LTC7801 [ADI]

100V Half-Bridge Driver with Floating Grounds and Adjustable Dead-Time;
LTC7801
型号: LTC7801
厂家: ADI    ADI
描述:

100V Half-Bridge Driver with Floating Grounds and Adjustable Dead-Time

文件: 总26页 (文件大小:1853K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC7883  
Quad Output PolyPhase  
Step-Down DC/DC Voltage Mode Controller  
with Digital Power System Management  
FEATURES  
DESCRIPTION  
2
The LTC®7883 is a quad, PolyPhase DC/DC synchronous  
step-down switching regulator controller with PMBus  
compliant serial interface. It uses a constant frequency,  
leading-edge modulation, voltage mode architecture for  
excellent transient response and output regulation. Each  
PWM channel can produce output voltages from 0.1V  
to 5.25V using a wide range of 3.3V compatible power  
stages, including power blocks, DrMOS or discrete FET  
drivers. LTC7883 devices can operate in parallel, sup-  
porting ideal phasor positioning for PolyPhase rails up  
to 8-phases.  
n
PMBus/I C Compliant Serial Interface  
n
Monitor Voltage, Current, Temperature and Faults  
n
Program Voltage, Soft-Start/Stop, Sequencing,  
Margining, AVP and UV/OV/OC Limits  
n
3V ≤ VINSNS ≤ 38V, 0.1V (Limited by DrMOS  
t
) ≤ V  
≤ 5.25V  
ON_MIN  
OUT  
n
n
0.5ꢀ Output Voltage Error  
Programmable PWM Frequency or External Clock  
Synchronization from 250kHz to 2.5MHz  
Accurate PolyPhase® Current Sharing  
Internal EEPROM with Fault Logging and ECC  
IC Supply Range: 3V to 13.2V  
Resistor or Inductor DCR Current Sensing  
Power Good Output Voltage Monitor  
Supports Start-Up Into a Prebiased Load  
Optional Resistor Programming for Key Parameters  
99-Lead BGA Package (9mm × 7.5mm)  
n
n
n
n
n
n
n
n
System configuration and monitoring is supported by the  
LTpowerPlay® software tool. The LTC7883 serial interfaces  
can read back input voltage, output voltage and current,  
temperature and fault status. Most operating parameters  
can be set via the digital interfaces or stored in internal  
EEPROM for use at power-up. Switching frequency and  
phase, output voltage and device address can also be set  
using external configuration resistors.  
APPLICATIONS  
n
High Current Distributed Power Systems  
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. patents, including 5396245, 5859606, 6144194, 6937178, 7420359 and 7000125.  
n
Servers, Network and Storage Equipment  
n
Intelligent Energy Efficient Power Regulation  
TYPICAL APPLICATION  
V
IN  
7V TO 13.2V  
V
VINSA  
CCA  
V
SNSA0P  
FBA0  
V
FDMF5820DC  
PWM  
IN  
Load Step Transient Current Sharing  
1/2 LTC7883  
L0  
V
(Using FDMF5820DC DrMOS)  
SDA_A  
SCL_A  
ALERTA  
RUNA0  
RUNA1  
OUT  
SW  
1V  
COMPA0  
COMPA1  
PWMA0  
TSNSA0  
100A  
TO/FROM  
MCU  
I
OUT  
10A/DIV  
GND  
PGA0  
FLTA0  
CSA0P  
CSA0M  
TO/FROM  
PGA1  
V
SNSA1P  
EXTERNAL DEVICES  
FLT1A1  
SYNCA  
CLKA  
CSA1M  
CSA1P  
I
, I  
L0 L1  
10A/DIV  
FDMF5820DC  
PWM  
V
IN  
7883 TA01b  
L1  
IAVGA0  
IAVGA1  
50µs/DIV  
SW  
PWMA1  
TSNSA1  
IAVGNDA  
GND  
V
V
SNSA0M  
SNSA1M  
7883 TA01a  
GND  
INDUCTORS: COOPER FP1007R1-R22  
SOME DETAILS OMITTED FOR CLARITY  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LTC7883  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V
Supply.......................................... –0.3V to 15V  
CC[A/B]  
1
2
3
4
5
6
7
8
9
10 11  
PIN 1  
A
VINS[A/B] .................................................. –0.3V to 40V  
V
V
.............................................. –0.3V to 1V  
SNS[A/B][1:0]M  
B
C
D
E
F
, CS[A/B][1:0]P/M................... –0.3V to 6V  
SNS[A/B][1:0]P  
FB[A/B][1:0], COMP[A/B][1:0],  
TSNS[A/B][1:0], IAVGND[A/B],  
IAVG[A/B][1:0] ...................................... –0.3V to 3.6V  
SYNC[A/B], FLT[A/B][1:0], WP[A/B],  
PG[A/B][1:0], SHCLK[A/B].................... –0.3V to 3.6V  
SCL[A/B], SDA[A/B], RUN[A/B][1:0],  
ALERT[A/B]............................................ –0.3V to 5.5V  
ASEL0[A/B], ASEL1[A/B],  
G
H
J
BGA PACKAGE  
99-LEAD (9mm × 7.5mm × 1.29mm)  
= 125°C, θ = 32°C/W,  
VO[A/B][1:0]CFG, FCFG[A/B],  
PCFG[A/B] .......................................... –0.3V to 2.75V  
T
JMAX  
JA  
θ
= 17°C/W, θ  
= 12.1°C/W, θ = 14.5°C/W,  
JCbottom JB  
JCtop  
PWM[A/B][1:0], V  
DD33[A/B]  
.............................. (Note 13)  
DD25[A/B]  
WEIGHT = TBDg,  
θ VALUES DETERMINED PER JEDEC 51-9, 51-12  
V
........................................................ (Note 14)  
Operating Junction Temperature  
(Notes 2, 3)...................................... –40°C to 125°C*  
Storage Temperature Range ............ –65°C to 150°C*  
Absolute Maximum Junction Temperature ....... 125°C  
*See Derating EEPROM Retention at Temperature in the  
Applications Information section for junction tempera-  
tures in excess of 125°C.  
ORDER INFORMATION  
PART MARKING*  
MSL  
PACKAGE  
TYPE  
OPERATING JUNCTION  
TEMPERATURE RANGE  
PART NUMBER  
PAD OR BALL FINISH  
DEVICE  
FINISH CODE  
RATING  
LTC7883AY#PBF  
SAC305 (RoHS)  
LTC7883Y  
e1  
BGA  
–40°C to 125°C  
3
• Contact the factory for parts specified with wider operating temperature Recommended LGA and BGA PCB Assembly and Manufacturing  
ranges. *The temperature grade is identified by a label on the shipping  
container.  
• Pad or ball finish code is per IPC/JEDEC J-STD-609.  
Procedures  
LGA and BGA Package and Tray Drawings  
Rev. 0  
2
For more information www.analog.com  
LTC7883  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TJ = 25°C (Note 2). Specifications apply to both units with VCC = 5V,  
VSNSP = 1.8V, VSNSM = IAVGND = GND = 0V, fSYNC = 500kHz (externally driven) unless otherwise specified.  
SYMBOL  
IC Supply  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
V
V
V
Voltage Range  
V
V
V
= Internal LDO  
4.5  
3
13.8  
3.6  
3
V
V
CC  
CC  
DD33  
l
l
Voltage Range  
= V  
(Note 6)  
DD33  
DD33_EXT  
UVLO  
DD33  
CC  
Undervoltage Lockout Threshold  
Rising  
Hysteresis  
V
mV  
DD33  
42  
32  
35  
I
t
IC Operating Current  
per Unit  
mA  
ms  
Q
Controller Initialization Time  
Delay from RESTORE_USER_ALL, MFR_RESET or V  
DD33  
> V  
INIT  
Until TON_DELAY Can Begin  
UVLO  
V
Linear Regulators  
DD33  
DD33  
DD33  
V
V
Regulator Output Voltage  
Current Limit  
V
≥ 4.5V  
3.2  
3.3  
3.4  
V
DD33  
DD33  
CC  
I
V
V
DD33  
V
DD33  
= 2.8V  
= 0V  
85  
40  
mA  
mA  
V
Linear Regulators  
DD25  
DD25  
DD25  
V
V
V
Regulator Output Voltage  
Current Limit  
2.25  
3
2.5  
95  
2.75  
38  
V
DD25  
DD25  
I
mA  
PWM Control Loops  
VINS  
V
IN  
Sense Voltage Range  
V
R
VINS Input Resistance  
Range 0 Maximum V  
278  
kΩ  
VINS  
V
5.25  
V
%
mV  
OUT_R0  
OUT  
l
l
Range 0 Set Point Error (Note 7)  
Range 0 Set Point Resolution  
0.6V ≤ V  
0.6V ≤ V  
≤ 5V  
–0.5  
–0.5  
0.5  
0.5  
OUT  
OUT  
1.375  
2.65  
V
Range 1 Maximum V  
V
%
mV  
OUT_R1  
VSNS  
OUT  
Range 1 Set Point Error (Note 7)  
Range 1 Set Point Resolution  
≤ 2.5V  
0.6875  
I
V
Input Current  
V
SNSP  
V
SNSM  
= 5.5V  
= 0V  
235  
–335  
µA  
µA  
SNS  
V
V
Line Regulation, No Output Servo 4.5V ≤ V ≤ 13.2V (See Test Circuit)  
–0.02  
0.02  
–96  
%/V  
mV  
LINEREG  
CC  
CC  
AVP  
AVP ∆V  
AVP = 10%, VOUT_COMMAND = 1.8V,  
CS Differential Step 3mV to 12mV  
with IOUT_OC_WARN_LIMIT = 15mV  
–118 –108  
OUT  
A
Error Amplifier Open-Loop Voltage Gain  
Error Amplifier Slew Rate  
87  
9.5  
30  
dB  
V/µs  
MHz  
V(OL)  
SR  
f
I
Error Amplifier Bandwidth  
(Note 12)  
0dB  
Error Amplifier Output Current  
Sourcing  
Sinking  
–2.6  
34  
mA  
mA  
COMP  
l
l
R
VSFB  
Resistance Between V  
and FB  
Range 0  
Range 1  
52  
37  
67  
49  
83  
61  
kΩ  
kΩ  
SNSP  
V
CS Differential Input Range  
CSP/M Input Current  
70  
0.1  
175  
mV  
µA  
ISENSE  
I
I
0V ≤ V ≤ 5.5V  
–1  
1
ISENSE  
PIN  
IAVG Current Sense Offset  
Referred to CS Inputs  
µV  
µV  
AVG_VOS  
–600  
650  
V
Slave Current Sharing Offset  
SYNC Frequency Error  
Referred to CS Inputs  
300  
µV  
µV  
SIOS  
–800  
–10  
700  
10  
l
f
250kHz ≤ f  
≤ 1.25MHz  
SYNC  
%
SYNC  
Rev. 0  
3
For more information www.analog.com  
LTC7883  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TJ = 25°C (Note 2). Specifications apply to both units with VCC = 5V,  
VSNSP = 1.8V, VSNSM = IAVGND = GND = 0V, fSYNC = 500kHz (externally driven) unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Input Voltage Supervisor  
l
V
Input ON/OFF Threshold Error  
15V ≤ V  
≤ 35V  
IN_ON  
–2  
2
%
ON_TOL  
N
Input ON/OFF Threshold Resolution  
143  
5.5  
mV  
VON  
Output Voltage Supervisors  
V
V
Range 0 Maximum Threshold  
Range 0 Error  
Range 0 Threshold Resolution  
Range 0 Threshold Hysteresis  
V
%
mV  
mV  
UVOV_R0  
l
l
2V ≤ V  
1V ≤ V  
≤ 5V (Falling for UV and Rising for OV)  
≤ 2.5V (Falling for UV and Rising for OV)  
–1  
–1  
1
1
OUT  
OUT  
11  
50  
Range 1 Maximum Threshold  
Range 1 Error  
Range 1 Threshold Resolution  
Range 1 Threshold Hysteresis  
2.75  
V
%
mV  
mV  
UVOV_R1  
5.5  
25  
Output Current Supervisors  
l
l
l
V
Output Current Limit Tolerance  
CSP – CSM  
15mV < CSP – CSM ≤ 30mV  
30mV < CSP – CSM ≤ 50mV  
50mV < CSP – CSM ≤ 70mV  
–1.7  
–2.5  
–5.2  
1.7  
2.5  
5.2  
mV  
mV  
mV  
ILIM_TOL  
N
CSP – CSM Threshold Resolution  
1LSB  
0.4  
10  
mV  
lLIM  
ADC Readback Telemetry (Note 8)  
N
VIN  
VINS Readback Resolution  
(Note 9)  
Bits  
V
VINS Total Unadjusted Readback Error 4.5V ≤ VINS ≤ 38V  
0.5  
2
%
%
IN_TUE  
l
N
PWM Duty Cycle Resolution  
(Note 9)  
10  
Bits  
%
DC  
DC  
PWM Duty Cycle Total Unadjusted  
Readback Error  
PWM Duty Cycle = 12.5%  
–2  
2
TUE  
N
V
V
Readback Resolution  
244  
0.2  
µV  
VOUT  
OUT  
OUT  
V
Total Unadjusted Readback Error 0.6V ≤ V  
≤ 5.5V, Constant Load  
%
%
OUT_TUE  
OUT  
l
–0.5  
0.5  
N
ISENSE  
I
Readback Resolution  
(Note 9)  
10  
15.625  
31.25  
62.5  
Bits  
µV  
µV  
µV  
µV  
OUT  
LSB Step Size (at I  
)
0mV ≤ |CSP – CSM| < 16mV  
16mV ≤ |CSP – CSM| < 32mV  
32mV ≤ |CSP – CSM| < 63.9mV  
63.9mV ≤ |CSP – CSM| ≤ 70mV  
SENSE  
125  
l
I
I
I
I
Total Unadjusted Readback Error  
Zero-Code Offset Voltage  
|CSP – CSM| ≥ 6mV, 0V ≤ V ≤ 5.5V  
OUT  
1
32  
%
µV  
°C  
SENSE_TUE  
OUT  
SENSE_OS  
OUT  
N
Temperature Resolution  
External Temperature Total Unadjusted TSNS ≤ 1.85V (Note 10)  
Readback Error  
0.25  
TEMP  
T
EXT_TUE  
l
l
MFR_PWM_MODE_LTC3882-1[6] = 0  
MFR_PWM_MODE_LTC3882-1[6] = 1  
–3  
–7  
3
7
°C  
°C  
T
Internal Temperature Total Unadjusted Internal Diode (Note 10)  
Readback Error  
1
°C  
INT_TUE  
t
Update Rate  
(Note 11)  
90  
ms  
CONVERT  
Internal EEPROM (Notes 4, 6)  
Endurance  
Retention  
Number of Write Operations  
Stored Data Retention  
0°C ≤ T ≤ 85°C During All Write Operations  
10,000  
10  
Cycles  
Years  
s
J
T ≤ 125°C  
J
Mass Write Time STORE_USER_ALL Execution Duration 0°C ≤ T ≤ 85°C During All Write Operations  
0.2  
2
J
Rev. 0  
4
For more information www.analog.com  
LTC7883  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TJ = 25°C (Note 2). Specifications apply to both units with VCC = 5V,  
VSNSP = 1.8V, VSNSM = IAVGND = 0V, fSYNC = 500kHz (externally driven) unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Digital Inputs (SCL, SDA, RUN, FLT, SYNC, SHCLK, WP)  
l
l
V
V
V
Input High Voltage  
Input Low Voltage  
SCL, SDA, RUN, FLT  
1.35  
1.8  
V
V
IH  
SYNC, SHCLK, WP  
l
l
SCL, SDA, RUN, FLT  
SYNC, SHCLK, WP  
0.8  
0.6  
V
V
IL  
Input Hysteresis  
SCL, SDA  
80  
10  
mV  
µA  
pF  
HYST  
LKG  
I
Input Pull-Up Current  
Input Capacitance  
WP = 0V  
C
IN  
SCL, SDA, RUN, FLT, SYNC, SHCLK (Note 12)  
10  
t
Input Digital Filter Delay  
FLT  
RUN  
3
10  
µs  
µs  
FILT  
Digital Outputs (SCL, SDA, RUN, FLT, SYNC, SHCLK, ALERT, PWM, PG)  
l
l
V
OL  
Output Low Voltage  
I
I
= 3mA; SCL, SDA, RUN, FLT, SYNC, SHCLK, ALERT  
= 2mA; PWM, PG  
0.2  
0.4  
0.3  
V
V
SINK  
SINK  
l
V
PWM Output High Voltage  
Output Leakage Current  
I
= 2mA  
2.7  
V
OH  
SOURCE  
I
0V ≤ PWM, PG ≤ V  
–1  
–5  
1
5
µA  
µA  
LKG  
DD33  
0V ≤ FLT, SYNC, SHCLK ≤ 3.6V  
0V ≤ RUN ≤ 5.5V  
l
0V ≤ SCL, SDA, ALERT ≤ 5.5V  
–5  
5
µA  
ns  
ns  
t
t
PWM Output Rise Time  
PWM Output Fall Time  
C
C
= 30pF, 10% to 90%  
= 30pF, 90% to 10%  
5
4
RO  
LOAD  
LOAD  
FO  
Serial Bus Timing  
l
l
l
f
t
t
Serial Bus Operating Frequency  
10  
1.3  
0.6  
400  
kHz  
µs  
SMB  
Bus Free Time Between Stop and Start  
BUF  
Hold Time After (Repeated) Start  
Condition. After This Period, the First  
Clock Is Generated  
µs  
HD,STA  
l
l
t
t
t
Repeated Start Condition Setup Time  
Stop Condition Setup Time  
0.6  
0.6  
µs  
µs  
SU,STA  
SU,STO  
HD,DAT  
Data Hold Time:  
Receiving Data  
Transmitting Data  
l
l
0
0.3  
ns  
µs  
0.9  
l
l
l
l
t
t
t
t
Input Data Setup Time  
Clock Low Timeout  
100  
25  
ns  
ms  
µs  
SU,DAT  
TIMEOUT  
LOW  
35  
Serial Clock Low Period  
Serial Clock High Period  
1.3  
0.6  
10000  
µs  
HIGH  
Rev. 0  
5
For more information www.analog.com  
LTC7883  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Minimum EEPROM endurance, retention and mass write time  
specifications apply when writing data with 3.15V ≤ V  
≤ 3.45V.  
DD33  
EEPROM read commands are valid over the entire specified V  
operating range.  
DD33  
Note 2: The LTC7883 is specified over the –40°C to 125°C operating  
junction temperature range. High Junction temperatures degrade operating  
lifetimes; operating lifetime is derated for junction temperatures greater  
than 125°C. Note the maximum ambient temperature consistent with  
these specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal impedance and  
other environmental factors.  
Note 7: Specified V  
set with MFR_PWM_MODE_LTC3882-1 command bit 6. Performance is  
guaranteed by testing the LTC7883 in a feedback loop that servos V  
a specified value.  
Note 8: ADC tested with PWMs disabled. Comparable capability  
error with AVP = 0% requires servo mode to be  
OUT  
to  
OUT  
demonstrated by in-circuit evaluations. Total Unadjusted Error includes all  
gain and linearity errors, as well as offsets.  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. The maximum  
rated junction temperature will be exceeded when this protection is active.  
Continuous operation above the specified absolute maximum operating  
junction temperature may impair device reliability or permanently damage  
the device.  
Note 4: EEPROM endurance, retention and mass write times are  
guaranteed by design, characterization and correlation with statistical  
process controls. Minimum retention applies only for devices cycled less  
than the minimum endurance specification. EEPROM read commands  
(e.g. RESTORE_USER_ALL) are valid over the entire specified operating  
junction temperature range.  
Note 9: Internal 32-bit calculations using 16-bit ADC results are limited to  
10-bit resolution by PMBus Linear 11-bit data format.  
Note 10: Limits guaranteed by TSNS voltage and current measurements  
during test, including ADC readback.  
Note 11: Data conversion is done in round robin fashion. All inputs signals  
are continuously scanned in sequence resulting in a typical conversion  
latency of 90ms.  
Note 12: Guaranteed by design.  
Note 13: Do not apply a voltage or current source directly to these pins.  
They should only be connected to passive RC loads, otherwise permanent  
damage may occur.  
Note 14: Do not apply a voltage source to this pin unless shorted to V  
.
CC  
Note 5: All currents into device pins are positive; all currents out of  
device pins are negative. All voltages are referenced to GND unless  
otherwise specified.  
See Electrical Characteristics for applicable limits beyond which permanent  
damage may occur.  
Rev. 0  
6
For more information www.analog.com  
LTC7883  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical LTC78883 Output Voltage  
Distribution at 105°C  
LTC7883 1.0V Regulated Output  
vs Temperature  
Typical LTC7883 Output Voltage  
Distribution at 0°C  
1.001  
1.0005  
1.0  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
600  
400  
200  
0
1078 UNITS  
VOUT_COMMAND = 1.0V  
DIGITAL SERVO  
V
= 12V  
1094 UNITS  
IN  
VOUT_COMMAND = 1.0V  
DIGITAL SERVO ENGAGED  
VOUT_COMMAND = 1.0V  
DIGITAL SERVO  
ENGAGED  
ENGAGED  
I
= 6.5A  
OUT  
0.9995  
0.999  
0.9985  
–5  
15  
35  
55  
75  
95  
–1.25 –1 0.750.5–0.25 0 0.25 0.5 0.75  
ERROR (mV)  
1
1.25  
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
T
(°C)  
V
V
OUT  
ERROR (mV)  
A
OUT  
7883 G01  
7883 G02  
7883 G03  
Efficiency vs Load Current  
(1-Phase Using D12S1R880A  
Power Block)  
Efficiency and Loss vs Load  
(2-Phase Using FDMF5820DC  
DrMOS)  
Efficiency and Loss vs Load  
(4-Phase Using LTC7051)  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
13  
95  
90  
85  
80  
75  
95  
90  
85  
80  
75  
70  
65  
60  
51  
44  
37  
30  
23  
16  
9
V
= 12V  
IN  
11  
9
EFFICIENCY  
EFFICIENCY 500kHz  
EFFICIENCY 1MHz  
POWER LOSS 500kHz  
POWER LOSS 1MHz  
7
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
1.0V  
5
POWER LOSS  
V
V
= 12V  
= 1V  
3
IN  
OUT  
V
V
= 12V  
= 1V  
IN  
OUT  
SYNC = 500kHz  
1
2
0
10 20 30 40 50 60 70 80  
0
10  
20  
30  
40  
0
20 40 60 80 100 120 140 160 180 200  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
7883 G04  
7883 G05  
7883 G06  
Typical Distribution of Slave  
IOUT Offset (Not Including DCR  
Mismatch)  
Typical Distribution of Slave  
IOUT Offset (Not Including DCR  
Mismatch)  
Typical Distribution of Slave  
IOUT Offset (Not Including DCR  
Mismatch)  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
9595 UNITS  
8593 UNITS  
11783 UNITS  
FROM 3 LOTS  
FROM 3 LOTS  
FROM 3 LOTS  
T
T
= –40°C  
= –22°C  
T
= 38°C  
T = 121°C  
A
J
J
J
CHO MASTER  
CHO MASTER  
CHO MASTER  
0
0
0
–400–300–200–100  
0
100 200 300 400  
–400–300–200–100  
0
100 200 300 400  
–300–200–100  
CH1 I OFFSET TO IDEAL (µV)  
SENSE  
7883 G09  
0
100 200 300 400 500  
CH1 I  
OFFSET TO IDEAL (µV)  
CH1 I  
OFFSET TO IDEAL (µV)  
SENSE  
SENSE  
7883 G07  
7883 G08  
Rev. 0  
7
For more information www.analog.com  
LTC7883  
TYPICAL PERFORMANCE CHARACTERISTICS  
3-Phase DC Output Current  
Sharing (Using D12S1R845A  
Power Block  
Load Step Transient Current  
Sharing (Using FDMF6707B  
DrMOS)  
Load Dump Transient Current  
Sharing (Using FDMF6707B  
DrMOS)  
20  
18  
16  
14  
12  
10  
8
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
I
I
OUT  
OUT  
20A/DIV  
20A/DIV  
V
OUT  
V
20mV/DIV  
OUT  
20mV/DIV  
I
, I  
I
, I  
L1 L2  
L1 L2  
10A/DIV  
10A/DIV  
6
7883 G11  
7883 G12  
4
V
V
= 1V  
5µs/DIV  
V
V
= 1V  
5µs/DIV  
OUT  
IN  
OUT  
IN  
= 12V  
= 12V  
2
SYNC = 500kHz  
L = 320nH  
SYNC = 500kHz  
L = 320nH  
0
0
10 20 30 40 50 60 70 80  
TOTAL RAIL CURRENT (A)  
7883 G10  
Efficiency and Power Loss vs  
Input Voltage  
(1-Phase Using LTC4449)  
1-Phase Single Cycle Response  
(Using D12S1R860A Power Block  
with COUT = 6 × 100µF X5R 1210)  
3-Phase Transient Response  
(Using D12S1R860A Power Block)  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
3.0  
2.5  
2.0  
1.5  
V
= 1.8V  
O
V
OUT  
(20mV/DIV)  
I
OUT  
(10A/DIV)  
V
SW  
(10V/DIV)  
V
OUT  
(10mV/DIV)  
25mV  
P-P  
I
1.0  
OUT  
(10A/DIV)  
7883 G14  
7883 G15  
0.5  
0
100µs/DIV  
2µs/DIV  
POWER FET: BSC050N04LS G  
SYNC FET: BSC010N04LS  
V
V
= 0.9V/90A  
V
= 1V/25A  
OUT  
OUT  
IN  
= 12V  
V
= 12V  
IN  
5
10  
15  
V
20  
(V)  
25  
30  
SYNC = 500kHz  
L = 210nH  
SYNC = 1MHz  
L = 210nH  
IN  
7883 G13  
3+1 Channel Crosstalk  
(Using D12S1R845A Power  
Blocks)  
Load Step Transient Response  
Using AVP  
Line Step Transient Response  
(1-Phase Using LTC4449)  
V
OUT0  
I
O
(1-PHASE)  
20mV/DIV  
10A/DIV  
7V  
V
IN  
2V/DIV  
V
OUT1  
(3-PHASE)  
20mV/DIV  
1.8V  
25%  
LOAD STEP  
I
OUT1  
V
10A/DIV  
OUT  
V
OUT  
50mV/DIV  
10mV/DIV  
7883 G16  
7883 G17  
7883 G18  
100µs/DIV  
200µs/DIV  
200µs/DIV  
Rev. 0  
8
For more information www.analog.com  
LTC7883  
TYPICAL PERFORMANCE CHARACTERISTICS  
Soft-Start Ramp  
Start-Up Into a Prebiased Load  
Soft-Off Ramp  
RUN  
2V/DIV  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
0V  
V
OUT  
I
, I  
I , I  
L1 L2  
10A/DIV  
L1 L2  
1V/DIV  
10A/DIV  
7883 G19  
7883 G20  
7883 G21  
V
IN  
= 12V  
1ms/DIV  
V
IN  
= 12V  
1ms/DIV  
5ms/DIV  
TOFF_DELAY = 10ms  
TOFF_FALL = 5ms  
Regulated Output vs Temperature  
VOUT_COMMAND INL  
VOUT_COMMAND DNL  
1.8000  
1.7995  
1.7990  
1.7985  
1.7980  
1.7975  
1.7970  
1.5  
1.0  
0.5  
0
1.0  
0.8  
VOUT_COMMAND = 1.8V  
DIGITAL SERVO OFF  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.5  
–1.0  
–40 –20  
0
20 40 60 80 100 120  
0.3  
1.1  
1.9  
2.7  
3.5  
(V)  
4.3  
5.1  
0.3  
1.1  
1.9  
2.7  
3.5  
(V)  
4.3  
5.1  
TEMPERATURE (°C)  
V
V
OUT  
OUT  
7883 G22  
7883 G23  
7883 G24  
Output Overvoltage Threshold  
Error vs Temperature  
Output Overcurrent Threshold  
Error vs Temperature  
PWM Frequency vs Temperature  
0.10  
0.05  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
500.2  
500.1  
500.0  
499.9  
499.8  
499.7  
499.6  
499.5  
–0.05  
–0.10  
–0.15  
–0.2  
VOUT_OV_FAULT_LIMIT = 2V  
V
RANGE = 1  
FREQUENCY_SWITCH = 500kHz  
OUT  
–0.4  
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
7883 G25  
7883 G26  
7883 G27  
Rev. 0  
9
For more information www.analog.com  
LTC7883  
TYPICAL PERFORMANCE CHARACTERISTICS  
VINS ADC TUE  
VOUT ADC TUE  
IOUT ADC TUE  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0.40  
0.30  
0.20  
0.10  
0
8
6
4
2
0
–0.10  
–0.20  
–0.30  
–0.40  
–2  
–4  
–6  
–8  
0
5
10 15 20 25 30 35 40  
0.5  
1
1.5  
2
2.5  
V
3
3.5  
(V)  
4
4.5  
5
5.5  
0
5
10  
OUTPUT CURRENT (A)  
15  
20  
VINSNS (V)  
OUT  
7883 G28  
7883 G29  
7883 G30  
IC Operating Current vs  
Temperature  
Temperature ADC TUE  
SHCLK Frequency vs Temperature  
1.0  
0.8  
31.0  
30.8  
30.6  
30.4  
30.2  
30.0  
29.8  
29.6  
29.4  
110  
105  
100  
95  
V
CC  
= 14V  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
90  
–40 –20  
0
20 40 60 80 100 120  
–50 –30 –10 10 30 50 70 90 110  
–45 –25 –5 15 35 55 75 95 115  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
ACTUAL TEMPERATURE (°C)  
7883 G33  
7883 G32  
7883 G31  
Rev. 0  
10  
For more information www.analog.com  
LTC7883  
LTC7883 PIN (BALL) ASSIGNMENTS  
PIN NAME  
PIN NAME  
BALL  
A1  
A2  
UNIT A  
UNIT B  
BALL  
E6  
E7  
UNIT A  
GND  
GND  
UNIT B  
GND  
GND  
V
SNSA1P  
SNSA1M  
SNSA0M  
V
V
A3  
E8  
GND  
GND  
A4  
V
E9  
GND  
GND  
SNSA0P  
A5  
A6  
A7  
A8  
ALERTA  
E10  
E11  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
V
DD25B  
V
IAVGNDB  
CCA  
ALERTB  
COMPA1  
FBA1  
V
V
V
SNSB1P  
SNSB1M  
SNSB0M  
A9  
V
DD33A  
A10  
A11  
B1  
SHCLKA  
V
SHCLKB  
GND  
SNSB0P  
ASELA1  
ASELA0  
GND  
WPA  
B2  
B3  
B4  
B5  
B6  
ASELB1  
ASELB0  
GND  
F8  
F9  
F10  
F11  
WPB  
V
DD33B  
GND  
FBB0  
COMPB0  
V
CCB  
B7  
B8  
B9  
B10  
B11  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
E1  
GND  
RUNA0  
RUNA1  
GND  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
J1  
COMPA0  
FBA0  
PGA0  
PGA1  
GND  
RUNB0  
RUNB1  
GND  
GND  
PGB0  
PGB1  
FBB1  
SDA_A  
GND  
SDA_B  
GND  
GND  
PCFGA  
FCFGA  
GND  
COMPB1  
COMPB1  
GND  
PCFGB  
VOB1CFG  
GND  
CSA1M  
IAVGA0  
IAVGA1  
TSNSA1  
TSNSA0  
VINSA  
GND  
SCL_A  
SCL_B  
FLTA1  
FLTA0  
IAVGB0  
IAVGB1  
TSNSB1  
TSNSB0  
PWMB0  
FLTB1  
FLTB0  
VOA0CFG  
GND  
GND  
FCFGB  
VOB0CFG  
GND  
CSA1P  
PWMA1  
CSA0M  
CSA0P  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
GND  
SYNCA  
SYNCB  
PWMA0  
IAVGNDA  
VINSB  
CSB1M  
CSB1P  
PWMB1  
CSB0M  
CSB0P  
E2  
E3  
E4  
E5  
E6  
E7  
V
DD25A  
VOA1CFG  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J10  
J11  
Rev. 0  
11  
For more information www.analog.com  
LTC7883  
PIN FUNCTIONS  
PWM switching frequency with a 125ns pulse width. A  
pull-up resistor to 3.3V is required in the application if  
SYNC is driven by any LTC7883. Minimize the capacitance  
on this line to ensure its time constant is fast enough for  
the application.  
COMP[A/B][1:0]: Error Amplifier Outputs. PWM duty  
cycle increases with this control voltage. These are true  
low impedance outputs and cannot be directly connected  
together when active. For PolyPhase operation, wiring  
FB to V  
will three-state the error amplifier output of  
DD33  
that channel, making it a slave. PolyPhase control is then  
implemented in part by connecting all slave COMP pins  
together to one master error amplifier output.  
SCL[A/B]: Serial Bus Clock Input. A pull-up resistor to  
3.3V is required in the application.  
SDA[A/B]: Serial Bus Data Input and Output. A pull-up  
resistor to 3.3V is required in the application.  
TSNS[A/B][1:0]: External Temperature Sense Inputs. The  
LTC7883 supports two methods of calculation of exter-  
nal temperature based on forward-biased P/N junctions  
between these pins and GND.  
ALERT[A/B]: Open-Drain Status Output. This pin may  
be connected to the system SMBALERT wire-AND inter-  
rupt signal and should be left open if not used. If used, a  
pull-up resistor is required in the application. Operating  
VINS[A/B]: V Supply Sense. Connect to the V power  
IN  
IN  
supply to provide line feedforward compensation. A  
change in VIN immediately modulates the input to the  
PWM comparator and inversely changes the pulse width  
to provide excellent transient line regulation and fixed  
modulator voltage gain. An external lowpass filter can be  
added to this pin to prevent noisy signals from affecting  
the loop gain.  
voltage range is GND to V  
.
DD33  
FLT[A/B][1:0]: Programmable Digital Inputs and Open-  
Drain Outputs for Fault Sharing. Used for channel-to-chan-  
nel fault communication and propagation. These pins  
should be left open if not used. If used, a pull-up resistor  
to 3.3V is required in the application.  
RUN[A/B][1:0]: Run Control Inputs and Open-Drain  
Outputs. A voltage above 2V is required on these pins  
to enable the respective PWM channel. The LTC7883 will  
drive these pins low under certain reset/restart conditions  
regardless of any PMBus command settings. A pull-up  
resistor to 3.3V is required in the application.  
IAVGND[A/B]: IAVG Ground Reference. The same IAVGND  
should be shared between all channels of a PolyPhase  
rail and connected to system ground at a single point.  
IAVGND may be wired directly to GND on units that do  
not share phases with other units.  
PG[A/B][1:0]: Power Good Indicator Open-Drain Outputs.  
These outputs are driven low through a 30µs filter when  
the respective channel output is below its programmed  
UV fault limit or above its programmed OV fault limit.  
If used, a pull-up resistor is required in the application.  
ASELA[1:0]:Unit ASerialBusAddressSelectPins. Connect  
optional 1% resistor dividers between V  
and GND  
DD25A  
to these pins to select the serial bus interface address.  
ASELB[1:0]:Unit BSerialBusAddressSelectPins. Connect  
Operating voltage range is GND to V  
.
DD33  
optional 1% resistor dividers between V  
and GND  
DD25B  
to these pins to select the serial bus interface address.  
PWM[A/B][1:0]: PWM Three-State Control Outputs.  
These pins provide single-wire PWM switching control  
for each channel to an external gate driver, DrMOS or  
VO[A/B][1:0]CFG: Output Voltage Configuration Pins.  
Connect optional 1% resistor dividers between VDD25  
and GND to these pins to select the output voltage for  
each channel.  
power block. Operating voltage range is GND to V  
.
DD33  
SYNC[A/B]: External Clock Synchronization Input and  
Open-Drain Output. If desired, an external clock can  
be applied to this pin to synchronize the internal PWM  
channels. If an LTC7883 unit is configured as a clock  
master, this pin will also pull to ground at the selected  
FCFG[A/B]: Frequency Configuration Pins. Connect an  
optional 1% resistor divider between V  
and GND to  
DD25  
these pins to configure PWM switching frequency.  
Rev. 0  
12  
For more information www.analog.com  
LTC7883  
PIN FUNCTIONS  
PCFG[A/B]: Phase Configuration Pins. Connect an  
optional 1% resistor divider between V  
these pins to configure the phase of each PWM channel  
relative to SYNC.  
V
: Negative Output Voltage Sense Inputs.  
SNS[A/B][1:0]M  
and GND to  
These pins must still be properly connected on slave  
DD25  
channels for accurate output current telemetry.  
VSNS[A/B][1:0]P: Positive Output Voltage Sense Inputs.  
These pins must still be properly connected on slave  
channels for accurate output current telemetry.  
VDD25[A/B]: Internal 2.5V Regulator Outputs. Bypass these  
pins to GND with a low ESR 1µF capacitor. Do not short  
these pins together or load them with external current  
beyond that required for local LTC7883 configuration.  
CS[A/B][1:0]M: Current Sense Amplifier Inputs. These (–)  
inputs to the amplifiers are normally connected to the low  
side of a DCR sensing network or output current sense  
resistor for each phase.  
WP[A/B]: Write Protect Inputs. If WP is above 2V, PMBus  
writes are restricted and any software WRITE_PROTECT  
settings for that unit are overridden. These pins have an  
CS[A/B][1:0]P: Current Sense Amplifier Inputs. These  
(+) inputs are normally connected to the high side of an  
output current sense resistor or the R-C midpoint of a  
parallel DCR sense circuit for each phase.  
internal 10µA pull-up to V  
.
DD33  
SHCLK[A/B]: Share Clock Open-Drain Outputs (bussed).  
Share Clock, nominally 100kHz, is used to sequence mul-  
tiple rails in a power system utilizing more than one ADI  
PSM controller. A pull-up resistor is required in the appli-  
cation. Minimize the capacitance on this line to ensure the  
time constant is fast enough for the application. Operating  
IAVG[A/B][1:0]: Average Current Control Pins. A capac-  
itor connected between these pins and IAVGND stores a  
voltage proportional to the average output current of the  
master channel. PolyPhase control is then implemented  
in part by connecting all slave IAVG pins together to the  
master IAVG output. This pin should be left open on chan-  
nels that control single-phase outputs. Operating voltage  
range is GND to 2.1V.  
voltage range is GND to V  
.
DD33  
VDD33[A/B]: Internal 3.3V Regulator Outputs. Bypass these  
pins to GND with a low ESR 2.2µF capacitor. The LTC7883  
may also be powered from an external 3.3V rail attached  
to these pins, if also shorted to V  
. Otherwise do not  
short these pins together or oveCrlCo[aAd/B]them with external  
system current. Local pull-up resistors for the LTC7883  
FB[A/B][1:0]: Error Amplifier Inverting Inputs. These pins  
provide an internally scaled version of the output voltage  
for use in loop compensation.  
itself may be powered from V  
.
DD33  
GND: Ground. All GND balls must be soldered to a suitable  
PCB copper ground plane for proper electrical operation  
and to obtain the specified package thermal resistance.  
V
(Pin 25): 3.3V Regulator Input(s). Bypass these  
CC[A/B]  
pins, which may be shorted together, to GND with a capac-  
itor (0.1µF to 1µF ceramic) in close proximity to the IC.  
Rev. 0  
13  
For more information www.analog.com  
LTC7883  
BLOCK DIAGRAM (“A” Side, 1 of 2 Units)  
ROM  
RAM  
EEPROM  
VINSA  
PWM0  
R_CONFIG  
IAVGA0  
MCU AND  
CUSTOM  
LOGIC  
SHCLKA  
SYNCA  
CSA0P/M  
PMBus  
2.5V  
REGULATOR  
12-BIT  
DAC  
V
SNSA0P/M  
PGA0  
PWMA0  
PLL  
V
REF  
VOLTAGE  
REFERENCE  
IAVGNDA  
3.3V  
REGULATOR  
V
CCA  
PWMA1  
PGA1  
V
DD33A  
V
BIAS AND  
SNSA1P/M  
12-BIT  
DAC  
PWM1  
VINSA  
HOUSEKEEPING  
CSA1P/M  
VINSA  
IAVGA1  
PWMA0  
INTERNAL DATA BUS  
V
SNSA0P/M  
16-BIT  
ADC  
CSA0P/M  
TSNSA0  
ANALOG  
MUX  
PWMA1  
INTERNAL  
TEMPERATURE  
V
SNSA1P/M  
CSA1P/M  
TSNSA1  
7883 BD  
Rev. 0  
14  
For more information www.analog.com  
LTC7883  
TEST CIRCUIT (Channel A0 Example)  
LTC7883  
1.024V  
V
R
12-BIT  
D/A  
DIGITAL  
+
EA  
V
V
FBA0  
A4 G2  
COMPA0  
G1  
SNSA0M  
SNSA0P  
A3  
+
LTC1055  
TARGET = VOUT_COMMAND  
1V  
7883 TC  
TIMING DIAGRAM  
SDA  
t
t
r
t
SU(DAT)  
t
t
SP  
t
HD(SDA)  
r
t
t
f
t
f
BUF  
LOW  
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
t
HIGH  
HD(DAT)  
7883 TD  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
START  
CONDITION CONDITION  
Rev. 0  
15  
For more information www.analog.com  
LTC7883  
OPERATION  
Overview  
• Optional Time-Base Interconnect for Synchronization  
Between Multiple Controllers  
The LTC7883 is a quad channel constant frequency  
analog voltage mode controller for DC/DC step-down  
applications. It features PMBus compliant digital inter-  
faces for monitoring and control of important power sys-  
tem parameters. The IC operates from power supplies  
between 3V and 13.2V and is intended for conversion  
• Warning and Fault Status with Fault Event Data Logging  
• PMBus Revision 1.2 Compliant Interface Up to 400kHz  
Internal Structure  
The LTC7883 is comprised of two dual-channel units,  
each equivalent to an LTC3882-1 with the added feature  
of a hardware PMBus write protect for each unit.  
from V between 3V and 38V to output voltages between  
IN  
0.1V and 5.25V. It is designed to be used in a switching  
architecture with external FET drivers, including higher  
level integrations such as non-isolated power blocks.  
Refer to the LTC3882-1 data sheet for a detailed descrip-  
tion of operation, PMBus command set, and applications  
information for each unit.  
Major features include:  
• Digitally Programmable Output Voltage, Current Limit  
and Related Supervisors  
Refer to the LTC3888 data sheet for additional details on  
operation of the WP pins and their interaction with the  
PMBus WRITE_PROTECT command on each unit.  
• Digitally Programmable Input Voltage Supervisor  
• Digitally Programmable Switching Frequency with PLL  
for Synchronous PolyPhase Operation Up to 8 Phases  
Unique Special ID  
Each internal unit of the LTC7883 reports a unique MFR_  
SPECIAL_ID to differentiate it from an LTC3882-1. Table 1  
lists MFR_SPECIAL_ID values for these products. X is  
adjustable by the manufacturer.  
• Digitally Programmable On and Off Delay Times  
• Digitally Programmable Soft-Start/Stop  
• Operating Condition Telemetry  
Table 1. MFR_SPECIAL_ID Values  
• Fully Differential Load Sense  
DEVICE  
MFR_SPECIAL_ID  
0x424X  
MFR_MODEL  
LTC3882-1  
LTC7883A  
LTC7883B  
• Nonvolatile Configuration Memory with ECC Capable  
of Standalone Operation  
LTC3882-1  
LTC7883 Unit A  
LTC7883 Unit B  
0x450X  
0x451X  
• Optional External Resistor Configuration of Key  
Operating Parameters  
Rev. 0  
16  
For more information www.analog.com  
LTC7883  
OPERATION  
Additional Identification Commands  
Unlike the LTC3882-1, which only allows a fixed set of  
predetermined frequencies, the LTC7883 FREQUENCY_  
SWITCH command supports a continuous range of values  
from 250kHz to 2.5MHz. The special case of 0x0000 for  
External SYNC Only is not permitted by the LTC7883.  
Sending this FREQUENCY_SWITCH command value will  
result in a CML fault for invalid data.  
The LTC7883 features a few new PMBus product identi-  
fication commands as detailed in Table 2.  
Switching Frequency and Phase  
There is a high degree of flexibility for setting the PWM  
operating frequency of the LTC7883. The switching fre-  
quency of the PWM can be established with an internal  
oscillator or an external time base. The internal phase-  
locked loop (PLL) synchronizes PWM control to this  
timing reference with proper phase relation, whether  
the clock is provided internally or externally. The device  
can also be configured to provide the master clock to  
other ICs through PMBus command, EEPROM setting,  
or external configuration resistors as outlined in appli-  
cation Table 6. For PMBus or EEPROM configuration, an  
LTC7883 unit is designated as a clock master by clearing  
bit 4 of MFR_CONFIG_ALL_LTC3882-1. As clock master,  
an LTC7883 unit will drive its open-drain SYNC pin at the  
selected rate with a pulse width of 125ns. An external  
The LTC7883 will automatically accept an external SYNC  
input, disabling is own SYNC drive if necessary, as long as  
the external clock frequency is greater than 1/2 of the pro-  
grammed internal oscillator. Whether configured to drive  
SYNC or not, an LTC7883 unit can continue PWM oper-  
ation at the selected frequency (FREQUENCY_SWITCH)  
using its own internal oscillator if an expected external  
clock signal is not present.  
The MFR_PWM_CONFIG_LTC3882-1 command can be  
used to configure the phase of each channel. Desired  
phase can also be set from EEPROM or external configu-  
ration resistors as outlined in Table 6. Phase designates  
the relationship between the falling edge of SYNC and the  
internal clock edge that resets the PWM latch. That reset  
turns off the top power switch, producing a PWM falling  
edge. Additional small propagation delays to the PWM  
control pins will apply.  
pull-up resistor between SYNC and V  
is required in  
DD33  
this case. Only one unit connected to SYNC should be  
designated to drive the pin. If more than one LTC7883 unit  
sharing SYNC is programmed as clock master, just one  
of the units is automatically elected to provide the clock.  
The others disable their SYNC outputs and indicate this  
with bit 10 of MFR_PADS_LTC3882-1.  
Table 2. New Identification Commands  
DEFAULT VALUE  
COMMAND NAME  
ID_DEVICE_ID  
CMD CODE DESCRIPTION  
TYPE  
PAGED  
DATA FORMAT  
ASC  
UNIT A  
LTC7883A  
C0001  
UNIT B  
LTC7883B  
C0001  
0xAD  
0xAE  
LTC7883 Model Number  
R String  
R String  
N
N
ID_DEVICE_REV  
LTC7883 Device Revision  
Code  
ASC  
Rev. 0  
17  
For more information www.analog.com  
LTC7883  
OPERATION  
The phase relationships and frequency are independent  
of each other, providing numerous application options.  
Multiple LTC7883 units/ICs can be synchronized to real-  
ize a PolyPhase array. In this case the phases should be  
separated by 360/n degrees, where n is the number of  
phases driving the output voltage rail.  
pins and PMBus command values stored in on-board  
EEPROM. This method of using ASEL pins to specify  
some or all of each unit’s physical address is necessary  
when using default factory EEPROM programing, where  
both units are assigned to 0x4F. Applying external resistor  
configuration for unit addresses is recommended, as it  
allows for easier device recovery under a wide range of  
programming errors. Refer to the values in Table 7 for full  
details on setting each unit address.  
Serial Bus Addressing  
The LTC7883 supports four types of serial bus addressing  
schemes to access the individual PWM channels sepa-  
rately or jointly.  
Advanced Power Stages  
Some LTC7883 factory EEPROM defaults have been  
modified from LTC3882-1 values to better accommodate  
newer, advanced power stages that provide an output  
proportional to load current. Table 3 details these val-  
ues. Refer to Figure 1 for an example of interfacing the  
LTC7883 to power stages or blocks of this type. If tradi-  
tional DCR or discrete resistor sense of output current is  
used as shown on the front page, refer to factory EEPROM  
defaults given for Table 3 commands in the LTC3882-1  
data sheet.  
• Global Bus Addressing  
• Power Rail Addressing  
• Individual Unit (Device) Addressing  
• Page+ Channel Addressing  
Each internal unit of the LTC7883 must be given a unique  
serial bus address for configuration and control. These  
units addresses can be derived from a combination of  
external configuration resistors attached to the ASEL  
Table 3. Unique LTC7883 Default Factory EEPROM Values  
COMMAND NAME  
IOUT_CAL_GAIN  
CMD CODE  
DESCRIPTION  
TYPE  
PAGED DATA FORMAT UNITS DEFAULT VALUE  
0x38  
Ratio of I  
Voltage  
R/W Word  
Y
Y
Y
Y
L11  
L11  
L11  
CF  
mΩ  
0.25mΩ  
0xAA00  
SENSE  
to Sensed Current  
IOUT_OC_FAULT_LIMIT  
IOUT_OC_WARN_LIMIT  
MFR_IOUT_CAL_GAIN_TC  
0x46  
0x4A  
0xF6  
Output Overcurrent Fault Limit  
R/W Word  
R/W Word  
R/W Word  
A
A
70.0A  
0xEA30  
Output Overcurrent Warning Limit  
50.0A  
0xE320  
Output Current Sense Element  
Temperature Coefficient  
ppm/°C  
0ppm/°C  
0x0000  
Rev. 0  
18  
For more information www.analog.com  
LTC7883  
APPLICATIONS INFORMATION  
Using FREQUENCY_SWITCH  
Refer to the following PCFG discussion for additional  
details on controlling SYNC output enable with external  
programming resistors.  
Each unit in the LTC7883 that is a clock slave should have  
FREQUENCY_SWITCH programmed to the same value  
as its clock master, whether another LTC7883 or not. In  
the case where external synchronization will be used to  
control the shared SYNC line, each LTC7883 should be  
programmed with a value of FREQUENCY_SWITCH that  
is as close to the external clock frequency as possible.  
Table 4. VOnCFGA/B Resistor Programming  
R
TOP  
(kΩ)  
R
BOT  
(kΩ)  
V
(V)  
OUT  
0 or Open  
10  
Open  
From EEPROM  
23.2  
15.8  
20.5  
17.4  
17.8  
15  
5.0  
3.3  
10  
16.2  
16.2  
20  
2.5  
1.8  
Resistor Configuration Pins  
1.5  
Like the LTC3882-1, each LTC7883 unit is programmed  
to use external resistor configuration by factory default.  
This allows output voltage, PWM frequency and phasing,  
and the PMBus address to be set without programming  
the part through its serial interface or purchasing devices  
with custom EEPROM contents. The RCONFIG pins all  
20  
1.35  
1.25  
1.2  
20  
12.7  
11  
20  
24.9  
24.9  
24.9  
24.9  
24.9  
30.1  
30.1  
Open  
11.3  
9.09  
7.32  
5.76  
4.32  
3.57  
1.96  
0
1.15  
1.1  
1.0  
require a resistor divider between V  
and GND. The  
0.9  
RCONFIG pins are only interrogatedDaDt25initial power-up  
and during a reset, so modifying their values on-the-fly  
is not recommended. RCONFIG pins on the same unit  
can share a single resistor divider if they require identical  
programming, but these dividers should not be shared  
across different LTC7883 units. Resistors with a tolerance  
of 1% or better must be used to assure proper operation.  
0.75  
0.65  
0.6  
Output OFF*  
from EEPROM)  
(V  
OUT  
*OPERATION value and RUNn pin must both command the channel to  
start from this configuration.  
In Table 4 through Table 6, R  
is connected between  
VDD25 and the RCONFIG pin,TwOPhile RBOT is connected  
between the pin and GND. Noisy clock signals should not  
be routed near these pins.  
Table 5. FCFGA/B Resistor Programming  
SWITCHING  
R
TOP  
(kΩ)  
R
BOT  
(kΩ)  
FREQUENCY (kHz)  
0 or Open  
10  
Open  
From EEPROM  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
900  
23.2  
15.8  
20.5  
17.4  
17.8  
15  
RCONFIG address selection for each LTC7883 unit follows  
the values given in Table 7 of this data sheet.  
10  
16.2  
16.2  
20  
Output voltage can be set as shown in Table 4. For exam-  
ple, setting R  
to 16.2kΩ and R  
to 17.4kΩ is equiv-  
TOP  
BOT  
alent to programming a VOUT_COMMAND value of 1.8V.  
Refer to the Operation section of the LTC3882-1 data  
sheet for related parameters that are also automatically  
20  
20  
12.7  
11  
20  
set as a percentage of the programmed V  
if resistor  
24.9  
24.9  
24.9  
24.9  
24.9  
30.1  
30.1  
Open  
11.3  
9.09  
7.32  
5.76  
4.32  
3.57  
1.96  
0
750  
OUT  
600  
configuration pins are used to determined output voltage.  
500  
Operating PWM frequency can be set as shown in  
Table 5. Note that if SYNC pins are shared between  
LTC7883 units, all those units should be programmed  
to the same frequency, but only one SYNC output should  
be enabled. All other SYNC outputs should be disabled.  
450  
400  
350  
300  
250  
Rev. 0  
19  
For more information www.analog.com  
LTC7883  
APPLICATIONS INFORMATION  
Table 6 shows various PWM phase configurations that  
can be selected with external resistor programming. This  
RCONFIG pin, as with the LTC3882-1, can also be used  
to control SYNC output drive for each LTC7883 unit.  
However, there are more choices here, affording greater  
flexibility in PolyPhase configurations.  
For Unit B, R  
of 10kΩ and R  
of 15.8kΩ selects  
BOT  
TOP  
phase angles for PWMB0 of 90° and PWMB1 of 270°,  
configuring SYNCB as an input to accept the master clock  
from Unit A. The result, when wired as a 4-phase rail  
as described in PolyPhase Operation and Load Sharing  
under Applications Information in the LTC3882-1 data  
sheet, will be four non-overlapping phases operating in  
quadrature as desired. In this case, either Unit A or Unit  
B may be defined and wired as the voltage loop master,  
since this function is independent of clock mastering.  
For example, to build a four-phase rail, one approach  
might be to select R  
of 24.9kΩ and R  
of 5.76kΩ for  
TOP  
PHAS_CFG of Unit A (PCFGA). This proBgOrTams the phase  
angles of PWMA0 to 0° and PWMA1 to 180°, relative to  
the falling edge of SYNC. Unit A is enabled to drive the  
shared SYNC clock line through the SYNCA pin (open-  
drain output).  
Only mix phase selections on PolyPhase rails that have  
the same maximum duty cycle specified in Table 6.  
Table 6. CFGA/B Resistor Programming  
R
TOP  
(kΩ)  
R
BOT  
(kΩ)  
θ
SYNC  
TO θ  
θ
SYNC  
TO θ  
1
MAXIMUM DUTY CYCLE  
SYNC OUTPUT DISABLED  
0
0 or Open  
10  
Open  
From EEPROM  
From EEPROM  
315°  
See MFR_PWM_CONFIG  
From EEPROM  
23.2  
15.8  
20.5  
17.4  
17.8  
15  
135°  
90°  
45°  
0°  
10  
270°  
87.5%  
83.3%  
87.5%  
83.3%  
Yes  
Yes  
No  
16.2  
16.2  
20  
225°  
180°  
120°  
60°  
0°  
300°  
20  
240°  
20  
12.7  
11  
180°  
20  
0°  
120°  
24.9  
24.9  
24.9  
24.9  
24.9  
30.1  
30.1  
Open  
11.3  
9.09  
7.32  
5.76  
4.32  
3.57  
1.96  
0
135°  
90°  
45°  
0°  
315°  
270°  
225°  
180°  
120°  
60°  
0°  
300°  
240°  
No  
180°  
0°  
120°  
Rev. 0  
20  
For more information www.analog.com  
LTC7883  
APPLICATIONS INFORMATION  
Table 7. ASELn Resistor Programming  
solution volume. Placing the power stage directly beneath  
the LTC7883 on the other side of the PCB allows direct  
through-hole via connections to the power block for PWM  
controls, as well as output voltage and current sense.  
Table 8 shows the recommended channel mapping for  
the most efficient interconnect in this case. CCM opera-  
tion, fast boost refresh, low VOUT range and digital output  
voltage servo are selected by programming MFR_PWM_  
MODE_LTC3882-1 to 0xC0 on all channels.  
ASEL1  
ASEL0  
LTC3882-1 DEVICE  
ADDRESS BITS[6:4]  
LTC3882-1 DEVICE  
ADDRESS BITS[3:0]  
R
TOP  
(kΩ)  
R
(kΩ)  
BOT  
BINARY  
HEX  
BINARY  
HEX  
0 or Open  
10  
Open  
from EEPROM  
from EEPROM  
1111  
23.2  
15.8  
20.5  
17.4  
17.8  
15  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
10  
1110  
16.2  
16.2  
20  
1101  
1100  
1011  
Table 8. Suggested Power Block Channel Mapping  
PMBus PAGE  
20  
1010  
LTC7883 PWM LTC7883 UNIT  
(CH)  
PB PWM  
20  
12.7  
11  
1001  
A0  
A1  
B0  
B1  
A
0
1
0
1
2
1
4
3
20  
1000  
24.9  
24.9  
24.9  
24.9  
24.9  
30.1  
30.1  
Open  
11.3  
9.09  
7.32  
5.76  
4.32  
3.57  
1.96  
0
111  
110  
101  
100  
011  
010  
001  
000  
7
6
5
4
3
2
1
0
0111  
B
0110  
0101  
0100  
The regulated output is established by programming the  
VOUT_COMMAND stored in EEPROM for PWMA0 (the  
master channel) to 1.5V. The other PWMs are designated  
0011  
0010  
0001  
as slaves to PWMA0 by wiring their FB pins to V  
and  
0000  
DD33  
shorting their COMP control pins to COMPA0 as shown.  
The frequency and phase are also set by EEPROM val-  
ues. Both units are programmed to operate at 500kHz  
(default FREQUENCY_SWITCH), with Unit A providing  
the clock master (see Figure 3, SYNCB output disabled  
by bit 4 of MFR_CONFIG_ALL_LTC3882-1 on Unit B).  
MFR_PWM_CONFIG_LTC3882-1 is programmed to 0x14  
on Unit A to put PWMA0 phase at 0° and PWMA1 phase  
at 180°. This register is programmed to 0x16 on Unit B  
to put PWMB0 phase at 90° and PWMB1 phase at 270°,  
producing optimum 4-phase separation for minimum  
input and output ripple.  
Design Example  
As a design example, consider a 180W 4-phase applica-  
tion such as the one shown in Figure 1, where V = 12V,  
IN  
VOUT = 1.5V, and IOUT = 120A. An auxiliary 7V source  
supplies the LTC7883 V pins and the power stage FET  
CC  
gate drive voltage with a 2.2µF ceramic bypass, in addi-  
tion to a smaller 0.1µF ceramic placed near the LTC7883  
filtering HF components. Bypassing is also provided for  
each V  
(2.2µF) and V  
(1µF) LDO output. These  
DD33  
DD25  
LDO outputs should not be shared with each other or  
separate ICs that might have outputs of the same name,  
because they have independent, internal control loops.  
With these configurations, the inductors on the  
power block (160nH nominal) create an IOUT ripple of  
The Delta D12S1R8140D power block is chosen for its  
high level of integration, power efficiency and direct  
interface to the LTC7883 using 3.3V three-state control.  
The use of a power block with the LTC7883 creates an  
efficient solution in terms of power, parts count and total  
16.4A . Each channel supplies 40ADC to the output at  
P-P  
full load, resulting in a peak phase current of 48A. Setting  
IOUT_FAULT_LIMIT to 50A per phase adequately protects  
against the typical inductor saturation current of 55A.  
Rev. 0  
21  
For more information www.analog.com  
LTC7883  
APPLICATIONS INFORMATION  
Two 100μF SUNCON capacitors and four 22μF ceramic  
capacitors are selected to provide acceptable input AC  
impedance against the designed converter ripple current.  
Ten 220μF ceramic capacitors are chosen for the output to  
maintain supply regulation during severe transient condi-  
tions and to minimize output voltage ripple.  
ASEL pins to program the three most significant PMBus  
address bits from EEPROM (MFR_ADDRESS, 0x4X).  
Then each unit is given its own unique lower address  
nibble, setting the two addresses to 0x4C (Unit A) and  
0x4D (Unit B). Ensure the selected addresses do not col-  
lide with global addresses or any other specific devices  
in the system. Identical MFR_RAIL_ADDRESS should be  
set in EEPROM for all four channels to allow single-com-  
mand control of common rail parameters such as IOUT_  
OC_FAULT_LIMIT. The LTC7883 units also respond to  
7-bit global addresses 0x5A and 0x5B. MFR_ADDRESS  
and MFR_RAIL_ADDRESS should not be set to either of  
these values.  
The power block provides its own output current monitor  
signals for use by the LTC7883. The interface network,  
shown in detail for differential input CSA1, is also repli-  
cated for the other three channels. These remove high  
frequency noise from the power block outputs and scale  
those signals to be compatible with the LTC7883 inputs. A  
fixed common mode reference voltage is required for the  
power block –CS[4:1] outputs. A filtered resistor divider  
PMBus connections, as well as shared RUN control  
and fault propagation (FLT) are provided. SYNC can be  
used to synchronize other PWMs to this rail if required.  
Recommended PMBus connections and shared PSM con-  
nections are shown in more detail in Figure 3.  
from V  
(10k/12.1k/4.3μF) fulfills this requirement,  
DD33  
driving the negative side of the differential current sense  
(CSx) signals.  
External temperature sense will employ an accurate ∆V  
BE  
method. Q1 serves to sense the temperature of the PCB  
as close to the power block as physically possible, and  
the 10nF filter capacitor should be placed with the BJT.  
Unused TSNS inputs are loaded with 2.74k to produce  
a benign reading of about 25ºC with factory EEPROM  
Pull-ups are provided on all shared open-drain signals  
(Figure 1 and Figure 3). The values shown assume a  
maximum 100pF line load and PMBus rate of 100kHz.  
These pins should not be left floating. Termination to  
3.3V ensures the absolute maximum ratings for the pins  
are not exceeded. All other operating parameters such  
as soft start/stop and desired faults responses are pro-  
grammed via PMBus command values stored in internal  
LTC7883 EEPROM.  
settings, if the direct V interface mode is selected by  
BE  
MFR_PWM_MODE_LTC3888-1 on these channels.  
Each internal LTC7883 unit must be configured for a  
unique address. Resistor configuration is used on the  
Rev. 0  
22  
For more information www.analog.com  
LTC7883  
TYPICAL APPLICATIONS  
V
12V  
IN  
22µF  
4×  
+
V
7V  
DR  
100µF  
2×  
0.1µF  
2.2µF  
+7V  
V
IN  
V
DD33  
V
CCA  
VINSB  
V
CCB  
VINSA  
PGA0  
10k  
PWMA1  
CSA1P  
V
OUT  
1.5V  
120A  
+CS1  
PGA1  
PGB1  
PGB0  
N
4.99k  
2k  
220µF  
10×  
V
OUT  
V
100pF  
SNSA1P  
DS12S18R140D  
V
V
SNSB1P  
SNSB0P  
–CS1  
CSA1M  
PWMA0  
CSA0P  
CSA0M  
PWMB1  
CSB1P  
CSB1M  
PWMB0  
CSB0P  
CSB0M  
V
DD33  
FBA1  
FBB1  
FBB0  
+CS2  
–CS2  
N
N
N
THREE ADDITIONAL  
IDENTICAL POWER  
STAGES AND  
EXTERNAL  
CS FILTER  
NETWORKS (N)  
+CS3  
–CS3  
V
V
V
SNSA1M  
SNSB1M  
SNSB0M  
+CS4  
–CS4  
COMPA1  
COMPB1  
COMPB0  
COMP  
V
121k  
LTC7883  
V
DD33  
DD33  
0.01µF  
×4*  
10nF  
Q1  
100k  
10k  
RUNA1  
RUNA0  
TSNSA0  
V
SNSA0P  
RUNB1  
V
DD25  
V
SNSA0M  
RUN  
RUNB0  
470pF  
4.12k  
60.4k  
2
16.2k  
16.2k  
FBA0  
ASEL1A/B  
ASEL0A  
ASEL0B  
18pF  
180pF  
COMP  
2
2
4
FCFGA/B  
PCFGA/B  
20.5k  
17.4k  
*1 PER PHASE  
COMPA0  
IAVGA1  
IAVGA0  
IAVGB1  
SEE FIGURE 2 FOR PMBus  
AND SHARED PSM PIN DETAILS  
VO[A/B][1:0]CFG  
TSNSA1  
100pF  
TSNSB1  
IAVGB0  
2.74k  
TSNSB0  
2
IAVGNDA/B  
2.74k  
V
V
V
DD25B  
DD33  
DD33B  
V
V
DD25A  
DD33A  
GND  
2.2µF  
V
DD25  
7883 F01  
2.2µF  
1µF  
1µF  
Figure 1. High Density 1.5V/120A 500kHz 4-Phase Converter Using Quad Power Block  
Rev. 0  
23  
For more information www.analog.com  
LTC7883  
TYPICAL APPLICATIONS  
See Figure 2 for the LTC7883 controller plus the LTC7050/  
LTC7051 SilentMOS™ smart power stage. The LTC7050/  
LTC7051 have an on-chip diode that can be used by  
the LTC7883 to sense the temperature. Use the direct  
VBE measurement option in MFR_PWM_MODE of the  
LTC7883. Consult the factory or review the LTC3882 DS  
for more information on this temperature sensing method.  
PWM  
L1  
V
SW  
OUT  
LTC7050/  
LTC7051  
I
MON  
R2  
140k  
R1  
49.9Ω  
C1  
4.7nF  
C
OUT  
TDIO  
I
REF  
V
CC  
GND  
V
CC  
R
T
750Ω  
C
0.1µF  
R
B
237Ω  
FIL  
PWM TSNS  
LTC7883  
V
OUT  
+
I
SNS  
I
SNS  
7883 F02  
Figure 2. LTC7883 with LTC7050/LTC7051 SilentMOS Smart Power Stage  
Rev. 0  
24  
For more information www.analog.com  
LTC7883  
PACKAGE DESCRIPTION  
Z
/ / b b b  
Z
4 . 0 0 0  
3 . 2 0 0  
2 . 4 0 0  
1 . 6 0 0  
0 . 8 0 0  
0 . 0 0  
0 . 8 0 0  
1 . 6 0 0  
2 . 4 0 0  
3 . 2 0 0  
4 . 0 0 0  
a a a  
Z
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
25  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC7883  
TYPICAL APPLICATION (Also See Figure 1)  
WPA  
V
DD33  
WPB  
PMBus  
WRITE  
ENABLE  
4.99k  
LTC7883  
VN2222  
V
SHARE_CLK  
DD33  
10k  
10k  
SHCLKA  
SHCLKB  
FLTA1  
FLTA0  
FLTB1  
FLTB0  
SYNCA  
FAULT  
SMBALERT  
1k  
2k  
ALERTA  
PSM  
SHARED  
PINS  
SYNC  
SDA  
ALERTB  
PMBus  
1k  
SDA_A  
SDA_B  
SCL_A  
SCL  
SCL_B  
SYNCB  
GND  
7883 F03  
Figure 3. LTC7883 PMBus Interface and Configuration  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4700  
Dual 50A or Single 100A Step-Down DC/DC µModule  
Regulator with Digital Power Management  
V
Up to 16V; 0.5V ≤ V  
( 0.5%) ≤ 1.8V, 3% I  
ADC Accuracy,  
IN  
OUT  
OUT  
2
Fault Logging, I C/PMBus Interface, 330-Lead BGA Package  
2
LTC3882/  
LTC3882-1  
Dual Output Multiphase Step-Down DC/DC Voltage Mode  
Controller with Digital Power System Management  
V
Up to 38V, 0.5V ≤ V  
( 0.5%) ≤ 5.25V, Fault Logging, I C/PMBus  
IN  
OUT  
Interface, with EEPROM and 16-Bit ADC.  
2
LTC3884/  
LTC3884-1  
Dual Output Multiphase Step-Down DC/DC Current Mode  
Controller with Sub-mΩ DCR Sensing and Digital Power  
Management  
V
Up to 38V, 0.5V ≤ V  
( 0.5%) ≤ 5.5V, Fault Logging, I C/PMBus  
IN  
OUT  
Interface, EEPROM, 16-Bit ADC, Input Current Sense, Programmable  
Analog Loop Compensation  
2
LTC3886  
60V Dual Output Multiphase Step-Down DC/DC Current Mode V Up to 60V, 0.5V ≤ V  
( 0.5%) ≤ 13.8V, Fault Logging, I C/PMBus  
IN  
OUT  
Controller with Digital Power System Management  
Interface, EEPROM, 16-Bit ADC, Input Current Sense, Programmable  
Analog Loop Compensation  
2
LTC3887/  
LTC3887-1  
Dual Output Multiphase Step-Down DC/DC Current Mode  
Controller with Digital Power System Management  
V
Up to 24V, 0.5V ≤ V  
( 0.5%) ≤ 5.5V, Fault Logging, I C/PMBus  
IN  
OUT  
Interface, EEPROM, 16-Bit ADC  
2
LTC3889  
60V Dual Output Multiphase Step-Down DC/DC Current Mode V Up to 60V, 1V ≤ V  
( 0.5%) ≤ 40V, Fault Logging, I C/PMBus  
IN  
OUT  
Controller with Digital Power System Management  
Interface, EEPROM, 16-Bit ADC, Input Current Sense, Programmable  
Analog Loop Compensation  
LTC7880  
Dual Output Multiphase DC/DC Current Mode Boost  
Controller with Digital Power System Management  
V
Up to 40V, V  
Up to 60V with 0.5% Accuracy, Fault Logging,  
IN  
OUT  
2
I C/PMBus Interface, EEPROM, 16-Bit ADC, Input Current Sense,  
Programmable Analog Loop Compensation  
2
LTC2980  
16-Channel PMBus Power System Manager Featuring  
Accurate Output Voltage Measurement and Trim  
Fault Logging, I C/PMBus Interface, EEPROM, 16-Bit ADC Monitors  
16 Output Voltages, 2 Input Voltages and Die Temperature  
2
LTC2980-24  
24-Channel PMBus Power System Manager Featuring  
Accurate Output Voltage Measurement and Trim  
Fault Logging, I C/PMBus Interface, EEPROM, 16-Bit ADC Monitors  
24 Output Voltages, 3 Input Voltages and Die Temperature  
LTC7851/  
Quad Output Multiphase Step-Down DC/DC Voltage Mode  
Controller with Soft-Start and Accurate Current Share  
V
up to 27V, 0.6V ≤ V  
≤ 5V, Operates up to 2.25MHz with Power FET  
IN  
OUT  
LTC7851-1  
Drivers, DrMOS Devices and Power Blocks  
V Up to 26.5V; 0.1V ≤ V ( 0.5%) ≤ 3.45V, Fault Logging, I C/PMBus  
IN  
2
LTC3888/  
LTC3888-1  
Dual Loop, 8-Phase Step-Down DC/DC Controller with Digital  
Power System Management  
OUT  
Interface with NVM and 16-Bit ADC and Load Step Emulation  
Rev. 0  
12/21  
www.analog.com  
ANALOG DEVICES, INC. 2021  
26  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY