀꢑRꢁ  
ꢂꢅꢐꢏ  
ꢐꢁAꢀꢑRꢁ  
ꢍA  
ꢐꢁAꢀꢑRꢁ  
ꢍꢌ  
Aꢌꢇ  
ꢇAꢃꢂꢒRAꢅꢁ  
ꢕꢐ  
ꢘꢙꢔꢓꢔ ꢆꢔꢓ  
ꢔꢐ  
ꢗꢐ  
ꢖꢐ  
Figure 10. Timing for ADSTAT command measuring SC, ITMP, VA, VD  
Table 9. Conversion and Synchronization Times for ADSTAT Command Measuring SC, ITMP, VA, VD  
SYNCHRONIZATION TIME  
(in µs)  
CONVERSION TIMES (in µs)  
MODE  
27kHz  
14kHz  
7kHz  
t
t
t
t
t
t
t
SKEW  
0
1M  
2M  
3M  
4M  
C,MCAL = 1 OR 0  
0
0
0
0
0
0
0
0
57  
87  
104  
162  
151  
238  
197  
314  
741  
858  
0
0
0
0
0
0
0
0
140  
227  
402  
751  
145  
279  
413  
547  
1,556  
2,021  
2,952  
4,814  
8,538  
134,210  
3kHz  
261  
511  
762  
1,012  
1,943  
3,805  
7,528  
119,237  
2kHz  
494  
977  
1,460  
2,856  
5,649  
89,431  
1,449  
2,845  
5,638  
89,420  
1kHz  
959  
1,908  
3,770  
59,624  
422Hz  
26Hz  
1,890  
29,817  
Rev. A  
29  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Power Supply Measurements: The ADSTAT command is  
using digital redundancy. See the A/D Conversion with  
Digital Redundancy section.  
also used to measure the Analog Power Supply (V  
and Digital Power Supply (V  
)
REG  
).  
REGD  
The execution time of ADSTAT and ADSTATD is the same.  
The 16 bit ADC value of the analog power supply measure-  
ment (VA) is stored in Status Register Group A. The 16 bit  
ADC value of the digital power supply measurement (VD)  
is stored in Status Register Group B. From VA and VD, the  
power supply measurements are given by:  
+
Measuring Cell Voltages and V to V (ADCVSC  
Command)  
The ADCVSC command combines six cell measurements  
and the measurement of Sum of All Cells. This command  
simplifies the synchronization of the individual battery  
cell voltage and the total Sum of All Cells measurement.  
Figure 11 illustrates the timing of ADCVSC command.  
See the section on Commands for the ADCVSC com-  
mand format. The synchronization of the cell voltage and  
Analog Power Supply Measurement (VREG) = VA • 100µV  
Digital Power Supply Measurement (VREGD) =VD 100µV  
The value of V  
REG  
is determined by external components.  
V
should bReEbGetween 4.5V and 5.5V to maintain accu-  
racy. The value of VREGD is determined by internal compo-  
nents. The normal range of V is 2.7V to 3.6V.  
Sum of All Cells measurements, t  
, in fast mode is  
SKEW  
within 147µs.  
REGD  
Table 10 shows the conversion and synchronization time  
for the ADCVSC command in different modes (with  
SCONV = 0). The total conversion time for the command  
Measuring Internal Device Parameters with Digital  
Redundancy (ADSTATD Command)  
The ADSTATD command operates similarly to the ADSTAT  
command except that an additional diagnostic is performed  
is given by t . When ADCVSC is performed, the LTC6810  
C
will always perform seven calibration cycles, regardless  
of MCAL.  
ꢇꢉꢇꢃꢁ  
Rꢁꢆꢒꢏ  
ꢀꢊꢁꢋ  
ꢀꢁRꢂAꢃ  
ꢂꢄꢅꢁRꢆAꢇꢁ  
Aꢌꢇꢍ ꢎ ꢏꢁꢇ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢙ ꢅꢔ ꢇꢚ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢘ ꢅꢔ ꢇꢙ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢗ ꢅꢔ ꢇꢘ  
ꢑꢁAꢀꢒRꢁ  
ꢀꢇ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢖ ꢅꢔ ꢇꢗ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢕ ꢅꢔ ꢇꢖ  
ꢑꢁAꢀꢒRꢁ  
ꢇꢓ ꢅꢔ ꢇꢕ  
Aꢌꢇ  
ꢇAꢃꢂꢐRAꢅꢁ  
ꢖꢑ  
ꢛꢑ  
ꢓꢜꢙꢚꢙ ꢆꢙꢙ  
ꢙꢑ  
ꢘꢑ  
ꢗꢑ  
ꢕꢑ  
ꢓꢑ  
Figure 11. Timing for ADCVSC Command, SCONV = 0  
Table 10. Conversion and Synchronization Times for ADCVSC Command, SCONV = 0  
SYNCHRONIZATION TIME  
(in µs)  
CONVERSION TIMES (in µs)  
MODE  
27kHz  
14kHz  
7kHz  
t
t
t
t
t
t
t
t
t
t
SKEW  
0
1M  
2M  
3M  
4M  
5M  
6M  
7M  
C,MCAL = 1 OR 0  
0
0
0
0
0
0
0
0
57  
87  
104  
162  
151  
238  
205  
321  
259  
404  
305  
480  
352  
556  
1,316  
147  
1,520  
2,742  
235  
409  
758  
145  
279  
413  
554  
695  
829  
963  
3kHz  
261  
511  
762  
1,019  
1,950  
3,812  
7,536  
1,277  
2,440  
4,768  
9,422  
1,527  
2,923  
5,716  
11,302  
1,777  
3,407  
6,665  
13,181  
3,556  
2kHz  
494  
977  
1,460  
2,856  
5,649  
89,431  
5,185  
1,456  
2,853  
5,645  
89,427  
1kHz  
959  
1,908  
3,770  
59,624  
8,443  
422Hz  
26Hz  
1,890  
29,817  
14,960  
234,887  
119,245 149,059 178,865 208,672  
Rev. A  
30  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
A/D Conversion with Digital Redundancy  
DIS_RED bit in the Configuration Register Group is writ-  
ten to 1 it will disable the digital redundancy comparison  
and subsequent ADC commands will store the normal  
ADC result.  
The internal ADC contains its own digital filter. The  
LTC6810 also contains a second digital filter that is used  
for redundancy and error checking.  
All of the ADC and self test commands except ADAX and  
ADSTAT can operate with digital redundancy. This includes  
ADCV, ADOW, CVST, ADAXD, AXOW, AXST, ADSTATD,  
STATST, ADCVAX and ADCVSC. DIS_RED and SCONV  
must be set to 0 to enable digital redundancy during cell  
measurements (see Redundant Cell Measurement Using  
the S pins). When performing an ADC conversion with  
redundancy, the analog modulator sends its bit stream  
to both the primary digital filter and the redundant digital  
filter. At the end of the conversion the results from the  
two filters are compared. If any result bit mismatch is  
detected then a digital redundancy fault code is stored  
in place of the ADC result. The digital redundancy fault  
code is a value of 0xFF0X. This is detectable because it  
falls outside the normal result range of 0x0000 to 0xDFFF.  
The last 4 bits are used to indicate which nibble(s) of the  
result values did not match.  
Redundant Cell Measurement Using the S pins  
The LTC6810 has the ability to perform redundant mea-  
surements of the cells by measuring across the S pins.  
Redundant measurements using an independent pair of  
pins can be used to detect if leakage is present at the  
pins of the IC, in the external filter components or in the  
internal MUX. The Block Diagram (LTC6810-1) shows that  
both the C pins and the S pins can be connected to the  
ADC. If a cell is measured twice using two different mea-  
surement paths and the measurements agree, than the  
two paths can be considered to be functioning correctly.  
The host can enable this feature by writing the SCONV  
bit in the Configuration Register Group to 1. Then any  
subsequent ADC command that measures a cell voltage  
will measure first using the C pins and then measure again  
using the S pins. The results of the C pin measurements  
are stored in the C voltage register groups. The results  
from the S pin measurements are stored in S voltage  
register groups (Redundant S Voltage Register Group A,  
Redundant S Voltage Register Group B). It is up to the  
host controller to compare the 2 measurements. The mea-  
surements may differ by several LSBs due to the quanti-  
zation noise of the ADC and different external filtering on  
the C pins and S pins.  
Indication of Digital Redundancy Fault Codes  
DIGITAL REDUNDANCY FAULT  
CODE 4 LSBs  
Indication  
0b0XXX  
0b1XXX  
0bX0XX  
0bX1XX  
0bXX0X  
0bXX1X  
0bXXX0  
0bXXX1  
0b0000  
No fault detected in bits 15–12.  
Fault detected in bits 15–12.  
No fault detected in bits 11–8.  
Fault detected in bits 11–8.  
No fault detected in bits 7–4.  
Fault detected in bits 7–4.  
No fault detected in bits 3–0.  
Fault detected in bits 3–0.  
S pin measurements utilize the redundant digital filter to  
provide additional redundancy and error checking. So the  
digital redundancy feature is not available when perform-  
ing cell measurements with S pins.  
The digital redundancy feature will  
not write this value of all zeros in  
the last 4 bits.  
Figure 12 shows the ADCV sequence measuring 6 cells  
with redundant measurements enabled.  
Table 11 shows the conversion times for the ADCV com-  
mand measuring all six cells with redundant measure-  
When the FDRF bit in the Configuration Register Group is  
written to 1 it will force the digital redundancy compari-  
son to fail during subsequent A/D conversions. When the  
ments enabled. The total conversion time is given by t  
which indicates the end of the calibration step.  
C
Rev. A  
31  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
ꢇꢉꢇꢃꢁ  
Rꢁꢆꢋꢕ  
ꢀꢁRꢂAꢃ  
ꢂꢄꢅꢁRꢆAꢇꢁ  
Aꢑꢇꢘ ꢙ ꢕꢁꢇ  
ꢊꢁAꢀꢋRꢁ  
ꢇꢎ ꢅꢍ ꢇꢐ  
ꢊꢁAꢀꢋRꢁ  
ꢀꢎ ꢅꢍ ꢀꢐ  
ꢊꢁAꢀꢋRꢁ  
ꢇꢌ ꢅꢍ ꢇꢌꢎ  
ꢊꢁAꢀꢋRꢁ  
ꢀꢌ ꢅꢍ ꢀꢎ  
ꢊꢁAꢀꢋRꢁ  
ꢇꢓ ꢅꢍ ꢇꢗ  
ꢊꢁAꢀꢋRꢁ  
ꢀꢓ ꢅꢍ ꢀꢗ  
Aꢑꢇ  
ꢇAꢃꢂꢏRAꢅꢁ  
ꢓꢔꢎꢐꢎ ꢆꢎꢌ  
ꢎꢊ  
ꢌꢊ  
ꢖꢊ  
ꢒꢊ ꢎꢐꢊ  
ꢎꢎꢊ  
ꢎꢌꢊ  
Figure 12. Timing for ADCV Command Measuring All 6 Cells, SCONV = 1  
Table 11. Conversion Times for ADCV Command Measuring All Six Cells, SCONV = 1  
CONVERSION TIMES (in µs)  
MODE  
27kHz  
14kHz  
7kHz  
t
t
t
t
t
t
t
t
t
t
t
t
t
t t  
C,MCAL = 0 C,MCAL = 1  
0
1M  
2M  
3M  
4M  
5M  
6M  
7M  
8M  
9M  
10M  
11M  
12M  
0
0
0
0
0
0
0
0
57  
104  
163  
279  
511  
977  
151  
238  
413  
762  
197  
314  
244  
390  
291  
466  
337  
541  
384  
431  
477  
769  
524  
844  
571  
920  
913  
2,194  
2,543  
87  
617  
693  
1,263  
2,077  
3,473  
6,266  
11,852  
23,023  
145  
261  
494  
959  
547  
680  
814  
948  
1,082  
2,013  
3,875  
7,599  
1,216  
2,263  
4,358  
8,547  
1,350  
2,514  
4,841  
1,484  
2,764  
5,324  
1,618  
3,014  
5,807  
4,637  
3kHz  
1,012  
1,262  
2,426  
4,753  
1,513  
2,909  
5,702  
1,763  
3,392  
6,650  
6,033  
2kHz  
1,460 1,943  
8,827  
1kHz  
1,908 2,856 3,805  
9,496 10,444 11,393  
14,412  
25,583  
402,601  
422Hz  
26Hz  
1,890 3,770 5,649 7,528  
9,408 11,287 13,167 15,046 16,925 18,805 20,684 22,563  
29,818 59,624 89,431 119,238 149,044 178,851 208,658 238,464 268,271 298,078 327,884 357,691 361,641  
Rꢁꢍꢃꢑ  
ꢈꢗꢈꢋꢁ  
Figure 13 illustrates the timing of the ADCV command that  
measures one cell with redundant measurement.  
ꢂꢁRꢊAꢋ  
ꢊꢌꢅꢁRꢍAꢈꢁ  
Aꢉꢈꢏ ꢐ ꢑꢁꢈ  
Table 12 shows the conversion time for ADCV command  
ꢀꢁAꢂꢃRꢁ  
ꢈꢄ ꢅꢆ ꢈꢇ  
ꢀꢁAꢂꢃRꢁ  
ꢂꢄ ꢅꢆ ꢂꢇ  
Aꢉꢈꢄ  
ꢈAꢋꢊꢎRAꢅꢁ  
measuring only 1 cell. t indicates the total conversion  
C
time for this command.  
ꢇꢀ  
ꢄꢀ  
ꢔꢕꢇꢓꢇ ꢍꢇꢖ  
Figure 14 illustrates the timing of the ADCVAX command  
with SCONV set to 1.  
Figure 13. Timing for ADCV Command Measuring  
One Cell, SCONV = 1  
Table 13 shows the conversion and synchronization time  
for the ADCVAX command in different modes with SCONV  
set to 1. The total conversion time for the command is  
Table 12. Conversion Times for ADCV Command Measuring Only  
One Cell, SCONV = 1  
CONVERSION TIMES (in µs)  
given by t .  
C
MODE  
27kHz  
14kHz  
7kHz  
t
t
t
t t  
C,MCAL = 0 C,MCAL = 1  
0
1M  
2M  
Figure 15 illustrates the timing of the ADCVSC command  
with SCONV set to 1.  
0
0
0
0
0
0
0
0
57  
87  
104  
162  
265  
323  
381  
440  
Table 14 shows the conversion and synchronization time  
for the ADCVSC command in different modes with SCONV  
set to 1. The total conversion time for the command is  
145  
279  
556  
789  
3kHz  
261  
512  
789  
1,021  
1,487  
2,418  
4,280  
67,116  
2kHz  
494  
977  
1,254  
2,185  
4,047  
63,392  
given by t .  
C
1kHz  
959  
1,908  
3,770  
59,624  
422Hz  
26Hz  
1,890  
29,817  
Rev. A  
32  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Rev. A  
33  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Rev. A  
34  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Accuracy Check  
Digital Filter Check  
Measuring an independent voltage reference is the best  
means to verify the accuracy of a data acquisition system.  
The LTC6810 contains a 2nd reference for this purpose.  
The ADAX command will initiate the measurement of the  
2nd reference. The results are placed in Auxiliary Register  
Group B. The range of the result depends on the accuracy  
of the 2nd reference, including thermal hysteresis and  
long term drift. Readings outside the range 2.99V to 3.01V  
(final data sheet limits plus 2mV for Hys and 3mV for LTD)  
indicate the system is out of its specified tolerance.  
The delta-sigma ADC is composed of a 1-bit pulse den-  
sity modulator followed by a digital filter. A pulse density  
modulated bit stream has a higher percentage of 1s for  
higher analog input voltages. The digital filter converts  
this high frequency 1-bit stream into a single 16-bit word.  
This is why a delta-sigma ADC is often referred to as an  
over-sampling converter.  
The self test commands verify the operation of the digital  
filters and memory. Figure 16 illustrates the operation  
of the ADC during self test. The output of the 1-bit pulse  
density modulator is replaced by a 1-bit test signal. The  
test signal passes through the digital filter and is con-  
verted to a 16-bit value. The 1-bit test signal undergoes  
the same digital conversion as the regular 1-bit pulse  
from the modulator, so the conversion time for any self  
test command is exactly the same as the corresponding  
regular ADC conversion command. The 16-bit ADC value  
is stored in the same register groups as the regular ADC  
conversion command. The total conversion time for the  
self test commands is the same as the regular ADC con-  
version commands. The test signals are designed to place  
alternating one-zero patterns in the registers.  
MUX Decoder Check  
The diagnostic command DIAGN ensures the proper oper-  
ation of each multiplexer channel. The command cycles  
through all channels and sets the MUXFAIL bit to 1 in  
Status Register Group B if any channel decoder fails. The  
MUXFAIL bit is set to 0 if the channel decoder passes the  
test. The MUXFAIL bit is also set to 1 on power-up (POR)  
or after a CLRSTAT command.  
The DIAGN command takes about 300µs to complete if  
the Core is in REFUP state and about 3.8ms to complete  
if the Core is in STANDBY state. The polling methods  
described in the section Polling Methods can be used to  
determine the completion of the DIAGN command.  
Table 15 provides a list of the self test commands. If the  
digital filters and memory are working properly, then the  
registers will contain the values shown in Table 15. For  
more details see the Commands section.  
ꢏꢇꢈꢆꢅ ꢌꢅꢍꢆꢋꢉꢒ  
ꢐꢎꢌꢇꢈAꢉꢅꢌ  
ꢓꢋꢉ ꢆꢉRꢅAꢐ  
AꢍAꢈꢎꢊ  
ꢋꢍꢏꢇꢉ  
ꢂꢔꢓꢋꢉ  
ꢐꢎꢌꢇꢈAꢉꢎR  
ꢐꢇꢑ  
ꢌꢋꢊꢋꢉAꢈ  
ꢃꢋꢅR  
Rꢅꢆꢇꢆ  
RꢅꢊꢋꢆꢉꢅR  
ꢂꢀ  
ꢆꢅꢈꢃ ꢉꢅꢆꢉ  
ꢏAꢉꢉꢅRꢍ  
ꢊꢅꢍꢅRAꢉꢎR  
ꢉꢅꢆꢉ ꢆꢋꢊꢍAꢈ  
ꢀꢁꢂꢂꢂ ꢃꢂꢄ  
Figure 16. Operation of LT6810 ADC Self Test  
Rev. A  
35  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Table 15. Self Test Command Summary  
OUTPUT PATTERN IN DIFFERENT ADC MODES  
7kHz, 3kHz, 2kHz,  
RESULTS REGISTER  
GROUPS  
COMMAND  
SELF TEST OPTION  
ST[1:0] = 01  
ST[1:0] = 10  
ST[1:0] = 01  
ST[1:0] = 10  
ST[1:0] = 01  
ST[1:0] = 10  
27kHz  
0x9565  
0x6A9A  
0x9565  
0x6A9A  
0x9565  
0x6A9A  
14kHz  
0x9553  
0x6AAC  
0x9553  
0x6AAC  
0x9553  
0x6AAC  
1kHz, 422Hz, 26Hz  
CVST  
0x9555  
C1V to C18V  
(CVA, CVB, CVC, CVD)  
0x6AAA  
AXST  
0x9555  
S0, G1V to G4V, REF  
(AUXA, AUXB)  
0x6AAA  
STATST  
0x9555  
SC, ITMP, VA, VD  
(STATA, STATB)  
0x6AAA  
ADC Clear Commands  
The following simple algorithm can be used to check for  
an open wire on any of the 7 C pins:  
LTC6810 has 3 clear ADC commands: CLRCELL, CLRAUX  
and CLRSTAT. These commands clear the registers that  
store all ADC conversion results.  
1. Run the 6-cell command ADOW with PUP = 1 at least  
twice. Read the cell voltages for cells 1 through 6  
once at the end and store them in array CELLPU(n).  
The CLRCELL command clears Cell Voltage Register  
Group A, B, C and D. All bytes in these registers are set  
to 0xFF by CLRCELL command.  
2. Run the 6-cell command ADOW with PUP = 0 at least  
twice. Read the cell voltages for cells 1 through 6  
once at the end and store them in array CELLPD(n).  
The CLRAUX command clears Auxiliary Register Group  
A and B. All bytes in these registers are set to 0xFF by  
CLRAUX command.  
3. Take the difference between the pull-up and pull-down  
measurements made in above steps for cells 2 to 6:  
CELL∆(n) = CELLPU(n) – CELLPD(n).  
The CLRSTAT command clears Status Register Group  
A and B except the REVCODE and RSVD bits in Status  
Register Group B. A read back of REVCODE will return the  
revision code of the part. RSVD bits always read back 0s.  
All OV and UV flags, MUXFAIL bit, and THSD bit in Status  
Register Group B are set to 1 by CLRSTAT command.  
The THSD bit is set to 0 after RDSTATB command. The  
registers storing SC, ITMP, VA and VD are all set to 0xFF  
by CLRSTAT command.  
4. For all values of n from 1 to 5: If CELL∆(n+1) <  
–400mV, then C(n) is open. If CELLPU(1) = 0.0000,  
then C(0) is open. If CELLPD(6) = 0.0000, then C(6)  
is open.  
The above algorithm detects open wires using normal  
mode conversions with as much as 10nF of capacitance  
on the LTC6810 side of the open wire. However, if more  
external capacitance is on the open C pin, then the length  
of time that the open wire conversions are run in steps 1  
and 2 must be increased to give the 100µA current sources  
time to create a large enough difference for the algorithm  
to detect an open connection. This can be accomplished  
by running more than two ADOW commands in steps 1  
and 2, or by using filtered mode conversions instead of  
normal mode conversions. Use Table 16 to determine how  
many conversions are necessary.  
Open Wire Check (ADOW Command)  
The ADOW command is used to check for any open wires  
between the ADCs of the LTC6810 and the external cells.  
This command performs ADC conversions on the C pin  
inputs identically to the ADCV command, except two inter-  
nal current sources sink or source current into the two C  
pins while they are being measured. The pull-up (PUP) bit  
of the ADOW command determines whether the current  
sources are sinking or sourcing 100µA.  
Rev. A  
36  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Table 16.  
Revision Code and Reserved Bits  
NUMBER OF ADOW COMMANDS REQUIRED IN  
STEPS 1 AND 2  
The Status Register Group B contains a 4-bit revision  
code. If software detection of device revision is neces-  
sary, then contact the factory for details. Otherwise the  
code can be ignored. In all cases, however, the values of  
all bits must be used when calculating the Packet Error  
Code (PEC) on data reads.  
EXTERNAL C PIN  
CAPACITANCE  
NORMAL MODE  
FILTERED MODE  
≤10nF  
100nF  
1µF  
2
2
2
2
2
10  
100  
C
1 + ROUNDUP(C/10nF)  
WATCHDOG AND DISCHARGE TIMER  
Thermal Shutdown  
When there is no valid command for more than 2 seconds,  
the watchdog timer expires. This resets Configuration  
Register bytes CFGR0, CFGR1-3 (if DTMEN=0). CFGR4,  
CFGR5, and the PWM configuration bits in the PWM  
Register Group are reset by the watchdog timer when the  
Discharge Timer is disabled. The WDT pin is pulled high  
by the external pull-up when the watchdog time elapses.  
The watchdog timer is always enabled and it resets after  
every valid command with matching command PEC.  
To protect the LTC6810 from over-heating, there is a ther-  
mal shutdown circuit included inside the IC. If the tem-  
perature detected on the die goes above approximately  
150°C, the thermal shutdown circuit trips and resets the  
Configuration Register Group and PWM Register Group  
to their default state. This turns off all discharge switches.  
When a thermal shutdown event has occurred, the THSD  
bit in Status Register Group B will go high. The CLRSTAT  
command can also set the THSD bit high for diagnostic  
purposes. This bit is cleared when a read operation is  
performed on the Status Register Group B (RDSTATB  
command).  
The discharge timer is used to enable cell discharge using  
pulse width modulation, for programmable time duration  
after the watchdog time elapses. To enable the Discharge  
Timer, tie the DTEN pin high to V  
(Figure 17) and  
REGA  
write the DCTO value in the Configuration Register Group  
RꢇꢈA  
ꢎꢀꢁꢂꢃ  
ꢉꢊꢋꢇꢌ  
ꢏꢎꢋꢇꢌ  
ꢋꢓꢔꢇꢐꢕꢋ  
ꢇꢌ  
ꢏꢎꢋꢐ ꢃ  
ꢉꢒꢊ  
ꢋꢓꢔꢇR  
ꢐꢉꢎ ꢂꢀꢚꢛ  
ꢎꢍꢖ  
Rꢉꢋ  
ꢗꢘꢐR ꢐR ꢊRꢎꢄꢈA ꢏꢐꢌꢇ ꢐR ꢋꢓꢔꢇꢐꢕꢋꢙ  
Rꢉꢋꢑ  
ꢗRꢇꢉꢇꢋꢉ ꢏꢎꢋꢐꢞ ꢏꢎꢎꢙ  
ꢊꢏꢋRꢉꢋ ꢜꢜ ꢝꢏꢎꢋꢇꢌ  
ꢊꢏꢋꢃ  
Rꢉꢋꢃꢂ  
ꢗRꢇꢉꢇꢋꢉ Rꢇꢄꢕ ꢞ ꢈꢘꢓꢐꢞ ꢆꢕ ꢞ ꢆꢐꢆꢙ  
ꢊꢏꢋꢘꢏ  
ꢊAꢋꢎꢚꢏꢐꢈ  
ꢋꢓꢔꢇR  
ꢊꢏꢋRꢉꢋ  
ꢐꢉꢎ ꢂꢀꢚꢛ  
ꢎꢍꢖ  
Rꢉꢋ  
ꢗꢘꢐR ꢐR ꢆAꢍꢓꢏ ꢎꢐꢔꢔAꢌꢏꢙ  
ꢀꢁꢂꢃꢂ ꢄꢂꢅ  
Figure 17. Watchdog and Discharge Timer  
Rev. A  
37  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Table 17. DCTO Settings  
DCTO  
0
1
0.5  
2
1
3
2
4
3
5
4
6
5
7
8
9
A
B
C
D
E
F
Time (min)  
Disabled  
10 15 20 30 40 60 75 90 120  
to a non-zero value. Once the watchdog time elapses,  
the discharge switches are now allowed to discharge at  
a duty cycle specified by the PWM configuration bits in  
the PWM Register Group for a time duration that is deter-  
mined by the DCTO value. Table 17 shows the various  
time settings and the corresponding DCTO value. Table  
18 summarizes the status of the Configuration Register  
Group after a watchdog timer or discharge timer event.  
Table 18  
WATCHDOG TIMER  
DISCHARGE TIMER  
DTEN = 0,  
DCTO = XXXX bits when it fires.  
Resets CFGR0-5 and PWM Disabled  
DTEN = 1,  
DCTO = 0000 bits when it fires.  
Resets CFGR0-5 and PWM Disabled  
DTEN = 1,  
Resets CFGR0, CFGR1-3 (if Resets CFGR1-3 (if DTMEN  
DCTO != 0000 DTMEN=0) when it fires.  
=1), and PWM bits when  
it fires.  
The status of the discharge timer can be determined by  
reading the configuration register using the RDCFG com-  
mand. The DCTO value indicates the time left before the  
Discharge Timer expires as shown in Table 19.  
Table 19.  
DCTO (READ VALUE)  
TIME LEFT (MIN)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Disabled (or) Discharge Timer Has Timed Out  
0 < Timer ≤ 0.5  
Unlike the watchdog timer, the discharge timer does not  
reset when there is a valid command. The discharge timer  
is only reset after a valid WRCFG (Write Configuration  
Register Group) command. There is a possibility that  
the Discharge Timer will expire in the middle of some  
commands.  
0.5 < Timer ≤ 1  
1 < Timer ≤ 2  
2 < Timer ≤ 3  
3 < Timer ≤ 4  
4 < Timer ≤ 5  
5 < Timer ≤ 10  
10 < Timer ≤ 15  
15 < Timer ≤ 20  
20 < Timer ≤ 30  
30 < Timer ≤ 40  
40 < Timer ≤ 60  
60 < Timer ≤ 75  
75 < Timer ≤ 90  
90 < Timer ≤ 120  
If Discharge Timer expires in the middle of WRCFG  
command, the Configuration Register Group and PWM  
Register Group reset as per Table 18. However, at the end  
of the valid WRCFG command, the new data is copied to  
the configuration register. The new data is not lost when  
the Discharge Timer fired.  
If Discharge Timer fires in the middle of RDCFG com-  
mand, the Configuration Register Group resets as per  
Table 18. As a result, the read back data from bytes CRFG4  
and CRFG5 could be corrupted. If Discharge Timer fires in  
the middle of WRPWM or RDPWM command, the PWM  
Register Group resets as per Table 18. As a result, the  
data could be corrupted.  
Rev. A  
38  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
RESET BEHAVIORS  
Power cycling, thermal shutdown, watchdog timeout  
and discharge timeout can cause various registers and  
circuitry to reset when they occur. The following sum-  
marizes the behaviors when these events occur:  
RESET EVENT  
DEVICE BEHAVIOR  
Power Cycle  
Transition to STANDBY state.  
All registers and state machines are reset to default values.  
Cell discharge is disabled.  
+
(V and V  
both  
REG  
power cycled)  
Thermal Shutdown  
Cell discharge is disabled.  
All of Configuration Register Group is reset.  
The COMM Register Group is reset.  
Watchdog Timeout  
Transition to EXTENDED BALANCING state.  
(while Discharge Timer CFGR0 of Configuration Register is reset.  
is Running)  
If DTMEN (in Configuration Register Group) = 0  
then CFGR1, CFGR2 and CFGR3 of Configuration Register Group are reset.  
The COMM Register Group is reset.  
Watchdog Timeout  
(no Discharge Timer  
Running)  
Transition to SLEEP state.  
Cell discharge is disabled.  
All state machines are reset.  
All of Configuration Register Group is reset.  
The PWM Register Group is reset.  
The COMM Register Group is reset.  
Discharge Timeout  
(while Watchdog  
Timeout has Elapsed)  
Transition to SLEEP state.  
Same behavior as the previous case above.  
Discharge Timeout  
(while Watchdog  
Cell discharge is disabled.  
The PWM Register Group is reset.  
Timeout is not Elapsed) If DTMEN (in Configuration Register) = 1  
then CFGAR1, CFGAR2 and CFGAR3 of Configuration Register Group are reset.  
CFGAR4 and CFGAR5 of Configuration Register Group are reset.  
Rev. A  
39  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
S PIN PULSE WIDTH MODULATION FOR CELL  
BALANCING  
at the same time. The switching interval between chan-  
nels is 62.5ms, and 375ms are required for all 6 pins to  
switch (6 • 62.5ms).  
While the watchdog timer is not expired, the DCC bits  
in the Configuration Register Group control the S pins  
directly. After the watchdog timer expires, PWM operation  
begins and continues for the remainder of the selected  
software discharge time or until a wake-up event occurs  
(and the watchdog timer is reset).  
The default value of the PWMC settings in the PWM  
Register Group is all 0s. Upon entry to sleep mode, the  
PWMC settings will be reset to their default value.  
DISCHARGE TIMER MONITOR  
Once PWM operation begins, the configurations in the  
PWM Register Group control the S pins to achieve the  
desired duty cycle as shown in Table 20. Each PWM signal  
operates on a 30 second period. For each cell, the duty-  
cycle can be programmed from 0% to 50% duty cycle in  
increments of 1/30 = 3.33% (1 second). S pins for adja-  
cent cells are never activated at the same time, hence the  
maximum 50% duty cycle. There is a non-overlap of at  
least 1ms between activation of any two adjacent S pins.  
The LTC6810 has the ability to periodically monitor cell  
voltages while the discharge timer is active. The host  
should write the DTMEN bit in the Configuration Register  
Group to 1 to enable this feature.  
When the discharge timer monitor is enabled and the  
watchdog timer has expired, the LTC6810 will perform  
a conversion of all cell voltages in 7kHz (Normal) Mode  
every 30 seconds. The overvoltage and undervoltage  
comparisons will be performed and flags will be set if  
cells have crossed a threshold. For any undervoltage cells  
the discharge timer monitor will automatically clear the  
associated PWMC bits in the PWM Register Group so  
that the cell will no longer be discharged. Clearing the  
Discharge Control bit will also disable PWM discharge.  
With this feature, the host can write the undervoltage  
threshold to the desired discharge level and use the dis-  
charge timer monitor to discharge all, or selected, cells  
down to that level.  
Table 20. PWM Configurations  
DTEN  
SETTING  
PWMC  
ON TIME  
OFF TIME  
[SECONDS]  
DUTY CYCLE  
[%]  
SETTING [SECONDS]  
1’b0  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
1’b1  
4’bXXXX  
4’b1111  
4’b1110  
4’b1101  
4’b1100  
4’b1011  
4’b1010  
4’b1001  
4’b1000  
4’b0111  
4’b0110  
4’b0101  
4’b0100  
4’b0011  
4’b0010  
4’b0001  
4’b0000  
0
15  
14  
13  
12  
11  
10  
9
Continuously Off  
0
15  
50  
16  
46.7  
43.3  
40  
17  
18  
19  
36.7  
33.3  
30  
20  
During discharge timer monitoring, digital redundancy  
checking will be performed on the cell voltage measure-  
ments. If a digital redundancy failure occurs, all PWMC  
bits will be cleared and discharge will be terminated.  
21  
8
22  
26.7  
23.3  
20  
7
23  
6
24  
5
25  
16.7  
13.3  
10  
2
I C/SPI MASTER ON LTC6810 USING GPIOS  
4
26  
3
27  
The I/O ports GPIO2, GPIO3 and GPIO4 on LTC6810 can  
2
2
28  
29  
6.7  
3.3  
0
be used as an I C or SPI master port to communicate  
2
2
1
to an I C or SPI slave. In case of I C master, GPIO3 and  
2
0
Continuously Off  
GPIO4 form the SDA and SCL ports of the I C interface  
respectively. In case of SPI master, GPIO2, GPIO3 and  
GPIO4 become the CSB, SDIO and SCK ports of the SPI  
interface respectively. The SPI master on LTC6810 sup-  
ports SPI mode 3 (CHPA = 1, CPOL = 1).  
The PWM turn on/off times for the S pins are sequenced  
at different intervals so that no two pins switch on or off  
Rev. A  
40  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
The GPIOs are open drain outputs, so an external pull  
If the bit ICOMn[3] in the COMM register is set to 1 the  
part becomes an SPI master and if the bit is set to 0 the  
2
up is required on these ports to operate as an I C or SPI  
2
master. It is also important to write the GPIO bits to 1 in  
the CFG register group so these ports are not pulled low  
internally by the device.  
part becomes a I C master.  
Table 22 describes the valid write codes for ICOMn[3:0]  
and FCOMn[3:0] and their behavior when using the part  
2
as an I C master.  
COMM Register  
Table 23 describes the valid codes for ICOMn[3:0] and  
FCOMn[3:0] and their behavior when using the part as  
an SPI master.  
LTC6810 has a 6 byte COMM register as shown in Table  
21. This register stores all data and control bits required  
2
for I C or SPI communication to a slave. The COMM reg-  
ister contains 3 bytes of data Dn[7:0] to be transmitted  
to or received from the slave device. ICOMn[3:0] specify  
control actions before transmitting/receiving the data  
byte. FCOMn[3:0] specify control actions after transmit-  
ting/receiving the data byte.  
Note that only the codes listed in Table 22 and Table 23  
are valid for ICOMn[3:0] and FCOMn[3:0]. Writing any  
other code that is not listed above to ICOMn[3:0] and  
FCOMn[3:0] may result in unexpected behavior on the  
2
I C and SPI ports.  
Table 21. COMM Register Memory Map  
REGISTER  
COMM0  
COMM1  
COMM2  
COMM3  
COMM4  
COMM5  
RD/WR  
RD/WR  
BIT 7  
ICOM0[3]  
D0[3]  
BIT 6  
ICOM0[2]  
D0[2]  
BIT 5  
ICOM0[1]  
D0[1]  
BIT 4  
ICOM0[0]  
D0[0]  
BIT 3  
D0[7]  
BIT 2  
D0[6]  
BIT 1  
D0[5]  
BIT 0  
D0[4]  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
FCOM0[3]  
D1[7]  
FCOM0[2]  
D1[6]  
FCOM0[1]  
D1[5]  
FCOM0[0]  
D1[4]  
ICOM1[3]  
D1[3]  
ICOM1[2]  
D1[2]  
ICOM1[1]  
D1[1]  
ICOM1[0]  
D1[0]  
FCOM1[3]  
D2[7]  
FCOM1[2]  
D2[6]  
FCOM1[1]  
D2[5]  
FCOM1[0]  
D2[4]  
ICOM2[3]  
D2[3]  
ICOM2[2]  
D2[2]  
ICOM2[1]  
D2[1]  
ICOM2[0]  
D2[0]  
FCOM2[3]  
FCOM2[2]  
FCOM2[1]  
FCOM2[0]  
Table 22. Write Codes for ICOMn[3:0] and FCOMn[3:0] on I2C Master  
CONTROL BITS  
CODE ACTION  
DESCRIPTION  
2
ICOMn[3:0]  
0110  
0001  
0000  
0111  
0000  
1000  
1001  
START  
Generate a START signal on I C port followed by data transmission.  
2
STOP  
Generate a STOP signal on I C port.  
2
BLANK  
Proceed directly to data transmission on I C port.  
No Transmit  
Master ACK  
Master NACK  
Master NACK + STOP  
Release SDA and SCL and ignore the rest of the data.  
Master generates an ACK signal on ninth clock cycle.  
Master generates a NACK signal on ninth clock cycle.  
Master generates a NACK signal followed by STOP signal.  
FCOMn[3:0]  
Table 23. Write Codes for ICOMn[3:0] and FCOMn[3:0] on SPI Master  
CONTROL BITS  
CODE ACTION  
DESCRIPTION  
ICOMn[3:0]  
1000  
1010  
1001  
1111  
CSBM low  
Generates a CSBM low signal on SPI port (GPIO3).  
Drives CSBM (GPIO3) high, then low.  
CSBM falling edge  
CSBM high  
Generates a CSBM high signal on SPI port (GPIO3).  
Releases the SPI port and ignores the rest of the data.  
Holds CSBM low at the end of byte transmission.  
Transitions CSBM high at the end of byte transmission.  
No Transmit  
FCOMn[3:0]  
X000 CSBM low  
1001 CSBM high  
Rev. A  
41  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
COMM Commands  
Table 24. Read Codes for ICOMn[3:0] and FCOMn[3:0] on I2C Master  
2
CONTROL BITS  
CODE DESCRIPTION  
Three commands help accomplish I C or SPI communica-  
ICOMn[3:0]  
0110 Master generated a START signal.  
0001 Master generated a STOP signal.  
0000 Blank, SDA was held low between bytes.  
0111 Blank, SDA was held high between bytes.  
0000 Master generated an ACK signal.  
0111 Slave generated an ACK signal.  
1111 Slave generated a NACK signal.  
tion to the slave device: WRCOMM, STCOMM, RDCOMM  
WRCOMM Command: This command is used to write  
data to the COMM register. This command writes 6 bytes  
of data to the COMM register. The PEC needs to be written  
at the end of the data. If the PEC does not match, all data  
in the COMM register is cleared to 1s when CSB goes  
high. See the Bus Protocols section for more details on a  
write command format.  
FCOMn[3:0]  
0001 Slave generated an ACK signal, master  
generated a STOP signal.  
STCOMM Command: This command initiates I2C/SPI  
communication on the GPIO ports. The COMM register  
contains 3 bytes of data to be transmitted to the slave.  
During this command, the data bytes stored in the COMM  
register are transmitted to the slave I2C or SPI device and  
1001 Slave generated a NACK signal, master  
generated a STOP signal.  
2
Figure 18 illustrates the operation of LTC6810 as an I C  
or SPI master using the GPIOs.  
2
the data received from the I C or SPI device is stored in  
the COMM register. This command uses GPIO3 (SDA)  
and GPIO4 (SCL) for I2C communication or GPIO2  
(CSBM), GPIO3 (SDIOM) and GPIO4 (SCKM) for SPI  
communication.  
ꢅꢀꢁꢂꢃꢔꢂꢏꢅꢀꢁꢂꢃꢔꢎ  
ꢋꢌꢅꢆꢇꢇ  
Rꢒꢅꢆꢇꢇ  
ꢍꢆRꢌ A  
ꢊ ꢅꢏꢋꢍꢊ  
ꢋꢐAꢑꢈ  
ꢉꢍꢊꢆ  
ꢍꢆRꢌ  
ꢅꢆꢇꢇ  
RꢈꢉꢊꢋꢌꢈR  
ꢓRꢅꢆꢇꢇ  
The STCOMM command is to be followed by 24 clock  
cycles for each byte of data to be transmitted to the slave  
device while holding CSB low. For example, to transmit 3  
bytes of data to the slave, send STCOMM command and  
its PEC followed by 72 clock cycles. Pull CSB high at the  
end of the 72 clock cycles of STCOMM command.  
ꢀꢁꢂꢃꢂ ꢄꢂꢁ  
Figure 18. LTC6810 I2C/SPI Master using GPIOs  
Any number of bytes can be transmitted to the slave in  
groups of 3 bytes using these commands. The GPIO  
ports will not get reset between different STCOMM com-  
mands. However, if the wait time between the commands  
is greater than 2s, the watchdog will time out and reset  
the ports to their default values.  
2
During I C or SPI communication, the data received from  
the slave device is updated in the COMM register.  
RDCOMM Command: The data received from the slave  
device can be read back from the COMM register using the  
RDCOMM command. The command reads back 6 bytes of  
data followed by the PEC. See the Bus Protocols section  
for more details on a read command format.  
2
To transmit several bytes of data using an I C master,  
a START signal is only required at the beginning of the  
entire data stream. A STOP signal is only required at the  
end of the data stream. All intermediate data groups can  
use a BLANK code before the data byte and an ACK/NACK  
signal as appropriate after the data byte. SDA and SCL  
will not get reset between different STCOMM commands.  
Table 24 describes the possible read back codes for  
ICOMn[3:0] and FCOMn[3:0] when using the part as an  
2
I C master. Dn[3:0] contains the data byte transmitted by  
2
the I C slave.  
To transmit several bytes of data using SPI master, a  
CSBM low signal is sent at the beginning of the 1st data  
byte. CSBM can be held low or taken high for intermediate  
data groups using the appropriate code on FCOMn[3:0].  
In case of the SPI master, the read back codes for  
ICOMn[3:0] and FCOMn[3:0] are always 0111 and 1111  
respectively. Dn[3:0] contains the data byte transmitted  
by the SPI slave.  
Rev. A  
42  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
A CSB high signal is sent at the end of the last byte of  
data. CSBM, SDIOM and SCKM will not get reset between  
different STCOMM commands.  
Figure 19 shows the 24 clock cycles following STCOMM  
2
command for an I C master in different cases. Note that  
if ICOMn[3:0] specified a STOP condition, after the STOP  
ꢍꢎꢓ  
ꢂꢀꢍꢓꢈ  
ꢀꢑARꢑ  
ꢐAꢍꢓ ꢔ ꢀꢑꢆꢄ  
ꢀꢍꢎ ꢂꢃꢄꢅꢆꢏꢈ  
ꢀꢁA ꢂꢃꢄꢅꢆꢇꢈ  
ꢕꢎAꢐꢓ  
ꢐAꢍꢓ  
ꢀꢍꢎ ꢂꢃꢄꢅꢆꢏꢈ  
ꢀꢁA ꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢑARꢑ  
Aꢍꢓ  
ꢀꢍꢎ ꢂꢃꢄꢅꢆꢏꢈ  
ꢀꢁA ꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢑꢆꢄ  
ꢀꢍꢎ ꢂꢃꢄꢅꢆꢏꢈ  
ꢀꢁA ꢂꢃꢄꢅꢆꢇꢈ  
ꢐꢆ ꢑRAꢐꢀꢒꢅꢑ  
ꢀꢍꢎ ꢂꢃꢄꢅꢆꢏꢈ  
ꢀꢁA ꢂꢃꢄꢅꢆꢇꢈ  
ꢉꢊꢋꢋꢋ ꢌꢋꢇ  
Figure 19. STCOMM Timing Diagram for an I2C Master  
t
t
4
t
3
CLK  
(SCK)  
CSBM HIGH ≥ LOW  
CSBM LOW  
CSBM (GPIO2)  
SCKM (GPIO4)  
SDIOM (GPIO3)  
CSBM LOW  
CSBM LOW ≥ HIGH  
CSBM (GPIO2)  
SCKM (GPIO4)  
SDIOM (GPIO3)  
CSBM HIGH/NO TRANSMIT  
CSBM (GPIO2)  
SCKM (GPIO4)  
SDIOM (GPIO3)  
68111 F14  
Figure 20. STCOMM Timing Diagram for a SPI Master  
Rev. A  
43  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
signal is sent, the SDA and SCL lines are held high and  
all data in the rest of the word is ignored. If ICOMn[3:0]  
is a NO TRANSMIT, both SDA and SCL lines are released,  
and rest of the data in the word is ignored. This is used  
when a particular device in the stack does not have to  
communicate to a slave.  
Table 26. SPI Master Timing  
SPI MASTER PARAMETER  
TIMING RELATIONSHIP  
TO PRIMARY SPI  
INTERFACE  
TIMING  
SPECIFICATIONS  
AT t  
= 1μs  
CLK  
SDIOM Valid to SCKM Rising  
Setup  
t
3
Min 200ns  
SDIO Valid from SCKM Rising  
Hold  
t
+ t *  
CLK 4  
Min 1.03μs  
Figure 20 shows the 24 clock cycles following STCOMM  
2
SCKM Low  
SCKM High  
t
t
Min 1μs  
Min 1μs  
Min 2μs  
CLK  
CLK  
command for a SPI master. Similar to the I C master, if  
ICOMn[3:0] specified a CSBM HIGH or a NO TRANSMIT  
condition, the CSBM, SCKM and SDIOM lines of the SPI  
master are released and the rest of the data in the word  
is ignored.  
SCKM Period (SCKM_Low +  
SCKM_High)  
2 • t  
CLK  
CSBM Pulse Width  
3 • t  
Min 3μs  
Min 5.03μs  
Min 200ns  
Min 1.2μs  
CLK  
SCKM Rising to CSBM Rising  
CSBM Falling to SCKM Falling  
CSBM Falling to SCKM Rising  
5 • t  
+ t *  
CLK 4  
2
t
3
Timing Specifications of I C and SPI master  
t
+ t  
3
CLK  
The timing of the LTC6810 I2C or SPI master will be  
controlled by the timing of the communication at the  
LTC6810’s primary SPI interface. Table 25 shows the  
SCKM Falling to SDIOM Valid Master requires < t  
CLK  
*Note: When using isoSPI, t is generated internally and is a minimum of  
4
30ns. Also, t = t  
– t . When using SPI, t and t are the low and high  
4 3 4  
3
CLK  
2
I C master timing relationship to the primary SPI clock.  
times of the SCK input, each with a specified minimum of 200ns.  
Table 26 shows the SPI master timing specifications.  
Table 25. I2C MASTER TIMING  
S PIN MUTING  
TIMING RELATIONSHIP  
TO PRIMARY SPI  
INTERFACE  
TIMING  
2
I C MASTER  
SPECIFICATIONS AT  
The S pins may be disabled by sending the MUTE com-  
mand and re-enabled by sending the UNMUTE command.  
The MUTE and UNMUTE commands do not require any  
subsequent data and thus the commands will propagate  
quickly through a stack of LTC6810-1 devices. Likewise,  
they can be sent as broadcast commands to a network of  
LTC6810-2 devices. This allows the host to quickly dis-  
able and re-enable discharging without disturbing register  
contents. This can be useful, for instance, to allow specific  
settling time before taking cell measurements. The mute  
status is reported in the read-only MUTE bit in Status  
Register Group B.  
PARAMETER  
t
= 1μs  
CLK  
SCL Clock Frequency  
1/(2 • t  
)
Max 500kHz  
Min 200ns  
Min 1μs  
CLK  
t ;STA  
HD  
t
3
t
t
t
LOW  
HIGH  
CLK  
CLK  
t
Min 1μs  
t
;STA  
;DAT  
;DAT  
;STO  
t
t
+ t *  
Min 1.03μs  
Min 30ns  
Min 200ns  
Min 1.03μs  
Min 3μs  
SU  
HD  
CLK  
4
t
t *  
4
t
t
3
SU  
SU  
t
+ t *  
4
CLK  
t
3 • t  
CLK  
BUF  
*Note: When using isoSPI, t is generated internally and is a minimum of  
4
30ns. Also, t = t  
– t . When using SPI, t and t are the low and high  
3
CLK  
4 3 4  
times of the SCK input, each with a specified minimum of 200ns.  
Rev. A  
44  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
SERIAL ID AND AUTHENTICATION  
There are two versions of the IC: the LTC6810-1 and the  
LTC6810-2. The LTC6810-1 is used in a daisy chain con-  
figuration and the LTC6810-2 is used in an addressable  
bus configuration. The LTC6810-1 provides a second iso-  
SPI interface using pins 34, 35, 38, and 39. LTC6810-2  
Each LTC6810 is programmed at the factory with a unique  
48-bit serial identification code (SID) which is stored in  
the Serial ID Register Group. The host can read the unique  
SID code for each device using the RDSID command.  
uses pins 34, 35, 38 and 39 to set the address of the  
The LTC6810 also contains a feature that can be used to  
authenticate devices. Contact the factory for details about  
the authentication feature.  
device, by tying these pins to V or V  
.
REG  
4-WIRE SERIAL PERIPHERAL INTERFACE (SPI)  
PHYSICAL LAYER  
SERIAL INTERFACE OVERVIEW  
External Connections  
There are two types of serial ports on the LTC6810: a stan-  
dard 4-wire serial peripheral interface (SPI) and a 2-wire  
isolated interface (isoSPI). The state of the ISOMD pin  
determines whether pins 36, 37, 40 and 41 are a 2-wire  
or 4-wire serial port.  
Connecting ISOMD to Vconfigures serial port A for  
4-wire SPI. The SDO pin is an open drain output which  
requires a pull-up resistor tied to the appropriate supply  
voltage (Figure 21).  
ꢁꢉꢜ  
ꢁꢙꢜ  
Aꢘ  
Aꢑ  
Aꢎ  
Aꢏ  
ꢚꢋꢅꢌꢍꢎꢏꢄꢎ  
ꢚꢋꢅꢌꢍꢎꢏꢄꢑ  
ꢀAꢁꢂꢃꢄꢅꢆAꢁꢇ ꢂꢈꢉꢉꢊRꢋ  
ꢖꢣ  
AꢀꢀRꢠꢂꢂ ꢉꢁꢇꢂ  
ꢖꢣ  
ꢅꢎꢑ  
ꢂꢎꢑ  
ꢅꢎꢎ  
ꢂꢎꢎ  
ꢅꢎꢏ  
ꢂꢎꢏ  
ꢅꢔ  
ꢂꢔ  
ꢅꢍ  
ꢂꢍ  
ꢅꢕ  
ꢂꢕ  
ꢅꢌ  
ꢂꢌ  
ꢅꢖ  
ꢂꢖ  
ꢅꢗ  
ꢂꢗ  
ꢅꢘ  
ꢂꢘ  
ꢅꢑ  
ꢂꢑ  
ꢅꢎ  
ꢅꢎꢑ  
ꢂꢎꢑ  
ꢅꢎꢎ  
ꢂꢎꢎ  
ꢅꢎꢏ  
ꢂꢎꢏ  
ꢅꢔ  
ꢂꢔ  
ꢅꢍ  
ꢂꢍ  
ꢅꢕ  
ꢂꢕ  
ꢅꢌ  
ꢂꢌ  
ꢅꢖ  
ꢂꢖ  
ꢅꢗ  
ꢂꢗ  
ꢅꢘ  
ꢂꢘ  
ꢅꢑ  
ꢂꢑ  
ꢅꢎ  
ꢁꢅꢙꢉ  
ꢁꢜꢁAꢂ  
ꢀꢀ  
ꢀꢀ  
ꢂꢀꢊ ꢝꢇꢅꢞ  
ꢂꢀꢁ ꢝꢇꢅꢞ  
ꢂꢅꢛ ꢝꢁꢉAꢞ  
ꢅꢂꢜ ꢝꢁꢙAꢞ  
ꢁꢂꢊꢙꢀ  
ꢂꢀꢊ ꢝꢁꢜꢁAꢂꢞ  
ꢂꢀꢁ ꢝꢁꢅꢙꢉꢞ  
ꢂꢅꢛ ꢝꢁꢉAꢞ  
ꢅꢂꢜ ꢝꢁꢙAꢞ  
ꢁꢂꢊꢙꢀ  
ꢙꢁꢂꢊ  
ꢙꢊꢂꢁ  
ꢅꢚꢛ  
ꢙꢁꢂꢊ  
ꢙꢊꢂꢁ  
ꢅꢚꢛ  
CS  
ꢙꢉꢈ  
CS  
ꢙꢉꢈ  
ꢟꢀꢋ  
ꢟꢀꢋ  
ꢀRꢁꢒꢠ  
ꢀRꢁꢒꢠ  
Rꢠꢡ  
Rꢠꢡ  
ꢀꢋꢠꢇ  
ꢀꢋꢠꢇ  
Rꢠꢐꢎ  
Rꢠꢐꢎ  
Rꢠꢐꢑ  
Rꢠꢐꢑ  
ꢡꢉꢁꢊꢗ  
ꢡꢉꢁꢊꢗ  
ꢡꢉꢁꢊꢘ  
ꢡꢉꢁꢊꢑ  
ꢡꢉꢁꢊꢎ  
ꢅꢏ  
ꢡꢉꢁꢊꢘ  
ꢡꢉꢁꢊꢑ  
ꢡꢉꢁꢊꢎ  
ꢅꢏ  
ꢂꢎ  
ꢂꢎ  
ꢌꢍꢎꢏꢎ ꢐꢑꢎ  
Figure 21. 4-Wire SPI Configuration  
Rev. A  
45  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Timing  
2-Wire Isolated Interface (isoSPI) Physical Layer  
The 4-wire serial port is configured to operate in a SPI  
system using CPHA = 1 and CPOL = 1. Consequently, data  
on SDI must be stable during the rising edge of SCK. The  
timing is depicted in Figure 22. The maximum data rate  
is 1Mbps.  
The 2-wire interface provides a means to interconnect  
LTC6810 devices using simple twisted pair cabling. The  
interface is designed for low packet error rates when the  
cabling is subjected to high RF fields. Isolation is achieved  
through an external transformer.  
ꢄꢇꢈ  
ꢄꢅꢆ  
ꢅꢉ  
ꢅꢊ  
ꢅꢂ  
ꢅꢋ  
ꢅꢌꢍꢅꢎ  
ꢅꢉ  
ꢇꢄꢙ  
ꢄꢅꢓ  
ꢅꢎ  
ꢅꢉ  
ꢅꢊ  
ꢅꢂ  
ꢅꢋ  
ꢅꢌꢍꢅꢎ  
ꢅꢉ  
ꢀꢁꢂꢂꢂ ꢃꢂꢀ  
ꢕRꢐꢖꢆꢓꢏꢄ ꢇꢓꢔꢔAꢑꢅ  
ꢇꢏRRꢐꢑꢒ ꢇꢓꢔꢔAꢑꢅ  
Figure 22. Timing Diagram of 4-Wire Serial Peripheral Interface  
ꢊꢀꢁꢂꢃ  
ꢞAꢝꢓꢛꢋ  
ꢊꢆRꢊꢛꢆꢕ  
ꢕꢖ ꢙ ꢌꢃ ꢙ ꢆ  
ꢆꢋ  
ꢕꢖ ꢗ ꢘꢂ  
ꢕꢖ ꢗ ꢃ  
ꢉꢒꢏ  
ꢉꢒꢆ  
R
ꢎꢏꢐꢆꢊ  
Aꢑꢒ  
ꢇꢓꢇꢏRꢔ  
ꢆꢇ  
ꢕꢖ ꢗ ꢚꢂ  
ꢋꢛꢎꢉꢓ  
ꢓꢑꢊꢏꢒꢓRꢜ  
ꢒꢓꢊꢏꢒꢓR  
ꢉꢊꢝ  
ꢊꢉꢈ  
Rꢖ ꢗ ꢘꢂ  
Rꢖ ꢗ ꢃ  
ꢆꢈꢆAꢉ  
ꢆꢊꢇꢋ  
Rꢖ ꢗ ꢚꢂ  
ꢌꢍ  
R
R
ꢈꢂ  
ꢈꢌ  
ꢂꢍ ꢙ R  
ꢈꢌ  
ꢊꢏꢇꢋARAꢕꢏR ꢕꢟRꢓꢉꢟꢏꢎꢒ ꢗ  
R
ꢈꢂ  
ꢘ R  
ꢈꢌ  
ꢃ.ꢠꢡ  
ꢀꢁꢂꢃꢂ ꢄꢂꢅ  
Figure 23. isoSPI Interface  
Rev. A  
46  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
ꢄꢇꢈ  
ꢄꢆꢈ  
ꢄꢇA  
Standard SPI signals are encoded into differential pulses.  
The strength of the transmission pulse and the threshold  
level of the receiver are set by 2 external resistors. The  
values of the resistors allow the user to trade off power  
dissipation for noise immunity.  
ꢄꢆA  
ꢍꢎꢅꢏꢐꢑꢒꢓꢑ  
ꢋAꢄꢉꢔꢓꢅꢕAꢄꢌ  
ꢆꢊꢋꢁ  
ꢂꢌꢋꢋ  
ꢂꢌꢋꢋ  
ꢂꢌꢋꢋ  
ꢂꢌꢋꢅ  
ꢂꢌꢋꢈ  
ꢄꢅꢆꢇ  
ꢄꢈꢄAꢉ  
ꢄꢉꢊꢆꢋ  
ꢌꢅ  
Figure 23 illustrates how the isoSPI circuit operates. A 2V  
reference drives the IBIAS pin. External resistors RB1 and  
RB2 create the reference current IB. This current sets the  
drive strength of the transmitter. RB1 and RB2 also form  
a voltage divider to supply a fraction of the 2V reference  
for the ICMP pin, which sets the threshold voltage of the  
receiver circuit.  
ꢌꢅ  
ꢋꢁꢀ ꢋ  
Rꢁꢂ  
Rꢁꢂ  
ꢄꢇꢈ  
ꢄꢆꢈ  
ꢄꢇA  
ꢄꢆA  
External Connections  
ꢂꢌꢋꢅ  
ꢍꢎꢅꢏꢐꢑꢒꢓꢑ  
ꢋAꢄꢉꢔꢓꢅꢕAꢄꢌ  
ꢆꢊꢋꢁ  
The LTC6810-1 has 2 serial ports which are called Port  
B and Port A. Port B is always configured as a 2-wire  
interface. Port A is either a 2-wire or 4-wire interface,  
depending on the connection of the ISOMD pin.  
ꢂꢌꢋꢅ  
ꢂꢌꢋꢅ  
ꢄꢅꢆꢇ  
ꢄꢈꢄAꢉ  
ꢄꢉꢊꢆꢋ  
ꢌꢅ  
ꢌꢅ  
ꢋꢁꢀ ꢅ  
When Port A is configured as a 4-wire interface, Port A  
is always the slave port and Port B is the master port.  
Communication is always initiated on Port A of the first  
device in the daisy chain configuration. The final device  
in the daisy chain does not use Port B, and it should  
be terminated into RM. Figure 24 shows the simplest  
port connections possible when the microprocessor  
and the LTC6810s are located on the same PCB. In this  
figure capacitors are used to couple signals between the  
LTC6810s.  
Rꢁꢂ  
Rꢁꢂ  
ꢄꢇꢈ  
ꢄꢆꢈ  
ꢄꢇA  
ꢄꢆA  
ꢂꢌꢋꢈ  
ꢍꢎꢅꢏꢐꢑꢒꢓꢑ  
ꢋAꢄꢉꢔꢓꢅꢕAꢄꢌ  
ꢆꢊꢋꢁ  
ꢂꢌꢋꢈ  
ꢂꢌꢋꢈ  
ꢄꢅꢆꢇ  
ꢄꢈꢄAꢉ  
ꢄꢉꢊꢆꢋ  
ꢌꢅ  
When Port A is configured as a 2-wire interface, com  
-
ꢌꢅ  
ꢋꢁꢀ ꢈ  
Rꢁꢂ  
Rꢁꢂ  
ꢄꢇꢈ  
munication can be initiated on either Port A or Port B. If  
communication is initiated on Port A, LTC6810 configures  
Port A as slave and Port B as master. Likewise, if com-  
munication is initiated on Port B, LTC6810 configures  
Port B as slave and Port A as master. See the Reversible  
isoSPI for LTC6810-1 section for a detailed description  
of reversible isoSPI.  
ꢂꢌꢋA  
ꢄꢆꢈ  
ꢍꢎꢅꢏꢐꢑꢒꢓꢑ  
ꢋAꢄꢉꢔꢓꢅꢕAꢄꢌ  
ꢆꢊꢋꢁ  
ꢋꢋA  
ꢉꢅꢚ  
ꢅꢉꢈ  
ꢅꢍꢚ  
ꢅꢉ  
ꢋꢋ  
ꢛꢜ  
ꢄꢅꢆꢇ  
ꢄꢈꢄAꢉ  
ꢆꢇꢖ  
ꢄꢉꢊꢆꢋ  
ꢂꢌꢋA  
ꢂꢌꢋA  
ꢉꢋꢊ  
ꢉꢋꢄ  
ꢆꢄꢉꢊ  
ꢆꢊꢉꢄ  
ꢋꢁꢀ A  
ꢏꢐꢑꢒꢑ ꢗꢘꢙ  
Figure 24. Capacitive-Coupled Daisy-Chain Configuration  
Using LT6810-1  
Rev. A  
47  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Figure 25 is an example of a robust interconnection of  
multiple identical PCBs, each containing 1 LTC6810-1.  
The microprocessor is located on a separate PCB. To  
achieve 2-wire isolation between the microprocessor PCB  
and the 1st LTC6810 PCB, use the LTC6820 support IC.  
The LTC6820 is functionally equivalent to the diagram in  
Figure 16. In this example, communication is initiated on  
Port A. So the LTC6810 configures Port A as slave and  
Port B as master.  
Reversible isoSPI for LTC6810-1  
Figure 26 illustrates a daisy-chained configuration of  
LTC6810-1s using reversible isoSPI. LTC6820s are con-  
nected on either side of the daisy-chain. Both LTC6820s  
are configured as Master and share the same SPI interface  
to connect to the MPU. The MPU uses two CS signals to  
talk to one of the two LTC6820s.  
ꢍꢈꢎ  
ꢍꢇꢎ  
ꢀꢁꢂꢃꢄꢓꢆꢖꢓ  
ꢌAꢍꢑꢗꢖꢂꢘAꢍꢋ ꢍꢈA  
ꢇꢒꢌꢐ  
ꢍꢇA  
ꢊꢋꢌꢌ  
ꢍꢂꢇꢈ  
ꢍꢎꢍAꢑ  
ꢍꢑꢒꢇꢌ  
ꢌꢐꢏ ꢂ  
Rꢐꢊ  
Rꢐꢊ  
ꢊꢋꢌꢌ  
ꢍꢈꢎ  
ꢍꢇꢎ  
ꢍꢈA  
ꢀꢁꢂꢃꢄꢓꢆꢖꢓ  
ꢌAꢍꢑꢗꢖꢂꢘAꢍꢋ  
ꢇꢒꢌꢐ  
ꢍꢇA  
ꢊꢋꢌꢂ  
ꢍꢂꢇꢈ  
ꢍꢎꢍAꢑ  
ꢍꢑꢒꢇꢌ  
ꢌꢐꢏ ꢎ  
Rꢐꢊ  
Rꢐꢊ  
ꢊꢋꢌꢂ  
ꢌꢌA  
ꢇꢑꢁR  
ꢍꢎꢍAꢑ  
ꢍꢂꢇꢈ  
ꢈꢒꢀ  
ꢈꢘA  
ꢍꢈ  
ꢇꢒꢑꢍ  
ꢇꢍꢑꢒ  
ꢑꢂꢚ  
ꢇꢒꢑꢍ  
ꢇꢍꢑꢒ  
ꢂꢀꢚ  
ꢍꢈꢎ  
ꢍꢇꢎ  
ꢇꢈꢉ  
ꢊꢋꢌA  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢂꢑꢎ  
ꢑꢂ  
ꢌꢌ  
ꢂꢂꢆ  
ꢐꢋ  
ꢍꢈA  
ꢀꢁꢂꢃꢄꢓꢆꢖꢓ  
ꢌAꢍꢑꢗꢖꢂꢘAꢍꢋ  
ꢇꢒꢌꢐ  
ꢍꢇA  
ꢑꢀꢒꢛ  
ꢍꢇ  
ꢂꢂ  
ꢊꢋꢌꢎ  
ꢊꢋꢌꢎ  
ꢍꢂꢇꢈ  
ꢍꢎꢍAꢑ  
ꢍꢑꢒꢇꢌ  
ꢃꢄꢓꢆꢓ ꢔꢅꢕ  
ꢌꢐꢏ A  
Rꢐꢊ  
Rꢐꢊ  
Figure 25. Transformer-Coupled Daisy-Chain Configuration Using LT6810-1  
Rev. A  
48  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
For example, in Figure 26, if the bottom LTC6820 is  
addressed, then LTC6810 DEV A becomes the first device  
in the stack followed by DEV B and DEV C. Port A of  
each LTC6810 is configured as the slave and Port B is  
configured as the Master. On the other hand, if the top  
LTC6820 is addressed, then LTC6810 DEV C becomes  
the first device in the stack followed by DEV B and DEV  
A. Port B of each LTC6810 is configured as slave and Port  
A is configured as Master.  
The reversible isoSPI provides a redundant communica-  
tion path in the event of a single point failure in the 2-wire  
interface.  
ꢍꢋꢎ  
ꢍꢊꢎ  
ꢃꢄꢅꢆꢇꢓꢉꢕꢓ  
ꢂAꢍꢑꢖꢕꢅꢗAꢍꢁ ꢍꢋA  
ꢊꢒꢂꢐ  
ꢍꢊA  
ꢀꢁꢂꢂ  
ꢍꢅꢊꢋ  
ꢍꢎꢍAꢑ  
ꢍꢑꢒꢊꢂ  
ꢂꢐꢏ ꢅ  
Rꢐꢀ  
Rꢐꢀ  
ꢀꢁꢂꢂ  
ꢍꢋꢎ  
ꢍꢊꢎ  
ꢍꢋA  
ꢃꢄꢅꢆꢇꢓꢉꢕꢓ  
ꢂAꢍꢑꢖꢕꢅꢗAꢍꢁ  
ꢊꢒꢂꢐ  
ꢍꢊA  
ꢊꢑꢄR  
ꢍꢎꢍAꢑ  
ꢍꢅꢊꢋ  
ꢋꢒꢃ  
ꢋꢗA  
ꢍꢋ  
ꢊꢒꢑꢍ  
ꢊꢍꢑꢒ  
ꢑꢅꢙ  
ꢀꢁꢂꢅ  
ꢍꢅꢊꢋ  
ꢍꢎꢍAꢑ  
ꢀꢁꢂA  
ꢃꢄꢅꢆꢇꢈꢉ  
ꢅꢑꢈ  
ꢅꢑꢎ  
ꢍꢑꢒꢊꢂ  
ꢅꢅꢉ  
ꢐꢁ  
ꢊꢋꢌ  
ꢂꢐꢏ ꢎ  
ꢍꢊ  
ꢑꢃꢒꢚ  
Rꢐꢀ  
Rꢐꢀ  
ꢀꢁꢂꢅ  
ꢅꢅ  
ꢊꢒꢑꢍ  
ꢊꢍꢑꢒ  
ꢅꢃꢙ  
ꢊꢑꢄR  
ꢍꢎꢍAꢑ  
ꢍꢅꢊꢋ  
ꢋꢒꢃ  
ꢋꢗA  
ꢍꢋ  
ꢊꢒꢑꢍ  
ꢊꢍꢑꢒ  
ꢑꢅꢙ  
ꢍꢋꢎ  
ꢍꢊꢎ  
ꢀꢁꢂA  
ꢃꢄꢅꢆꢇꢈꢉ  
ꢅꢑꢓ  
ꢅꢑꢎ  
ꢂꢂ  
ꢅꢅꢉ  
ꢐꢁ  
ꢂꢂA  
ꢍꢋA  
ꢃꢄꢅꢆꢇꢓꢉꢕꢓ  
ꢂAꢍꢑꢖꢕꢅꢗAꢍꢁ  
ꢊꢒꢂꢐ  
ꢍꢊA  
ꢑꢃꢒꢚ  
ꢍꢊ  
ꢅꢅ  
ꢀꢁꢂꢎ  
ꢀꢁꢂꢎ  
ꢍꢅꢊꢋ  
ꢍꢎꢍAꢑ  
ꢍꢑꢒꢊꢂ  
ꢆꢇꢓꢉꢓ ꢔꢈꢆ  
ꢂꢐꢏ A  
Rꢐꢀ  
Rꢐꢀ  
Figure 26. Reversible isoSPI Daisy Chain using the LTC6810-1  
Rev. A  
49  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
The LTC6810-2 has a single serial port (Port A) which can  
be 2-wire or 4-wire, depending on the state of the ISOMD  
pin. When configured for 2-wire communications, several  
devices can be connected in a multi-drop configuration,  
as shown in Figure 27. The LTC6820 IC is used to inter-  
face the MPU (master) to the LTC6810-2s (slaves).  
Aꢍ  
Aꢅ  
ꢎꢈA  
ꢎꢇA  
ꢀꢁꢂꢃꢄꢑꢆꢗꢅ  
ꢈARAꢀꢀꢐꢀ  
ꢇꢓꢌꢐ  
ꢊꢋꢌꢌ  
Aꢑ  
Aꢆ  
ꢎꢒꢓꢇꢌ  
ꢎꢂꢇꢈ  
ꢎꢔꢎAꢒ  
ꢌꢐꢏ ꢂ  
Rꢐꢊ  
Rꢐꢊ  
ꢊꢋꢌꢌ  
Aꢍ  
Aꢅ  
ꢎꢈA  
ꢎꢇA  
ꢊꢋꢌꢂ  
ꢀꢁꢂꢃꢄꢑꢆꢗꢅ  
ꢈARAꢀꢀꢐꢀ  
ꢇꢓꢌꢐ  
Aꢑ  
Aꢆ  
ꢎꢒꢓꢇꢌ  
ꢎꢂꢇꢈ  
ꢎꢔꢎAꢒ  
ꢌꢐꢏ ꢔ  
Rꢐꢊ  
Rꢐꢊ  
ꢊꢋꢌꢂ  
Aꢍ  
Aꢅ  
ꢎꢈA  
ꢎꢇA  
ꢀꢁꢂꢃꢄꢑꢆꢗꢅ  
ꢈARAꢀꢀꢐꢀ  
ꢇꢓꢌꢐ  
ꢊꢋꢌꢔ  
ꢌꢌA  
Aꢑ  
Aꢆ  
ꢎꢒꢓꢇꢌ  
ꢎꢂꢇꢈ  
ꢎꢔꢎAꢒ  
ꢇꢓꢒꢎ  
ꢇꢎꢒꢓ  
ꢒꢂꢚ  
ꢇꢓꢒꢎ  
ꢇꢎꢒꢓ  
ꢂꢀꢚ  
ꢇꢒꢁR  
ꢎꢔꢎAꢒ  
ꢎꢂꢇꢈ  
ꢈꢓꢀ  
ꢈꢙA  
ꢎꢈ  
ꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢂꢒꢔ  
ꢒꢂ  
ꢌꢌ  
ꢊꢋꢌA  
ꢂꢂꢆ  
ꢐꢋ  
ꢌꢐꢏ A  
ꢒꢀꢓꢛ  
ꢎꢇ  
Rꢐꢊ  
ꢊꢋꢌꢔ  
ꢂꢂ  
Rꢐꢊ  
ꢃꢄꢑꢆꢑ ꢕꢅꢖ  
Figure 27. Transformer-Coupled Multi-Drop Configuration Using LT6810-2  
Rev. A  
50  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Selecting Bias Resistors  
isoSPI Pulse Detail  
The isoSPI transmitter drive current and comparator volt-  
age threshold are set by a resistor divider (RBIAS = RB1 +  
Two LTC6810 devices can communicate by transmitting  
andreceivingdifferentialpulsesbackandforththroughan  
isolation barrier. The transmitter can output three voltage  
levels: +VA, 0V, and –VA. A positive output results from  
IP sourcing current and IM sinking current across load  
resistor RM. A negative voltage is developed by IP sink-  
ing and IM sourcing. When both outputs are off, the load  
resistance forces the differential output to 0V.  
RB2) between the IBIAS and V pins. The divided voltage  
is connected to the ICMP pin, which sets the comparator  
threshold to ½ of this voltage (V  
). When either isoSPI  
ICMP  
interface is enabled (not IDLE) IBIAS is held at 2V, causing  
a current IB to flow out of the IBIAS pin. The IP and IM  
pin drive currents are 20 • I .  
B
As an example, if divider resistor RB1 is 1.78kΩ and resis-  
tor RB2 is 200Ω (so that RBIAS = 2kΩ), then:  
To eliminate the DC signal component and enhance reli-  
ability,isoSPIpulsesaredefinedassymmetricpulsepairs.  
A +1 pulse will be transmitted as a positive pulse followed  
by a negative pulse. A –1 pulse will be transmitted as a  
negative pulse followed by a positive pulse. The duration  
2V  
I =  
= 1mA  
B
R +R  
B1  
B2  
of each pulse is defined as t  
, since each is half of the  
½PW  
I
= I = I = 20 • I = 20mA  
IP IM B  
DRV  
required symmetric pair (the total isoSPI pulse duration  
).  
R
is 2 • t  
½PW  
B2  
V
= 2V •  
= I • R = 422mV  
B B2  
ICMP  
R +R  
B1  
B2  
Table 27. isoSPI Pulse Types  
FIRST LEVEL  
SECOND LEVEL  
(t  
V
TCMP  
= 0.5 • V  
= 211mV  
ICMP  
PULSE TYPE  
(t  
)
)
½PW  
ENDING LEVEL  
½PW  
Long +1  
+V (150ns)  
–V (150ns)  
0V  
0V  
0V  
0V  
Inthisexample,thepulsedrivecurrentIDRVwillbe20mA,  
andthereceivercomparatorswilldetectpulseswithIP–IM  
amplitudes greater than 211mV.  
A
A
Long –1  
–V (150ns)  
A
+V (150ns)  
A
Short +1  
Short –1  
+V (50ns)  
A
–V (50ns)  
A
–V (50ns)  
A
+V (50ns)  
A
If the isolation barrier uses 1:1 transformers connected  
by a twisted pair and terminated with 100Ω resistors on  
eachend,thenthetransmitteddifferentialsignalamplitude  
( ) will be:  
A host microcontroller does not have to generate isoSPI  
pulses to use this 2-wire interface. The first LTC6810 in  
the system can communicate to the microcontroller using  
the 4-wire SPI interface on its Port A, then daisy-chain to  
other LTC6810s using the 2-wire isoSPI interface on its  
Port B. Alternatively, the LTC6820 can be used to translate  
the SPI signals into isoSPI pulses.  
R
M
V = I  
= 1V  
A
DRV  
2
(This result ignores transformer and cable losses, which  
may reduce the amplitude.)  
Theadjustablesignalamplitudeallowsthesystemtotrade  
power consumption for communication robustness, and  
the adjustable comparator threshold allows the system to  
account for signal losses.  
Operation with Port A Configured for SPI  
When the LTC6810-1 is operation with Port A as a SPI  
(ISOMD = V ), the SPI detects one of four communication  
events: CSB falling, CSB rising, SCK rising with SDI = 0,  
and SCK rising with SDI = 1. Each event is converted  
into one of four pulse types for transmission to another  
daisy-chained LTC6810. Long pulses are used to transmit  
CSB changes and short pulses transmit data as explained  
in Table 28.  
Rev. A  
51  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Table 28. Port B (Master) isoSPI Port Function  
Table 29. Port A (Slave) isoSPI Port Function  
COMMUNICATION EVENT  
(Port A SPI)  
TRANSMITTED PULSE  
RECEIVED PULSE INTERNAL SPI PORT  
RETURN PULSE  
(Port B isoSPI)  
(Port A isoSPI)  
ACTION  
CS Rising  
Long +1  
Long +1  
Drive CS High  
Drive CS Low  
None  
CS Falling  
Long –1  
Long –1  
Short –1 Pulse if Reading a  
0 bit  
SCK Rising Edge, SDI = 1  
SCK Rising Edge, SDI = 0  
Short +1  
Short +1  
1. Set SDI = 1  
2. Pulse SCK  
(No Return Pulse if Not in READ  
Mode or if Reading a 1 bit)  
Short –1  
Short –1  
1. Set SDI = 0  
2. Pulse SCK  
Operation with Port A Configured for isoSPI  
The slave isoSPI port (slave) never transmits long (CSB)  
pulses. Furthermore, a slave isoSPI port will only trans-  
mit short –1 pulses, never a +1 pulse. The master port  
recognizes a null response as a logic 1. This allows for  
multiple slave devices on a single cable without risk of  
collisions (Multi-drop).  
On the other side of the isolation barrier (i.e. at the other  
endofthecable),the2ndLTC6810willhaveISOMD=V  
Its Port A operates as a slave isoSPI interface. It receives  
each transmitted pulse and reconstructs the SPI signals  
internally,asshowninTable29.Inaddition,duringaREAD  
command this port may transmit return data pulses.  
.
REG  
+1 PULSE  
ꢀꢁ  
A
ꢀꢁ  
ꢊꢋꢌꢆꢍ  
ꢃꢄꢅꢆ  
V
– V  
IP  
IM  
ꢂꢁ  
ꢈꢉꢁ  
ꢊꢋꢌꢆꢍ  
ꢃꢄꢅꢆ  
ꢂꢁ  
A
–1 PULSE  
ꢀꢁ  
A
ꢀꢁ  
ꢈꢉꢁ  
ꢊꢋꢌꢆꢍ  
ꢃꢄꢅꢆ  
V
– V  
IP  
IM  
ꢂꢁ  
ꢊꢋꢌꢆꢍ  
ꢃꢄꢅꢆ  
ꢂꢁ  
A
ꢎꢏꢊꢐꢊ ꢑꢌꢏ  
Figure 28. isoSPI Pulse Detail  
Rev. A  
52  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Timing Diagrams  
Bits WN–W0 refers to the 16 bit command code and the  
16 bit PEC of a READ command. At the end of bit W0 the  
3 parts decode the READ command and begin shifting out  
datawhichisvalidonthenextrisingedgeofclockSCK.Bits  
XN–X0 refer to the data shifted out by Part 1. Bits YN–Y0  
refer to the data shifted out by Part 2 and bits ZN–Z0 refer  
to the data shifted out by Part 3. All this data is read back  
from the SDO port on Part 1 in a daisy-chained fashion.  
Figure 29 shows the isoSPI timing diagram for a READ  
command to daisy chained LTC6810-1 parts. The ISOMD  
pin is tied to V on the bottom part so its Port A is config-  
ured as a SPI port (CSB, SCK, SDI and SDO). The isoSPI  
signals of three stacked devices are shown labeled with  
the port (A or B) and part number. Note that ISO B1 and  
ISO A2 is actually the same signal, but shown on each  
end of the transmission cable that connects Parts 1 and 2.  
Likewise, ISO B2 and ISO A3 is the same signal, but with  
the cable delay shown between Parts 2 and 3.  
ꢊꢌꢑꢑAꢒꢈ  
RꢏAꢈ ꢈAꢐA  
ꢊꢇꢍ  
ꢇꢈꢉ  
ꢊꢗꢋ  
ꢇꢊꢋ  
ꢂꢂ  
Rꢉꢇꢏ  
ꢇꢈꢌ  
ꢜꢝꢂ  
ꢂꢃ  
ꢂꢃ  
ꢜꢝꢂ  
ꢉꢇꢌ ꢍꢂ  
ꢉꢇꢌ Aꢅ  
ꢉꢇꢌ ꢍꢅ  
ꢉꢇꢌ Aꢎ  
ꢜꢝꢂ  
Rꢐꢒ  
ꢈꢇꢘꢙꢊꢇꢚ  
ꢈꢇꢘꢙꢊꢇꢚ  
ꢈꢇꢘꢙꢈꢚ  
ꢜꢝꢂ  
ꢜꢝꢂ  
ꢀꢁꢂꢃꢂ ꢄꢅꢆ  
ꢂꢃꢃꢃ  
ꢅꢃꢃꢃ  
ꢎꢃꢃꢃ  
ꢔꢃꢃꢃ  
ꢓꢃꢃꢃ  
ꢀꢃꢃꢃ  
Figure 29. isoSPI Timing Diagram  
Rev. A  
53  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Waking up the Serial Interface  
Waking a Daisy Chain — Method 1  
The serial ports (SPI or isoSPI) will enter the low power  
IDLE state if there is no activity on Port A or Port B for  
The LTC6810-1 sends a long +1 pulse on Port B after it is  
ready to communicate. In a daisy-chained configuration,  
this pulse wakes up the next device in the stack which will,  
in turn, wake up the next device. If there are ‘N’ devices in  
the stack, all the devices are powered up within the time  
a time of t  
. The WAKEUP circuit monitors activity on  
IDLE  
pins 36 and 37, which are CSB and SCK if ISOMD is low,  
or IPA and IMA if ISOMD is high, and activity on pins 38  
and 39, which are IMB and IPB for LTC6810-1 and A2 and  
A3 for LTC6810-2.  
N • t  
or N • t  
, depending on the Core state. For  
WAKE  
READY  
large stacks, the time N • t  
may be equal to or larger  
WAKE  
than t  
. In this case, after waiting longer than the time  
, the host may send another dummy byte and  
IDLE  
If ISOMD = V , Port A is in SPI mode. Activity on the CSB  
of N • t  
WAKE  
orSCKpinwillwakeuptheSPIinterface. IfISOMD=V  
,
REG  
wait for the time N • t  
devices are in the READY state.  
, in order to ensure that all  
READY  
PortAisinisoSPImode.DifferentialactivityonIPA–IMAor  
IPB–IMB wakes up the isoSPI interface. The LTC6810 will  
be ready to communicate when the isoSPI state changes  
Method 1 can be used when all devices on the daisy chain  
are in the IDLE state. This guarantees that they propagate  
the wake-up signal up the daisy chain. However, this  
method will fail to wake up all devices when a device in  
the middle of the chain is in the READY state instead of  
IDLE. When this happens, the device in READY state will  
not propagate the wake-up pulse, so the devices above it  
will remain IDLE. This situation can occur when attempt-  
to READY within t  
or t  
, depending on the Core  
WAKE  
READY  
state (see Figure 1 and state descriptions for details).  
Figure 30 illustrates the timing and the functionally  
equivalent circuit. The wake-up circuit responds to the  
difference between SCK(IPA) and CS(IMA). Common  
mode signals will not wake up the serial interface. The  
interface is designed to wake up after receiving a large  
signal single-ended pulse, or a low-amplitude symmetric  
pulse. The differential signal | SCK(IPA) – CS(IMA)|, must  
ing to wake up the daisy chain after only t  
of idle time  
IDLE  
(some devices may be IDLE, some may not).  
be at least V  
DWELL  
= 200mV for a minimum duration of  
WAKE  
t
= 240ns to qualify as a wake up signal that powers  
up the serial interface.  
Rꢓꢖꢓꢆꢕꢇ ꢆꢉꢋꢋꢉꢗ  
ꢋꢉꢘꢓ ꢗꢉꢊꢇꢓ  
ꢆꢇꢈ ꢉR ꢊꢋA  
ꢇꢆꢌ ꢉR ꢊꢍA  
ꢚ ꢡꢜꢃꢝꢤ  
ꢒAꢌꢓ  
ꢎꢇꢆꢌꢏꢊꢍAꢐ ꢑ ꢆꢇꢈꢏꢊꢋAꢐꢎ  
ꢚ ꢡꢢꢃꢣꢞ  
ꢘꢒꢓꢙꢙ  
ꢒAꢌꢓꢑꢔꢍ  
ꢇꢕAꢕꢓ  
ꢙꢉꢒ ꢍꢉꢒꢓR ꢋꢉꢘꢓ  
ꢉꢌ ꢕꢉ ꢆꢉꢋꢋꢔꢗꢊꢆAꢕꢓ  
ꢙꢉꢒ ꢍꢉꢒꢓR ꢋꢉꢘꢓ  
ꢚ ꢛ  
RꢓAꢘꢟ  
ꢏꢂꢃꢠꢞꢐ  
ꢚ ꢛ  
ꢊꢘꢙꢓ  
ꢏꢜ.ꢜꢝꢞꢐ  
RꢓꢕRꢊꢥꢥꢓRAꢈꢙꢓ  
ꢦ ꢜ.ꢜꢝꢞ  
ꢆꢇꢈ  
ꢇꢆꢌ  
ꢒAꢌꢓꢑꢔꢍ  
ꢡꢃꢃꢣꢞ  
ꢘꢓꢙAꢟ  
ꢊꢘꢙꢓ  
ꢉꢗꢓꢑꢇꢧꢉꢕ  
ꢀꢁꢂꢃꢂ ꢄꢅꢃ  
Figure 30. Wake-up Detection and IDLE Timer  
Rev. A  
54  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Waking a Daisy Chain — Method 2  
To calculate the 15-bit PEC value, a simple procedure can  
be established:  
Amorerobustwake-upmethoddoesnotrelyonthebuilt-in  
wake-uppulse,butmanuallysendsisoSPItrafficforenough  
time to wake the entire daisy chain. At minimum, a pair of  
long isoSPI pulses (–1 and +1) is needed for each device,  
separated by more than t  
is STANDBY or SLEEP, respectively), but less than t  
This allows each device to wake up and propagate the next  
pulse to the following device. This method works even if  
some devices in the chain are not in the IDLE state. In  
practice,implementingmethod2requirestogglingtheCSB  
pin (of the LTC6820, or bottom LTC6810 with ISOMD = 0)  
to generate the long isoSPI pulses. Alternatively, dummy  
commands (such as RDCFG) can be executed to generate  
the long isoSPI pulses.  
1. Initialize the PEC to 000000000010000 (PEC is a 15 bit  
register group)  
2. For each bit DIN coming into the PEC register group,  
set  
or t  
(if the Core state  
READY  
WAKE  
.
IDLE  
IN0 = DIN XOR PEC [14]  
IN3 = IN0 XOR PEC [2]  
IN4 = IN0 XOR PEC [3]  
IN7 = IN0 XOR PEC [6]  
IN8 = IN0 XOR PEC [7]  
IN10 = IN0 XOR PEC [9]  
IN14 = IN0 XOR PEC [13]  
3. Update the 15-bit PEC as follows  
PEC [14] = IN14,  
PEC [13] = PEC [12],  
PEC [12] = PEC [11],  
PEC [11] = PEC [10],  
PEC [10] = IN10,  
PEC [9] = PEC [8],  
PEC [8] = IN8,  
DATA LINK LAYER  
All Data transfers on LTC6810 occur in byte groups.  
Every byte consists of 8 bits. Bytes are transferred with  
the most significant bit (MSB) first. CSB must remain low  
for the entire duration of a command sequence, including  
between a command byte and subsequent data. On a write  
command, data is latched in on the rising edge of CSB.  
PEC [7] = IN7,  
PEC [6] = PEC [5],  
PEC [5] = PEC [4],  
PEC [4] = IN4,  
NETWORK LAYER  
Packet Error Code  
PEC [3] = IN3,  
PEC [2] = PEC [1],  
PEC [1] = PEC [0],  
PEC [0] = IN0  
The packet error code (PEC) is a 15-bit cyclic redundancy  
check (CRC) value calculated for all of the bits in a register  
group in the order they are passed, using the initial PEC  
value of 000000000010000 and the following character-  
4. Go back to step 2 until all the data is shifted. The final  
PEC (16 bits) is the 15 bit value in the PEC register with  
a 0 bit appended to its LSB  
15  
14  
10  
8
7
4
3
istic polynomial: x + x + x + x + x + x + x + 1.  
ꢋꢉꢊ  
ꢇꢉꢊ ꢒꢋR ꢎAꢐꢌ  
ꢇꢉꢊ  
ꢊꢌꢍ RꢌꢎꢇꢏꢐꢌR ꢑꢇꢐ ꢒ  
ꢆꢇꢈ  
ꢂꢔ  
ꢂꢅ ꢂꢓ ꢂꢂ ꢂꢃ  
ꢀꢁꢂꢃꢂ ꢄꢅꢂ  
Figure 31.  
Rev. A  
55  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Figure 31 illustrates the algorithm described above. An  
example to calculate the PEC for a 16 bit word (0x0001)  
is listed in Table 30. The PEC for 0x0001 is computed as  
0x3D6E after stuffing a 0 bit at the LSB. For longer data  
streams, the PEC is valid at the end of the last bit of data  
sent to the PEC register.  
LTC6810calculatesPECforanycommandordatareceived  
and compares it with the PEC following the command or  
data. The command or data is regarded as valid only if  
the PEC matches. LTC6810 also attaches the calculated  
PEC at the end of the data it shifts out. Table 31 shows the  
format of PEC while writing to or reading from LTC6810.  
Table 30. PEC Calculation for 0x0001  
PEC[14]  
PEC[13]  
PEC[12]  
PEC[11]  
PEC[10]  
PEC[9]  
PEC[8]  
PEC[7]  
PEC[6]  
PEC[5]  
PEC[4]  
PEC[3]  
PEC[2]  
PEC[1]  
PEC[0]  
IN14  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
2
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
3
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
5
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
10  
1
0
0
0
1
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
1
0
11  
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
1
0
0
1
0
1
1
0
12  
1
0
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
0
0
0
0
1
0
13  
1
1
1
0
1
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
1
0
14  
0
1
0
1
1
0
1
1
0
0
1
0
1
1
1
0
1
0
1
1
0
1
1
15  
0
0
1
1
1
1
0
1
0
1
1
0
1
1
1
0
0
1
1
1
1
0
1
0
1
1
0
1
1
1
0
IN10  
PEC word  
IN8  
IN7  
IN4  
IN3  
IN0  
DIN  
Clock Cycle  
16  
Table 31. Write/Read PEC format  
Name  
PEC0  
PEC1  
RD/WR  
RD/WR  
RD/WR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PEC[7]  
0
PEC[14]  
PEC[6]  
PEC[13]  
PEC[5]  
PEC[12]  
PEC[4]  
PEC[11]  
PEC[3]  
PEC[10]  
PEC[2]  
PEC[9]  
PEC[1]  
PEC[8]  
PEC[0]  
Rev. A  
56  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
While writing any command to LTC6810, the command  
bytes CMD0 and CMD1 (see Table 38 and Table 39) and  
the PEC bytes PEC0 and PEC1 are sent on Port A in the  
following order:  
In parallel (LTC6810-2) configurations, broadcast com-  
mands are useful for initiating ADC conversions or for  
sending write commands when all parts are being written  
with the same data. The polling function (automatic at the  
end of ADC commands, or manual using the PLADC com-  
mand) can also be used with broadcast commands, but  
not with parallel isoSPI devices. Likewise, broadcast read  
commandsshouldnotbeusedintheparallelconfiguration  
(either SPI or isoSPI).  
CMD0, CMD1, PEC0, PEC1  
After a broadcast write command to daisy chained  
LTC6810-1 devices, data is sent to each device followed  
by the PEC. For example, when writing the Configuration  
Register Group to two daisy-chained devices (primary  
device P, stacked device S), the data will be sent to the  
primary device on its slave port in the following order:  
Daisy-chained(LTC6810-1)configurationssupportbroad-  
cast commands only, because they have no addressing.  
All devices in the chain receive the command bytes simul-  
taneously. For example, to initiate ADC conversions in a  
stack of devices, a single ADCV command is sent, and all  
devices will start conversions at the same time. For read  
and write commands, a single command is sent, and then  
the stacked devices effectively turn into a cascaded shift  
register, in which data is shifted through each device to the  
nexthigher(onawrite)orthenextlower(onaread)device  
in the stack. See the Serial Interface Overview section.  
CFGR0(S), …, CFGR5(S), PEC0(S), PEC1(S),  
CFGR0(P), …, CFGR5(P), PEC0(P), PEC1(P)  
After a read command for daisy chained devices, each  
device shifts out its data and the PEC that it computed for  
its data on its slave port followed by the data received on  
itsmasterport.Forexample,whenreadingStatusRegister  
Group B from two daisy-chained devices (primary device  
P, stacked device S), the primary device sends out data on  
its slave port in the following order:  
Polling Methods  
STBR0(P), …, STBR5(P), PEC0(P), PEC1(P),  
STBR0(S), …, STBR5(S), PEC0(S), PEC1(S)  
The simplest method to determine ADC completion is  
for the controller to start an ADC conversion and wait for  
the specified conversion time to pass before reading the  
results.BothLTC6810-1andLTC6810-2alsoallowpolling  
to determine ADC completion.  
Address Commands (LTC6810-2 Only)  
An address command is one in which only the addressed  
device on the bus responds. Address commands are used  
only with LTC6810-2 parts. All commands are compatible  
withaddressing.SeetheBusProtocolssectionforAddress  
command format.  
In parallel configurations that communicate in SPI mode  
(ISOMD pin tied low), there are two methods of polling.  
The first method is to hold CSBI low after an ADC con-  
version command is sent. After entering a conversion  
command, the SDO line is driven low when the device is  
busy performing conversions. SDO is pulled high when  
the device completes conversions. However, the SDO  
will also go back high when CSBI goes high even if the  
device has not completed the conversion (Figure 32). An  
addressed device drives the SDO line based on its status  
alone. A problem with this method is that the controller  
is not free to do other serial communication while waiting  
for ADC conversions to complete.  
Broadcast Commands (LTC6810-1 or LTC6810-2)  
A broadcast command is one to which all devices on  
the bus will respond, regardless of device address. This  
command can be used with LTC6810-1 and LTC6810-2  
parts. See the Bus Protocols section for Broadcast com-  
mand format. With broadcast commands all devices can  
be sent commands simultaneously.  
Rev. A  
57  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
The next method overcomes this limitation. The controller  
cansendanADCstartcommand,performothertasks,and  
then send a poll ADC converter status (PLADC) command  
todeterminethestatusoftheADCconversions(Figure33).  
After entering the PLADC command, SDO will go low if  
the device is busy performing conversions. SDO is pulled  
high at the end of conversions. However, the SDO will also  
go high when CSBI goes high even if the device has not  
completed the conversion.  
InparallelconfigurationsthatcommunicateinisoSPImode,  
the low side port transmits a data pulse only in response  
to a master isoSPI pulse received by it. So, after enter-  
ing the command in either method of polling described  
above, isoSPI data pulses are sent to the part to update  
the conversion status. These pulses can be sent using  
LTC6820 by simply clocking its SCK pin. In response to  
this pulse, the device sends back a low isoSPI pulse if it  
is still busy performing conversions or a high data pulse  
if it has completed the conversions. If a CSB high isoSPI  
pulse is sent to the device, it exits the polling command.  
ꢊꢍꢊꢎꢏ  
ꢊꢇꢑ  
ꢇꢊꢋ  
ꢇꢈꢉ  
ꢒꢇꢑꢓꢊꢒꢈꢔ  
ꢑꢉꢖ ꢂꢗꢓꢊꢒꢈꢔ  
ꢎꢇꢑꢓꢕꢏꢊꢔ  
ꢇꢈꢐ  
ꢀꢁꢂꢃꢂ ꢄꢅꢆ  
Figure 32. SDO Polling After an ADC Conversion Command (Parallel Configuration)  
ꢉꢆꢌ  
ꢆꢉꢊ  
ꢆꢇꢈ  
ꢍꢆꢌꢎꢉꢍꢇꢏ  
ꢌꢈꢕ ꢂꢖꢎꢉꢍꢇꢏ  
ꢐꢆꢌꢎꢑꢒꢉꢏ  
ꢆꢇꢋ  
ꢉꢋꢓꢔꢒRꢆꢈꢋꢓ ꢇꢋꢓꢒ  
ꢀꢁꢂꢃꢂ ꢄꢅꢅ  
Figure 33. SDO Polling Using PLADC Command (Parallel Configuration)  
Rev. A  
58  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
In a daisy-chained configuration of N stacked devices,  
the same two polling methods can be used. If the bottom  
device communicates in SPI mode, the SDO of the bot-  
tom device indicates the conversion status of the entire  
stack (i.e. SDO will remain low until all the devices in the  
stack have completed conversions). In the first method of  
polling, after an ADC conversion command is sent, clock  
pulses are sent on SCK while keeping CSB low. The SDO  
status becomes valid only at the end of N clock pulses on  
SCK and gets updated for every clock pulse that follows  
(Figure 34). In the second method, the PLADC command  
is sent followed by clock pulses on SCK while keeping  
CSBI low. Similar to the first method, the SDO status is  
valid only after N clock cycles on SCKI and gets updated  
after every clock cycle that follows (Figure 35).  
IfthebottomdevicecommunicatesinisoSPImode,isoSPI  
data pulsesare sent to the device to update the conversion  
status. Using LTC6820, this can be achieved by just clock-  
ing its SCK pin. The conversion status is valid only after  
the bottom LTC6810 device receives N isoSPI data pulses  
and the status gets updated for every isoSPI data pulse  
that follows. The device returns a low data pulse if any of  
the devices in the stack is busy performing conversions  
and returns a high data pulse if all the devices are free.  
ꢐAꢎꢎ ꢈꢏꢑꢉꢊꢏꢇꢒ  
ꢊꢍꢊꢎꢏ  
ꢊꢇꢔ  
ꢇꢊꢋ  
ꢇꢈꢉ  
ꢕꢇꢔꢐꢊꢕꢈꢒ  
ꢎꢇꢔꢐꢖꢏꢊꢒ  
ꢇꢈꢓ  
ꢀꢁꢂꢃꢂ ꢄꢅꢆ  
Figure 34.  
ꢊꢇꢍ  
ꢇꢊꢋ  
ꢇꢈꢉ  
ꢎꢇꢍꢏꢊꢎꢈꢐ  
ꢑꢇꢍꢏꢒꢓꢊꢐ  
ꢇꢈꢌ  
ꢀꢁꢂꢃꢂ ꢄꢅꢆ  
ꢊꢌꢕꢖꢓRꢇꢉꢌꢕ ꢈꢌꢕꢓ  
Figure 35.  
Rev. A  
59  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Bus Protocols  
Command Format: The formats for the broadcast and  
address commands are shown in Table 38 and Table 39  
respectively. The 11 bit command code CC[10:0] is the  
same for a broadcast or an address command. A list of  
all the command codes is shown in Table 40. A broadcast  
command has a value 0 for CMD0[7] through CMD0[3].  
An address command has a value 1 for CMD0[7] fol-  
lowed by the 4 bit address of the device (a3, a2, a1, a0)  
in bits CMD0[6:3]. An addressed device will respond  
to an address command only if the physical address of  
the device on pins A3 to A0 match the address specified  
in the address command. The PEC for broadcast and  
address commands must be computed on the entire 16  
bit command (CMD0 and CMD1).  
Protocol Format: The protocol formats for both broadcast  
and address commands are depicted in Table 33 through  
Table 37. Table 32 is the key for reading the protocol diagrams.  
Table 32. Protocol Key  
CMD0  
CMD1  
PEC0  
PEC1  
N
Command Byte 0 (See Table 38 and Table 39)  
Command Byte 1 (See Table 38 and Table 39)  
Packet Error Code Byte 0 (See Table 31)  
Packet Error Code Byte 1 (See Table 31)  
Number of Bytes  
Continuation of Protocol  
Master to Slave  
Slave to Master  
Table 33. Broadcast/Address Poll Command  
8
8
8
8
CMD0  
CMD1  
PEC0  
PEC1  
Poll Data  
Table 34. Broadcast Write Command  
8
8
8
8
8
8
8
8
8
8
CMD0  
CMD1  
PEC0  
PEC1  
Data Byte Low  
Data Byte High  
PEC0  
PEC1  
Shift Byte 1  
Shift Byte n  
Table 35. Address Write Command  
8
8
8
8
8
8
8
8
CMD0  
CMD1  
PEC0  
PEC1  
Data Byte Low  
Data Byte High  
PEC0  
PEC1  
Table 36. Broadcast Read Command  
8
8
8
8
8
8
8
8
8
8
CMD0  
CMD1  
PEC0  
PEC1  
Data Byte Low  
Data Byte High  
PEC0  
PEC1  
Shift Byte 1  
Shift Byte n  
Table 37. Address Read Command  
8
8
8
8
8
8
8
8
CMD0  
CMD1  
PEC0  
PEC1  
Data Byte Low  
Data Byte High  
PEC0  
PEC1  
Table 38. Broadcast Command Format  
NAME  
CMD0  
CMD1  
RD/WR  
WR  
BIT 7  
0
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
BIT 2  
BIT 1  
BIT 0  
CC[8]  
CC[0]  
0
CC[10]  
CC[2]  
CC[9]  
CC[1]  
WR  
CC[7]  
CC[6]  
CC[5]  
CC[4]  
CC[3]  
Table 39. Address Command Format  
NAME  
CMD0  
RD/WR  
WR  
BIT 7  
1
BIT 6  
a3*  
BIT 5  
a2*  
BIT 4  
a1*  
BIT 3  
a0*  
BIT 2  
CC[10]  
CC[2]  
BIT 1  
CC[9]  
CC[1]  
BIT 0  
CC[8]  
CC[0]  
CMD1  
WR  
CC[7]  
CC[6]  
CC[5]  
CC[4]  
CC[3]  
*ax is Address Bit x  
Rev. A  
60  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Commands  
Table 40 lists all the commands and its options for both  
LTC6810-1 and LTC6810-2.  
Table 40. Command Codes  
COMMAND DESCRIPTION  
NAME  
CC[10:0] — COMMAND CODE  
10  
9
8
7
6
5
4
3
2
1
0
Write Configuration  
Register Group  
WRCFG  
RDCFG  
0
0
0
0
0
0
0
0
0
0
1
Read Configuration  
Register Group  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
1
0
0
1
0
1
0
0
0
0
1
0
Write Control Register Group WRSCTRL*  
(PWM and S)  
0
0
1
0
0
Read Control Register Group RDSCTRL*  
(PWM and S)  
0
0
1
1
1
0
Write PWM Register Group  
(PWM and S)  
WRPWM*  
RDPWM*  
RDCVA  
RDCVB  
RDSA  
0
1
0
0
0
0
Read PWM Register Group  
(PWM and S)  
0
1
0
0
1
0
Read Cell Voltage  
Register Group A  
0
0
0
1
0
0
Read Cell Voltage  
Register Group B  
0
0
0
1
1
0
Read S Voltage  
Register Group A  
0
0
0
0
0
0
Read S Voltage  
Register Group B  
RDSB  
0
0
0
0
1
0
Read Auxiliary  
Register Group A  
RDAUXA  
RDAUXB  
RDSTATA  
RDSTATB  
RDSID  
0
0
0
1
0
0
Read Auxiliary  
Register Group B  
0
0
0
1
1
0
Read Status  
Register Group A  
0
0
1
0
0
0
Read Status  
Register Group B  
0
0
0
1
0
1
1
0
0
0
Read Serial ID  
Register Group  
1
0
Start Cell Voltage ADC  
Conversion and Poll Status  
ADCV  
MD[1] MD[0]  
MD[1] MD[0]  
MD[1] MD[0]  
MD[1] MD[0]  
MD[1] MD[0]  
1
1
DCP  
DCP  
0
CH[2]  
CH[2]  
1
CH[1]  
CH[1]  
1
CH[0]  
CH[0]  
1
Start Open Wire ADC  
Conversion and Poll Status  
ADOW  
PUP  
ST[1]  
1
1
ST[0]  
1
Start Self-Test Cell Voltage  
Conversion and Poll Status  
CVST  
Start GPIOs/Cell 0/REF2 ADC  
Conversion and Poll Status  
ADAX  
0
CHG[2] CHG[1] CHG[0]  
CHG[2] CHG[1] CHG[0]  
Start GPIOs/Cell 0/REF2  
ADC Conversion with Digital  
Redundancy and Poll Status  
ADAXD  
0
0
0
Rev. A  
61  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
COMMAND DESCRIPTION  
NAME  
CC[10:0] — COMMAND CODE  
10  
9
8
7
6
5
4
3
2
1
0
Start GPIOs/Cell 0/REF2 ADC  
Open Wire Conversion  
AXOW  
AXST  
1
0
MD[1] MD[0]  
PUP  
0
1
0
CHG[2] CHG[1] CHG[0]  
Start Self-Test GPIOs/Cell 0/  
REF2 Conversion and Poll  
Status  
1
0
MD[1] MD[0]  
ST[1]  
ST[0]  
0
0
1
1
1
Start Status Group ADC  
ADSTAT  
1
1
0
0
MD[1] MD[0]  
MD[1] MD[0]  
1
0
1
0
0
0
1
1
CHST[2] CHST[1] CHST[0]  
CHST[2] CHST[1] CHST[0]  
Conversion and Poll Status  
Start Status Group ADC  
Conversion with Digital  
Redundancy and Poll Status  
ADSTATD  
Start Self-Test Status Group  
Conversion and Poll Status  
STATST  
ADCVAX  
1
1
0
0
MD[1] MD[0]  
MD[1] MD[0]  
ST[1]  
1
ST[0]  
1
0
1
1
1
1
1
1
1
1
Start Combined Cell Voltage  
and Cell 0, GPIO1 Conversion  
and Poll Status  
DCP  
Start Combined Cell Voltage  
and SC Conversion and Poll  
Status  
ADCVSC  
1
0
MD[1] MD[0]  
1
1
DCP  
0
1
1
1
Clear Cell Voltage  
Register Group  
CLRCELL  
CLRAUX  
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
Clear Auxiliary  
Register Group  
Clear Status Register Group  
Poll ADC Conversion Status  
CLRSTAT  
PLADC  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
1
0
1
Diagnose MUX and Poll  
Status  
DIAGN  
Write COMM  
WRCOMM  
RDCOMM  
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
Register Group  
Read COMM  
Register Group  
2
Start I C/SPI Communication STCOMM  
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
0
0
0
1
0
0
1
0
1
Mute Discharge  
MUTE  
Unmute Discharge  
UNMUTE  
*The WRSCTRL and WRPWM and RDSCTRL and RDPWM commands all access the same PWM Register Group. The WRSCTRL and RDSCTRL  
commands are provided for compatibility with other LTC681x devices in a daisy-chain.  
Table 41. Command Bit Descriptions  
NAME  
DESCRIPTION  
VALUES  
MD ADCOPT(CFGR0[0]) = 0  
ADCOPT (CFGR0[0]) = 1  
1kHz Mode  
00  
01  
10  
11  
422Hz Mode  
MD[1:0] ADC Mode  
27 kHz Mode (Fast)  
7 kHz Mode (Normal)  
26 Hz Mode (Filtered)  
14 kHz Mode  
3 kHz Mode  
2 kHz Mode  
Rev. A  
62  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
NAME  
DESCRIPTION  
VALUES  
DCP  
0
DCP  
Discharge Permitted  
Discharge Not Permitted  
Discharge Permitted  
1
Total Conversion Time in 8 ADC Modes  
CH  
000  
001  
010  
011  
100  
101  
110  
PUP  
0
27kHz  
14kHz  
699µs  
7kHz  
3kHz  
2kHz  
1kHz  
422Hz  
12ms  
26Hz  
All Cells  
Cell 1  
Cell 2  
Cell 3  
Cell 4  
Cell 5  
Cell 6  
524µs  
1.2ms  
1.9ms  
3.3ms  
6.1ms  
201ms  
Cell Selection for ADC  
Conversion  
CH[2:0]  
200µs  
229µs  
404µs  
520µs  
753µs  
1.2ms  
2.1ms  
34ms  
Pull-Up/Pull-Down Current  
for Open Wire Conversions  
PUP  
Pull-Down Current  
Pull-Up Current  
1
Self Test Conversion Result  
7kHz 3kHz 2kHz 1kHz  
ST  
01  
10  
27kHz  
14kHz  
422Hz  
26Hz  
ST[1:0] Self Test Mode Selection  
Self Test 1  
Self test 2  
0x9565 0x9553 0x9555 0x9555 0x9555 0x9555 0x9555 0x9555  
0x6A9A 0x6AAC 0x6AAA 0x6AAA 0x6AAA 0x6AAA 0x6AAA 0x6AAA  
Total Conversion Time in the 8 ADC Modes  
CHG  
000  
27kHz  
14kHz  
7kHz  
3kHz  
2kHz  
1kHz  
422Hz  
26Hz  
S0, GPIO 1–4,  
2nd Reference  
521µs  
695µs  
1.2ms  
1.9ms  
3.3ms  
6.0ms  
12ms  
183ms  
001 S0  
GPIO Selection for ADC  
CHG[2:0]  
Conversion  
010 GPIO 1  
011 GPIO 2  
100 GPIO 3  
101 GPIO 4  
110 2nd Reference  
200µs  
229µs  
403µs  
520µs  
752µs  
1.2ms  
2.1ms  
34ms  
Total Conversion Time in 8 ADC Modes  
CHST  
27kHz  
741µs  
14kHz  
858µs  
7kHz  
3kHz  
2kHz  
1kHz  
422Hz  
8.5ms  
26Hz  
SOC, ITMP,  
VA, VD  
000  
1.6ms  
2.0ms  
3.0ms  
4.8ms  
134ms  
CHST[2:0]* Status Group Selection  
001 SC  
010 ITMP  
011 VA  
100 VD  
200µs  
229µs  
403µs  
520µs  
752µs  
1.2ms  
2.1ms  
34ms  
*Note: Valid options for CHST in ADSTAT command are 0–4. If CHST is set to 5/6 in ADSTAT command, the LTC6810 treats it like ADAX command with  
CHG =5/6.  
Rev. A  
63  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Memory Map  
Table 42. Configuration Register Group  
REGISTER  
CFGR0  
CFGR1  
CFGR2  
CFGR3  
CFGR4  
CFGR5  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
BIT 7  
RSVD  
BIT 6  
GPIO4  
BIT 5  
GPIO3  
VUV[5]  
VOV[1]  
VOV[9]  
DCC6  
BIT 4  
GPIO2  
VUV[4]  
VOV[0]  
VOV[8]  
DCC5  
BIT 3  
GPIO1  
VUV[3]  
VUV[11]  
VOV[7]  
DCC4  
BIT 2  
REFON  
VUV[2]  
VUV[10]  
VOV[6]  
DCC3  
BIT 1  
DTEN  
BIT 0  
ADCOPT  
VUV[0]  
VUV[8]  
VOV[4]  
DCC1  
VUV[7]  
VOV[3]  
VOV[11]  
DCC0  
VUV[6]  
VOV[2]  
VOV[10]  
MCAL  
VUV[1]  
VUV[9]  
VOV[5]  
DCC2  
DCTO[3]  
DCTO[2]  
DCTO[1]  
DCTO[0]  
SCONV  
FDRF  
DIS_RED  
DTMEN  
Table 43. Cell Voltage Register Group A  
REGISTER  
CVAR0  
CVAR1  
CVAR2  
CVAR3  
CVAR4  
CVAR5  
RD/WR  
RD  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
C1V[7]  
C1V[15]  
C2V[7]  
C2V[15]  
C3V[7]  
C3V[15]  
C1V[6]  
C1V[14]  
C2V[6]  
C2V[14]  
C3V[6]  
C3V[14]  
C1V[5]  
C1V[13]  
C2V[5]  
C2V[13]  
C3V[5]  
C3V[13]  
C1V[4]  
C1V[12]  
C2V[4]  
C2V[12]  
C3V[4]  
C3V[12]  
C1V[3]  
C1V[11]  
C2V[3]  
C2V[11]  
C3V[3]  
C3V[11]  
C1V[2]  
C1V[10]  
C2V[2]  
C2V[10]  
C3V[2]  
C3V[10]  
C1V[1]  
C1V[9]  
C2V[1]  
C2V[9]  
C3V[1]  
C3V[9]  
C1V[0]  
C1V[8]  
C2V[0]  
C2V[8]  
C3V[0]  
C3V[8]  
RD  
RD  
RD  
RD  
RD  
Table 44. Cell Voltage Register Group B  
REGISTER  
CVBR0  
CVBR1  
CVBR2  
CVBR3  
CVBR4  
CVBR5  
RD/WR  
RD  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
C4V[7]  
C4V[15]  
C5V[7]  
C5V[15]  
C6V[7]  
C6V[15]  
C4V[6]  
C4V[14]  
C5V[6]  
C5V[14]  
C6V[6]  
C6V[14]  
C4V[5]  
C4V[13]  
C5V[5]  
C5V[13]  
C6V[5]  
C6V[13]  
C4V[4]  
C4V[12]  
C5V[4]  
C5V[12]  
C6V[4]  
C6V[12]  
C4V[3]  
C4V[11]  
C5V[3]  
C5V[11]  
C6V[3]  
C6V[11]  
C4V[2]  
C4V[10]  
C5V[2]  
C5V[10]  
C6V[2]  
C6V[10]  
C4V[1]  
C4V[9]  
C5V[1]  
C5V[9]  
C6V[1]  
C6V[9]  
C4V[0]  
C4V[8]  
C5V[0]  
C5V[8]  
C6V[0]  
C6V[8]  
RD  
RD  
RD  
RD  
RD  
Table 45. Auxiliary Register Group A  
REGISTER  
AVAR0  
AVAR1  
AVAR2  
AVAR3  
AVAR4  
AVAR5  
RD/WR  
RD  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
S0V[7]  
S0V[15]  
G1V[7]  
G1V[15]  
G2V[7]  
G2V[15]  
S0V[6]  
S0V[14]  
G1V[6]  
G1V[14]  
G2V[6]  
G2V[14]  
S0V[5]  
S0V[13]  
G1V[5]  
G1V[13]  
G2V[5]  
G2V[13]  
S0V[4]  
S0V[12]  
G1V[4]  
G1V[12]  
G2V[4]  
G2V[12]  
S0V[3]  
S0V[11]  
G1V[3]  
G1V[11]  
G2V[3]  
G2V[11]  
S0V[2]  
S0V[10]  
G1V[2]  
G1V[10]  
G2V[2]  
G2V[10]  
S0V[1]  
S0V[9]  
G1V[1]  
G1V[9]  
G2V[1]  
G2V[9]  
S0V[0]  
S0V[8]  
G1V[0]  
G1V[8]  
G2V[0]  
G2V[8]  
RD  
RD  
RD  
RD  
RD  
Rev. A  
64  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Table 46. Auxiliary Register Group B  
REGISTER  
AVBR0  
AVBR1  
AVBR2  
AVBR3  
AVBR4  
AVBR5  
RD/WR  
RD  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
G3V[7]  
G3V[15]  
G4V[7]  
G4V[15]  
REF[7]  
G3V[6]  
G3V[14]  
G4V[6]  
G4V[14]  
REF[6]  
G3V[5]  
G3V[13]  
G4V[5]  
G4V[13]  
REF[5]  
G3V[4]  
G3V[12]  
G4V[4]  
G4V[12]  
REF[4]  
G3V[3]  
G3V[11]  
G4V[3]  
G4V[11]  
REF[3]  
G3V[2]  
G3V[10]  
G4V[2]  
G4V[10]  
REF[2]  
G3V[1]  
G3V[9]  
G4V[1]  
G4V[9]  
REF[1]  
REF[9]  
G3V[0]  
G3V[8]  
G4V[0]  
G4V[8]  
REF[0]  
REF[8]  
RD  
RD  
RD  
RD  
RD  
REF[15]  
REF[14]  
REF[13]  
REF[12]  
REF[11]  
REF[10]  
Table 47. Status Register Group A  
REGISTER  
STAR0  
STAR1  
STAR2  
STAR3  
STAR4  
STAR5  
RD/WR  
RD  
BIT 7  
SC[7]  
BIT 6  
SC[6]  
BIT 5  
SC[5]  
BIT 4  
SC[4]  
BIT 3  
SC[3]  
BIT 2  
SC[2]  
BIT 1  
SC[1]  
BIT 0  
SC[0]  
RD  
SC[15]  
ITMP[7]  
ITMP[15]  
VA[7]  
SC[14]  
ITMP[6]  
ITMP[14]  
VA[6]  
SC[13]  
ITMP[5]  
ITMP[13]  
VA[5]  
SC[12]  
ITMP[4]  
ITMP[12]  
VA[4]  
SC[11]  
ITMP[3]  
ITMP[11]  
VA[3]  
SC[10]  
ITMP[2]  
ITMP[10]  
VA[2]  
SC[9]  
SC[8]  
RD  
ITMP[1]  
ITMP[9]  
VA[1]  
ITMP[0]  
ITMP[8]  
VA[0]  
RD  
RD  
RD  
VA[15]  
VA[14]  
VA[13]  
VA[12]  
VA[11]  
VA[10]  
VA[9]  
VA[8]  
Table 48. Status Register Group B  
REGISTER  
STBR0  
STBR1  
STBR2  
STBR3  
STBR4  
STBR5  
RD/WR  
RD  
BIT 7  
VD[7]  
VD[15]  
C4OV  
BIT 6  
VD[6]  
VD[14]  
C4UV  
BIT 5  
VD[5]  
VD[13]  
C3OV  
BIT 4  
VD[4]  
VD[12]  
C3UV  
BIT 3  
VD[3]  
VD[11]  
C2OV  
C6OV  
RSVD  
RSVD  
BIT 2  
VD[2]  
VD[10]  
C2UV  
C6UV  
RSVD  
RSVD  
BIT 1  
VD[1]  
BIT 0  
VD[0]  
VD[8]  
C1UV  
C5UV  
RSVD  
THSD  
RD  
VD[9]  
RD  
C1OV  
RD  
RSVD  
RSVD  
REV[3]  
RSVD  
RSVD  
REV[2]  
RSVD  
RSVD  
REV[1]  
MUTE  
RSVD  
REV[0]  
C5OV  
RD  
RSVD  
RD  
MUXFAIL  
Table 49. Redundant S Voltage Register Group A  
REGISTER  
CVCR0  
CVCR1  
CVCR2  
CVCR3  
CVCR4  
CVCR5  
RD/WR  
RD  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
S1V[7]  
S1V[15]  
S2V[7]  
S2V[15]  
S3V[7]  
S3V[15]  
S1V[6]  
S1V[14]  
S2V[6]  
S2V[14]  
S3V[6]  
S3V[14]  
S1V[5]  
S1V[13]  
S2V[5]  
S2V[13]  
S3V[5]  
S3V[13]  
S1V[4]  
S1V[12]  
S2V[4]  
S2V[12]  
S3V[4]  
S3V[12]  
S1V[3]  
S1V[11]  
S2V[3]  
S2V[11]  
S3V[3]  
S3V[11]  
S1V[2]  
S1V[10]  
S2V[2]  
S2V[10]  
S3V[2]  
S3V[10]  
S1V[1]  
S1V[9]  
S2V[1]  
S2V[9]  
S3V[1]  
S3V[9]  
S1V[0]  
S1V[8]  
S2V[0]  
S2V[8]  
S3V[0]  
S3V[8]  
RD  
RD  
RD  
RD  
RD  
Rev. A  
65  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Table 50. Redundant S Voltage Register Group B  
REGISTER  
CVDR0  
CVDR1  
CVDR2  
CVDR3  
CVDR4  
CVDR5  
RD/WR  
RD  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
S4V[7]  
S4V[15]  
S5V[7]  
S5V[15]  
S6V[7]  
S6V[15]  
S4V[6]  
S4V[14]  
S5V[6]  
S5V[14]  
S6V[6]  
S6V[14]  
S4V[5]  
S4V[13]  
S5V[5]  
S5V[13]  
S6V[5]  
S6V[13]  
S4V[4]  
S4V[12]  
S5V[4]  
S5V[12]  
S6V[4]  
S6V[12]  
S4V[3]  
S4V[11]  
S5V[3]  
S5V[11]  
S6V[3]  
S6V[11]  
S4V[2]  
S4V[10]  
S5V[2]  
S5V[10]  
S6V[2]  
S6V[10]  
S4V[1]  
S4V[9]  
S5V[1]  
S5V[9]  
S6V[1]  
S6V[9]  
S4V[0]  
S4V[8]  
S5V[0]  
S5V[8]  
S6V[0]  
S6V[8]  
RD  
RD  
RD  
RD  
RD  
Table 51. COMM Register Group  
REGISTER  
COMM0  
COMM1  
COMM2  
COMM3  
COMM4  
COMM5  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
BIT 7  
ICOM0[3]  
D0[3]  
BIT 6  
ICOM0[2]  
D0[2]  
BIT 5  
ICOM0[1]  
D0[1]  
BIT 4  
ICOM0[0]  
D0[0]  
BIT 3  
D0[7]  
BIT 2  
D0[6]  
BIT 1  
D0[5]  
BIT 0  
D0[4]  
FCOM0[3]  
D1[7]  
FCOM0[2]  
D1[6]  
FCOM0[1]  
D1[5]  
FCOM0[0]  
D1[4]  
ICOM1[3]  
D1[3]  
ICOM1[2]  
D1[2]  
ICOM1[1]  
D1[1]  
ICOM1[0]  
D1[0]  
FCOM1[3]  
D2[7]  
FCOM1[2]  
D2[6]  
FCOM1[1]  
D2[5]  
FCOM1[0]  
D2[4]  
ICOM2[3]  
D2[3]  
ICOM2[2]  
D2[2]  
ICOM2[1]  
D2[1]  
ICOM2[0]  
D2[0]  
FCOM2[3]  
FCOM2[2]  
FCOM2[1]  
FCOM2[0]  
Table 52. PWM Register Group  
REGISTER  
SCTL0  
SCTL1  
SCTL2  
SCTL3  
SCTL4  
SCTL5  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
RD/WR  
BIT 7  
PWM2[3]  
PWM4[3]  
PWM6[3]  
RSVD  
BIT 6  
PWM2[2]  
PWM4[2]  
PWM6[2]  
RSVD  
BIT 5  
PWM2 [1]  
PWM4[1]  
PWM6[1]  
RSVD  
BIT 4  
PWM2[0]  
PWM4[0]  
PWM6[0]  
RSVD  
BIT 3  
PWM1[3]  
PWM3[3]  
PWM5[3]  
RSVD  
BIT 2  
PWM1[2]  
PWM3[2]  
PWM5[2]  
RSVD  
BIT 1  
PWM1[1]  
PWM3[1]  
PWM5[1]  
RSVD  
BIT 0  
PWM1[0]  
PWM3[0]  
PWM5[0]  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Table 53. Serial ID Register Group  
REGISTER  
SIDR0  
SIDR1  
SIDR2  
SIDR3  
SIDR4  
SIDR5  
RD/WR  
RD  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SID[7]  
SID[6]  
SID[5]  
SID[4]  
SID[3]  
SID[2]  
SID[1]  
SID[0]  
RD  
SID[15]  
SID[23]  
SID[31]  
SID[39]  
SID[47]  
SID[14]  
SID[22]  
SID[30]  
SID[38]  
SID[46]  
SID[13]  
SID[21]  
SID[29]  
SID[37]  
SID[45]  
SID[12]  
SID[20]  
SID[28]  
SID[36]  
SID[44]  
SID[11]  
SID[19]  
SID[27]  
SID[35]  
SID[43]  
SID[10]  
SID[18]  
SID[26]  
SID[34]  
SID[42]  
SID[9]  
SID[8]  
RD  
SID[17]  
SID[25]  
SID[33]  
SID[41]  
SID[16]  
SID[24]  
SID[32]  
SID[40]  
RD  
RD  
RD  
Rev. A  
66  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
Table 54. Memory Bit Descriptions  
NAME  
DESCRIPTION  
VALUES  
GPIOx  
GPIOx Pin  
Control  
Write: 0 -> GPIOx pin pull down ON; 1-> GPIOx pin pull down OFF  
Read: 0 -> GPIOx pin at logic 0; 1 -> GPIOx pin at logic 1  
REFON  
DTEN  
References  
Powered Up  
1 -> References remain powered up until watchdog time out  
0 -> References shut down after conversions  
Discharge Timer 1 -> Enables the Discharge Timer for discharge switches  
Enable  
0 -> Disables Discharge Timer  
ADCOPT  
VUV  
ADC Mode  
Option Bit  
ADCOPT: 0 -> Selects Modes 27kHz, 7kHz, 422Hz or 26Hz with MD[1:0] bits in ADC conversion commands.  
1 -> Selects Modes 14kHz, 3kHz, 1kHz or 2kHz with MD[1:0] bits in ADC conversion commands.  
Undervoltage  
Comparison  
Voltage*  
Comparison voltage = VUV • 16 • 100µV  
Default: VUV = 0x000  
VOV  
Overvoltage  
Comparison  
Voltage*  
Comparison voltage = VOV • 16 • 100µV  
Default: VUV = 0x000  
MCAL  
Enables  
1 -> Enables multicalibration during ADC conversions, for backwards compatibility with 6811/6812/6810.  
Multi-Calibration Defaults to 0, single calibration during ADC.  
DCC[x]  
Discharge  
Cell x  
x = 1 to 6 1 -> Turn ON shorting switch for Cell x, S[x] to S[x–1]  
0 -> Turn OFF shorting switch for Cell x, S[x] to S[x–1] (default)  
x = 0  
1 -> Turn ON S0 pulldown for discharging optional 7th cell  
0 -> Turn OFF S0 pulldown (default)  
DCTO  
Discharge Time  
Out Value  
DCTO  
0
1
2
1
2
3
2
3
4
3
4
5
4
5
6
5
6
7
10  
7
8
15  
8
9
20  
9
A
30  
A
B
40  
B
C
60  
C
D
75  
D
E
F
(Write)  
Time  
(min)  
Disabled 0.5  
90 120  
DCTO  
(Write)  
0
1
E
F
Time  
Left  
(min)  
Disabled  
or Time  
Out  
0
0.5  
to  
1
1
to  
2
2
to  
3
3
to  
4
4
to  
5
5
to  
10  
10  
to  
15  
15  
to  
20  
20  
to  
30  
30  
to  
40  
40  
to  
60  
60  
to  
75  
75  
to  
90  
to  
to  
0.5  
90 120  
SCONV  
Enable Cell  
1 -> Enables redundant measurements of the cell voltages using the S pins  
0 -> Disables redundant measurements of the cell voltages  
Measurement  
Redundancy  
Using S Pins  
FDRF  
Force Digital  
Redundancy  
Failure  
1 -> Forces the digital redundancy comparison for A/D conversions to fail  
0 -> Enables the normal redundancy comparison  
DIS_RED  
DTMEN  
CxV  
Disable Digital  
Redundancy  
Check  
1 -> Disables the digital redundancy comparison for A/D conversions  
0 -> Enables the digital redundancy comparison for A/D conversions  
Enable  
1 -> Enables the Discharge Timer Monitor function if the DTEN pin is asserted.  
Discharge Timer 0 -> Disables the Discharge Timer Monitor function. The normal Discharge Timer function will be enabled if DTEN pin is  
Monitor  
asserted.  
Cell x Voltage*  
x = 1 to 6 16 bit ADC measurement value for Cell x  
Cell Voltage for Cell x = CxV • 100µV  
CxV is reset to 0xFFFF on power up and after Clear command  
S0V  
S0 Voltage*  
16 bit ADC measurement value for S0 with respect to V  
S0 Voltage = S0V • 100µV  
S0V is reset to 0xFFFF on power up and after Clear command  
Rev. A  
67  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
NAME  
DESCRIPTION  
VALUES  
GxV  
GPIO x Voltage* x = 1 to 4 16 bit ADC measurement value for GPIOx  
Voltage for GPIOx = GxV • 100µV  
GxV is reset to 0xFFFF on power up and after Clear command  
REF  
2nd Reference  
Voltage*  
16 bit ADC measurement value for 2nd Reference  
Voltage for 2nd Reference = REF • 100µV  
Normal range is within 2.99V to 3.01V considering data sheet limits, hysteresis and long term drift  
SC  
Sum of All Cells  
Measurement*  
16 bit ADC measurement value of the Sum of All Cell Voltages  
Sum of All Cells Voltage = SC • 100µV • 10  
ITMP  
VA  
Internal Die  
16 bit ADC measurement value of Internal Die temperature  
Temperature*  
Temperature measurement (ºC) = ITMP • 100µV/7.5mV/ºC – 273ºC  
Analog Power  
Supply Voltage*  
16 bit ADC measurement value of Analog power supply voltage  
Analog Power supply voltage = VA • 100µV  
The value of VA is set by external components and should be in the range 4.5V to 5.5V for normal operation  
VD  
Digital Power  
Supply Voltage*  
16 bit ADC measurement value of Digital power supply voltage  
Digital Power supply voltage = VD • 100µV  
Normal range is within 2.7V to 3.6V  
CxOV  
CxUV  
Cell ‘x’  
x = 1 to 6 Cell voltage compared to VOV comparison voltage  
0 -> Cell ‘x’ not flagged for overvoltage condition.  
1-> Cell ‘x’ flagged  
Overvoltage Flag  
Cell ‘x’  
Undervoltage  
Flag  
x = 1 to 6 Cell voltage compared to VUV comparision voltage  
0 -> Cell ‘x’ not flagged for under–v  
REV  
Revision Code  
Reserved Bits  
Reserved Bits  
Reserved Bits  
Device Revision Code  
RSVD  
Read: Read back value can be 1 or 0  
Read: Read back value is always 0  
Read: Read back value is always 1  
RSVD0  
RSVD1  
MUXFAIL  
Multiplexer Self Read:  
Test Result  
0 -> Multiplexer passed self test  
1 -> Multiplexer failed self test  
THSD  
Thermal  
Shutdown  
Status  
Read: 0 -> Thermal shutdown has not occurred 1 -> Thermal shutdown has occurred  
THSD bit cleared to ‘0’ on read of Status Register Group B  
SxV  
Redundant Cell x x = 1 to 6 16 bit redundant ADC measurement value for Cell x  
Voltage* via the  
S pins  
Redundant measurement of Cell Voltage for Cell x = SxV • 100µV  
SxV is reset to 0xFFFF on power up and after Clear command  
PWMx[x]  
PWM Discharge 0000 – Selects 0% Discharge Duty Cycle if Watchdog Timer Has Expired  
Control  
0001 – Selects 3.3% Discharge Duty Cycle if Watchdog Timer Has Expired  
0010 – Selects 6.7% Discharge Duty Cycle if Watchdog Timer Has Expired  
1110 – Selects 46.7% Discharge Duty Cycle if Watchdog Timer Has Expired  
1111 – Selects 50% Discharge Duty Cycle if Watchdog Timer Has Expired  
SID[x]  
ICOMn  
Serial ID  
Unique 48-bit serial identification code  
Initial  
Communication  
Control Bits  
Write  
0110  
0001  
0000  
0111  
2
I C  
START  
STOP  
BLANK  
1001  
NO TRANSMIT  
1111  
1000  
1010  
SPI  
CSB low  
0110  
CSB Falling Edge  
0001  
CSB high  
0000  
NO TRANSMIT  
0111  
Read  
2
I C  
START from Master  
0111  
STOP from Master  
SDA low between bytes SDA high between bytes  
SPI  
Rev. A  
68  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
OPERATION  
NAME  
DESCRIPTION  
VALUES  
Data transmitted(received) to(from) I C/SPI slave device  
2
2
Dn  
I C/SPI  
Communication  
Data Byte  
FCOMn  
Final  
Communication  
Control Bits  
Write  
I2C  
SPI  
I2C  
0000  
1000  
1001  
Master ACK  
X000  
Master NACK  
Master NACK + STOP  
1001  
CSB low  
0001  
CSB high  
Read  
0111  
1111  
0001 1001  
ACK from Master ACK from Slave  
NACK from Slave ACK from Slave + NACK from Slave +  
STOP from Master STOP from Master  
SPI  
1111  
*Voltage equations use the decimal value of registers, 0 to 4095 for 12 bits and 0 to 65535 for 16 bits.  
Rev. A  
69  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
PROVIDING DC POWER  
2. Internal Regulator  
+
The primary supply pin for the LTC6810 is the 5V 0.5V  
At low V voltages where there is not enough headroom  
V
input pin. There are three ways to generate the V  
to regulate the Drive Pin, V  
is driven by an internal  
REG  
REG  
REGA  
input as follows:  
regulator. The Drive pin is designed such that when used  
with an external NPN, V will be set to a voltage that  
REGA  
1. Simple Linear Regulator  
is at least 400mV greater than the internal V  
voltage.  
REGA  
This ensures that when the DRIVE pin regulator has suffi-  
The DRIVE pin can be used to form a discrete regulator  
with the addition of a few external components, as shown  
in Figure 36. The DRIVE pin provides a 5.6V output, capa-  
ble of sourcing 1mA. When buffered with an NPN transis-  
tor, this provides a stable 5V over temperature. The NPN  
transistor should be chosen to have a sufficient Beta over  
temperature (>40) to supply the necessary supply cur-  
cient headroom the internal V  
will turn off. The internal  
regulator is enabled by applyiRnEgGaA 25µA load on the DRIVE  
pin. Connecting a 100k resistor on the DRIVE pin to GND  
+
allows the part to work across the entire V supply range.  
+
When V is too low, the 100k resistor on the DRIVE pin  
pulls enough current to enable the internal regulator that  
+
sets V  
to about 4.7V. When V is high, the DRIVE pin  
REGA  
rent. The peak V  
current requirement of the LTC6810  
REG  
sets VREGA to about 5.1V. The internal regulator is not  
capable of sinking current and will shutdown in this case.  
approaches 20mA when simultaneously communicating  
over isoSPI and making ADC conversions. If the V pin  
REG  
is required to support any additional load, a transistor with  
an even higher beta may be required.  
3. External Regulator for Improved Efficiency  
For improved efficiency when powering the LTC6810 from  
the cell stack, the V  
The NPN collector can be powered from any voltage  
source that is a minimum 6V above V–. This includes the  
cells that are being monitored, or an unregulated power  
supply. A 100Ω/100nF RC decoupling network is recom-  
mended for the collector power connection to protect the  
NPN from transients. The emitter of the NPN should be  
bypassed with a 1µF capacitor. Larger capacitance should  
be avoided since this will increase the wake-up time of the  
LTC6810. Some attention should be given to the thermal  
may be powered from a DC/DC  
REG  
converter, rather than the NPN pass transistor. An ideal  
circuit is based on Analog Devices’ LTC3990 step-down  
regulator, as shown in Figure 37. A 50Ω resistor is rec-  
ommended between the battery stack and the LTC3990  
input; this will prevent in-rush current when connecting  
to the stack and it will reduce conducted EMI. The EN pin  
should be connected to the DRIVE pin which will put the  
LTC3990 into a low power state when the LTC6810 is  
in the sleep state. In this mode, to avoid any contention  
characteristic of the NPN, as there can be significant heat  
ing with a high collector voltage.  
-
with the internally generated V  
, the load current on  
REGA  
the DRIVE pin should be less than 1µA to ensure that the  
internal regulator is disabled.  
100Ω  
LTC6810  
WDT  
DRIVE  
0.1µF  
DXT5551P5  
1µF  
ꢁꢂ  
ꢜ.ꢝꢀ  
V
REG  
ꢞꢁꢂꢁꢞꢎꢞ  
ꢊ.ꢑꢑꢒꢓ  
ꢈꢈꢒꢚ  
ꢃꢄꢄꢅꢆ  
ꢈꢉꢉꢊ  
ꢌꢂꢍꢎꢀꢇꢄ ꢅꢋ  
DTEN  
ꢁꢂ  
V
REF1  
Rꢌꢐ  
V
ꢝꢀ  
ꢡRꢁꢀꢌ  
ꢑ.ꢑꢒꢓ  
REF2  
ꢖꢊꢟA  
ꢏꢐ  
ꢃꢡ  
1µF  
GPIO4  
ꢑꢑꢔꢓ  
ꢠꢞ  
1µF  
V
Rꢆ  
ꢓꢃ  
ꢑꢑꢒꢓ  
V
ꢐꢂꢡ  
ꢈꢕꢖꢗ  
ꢘ ꢙ ꢖꢊꢊꢗꢚꢛ  
ꢈꢠꢜꢗ  
GPIO3  
68101 F36  
ꢜꢢꢠꢊꢠ ꢓꢈꢕ  
Figure 36. Simple VREG Power Source Using NPN Pass Transistor  
Figure 37. VREG Powered from Cell Stack with High  
Efficiency Regulator  
Rev. A  
70  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
INTERNAL PROTECTION AND FILTERING  
structure is the same. Zener-like suppressors are shown  
with their nominal clamp voltage, and the unmarked  
diodes exhibit standard PN junction behavior.  
Internal Protection Features  
The LTC6810 incorporates various ESD safeguards  
to ensure robust performance. An equivalent circuit  
showing the specific protection structures is shown in  
Figure 38. While pins 34 to 39 have different functionality  
for the LTC6810-1 and LTC6810-2 variants, the protection  
Filtering of Cell and GPIO Inputs  
The LTC6810 uses a delta-sigma ADC, which has a delta  
sigma modulator followed by a SINC3 finite impulse  
response (FIR) digital filter. This greatly relaxes input  
filtering requirements. Furthermore, the programmable  
oversampling ratio allows the user to determine the best  
trade-off between measurement speed and filter cutoff  
frequency. Even with this high order low pass filter, fast  
transient noise can still induce some residual noise in  
measurements, especially in the faster conversion modes.  
This can be minimized by adding an RC low pass decou-  
pling to each ADC input, which also helps reject potentially  
damaging high energy transients. Adding more than about  
100Ω to the ADC inputs begins to introduce a systematic  
error in the measurement, which can be improved by rais-  
ing the filter capacitance or mathematically compensating  
in software with a calibration procedure. For situations  
that demand the highest level of battery voltage ripple  
rejection, grounded capacitor filtering is recommended.  
This configuration has a series resistance and capacitors  
that decouple HF noise to V–. In systems where noise  
is less periodic or higher oversample rates are in use, a  
differential capacitor filter structure is adequate. In this  
configuration there are series resistors to each input,  
but the capacitors connect between the adjacent C pins.  
However, the differential capacitor sections interact. As a  
result, the filter response is less consistent and results  
in less attenuation than predicted by the RC, by approxi-  
mately a decade. Note that the capacitors only see one  
cell of applied voltage (thus smaller and lower cost) and  
tend to distribute transient energy uniformly across the IC  
(reducing stress events on the internal protection struc-  
ture). Figure 39 shows the two methods schematically.  
ADC accuracy varies with R, C as shown in the Typical  
Performance curves, but error is minimized if R = 100Ω  
and C = 10nF. The GPIO pins will always use a grounded  
capacitor configuration because the measurements are  
all with respect to V–.  
LTC6810  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
+
V
WDT  
SDI  
3
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
27  
26  
25  
20  
19  
18  
24V  
24V  
SDO  
C6  
S6  
C5  
S5  
C4  
S4  
C3  
S3  
C2  
S2  
C1  
S1  
C0  
S0  
IPB/A3  
IMB/A2  
SCK  
4
24V  
24V  
24V  
24V  
24V  
24V  
12V  
5
24V  
24V  
24V  
24V  
24V  
24V  
24V  
6
24V  
24V  
12V  
CSB  
7
24V  
24V  
24V  
ICMP/A1  
IBIAS/A0  
DRIVE  
8
24V  
9
10  
11  
12  
13  
14  
15  
16  
17  
28  
29  
V
REG  
V
V
REF2  
REF1  
24V  
ISOMD  
DTEN  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
V
25Ω  
68101 F39  
NOTE: NOT SHOWN ARE PN DIODES TO ALL OTHER PINS FROM PIN 28  
Figure 38. Internal ESD Protection Structures of the LTC6810  
Rev. A  
71  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
100Ω  
100Ω  
R
ꢇꢐꢑR  
ꢇꢐꢑR  
ꢇꢐꢑR  
ꢂꢃꢄꢅꢆ  
C2  
S2  
C1  
S1  
C0  
S0  
C2  
S2  
C1  
ꢊꢋꢌꢅꢍ  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
R
R
DIS  
DIS  
R
R
R
ꢒꢐꢎꢂꢓARꢔꢑ  
ꢊꢋꢌꢅꢍ  
ꢇꢐꢑR  
100Ω  
100Ω  
R
R
ꢊꢋꢍ  
LTC6810  
LTC6810  
R
R
DIS  
DIS  
ꢒꢐꢎꢂꢓARꢔꢑ  
ꢊꢋꢍ  
S1  
C0  
S0  
ꢇꢐꢑR  
100Ω  
100Ω  
ꢊꢋꢏꢅꢍ  
R
R
DIS  
DIS  
ꢒꢐꢎꢂꢓARꢔꢑ  
ꢊꢋꢏꢅꢍ  
V
V
ꢃꢄꢅꢆꢅ ꢇꢈꢅꢉ  
68101 F39  
GROUNDED CAPACITOR FILTER  
DIFFERENTIAL CAPACITOR FILTER  
a)  
Figure 39. Input Filter Structure Configurations  
ꢂꢃꢄꢅꢆ  
ꢂꢃꢄꢅꢆ  
ꢊꢋꢌꢅꢍ  
ꢊꢋꢌꢅꢍ  
R
R
R
R
R
R
ꢐꢑꢎꢂꢒARꢓꢔ  
ꢐꢑꢎꢂꢒARꢓꢔ  
ꢐꢑꢎꢂꢒARꢓꢔ  
ꢐꢑꢎꢂꢒARꢓꢔ  
ꢊꢋꢌꢅꢍ  
ꢊꢋꢌꢅꢍ  
CELL BALANCING  
The LTC6810 includes signals (pins S0 through S6) that  
can be used to balance cells with internal or external  
discharge. Cells can be discharged using the internal  
N-channel NMOS at the S pins, or the S pins can act  
as digital outputs to drive external transistors. Figure 40  
shows an example of internal cell balancing using  
the LTC6810.  
ꢊꢋꢍ  
ꢊꢋꢍ  
ꢐꢑꢎꢂꢒARꢓꢔ  
ꢊꢋꢍ  
ꢊꢋꢍ  
ꢊꢋꢏꢅꢍ  
ꢊꢋꢏꢅꢍ  
ꢐꢑꢎꢂꢒARꢓꢔ  
ꢊꢋꢏꢅꢍ  
ꢊꢋꢏꢅꢍ  
ꢃꢄꢅꢆꢅ ꢇꢈꢅꢉ  
Choosing a Discharge Resistor  
b)  
When sizing the balancing resistor it is important to know  
the typical battery imbalance and the allowable time for  
cell balancing. In most small battery applications it is rea-  
sonable for the balancing circuitry to be able to correct  
for a 5% SOC (State Of Charge) error with 5 hours of  
balancing. For example a 5AHr battery with a 5% SOC  
imbalance will have approximately 250mAHrs of imbal-  
ance. Using a 50mA balancing current this could be cor-  
rected in 5 hours. With a 100mA balancing current, the  
error would be corrected in 2.5Hrs. In systems with very  
large batteries it becomes difficult to use passive balanc-  
ing to correct large SOC imbalances in short periods of  
time. The excessive heat created during balancing gener-  
ally limits the balancing current. In large capacity battery  
Figure 40. Internal Discharge Circuits  
applications if short balancing times are required an active  
balancing solution should be considered. When choosing  
a balance resistor the following equations can be used to  
help determine a resistor value:  
%SOC_Imbalance • BatteryCapacity  
Balance Current =  
Number of Hours to Balance  
Nominal Cell Voltage  
Balance Resistor =  
Balance Current  
Rev. A  
72  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
With passive balancing, if one cell in a series stack  
becomes overcharged, an S output can slowly discharge  
this cell by connecting it to a resistor. Each S output is  
connected to an internal N-channel MOSFET with a maxi-  
mum on resistance of 4Ω. An external resistor should be  
connected in series with these MOSFETs to allow most of  
the heat to be dissipated outside of the LTC6810 package,  
as illustrated in Figure 40.  
Figure 40b shows the discharge current path thru the  
internal discharge switches. Asserting adjacent discharge  
switches will result in a current path shown on the right  
in Figure 40b. The LTC6810 does not allow adjacent  
discharge switches to be asserted, so the WRFG command  
will not be executed if adjacent DCC bits in the CONFIG  
register are asserted. The current path shown at the right  
of Figure 40b shows that if adjacent discharges switches  
were permitted to be on, discharge current would flow  
through the series combination of cells instead of the  
individual cells.  
Cell Balancing with Internal MOSFETs  
The internal discharge switches (MOSFETs) S1 through  
S6 can be used to passively balance cells as shown in  
Figure 40a with balancing current of 150mA or less.  
Balancing current larger than 150mA is not recommended  
for the internal switches due to excessive die heating.  
When discharging cells with the internal discharge  
switches, the die temperature should be monitored.  
Cell Balancing with External Transistors  
For applications that require balancing currents above  
150mA, the S outputs can be used to control external  
transistors. The S pins can act as digital outputs suitable  
for driving the gate of an external MOSFET or the base  
of an external NPN as illustrated in Figure 41. Figure 41  
shows external transistor circuits that include RC filtering.  
100Ω  
100Ω  
C2  
C2  
10nF  
10nF  
R
R
R
R
R
R
DIS  
DIS  
DIS  
DIS  
LTC6810  
LTC6810  
NPN  
NPN  
S2  
C1  
S1  
C0  
S0  
S2  
C1  
S1  
C0  
S0  
1k  
9.1V  
1k  
1k  
1k  
B1  
B1  
100Ω  
100Ω  
100Ω  
100Ω  
10nF  
10nF  
DIS  
1k  
9.1V  
B2  
B2  
10nF  
10nF  
DIS  
Q3  
NPN  
1k  
9.1V  
V
V
68101 F41  
Figure 41. External Discharge Circuit  
Rev. A  
73  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
Table 55. Discharge Control During an ADCV Command with DCP = 0  
CELLMEASUREMENTPERIODS  
CELLCALIBRATIONPERIODS  
CELL2 CELL3 CELL4 CELL5  
CELL1  
CELL2  
CELL3  
CELL4  
CELL5  
CELL6  
CELL1  
tot  
CELL6  
tot  
DISCHARGE  
PIN  
t tot  
0
t
1M  
tot  
t
2M  
tot  
t
tot  
t
4M  
tot  
t
tot  
t
t
tot  
t
tot  
t
tot  
t
tot  
t
1M  
2M  
3M  
3M  
4M  
5M  
5M  
6M  
6M  
1C  
1C  
2C  
2C  
3C  
3C  
4C  
4C  
5C  
5C  
6C  
S1  
S2  
S3  
S4  
S5  
S6  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
ON  
ON  
DISCHARGE CONTROL DURING CELL  
MEASUREMENTS  
command. This allows the cell voltage to settle before  
any measurement is taken. After the cell conversion com-  
pletes an UNMUTE can be sent to re-enable all discharge  
transistors that were previously ON. Using this method  
maximizes the measurement accuracy with a very small  
time penalty.  
If the discharge permitted (DCP) bit is high at the time of  
a cell measurement command, the S pin discharge states  
do not change during cell measurements. However, if the  
DCP bit is low, S pin discharge states will be disabled  
while the corresponding cell or adjacent cells are being  
measured. If using an external discharge transistor, the  
relatively low 1kΩ impedance of the internal LTC6810  
PMOS transistors should allow the discharge currents  
to fully turn off before the cell measurement. Table 55  
illustrates the ADCV command with DCP = 0. In this  
table, OFF indicates that the S pin discharge is forced  
off irrespective of the state of the corresponding DCC[x]  
bit. ON indicates that the S pin discharge will remain on  
during the measurement period if it was ON prior to the  
measurement command.  
Method to Verify Discharge Circuits  
When using the internal and external discharge feature,  
the ability to verify the discharge functionality can be  
verified in software. The discharge circuits are shown in  
Figures 40 and 41. The functionality of the discharge cir-  
cuits can be verified by implementing a redundant S pin  
measurement and comparing it to a C pin measurement.  
The S pins on the LTC6810 have two purposes, to pro-  
vide internal discharge or turn on the external discharge  
device but also to allow for a redundant cell measure-  
ment. Asserting the SCONV bit in the config register will  
enable the redundant S pin cell measurements. The S pin  
measurements taken when the discharge is on require  
that the discharge permit bit (DCP) be set. The S pin  
measurements when discharge is on will be a function of  
the external discharge resistors but will generally be sub-  
stantially less than C pin measurements. The resistance  
of the internal discharge FET is approximately 10Ω, if the  
external discharge resistor in Figure 40 is also 10Ω, the  
S pin measurement when discharge is on will be 1/3 of  
the C pin measurement.  
In some cases it is not possible for the automatic dis-  
charge control to eliminate all measurement error caused  
by running the discharges. This is due to the discharge  
transistor not turning off fast enough for the cell voltage  
to completely settle before the measurement starts. For  
the best measurement accuracy when running discharge,  
the MUTE and UNMUTE commands should be used. The  
MUTE command can be issued to temporarily disable  
all discharge transistors before the ADCV command is  
issued. After issuing a MUTE command a delay of roughly  
50µS should be issued before sending a ADC conversion  
Rev. A  
74  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
Seven Cell Application with Redundant Measurement  
is added to the C0 pin as shown in Figure 42. A redundant  
measurement can be made by with the S0 pin. Asserting  
the SCONV bit in the configuration register and using the  
ADCVAX command will combine the six cell measure-  
ments with redundancy along with measurements of S0  
and GPIO1. Figure 43 shows the seven cell application  
where the S pins are used to drive the gates of external  
MOSFETs. An external PFET is used to discharge Cell 0.  
The LTC6810 has the ability to measure an additional sev-  
enth cell with redundancy and internal discharge capa-  
bility. In six cell applications C0 is connected to V . An  
additional seventh cell, Cell 0, can be connected between  
C0 and V as shown in Figure 42. The primary cell mea-  
surement is done by connecting GPIO1 to C0 and using  
the ADAX command to measure Cell 0. External filtering  
R
ꢇꢍꢎR  
ꢂꢃꢄꢅꢆ  
ꢂꢃꢄꢅꢆ  
ꢂꢉ  
ꢊꢉ  
R
R
ꢇꢏꢐR  
R
ꢕꢍꢊ  
ꢂꢃ  
ꢊꢃ  
ꢇꢍꢎR  
ꢇꢍꢎR  
ꢇꢍꢎR  
R
R
R
R
R
R
R
ꢑꢏꢊꢂꢒARꢓꢐ  
ꢉꢏꢐꢆꢆꢉꢑꢒ  
ꢂꢐꢀꢀꢃ  
ꢂꢐꢀꢀꢋ  
ꢂꢐꢀꢀꢈ  
ꢂꢐꢀꢀꢉ  
ꢂꢐꢀꢀꢌ  
ꢂꢐꢀꢀꢅ  
ꢂꢐꢀꢀꢆ  
ꢂꢎꢀꢀꢉ  
ꢂꢎꢀꢀꢅ  
ꢂꢎꢀꢀꢆ  
ꢇꢏꢐR  
ꢅꢓ  
ꢇꢏꢐR  
ꢇꢏꢐR  
ꢂꢋ  
ꢊꢋ  
ꢔ.ꢅꢋ  
ꢑꢏꢊꢂꢒARꢓꢐ  
R
ꢇꢍꢎR  
R
ꢇꢏꢐR  
ꢂꢅ  
ꢊꢅ  
ꢂꢈ  
ꢊꢈ  
R
ꢕꢍꢊ  
ꢑꢏꢊꢂꢒARꢓꢐ  
R
R
ꢇꢏꢐR  
ꢇꢏꢐR  
ꢉꢏꢐꢆꢆꢉꢑꢒ  
ꢂꢉ  
ꢊꢉ  
ꢅꢓ  
ꢑꢏꢊꢂꢒARꢓꢐ  
ꢔ.ꢅꢋ  
ꢇꢏꢐR  
ꢇꢏꢐR  
ꢇꢏꢐR  
ꢇꢏꢐR  
ꢂꢌ  
ꢊꢌ  
R
ꢇꢍꢎR  
ꢑꢏꢊꢂꢒARꢓꢐ  
ꢂꢆ  
ꢊꢆ  
R
R
ꢕꢍꢊ  
R
R
ꢇꢏꢐR  
ꢂꢅ  
ꢊꢅ  
ꢉꢏꢐꢆꢆꢉꢑꢒ  
ꢑꢏꢊꢂꢒARꢓꢐ  
ꢅꢓ  
ꢖꢗꢍꢘꢅ  
ꢇꢏꢐR  
ꢂꢆ  
ꢊꢆ  
ꢕꢍꢊ  
ꢑꢏꢊꢂꢒARꢓꢐ  
ꢓꢕꢏꢖꢅ  
Rꢙꢚꢆꢛꢆꢛꢗꢖꢕ  
ꢇꢏꢐR  
ꢃꢄꢅꢆꢅ ꢇꢈꢉ  
ꢃꢄꢅꢆꢅ ꢇꢈꢈ  
Figure 42. Seven Cell with Internal Discharge  
Figure 43. Seven Cell with External Discharge  
Rev. A  
75  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
DIGITAL COMMUNICATIONS  
The C code below provides a simple implementation of  
a lookup table derived PEC calculation method. There  
are two functions. The first function init_PEC15_Table()  
should only be called once when the microcontroller starts  
and will initialize a PEC15 table array called pec15Table[].  
This table will be used in all future PEC calculations. The  
PEC15 table can also be hard coded into the microcon-  
troller rather than running the init_PEC15_Table() func-  
tion at startup. The pec15() function calculates the PEC  
and will return the correct 15 bit PEC for byte arrays of  
any given length.  
PEC Calculation  
The Packet Error Code (PEC) can be used to ensure that  
the serial data read from the LTC6810 is valid and has not  
been corrupted. This is a critical feature for reliable com-  
munication, particularly in environments of high noise.  
The LTC6810 requires that a PEC be calculated for all  
data being read from and written to the LTC6810. For  
this reason it is important to have an efficient method for  
calculating the PEC.  
/************************************  
Copyright 2012 Analog Devices, Inc.  
Permission to freely use, copy, modify, and distribute this software for any  
purpose with or without fee is hereby granted, provided that the above  
copyright notice and this permission notice appear in all copies:  
THIS SOFTWARE IS PROVIDED “AS IS” AND LTC DISCLAIMS ALL WARRANTIES  
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO  
EVENT SHALL LTC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL  
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY USE OF SAME, INCLUDING  
ANY LOSS OF USE OR DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE  
OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR  
PERFORMANCE OF THIS SOFTWARE.  
***********************************************************/  
int16 pec15Table[256];  
int16 CRC15_POLY = 0x4599;  
void init_PEC15_Table()  
{
for (int i = 0; i < 256; i++)  
{
remainder = i << 7;  
for (int bit = 8; bit > 0; --bit)  
{
if (remainder & 0x4000)  
{
remainder = ((remainder << 1));  
remainder = (remainder ^ CRC15_POLY)  
}
else  
{
remainder = ((remainder << 1));  
}
}
pec15Table[i] = remainder&0xFFFF;  
}
}
unsigned int16 pec15 (char *data , int len)  
{
int16 remainder,address;  
remainder = 16;//PEC seed  
for (int i = 0; i < len; i++)  
{
address = ((remainder >> 7) ^ data[i]) & 0xff;//calculate PEC table address  
remainder = (remainder << 8 ) ^ pec15Table[address];  
}
return (remainder*2);//The CRC15 has a 0 in the LSB so the final value must be multiplied by 2  
}
Rev. A  
76  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
isoSPI IBIAS and ICMP Setup  
Select I and K (Signal Amplitude V to Receiver input  
B A  
threshold ratio) according to the application:  
The LTC6810 allows the isoSPI links of each application to  
be optimized for power consumption or for noise immu-  
nity. The power and noise immunity of an isoSPI system is  
determined by the programmed IB current, which controls  
For lower power links: I = 0.5mA and K = 0.5  
B
For full power links: I = 1mA and K = 0.5  
B
For long links (>50m): I = 1mA and K = 0.25  
the isoSPI signaling currents. Bias current I can range  
B
B
from 100μA to 1mA. Internal circuitry scales up this bias  
current to create the isoSPI signal currents equal to be  
20 • IB. A low IB reduces the isoSPI power consump-  
tion in the READY and ACTIVE states, while a high IB  
increases the amplitude of the differential signal voltage  
For addressable multidrop: I = 1mA and K = 0.4  
B
For applications with little system noise, setting IB to  
0.5mA is a good compromise between power consump-  
tion and noise immunity. Using this IB setting with a  
1:1 transformer and RM = 100Ω, RB1 should be set to  
V across the matching termination resistor, R . The I  
A
M
B
3.01k and R set to 1k. With typical CAT5 twisted pair,  
B2  
current is programmed by the sum of the R and R  
B1  
B2  
these settings will allow for communication up to 50m.  
Applications in very noisy environments or with cables  
resistors connected between the 2V IBIAS pin and GND  
as shown in Figure 44. The receiver input threshold is set  
by the ICMP voltage that is programmed with the resistor  
longer than 50m should increase the I to 1mA. Higher  
B
drive current compensates for the increased insertion  
loss in the cable and provides high noise immunity.  
When using cables over 50m and a transformer with a  
divider created by the R and R resistors. The receiver  
B1  
B2  
differential threshold will be half of the voltage present on  
the ICMP pin.  
1:1 turns ratio and R = 100Ω, R would be 1.5k and  
M
B1  
The following guidelines should be used when setting the  
bias current (100µA to 1mA) IB and the receiver compara-  
R
would be 499Ω.  
B2  
The length of the cable determines the maximum clock  
rate of an isoSPI link. For cables 10 meters or less, the  
maximum 1MHz SPI clock frequency is possible. As the  
length of the cable increases, the maximum possible SPI  
clock rate decreases. This dependence is a result of the  
increased propagation delays that can create possible tim-  
ing violations. Figure 45 shows how the maximum data  
rate reduces as the cable length increases when using a  
CAT 5 twisted pair.  
tor threshold voltage V /2:  
ICMP  
R = Transmission Line Characteristic Impedance Z0  
M
Signal Amplitude V = (20 • I ) • (R /2)  
A
B
M
V
TCMP  
V
ICMP  
(Receiver Comparator Threshold) = K • V  
A
(Voltage on ICMP pin) = 2 • V  
TCMP  
R
B2  
R
B1  
= V  
/I = 20 • K • R  
ICMP B M  
= (2/I ) – R  
B
B2  
ꢁꢃꢄꢔAꢕꢁꢄꢛ ꢋARRꢁꢇR  
ꢜꢀAꢝ ꢞꢃꢇ ꢄꢛꢇ ꢄR ꢕꢘꢄ ꢕRAꢛꢑꢄRꢀꢇRꢃꢟ  
ꢁꢃꢄꢀꢅ ꢁꢂꢋ  
ꢌꢍꢎꢏꢐ  
ꢁꢂA ꢁꢃꢄꢀꢅ  
ꢌꢍꢎꢏꢐ  
Rꢇꢈ  
ꢀAꢃꢕꢇR  
R
R
A
A
ꢖꢆ  
ꢖꢆ  
ꢃꢅꢄ  
ꢃꢅꢁ  
ꢃꢌꢗ  
CS  
ꢀꢄꢃꢁ  
ꢁꢀꢋ  
ꢁꢀA  
ꢕꢘꢁꢃꢕꢇꢅꢙꢂAꢁR ꢌAꢋꢔꢇ  
ꢘꢁꢕꢚ ꢌꢚARAꢌꢕꢇRꢁꢃꢕꢁꢌ ꢁꢀꢂꢇꢅAꢛꢌꢇ R  
ꢀꢁꢃꢄ  
ꢃꢌꢗ  
CS  
ꢁꢋꢁAꢃ  
ꢁꢋꢁAꢃ  
R
R
R
R
ꢋꢏ  
ꢋꢖ  
ꢋꢏ  
ꢋꢖ  
ꢁꢌꢀꢂ  
ꢁꢌꢀꢂ  
ꢍꢎꢏꢐꢏ ꢑꢒꢓ  
Figure 44. isoSPI Circuit  
Rev. A  
77  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
ꢌ.ꢒ  
they may be preferred. In this case, the addition of a split  
termination resistor and a bypass capacitor (Figure 46a)  
can enhance the isoSPI performance. Large center tap  
capacitors greater than 10nF should be avoided as they  
may prevent the isoSPI common mode voltage from  
settling. Common mode chokes similar to those used  
in Ethernet or CANbus applications are recommended.  
Specific examples are provided in Table 57.  
ꢀAꢆꢖꢗ Aꢊꢊꢘꢉꢃꢎ  
ꢌ.ꢍ  
ꢍ.ꢕ  
ꢍ.ꢔ  
ꢍ.ꢓ  
ꢍ.ꢒ  
IP  
XFMR  
ꢌꢍ  
ꢌꢍꢍ  
49.9Ω 100µH CMC  
ꢀAꢁꢂꢃ ꢂꢃꢄꢅꢆꢇ ꢈꢉꢃꢆꢃRꢊꢋ  
LTC6810  
isoSPI LINK  
ꢔꢕꢒꢍ ꢆAꢍꢌꢏ  
49.9Ω  
10nF  
IM  
Figure 45. Data Rate vs Cable Length  
V
Cable delay affects three timing specifications, tCLK, t6 and  
7
by 100ns to allow for 50ns of cable delay. For longer  
cables, the minimum timing parameters obey the follow-  
ing relationship:  
a)  
t . In the Electrical Characteristics table, each is derated  
IP  
CT XFMR  
51Ω  
51Ω  
100µH CMC  
LTC6810  
isoSPI LINK  
10nF  
IM  
10nF  
t
, t and t > 0.9μs + 2 • t  
(0.2m per nS)  
CLK  
6
7
CABLE  
V
68101 F46  
Implementing a Modular isoSPI Daisy Chain  
b)  
The hardware design of a daisy-chain isoSPI bus is identi-  
cal for each device in the network due to the daisy-chain  
point-to-point architecture. The simple design as shown in  
Figure 44 is functional, but inadequate for most designs.  
The use of cables between battery modules, particularly  
in automotive applications, can add noise to the com-  
munication lines. Therefore, the termination resistor RM  
should be split and bypassed with a capacitor as shown  
in Figure 46. This change provides both a differential and  
a common mode termination, which increases the system  
noise immunity.  
Figure 46. Daisy Chain Interface Components  
An important daisy chain design consideration is the num-  
ber of devices in the isoSPI network, since this determines  
the serial timing and affects data latency and throughput.  
The maximum number of devices in an isoSPI daisy chain  
is dictated by the serial timing requirements. However, it  
is important to note that the serial read back time, and the  
increased current consumption, might present a practical  
limitation.  
For a daisy chain, there are two timing consideration  
that must be made (see Figure 29) to guarantee proper  
operation:  
For high levels of electromagnetic interference (EMC),  
additional filtering is recommended. The circuit example in  
Figure 46 shows the use of common-mode chokes (CMC)  
to add common-mode noise rejection from transients  
on the battery lines. The use of a center tapped trans-  
former will also provide additional noise performance. A  
bypass capacitor connected to the center tap creates a low  
impedance for common-mode noise (Figure 46b). Since  
transformers without a center tap can be less expensive,  
1. t , the time between the last clock and the rising chip  
6
select must be long enough.  
2. t , the time between commands, so the time from a  
5
rising chip select to the next falling chip select must  
be long enough.  
Rev. A  
78  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
IPB  
49.9Ω  
LTC6810  
10nF  
49.9Ω  
GNDD  
IMB  
1k  
1k  
IBIAS  
ICMP  
GNDD  
IPA  
49.9Ω  
49.9Ω  
10nF  
GNDD  
CT  
10nF*  
GNDD  
V
IMA  
GNDD  
T1  
CT  
10nF*  
GNDC  
IPB  
49.9Ω  
LTC6810  
10nF  
49.9Ω  
1k  
GNDC  
IMB  
1k  
IBIAS  
ICMP  
GNDC  
IPA  
49.9Ω  
49.9Ω  
10nF  
GNDC  
CT  
10nF*  
GNDC  
V
IMA  
GNDC  
T2  
CT  
10nF*  
GNDB  
IPB  
49.9Ω  
LTC6810  
10nF  
49.9Ω  
1k  
GNDB  
IMB  
1k  
IBIAS  
ICMP  
GNDB  
LTC6820  
IP  
IPA  
49.9Ω  
49.9Ω  
49.9Ω  
49.9Ω  
1k  
1k  
IBIAS  
ICMP  
CT  
CT  
10nF  
10nF  
10nF*  
10nF*  
GNDA  
GNDB GNDB  
GNDA  
GNDA  
V
IMA  
IM  
V
GNDB  
GNDA  
68101 F47  
* IF TRANSFORMER BEING USED HAS A CENTER TAP, IT SHOULD BE BYPASSED WITH A 10nF CAP  
Figure 47. Daisy Chain Interface Components on Single Board  
Rev. A  
79  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
Both t5 and t6 must be lengthened as the number of  
LTC6810 devices in the daisy chain increase. The equa-  
tions for these times are below:  
on the same PCB, communicating to the bottom MCU  
through a LTC6820 isoSPI driver. If a transformer with  
a center tap is used, a capacitor can be added for better  
noise rejection. Additional noise filtering is provided with  
discrete common mode chokes (CMC) placed to both  
sides of the single transformer as shown in Figure 47.  
t > (#devices • 70ns) + 900ns  
5
t > (#devices • 70ns) + 950ns  
6
On single board designs with lower noise requirements,  
it is possible for a simplified capacitor-isolated coupling  
as shown in Figure 48 to replace the transformer. In this  
circuit the transformer is directly replaced with two 10nF  
capacitors. An optional common mode choke (CMC)  
helps provides noise rejection similar to application cir-  
cuits using transformers. The circuit is designed to use  
IBIAS/ICMP settings identical to the transformer circuit.  
Connecting Multiple LTC6810-1s on the Same PCB  
When connecting multiple LTC6810-1 devices on the  
same PCB, only a single transformer is required between  
the LTC6810-1 isoSPI ports. The absence of the cable also  
reduces the noise levels on the communication lines and  
often only a split termination is required. Figure 47 shows  
an example application that has multiple LTC6810-1s  
10nF  
V
REG  
ACT45B-101-2P-TL003  
IPB  
LTC6810  
49.9Ω 10nF  
49.9Ω  
C13  
10nF  
GNDB  
IMB  
1k  
1k  
IBIAS  
ICMP  
GNDB  
V
REG  
IPA  
49.9Ω 10nF  
49.9Ω  
V
GNDB  
ACT45B-101-2P-TL003  
IMA  
IPB  
GNDB  
10nF  
10nF  
V
REG  
LTC6810  
49.9Ω 10nF  
49.9Ω  
GNDA  
IMB  
1k  
1k  
IBIAS  
ICMP  
GNDA  
V
REG  
IPA  
49.9Ω 10nF  
49.9Ω  
V
GNDA  
IMA  
GNDA  
68101 F48  
Figure 48. Capacitive Isolation Coupling for LTC6810-1s on the Same PCB  
Rev. A  
80  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
Connecting an MCU to an LTC6810-1 with an isoSPI  
Data Link  
since only the addressed device returns data to the mas-  
ter. Generally, multi-drop systems are best confined to  
compact assemblies where they can avoid excessive iso-  
SPI pulse-distortion and EMC pickup.  
The LTC6820 will convert standard 4-wire SPI into a  
2-wire isoSPI link that can communicate directly with  
the LTC6810. An example is shown in Figure 49. The  
LTC6820 can be used in applications to easily provide  
isolation between the microcontroller and the stack of  
LTC6810s. The LTC6820 also enables system configura-  
tions that have the BMS controller at a remote location  
relative to the LTC6810 devices and the battery pack.  
Basic Connection of the LTC6810-2 in a Multi-Drop  
Configuration  
In a multi-drop isoSPI bus, placing the termination at the  
end of the transmission line provides the best perfor-  
mance (with 100Ω typically). Each of the LTC6810 isoSPI  
ports should be connected to the bus with a resistor net-  
work, as shown in Figure 51a. Here again, a center-tapped  
transformer offers the best performance and a common-  
mode-choke (CMC) increases the noise rejection further,  
as shown in Figure 51b. An RC snubber is used at the IC  
connections to suppress resonances (the IC capacitance  
provides sufficient out-of-band rejection). When using a  
non-center-tapped transformer, a virtual CT can be gen-  
erated by connecting a CMC as a voltage-splitter. Series  
resistors are recommended to decouple the LTC6810 and  
board parasitic capacitance from the transmission line.  
Reducing these parasitics on the transmission line will  
minimize reflections.  
Configuring the LTC6810-2 in a Multi-Drop isoSPI Link  
The addressing feature of the LTC6810-2 allows multiple  
devices to be connected to a single isoSPI master by dis-  
tributing them along one twisted pair. In effect, this creates  
a large parallel SPI network. A basic multi-drop system  
is shown in Figure 50; the twisted pair is terminated only  
at the beginning (master) and the end of the cable. In  
between, the additional LTC6810-2s are connected to  
short stubs on the twisted pair. These stubs should be  
kept short, with as little capacitance as possible, to avoid  
degrading the termination along the isoSPI wiring.  
When an LTC6810-2 is not addressed, it will not transmit  
data pulses. This eliminates the possibility for collisions  
+
IPB  
V
LTC6810  
49.9Ω  
10nF  
49.9Ω  
1k  
GNDB  
IMB  
1k  
IBIAS  
ICMP  
IPA  
IP  
LTC6820  
49.9Ω  
49.9Ω  
49.9Ω  
1k  
1k  
IBIAS  
ICMP  
10nF  
10nF  
GNDA  
49.9Ω  
GNDB  
GNDA  
V
GNDB  
IMA  
IM  
V
68101 F49  
GNDA  
Figure 49. Interfacing an LTC6810-1 with a µC Using an LTC6820 for Isolated SPI Control  
Rev. A  
81  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
V
REGC  
LTC6810  
ISOMD  
IPA  
IBIAS  
100Ω  
1.21k  
ICMP  
IMA  
806Ω  
GNDC  
V
GNDC  
V
REGB  
LTC6810  
ISOMD  
IPA  
IBIAS  
1.21k  
ICMP  
IMA  
806Ω  
GNDB  
V
100nF  
5V  
1.21k  
806Ω  
LTC6820  
DDS  
GNDB  
V
EN  
IBIAS  
ICMP  
GND  
SLOW  
MSTR  
IP  
1.21k  
MOSI  
MISO  
SCK  
CS  
µC  
SDO  
SDI  
SCK  
CS  
V
LTC6810  
ISOMD  
REGA  
5V  
IPA  
POL  
PHA  
IM  
IBIAS  
5V  
V
DD  
5V  
100Ω  
1.21k  
806Ω  
100nF  
ICMP  
IMA  
V
GNDA  
68101 F50  
GNDA  
Figure 50. Connecting the LTC6810-2 in a Multi-Drop Configuration  
Rev. A  
82  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
IPA  
22Ω  
22Ω  
100µH CMC HV XFMR  
isoSPI  
BUS  
100µH CMC  
10nF  
402Ω  
LTC6810  
15pF  
IMA  
V
a)  
IPA  
22Ω  
22Ω  
CT HV XFMR  
isoSPI  
BUS  
100µH CMC  
10nF  
402Ω  
LTC6810  
15pF  
IMA  
V
68101 F51  
b)  
Figure 51. Preferred isoSPI Bus Couplings For Use With LTC6810-2  
Rev. A  
83  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
Table 56. Recommended Transformers  
W
AEC-  
Q200  
SUPPLIER  
PART NUMBER  
TEMP RANGE  
V
V /60S CT CMC  
HIPOT  
H
L
(W/ LEADS) PINS  
WORKING  
Recommended Dual Transformers  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
Bourns  
Bourns  
Bourns  
Jingweida  
Halo  
SM91501AL  
SM13105L (AS4562)  
US4374  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 85/125°C  
–40°C to 125°C  
1000V  
1600V  
950V  
4.3kVdc  
5.0mm 15.0mm 14.7mm  
5.0mm 15.0mm 27.9mm  
4.9mm 15.6mm 24.0mm  
5.0mm 14.8mm 14.8mm  
12SMT  
12SMT  
12SMT  
12SMT  
16SMT  
12SMT  
16SMT  
10SMT  
12SMT  
16SMT  
16SMT  
16SMT  
12SMT  
12SMT  
4.3kVrms  
4.3kVdc  
4.3kVdc  
1.5kVrms  
l
l
l
S12502BA  
1000V  
TG110-AE050N5LF  
CLP178-C20114  
CLP0612-C20115  
HM2100NL  
60V (est)  
6.4mm 12.7mm  
9mm 17.5mm 15.1mm  
5.7mm 12.7mm 9.4mm  
9.5mm  
Sumida  
Sumida  
Pulse  
1000V (est) 3.75kVrms  
600Vrms  
1000V  
3.75kVrms  
4.3kVdc  
4.3kVdc  
1.5kVrms  
1.5kVrms  
4kVrms  
l
l
l
l
l
l
l
–40°C to 105°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
3.5mm 14.7mm 15.0mm  
3.5mm 14.7mm 15.5mm  
l
l
l
l
l
l
Pulse  
HM2112ZNL  
HX1188FNL  
1600V  
Pulse  
60V (est)  
60V (est)  
250Vrms  
1000V (est)  
250Vrms  
6.0mm 12.7mm  
2.1mm 12.7mm  
9.7mm  
9.7mm  
Pulse  
HX0068ANL  
Wurth  
Wurth  
Wurth  
7490140110  
7490140111  
749014018  
10.9mm 24.6mm 17.0mm  
8.4mm 17.1mm 15.2mm  
8.4mm 17.1mm 15.2mm  
4.5kVrms  
4kVrms  
l
0°C to 70°C  
Recommended Single Transformers  
l
l
l
l
l
l
l
l
l
l
Bourns  
Bourns  
Halo  
SM91502AL  
SM13102AL (US4195)  
TD04-QXLTAW  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 105°C  
–40°C to 125°C  
–40°C to 105°C  
–40°C to 125°C  
1000V  
800V  
4.3kVdc  
4kVrms  
5kVrms  
3kVrms  
3kVrms  
5kVrms  
4.3kVdc  
4.3kVdc  
4.3kVdc  
2.5kVrms  
2.5kVrms  
3kVrms  
6.5mm 8.5mm  
8.9mm  
6SMT  
6SMT  
6TH  
3.8mm 11.6mm 21.1mm  
1000V (est)  
300V  
8.6mm 8.9mm  
10mm 9.5mm  
9.4mm 8.9mm  
6.4mm 8.9mm  
6.3mm 7.6mm  
5.7mm 7.6mm  
16.6mm  
12.1mm  
12.1mm  
16.6mm  
9.9mm  
Halo  
TGR04-6506V6LF  
TGR04-A6506NA6NL  
TDR04-A550ALLF  
S06107BA  
6SMT  
6SMT  
6TH  
l
l
Halo  
300V  
Halo  
1000V  
l
l
l
Jingweida  
Pulse  
1000V (est)  
1000V  
6SMT  
6SMT  
6SMT  
4SMT  
8SMT  
4SMT  
4SMT  
6SMT  
6SMT  
8SMT  
6SMT  
4SMT  
6SMT  
l
l
HM2101NL  
9.3mm  
l
Pulse  
HM2113ZNL  
1600V  
3.5mm  
7mm  
9mm  
15.5mm  
12.0mm  
12.0mm  
9.1mm  
Sumida  
Sumida  
Sumida  
Sumida  
TDK  
CEEH96BNP-LTC6804/11 –40°C to 125°C  
600V  
9.2mm  
l
CEP99NP-LTC6804  
ESMIT-4180/A  
–40°C to 125°C  
–40°C to 105°C  
600V  
10mm 9.2mm  
3.5mm 5.2mm  
3.5mm 7.5mm  
4.0mm 8.5mm  
2.9mm 3.2mm  
l
l
l
l
l
l
250Vrms  
ESMIT-4187  
–40°C to 105°C >400Vrms (est) 2.5kVrms  
12.8mm  
13.8mm  
4.5mm  
l
l
l
l
VMT40DR-201S2P4  
ALT4532V-201-T001  
VGT10/9EE-204S2P4  
ALTW0806C-C03  
750340848  
–40°C to 125°C  
–40°C to 105°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 105°C  
–40°C to 85°C  
600V (est)  
80V  
3.4kVdc  
~1kV  
TDK  
TDK  
700V  
2.8kVrms  
3kVrms  
3kVrms  
2.9kVrms  
10.6mm 10.4mm 12.6mm  
Sunlord  
Wurth  
XFMRS  
300V (est)  
250V  
8.8mm 6.3mm  
2.2mm 4.4mm  
8.9mm  
9.1mm  
l
l
l
XFBMC29-BA09  
1600V (est)  
5.0mm 10.0mm 19.5mm  
Rev. A  
84  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
Transformer Selection Guide  
long-term (‘permanent’) rating of the part. For example,  
according to most safety standards a 1.5kV rated trans-  
former is expected to handle 230V continuously, and a  
3kV device is capable of 1100V long-term, though manu-  
facturers may not always certify to those levels (refer to  
actual vendor data for specifics). Usually the higher volt-  
age transformers are called ‘high-isolation’ or ‘reinforced  
insulation’ types by the suppliers. Table 56 shows a list  
of transformers that have been evaluated in isoSPI links.  
As shown in Figure 44, a transformer or pair of trans-  
formers are used to isolate the isoSPI signals between  
two isoSPI ports. The isoSPI signals have programmable  
pulse amplitudes up to 1.6V and pulse widths of 50ns  
P-P  
and 150ns. To be able to transmit these pulses with the  
necessary fidelity the system requires that the transform-  
ers have primary inductances above 60µH and a 1:1 turns  
ratio. It is also necessary to use a transformer with less  
than 2.5µH of leakage inductance. In terms of pulse shape  
the primary inductance will mostly effect the pulse droop  
of the 50ns and 150ns pulses. If the primary inductance is  
too low the pulse amplitude will begin to droop and decay  
over the pulse period, if the pulse droop is severe the  
In most applications a common mode choke is also nec-  
essary for noise rejection. Table 57 includes a list of suit-  
able CMCs if the CMC is not already integrated into the  
transformer being used.  
Table 57. Recommended Common Mode Chokes  
effective pulse width seen by the receiver will drop, reduc  
-
MANUFACTURER  
TDK  
PART NUMBER  
ACT45B-101-2P  
DLW43SH101XK2  
ing noise margin. Some droop is acceptable as long as it  
is a relatively small percentage of the total pulse ampli-  
tude. The leakage inductance will primarily effect the rise  
and fall times of the pulses. Slower rise and fall times will  
effectively reduce the pulse width. Pulse width is deter-  
mined by the receiver as the time the signal is above the  
threshold set at the ICMP pin. This means that slow rise  
and fall times cut into the timing margins. Generally it  
is best to keep pulse edges as fast as possible. When  
evaluating transformers it is also worth noting is the par-  
allel winding capacitance. While transformers have very  
good CMRR at low frequency, this rejection will degrade  
at higher frequencies and this is largely due to the winding  
to winding capacitance. So when choosing a transformer  
it is best to pick one with less parallel winding capacitance  
when possible.  
Murata  
isoSPI Layout Guidelines  
Layout of the isoSPI signal lines also plays a significant  
role in maximizing the noise immunity of a data link. The  
following layout guidelines are recommended:  
1. The transformer should be placed as close to the  
isoSPI cable connector as possible. The distance  
should be kept less than 2cm. The LTC6810 should  
be placed close to but at least 1cm to 2cm away from  
the transformer to help isolate the IC from magnetic  
field coupling.  
2. A V– ground plane should not extend under the trans-  
former, the isoSPI connector, or in between the trans-  
former and the connector.  
When choosing a transformer it is equally important to  
pick a part that has an adequate isolation rating for the  
application. The working voltage rating of a transformer  
is a key spec when selecting a part for an applications.  
Interconnecting daisy chain links between LTC6810-1  
devices will typically see <60V stress, so ordinary pulse  
and LAN type transformers will suffice. Multi-drop con-  
nections and connections to the LTC6820 in general may  
need much higher working voltage ratings for good long-  
term reliability. Usually matching the working voltage to  
the voltage of the entire battery stack is conservative.  
Unfortunately, transformer vendors will often only spec-  
ify one-second HV testing, and this is not equal to the  
3. The isoSPI signal traces should be as direct as pos-  
sible while isolated from adjacent circuitry by ground  
metal or space. No traces should cross the isoSPI  
signal lines, unless separated by a ground plane on  
an inner layer.  
System Supply Current  
The LTC6810 has various supply current specifications  
for the different states of operation. The average supply  
current dependents on the control loop in the system. It  
Rev. A  
85  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
Table 58. Daisy Chain Serial Time Equations  
DATA BYTES  
COMMAND TYPE  
Read  
CMD BYTES + CMD PEC  
+ DATA PEC PER IC  
TOTAL BITS  
(4 + (8 • #ICs)) • 8  
(4 + (8 • #ICs)) • 8  
4 • 8 = 32  
COMMUNICATION TIME  
Total Bits • Clock Period  
Total Bits • Clock Period  
32 • Clock Period  
4
4
4
8
8
0
Write  
Operation  
Table 59. Multi-Drop Serial Time Equations  
DATA BYTES  
COMMAND TYPE  
Read  
CMD BYTES + CMD PEC  
+ DATA PEC PER IC  
TOTAL BITS  
((4 + 8) • #ICs) • 8  
((4 + 8) • #ICs) • 8  
4 • 8 = 32  
COMMUNICATION TIME  
Total Bits • Clock Period  
Total Bits • Clock Period  
32 • Clock Period  
4
4
4
8
8
0
Write  
Operation  
is necessary to know which commands are being exe-  
cuted each control loop cycle, and the duration of the  
control loop cycle. From this information it is possible  
to determine the percentage of time the LTC6810 is in  
the measure state versus the low power sleep state. The  
amount of isoSPI or SPI communication will also affect  
the average supply current.  
Hall-Effect sensor that produces two outputs that propor-  
tion to the V provided. The sensor in the figure has two  
CC  
bidirectional outputs centered at half of supply, CH1 is a  
0A to 50A low range and CH2 is a 0A to 200A high range.  
The sensor is powered from a 5V source and produces  
analog outputs that are connected to GPIO pins or inputs  
of the MUX application shown in Figure 54. The use of  
GPIO1 and GPIO2 as the ADC inputs has the possibility  
of being digitized within the same conversion sequence  
as the cell inputs (using the ADCVAX command), thus  
synchronizing cell voltage and cell current measurements.  
Calculating Serial Throughput  
For any given LTC6810 the calculation to determine com-  
munication time is simple, it is the number of bits in the  
transmission multiplied by the SPI clock period being  
used. The control protocol of the LTC6810 is very uni-  
form so almost all commands can be categorized as a  
write, read or an operation. The tables below can be used  
to determine the number of bits in a given LTC6810 com-  
mand. Table 58 can be used for daisy-chains and Table 59  
for multi-drop networks.  
ꢇꢈꢉ ꢊꢋAꢌ  
A
ꢍꢋꢆ  
AꢎAꢇꢏꢐ ꢐꢑꢒꢏꢆ  
ꢅꢓ  
ꢍꢍ  
ꢐꢎꢊ  
AꢎAꢇꢏꢐꢔꢍꢏꢉ ꢓ  
ꢍꢋꢂ  
AꢎAꢇꢏꢐꢃ ꢐꢑꢒꢏꢂ  
ꢀꢁꢂꢃꢂ ꢄꢅꢆ  
Figure 52. Interfacing a Typical Hall-Effect Battery Current  
Sensor to Auxiliary ADC Inputs  
ENHANCED APPLICATIONS  
Current Measurement with a Hall-Effect Sensor  
READING EXTERNAL TEMPERATURE PROBES  
The LTC6810 auxiliary ADC inputs (GPIO pins) may be  
used for any analog signal, including active sensors  
with 0V to 5V analog outputs. For battery current mea-  
surements, Hall-effect sensors provide an isolated, low  
power solution. Figure 52 shows schematically a typical  
Figure 53 shows the typical biasing circuit for a negative-  
temperature-coefficient (NTC) thermistor. The 10kΩ @  
25°C is the most popular sensor value and the VREF2  
output stage is designed to provide the current required  
to bias several of these probes. The biasing resistor is  
Rev. A  
86  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
APPLICATIONS INFORMATION  
selected to correspond to the NTC value so the circuit will  
ꢑꢋꢋ  
ꢔꢋ  
ꢒꢋ  
ꢕꢋ  
ꢓꢋ  
ꢖꢋ  
ꢊꢋ  
provide 1.5V at 25°C (V  
is 3V nominal). The overall  
circuit response is apprRoExFi2mately –1%/°C in the range  
of typical cell temperatures, as shown in the chart of  
Figure 53.  
Rꢁꢏꢐ  
ꢑꢋꢘ  
ꢀꢁꢂꢃ  
ꢙꢀꢇ  
ꢑꢋꢘ Aꢀ ꢐꢖꢆꢇ  
Expanding the Number of Auxiliary Measurements  
ꢗꢋ  
ꢐꢋ  
ꢑꢋ  
The LTC6810 has five GPIO pins that can be used as  
ADC inputs. In applications that need to measure more  
than five signals a multiplexer (MUX) circuit can be imple-  
mented to expand the analog measurements to sixteen  
different signals (Figure 54). The GPIO1 ADC input is  
used for measurement and MUX control is provided by  
ꢉꢊꢋ ꢉꢐꢋ  
ꢐꢋ  
ꢊꢋ  
ꢓꢋ  
ꢒꢋ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢓꢒꢑꢋꢑ ꢏꢖꢗ  
Figure 53. Typical Temperature Probe Circuit and Relative Output  
2
the I C port on GPIO3 and GPIO4. The buffer amplifier  
was selected for fast settling and will increase the usable  
throughput rate.  
ADG728  
V
V
ANALOG1  
ANALOG2  
ANALOG3  
ANALOG4  
ANALOG5  
ANALOG6  
ANALOG7  
ANALOG8  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
V
GND  
A0  
REG  
DD  
LTC6810-1  
20k  
20k  
1µF  
A1  
GPIO4  
SCL  
SDA  
D
GPIO3  
ꢀꢁSꢁꢂ  
ADG728  
+
100Ω  
ANALOG9  
ANALOG10  
ANALOG11  
ANALOG12  
ANALOG13  
ANALOG14  
ANALOG15  
ANALOG16  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
V
DD  
LTC6255  
GPIO1  
GND  
A0  
68101 F54  
10nF  
A1  
SCL  
SDA  
D
ꢀꢁSꢁꢂ  
ANALOG INPUTS: 0.04V TO 4.5V  
Figure 54. MUX Circuit Supports Sixteen Additional Analog Measurements  
Rev. A  
87  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
PACKAGE DESCRIPTION  
G Package  
44-Lead Plastic SSOP (5.3mm)  
ꢍReꢩeꢪeꢫꢬe ꢓꢐꢝ ꢡꢦꢀ ꢭ ꢅꢌꢮꢅꢆꢮꢇꢗꢌꢁ Rev Aꢎ  
ꢇꢋ.ꢌꢅ ꢊ ꢇꢖ.ꢇꢅꢕ  
ꢍ.ꢁꢔꢋ ꢊ .ꢌꢇꢙꢎ  
ꢇ.ꢋꢌ ꢅ.ꢇꢋ  
ꢌ.ꢖ ꢊ ꢌ.ꢗ  
ꢁꢅ ꢖꢆ  
ꢁꢁ ꢁꢖ ꢁꢋ ꢁꢇ ꢖꢔ ꢖꢗ ꢖꢙ ꢖꢌ ꢖꢁ ꢖꢖ ꢖꢋ ꢖꢇ ꢖꢅ ꢋꢔ ꢋꢆ ꢋꢗ ꢋꢙ ꢋꢌ ꢋꢁ ꢋꢖ  
ꢗ.ꢆ ꢊ ꢆ.ꢋ  
ꢗ.ꢁꢅ ꢊ ꢆ.ꢋꢅ  
ꢍ.ꢋꢔꢇ ꢊ .ꢖꢋꢖꢎ  
ꢅ.ꢌꢅ  
ꢜꢂꢝ  
ꢅ.ꢋꢌ ꢅ.ꢅꢌ  
Rꢈꢝꢃꢚꢚꢈꢒꢡꢈꢡ ꢂꢃꢓꢡꢈR ꢄAꢡ ꢓAꢟꢃꢢꢐ  
Aꢄꢄꢓꢟ ꢂꢃꢓꢡꢈR ꢚAꢂꢨ ꢐꢃ ARꢈAꢂ ꢐꢠAꢐ ARꢈ ꢒꢃꢐ ꢂꢃꢓꢡꢈRꢈꢡ  
ꢔ ꢇꢅ ꢇꢇ ꢇꢋ ꢇꢖ ꢇꢁ ꢇꢌ ꢇꢙ ꢇꢗ ꢇꢆ ꢇꢔ ꢋꢅ ꢋꢇ ꢋꢋ  
ꢋ.ꢅ  
ꢍ.ꢅꢗꢔꢎ  
ꢚAꢛ  
ꢌ.ꢅꢅ ꢊ ꢌ.ꢙꢅꢕ  
ꢍ.ꢇꢔꢗ ꢊ .ꢋꢋꢇꢎ  
ꢇ.ꢙꢌ ꢊ ꢇ.ꢆꢌ  
ꢍ.ꢅꢙꢌ ꢊ .ꢅꢗꢖꢎ  
ꢄARꢐꢑꢒꢀ  
ꢓꢑꢒꢈ  
ꢅꢏ ꢊ ꢆꢏ  
ꢂꢈAꢐꢑꢒꢀ  
ꢄꢓAꢒꢈ  
ꢅ.ꢌꢅ  
ꢍ.ꢅꢇꢔꢙꢆꢎ  
ꢜꢂꢝ  
ꢅ.ꢇꢅ ꢊ ꢅ.ꢋꢌ  
ꢍ.ꢅꢅꢁ ꢊ .ꢅꢇꢅꢎ  
ꢅ.ꢌꢌ ꢊ ꢅ.ꢔꢌꢕꢕ  
ꢍ.ꢅꢋꢋ ꢊ .ꢅꢖꢗꢎ  
ꢇ.ꢋꢌ  
ꢍ.ꢅꢁꢔꢋꢎ  
Rꢈꢘ  
ꢅ.ꢅꢌ  
ꢍ.ꢅꢅꢋꢎ  
ꢚꢑꢒ  
ꢅ.ꢋꢅ ꢊ ꢅ.ꢖꢇꢌ  
ꢍ.ꢅꢅꢆ ꢊ .ꢅꢇꢋꢁꢎ  
ꢐꢟꢄ  
ꢀꢁꢁ ꢂꢂꢃꢄ ꢅꢆꢇꢁ Rꢈꢉ A  
ꢒꢃꢐꢈꢥ  
ꢇ.ꢡRAꢦꢑꢒꢀ ꢑꢂ ꢒꢃꢐ A ꢧꢈꢡꢈꢝ ꢃꢢꢐꢓꢑꢒꢈ  
ꢕꢡꢑꢚꢈꢒꢂꢑꢃꢒꢂ ꢡꢃ ꢒꢃꢐ ꢑꢒꢝꢓꢢꢡꢈ ꢚꢃꢓꢡ ꢘꢓAꢂꢠ ꢃR ꢄRꢃꢐRꢢꢂꢑꢃꢒꢂꢣ  
ꢜꢢꢐ ꢡꢃ ꢑꢒꢝꢓꢢꢡꢈ ꢚꢃꢓꢡ ꢚꢑꢂꢚAꢐꢝꢠ Aꢒꢡ ARꢈ ꢚꢈAꢂꢢRꢈꢡ Aꢐ  
ꢐꢠꢈ ꢄARꢐꢑꢒꢀ ꢓꢑꢒꢈ. ꢚꢃꢓꢡ ꢘꢓAꢂꢠ ꢂꢠAꢓꢓ ꢒꢃꢐ ꢈꢛꢝꢈꢈꢡ .ꢇꢌꢤꢤ ꢄꢈR ꢂꢑꢡꢈ  
ꢋ. ꢝꢃꢒꢐRꢃꢓꢓꢑꢒꢀ ꢡꢑꢚꢈꢒꢂꢑꢃꢒꢥ ꢚꢑꢓꢓꢑꢚꢈꢐꢈRꢂ  
ꢚꢑꢓꢓꢑꢚꢈꢐꢈRꢂ  
ꢖ. ꢡꢑꢚꢈꢒꢂꢑꢃꢒꢂ ARꢈ ꢑꢒ  
ꢍꢑꢒꢝꢠꢈꢂꢎ  
ꢕꢕꢓꢈꢒꢀꢐꢠ ꢃꢘ ꢓꢈAꢡ ꢘꢃR ꢂꢃꢓꢡꢈRRꢑꢒꢀ ꢐꢃ A ꢂꢢꢜꢂꢐRAꢐꢈ  
ꢐꢠꢈ ꢚAꢛꢑꢚꢢꢚ ꢡꢑꢚꢈꢒꢂꢑꢃꢒ ꢡꢃꢈꢂ ꢒꢃꢐ ꢑꢒꢝꢓꢢꢡꢈ ꢡAꢚꢜAR ꢄRꢃꢐRꢢꢂꢑꢃꢒꢂ.  
ꢡAꢚꢜAR ꢄRꢃꢐRꢢꢂꢑꢃꢒꢂ ꢡꢃ ꢒꢃꢐ ꢈꢛꢝꢈꢈꢡ ꢅ.ꢇꢖꢤꢤ ꢄꢈR ꢂꢑꢡꢈ  
ꢁ. ꢡRAꢦꢑꢒꢀ ꢒꢃꢐ ꢐꢃ ꢂꢝAꢓꢈ  
ꢌ. ꢘꢃRꢚꢈꢡ ꢓꢈAꢡꢂ ꢂꢠAꢓꢓ ꢜꢈ ꢄꢓAꢒAR ꢦꢑꢐꢠ Rꢈꢂꢄꢈꢝꢐ ꢐꢃ  
ꢃꢒꢈ AꢒꢃꢐꢠꢈR ꢦꢑꢐꢠꢑꢒ ꢅ.ꢅꢆꢤꢤ Aꢐ ꢂꢈAꢐꢑꢒꢀ ꢄꢓAꢒꢈ  
Rev. A  
88  
For more information www.analog.com  
LTC6810-1/LTC6810-2  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
03/20 Added Automotive Qualification to Front Page Features  
Order Information Updated  
1
4
Electrical Characteristics, Sum of Cells Corrected to 0.6V MAX  
Electrical Characteristics, Receiver Voltage Range Removed  
Figure 15 Title Corrected: ADCVSC Replaced with ADVCAX  
Table 56. Recommended Transformers List Updated  
Related Parts Table Updated  
5
8
33  
81  
86  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
89  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC6810-1/LTC6810-2  
TYPICAL APPLICATION  
Basic 6-Cell Monitor with isoSPI Daisy Chain  
10Ω  
+
V
DRIVE  
FCX491QTA  
1µF  
100nF  
V
REG  
100Ω  
C6  
V
REF1  
10nF  
10Ω  
1µF  
1µF  
B6  
V
S6  
C5  
V
REF2  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
HM2100NL  
10nF  
10Ω  
B5  
V
IPA  
S5  
C4  
49.9Ω  
10nF  
10Ω  
10nF  
10nF  
49.9Ω  
B4  
V
S4  
C3  
IMA  
IPA  
LTC6810  
10nF  
10Ω  
B3  
V
49.9Ω  
49.9Ω  
S3  
C2  
10nF  
10Ω  
IMA  
B2  
V
S2  
C1  
68101 TA02  
10nF  
10Ω  
1k  
1k  
IBIAS  
ICMP  
ISOMD  
S1  
C0  
S0  
B1  
V
10Ω  
V
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC6804  
3rd Generation 12-Cell Battery Stack  
Monitor and Balancing IC  
Measures Cell Voltages for Up to 12 Series Battery Cells. Daisy-Chain Capability Allows  
Multiple Devices to Be Connected to Measure 100s of Battery Cells Simultaneously Via  
the Built-In 1MHz, 2-Wire Isolated Communication (isoSPI). Includes Capability for  
Passive Cell Balancing.  
LTC6811  
LTC6812  
4th Generation 12-Cell Battery Stack  
Monitor and Balancing IC  
Measures Cell Voltages for Up To 12 Series Battery Cells. Daisy-Chain Capability Allows  
Multiple Devices to Be Connected to Measure 100s of Battery Cells Simultaneously Via  
the Built-In 1MHz, 2-Wire Isolated Communication (isoSPI). Includes Capability for  
Passive Cell Balancing.  
4th Generation 15-Cell Battery Stack  
Monitor and Balancing IC  
Measures Cell Voltages for Up to 15 Series Battery Cells. The isoSPI Daisy-Chain  
Capability Allows Multiple Devices to be Interconnected for Measuring Many Battery  
Cells Simultaneously. The isoSPI Bus can Operate Up to 1MHz and can be Operated  
Bidirectionally for Fault Conditions, such as a Broken Wire or Connector. Includes Internal  
Passive CellBalancing Capability of Up to 200mA.  
LTC6813  
LTC6820  
90  
4th Generation 18-Cell Battery Stack  
Monitor and Balancing IC  
Measures Cell Voltages for Up to 18 Series Battery Cells. The isoSPI Daisy-Chain  
Capability Allows Multiple Devices to be Interconnected for Measuring Many Battery  
Cells Simultaneously. The isoSPI Bus can Operate Up to 1MHz and can be Operated  
Bidirectionally for Fault Conditions, such as a Broken Wire or Connector. Includes Internal  
Passive CellBalancing Capability of Up to 200mA.  
isoSPI Isolated Communications  
Interface  
Provides an Isolated Interface for SPI Communication Up to 100 Meters, Using a Twisted  
Pair. Companion to the LTC6804, LTC6806, LTC6810, LTC6811, LTC6812 and LTC6813.  
Rev. A  
03/20  
www.analog.com  
ANALOG DEVICES, INC. 2018–2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY