LTC7051-1 [ADI]

Dual SilentMOS Smart Power Stage in 5mm × 8mm LQFN;
LTC7051-1
型号: LTC7051-1
厂家: ADI    ADI
描述:

Dual SilentMOS Smart Power Stage in 5mm × 8mm LQFN

文件: 总16页 (文件大小:1784K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC7050  
Dual SilentMOS Smart Power  
Stage in 5mm × 8mm LQFN  
FEATURES  
DESCRIPTION  
The LTC®7050 dual monolithic power stage fully inte-  
grates high speed drivers with low resistance half-bridge  
power switches plus comprehensive monitoring and  
protection circuitry in an electrically and thermally opti-  
mized package. With a suitable high frequency control-  
ler, this power stage forms a compact, high current volt-  
age regulator system with state-of-the-art efficiency and  
transient response.  
n
70A Peak Output Current per Channel  
n
SilentMOS™ Smart Power Stage  
Utilizes Low EMI/EMC Silent Switcher®2  
n
Architecture  
n
Ultra-low SW-Voltage Overshoot  
Frequency Up to 2MHz  
n
n
V Up to 14V  
IN  
n
n
n
n
n
n
n
n
Up to 94% Efficiency at 1MHz with 1.8V  
Integrated Boost Diodes and Capacitors  
Accurate Switch Current Monitoring  
Power MOSFET Overcurrent Protection  
Input Overvoltage and Bias Undervoltage Protection  
Thermal Monitor with Overtemperature Flag  
3.3V/5V Compatible Tri-State PWM Input  
5mm × 8mm LQFN Package  
OUT  
SilentMOS technology utilizes second generation Silent  
Switcher 2 architecture reducing both EMI and switch-  
node voltage overshoot while maximizing efficiency at  
high switching frequencies.  
High speed current sensing provides low latency switch  
current information, enabling tight current balancing and  
immediate overcurrent protection.  
APPLICATIONS  
Thermally-enhanced packaging provides dual 40A rated  
continuous output current capability.  
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. patents, including 9525351.  
n
High Current Servers and Workstations  
n
Networking/Telecom Microprocessor Supplies  
n
Small Form-Factor POL Converter  
TYPICAL APPLICATION  
Efficiency vs IOUT at 1MHz  
95  
90  
85  
80  
75  
70  
65  
12  
10  
8
12VIN, 1V/70AOUT 1MHz Dual-Phase POL Converter  
EFFICIENCY  
V
IN  
4.5V TO 14V  
10Ω  
10µF  
V
6
CC  
PV  
CC  
5V  
8k  
V
V
INSNS  
CC  
POWER LOSS  
V
V
PV  
PV  
47pF  
1µF  
FREQ  
FB2  
CC  
CC  
CC  
CC  
4
2.61k  
50k  
10k  
LTC3861  
I
10µF  
×10  
LIM2  
2
33.2Ω  
V
IN  
INDUCTOR LOSS INCLUDED  
L = L = VLBU9664100LT-R18L  
1 2  
I
SNS1N  
V
SNSOUT1  
SNSP1  
LTC7050  
8k  
0
I
I
SNS1  
SNS1P  
RUN1  
0
10  
20  
30  
40  
50  
60  
70  
V
OUT  
V
RUN1,2  
PWM1  
PWM2  
FLTB1,2  
LOAD CURRENT (A)  
180nH  
12k  
7050 TA01b  
PWM1  
PWM2  
RUN2  
SW1  
SW2  
V
V
OUT  
SNSN1  
3.3nF  
280Ω  
10k  
1V  
180nH  
VSW Waveform at 1MHz  
70A  
330µF  
×3  
FB1  
100pF  
5.9k  
I
I
SNS2P  
SNS2  
12.5V  
COMP1, 2  
33.2Ω  
100µF  
×2  
I
SNS2N  
4.7nF  
SGND PGND  
7050 TA01a  
I
LIM1  
V
59k  
SW1  
I
AVG  
SGND  
1k  
0.1µF  
2V/DIV  
SS1, 2  
PINS NOT SHOWN IN LTC3861 CIRCUIT:  
CLKIN, CONFIG, VSNSN2, VSNSOUT2,  
VSNSP2, CLKOUT, PHSMD, PGOOD1,  
PGOOD2, PWMEN1, PWMEN2  
100pF  
PINS NOT SHOWN IN LTC7050 CIRCUIT:  
TDIO, TMON/FLT  
0.1µF  
V
OUT  
= 12V  
IN  
I
= 60A  
7050 TA01c  
5ns/DIV  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LTC7050  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V DC Voltage........................................... –0.3V to 16V  
IN  
V Transient Voltage ................................. –0.3V to 20V  
IN  
SW1, SW2 Voltage................................–0.3V to 16V DC  
42  
41 40 39  
38 37  
SW1  
SW1  
1
2
3
4
5
6
7
8
9
36 TDIO  
35 PWM1  
34 FLTB1  
SW1, SW2 Voltage (20ns)............................. –2V to 20V  
PV , V Voltage........................................ –0.3V to 6V  
CC CC  
RUN1, RUN2 .................................–0.3V to (V + 0.3V)  
CC  
SW1  
V
IN  
SW1  
PGND  
PWM1, PWM2 ..............................–0.3V to (V + 0.3V)  
CC  
SW1  
33  
I
SNS1  
I
, I  
...................................–0.3V to (V + 0.3V)  
SNS1 SNS2 CC  
SW1  
32 RUN1  
31 SGND  
FLTB1, FLTB2 ................................–0.3V to (V + 0.3V)  
CC  
SW1  
TDIO Voltage/Current..............................0.3V to –5mA  
AbsMax Junction Temperature ............................. 125°C  
Storage Temperature.............................. –55°C to 150°C  
Reflow (Package Body) Temperature....................260°C  
PGND  
PGND  
PGND  
30  
V
CC  
PGND  
V
29 PV  
28 PV  
CC  
CC  
IN  
SW2 10  
SW2 11  
SW2 12  
SW2 13  
SW2 14  
SW2 15  
27 PGND  
26 RUN2  
25  
I
SNS2  
SW2  
PGND  
V
IN  
24 FLTB2  
23 PWM2  
22 TMON  
16  
17 18 19  
20 21  
LQFN PACKAGE  
42-LEAD (8mm × 5mm × 0.95mm)  
= 125°C, θ = 10.8°C/W ON OPTIMIZED  
T
J(MAX OPER)  
JA  
6-LAYER 3.6 INCH × 2.8 INCH PCB  
EXPOSED PADS (V , PGND, SW) MUST BE SOLDERED TO PCB  
IN  
ORDER INFORMATION  
PACKAGE  
TYPE  
MSL  
RATING  
PART NUMBER  
PART MARKING*  
FINISH CODE  
PAD FINISH  
TEMPERATURE RANGE  
LQFN (Laminate Package  
with QFN Footprint)  
LTC7050AV#PBF  
7050  
e4  
Au (RoHS)  
3
–40°C to 125°C  
• Contact the factory for parts specified with wider operating temperature  
ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.  
Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures  
• *Device temperature grade is identified by a label on the shipping container.  
Parts ending with PBF are RoHS and WEEE compliant.  
LGA and BGA Package and Tray Drawings  
Rev. 0  
2
For more information www.analog.com  
LTC7050  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V, PVCC = VCC = 5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
14  
UNITS  
V
l
l
V
Power Input Supply Range  
IN  
V
V
V
V
V
V
V
V
V
Overvoltage Lockout Threshold  
Overvoltage Lockout Hysteresis  
Overvoltage Lockout Delay  
Shutdown Current  
V
Rising  
IN  
14.9  
15.7  
V
IN  
0.4  
1
V
IN  
(Note 3)  
µs  
µA  
V
IN  
V
= 12V, RUN1 = RUN2 = 0  
25  
IN  
IN  
l
l
V
V
V
Input Supply Range  
4.5  
5
5.5  
CC  
CC  
CC  
CC  
CC  
CC  
Undervoltage Lockout Threshold  
Undervoltage Lockout Hysteresis  
Supply Current in Shutdown  
Supply Current in Active  
V
CC  
Rising  
4.05  
4.15  
0.2  
14  
4.25  
V
CC(UVLO)  
UVLO_HYST  
VCC(SD)  
VCC_active  
V
I
I
RUN1 = RUN2 = 0V  
µA  
mA  
V
RUN1 = RUN2 = 5V, PWM = Float  
2.5  
5
l
l
PV  
PV  
PV  
Driver Input Supply Range  
PV Undervoltage Lockout Threshold  
4.5  
3.9  
5.5  
4.1  
CC  
PV Rising  
CC  
4.0  
0.35  
300  
2.5  
1
V
CC(UVLO)  
UVLO_HYST  
PVCC(SD)  
PVCC_active  
UVLO  
CC  
PV Undervoltage Lockout Hysteresis  
CC  
V
I
I
t
PV Supply Current in Shutdown  
CC  
RUN1 = RUN2 = 0V  
µA  
mA  
µs  
PV and V Supply Current in Active  
RUN1 = RUN2 = 5V, PWM = Float  
CC  
CC  
Undervoltage Time Lockout Delay, from V  
PV , V Rising  
CC  
CC CC  
and PV to SW Low  
RUN = 5V PWM = 0 (Note 3)  
CC  
RUN Input  
l
V
V
RUN High Threshold  
RUN Rising  
2.2  
2.45  
0.2  
30  
2.7  
0.1  
V
V
IH_RUN  
RUN Hysteresis  
RUN_HYS  
R
EN Pull-Down Resistor  
Propagation Delay for RUN Low to High  
kΩ  
µs  
PD_RUN  
d_RUNH  
T
From RUN Low ≥ High to SW = 0, PWM = 0  
(Note 3)  
12  
T
Propagation Delay for RUN High to Low  
From RUN High ≥ Low to SW High Z,  
PWM = 0 (Note 3)  
µs  
d_RUNL  
PWM Input  
l
l
l
V
V
V
V
PWM High Threshold  
2.7  
2.1  
V
V
IH_PWM  
IL_PWM  
PWM Low Threshold  
0.8  
1.5  
PWM Tri-State Range  
V
TR_PWM  
PWM_HYS  
PWM Hysterisis  
Active to Tri-State or Tri-State to Active  
To SGND  
300  
9.6  
18.8  
10  
mV  
kΩ  
kΩ  
ns  
ns  
ns  
ns  
ns  
ns  
V
R
R
PWM Pull-Down Resistor  
PWM Pull-Up Resistor  
PD_PWM  
PU_PWM  
To V  
CC  
t
t
t
t
t
t
Delay Time, PWM High to SW High  
Delay Time, PWM Low to SW Low  
Tri-State to Low Propagation Delay  
Tri-State to High Propagation Delay  
Active to Tri-State Delay Time  
PWM Minimum ON-Time  
PWM Floating Voltage  
No Fault Condition (Note 3)  
PWMHI-SW  
PWMLO-SW  
Tri_Lo_Delay  
Tri_Hi_Delay  
Tri_Hold  
No Fault Condition(Note 3)  
10  
PWM Going Low to SW Going Low  
PWM Going High to SW Going High  
PWM Going to High Z to SW High Z (Note 3)  
20  
30  
20  
20  
PWM_MINON  
l
V
1.6  
1.7  
1.8  
PWM_FLOAT  
Rev. 0  
3
For more information www.analog.com  
LTC7050  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V, PVCC = VCC = 5V unless otherwise noted.  
SYMBOL  
Output  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
SNS  
A
Current Sense Gain (I  
Overall Accuracy  
/I  
)
V = 1.5V  
ISNS  
OUT  
8.5  
10  
250 12.5  
100  
11.5  
µA/A  
µA  
IMON  
MON OUT  
I
= 5A to 25A, PWM = 0  
I
I
= 25A, V  
= 1.5V, PWM = 0,  
SNS  
OUT  
ISNS  
Accuracy at Trim  
I
= –10A, V  
= 1.5V, PWM = 0  
ISNS  
µA  
V
OUT  
l
V
IMON Operational Voltage Range  
1.2  
2.0  
1
IMON  
FLTB Output  
R
Fault Bar Open-Drain Pull-Down Resistance FLTB Low  
kΩ  
FLTB-PD  
TMON/FLT Output  
A
V
Thermal Monitor Gain  
0°C < T < 150°C (Note 3)  
8
mV/°C  
V
TMON  
J
Thermal Monitor Voltage  
T = 0°C (Note 3)  
J
0.6  
800  
1.6  
150  
40  
TMON  
T = 25°C  
J
780  
1
825  
60  
mV  
V
T = 125°C (Note 3)  
J
OTP  
Overtemperature Protection Accuracy  
Overtemperature Hysteresis  
(Note 3)  
(Note 3)  
°C  
OTP_Hys  
°C  
I
I
Thermal Monitor Maximum Source Current T = 25°C, T  
Forced at 0V  
mA  
µA  
SOURCE_TMON  
SINK_TMON  
J
MON  
Thermal Monitor Maximum Sink Current  
Tdiode Forward Voltage Drop  
T = 25°C, T  
Forced at 1.28V  
J
MON  
V
T = 25°C, I = 0.1mA  
678  
mV  
mV/°C  
Tdiode  
J
F
Tdiode Voltage Drop Temperature Coefficient I = 0.1mA (Note 3)  
–1.8  
F
SW Node  
V
SW Floating Voltage  
V
= 12V  
IN  
0.7  
1.2  
V
SW_Float  
R
SW Pull-Down Resistance  
kΩ  
SW-PGND  
Overcurrent Limits  
I
I
t
t
I
I
Positive Overcurrent Threshold  
Negative Overcurrent Threshold  
Positive Overcurrent Blanking Time  
Negative Overcurrent Blanking Time  
Positive Zero Current Threshold  
Negative Zero Current Threshold  
PWM = H  
80  
90  
–45  
22  
55  
5
100  
A
A
_OCP  
PWM = L  
_NCP  
PWM = H (Note 3)  
PWM = L (Note 3)  
nS  
nS  
A
Blank_OC  
Blank_NC  
_ZCP  
–8  
A
_ZCN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: This parameter is not tested but is guaranteed by design.  
Note 4: All currents into device pins are positive; all currents out of  
device pins are negative. All voltages are referenced to ground unless  
otherwise specified.  
Note 2: The LTC7050A is specified over the –40°C to 125°C operating  
junction temperature range. High Junction temperatures degrade  
operating lifetimes. Note the maximum ambient temperature consistent  
with these specifications is determined by specific operating conditions  
in conjunction with board layout, the rated package thermal impedance  
Note 5: The LTC7050 includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
and other environmental factors. The junction temperature (T , in °C) is  
J
calculated from the ambient temperature (T in °C) and power dissipation  
A
(P , in Watts) according to the formula:  
D
T = T + (P • θ )  
JA  
J
A
D
where θ (in °C/W) is the package thermal impedance.  
JA  
Rev. 0  
4
For more information www.analog.com  
LTC7050  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VIN = 12V, PVCC = VCC = 5V  
unless otherwise noted.  
12VIN to 1VOUT Efficiency  
12VIN to 1.8VOUT Efficiency  
Power Dissipation vs Load  
95  
90  
85  
80  
75  
70  
65  
12  
10  
8
100  
95  
90  
85  
80  
75  
70  
15  
10  
5
12  
10  
8
V
V
L
= 12V  
EFFICIENCY  
IN  
= 1V  
OUT  
EFFICIENCY  
= L = 180nH  
1
2
f
= 600kHz  
SW  
DUAL PHASE INTERLEAVING  
INDUCTOR LOSS INCLUDED  
DUAL PHASE INTERLEAVING  
INDUCTOR LOSS INCLUDED  
DUAL PHASE INTERLEAVING  
6
6
POWER LOSS  
POWER LOSS  
4
4
600kHz  
1MHz  
600kHz  
1MHz  
2
2
L
= L = VLBU9664100L-R18L  
2
L
= L = VLBU9664100LT-R18L  
2
1
1
0
0
0
0
10 20 30 40 50 60 70 80  
0
10 20 30 40 50 60 70 80  
0
10 20 30 40 50 60 70 80  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
7050 G01  
7050 G02  
7050 G03  
V
SNS vs ILOAD  
VSNS vs Temperature  
VSNS vs VIN  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
V
V
= 12V  
OUT  
V
= 12V  
OUT  
IN  
IN  
V
V
V
= 12V  
= 1V  
V
= 1V  
IN  
= 1V  
LOAD = 25A  
V
LOAD = 25A  
V
OUT  
SNS  
= I  
× 100  
= I  
× 100  
= I  
× 100  
SNS  
SNS  
SNS  
SNS  
SNS  
–10  
0
0
0
5
10 15 20 25 30 35 40  
(A)  
–50 –25  
0
25 50 75 100 125 150  
3
6
9
12  
15  
I
TEMPERATURE (°C)  
V
(V)  
IN  
LOAD  
7050 G04  
7050 G05  
7050 G06  
VSNS Gain vs VIN  
VSNS Gain vs Frequency  
VSNS Gain vs Temperature  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
9.9  
V
V
V
= 12V  
V
V
V
= 12V  
IN  
V
V
V
= 12V  
IN  
IN  
= 1V  
= 1V  
= 1V  
OUT  
SNS  
OUT  
SNS  
OUT  
SNS  
= I  
× 100  
= I  
× 100  
= I  
× 100  
SNS  
SNS  
SNS  
9.6  
9.0  
9.4  
8.5  
9.2  
9.8  
8.0  
9.0  
9.7  
4
5
6
7
8
9
10 11 12 13 14 15  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
–50 –25  
0
25 50 75 100 125 150  
V
(V)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
IN  
7050 G07  
7050 G08  
7050 G09  
Rev. 0  
5
For more information www.analog.com  
LTC7050  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VIN = 12V, PVCC = VCC = 5V  
unless otherwise noted.  
IVCC vs Frequency  
IPVCC vs Frequency  
VCC UVLO vs Temperature  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
170  
150  
130  
110  
90  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
V
V
I
= 12V  
V
V
I
= 12V  
IN  
IN  
= 1V  
= 1V  
OUT  
OUT  
= 25A, DUAL PHASE  
= 25A, DUAL PHASE  
LOAD  
LOAD  
RISING  
FALLING  
70  
50  
30  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8 2.0  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8 2.0  
–50 –25  
0
25 50 75 100 125 150  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
7050 G10  
7050 G10  
7050 G11  
PVCC UVLO vs Temperature  
PVIN OVLO vs Temperature  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
15.7  
15.5  
15.3  
15.1  
14.9  
14.7  
14.5  
14.3  
14.1  
RISING  
RISING  
FALLING  
FALLING  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
7050 G12  
7050 G13  
Current Limit vs Temperature  
PWM Threshold vs Temperature  
100.0  
97.5  
95.0  
92.5  
90.0  
87.5  
85.0  
82.5  
80.0  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
PWM HIGH RISING  
f
= 1MHz  
SW  
PWM HIGH FALLING  
PWM LOW RISING  
PWM LOW FALLING  
25  
50  
75  
100  
125  
150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
7050 G14  
7050 G15  
Rev. 0  
6
For more information www.analog.com  
LTC7050  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VIN = 12V, PVCC = VCC = 5V  
unless otherwise noted.  
RUN Threshold vs Temperature  
TDIO Forward Voltage  
TMON vs Temperature  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1600  
1400  
1200  
1000  
800  
ON  
32μA  
OFF  
2μA  
600  
400  
200  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
7050 G17  
7050 G16  
7050 G18  
Overcurrent Protection  
Switching Rising Edge  
V
SNS  
12.5V  
500mV/DIV  
I
L
100A/DIV  
FLTB1  
5V/DIV  
V
SW1  
2V/DIV  
PV = 12V  
IN  
SW1  
10V/DIV  
I
= 60A, DUAL PHASE  
LOAD  
f
=1MHz  
SW  
7050 G20  
7050 G19  
5ns/DIV  
5µs/DIV  
V
= ISNSx500  
SNS  
Rev. 0  
7
For more information www.analog.com  
LTC7050  
PIN FUNCTIONS  
RUN1, RUN2: Run Pin. When this pin is driven high, the  
is enabled. SW node is in high-Z state when RUN is low.  
TDIO: Temperature Diode Pin. This pin provides a refer-  
ence diode to SGND for use in measuring die temperature.  
PWM1, PWM2: PWM Input Pin. With RUN driven high,  
SW will nominally follow this pin high, low, and high-Z.  
Nominal 3V CMOS logic levels; can be driven with 3V to  
5V CMOS signals. Resistor divider holds voltage at 1.7V  
when in high-Z state.  
PVCC: 5V Driver Supply. This pin powers the low side  
gate driver directly and the high side gate driver through  
an internal bootstrapped supply riding on SW. Bypass  
this pin with a 10µF ceramic capacitor to PGND in close  
proximity to chip.  
I
, I  
: Current Sense Pin. This pin sources/sinks  
V : 5V Supply. Bypass this pin with a 1µF ceramic capac-  
SNS1 SNS2  
CC  
instantaneous current equal to 1/100,000 the SW node  
itor to SGND in close proximity to chip.  
current, positive and negative.  
V : Power Stage Supply. This pin is connected to SW  
IN  
FLTB1, FLTB2: Fault Bar Pin. This open-drain pin pulls  
down when the chip/channel encounters a fault condition  
such as OC or OCN.  
through the high side N-channel FET.  
SW1, SW2: Power Stage Switch Node. The output of the  
power stage, this node is connected to V through the  
high side N-channel FET and to PGND thIrNough the low  
side N-channel FET.  
TMON/FLT: Temperature Monitor/Fault Pin. This pin pro-  
vides a voltage, referred to SGND, of 0.6V to 1.8V cor-  
responding to die temperature of 0°C to 150°C for a gain  
of 8mV/°C. Above 150°C, the pin is pulled high to indicate  
an overtemperature (OT) fault. The pin has limited current  
sinking capability, so multiple like pins can be tied together  
for highest temperature and single-OT-fault reporting.  
PGND: Power Stage Ground. This pin is connected to  
SW through the low side N-channel FET. Also powers  
the drivers.  
SGND: Circuit Ground.  
Rev. 0  
8
For more information www.analog.com  
LTC7050  
BLOCK DIAGRAM  
PV  
CC  
V
IN  
V
CC  
LG1  
SD1  
BST1  
+
2.4V  
HG1  
LG1  
PWMHI1  
PWMLO1  
18.8k  
SW1  
PWM1  
CH1 LOGIC  
+
PV  
CC  
9.6k  
30k  
1.2k  
PGND  
1.2V  
RUN1  
SDB1  
SGND  
TDIO  
I
SNS1  
I
SNS1  
AMPS AND  
COMPARATORS  
BIAS/SUPPLY  
COMPARATORS  
FLTB1  
FLTB2  
FAULT  
LOGIC  
BIAS  
V
CC  
TMON/FLT  
×1  
TMON  
60µA  
I
SNS2  
I
SNS2  
AMPS AND  
COMPARATORS  
PV  
V
IN  
CC  
V
CC  
LG2  
SD2  
BST2  
+
2.4V  
PWMHI2  
PWMLO2  
HG2  
LG2  
18.8k  
9.6k  
SW2  
PWM2  
RUN2  
CH2 LOGIC  
+
PV  
CC  
1.2k  
PGND  
1.2V  
SDB2  
30k  
7050 BD  
Rev. 0  
9
For more information www.analog.com  
LTC7050  
OPERATION  
Main Control Architecture  
Temperature Monitor and Overtemperature Fault  
The LTC7050 is a dual-channel or dual-phase integrated-  
driver half-bridge power MOSFET stage for DC/DC step-  
down applications. It is designed to be used in a synchro-  
nous switching architecture with a logic-level controller  
providing PWM three-state control outputs. The relation-  
ship between the transition thresholds and the three input  
states of the LTC7050 is illustrated in Figure 1.  
Normally, TMON outputs a voltage from 0.6V to 1.8V, cor-  
responding to a die temperature range of 0°C to 150°C.  
The TMON voltage is calculated by:  
V
TMON  
(V) = 800mV + (T (°C) – 25°C) • (8mV/°C)  
J
Figure 2 illustrates the relationship between V  
die temperature.  
and  
TMON  
V
TMON  
V
CC  
TG HIGH  
V
IH(TG)  
TG HIGH  
TG LOW  
TG LOW  
V
IL(TG)  
1.8V  
1.6V  
1.4V  
1.2V  
1V  
IN  
0.8V  
0.6V  
BG LOW  
BG HIGH  
V
IL(BG)  
BG LOW  
BG HIGH  
V
IH(BG)  
0
25  
50  
75  
100  
125  
150  
T (°C)  
J
7050 F01  
7050 F02  
Figure 2. VTMON vs Die Temperature  
Figure 1. Three-State Input Operation  
TMON is driven by an amplifier that can source current but  
has limited sinking capacity. This allows multiple TMON  
pins to be paralleled, with the highest temperature being  
reported. Overtemperature is triggered at 150°C (typical),  
and it causes the TMON pin to be pulled high to V . The  
overtemperature fault will be cleared once the iCnCternal  
temperature falls 20°C (typical) below the threshold.  
In normal operation, PWMHI turns on the high side FET,  
and PWMLO turns on the low side FET. SW node follows  
the PWM pin with a typical 10ns delay. There is <1ns dead  
time before SW rises from PGND to V and a typical 3ns  
IN  
dead time after SW falls.  
The high side FET driver is powered from the internal BST  
node to SW via an internal integrated switch and capacitor,  
which allows lower dropout than achievable with a typical  
diode as well as higher-frequency operation.  
TDIO pin is internally connected to the anode of a P/N  
junction diode while the cathode is connected to SGND.  
It provides an alternative measurement of die temperature  
for the controllers, such as LTC3884-1, to measure the  
Current Sense  
die temperature using direct V method or ΔV method.  
BE  
BE  
Real-time current sense amplifiers provide a scaled-  
down version of SW current. During PWMHI or PWMLO,  
Voltage Fault Conditions  
When V or PV is in UVLO, or V is in OVLO, SW will  
the I  
pin sources or sinks, according to SW current  
SNS  
CC  
CC  
IN  
direction, a current equal to 1/100,000 the instantaneous  
not respond to PWM and both top FET and bottom FET  
are off.  
SW current.  
Associated current comparators flag high side FET posi-  
tive overcurrent (OC) and low side FET negative overcur-  
rent (OCN) conditions. Zero-current of both FETs are also  
detected by associated current comparators.  
When BST-to-SW voltage is in UVLO, SW will not respond  
to a PWMHI until a PWMLO is provided such that BST-  
to-SW voltage is recharged sufficiently.  
Rev. 0  
10  
For more information www.analog.com  
LTC7050  
OPERATION  
Over Current Fault Conditions  
Active Diode Mode  
When the high side FET is on, instantaneous SW cur-  
rent of >93A (net current flowing out of SW) will trip the  
overcurrent (OC) comparator and set the internal OC state.  
When this happens, regardless of PWM pin state, the high  
side FET will be turned off, and the low side FET will be  
turned on until SW current decreases to 5A, at which point  
OC state will be reset. Normal PWMHI-to-high-side-FET  
and PWMLO-to-low-side-FET operation resumes.  
If PWM goes from high to Hi-Z state while large (>5A)  
currents are still flowing through the top FET from V to  
IN  
SW, the top at FET will turn off and the bottom FET will  
turn on to freewheel the current until it has been ramped  
down. If PWM goes from high to Hi-Z state while large  
(≥8A) currents are still flowing through the top FET from  
SW to V , the top FET will not turn off until the current  
IN  
has been ramped down.  
When the low side FET is on, instantaneous SW current  
of <–45A (net current flowing into SW) will trip the OCN  
comparator. When this happens, regardless of PWM pin  
state, the low side FET will be turned off and the high side  
FET will be turned on until SW current increases to –8A,  
at which point OCN state will be reset. Normal PWMHI-  
to-high-side-FET and PWMLO-to-low-side-FET operation  
resumes. The trigger and reset of over current condition  
are illustrated in Figure 3.  
Similarly, if PWM goes from low to Hi-Z state while large  
(≥8A) currents are still flowing through the bottom FET  
from SW to PGND, the bottom FET will turn off, and the  
top FET will turn on to freewheel the current until it has  
been ramped down. If PWM goes from high to Hi-Z state  
while large (>5A) currents are still flowing through the  
bottom FET from PGND to SW, the bottom FET will not  
turn off until the current has been ramped down.  
In either OC or OCN condition, FLTB is pulled down.  
PWM  
ON  
ON  
TOP FET  
ON  
93A  
ON  
BOTTOM FET  
5A  
I
SW  
–8A  
–45A  
OC  
OCN  
7050 F03  
Figure 3. Over Current Conditions  
Rev. 0  
11  
For more information www.analog.com  
LTC7050  
APPLICATIONS INFORMATION  
Power Sequence  
the application of high frequency high current voltage  
regulator. External component selection is largely driven  
by the load requirement and begins with the selection  
The V and PV of LTC7050 should be biased before  
CC  
CC  
V is present and power down after V is removed. Do  
IN  
IN  
of the switching frequency f and inductor L. Refer to  
SW  
not force RUN pin voltages above V voltage. Make sure  
CC  
Frequency Selection and Inductor Selection sections for  
that the LTC7050 has been biased appropriately and the  
RUN pin of LTC7050 is pulled up before enabling the  
PWM controller.  
the guidance. The I  
current limit.  
resistors are selected to set the  
SNS  
In high frequency high current applications, the switching  
spikes coupled to the I signal may result in a reading  
Fault Management  
SNS  
offset in heavy load range, but does not impact the ΔISNS  
/
The fault management and shutdown mode of LTC7050 is  
summarized in Table 1. Connecting the open-drain output  
FLTB pin to the controller’s RUN pin can prevent the con-  
troller from starting up and force the converter to restart  
once the LTC7050 runs into fault conditions, except BST-  
to-SW undervoltage fault.  
ΔI gain. An optional resistor between I pin to GND  
SW  
SNS  
can mitigate the offset. The resistor value ROS is calcu-  
lated by I pin voltage (referring to GND) divided by the  
SNS  
offset current observed. The resistor value may be differ-  
ent for a different switching frequency. This modification  
does not impact the internal overcurrent protection and  
negative overcurrent protection.  
Table 1. Fault Management and Shutdown Mode Summary  
FLTB RESPOND TO PWM TMON  
1Ω  
V
V
IN  
OVLO  
Low No, Both FETs Off  
Report Temperature  
V
IN  
CC  
PV  
CC  
5V  
Until I = 0  
SW  
10µF  
1µF  
10µF  
×10  
V
UVLO  
Low No, Immediate Off  
Floating  
CC  
PV UVLO  
CC  
Low No, FETs Off  
Report Temperature  
PV  
CC  
V
V
IN  
CC  
f
: 1MHz  
SW  
Until I = 0.  
FLTB1  
SW  
PWM1  
Positive OC  
Negative OC  
Low No, Top FET  
Immediate Off  
Report Temperature  
Report Temperature  
L1  
I
SNS1  
180nH  
+
V
OUT1  
R
SW1  
OS  
V
1V  
SNS1  
RUN1  
70k  
Low No, Bottom FET  
Immediate Off  
30A  
V
CC  
LTC7050  
RUN2  
L2  
180nH  
1.5V  
SNS2  
+
Overtemperature  
BST-to-SW UV  
RUN Shutdown  
Low Yes  
Pull Up to V  
.
CC  
R
70k  
OS  
V
V
OUT2  
SW2  
1V  
High Ignore PWMHI  
Low No, Both FETs Off  
Report Temperature  
Floating  
I
30A  
SNS2  
PWM2  
FLTB2  
TDIO PGND SGND  
7050 F04  
Current Sense and Current Limit  
sources and sinks a current which is 1/100,000 of  
Figure 4.  
I
SNS  
the SW current. According to the controller’s maximum  
current sense signal range, select a proper resistor to  
Frequency Selection  
The selection of switching frequency is a trade-off  
between efficiency and component size. Low frequency  
operation increases efficiency by reducing FET switching  
losses, but requires larger inductance and/or capacitance  
to maintain low output ripple voltage. In the selection of  
switching frequency, make sure that the high side on-  
time at maximum input voltage is longer than LTC7050’s  
minimum on-time, tON(MIN), which is the smallest time  
duration that the LTC7050 is capable of turning on the  
convert the I  
current into a differential voltage signal  
SNS  
reflecting the real-time SW current. The resistor should  
be biased at a low impedance common mode voltage,  
which has current sinking and sourcing capability. Make  
sure that at the maximum positive current and negative  
current, the I  
pin voltage is in the specified range so  
SNS SW  
SNS  
that the gain I /I remains constant.  
A general LTC7050 application circuit is shown on the  
first page of this data sheet. LTC7050 is optimized for  
top FET. It is determined by internal timing delays, power  
Rev. 0  
12  
For more information www.analog.com  
LTC7050  
APPLICATIONS INFORMATION  
stage timing delays and the gate charge required to turn  
on the top FET. Low duty cycle applications may approach  
this minimum on-time limit (see Equation 1).  
the highest input voltage. To guarantee that ripple cur-  
rent does not exceed a specified maximum, the inductor  
should be chosen according to Equation 5.  
V
V V  
VOUT  
OUT  
IN  
OUT  
(1)  
t
<
ON(MIN)  
L≥  
(5)  
V
• f  
SW  
IN  
f
IRIPPLE  
V
IN  
SW  
Once the inductance value is determined, the type of  
inductor must be selected. Core loss is independent  
of core size for a fixed inductor value, but it is very depen-  
dent on inductance selected. As inductance increases,  
core losses go down. Unfortunately, increased inductance  
requires more turns of wire and therefore copper losses  
will increase. Ferrite designs have very low core loss and  
are preferred at high switching frequencies, so design  
goals can concentrate on copper loss and preventing sat-  
uration. Ferrite core material saturates hard, which means  
that inductance collapses abruptly when the peak design  
current is exceeded. This results in an abrupt increase in  
inductor ripple current and consequent output voltage  
ripple. Do not allow the core to saturate!  
Input Capacitors  
The LTC7050 should be connected to a VIN supply through  
low impedance power planes. Ceramic input capacitors  
should be placed as close to the package as physically  
possible, with size and quantity appropriate for tempera-  
ture rise with ripple current as calculated below.  
For a buck converter, the switching duty cycle can be esti-  
mated by Equation 2.  
V
OUT  
D =  
(2)  
V
IN  
Without considering the inductor ripple current, for each  
output, the RMS current of the input capacitor can be  
estimated by Equation 3.  
Output Capacitors  
The LTC7050 is designed for high frequency switching  
and low output voltage ripple noise. The bulk output  
I
OUT(MAX)  
I
=
D 1D  
(3)  
(
)
CIN(RMS)  
η
capacitors defined as C  
are chosen with low enough  
OUT  
effective series resistance (ESR) to meet the output volt-  
age ripple and transient requirements. C can be a low  
where η is the estimated efficiency of the power  
OUT  
section.  
ESR tantalum capacitor, a low ESR polymer capacitor, or  
ceramic capacitors. At 1MHz, the typical output capaci-  
tance range is from 500µF to 1000µF. Additional output  
filtering may be required by the system designer if further  
reduction of output ripple or dynamic transient spikes  
is required.  
Inductor Selection  
Given the desired input and output voltages, the inductor  
value and operating frequency, f , directly determine  
SW  
the inductor’s peak-to-peak ripple current (Equation 4).  
VOUT V V  
IN  
OUT  
Bypassing and Grounding  
IRIPPLE  
=
(4)  
V
fSW •L  
IN  
The LTC7050 requires proper bypassing on the PVCC  
and V supplies due to its high speed switching (nano-  
seconCdCs) and large AC currents (amperes). Careless  
component placement and PCB trace routing may cause  
excessive ringing and under/overshoot. Follow the fol-  
lowing steps to obtain the optimum performance from  
the LTC7050.  
Lower ripple current reduces core losses in the inductor,  
ESR losses in the output capacitors and output voltage  
ripple. Thus, highest efficiency operation is obtained at  
low frequency with a small ripple current. Achieving this,  
however, requires a large inductor. A reasonable starting  
point is to choose a ripple current that is about 40% of  
I
. Note that the largest ripple current occurs at  
OUT(MAX)  
Rev. 0  
13  
For more information www.analog.com  
LTC7050  
APPLICATIONS INFORMATION  
• Mount the bypass capacitors as close as possible  
PCB Layout  
between the V and SGND pins, and the PV and  
CC  
CC  
Due to the LTC7050’s high power density and high speed,  
high frequency operation, proper PCB layout and compo-  
sition are critical to maximizing performance.  
PGND pins. The traces should be shortened as much  
as possible to reduce lead inductance.  
• Use a low inductance, low impedance ground plane  
to reduce any ground drop and stray capacitance. Any  
significant ground drop will degrade signal integrity.  
At a minimum, the PCB should be 4-layer with at least top  
and bottom layers 2oz. copper. As much as possible, top  
and bottom layers should be continuous V and PGND  
areas. At least one inner layer, preferablyINthe second,  
should be a continuous PGND plane.  
• Plan the power/ground routing carefully. Know where  
the large load switching current is coming from and  
going to. Maintain separate ground return paths for  
the input pin and the output power stage.  
Copper-filled vias should be used under the package  
exposed pads to connect top and bottom PCB layers.  
• Be sure to solder the Exposed Pad on the back side of  
the LTC7050 packages to the board. Failure to make  
good thermal contact between the exposed back side  
and the copper board will result in far greater thermal  
resistances.  
θ
is <1°C /W. Anything less than copper-filled vias  
JCbottom  
will compromise θ greatly.  
JA  
The inductor pads should be placed as close as possible  
to the package, with traces as short and wide as possible.  
If possible, SW traces should be doubled up with the  
second layer, taking care not to couple to sensitive traces.  
A recommended PCB layout is shown in Figure 5b.  
C7  
C6  
C5  
V
PGND  
IN  
TMON  
PWM2  
FLTB2  
C3  
L2  
I
SW2  
SNS2  
RUN2  
C13  
C14  
5V  
PV  
CC  
R1  
C2  
V
OUT  
LTC7050  
V
CC  
C1  
SGND  
L1  
SW1  
RUN1  
C11  
C12  
I
SNS1  
FLTB1  
PWM1  
TDIO  
V
PGND  
IN  
(b) Example PCB Layout  
C4  
7050 F4a  
C8  
C9  
C10  
(a) Schematic  
Figure 5.  
Rev. 0  
14  
For more information www.analog.com  
LTC7050  
PACKAGE DESCRIPTION  
Y
X
Z
M c c c  
d d d  
Z
Z
× 4 2  
Z
Z
M
M
f f f  
e e e  
4 2 b  
Y
X
Z
/ / b b b  
Z
1 . 5 0  
1 . 0 0  
0 . 0 0 0  
0 . 5 0  
1 . 0 0  
2 . 0 0  
a a a  
Z
× 2  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
15  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC7050  
TYPICAL APPLICATIONS  
LTC7050 and LTC3884-1 Schematic  
V
IN  
7V TO 14V  
INTV  
CC  
1Ω  
V
4.7µF  
10µF  
×10  
CC  
VDD33  
PV  
CC  
5V  
1µF  
10µF  
1µF  
10k  
V
INTV  
VDD33  
IN  
CC  
ITHR0  
PV  
V
V
IN  
f
: 575kHz  
CC  
CC  
SW  
RUN0  
FLTB1  
6.8nF  
L1, L2: FP1007R3-R22-R  
ITH0  
PWM0  
PWM1  
100pF  
+
I
I
SENSE0  
L1  
SENSE1  
C7  
R5  
215nH  
10pF  
V
+
OUT1  
V
43.2k  
V
OUT1  
SENSE0  
SW1  
150k  
3.3nF  
1V/30A  
SW1  
V
1µF  
SENSE0  
47µF  
×2  
470µF  
×2  
I
SENSE0  
RUN1  
SDA  
SCL  
ALERT  
2.61k  
1k  
LTC7050  
PMBus  
INTERFACE  
LTC3884-1  
V
CC  
INTV  
CC  
RUN2  
L2  
I
SENSE1  
215nH  
10pF  
V
FAULT0  
FAULT1  
43.2k  
OUT2  
SW2  
150k  
1.8V/30A  
3.3nF  
SW2  
47µF  
×2  
470µF  
×2  
+
V
SENSE1  
I
I
SENSE1  
PWM1  
RUN1  
SENSE2  
+
V
V
PWM2  
SENSE1  
OUT2  
ITH1  
FLTB2  
TDIO  
PGND  
SGND  
100pF  
10k  
VDD33  
ITHR1  
PGND SGND  
TSNS0  
6.8nF  
10nF  
7050 TA02  
PINS NOT SHOWN IN LTC3884-1 CIRCUIT: PGOOD0, PGOOD1, TSNS1,  
SYNC, ASEL0, ASEL1, VOUT0_CFG, VOUT1_CFG, FREQ_CFG,PHASE_CFG  
PINS NOT SHOWN IN LTC7050 CIRCUIT: TMON  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC7051  
SilentMOS Smart Power Stage in 5mm × 8mm LQFN  
140A Peak Current, Silent Switcher 2 Architecture, V Up to  
IN  
14V, 5mm × 8mm LQFN Package  
LTC7050-1  
LTC7051-1  
Dual SilentMOS Smart Power Stage in 5mm × 8mm LQFN  
SilentMOS Smart Power Stage in 5mm × 8mm LQFN  
70A Peak Current per Channel, Silent Switcher 2 Architecture,  
IN  
V
Up to 16V, 5mm × 8mm LQFN Package  
140A Peak Current, Silent Switcher 2 Architecture, V Up to  
IN  
16V, 5mm × 8mm LQFN Package  
2
LTC3888/LTC3888-1 Dual Output 8-Phase Step-Down DC/DC Controller with Digital  
Power System Management  
4.5V ≤ V ≤ 26.5V, 0.3V ≤ V  
≤ 3.45V, I C/PMBus Control,  
IN  
OUT  
Programmable Loop Compesation, 5mm × 8mm QFN-52  
LTC3884/LTC3884-1 Dual Output PolyPhase® Step-Down Controller with Sub-  
4.5V ≤ V ≤ 38V, 0.5V ≤ V  
≤ 5.5V, I C/PMBus Control,  
2
IN  
OUT  
Milliohm DCR Sensing and Digital Power System Management Programmable Loop Compesation, 5mm × 8mm QFN-52  
LTC7851  
Quad Output Multiphase Step-Down Voltage Mode DC/DC  
Controller with Accurate Current Sharing  
Operates with DrMOS, Power Blocks or External Drivers/  
MOSFETs, V Range Depends on External Components,  
IN  
4.5V≤ V ≤ 5.5V, 0.6V ≤ V  
≤ V –0.5V  
CC  
CC  
OUT  
LTC7852/LTC7252-1 Dual Output 6-Phase Current Mode Synchronous Buck  
Controller with Current Monitoring  
Operates with DrMOS, Power Blocks, 0.5V ≤ V  
≤ 2V, Hiccup  
OUT  
Mode Overcurrent Protection, Flexible Phase Configuration  
LTC3861  
Dual, Multiphase Step-Down Voltage Mode DC/DC Controller  
with Accurate Current Sharing  
Operates with Power Blocks, DrMOS or External MOSFETs  
3V≤ V ≤ 24V  
IN  
LTC3882/LTC3882-1 Dual Output Multiphase Step-Down DC/DC Voltage Mode  
Controller with Digital Power System Management  
3V ≤ V ≤ 38V, 0.5V ≤ V  
≤ 5.25V, 0.5% V  
Accuracy  
IN  
OUT1,2  
OUT  
2
I C/PMBus Interface, uses DrMOS or Power Blocks  
LTC3887/LTC3887-1 Dual Output Multiphase Step-Down DC/DC Controller with  
Digital Power System Management, 70mS Start-Up  
4.5V ≤ V ≤ 24V, 0.5V ≤ V  
( 0.5%) ≤ 5.5V, 70mS Start-Up,  
IN  
OUT0,1  
2
I C/PMBus Interface, –1 Version uses DrMOS or Power Blocks  
Rev. 0  
09/21  
www.analog.com  
16  
ANALOG DEVICES, INC. 2021  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY