LTM4655IY [ADI]

EN55022B Compliant 40V, Dual 4A or Single 8A Step-Down or 50W Inverting μModule Regulator;
LTM4655IY
型号: LTM4655IY
厂家: ADI    ADI
描述:

EN55022B Compliant 40V, Dual 4A or Single 8A Step-Down or 50W Inverting μModule Regulator

文件: 总54页 (文件大小:3380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4655  
EN55022B Compliant 40V, Dual 4A or Single 8A Step-  
Down or 50W Inverting µModule Regulator  
FEATURES  
DESCRIPTION  
ꢂulꢆ 4AꢃSinꢈꢆe 8A Low EμI Switch μoꢅe Power Suꢁꢁꢆy  
EN55011 Cꢆlss B Comꢁꢆilnt  
Two Fuꢆꢆy Inꢅeꢁenꢅent Chlnneꢆs, Elch  
Confiꢈurlbꢆe for Positive or Neꢈltive ꢀutꢁut  
2oꢆtlꢈe Poꢆlrity  
ꢀutꢁut 2oꢆtlꢈe ꢇlnꢈe: 0.52 ≤ |2  
Wiꢅe Inꢁut 2oꢆtlꢈe ꢇlnꢈe: Uꢁ to 402  
The LTM®4655 is an ultralow noise 40V, dual 4A or single  
8A DC/DC μModule® regulator designed to meet the radi-  
ated emissions requirements of EN55022. Its channels  
are fully independent, parallelable and capable of deliver-  
ing positive or negative output polarity. Conducted emis-  
sion requirements can be met by adding standard filter  
components. Included in the package are the switching  
controllers, power MOSFETs, inductors, filters and sup-  
port components. A 5V, 25mA LDO and clock generator  
enable phase interleaving of the power switching stages,  
for improved EMC performance.  
n
n
n
+
n
n
– 2  
| ≤ 16.52  
ꢀUTn  
ꢀUTn  
n
3.±2 or 3.62 Stlrt-Uꢁ, Confiꢈurltion-ꢂeꢁenꢅent  
±±.6ꢊ7 Totlꢆ ꢂC ꢀutꢁut 2oꢆtlꢈe Error ꢀver Line,  
Lolꢅ lnꢅ Temꢁerlture  
n
n
n
n
n
n
n
n
Anlꢆoꢈ ꢀutꢁut Current Inꢅicltor (Positive-2  
Lꢂꢀ : 52 Fixeꢅ, 15mA Clꢁlbꢆe Lꢂꢀ  
ꢀnꢆy)  
ꢀUT  
+
ꢀUT  
The LTM4655 can regulate positive VOUTn voltages  
Plrlꢆꢆeꢆlbꢆe with LTμ465±ꢃLTμ4653  
between 0.5V and 26.5V from a 3.1V to 40V input. The  
Constant-Frequency Current Mode Control  
LTM4655 can regulate negative V  
voltages between  
OUTn  
Power Good Indicators and Programmable Soft-Start  
Overcurrent and Overtemperature Protection  
16mm × 16mm × 5.01mm BGA Package  
–0.5V and –26.5V from a maximum input range of 3.6V to  
40V, with the span from V to V  
not to exceed 40V. A  
switching frequency range of 250OkUHTznto 3MHz is supported.  
INn  
APPLICATIONS  
The LTM4655 is offered in a 16mm × 16mm × 5.01mm  
BGA package with SnPb or RoHS compliant terminal finish.  
n
Automated Test and Measurement  
n
Avionics and Industrial Control Systems  
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. Patents, including 5481178, 5705919, 5847554, 6580258.  
n
Video, Imaging and Instrumentation  
TYPICAL APPLICATION  
Concurrent, ±±12 ꢀutꢁut ꢂCꢃꢂC ꢄμoꢅuꢆe ꢇeꢈuꢆltorꢉ  
I
OUT1  
V
IN  
13V TO 28V  
12V  
OUT  
UP TO 4A  
+
V
V
OUT1  
IN1  
4.7μF  
4.7μF  
ꢀutꢁut 2oꢆtlꢈe Stlrt-Uꢁ Wlveforms  
+
SV  
V
V
OSNS1  
IN1  
22µF  
×2  
LOAD1  
SV  
OUT1  
D1  
Rꢈꢑꢊꢐꢀ  
V
OUT1  
ꢌꢆꢃꢄꢅꢆ  
f
SET1  
124k  
IMON1a  
IMON1b  
CHANNEL 1 ANALOG OUTPUT  
CURRENT INDICATOR  
ꢇꢈꢉꢊ  
V
V
= 0.25Ω • I  
ꢌꢆꢃꢄꢅꢆ  
IN2  
IMON1  
OUT1  
4.7μF  
SV  
IN2  
LDO  
OUT  
5V  
OUT  
LTM4655  
ꢇꢈꢉꢀ  
UP TO 25mA  
V
f
D2  
ꢌꢆꢃꢄꢅꢆ  
4.7μF  
+
V
124k  
240k  
OUT2  
+
SET2  
V
OSNS2  
ꢎꢏꢇꢇꢄꢊꢐꢀ  
ꢌꢆꢃꢄꢅꢆ  
47µF  
×2  
–12V  
LOAD2  
ISET2a  
ISET2b  
ꢀꢁꢂꢂ ꢃꢄ0ꢅꢆ  
V
OUT  
UP TO 2.9A**  
ꢀꢁꢂꢃꢄꢅꢆ  
OUT2  
I
OUT2  
SV  
OUT2  
ISET1a  
ISET1b  
240k  
GND  
4655 TA01a  
*FOR COMPLETE CIRCUIT, SEE FIGURE 50.  
**FOR CHANNELS CONFIGURED TO REGULATE NEGATIVE V  
:
CURRENT LIMIT FREQUENCY-FOLDBACK INCEPTION IS  
OUT  
n
A FUNCTION OF V , V  
-, AND f  
. CONTINUOUS OUTPUT CURRENT CAPABILITY IS SUBJECT TO DETAILS OF  
OUT  
INn  
n
SWn  
APPLICATION IMPLEMENTATION. SEE NOTES 2 AND 3 AND THE APPLICATIONS INFORMATION SECTION, FOR DETAILS.  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LTM4655  
TABLE OF CONTENTS  
Feltures..................................................... ±  
Aꢁꢁꢆicltions ................................................ ±  
Tyꢁiclꢆ Aꢁꢁꢆicltion ........................................ ±  
ꢂescriꢁtion.................................................. ±  
Absoꢆute μlximum ꢇltinꢈs.............................. 3  
Pin Confiꢈurltion .......................................... 3  
ꢀrꢅer Informltion.......................................... 4  
Eꢆectriclꢆ Chlrlcteristics................................. 4  
Tyꢁiclꢆ Performlnce Chlrlcteristics ..................±0  
Pin Functions..............................................±4  
Simꢁꢆifieꢅ Bꢆock ꢂilꢈrlm ...............................1±  
Test Circuit.................................................11  
ꢂecouꢁꢆinꢈ ꢇequirements...............................13  
ꢀꢁerltion...................................................14  
Power Module Overview.........................................24  
Aꢁꢁꢆicltions Informltion ................................18  
Power Module Protection .......................................28  
RUN Pin Enable.......................................................28  
Loop Compensation................................................28  
Hot Plugging Safely ................................................29  
Input Disconnect/Input Short Considerations.........29  
INTV  
and EXTV  
Connection.........................29  
CCn  
CCn  
Multiphase Operation..............................................30  
Negative Output Current Capability Varies as a  
Function of V to V  
Conversion Ratios,  
INn  
OUTn  
Negative-V  
Operation.......................................31  
OUT  
Input Capacitors, Negative-V  
Output Capacitors, Negative-V  
Optional Diodes to Guard Against Overstress,  
Operation...........32  
OUT  
Operation ........33  
OUT  
Negative-V  
Operation.......................................33  
OUT  
V to V  
Conversion Ratios................................25  
Frequency Adjustment, Negative-V  
Operation .34  
IN  
OUT  
OUT  
Input Capacitors, Positive-V  
Operation .............25  
Operation...........26  
Radiated EMI Noise ................................................35  
OUT  
Output Capacitors, Positive-V  
Thermal Considerations and Output Current  
OUT  
Forced Continuous Operation .................................26  
Derating..................................................................35  
Safety Considerations.............................................46  
Layout Checklist/Example ......................................46  
Tyꢁiclꢆ Aꢁꢁꢆicltions......................................49  
Plcklꢈe ꢂescriꢁtion .....................................51  
Plcklꢈe Photoꢈrlꢁh .....................................54  
ꢂesiꢈn ꢇesources ........................................54  
ꢇeꢆlteꢅ Plrts..............................................54  
Output Voltage Programming, Tracking and  
Soft-Start................................................................26  
Frequency Adjustment............................................27  
Rev. 0  
2
For more information www.analog.com  
LTM4655  
PIN CONFIGURATION  
ABSOLUTE MAXIMUM RATINGS  
(Note ± lnꢅ Note 5)  
ꢕꢧꢍ ꢨꢢꢈꢝ  
Channel 1 Terminal Voltages (Aꢆꢆ Chlnneꢆ ± Terminlꢆ  
2oꢆtlꢈes ꢇeꢆltive to 2ꢀUT±Unꢆess ꢀtherwise Inꢅiclteꢅ)  
ꢢꢩꢘ  
ꢢꢩꢀ  
ꢉꢀ  
ꢧꢪꢕꢀ  
ꢉꢘ  
ꢧꢪꢕꢘ  
ꢊꢂꢃꢢꢩꢀ ꢊꢂꢃꢧꢪꢕꢀ  
ꢊꢂꢃꢢꢩꢘ ꢊꢂꢃꢧꢪꢕꢘ  
ꢤꢨ  
ꢤꢨ  
ꢂꢉꢧ  
ꢢꢩ  
ꢢꢩꢇꢀ  
V
, V , SV , SV , SW1.................... –0.3V to 42V  
IN1 D1  
GND, EXTV , V  
IN1  
INF1  
+
+
, V  
,
ꢢꢁꢧꢩꢀꢡ ꢢꢁꢧꢩꢀꢫ ꢤꢨ  
ꢢꢁꢧꢩꢘꢡ ꢢꢁꢧꢩꢘꢫ ꢤꢨ  
ꢊꢂꢃꢧꢪꢕꢘ  
ꢆꢩꢉ  
ꢢꢩꢀ  
ꢢꢩꢘ  
ꢢꢩꢇꢘ  
CC1 OUT1  
OSNS1  
ISET1a , ISET1b ..................................... –0.3V to 28V  
ꢍꢆꢧꢧꢉꢀ ꢍꢆꢉꢇꢋꢀ ꢨꢢꢩRꢈꢆꢀ ꢆꢩꢉ  
ꢍꢆꢧꢧꢉꢘ ꢍꢆꢉꢇꢋꢘ ꢨꢢꢩRꢈꢆꢘ ꢆꢩꢉ  
INTV , PGDFB1, VINREG1, COMP1a,  
CC1  
ꢧꢪꢕꢀ  
ꢤꢨ  
ꢧꢪꢕꢘ  
ꢊꢧꢁꢍꢀꢡ ꢊꢧꢁꢍꢀꢫ  
ꢤꢨ  
ꢧꢪꢕꢀ  
ꢊꢧꢁꢍꢘꢡ ꢊꢧꢁꢍꢘꢫ  
ꢁꢧꢉ  
ꢤꢈꢕꢀ  
ꢤꢈꢕꢘ  
IMON1a, IMON1b..................................... –0.3V to 4V  
f
.................................................... –0.3V to INTV  
ꢧꢪꢕꢘ  
ꢊꢂꢃꢤꢈꢕ  
ꢢꢤꢈꢕꢀꢡ ꢢꢤꢈꢕꢀꢫ ꢈꢖꢕꢨ  
Rꢪꢩꢀ  
ꢢꢤꢈꢕꢘꢡ ꢢꢤꢈꢕꢘꢫ ꢈꢖꢕꢨ  
ꢊꢊꢘ  
Rꢪꢩꢘ  
ꢤꢝꢘ  
SET1  
CC1  
+ 32V  
ꢊꢊꢀ  
RUN1 ...................................GND–0.3V to V  
OUT1  
ꢧꢪꢕꢘ  
ꢂꢉꢧ  
ꢧꢪꢕ  
ꢤꢨ  
ꢧꢪꢕꢀ  
ꢢꢩꢕꢨ  
ꢊꢊꢀ  
ꢧꢪꢕꢀ  
ꢤꢨ  
ꢧꢪꢕꢘ  
ꢢꢩꢕꢨ  
ꢊꢊꢘ  
ꢧꢤꢩꢤꢀ  
ꢧꢤꢩꢤꢘ  
PGOOD1, CLKIN1 (Relative to GND)............. –0.3V to 6V  
ꢤꢨ  
ꢧꢪꢕꢀ  
ꢤꢝꢀ  
ꢤꢨ  
ꢧꢤꢩꢤꢀ  
ꢧꢤꢩꢤꢘ ꢧꢪꢕꢘ  
Channel 2 Terminal Voltages (Aꢆꢆ Chlnneꢆ 1 Terminlꢆ  
ꢧꢪꢕꢀ  
ꢧꢪꢕꢘ  
ꢕꢈꢁꢍ ꢕꢈꢁꢍ  
ꢩꢊ  
ꢩꢊ  
ꢩꢊ  
ꢩꢊ  
2oꢆtlꢈes ꢇeꢆltive to 2ꢀUT1Unꢆess ꢀtherwise Inꢅiclteꢅ)  
ꢧꢪꢕꢀ  
V
, V , S  
, SV , SW2 ................... –0.3V to 42V  
IN2 D2 VIN2 INF2  
ꢧꢪꢕꢘ  
ꢧꢪꢕꢀ  
ꢧꢪꢕꢘ  
+
+
GND, EXTV , V  
, V  
,
CC2 OUT2  
OSNS2  
ꢧꢪꢕꢀ  
ISET2a, ISET2b...................................... –0.3V to 28V  
INTV , PGDFB2, VINREG2, COMP2a,  
CC2  
ꢀ0  
ꢀꢀ  
ꢀꢘ  
IMON2a, IMON2b .................................... –0.3V to 4V  
ꢋꢆꢌ ꢍꢌꢊꢃꢌꢆꢈ  
ꢀꢎꢎꢏꢂꢈꢌꢉ ꢐꢀꢑꢒꢒ × ꢀꢑꢒꢒ × ꢓ.0ꢀꢒꢒꢔ  
f
.................................................... –0.3V to INTV  
SET2  
CC2  
+ 32V  
ꢗ ꢀꢘꢓꢙꢊꢚ θ ꢗ ꢀꢀ.ꢛꢙꢊꢜꢝꢚ  
ꢄꢐꢁꢌꢖꢔ  
ꢄꢌ  
RUN2 ...................................GND–0.3V to V  
θ
ꢗ ꢀ0ꢙꢊꢜꢝꢚ θ  
ꢗ ꢘ.ꢑꢙꢊꢜꢝꢚ  
ꢄꢊꢡꢟꢞ  
OUT2  
ꢄꢊꢞꢟꢠ  
ꢝꢈꢢꢆꢅꢕ ꢗ ꢣ.ꢣ ꢆRꢌꢁꢤ  
PGOOD2, CLKIN2 (Relative to GND) ............ –0.3V to 6V  
ꢩꢧꢕꢈꢤꢯ  
ꢀꢔ θ ꢨꢌꢂꢪꢈꢤ ꢌRꢈ ꢉꢈꢕꢈRꢁꢢꢩꢈꢉ ꢋꢰ ꢤꢢꢁꢪꢂꢌꢕꢢꢧꢩ ꢍꢈR ꢄꢈꢤꢉꢓꢀ ꢊꢧꢩꢉꢢꢕꢢꢧꢩꢤ.  
ꢘꢔ θ ꢨꢌꢂꢪꢈ ꢢꢤ ꢧꢋꢕꢌꢢꢩꢈꢉ ꢝꢢꢕꢅ ꢉꢈꢁꢧ ꢋꢧꢌRꢉ.  
ꢄꢌ  
ꢣꢔ RꢈꢇꢈR ꢕꢧ ꢌꢍꢍꢂꢢꢊꢌꢕꢢꢧꢩ ꢢꢩꢇꢧRꢁꢌꢕꢢꢧꢩ ꢤꢈꢊꢕꢢꢧꢩ ꢇꢧR ꢂꢌꢋ ꢁꢈꢌꢤꢪRꢈꢁꢈꢩꢕ  
ꢌꢩꢉ ꢉꢈRꢌꢕꢢꢩꢆ ꢢꢩꢇꢧRꢁꢌꢕꢢꢧꢩ.  
LDO and Clock Generator Voltages (Aꢆꢆ Lꢂꢀ lnꢅ Cꢆock  
Generltor Terminlꢆ 2oꢆtlꢈes ꢇeꢆltive to GNꢂ Unꢆess  
ꢀtherwise Inꢅiclteꢅ)  
LDO ......................................................... –0.3V to 42V  
IN  
CLKSET, MOD...........................–0.3V to LDO  
+ 0.3V  
OUT  
Terminal Currents  
INTV  
Peak Output Current (Note 10) ................30mA  
CCn  
+
TEMP ......................................................–1mA to 10mA  
TEMP .....................................................–10mA to 1mA  
Temperatures Internal Operating Temperature  
Range (Note 2 and Note 9)  
E- and I-Grade ................................... –40°C to 125°C  
MP-Grade .......................................... –55°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Peak Package Body Temperature During Reflow .. 245°C  
Rev. 0  
3
For more information www.analog.com  
LTM4655  
ORDER INFORMATION  
PAꢇT μAꢇKINGꢉ  
PACKAGE  
TYPE  
μSL  
ATING  
TEμPEꢇATUꢇE ꢇANGE  
(SEE NꢀTE 1)  
PAꢇT NUμBEꢇ  
LTM4655EY#PBF  
LTM4655IY#PBF  
LTM4655MPY#PBF  
LTM4655IY  
PAꢂ ꢀꢇ BALL FINISH  
SAC305 (RoHS)  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
ꢂE2ICE  
FINISH CꢀꢂE  
LTM4655Y  
LTM4655Y  
LTM4655Y  
LTM4655Y  
LTM4655Y  
e1  
e1  
e1  
e0  
e0  
BGA  
BGA  
BGA  
BGA  
BGA  
3
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
LTM4655MPY  
SnPb (63/37)  
• Contact the factory for parts specified with wider operating temperature  
ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.  
Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures  
LGA and BGA Package and Tray Drawings  
ELECTRICAL CHARACTERISTICS The l ꢅenotes the sꢁecificltions which lꢁꢁꢆy over the sꢁecifieꢅ internlꢆ  
oꢁerltinꢈ temꢁerlture rlnꢈe (Note 1). Sꢁecifieꢅ ls elch inꢅiviꢅulꢆ outꢁut chlnneꢆ (Note 5). TA = 15°C, Test Circuit ± (ꢁositive-2ꢀUT  
,
+
noninvertinꢈ steꢁ-ꢅown confiꢈurltion with 2ꢀUTn= GNꢂ), 2 = S2INn = 362, EXT2CCn = 142, ꢇUNn = 3.32, ꢇISETn = 480k, ꢇfSETn  
=
INn  
5ꢊ.6kΩ, fSWn = ±.5μHz (CLKINn ꢅriven with ±.5μHz cꢆock siꢈnlꢆ) lnꢅ voꢆtlꢈes referreꢅ to GNꢂ unꢆess otherwise noteꢅ.  
SYμBꢀL  
PAꢇAμETEꢇ  
CꢀNꢂITIꢀNS  
μIN  
TYP  
μAX  
UNITS  
l
l
l
SV  
, V  
Input DC Voltage in Positive-V  
Configuration  
V
OUTn  
= GND  
3.1  
40  
V
INn(DC) INn(DC)  
OUT  
+
+
V
Range of Positive Output Voltage  
Regulation  
0.5V ≤ ISETna–SV  
(See Note 7)  
≤ 26.5V, I = 0A  
OUTn  
0.5  
26.5  
24.4  
V
V
OUTn(RANGE)  
OUTn  
+
+
V
Output Voltage Total Variation with Line 29V ≤ V ≤ 40V, 0A ≤ I  
≤ 4A, C  
INHn  
= 2 × 47μF,  
23.6  
24  
0
OUTn(24VDC)  
INn  
Dn  
OUTn  
+
and Load at V  
= 24V  
= 4.7μF, C = 4.7μF, C  
CLKINn Driven with 1.5MHz Clock  
OUTn  
OUTHn  
+
+
l
V
Output Voltage Total Variation with Line Measuring V  
to ISETna  
–15  
15  
mV  
Ω
OUTn(0.5VDC)  
OSNSn  
+
+
and Load at V  
= 0.5V  
3.1V ≤ V ≤ 13.2V, 0A ≤ I  
≤ 4A, C  
OUTn  
INn  
Dn  
OUTn INHn  
= 4.7μF, C = 4.7μF, C  
= 2 × 47μF,  
OUTHn  
fSETn  
ISETna = 500mV, R  
= N/U (Note 6)  
R
SVINFn  
Resistor Between SV and SV  
INFn  
1
INn  
Inꢁut Sꢁecificltions  
l
l
l
V
SV Undervoltage Lockout Threshold SV Rising  
2.85  
2.6  
3.1  
2.9  
V
V
INn(UVLO)  
INRUSH(VINn)  
Q(SVINn)  
INn  
INn  
SV Falling  
2.4  
150  
INn  
Hysteresis  
250  
mV  
I
I
Input Inrush Current at Start-Up  
C
= 4.7μF, C = 4.7μF, C  
OUTn  
= 2 ×  
300  
mA  
INHn  
Dn  
OUTHn  
+
47μF; I  
= 0A, ISETna Electrically  
Connected to ISETnb  
Input Supply Bias Current  
Shutdown, RUNn = GND  
RUNn = 3.3V  
16  
450  
30  
μA  
μA  
+
I
I
Input Supply Current  
CLKINn Open Circuit, I  
= 4A  
2.9  
4
A
S(VINn)  
OUTn  
Input Supply Current in Shutdown  
Shutdown, RUNn = GND  
µA  
S(VINn, SHUTDOWN)  
ꢀutꢁut Sꢁecificltions  
+
+
I
V
Output Continuous Current  
(Note 3)  
0
4
A
%
%
OUTn  
OUTn  
Range  
+
+
l
l
∆V  
V
/
Line Regulation Accuracy  
Load Regulation Accuracy  
I
= 0A, 29V ≤ V ≤ 40V  
0.05  
0.05  
2
0.1  
0.75  
OUTn(LINE)  
OUTn  
INn  
+
OUTn  
+
+
∆V  
V
/
V
= 36V, 0A ≤ I  
≤ 4A  
OUTn(LOAD)  
INn  
INn  
OUTn  
+
OUTn  
+
+
V
Output Voltage Ripple, V  
V
= 12V, ISETna = 5V  
mV  
OUTn(AC)  
OUTn  
P-P  
Rev. 0  
4
For more information www.analog.com  
LTM4655  
The l ꢅenotes the sꢁecificltions which lꢁꢁꢆy over the sꢁecifieꢅ internlꢆ  
ELECTRICAL CHARACTERISTICS  
+
oꢁerltinꢈ temꢁerlture rlnꢈe (Note 1). Sꢁecifieꢅ ls elch inꢅiviꢅulꢆ outꢁut chlnneꢆ (Note 5). TA = 15°C, Test Circuit ± (ꢁositive-2ꢀUTn  
,
+
noninvertinꢈ steꢁ-ꢅown confiꢈurltion with 2ꢀUTn= GNꢂ), 2 = S2INn = 362, EXT2CCn = 142, ꢇUNn = 3.32, ꢇISETn = 480k, ꢇfSETn  
=
INn  
5ꢊ.6kΩ, fSWn = ±.5μHz (CLKINn ꢅriven with ±.5μHz cꢆock siꢈnlꢆ) lnꢅ voꢆtlꢈes referreꢅ to GNꢂ unꢆess otherwise noteꢅ.  
SYμBꢀL  
PAꢇAμETEꢇ  
CꢀNꢂITIꢀNS  
= 57.6k, CLKINn Open Circuit  
μIN  
TYP  
1.95  
8
μAX  
UNITS  
MHz  
mV  
+
l
l
f
Sn  
V
Ripple Frequency  
R
fSETn  
1.7  
2.2  
OUTn  
+
∆V  
Turn-On Overshoot  
OUTn(START)  
t
Turn-On Start-Up Time  
Delay Measured from V Toggling from 0V  
4
9
ms  
STARTn  
INn  
to 36V to PGOODn Exceeding 3V; PGOODn.  
Having a 100kΩ Pull-Up to 3.3V with Respect  
to GND, VPGFBn Resistor Divider Network as  
Shown in Test Circuit 1, R  
= 480kΩ and  
ISETna  
ISETna Electrically Connected to ISETnb and  
CLKIN Driven with 1.5MHz Clock  
+
+
∆V  
Peak Output Voltage Deviation for  
Dynamic Load Step  
I
: 0A to 2A and 2A to 0A Load Steps in  
OUTHn  
400  
50  
mV  
µs  
A
OUTn(LS)  
OUTn  
1μs, C  
= 47µF × 2  
+
t
Settling Time for Dynamic Load Step  
I
: 0A to 2A and 2A to 0A Load Steps in  
SETTLEn  
OUTn  
1μs, C  
= 47µF × 2  
OUTHn  
+
+
I
I
Output Current Limit  
5.5  
OUTn(OCL)  
OUTn  
Controꢆ Section  
l
l
I
Reference Current of ISETna Pin  
V
V
= 0.5V, 3.1V ≤ V ≤ 13.2V  
49.3  
49  
50  
50  
50.7  
51  
µA  
µA  
ISETna  
ISETna  
ISETna  
INn  
= 24V, 29V ≤ V ≤ 40V  
INn  
+
+
+
I
t
V
Leakage Current  
V
= 28V  
290  
60  
μA  
ns  
VOSNSn  
OSNSn  
VOSNSn  
Minimum On-Time  
(Note 4)  
ONn(MIN)  
l
l
V
RUNn Turn-On/-Off Thresholds  
RUNn Input Turn-On Threshold, RUNn Rising  
RUNn Hysteresis  
1.08  
360  
1.2  
1.32  
50  
V
RUNn  
130  
mV  
I
RUNn Leakage Current  
RUNn = 3.3V  
0.1  
nA  
RUNn  
ꢀsciꢆꢆltor lnꢅ Phlse-Lockeꢅ Looꢁ (PLL)  
f
Oscillator Frequency Accuracy  
V
INn  
f
= 12V, ISETna = 5V, and:  
OSCn  
Open-Circuit  
l
400  
1.95  
440  
kHz  
MHz  
SETn  
R
fSETn  
= 57.6kΩ (See f Specification)  
SN  
f
PLL Synchronization Capture Range  
V
= 12V, ISETna = 5V, CLKIN Driven with  
n
SYNCn  
INn  
a GND Referred Clock Toggling from 0.4V to  
1.2V and Having a Clock Duty Cycle:  
From 10% to 90%; f  
Open Circuit  
= 57.6kΩ  
250  
1.3  
550  
3
kHz  
MHz  
SETn  
From 40% to 60%; R  
fSETn  
V
CLKINn Input Threshold  
CLKINn Input Current  
V
V
Rising  
Falling  
1.2  
V
V
CLKINn  
CLKINn  
CLKINn  
0.4  
I
V
V
= 5V  
= 0V  
230  
–5  
500  
μA  
μA  
CLKINn  
CLKINn  
CLKINn  
–20  
Power Gooꢅ Feeꢅblck Inꢁut lnꢅ Power Gooꢅ ꢀutꢁut  
l
l
OV  
UV  
∆V  
Output Overvoltage PG00Dn Upper  
PGDFBn Rising  
PGDFBn Falling  
PGDFBn Returning  
620  
525  
645  
555  
675  
580  
mV  
mV  
PGDFBn  
Threshold  
Output Undervoltage PGOODn Lower  
Threshold  
PGDFBn  
PGOODn Hysteresis  
8
mV  
kΩ  
Ω
PGDFBn  
PGDFBn  
PGOODn  
R
R
Resistor Between PGDFB1n and SV  
PGOODn Pull-Down Resistance  
4.94  
4.99  
700  
5.04  
OUTn  
V
V
= 0.1V, V  
> OV  
= 3.3V, UV < V  
PGDFBn  
< UV  
or  
<
1500  
PGOODn  
PGDFBn  
PGDFBn  
PGDFBn  
PGDFBn  
I
PGOODn Leakage Current  
V
0.1  
1
μA  
PGOODn(LEAK)  
PGOODn  
PGDFBn  
OV  
PGDFBn  
Rev. 0  
5
For more information www.analog.com  
LTM4655  
The l ꢅenotes the sꢁecificltions which lꢁꢁꢆy over the sꢁecifieꢅ internlꢆ  
ELECTRICAL CHARACTERISTICS  
+
oꢁerltinꢈ temꢁerlture rlnꢈe (Note 1). Sꢁecifieꢅ ls elch inꢅiviꢅulꢆ outꢁut chlnneꢆ (Note 5). TA = 15°C, Test Circuit ± (ꢁositive-2ꢀUTn  
,
+
noninvertinꢈ steꢁ-ꢅown confiꢈurltion with 2ꢀUTn= GNꢂ), 2 = S2INn = 362, EXT2CCn = 142, ꢇUNn = 3.32, ꢇISETn = 480k, ꢇfSETn  
=
INn  
5ꢊ.6kΩ, fSWn = ±.5μHz (CLKINn ꢅriven with ±.5μHz cꢆock siꢈnlꢆ) lnꢅ voꢆtlꢈes referreꢅ to GNꢂ unꢆess otherwise noteꢅ.  
SYμBꢀL  
PAꢇAμETEꢇ  
CꢀNꢂITIꢀNS  
μIN  
TYP  
μAX  
UNITS  
t
PGOODn Delay  
PGOODn Low to High (Note 4)  
PGOODn High to Low (Note 4)  
16/f  
s
s
PGOODn(DELAY)  
SW(Hz)  
SW(Hz)  
64/f  
Current μonitor lnꢅ Inꢁut 2oꢆtlꢈe ꢇeꢈuꢆltion Pins  
+
+
+
l
h
I
/I  
Ratio of V  
Output Current to I  
= 4A  
36  
40  
44  
k
IMONna  
OUTn IMONna  
OUTn  
IMONna  
Current, I  
OUTn  
+
I
I
Offset Current  
I
at I  
= 0A  
–5  
9.8  
1.9  
5
μA  
kΩ  
V
OSn(IMON)  
IMONna  
IMONna  
OUTn  
IMONnb Resistor  
Resistor Between IMONnb and SV  
IMONna Servo Voltage  
10  
10.2  
2.1  
OUTn  
l
l
V
IMONna Voltage During Output Current  
2.0  
IMONna  
VINREGn  
VINREGn  
Regulation  
V
V
V
Servo Voltage  
VINREGn Voltage During Output Current  
1.8  
2.0  
1
2.2  
V
INREGn  
INREGn  
Regulation  
I
Leakage Current  
VINREGn = 2V  
nA  
INT2  
ꢇeꢈuꢆltor  
CCn  
V
Channel Internal V Voltage, No  
3.6V ≤ SV ≤ 40V, EXTV Open Circuit  
CCn  
3.15  
2.85  
3.4  
3.0  
3.65  
3.15  
V
V
INTVCCn  
CC  
INn  
INTV  
Loading (I  
= 0mA)  
5V ≤ SV ≤ 40V, 3.2V ≤ EXTV  
≤ 26.5V  
CCn  
INTVCCn  
INn  
CCn  
V
EXTV  
Switchover Voltage  
Load Regulation  
(Note 4)  
3.15  
0.5  
V
EXTVCCn(TH)  
CCn  
CCn  
∆V  
INTV  
0mA ≤ I  
≤ 30mA  
INTVCCn  
–2  
2
%
INTVCCn(LOAD)/  
INTVCCn  
V
ELECTRICAL CHARACTERISTICS The l ꢅenotes the sꢁecificltions which lꢁꢁꢆy over the sꢁecifieꢅ internlꢆ  
oꢁerltinꢈ temꢁerlture rlnꢈe (Note 1). Sꢁecifieꢅ ls elch inꢅiviꢅulꢆ outꢁut chlnneꢆ (Note 5). TA = 15°C, Test Circuit 1 (neꢈltive-  
2ꢀUTn, invertinꢈ buck-boost confiꢈurltion with 2ꢀUTn+ = GNꢂ), 2INn = ±12 lnꢅ eꢆectriclꢆꢆy connecteꢅ to S2INn, ꢇUNn–GNꢂ = 3.32,  
ISETnl–S2ꢀUTn= 142, EXT2CCn = GNꢂ, CLKINn oꢁen circuit, ꢇfSETn = 5ꢊ.6kΩ lnꢅ ꢇISETn = 480kΩ lnꢅ voꢆtlꢈes referreꢅ to GNꢂ  
unꢆess otherwise noteꢅ.  
SYμBꢀL  
PAꢇAμETEꢇ  
CꢀNꢂITIꢀNS  
μIN  
TYP  
μAX UNITS  
+
l
l
l
SV  
, V  
Input DC Voltage in  
V
|V | ≤ 40V  
OUTn  
3.6  
40  
V
V
V
INn(DC) INn(DC)  
INn  
Negative-V  
Configuration  
OUT  
V
Range of Negative Output Voltage  
Regulation  
0.5V ≤ ISETna–SV  
≤ 26.5V  
–26.5  
–0.5  
OUTn(RANGE)  
OUTn  
V
Output Voltage Total Variation with Line 3.6V ≤ V ≤ 16V, 0A ≤ I  
≤ 0.3A, CLKINn  
–24.4 –24 –23.6  
OUTn(–24VDC)  
INn  
OUTn  
and Load at V  
= –24V  
Driven per Note 8, C  
OUTHn  
= 4.7μF, C = 4.7μF × 2,  
INHn Dn  
OUTn  
C
= 47μF × 2  
+
l
V
Output Voltage Total Variation with Line Measuring V  
– ISETna, 12V ≤ V ≤ 35V,  
–15  
0
1
15  
mV  
Ω
OUTn(–5VDC)  
OSNSn  
INn  
and Load at V  
= –5V  
0A ≤ I  
≤ 3A, CLKINn Driven by 550kHz Clock,  
OUTn  
OUT  
C
= 4.7μF, C = 4.7μF × 2, C  
= 47μF ×  
INHn  
Dn  
OUTHn  
2, ISETna–SV  
= 5V  
OUTn  
R
Resistor Between SV and SV  
INn INFn  
SVINFn  
Rev. 0  
6
For more information www.analog.com  
LTM4655  
ELECTRICAL CHARACTERISTICS The l ꢅenotes the sꢁecificltions which lꢁꢁꢆy over the sꢁecifieꢅ internlꢆ  
oꢁerltinꢈ temꢁerlture rlnꢈe (Note 1). Sꢁecifieꢅ ls elch inꢅiviꢅulꢆ outꢁut chlnneꢆ (Note 5). TA = 15°C, Test Circuit 1 (neꢈltive-  
2ꢀUTn, invertinꢈ buck-boost confiꢈurltion with 2ꢀUTn+ = GNꢂ), 2INn = ±12 lnꢅ eꢆectriclꢆꢆy connecteꢅ to S2INn, ꢇUNn–GNꢂ = 3.32,  
ISETnl–S2ꢀUTn= 142, EXT2CCn = GNꢂ, CLKINn oꢁen circuit, ꢇfSETn = 5ꢊ.6kΩ lnꢅ ꢇISETn = 480kΩ lnꢅ voꢆtlꢈes referreꢅ to GNꢂ  
unꢆess otherwise noteꢅ.  
SYμBꢀL  
PAꢇAμETEꢇ  
CꢀNꢂITIꢀNS  
μIN  
TYP  
μAX UNITS  
Inꢁut Sꢁecificltions  
l
l
l
V
SV Undervoltage Lockout Threshold SV Rising  
3.2  
2.5  
700  
3.6  
2.8  
V
V
INn(UVLO)  
INRUSH(VINn)  
Q(SVINn)  
INn  
INn  
SV Falling  
2.1  
400  
INn  
Hysteresis  
mV  
I
I
Input Inrush Current at Start-Up  
C
= 4.7μF, CDn = 4.7μF × 2, C  
OUTn  
= 47μF ×  
1.1  
A
INHn  
OUTHn  
2; I  
= 0A, ISETna Electrically Connected to  
ISETnb  
Input Supply Bias Current  
Shutdown, RUNn = GND  
RUNn–GND = 3.3V  
16  
450  
30  
μA  
μA  
I
I
Input Supply Current  
CLKINn Open Circuit, I  
= 1.25A  
3.0  
4
A
S(VINn)  
OUTn  
Input Supply Current in Shutdown  
Shutdown, RUNn = GND  
µA  
S(VINn, SHUTDOWN)  
ꢀutꢁut Sꢁecificltions  
I
V
OUTn  
Output Continuous Current Range  
V
INn  
=12V, Regulating V  
=24V at f  
=1MHz  
0
0
1.25  
3
A
A
OUTn  
INn  
OUTn  
SWn  
SWn  
V
= 12V, Regulating V  
= –5V at f  
= 550kHz  
OUTn  
(See Note 3. Capable of Up to 4A Output Current  
for Some Combinations of V , V  
and f  
)
INn OUTn  
SWn  
l
l
∆V  
∆V  
/V  
Line Regulation Accuracy  
Load Regulation Accuracy  
I
= 0A, 3.6V ≤ V ≤ 16V, ISETna–SV  
OUTn  
=
0.05 0.25  
0.05 0.75  
10  
%
%
OUTn(LINE)  
OUTn  
OUTn  
INn  
24V, CLKINn Driven by 1.8MHz Clock  
/V  
V
= 12V, 0A ≤ I  
1.5MHz Clock, R  
≤ 1.25A, CLKINn Driven by  
OUTn(LOAD) OUTn  
INn  
OUTn  
fSETn  
= 57.6kΩ, and R  
= 480kΩ  
ISETn  
V
Output Voltage Ripple, V  
V
V
= 12V, I  
= 12V, I  
–SV  
= 5V  
= 5V  
mV  
P-P  
OUTn(AC)  
OUTn  
INn  
INn  
SETna  
SETna  
OUTn  
OUTn  
l
l
f
V
Ripple Frequency  
–SV  
1.7  
1.95  
8
2.2  
MHz  
SN  
OUTn  
∆V  
Turn-On Overshoot  
mV  
ms  
OUTn(START)  
t
Turn-On Start-Up Time  
Delay Measured from V Toggling from 0V  
4
9
STARTn  
INn  
to 12V to PGOODn Exceeding 3V Above GND;  
PGOODn Having a 100kΩ Pull-Up to 3.3V with  
Respect to GND, V  
Resistor Divider Network  
PGFBn  
as Shown in Test Circuit 2, R  
= 480kΩ,  
ISETna  
ISETna Electrically Connected to ISETnb, and  
CLKINn Driven with 1.2MHz Clock  
∆V  
Peak Output Voltage Deviation for  
Dynamic Load Step  
I
: 0A to 1A and 1A to 0A Load Steps in 1μs,  
400  
50  
mV  
µs  
A
OUTn(LS)  
OUTn  
C
= 47µF × 2  
OUTHn  
t
I
Settling Time for Dynamic Load Step  
I
: 0A to 1A and 1A to 0A Load Steps in 1μs,  
SETTLEn  
OUTn  
C
= 47µF × 2 X5R  
OUTH2  
I
Output Current Limit  
1.7  
OUTn(OCL)  
OUTn  
Controꢆ Section  
l
l
I
Reference Current of ISETna Pin  
V
–SV  
ISETna  
= 0.5V, 3.6V ≤ V ≤ 28V  
49.3  
49  
50  
50  
50.7  
51  
µA  
µA  
ISETna  
ISETna  
OUTn  
INn  
0V ≤ V  
–SV  
≤ V –SV  
≤ 40V  
OUTn  
INn  
OUT  
+
+
+
I
t
V
Leakage Current  
V
– SV  
= 28V  
290  
60  
μA  
ns  
VOSNSn  
OSNSn  
OSNSn  
OUTn  
Minimum On-Time  
(Note 4 )  
ONn(MIN)  
l
l
V
RUNn Turn-On/-Off Thresholds  
RUNn Input Turn-On Threshold, RUNn Rising  
RUNn Hysteresis  
1.08  
1.2  
1.32  
50  
V
RUNn  
130  
mV  
(RUNn Thresholds Measured with Respect to GND)  
I
RUNn Leakage Current  
V
INn  
= 12V, RUNn–GND = 3.3V  
0.1  
nA  
Rev. 0  
7
RUNn  
For more information www.analog.com  
LTM4655  
ELECTRICAL CHARACTERISTICS The l ꢅenotes the sꢁecificltions which lꢁꢁꢆy over the sꢁecifieꢅ internlꢆ  
oꢁerltinꢈ temꢁerlture rlnꢈe (Note 1). Sꢁecifieꢅ ls elch inꢅiviꢅulꢆ outꢁut chlnneꢆ (Note 5). TA = 15°C, Test Circuit 1 (neꢈltive-  
2ꢀUTn, invertinꢈ buck-boost confiꢈurltion with 2ꢀUTn+ = GNꢂ), 2INn = ±12 lnꢅ eꢆectriclꢆꢆy connecteꢅ to S2INn, ꢇUNn–GNꢂ = 3.32,  
ISETnl–S2ꢀUTn= 142, EXT2CCn = GNꢂ, CLKINn oꢁen circuit, ꢇfSETn = 5ꢊ.6kΩ lnꢅ ꢇISETn = 480kΩ lnꢅ voꢆtlꢈes referreꢅ to GNꢂ  
unꢆess otherwise noteꢅ.  
SYμBꢀL  
PAꢇAμETEꢇ  
CꢀNꢂITIꢀNS  
μIN  
TYP  
μAX UNITS  
ꢀsciꢆꢆltor lnꢅ Phlse-Lockeꢅ Looꢁ (PLL)  
f
f
Oscillator Frequency Accuracy  
V
= 12V, ISETna–SV  
= 5V, and:  
OUTn  
OSCn  
INn  
f
Open Circuit  
l
360  
400  
1.95  
440  
kHz  
MHz  
SETn  
R
fSETn  
= 57.6kΩ (See f Specification)  
SN  
PLL Synchronization Capture Range  
V
INn  
= 12V, ISETna–SV  
= 5V, CLKINn Driven  
SYNCn  
OUTn  
with a GND Referred Clock Toggling from 0.4V to  
1.2V and Having a Clock Duty Cycle:  
From 10% to 90%; f  
From 40% to 60%; R  
Open Circuit  
250  
1.3  
550  
3
kHz  
MHz  
SETn  
= 57.6kΩ  
fSETn  
V
CLKINn Input Threshold  
V
V
Rising with Respect to GND  
Falling with Respect to GND  
1.2  
V
V
CLKINn  
CLKINn  
CLKINn  
0.4  
I
CLKINn Input Current  
V
V
= 5V with Respect to GND  
= 0V with Respect to GND  
230  
–5  
500  
μA  
μA  
CLKINn  
CLKINn  
CLKINn  
–20  
Power Gooꢅ Feeꢅblck Inꢁut lnꢅ Power Gooꢅ ꢀutꢁut  
l
l
OV  
UV  
∆V  
Output Overvoltage PGOODn  
PGDFBn Rising, Differential Voltage from PGDFBn  
620  
525  
645  
555  
8
675  
580  
mV  
mV  
PGDFBn  
Upper Threshold  
to SV  
OUTn  
Output Undervoltage PGOODn Lower  
Threshold  
PGDFBn Falling, Differential Voltage from PGDFBn  
PGDFBn  
to SV  
OUTn  
PGOODn Hysteresis  
PGDFBn Returning  
mV  
kΩ  
Ω
PGDFBn  
PGDFBn  
PGOODn  
R
R
Resistor Between PGDFBn and SV  
PGOODn Pull-Down Resistance  
4.94 4.99 5.04  
700 1500  
OUTn  
V
V
V
= 0.1V with Respect to GND,  
PGOODn  
PGDFBn  
PGDFBn  
–SV  
< UV  
> OV  
or  
OUTn  
OUTn  
PGDFBn  
PGDFBn  
–SV  
I
t
PGOODn Leakage Current  
PGOODn Delay  
V
= 3.3V with Respect to GND,  
0.1  
1
μA  
PGOODn(LEAK)  
PGOODn  
UV  
< V  
–SV  
< OV  
PGDFBn  
PGDFBn  
PGDFBn  
OUTn  
PGOODn Low to High (Note 4)  
PGOODn High to Low (Note 4)  
16/f  
s
s
PGOODn(DELAY)  
SW(Hz)  
SW(Hz)  
64/f  
Inꢁut 2oꢆtlꢈe ꢇeꢈuꢆltion Pin  
l
V
V
Servo Voltage  
V
Voltage During Output Current Regulation,  
1.8  
2.0  
1
2.2  
V
VINREGn  
INREGn  
INREGn  
Measured with Respect to SV  
OUTn  
I
V
Leakage Current  
V
INREG  
–SV  
= 2V  
nA  
VINREGn  
INREGn  
OUTn  
INT2  
ꢇeꢈuꢆltor  
CCn  
V
Channel Internal V Voltage, No  
3.6V ≤ SV –SV  
≤ 40V, EXTV = Open Circuit  
3.15  
2.85  
3.4  
3.0  
3.65  
3.15  
V
V
V
INTVCCn  
CC  
INn  
OUTn  
CCn  
INTV  
Loading (I  
= 0mA)  
5V ≤ SV –SV  
≤ 40V, 3.2V ≤ EXTV  
CCn  
INTVCCn  
INn  
≤ 26.5V  
OUTn CCn  
V
OUTn  
(INTV  
Measured with Respect to SV  
)
CCn  
OUTn  
V
EXTV  
Switchover Voltage  
Load Regulation  
(EXTV  
Measured with Respect to SV )  
OUTn  
3.15  
0.5  
V
EXTVCCn(TH)  
CCn  
CCn  
(Note 4)  
∆V  
/
INTV  
0mA ≤ I  
≤ 30mA  
INTVCCn  
–2  
2
%
INTVCCn(LOAD)  
INTVCCn  
CCn  
V
Rev. 0  
8
For more information www.analog.com  
LTM4655  
ELECTRICAL CHARACTERISTICS The l ꢅenotes the sꢁecificltions which lꢁꢁꢆy over the sꢁecifieꢅ internlꢆ  
oꢁerltinꢈ temꢁerlture rlnꢈe (Note 1). TA = 15°C, Test Circuit 3 lnꢅ voꢆtlꢈes referreꢅ to GNꢂ unꢆess otherwise noteꢅ.  
SYμBꢀL  
PAꢇAμETEꢇ  
CꢀNꢂITIꢀNS  
μIN  
TYP  
μAX UNITS  
l
LDO  
LDO Input DC Voltage  
LDO Output Voltage  
4.5  
40  
V
IN(DC)  
l
l
V
V
V
= 36V, 0mA ≤ I  
LDOOUT  
≤ 25mA  
≤ 20mA  
4.8  
2.7  
5.0  
4.1  
5.2  
V
V
LDOOUT(DC)  
LDOIN  
LDOIN  
= 4.5V, 0mA ≤ I  
LDOOUT  
V
Output Voltage Ripple  
2
mV  
P-P  
LDOOUT(AC)  
I
Output Current Limit, 5V LDO  
LDO = 36V  
140  
mA  
LDOOUT(OCL)  
IN  
Cꢆock Generltor  
l
l
∆f  
Clock-Generator Frequency Accuracy  
Frequency Setting Resistor Range  
2.7V ≤ LDO  
≤ 5.2V, 200kHz ≤ f ≤ 3MHz,  
OUT  
2.5  
2.5  
7.5  
3
%
%
OUT  
OUT  
MOD Connected to CLKOUT2  
Resistance for Which –7.5% ≤ ∆f ≤  
OUT  
R
R
33.2  
40  
499  
kΩ  
CLKSET(RANGE)  
CLKSET  
7.5%, Over 2.7V ≤ LDO  
≤ 5.2V,  
OUT  
MOD Electrically Connected to CLKOUT2  
Period Variation (Frequency Spreading)  
Duty Cycle  
LDO = 5V, R = 100kΩ, MOD Open Circuit  
10  
%
%
OUT  
CLKSET  
l
2.7V ≤ LDO  
MOD Electrically Connected to CLKOUT2  
≤ 5.2V, 200kHz ≤ f  
≤ 3MHz,  
60  
OUT  
OUT  
θ
θ
/
Phase Relationship of CLKOUT2 to  
CLKOUT1  
2.7V ≤ LDO ≤ 5.2V, 200kHz ≤ f ≤ 3MHz,  
180  
Deg  
V
CLKOUT1  
CLKOUT2  
OUT  
OUT  
MOD Electrically Connected to CLKOUT2  
CLKOUTn V Measured with Respect to LDO ,  
OUT  
V
CLKOUTn Output Voltage, Logic High  
–0.4  
OH_CLKOUTn  
OL_CLKOUTn  
OH  
OUT  
2.7V ≤ LDO  
≤ 5.2V, I  
= –100μA  
CLKOUTn  
V
CLKOUTn Output Voltage, Logic Low  
CLKOUTn V Measured with Respect to GND, 2.7V  
0.4  
V
OL  
≤ 5.2V, I  
≤ LDO  
= 100μA  
OUT  
CLKOUTn  
Temꢁerlture Sensor  
∆V  
TEMP  
Temperature Sensor Forward Voltage,  
+ to V  
I
+ = 100µA and I  
– = –100μA at T = 25°C  
0.598  
V
TEMP  
TEMP  
A
V
TEMP  
TEMP  
TC  
∆V  
TEMP  
Temperature Coefficient  
–2.0  
mV/°C  
∆V(TEMP)  
η
Ideality Factor  
1.004  
+
Note ±: Stresses beyond those listing under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating conditions for extended periods may affect device  
reliability and lifetime.  
Note 6: To ensure minimum on-time criteria is met, V  
(0.5V ) high  
OUTn DC  
line regulation is tested at 13.2V , with f  
and CLKINn open circuit.  
IN  
SETn  
V
(–0.5V ) low line regulation is tested at 3.6V , with f  
and  
OUTn  
DC  
IN  
SETn  
CLKINn open circuit.  
Note 1: The LTM4655 is tested under pulsed load conditions such that T ≈  
V
(–0.5V ) high line regulation is tested at 28V , and with CLKINn  
J
OUTn  
DC  
IN  
T . The LTM4655E is guaranteed to meet performance specifications over the  
driven at 200kHz—so as to ensure minimum on-time criteria is met.  
The LTM4655 is not recommended for applications where the minimum  
on-time criteria (guardband to 90ns) is continuously violated. The  
A
0°C to 125°C internal operating temperature range. Specifications over the full  
–40°C to 125°C internal operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
LTM4655 can ride through events (such as V surge) where the on-time  
IN  
criteria is transiently violated. See the Applications Information section.  
The LTM4655I is guaranteed to meet specifications over the full –40°C to  
125°C internal operating temperature range. The LTM4655MP is tested and  
guaranteed over the full –55°C to 125°C operating temperature range. Note  
that the maximum ambient temperature consistent with these specifications is  
determined by specific operating conditions in conjunction with board layout,  
the rated package thermal resistance and other environmental factors.  
Note ꢊ: See the Applications Information section for dropout criteria.  
Note 8: V  
(–24V ) is tested at 3.6V and 16V , with CLKINn  
OUTn  
DC  
IN  
IN  
driven with a 1.8MHz clock, ISETna to SV  
= 12V, and R  
= 57.6k.  
OUTn  
fSET  
It is also tested at 12V , with CLKINn driven with a 1.5MHz clock, R  
IN  
fSETn  
= 57.6k, and R  
= 480k.  
ISETn  
Note 3: See output current derating curves for different V , V , and T ,  
located in the Applications Information section.  
IN OUT  
A
Note 9: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 4: Minimum on-time, PGOOD delay, and EXTV  
switchover  
CCn  
threshold are tested at wafer sort.  
Note 5:The two power inputs—V and V —and their respective power  
IN1  
IN2  
+
+
outputs—V  
or V  
, and V  
or V  
, depending on operational  
Note ±0: The INTV  
Abs Max peak output current is specified as the sum  
OUT1  
OUT1  
OUT2  
OUT2  
CCn  
configuration—are tested independently in production, in both positive-V  
of current drawn by circuits internal to the module biased off of INTV  
OUT  
CCn  
(noninverting step-down) and negative-V  
(inverting buck-boost) configurations.  
and current drawn by external circuits biased off of INTV . Specified  
OUT  
CCn  
On occasion, a shorthand notation is used in this document that allows V to refer  
independently, for each channel. See the Applications Information section.  
INn  
to both V and V by virtue of nbeing permitted to take on a value of 1 or 2. This  
IN1  
IN2  
italicized nnotation and convention is extended to all such pin names.  
Rev. 0  
9
For more information www.analog.com  
LTM4655  
+
TA = 15°C, sinꢈꢆe chlnneꢆ ꢁositive-2ꢀUTn  
oꢁerltion onꢆy, unꢆess otherwise noteꢅ.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Lolꢅ Current lt  
52IN, Forceꢅ Continuous μoꢅe  
Efficiency vs Lolꢅ Current lt  
Efficiency vs Lolꢅ Current lt  
±12IN, Forceꢅ Continuous μoꢅe  
±52IN, Forceꢅ Continuous μoꢅe  
ꢐꢋ  
ꢐ0  
ꢌꢋ  
ꢌ0  
ꢏꢋ  
ꢏ0  
ꢎꢋ  
ꢐꢁ  
ꢐ0  
ꢋꢁ  
ꢋ0  
ꢏꢁ  
ꢏ0  
ꢎꢁ  
ꢀ00  
ꢐꢌ  
ꢐ0  
ꢁꢌ  
ꢁ0  
ꢏꢌ  
ꢏ0  
ꢎꢌ  
ꢎ0  
ꢍ.ꢍꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀꢋꢂ ꢆ ꢌ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢁ.ꢋꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢌ.0ꢂ ꢆ ꢇꢌ0ꢈꢉꢊ  
ꢃꢄꢅ  
ꢁ.0ꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.ꢌꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢍ.ꢍꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢍ.ꢍꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.ꢋꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢋ.ꢌꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢌ.ꢁꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.ꢁꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.ꢋꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.0ꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.ꢁꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.ꢌꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.0ꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.ꢋꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.0ꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.ꢌꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀ.ꢁꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
0.ꢋ ꢀ.0 ꢀ.ꢋ ꢁ.0 ꢁ.ꢋ ꢍ.0 ꢍ.ꢋ ꢇ.0  
0.ꢁ ꢀ.0 ꢀ.ꢁ ꢌ.0 ꢌ.ꢁ ꢍ.0 ꢍ.ꢁ ꢇ.0  
0.ꢌ ꢀ.0 ꢀ.ꢌ ꢋ.0 ꢋ.ꢌ ꢍ.0 ꢍ.ꢌ ꢇ.0  
ꢚꢃꢛꢜ ꢔꢄRRꢑꢕꢅ ꢗꢛꢙ  
ꢚꢃꢛꢜ ꢔꢄRRꢑꢕꢅ ꢗꢛꢙ  
ꢚꢃꢛꢜ ꢔꢄRRꢑꢕꢅ ꢗꢛꢙ  
ꢇꢎꢋꢋ ꢝ0ꢀ  
ꢇꢎꢌꢌ ꢝ0ꢍ  
ꢇꢎꢁꢁ ꢝ0ꢌ  
Efficiency vs Lolꢅ Current lt  
142IN, Forceꢅ Continuous μoꢅe  
Efficiency vs Lolꢅ Current lt  
362IN, Forceꢅ Continuous μoꢅe  
±2 Trlnsient ꢇesꢁonse, 142IN  
ꢌ00  
ꢊ00  
ꢐꢀ  
ꢐ0  
ꢎꢀ  
ꢎ0  
ꢆꢀ  
ꢆ0  
ꢏꢀ  
ꢏ0  
ꢀꢀ  
ꢐꢁ  
ꢐ0  
ꢍꢁ  
ꢍ0  
ꢎꢁ  
ꢎ0  
ꢏꢁ  
ꢏ0  
ꢁꢁ  
+
V
OUTn  
50mV/DIV  
AC-COUPLED  
+
I
OUTn  
2A/DIV  
ꢌꢁꢂ ꢆ ꢎꢁ0ꢈꢉꢊ  
ꢃꢄꢅ  
ꢋꢍꢁ ꢅ ꢊ.ꢋꢌꢈꢉ  
ꢂꢃꢄ  
ꢑ.ꢑꢁ ꢅ ꢍ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢌꢀꢂ ꢆ ꢍ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢌ.ꢍꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
4655 G06  
ꢊꢀꢁ ꢅ ꢊ.ꢋꢌꢈꢉ  
ꢂꢃꢄ  
ꢋ.ꢀꢁ ꢅ ꢍ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢁ.0ꢂ ꢆ ꢁꢁ0ꢈꢉꢊ  
ꢃꢄꢅ  
ꢌ.ꢁꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
40µs/DIV  
FIGURE 51 CIRCUIT, 24V  
ꢊꢋꢁ ꢅ ꢊ.ꢊꢌꢈꢉ  
ꢂꢃꢄ  
ꢀꢁ ꢅ ꢀꢆꢀꢇꢈꢉ  
ꢂꢃꢄ  
ꢊ.ꢎꢁ ꢅ ꢍ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢊ.ꢀꢁ ꢅ ꢍ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢋ.ꢋꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢌ.ꢀꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢌ.0ꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
,
ꢀ.ꢁꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
IN  
C
= C = 4.7µF, C  
= 3 x 100µF,  
INHn  
Dn  
OUTn  
0.ꢁ ꢌ.0 ꢌ.ꢁ ꢀ.0 ꢀ.ꢁ ꢋ.0 ꢋ.ꢁ ꢇ.0  
0.ꢀ ꢊ.0 ꢊ.ꢀ ꢋ.0 ꢋ.ꢀ ꢑ.0 ꢑ.ꢀ ꢍ.0  
R
= N/A, R  
= 20kΩ,  
fSETn  
ISETn  
THn  
C
= 6.8nF, R  
= 681Ω,  
THn  
R
ꢚꢃꢛꢜ ꢔꢄRRꢑꢕꢅ ꢗꢛꢙ  
ꢛꢂꢜꢝ ꢕꢃRRꢒꢖꢄ ꢘꢜꢚ  
= N/A, C  
= N/A,  
EXTVCCn  
EXTVCCn  
ꢇꢏꢁꢁ ꢝ0ꢇ  
ꢍꢏꢀꢀ ꢞ0ꢀ  
2A to 4A LOAD STEP AT 2A/µs  
Rev. 0  
10  
For more information www.analog.com  
LTM4655  
+
TA = 15°C, sinꢈꢆe chlnneꢆ ꢁositive-2ꢀUTn  
oꢁerltion onꢆy, unꢆess otherwise noteꢅ.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Stlrt-Uꢁ, Pre-Bils  
Stlrt-Uꢁ, No Lolꢅ  
Stlrt-Uꢁ, 4A Lolꢅ  
RUNn  
2V/DIV  
RUNn  
2V/DIV  
RUNn  
2V/DIV  
+
V
OUTn  
+
+
V
V
5V/DIV  
OUTn  
OUTn  
5V/DIV  
5V/DIV  
I
DIODEn  
1mA/DIV  
PGOODn  
2V/DIV  
PGOODn  
2V/DIV  
PGOODn  
2V/DIV  
4655 G07  
4655 G08  
4655 G09  
2ms/DIV  
FIGURE 51 CIRCUIT, 36V  
2ms/DIV  
FIGURE 51 CIRCUIT, 36V  
2ms/DIV  
FIGURE 51 CIRCUIT, 36V  
,
,
IN  
IN  
,
IN  
C
= C = 4.7µF, C  
= 2 x 22µF,  
= 240kΩ,  
C
= C = 4.7µF, C  
= 2 x 22µF,  
= 240kΩ,  
INHn  
Dn OUTn  
INHn Dn OUTn  
fSETn ISETn  
C
= C = 4.7µF, C  
= 2 x 22µF,  
INHn  
fSETn  
PGDFBn  
Dn  
OUTn  
R
R
= 124k, R  
R
R
C
= 124k, R  
fSETn  
PGDFBn  
ISETn  
R
R
= 124k, R  
= 240kΩ,  
ISETn  
= 95.3kΩ,  
= 95.3kΩ,  
THn  
= 49.9Ω, C  
PGDFBn  
THn  
= 95.3kΩ,  
C
= 10nF, R  
= 562Ω,  
EXTVCCn  
= 10nF, R  
= 562Ω,  
THn  
THn  
C
= 10nF, R  
EXTVCCn  
= 562Ω,  
EXTVCCn  
THn  
THn  
R
= 49.9Ω, C  
= 1µF,  
R
= 1µF,  
EXTVCCn  
NO LOAD  
EXTVCCn  
3Ω RESISTIVE LOAD  
EXTVCCn  
R
= 49.9Ω, C  
PRE-BIASED TO 5V  
= 1µF,  
+
V
OUTn  
THROUGH 1N4148 DIODE  
Short Circuit, No Lolꢅ  
Short Circuit, 4A Lolꢅ  
+
V
+
OUTn  
5V/DIV  
V
OUTn  
5V/DIV  
I
INn  
1A/DIV  
I
INn  
1A/DIV  
4655 G10  
4655 G11  
10µs/DIV  
10µs/DIV  
FIGURE 51 CIRCUIT, 36V  
IN  
,
FIGURE 51 CIRCUIT, 36V ,  
IN  
INHn Dn OUTn  
C
= C = 4.7µF, C  
= 2 x 22µF,  
C
= C = 4.7µF, C  
= 2 x 22µF,  
= 240kΩ,  
INHn  
fSETn  
PGDFBn  
Dn OUTn  
R
R
= 124k, R  
= 240kΩ,  
R
= 124k, R  
fSETn ISETn  
ISETn  
= 95.3kΩ,  
THn  
= 49.9Ω, C  
R
= 95.3kΩ,  
PGDFBn  
C
= 10nF, R  
EXTVCCn  
= 562Ω,  
EXTVCCn  
C
= 10nF, R  
= 562Ω,  
THn  
THn  
THn  
R
= 1µF,  
R
= 49.9Ω, C  
= 1µF,  
EXTVCCn  
EXTVCCn  
NO LOAD PRIOR TO APPLICATION  
OF OUTPUT SHORT-CIRCUIT  
4Ω RESISTIVE LOAD PRIOR TO  
APPLICATION OF OUTPUT  
SHORT-CIRCUIT  
Rev. 0  
11  
For more information www.analog.com  
LTM4655  
TA = 25°C, single channel negative-VOUTn  
operation only, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
–3.3V Efficiency vs Load Current  
–5V Efficiency vs Load Current  
Output Current Capability*  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢄ ꢅ00ꢆꢇꢈ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢆ00ꢇꢈꢉ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢁꢆ0ꢇꢈꢉ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢆ00ꢇꢈꢉ  
ꢃꢄ  
ꢁ ꢀ0.ꢂꢃ  
ꢁ ꢀꢂ.ꢂꢃ  
ꢁ ꢀꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢁ ꢀꢂꢃ  
ꢀꢁ ꢄ ꢅ00ꢆꢇꢈ  
ꢂꢃ  
ꢁ ꢀꢂꢃꢄ  
ꢁ ꢀꢂꢃꢄ  
ꢁ ꢀꢂ0ꢃ  
ꢁ ꢀꢂꢃꢄ  
ꢀꢁꢂ ꢅ ꢆꢆ0ꢇꢈꢉ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢆ00ꢇꢈꢉ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢁ00ꢆꢇꢈ  
ꢃꢄ  
0
0
ꢀ0 ꢀꢁ ꢀ0 ꢀꢁ ꢀ0 ꢀꢁ ꢀ0  
0
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢃ ꢄꢃꢀ  
–12V Efficiency vs Load Current  
–15V Efficiency vs Load Current  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢄ ꢅꢆꢀꢇꢈꢉ  
ꢂꢃ  
ꢀꢁ ꢄ ꢀ00ꢅꢆꢇ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢆꢁꢇꢈꢉꢊ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢆꢇꢈꢉꢊꢋ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢆ.ꢆꢇꢈꢉ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢆ.ꢀꢇꢈꢉ  
ꢃꢄ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃꢄꢃꢂꢅ  
ꢀꢁꢂꢂ ꢃꢄꢁ  
–24V Efficiency vs Load Current  
Rated Operating Output Voltage  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
0
ꢀꢁ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂꢃ ꢄꢅꢃRꢁꢆꢇꢈꢉ ꢁRꢃꢁ  
ꢀꢁ ꢄ ꢀꢀ0ꢅꢆꢇ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢀꢆꢇꢈ  
ꢃꢄ  
0
0.ꢀ  
ꢀ.ꢁ  
0
ꢀ0 ꢀꢁ ꢀ0 ꢀꢁ ꢀ0 ꢀꢁ ꢀ0  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
*Current limit frequency-foldback activates at load currents higher than indicated curves. Continuous channel output current capability subject to details of  
application implementation. Switching frequency set per Table 1. See Notes 2 and 3.  
Rev. 0  
12  
For more information www.analog.com  
LTM4655  
TA = 25°C, single channel negative-VOUTn  
operation only, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
–5V Transient Response, 24VIN  
–24V Transient Response, 12VIN  
Start-Up, No Load  
ꢁꢎn  
V
V
OUTn  
OUTn  
ꢘꢑꢗꢔꢁꢑ  
100mV/DIV  
AC-COUPLED  
100mV/DIV  
AC-COUPLED  
ꢍꢃꢈn  
ꢏ0ꢑꢗꢔꢁꢑ  
I
I
Rꢃꢎn  
ꢐꢑꢗꢔꢁꢑ  
OUTn  
OUTn  
1A/DIV  
0.4A/DIV  
ꢋꢂꢍꢍꢔn  
ꢘꢑꢗꢔꢁꢑ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄ0  
ꢏꢕꢖꢗꢔꢁꢑ  
40μs/DIV  
FIGURE 48 CIRCUIT, 24V  
20μs/DIV  
FIGURE 48 CIRCUIT,  
ꢀꢁꢂꢃRꢄ ꢅꢆ ꢇꢁRꢇꢃꢁ ꢉ ꢊꢋꢋꢌꢁꢇꢊꢈꢁꢍꢎ ꢍꢀ ꢏꢐꢑ  
ꢒꢈꢊRꢈꢓꢃꢋ ꢁꢎꢈꢍ ꢎꢍ ꢌꢍꢊꢔ  
,
ꢁꢎ  
IN  
C
C
R
R
= C  
= C  
= C = 4.7μF,  
0.625A TO 1.25A LOAD STEP AT 0.625A/μs  
INOUTn  
= 47μF ×2, R  
ISETn  
INHn DGNDn  
Dn  
= 665kΩ,  
OUTn  
fSETn  
= 100kΩ, R  
EXTVCCn  
= 36.5kΩ,  
PGDFBn  
= 20Ω, 1.8A TO 3.8A LOAD STEP AT 2A/μs  
Start-Up, 1.25A Load  
Start-Up, Pre-Bias  
V
ꢋꢃꢈn  
INn  
5V/DIV  
ꢕ0ꢊꢚꢒꢁꢊ  
V
ꢒꢁꢋꢒꢄn  
ꢕ00ꢘꢐꢚꢒꢁꢊ  
OUTn  
10V/DIV  
I
Rꢃꢖn  
ꢛꢊꢚꢒꢁꢊ  
OUTn  
500mA/DIV  
PGOODn  
5V/DIV  
ꢍꢂꢋꢋꢒn  
ꢛꢊꢚꢒꢁꢊ  
ꢀꢁꢂꢂ ꢃꢄꢄ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
1ms/DIV  
ꢕꢘꢙꢚꢒꢁꢊ  
FIGURE 48 CIRCUIT, APPLICATION OF 12V  
START-UP INTO 19.2Ω LOAD  
,
IN  
ꢀꢁꢂꢃRꢄ ꢅꢆ ꢇꢁRꢇꢃꢁ ꢉ ꢊ  
ꢍRꢄꢎꢏꢁꢐꢑꢄꢒ  
ꢋꢃꢈn  
ꢈꢋ ꢌꢓꢊ ꢈꢔRꢋꢃꢂꢔ ꢐ ꢕꢖꢅꢕꢅꢆ ꢒꢁꢋꢒꢄ ꢍRꢁꢋR  
ꢈꢋ Rꢃꢖn ꢈꢋꢂꢂꢗꢁꢖꢂ ꢔꢁꢂꢔ  
Short Circuit, No Load  
Short Circuit, 1.25A Load  
V
V
OUTn  
OUTn  
10V/DIV  
10V/DIV  
I
I
INn  
INn  
10A/DIV  
10A/DIV  
ꢀꢁꢂꢂ ꢃꢄꢂ  
ꢀꢁꢂꢂ ꢃꢄꢀ  
10μs/DIV  
FIGURE 48 CIRCUIT,  
10μs/DIV  
FIGURE 48 CIRCUIT,  
19.2Ω LOAD PRIOR TO APPLICATION OF  
NO LOAD PRIOR TO APPLICATION OF  
V
SHORT-CIRCUIT  
V
SHORT-CIRCUIT  
OUTn  
OUTn  
Rev. 0  
13  
For more information www.analog.com  
LTM4655  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
SV  
(C11): Channel 2 Filtered Voltage Supply for Small  
INF2  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
Signal Circuits. If powering the LTM4655’s 5V LDO from  
channel 2’s supply for small signal circuits, electrically  
connect SV  
carrying up to 25mA.  
and LDO with a short trace capable of  
IN  
INF2  
V
(A1–A3, B3): Channel 1 Power Input Pins. Apply  
IN1  
input voltage and input decoupling capacitance directly  
between V and a power ground (PGND) plane. Either  
LDO (B12): Input to 5V LDO. Connect LDO to either  
IN1  
IN  
IN  
connect PGND to VOUT1in noninverting step-down appli-  
SVINF1 or SVINF2 with a short trace capable of carrying up  
to 25mA, depending on which input rail is better suited  
for powering the 5V LDO. If LDOIN is being powered from  
+
cations, where V  
voltage—or, connect PGND to V  
is the regulated positive output  
OUT1  
+
in inverting buck-  
OUT1  
boost applications, where V  
output voltage.  
is the regulated negative  
SV  
or SV , no bypass capacitance from LDO to  
INF1 INF2 IN  
OUT1  
GND is needed; otherwise, 0.1μF-to-1μF local bypass  
capacitance is recommended.  
V
(A6–A8, B8): Channel 2 Power Input Pins. Apply  
IN2  
input voltage and input decoupling capacitance directly  
V
(A5, B5, C5, D5, E5, F5, G4–5, H3, H5, J3–5,  
OUT1  
between V and a power ground (PGND) plane. Either  
K4–5, L4–5, M4–5): Negative Power Output of Channel 1.  
IN2  
connect PGND to VOUT2in noninverting step-down appli-  
Either connect V  
to a PGND plane in noninverting  
OUT1  
+
+
cations, where V  
voltage—or, connect PGND to V  
boost applications, where V  
output voltage.  
is the regulated positive output  
step-down applications, where V  
is the regulated  
OUT2  
OUT1  
+
+
in inverting buck-  
positive output voltage—or, connect V  
to PGND in  
OUT2  
is the regulated negative  
inverting buck-boost applications, whOerUeT1V  
regulated negative output voltage.  
is the  
OUT2  
OUT1  
V
(A4, B4, C4): Drain of Channel 1’s Primary Switching  
SV  
(E4, G2, H2): Signal Return of Channel 1. The  
D1  
OUT1  
MOSFET. Apply at least one 4.7μF high frequency ceramic  
decoupling capacitor directly from VD1 to VOUT1. Give  
this capacitor higher layout priority (closer proximity to  
SV  
pins are the reference node for channel 1’s con-  
troOl UloTo1p. A small island of SVOUT1 copper should be  
extended from the module and used to shield sensitive  
the module) than any V decoupling capacitors.  
channel 1 pins and signals from noise—such as those  
IN1  
routing to f  
, ISET1a/b, and COMP1a/b. All SV  
SET1  
OUT1  
V
(A9, B9, C9): Drain of Channel 2’s Primary Switching  
D2  
pins are connected to each other internal to the module.  
MOSFET. Apply at least one 4.7μF high frequency ceramic  
decoupling capacitor directly from VD2 to VOUT2. Give  
this capacitor higher layout priority (closer proximity to  
Connect Pin H2 to V  
The remaining SV  
directly under the LTM4655.  
OUT1  
pins can be used for redundant  
connectivity or roOuUteTd1 to an ICT test point for design-  
for-test considerations, as desired. See the Applications  
Information section for the layout checklist.  
the module) than any V decoupling capacitors.  
IN2  
SV (C3): Channel 1 Input Voltage Supplies for Small  
IN1  
Signal Circuits. SV is the input to the INTV  
LDO.  
IN1  
CC1  
+
V
(K1–3, L1–3, M1–3): Positive Power Output of  
COhUanT1nel 1. Bypass V  
ule with at least 1μF. The remainder of V  
bypass caps should be located near channel 1’sOloUaT1d.  
Connect SV directly to V  
.
IN1  
IN1  
+
to V  
local to the mod-  
OUT1  
OUT1  
OUT1  
+
SV (C8): Channel 2 Input Voltage Supplies for Small  
to V  
IN2  
Signal Circuits. SV is the input to the INTV  
LDO.  
IN2  
CC2  
+
Connect SV directly to V  
.
Either connect V  
boost applications, where V  
to a PGND plane in inverting buck-  
IN2  
IN2  
OUT1  
is the regulated nega-  
OUT1  
SV  
(B11): Channel 1 Filtered Voltage Supply for Small  
INF1  
tive output voltage—or, connect V  
to a PGND plane  
OUT1  
Signal Circuits. If powering the LTM4655’s 5V LDO from  
noninverting step-down applications, where VOUT1+ is the  
regulated positive output voltage.  
channel 1’s supply for small signal circuits, electrically  
connect SV  
carrying up to 25mA.  
and LDO with a short trace capable of  
IN  
INF1  
Rev. 0  
14  
For more information www.analog.com  
LTM4655  
PIN FUNCTIONS  
+
+
VOSNS1 (G1, H1): Positive Voltage Sense Input for  
VOSNS2 (G6, H6): Positive Voltage Sense Input for  
+
+
+
+
Channel 1. Route a signal trace from V  
to V  
Channel 2. Route a signal trace from V  
to V  
OSNS1  
OUT1  
OSNS2 OUT2  
at channel 1’s point-of-load (POL). This provides the feed-  
at channel 2’s point-of-load (POL). This provides the feed-  
back signal to channel 1’s control loop. In noisy environ-  
back signal to channel 2’s control loop. In noisy environ-  
+
+
ments, shield V  
from electrical noise by sandwich-  
ments, shield V  
from electrical noise by sandwich-  
ing the trace beOtwSNeSe1n PGND copper. Pins G1 and H1 are  
ing the trace beOtwSNeSe2n PGND copper. Pins G6 and H6 are  
electrically connected to each other internal to the mod-  
electrically connected to each other internal to the mod-  
+
+
ule, and thus it is only necessary to connect one V  
ule, and thus it is only necessary to connect one V  
OSNS1  
OSNS2  
+
+
+
+
pin to V  
at the POL. The remaining V  
pin can  
pin to V  
at the POL. The remaining V pin can  
OSNS2  
OUT1  
OSNS1  
OUT2  
be used for redundant connectivity or routed to an ICT  
be used for redundant connectivity or routed to an ICT  
test point for design-for-test considerations, as desired.  
test point for design-for-test considerations, as desired.  
V
(A10–12, B10, C10, D10–11, E10–11, F10–11,  
GND (D4, D9, D12): Ground Pins. The logic thresholds  
for RUNn, PGOODn, and CLKINn are electrically referred  
to GND. GND is also the reference voltage for the 5V-fixed  
LDO and the CLKOUTn clock generator. Connect all GND  
pins to a solid ground plane, PGND.  
GO9UT121, H8, H10–12, J8–10, K9–12, L9–12, M9–12):  
Negative Power Output of Channel 2. Either connect  
V
OUT2  
to a PGND plane in noninverting step-down appli-  
+
cations, where V  
voltage—or, connect V  
boost applications, where V  
output voltage.  
is the regulated positive output  
OUT2  
+
to PGND in inverting buck-  
OUT2  
RUN1 (F4): Channel 1 Run Control Pin. A voltage above  
~1.2V (with respect to GND) commands the module to  
regulate its output voltage. Undervoltage lockout (UVLO)  
can be implemented by connecting RUN1 to the midpoint  
is the regulated negative  
OUT2  
SV  
SV  
(E9, G7, H7): Signal Return of Channel 2. The  
OUT2  
pins are the reference node for channel 2’s con-  
node formed by a resistor divider between V and GND.  
troOl UloTo2p. A small island of SVOUT2 copper should be  
extended from the module and used to shield sensitive  
RUN1 features ~130mV of hysteresis.  
IN1  
RUN2 (F9): Channel 2 Run Control Pin. A voltage above  
~1.2V (with respect to GND) commands the module to  
regulate its output voltage. Undervoltage lockout (UVLO)  
can be implemented by connecting RUN2 to the midpoint  
channel 2 pins and signals from noise—such as those  
routing to f  
, ISET2a/b, and COMP2a/b. All SV  
SET2  
OUT2  
pins are connected to each other internal to the module.  
Connect Pin H7 to V  
The remaining SV  
directly under the LTM4655.  
OUT2  
node formed by a resistor divider between V and GND.  
IN2  
pins can be used for redundant  
connectivity or roOuUteTd2 to an ICT test point for design-  
for-test considerations, as desired. See the Applications  
Information section for the layout checklist.  
RUN2 features ~130mV of hysteresis.  
INTV  
(G3): Channel 1 Internal Regulator, 3.3V Output  
CC1  
with Respect to VOUT1. Channel 1 internal control circuits  
and MOSFET drivers derive power from INTVCC1 bias.  
+
V
(K6–8, L6–8, M6–8): Positive Power Output of  
COhUanT2nel 2. Bypass V  
to V  
local to the mod-  
OUT2  
Leave INTV  
open circuit. An LDO generates INTV  
CC1  
CC1  
+
OUT2  
OUT2  
from either SV or EXTV , when RUN1 is logic high  
IN1  
CC1  
+
ule with at least 1μF. The remainder of V  
bypass caps should be located near channel 2’sOloUaT2d.  
to V  
(RUN1–GND > 1.2V). The INTV LDO is turned off when  
CC1  
RUN1 is logic low (RUN1–GND < 1.2V). (See EXTV .)  
CC1  
+
Either connect V  
boost applications, where V  
to a PGND plane in inverting buck-  
OUT2  
is the regulated nega-  
OUT2  
tive output voltage—or, connect V  
to a PGND plane  
OUT2  
noninverting step-down applications, where VOUT2+ is the  
regulated positive output voltage.  
Rev. 0  
15  
For more information www.analog.com  
LTM4655  
PIN FUNCTIONS  
INTV  
(G8): Channel 2 Internal Regulator, 3.3V Output  
ISET1a (F2): Accurate 50μA Current Source. Positive  
CC2  
with Respect to VOUT2. Channel 2 internal control circuits  
and MOSFET drivers derive power from INTVCC2 bias.  
input to the error amplifier of channel 1. Connect a resis-  
+
tor RISET1a = ((VOUT1 – VOUT1)/50μA) from this pin  
Leave INTV  
open circuit. An LDO generates INTV  
to SV  
local to the module to program the desired  
CC2  
CC2  
OUT1  
+
from either SV or EXTV , when RUN2 is logic high  
channel 1 output voltage magnitude, V  
capacitor can be connected from ISET1a to SV  
– V  
. A  
to  
IN2  
CC2  
OUT1  
OUT1  
OUT1  
(RUN2–GND > 1.2V). The INTV LDO is turned off when  
CC2  
RUN2 is logic low (RUN2–GND < 1.2V). (See EXTV .)  
soft-start channel 1’s output voltage, i.e., reduce its start-  
up inrush current. Connect ISET1a to ISET1b in order to  
achieve default soft-start characteristics if desired. (See  
ISET1b.)  
CC2  
EXTVCC1 (F3): External Bias, Auxiliary Input to the  
INTVCC1 Regulator. When EXTVCC1–VOUT1 > 3.2V and  
SVIN1 > 5V and RUN1–GND > 1.2V, the INTVCC1 LDO  
derives power from EXTV  
bias instead of SV . This  
In addition, the channel 1 output of the LTM4655 can  
track a voltage applied to this pin. (See the Applications  
Information section.)  
CC1  
IN1  
technique reduces LDO losses considerably, resulting in  
a corresponding reduction in module junction tempera-  
+
ture. For applications in which 4V < V  
– V  
<
OUT1  
OUT1  
ISET2a (F7): Accurate 50μA Current Source. Positive  
+
28V, connect EXTV  
to V  
through a 15Ω~110Ω  
CC1  
OUT1  
input to the error amplifier of channel 1. Connect a resis-  
resistor and locally decouple EXTV  
to V  
with a  
+
tor RISET2a = ((VOUT2 – VOUT2)/50μA) from this pin  
1μF ceramic capacitor. Otherwise, CcCo1nnectOEUXT1TV  
to  
CC1  
to SV  
local to the module to program the desired  
OUT2  
VOUT1or leave EXTVCC1 open circuit. See the Applications  
Information section.  
+
channel 2 output voltage magnitude, V  
capacitor can be connected from ISET2a to SV  
– V  
. A  
to  
OUT2  
OUT2  
OUT2  
EXTVCC2 (F8): External Bias, Auxiliary Input to the  
soft-start channel 2’s output voltage, i.e., reduce its start-  
up inrush current. Connect ISET2a to ISET2b in order  
to achieve default soft-start characteristics if desired.  
(See ISET2b.)  
INTVCC2 Regulator. When EXTVCC2–VOUT2 > 3.2V and  
SVIN2 > 5V and RUN2–GND >1.2V, the INTVCC2 LDO  
derives power from EXTV  
bias instead of SV . This  
CC2  
IN2  
technique reduces LDO losses considerably, resulting in  
In addition, the channel 2 output of the LTM4655 can  
track a voltage applied to this pin. (See the Applications  
Information section.)  
a corresponding reduction in module junction tempera-  
ture. For applications in which 4V < VOUT2+ – VOUT2  
<
+
28V, connect EXTV  
to V  
through a 15Ω~110Ω  
CC2  
OUT2  
PGOOD1 (D1): Channel 1 Power Good Indicator, Open-  
resistor and locally decouple EXTV  
to V  
with a  
1μF ceramic capacitor. Otherwise, CcCo2nnectOEUXT2TV  
to  
Drain Output Pin. PGOOD1 is high impedance when  
CC2  
VOUT2or leave EXTVCC2 open circuit. See the Applications  
Information section.  
PGDFB1–SVOUT1 is within approximately 7.5% of  
0.6V. PGOOD1 is pulled to GND when PGDFB1 is outside  
this range.  
ISET1b (F1): 1.5nF Soft-Start Capacitor for Channel 1.  
Connect ISET1b to ISET1a to achieve default soft-start  
characteristics on channel 1, if desired. See ISET1a.  
PGOOD2 (D6): Channel 2 Power Good Indicator, Open-  
Drain Output Pin. PGOOD2 is high impedance when  
PGDFB2–SVOUT2 is within approximately 7.5% of  
ISET2b (F6): 1.5nF Soft-Start Capacitor for Channel 2.  
Connect ISET2b to ISET2a to achieve default soft-start  
characteristics on channel 2, if desired. See ISET2a.  
0.6V. PGOOD2 is pulled to GND when PGDFB2 is outside  
this range.  
Rev. 0  
16  
For more information www.analog.com  
LTM4655  
PIN FUNCTIONS  
PGDFB1 (D2): Channel 1 Power Good Feedback  
f
(E8): Channel 2 Oscillator Frequency Programming  
SET2  
+
Programming Pin. Connect PGDFB1 to V  
through a  
Pin. The default switching frequency of channel 2 is  
resistor, R  
. R  
OUT1  
configures thOeSvNoSlt1age thresh-  
) for which PGOOD1 toggles its  
400kHz. If needed, the programmed frequency can be  
PGDFB1 PGDFB1  
+
old of (V  
– V  
increased by connecting a resistor between fSET2 and  
OUT1  
state. If the PGOOD1 feature is used, set R  
to:  
SV  
. Keep f -related trace lengths short. (See the  
SET2  
PGDFB1  
OUT2  
Applications Information section.) Note the synchroniza-  
tion range of CLKIN2 is approximately 40% of the oscil-  
ꢇꢈꢉ+ ꢇꢈꢉꢅ  
(1)  
Rꢀꢁꢂꢃꢄꢅ  
=
ꢊ ꢅ ꢌ ꢍ.ꢎꢎꢏ  
0.ꢋꢆ  
lator frequency programmed by this f  
pin.  
SET2  
CLKIN1 (B1): Channel 1 Mode Select and Oscillator  
Synchronization Input. Referred to GND. Leave CLKIN1  
open circuit for forced continuous mode operation.  
Otherwise, leave PGDFB1 open circuit.  
A small filter capacitor (220pF) internal to the LTM4655  
on this pin provides high frequency noise immunity for  
the PGOOD1 output indicator.  
Alternatively, this pin can be driven so as to synchronize  
the switching frequency of channel 1 to a clock signal.  
In this condition, channel 1 operates in forced continu-  
ous mode and the cycle-by-cycle turn-on of its primary  
MOSFET is coincident with the rising edge of the clock  
applied to CLKIN1. Note the synchronization range of  
CLKIN1 is approximately 40% of the oscillator frequency  
programmed by the fSET1 pin. (See the Applications  
Information section.) The LTM4655 contains a built-in  
dual 180° out-of-phase clock generator. Electrically con-  
nect CLKIN1 to CLKOUT1 with a short trace, if desired,  
to synchronize the switching frequency of channel 1  
to CLKOUT1. If 0° phase interleaving is desired, connect  
CLKOUT1 to both CLKIN1 and CLKIN2.  
PGDFB2 (D7): Channel 2 Power Good Feedback  
+
Programming Pin. Connect PGDFB2 to V  
through a  
resistor, R  
. R  
OUT2  
configures thOeSvNoSlt2age thresh-  
) for which PGOOD2 toggles its  
PGDFB2 PGDFB2  
+
old of (V  
– V  
OUT2  
state. If the PGOOD2 feature is used, set R  
ing to Equation 2.  
accord-  
PGDFB2  
VOUT2+ VOUT2  
0.6V  
RPGDFB2  
=
– 1 • 4.99k  
(2)  
Otherwise, leave PGDFB2 open circuit.  
A small filter capacitor (220pF) internal to the LTM4655  
on this pin provides high frequency noise immunity for  
the PGOOD2 output indicator.  
CLKIN2 (B6): Channel 2 Mode Select and Oscillator  
Synchronization Input. Referred to GND. Leave CLKIN2  
open circuit for forced continuous mode operation.  
f
(E3): Channel 1 Oscillator Frequency Programming  
SET1  
Alternatively, this pin can be driven so as to synchronize  
the switching frequency of channel 2 to a clock signal. In  
this condition, channel 2 operates in forced continuous  
mode and the cycle-by-cycle turn-on of its primary  
MOSFET is coincident with the rising edge of the clock  
applied to CLKIN2. Note the synchronization range of  
CLKIN2 is approximately 40% of the oscillator frequency  
programmed by the fSET2 pin. (See the Applications  
Information section.) The LTM4655 contains a built-in  
dual 180° out-of-phase clock generator. Electrically  
connect CLKIN2 to CLKOUT2 with a short trace, if desired,  
to synchronize the switching frequency of channel 2  
to CLKOUT2. If 0° phase interleaving is desired, connect  
CLKOUT1 to both CLKIN1 and CLKIN2.  
Pin. The default switching frequency of channel 1 is  
400kHz. If needed, the programmed frequency can be  
increased by connecting a resistor between fSET1 and  
SV  
. Keep f -related trace lengths short. (See the  
SET1  
OUT1  
Applications Information section.) Note the synchroniza-  
tion range of CLKIN1 is approximately 40% of the oscil-  
lator frequency programmed by this f  
pin.  
SET1  
Rev. 0  
17  
For more information www.analog.com  
LTM4655  
PIN FUNCTIONS  
COMP1a (E2): Current Control Threshold and Error  
Amplifier Compensation Node for Channel 1. The trip  
threshold of channel 1’s current comparator increases  
with a respective rise in COMP1a voltage. A small filter  
cap (10pF) internal to the LTM4655 on this pin introduces  
a high frequency roll-off of the error amplifier response,  
yielding good noise rejection in the control loop. Often,  
COMP1a is electrically connected to COMP1b in one’s  
application, thus applying default loop compensation.  
COMP2b (E6): Channel 2 Internal Loop Compensation  
Network. For a majority of applications, the internal,  
default loop compensation of the LTM4655 is suitable to  
apply “as is”, and yields very satisfactory results: apply  
the default loop compensation to channel 2’s control loop  
by simply connecting COMP2a to COMP2b. When more  
specialized applications require a personal touch to the  
optimization of control loop response, this can be easily  
accomplished by connecting a series resistor-capacitor  
Loop compensation (a series resistor capacitor) can be  
applied externally from COMP1a to SV  
needed, instead. (See COMP1b.)  
network from COMP2a to SV  
open circuit.  
and leaving COMP2b  
OUT2  
, if desired or  
OUT1  
IMON1a (C2): Channel 1 Power Inductor Current Analog  
Indicator Pin and Current Limit Programming Pin. In  
positive-VOUT step-down applications, only, the current  
flowing out of this pin is equal to 1/40,000 of the average  
channel 1 power inductor current. Optionally apply a par-  
COMP2a (E7): Current Control Threshold and Error  
Amplifier Compensation Node for Channel 2. The trip  
threshold of channel 2’s current comparator increases  
with a respective rise in COMP2a voltage. A small filter  
cap (10pF) internal to the LTM4655 on this pin introduces  
a high frequency roll-off of the error amplifier response,  
yielding good noise rejection in the control loop. Often,  
COMP2a is electrically connected to COMP2b in one’s  
application, thus applying default loop compensation.  
allel resistor-capacitor network to this pin and terminate  
it to SV  
torOcUuTr1rent.  
in order to construct a voltage (V  
OUT1  
IMON1a  
SV  
) that is proportional to channel 1’s power induc-  
IMON1a can be connected to IMON1b if the default resis-  
tor capacitor termination network provided by IMON1b is  
desired. If this analog indicator feature is not desired—  
Loop compensation (a series resistor capacitor) can be  
applied externally from COMP2a to SV  
needed, instead. (See COMP2b.)  
, if desired or  
OUT2  
or, in negative-VOUT buck-boost applications: connect  
COMP1b (E1): Channel 1 Internal Loop Compensation  
Network. For a majority of applications, the internal,  
default loop compensation of the LTM4655 is suitable to  
apply “as is”, and yields very satisfactory results: apply  
the default loop compensation to channel 1’s control loop  
by simply connecting COMP1a to COMP1b. When more  
specialized applications require a personal touch to the  
optimization of control loop response, this can be easily  
IMON1a to SV  
.
OUT1  
If IMON1a–SV  
exceeds a trip threshold of approxi-  
OUT1  
mately 2V, an IMON1 control loop servos channel 1  
power inductor current accordingly and thus regulates  
IMON1a–SV  
at 2V. In this manner, the current limit  
OUT1  
inception threshold of channel 1 can be configured. (See  
the Applications Information section.)  
IMON1b (C1): Channel 1 Power Inductor Analog Indicator  
accomplished by connecting a series resistor-capacitor  
network from COMP1a to SV  
open circuit.  
Current Default Termination R-C Network. A 10k resis-  
and leaving COMP1b  
OUT1  
tor in parallel with a 10nF capacitor and terminating to  
SV  
connect to this pin. Connect IMON1b to IMON1a  
OUT1  
to achieve default power inductor analog indicator current  
characteristics: 1V (with respect to SV  
) at full-scale  
OUT1  
(4A) load current in positive-VOUT, noninverting step-  
down applications. (See IMON1a.) If unused, IMON1b  
can be left open circuit or connected to SV  
.
OUT1  
Rev. 0  
18  
For more information www.analog.com  
LTM4655  
PIN FUNCTIONS  
VINREG2 (D8): Channel 2 Input Voltage Regulation  
IMON2a (C7): Channel 2 Power Inductor Current Analog  
Indicator Pin and Current Limit Programming Pin. In  
positive-VOUT step-down applications, only, the current  
flowing out of this pin is equal to 1/40,000 of the average  
channel 2 power inductor current. Optionally apply a par-  
Programming Pin. Optionally connect this pin to the mid-  
point node formed by a resistor divider between V and  
D2  
V
. If VINREG2–SV  
falls below approximately  
OUT2  
OUT2  
2V, a VINREG2 control loop servos the power inductor  
current accordingly and thus regulates VINREG2 at 2V  
with respect to SVOUT2. (See the Applications Information  
section.)  
allel resistor-capacitor network to this pin and terminate  
it to SV  
torOcUuTr2rent.  
in order to construct a voltage (V  
OUT2  
IMON2a  
SV  
) that is proportional to channel 2’s power induc-  
If this input voltage regulation feature is not desired on  
channel 2, connect VINREG2 to INTV  
.
CC2  
IMON2a can be connected to IMON2b if the default resis-  
tor capacitor termination network provided by IMON2b is  
desired. If this analog indicator feature is not desired—  
+
TEMP (J6): Temperature Sensor, Positive Input. Emitter  
of a 2N3906-genre PNP bipolar junction transistor (BJT).  
Optionally interface to temperature monitoring circuitry  
such as LTC®2997, LTC2990, LTC2974 or LTC2975.  
Otherwise leave electrically open.  
or, in negative-VOUT buck-boost applications: connect  
IMON2a to SV  
.
OUT2  
If IMON2a–SV  
exceeds a trip threshold of approxi-  
OUT2  
TEMP(J7): Temperature Sensor, Negative Input. Collector  
and base of a 2N3906-genre PNP bipolar junction tran-  
sistor (BJT). Optionally interface to temperature moni-  
toring circuitry such as LTC2997, LTC2990, LTC2974 or  
LTC2975. Otherwise leave electrically open.  
mately 2V, an IMON2 control loop servos channel 2  
power inductor current accordingly and thus regulates  
IMON2a–SV  
at 2V. In this manner, the current limit  
OUT2  
inception threshold of channel 2 can be configured. (See  
the Applications Information section.)  
IMON2b (C6): Channel 2 Power Inductor Analog Indicator  
SW1 (H4): Switching Node of Channel 1 Switching  
Converter Stage. Used for test purposes. May be routed  
a short distance with a thin trace to a local test point to  
monitor switching action of the converter, if desired, but  
do not route near any sensitive signals; otherwise, leave  
electrically open circuit.  
Current Default Termination R-C Network. A 10k resis-  
tor in parallel with a 10nF capacitor and terminating to  
SV  
connect to this pin. Connect IMON2b to IMON2a  
OUT2  
to achieve default power inductor analog indicator current  
characteristics: 1V (with respect to SV  
) at full-scale  
OUT2  
(4A) load current in positive-VOUT, noninverting step-  
SW2 (H9): Switching Node of Channel 2 Switching  
Converter Stage. Used for test purposes. May be routed  
a short distance with a thin trace to a local test point to  
monitor switching action of the converter, if desired, but  
do not route near any sensitive signals; otherwise, leave  
electrically open circuit.  
down applications. (See IMON2a.) If unused, IMON2b  
can be left open circuit or connected to SV  
.
OUT2  
VINREG1 (D3): Channel 1 Input Voltage Regulation  
Programming Pin. Optionally connect this pin to the  
midpoint node formed by a resistor divider between V  
D1  
and VOUT1. If VINREG1–SVOUT1 falls below approxi-  
mately 2V, a VINREG1 control loop servos the power  
inductor current accordingly and thus regulates VINREG1  
at 2V with respect to SVOUT1. (See the Applications  
Information section.)  
LDOOUT (G12): Output of the LTM4655’s GND Referenced  
5V-Fixed LDO. No bypass capacitance is needed. Powers  
the clock generator internal to the LTM4655. Can deliver  
up to 25mA of current.  
If this input voltage regulation feature is not desired on  
channel 1, connect VINREG1 to INTV  
.
CC1  
Rev. 0  
19  
For more information www.analog.com  
LTM4655  
PIN FUNCTIONS  
CLKSET (F12): Clock Generator Frequency Setting  
Resistor Input. Apply a resistor, RCLKSET, between  
LDOOUT and CLKSET. The clock frequency of CLKOUT1  
The CLKOUT2 pins at locations B7 and C12 are electri-  
cally connected together by a signal trace internal to the  
module. It is pinned out as described purely to facilitate  
routing of short traces to CLKIN2 and MOD. CLKOUT2  
should be routed with minimal trace lengths. Minimize  
stray capacitance to these pins.  
and CLKOUT2 is set by R  
according Equation 3.  
CLKSET,  
10kΩ  
(3)  
f
= 10MHz•  
(CLKOUT1, CLKOUT2)  
RCLKSET(kΩ)  
MOD (E12): Modulation Setting Input. This three-state  
Resistor values between 32.2k and 400k are supported,  
corresponding to oscillator frequency settings of 3MHz  
to 250kHz, respectively. Minimize stray capacitance to  
this pin.  
input selects among four modulation rate settings. The  
MOD pin should be tied to GND for the f /16 modulation  
OUT  
rate. Leaving the MOD pin open circuit selects the f /32  
OUT  
modulation rate. The MOD pin should be electrically  
connected to LDOOUT for the fOUT/64 modulation rate.  
Electrically connecting CLKOUT2 (pin C12, only) to the  
MOD pin (pin E12) turns the modulation off. Do not route  
high speed digital logic or signals with fast edges near  
CLKOUT1 (B2): Squarewave Output of Clock Generator for  
Channel 1. 180° out-of-phase from CLKOUT2. Minimize  
stray capacitance to this pin. Connect CLKOUT1 to  
CLKIN1, if desired, to synchronize channel 1 to CLKOUT1.  
If 0° phase interleaving is desired, connect CLKOUT1 to  
both CLKIN1 and CLKIN2.  
MOD. Be advised that the f /16, f /32 and f /64  
OUT  
OUT  
OUT  
modulation rates are not explicitly tested in factory ATE  
to demonstrate their stated typical modulation rates; the  
modulation off setting, however, is.  
CLKOUT2 (B7, C12): Squarewave Output of Clock  
Generator for Channel 2. 180° out-of-phase from  
CLKOUT1. Minimize stray capacitance to these pins.  
Connect CLKOUT2 (pin B7, only) to CLKIN2, if desired,  
to synchronize channel 2 to CLKOUT2. If 0° phase inter-  
leaving is desired, connect CLKOUT1 to both CLKIN1 and  
CLKIN2.  
NC (J1–2, J11–12): No Connect Pins, i.e., Pins with No  
Internal Connection. The NC pins predominantly serve to  
provide improved mounting of the module to the board.  
For drop-in compatibility of the LTM4651/LTM4653 into  
either half of a LTM4655 layout, these NC are recom-  
mended to be left electrically open circuit.  
To disable spread spectrum frequency modulation  
(SFFM), connect CLKOUT2 (pin C12, only) to the MOD  
pin (pin E12) with a short trace.  
Rev. 0  
20  
For more information www.analog.com  
LTM4655  
(Only One Channel Shown Within Dotted Outlines)  
SIMPLIFIED BLOCK DIAGRAM  
Rev. 0  
21  
For more information www.analog.com  
LTM4655  
TEST CIRCUIT  
V
24V  
UP TO 4A  
,
+
+
IN  
OUT  
NC  
SW  
V
V
INn  
OUTn  
C
4.7μF  
29V TO 40V  
INHn  
V
OSNSn  
SV  
SV  
INFn  
INn  
+
C
68µF  
C
27µF  
OUTLn  
OUTHn  
LOADn  
RUNn  
RUNn  
GND  
RUN – GND:  
SV  
OUTn  
>1.2V  
<1.07V  
= ON  
TYP  
TYP  
CLKINn  
V
LTM4655  
= OFF  
OUTn  
V
R
PGDFBn  
196k  
Dn  
C
4.7μF  
x2  
Dn  
INTV  
CCn  
PGDFBn  
PGOODn  
VINREGn  
COMPna  
EXTV  
CCn  
C
0.1μF  
THn  
COMPnb  
IMONna  
IMONnb  
4655 TC01  
R
499Ω  
THn  
f
SETn  
ISETna ISETnb  
PINS NOT SHOWN AND NOT TESTED  
IN THIS TEST CIRCUIT:  
R
57.6k  
R
ISETn  
480k  
fSETn  
LDO , LDO , CLKOUTn, CLKSET,  
OUT  
IN  
+
MOD, TEMP , TEMP  
Test Circuit 1. Positive-VOUT Configuration, Regulating VOUTn+, One Channel Shown  
V
IN  
V
PGOODn  
PGDFBn  
NC  
SW  
INn  
3.6V  
C
4.7μF  
INHn  
SV  
SV  
INFn  
INn  
TO 16V  
R
PGDFB  
196k  
SV  
RUNn  
GND  
RUNn  
RUN – GND:  
>1.2V = ON  
OUTn  
+
V
OUTn  
+
TYP  
TYP  
CLKINn  
C
C
*
OUTL  
OUTH  
LOAD  
<1.07V  
= OFF  
27µF  
68µF  
V
LTM4655  
Dn  
V
V
OUTn  
OUT  
C
Dn  
4.7μF  
2x  
–24V  
SV  
INTV  
OUT  
CCn  
UP TO 1.25A  
IMONna  
IMONnb  
AT V = 12V  
IN  
VINREGn  
COMPna  
COMPnb  
R
**  
EXTVCCn  
0Ω  
C
THn  
f
SETn  
0.1μF  
EXTV  
CCn  
ISETna ISETnb  
4655 TC02  
PINS NOT SHOWN AND NOT TESTED  
IN THIS TEST CIRCUIT:  
R
499Ω  
C
EXTVCCn  
1μF  
THn  
R
57.6k  
fSETn  
R
480k  
ISETn  
LDO , LDO , CLKOUTn, CLKSET,  
OUT  
IN  
+
MOD, TEMP , TEMP  
*Polarized output capacitors C  
, if used, must be rated to withstand ~0.3V typical reverse polarity prior to LTM4655 start-up,  
OUTL  
stemming from a weakly forward-biased body diode. In such cases, a Schottky diode should be connected between PGND and  
VOUTto limit the voltage. See the Applications Information section and Figures 49a and 49b.  
**Outside the ATE Test environment, R  
, if used, should not be 0Ω. See the Applications Information section.  
EXTVCC  
Test Circuit 2. Negative-VOUTConfiguration, Regulating VOUTn, One Channel Shown  
Rev. 0  
22  
For more information www.analog.com  
LTM4655  
TEST CIRCUIT  
V
IN  
LDO  
LDO  
OUT  
IN  
4.5V  
0.1μF  
TO 40V  
R
CLKSET  
CLKSET  
CLKOUT1  
LTM4655  
GND  
PINS NOT SHOWN AND NOT TESTED  
IN THIS TEST CIRCUIT:  
CLKOUT2  
MOD  
+
V
V
, SV , SV  
, V , RUNn, V  
,
OUTn  
INn  
INn  
INFn Dn  
+
+
TEMP  
TEMP  
, V  
OUTn  
, SV  
, CLKINn,  
OSNSn  
OUTn  
INTV , EXTV , VINREGn, COMPna,  
CCn  
CCn  
COMPnb, f  
, ISETna, ISETnb, IMONna,  
SETn  
4655 TC03  
IMONnb, PGDFBn, PGOODn, NC  
Test Circuit 3. Clock-Generator, 5V LDO and Temperature-Sensor  
TA = 25°C. Refer to Test Circuit 1 and Test Circuit 2.  
DECOUPLING REQUIREMENTS  
APPLICATION  
SYMBOL  
PARAMETER  
CONDITIONS MIN  
TYP MAX  
UNITS  
+
Positive-V  
Operation  
C
C
C
C
, C  
External High Frequency Input Capacitor Requirement,  
I
I
I
I
= 4A  
= 4A  
= 2A  
= 2A  
9.4  
μF  
OUT  
INHn Dn  
OUT  
OUT  
OUT  
OUT  
+
(Noninverting Step-Down)  
(Test Circuit 1)  
27V ≤ V –GND1 ≤40V, V  
= 24V  
IN1  
OUT  
+
External High Frequency Output Capacitor Requirement  
22  
9.4  
22  
μF  
μF  
μF  
OUTHn  
+
27V ≤ V –GND1 ≤ 40V, V  
= 24V  
IN1  
OUT  
Negative-V  
(Inverting Output Buck-Boost)  
(Test Circuit 2)  
Operation  
, C  
INHn Dn  
External High Frequency Input Capacitor Requirement,  
OUT  
3.6V ≤V –GND2 ≤ 16V, V  
= –24V  
IN2  
OUT  
External High Frequency Output Capacitor Requirement  
OUTHn  
3.6V ≤ V –GND2 ≤ 16V, V  
= –24V  
IN2  
OUT  
Rev. 0  
23  
For more information www.analog.com  
LTM4655  
OPERATION  
Power Module Overview  
Each channel of the LTM4655 contains an independent,  
integrated constant-frequency current mode regulator,  
power MOSFETs, power inductor, EMI filter and other  
supporting discrete components. The nominal switching  
frequency range is from 400kHz to 3MHz, and the default  
operating frequency is 400kHz. Each channel can optionally  
be synchronized to its built-in clock oscillator CLKOUTn  
pins or to an externally applied clock, from 250kHz to  
3MHz. See the Applications Information section. Each  
channel of the LTM4655 supports internal and external  
control loop compensation. Internal loop compensation  
is selected by connecting the COMPna and COMPnb pins.  
Using internal loop compensation, the LTM4655 has suf-  
ficient stability margins and good transient performance  
with a wide range of output capacitors—even ceramic-  
only output capacitors. For external loop compensation,  
see the Applications Information section. LTpowerCAD®  
is available for transient load step and stability analysis.  
Input filter and noise cancellation circuitry reduces noise-  
coupling to the module’s inputs and outputs, ensuring the  
module’s electromagnetic interference (EMI) meets the  
limits of EN55022 Class B (see Figure 7 through Figure 9).  
The LTM4655 is a dual-channel non-isolated switch mode  
DC/DC power supply. Each channel is fully independent  
of the other. Each output can be configured for positive  
or negative polarity. A channel configured for positive-  
VOUT operation performs step-down DC/DC conversion  
+
and regulates a positive output voltage, V  
. A chan-  
OUTn  
nel configured for negative-VOUT operation performs  
two-switch buck-boost DC/DC conversion and regulates  
a negative output voltage, V  
known as a ground-referred buck converter).  
(this topology is also  
OUTn  
An integrated LDO provides up to 25mA of output current  
at +5V (LDO ) with respect to GND. This LDO powers  
OUT  
an internal 2-phase clock oscillator, yielding flexibility to  
operate the switching channels 180° out-of-phase from  
each other.  
A channel in positive-VOUT configuration (see Test  
Circuit 1) can deliver up to 4A output current with a few  
external input and output capacitors. Set by a single resis-  
tor, R  
, an LTM4655 channel regulates a positive out-  
ISETn  
put voltage, V  
+
+ V  
can be set to as low as 0.5V  
OUTn  
OUTn  
to as high as 26.5V of V . Channels in this positive-V  
Pulling the RUNn pin below 1.2V (with respect to GND)  
forces the corresponding LTM4655 channel into a shut-  
down state. A capacitor can be applied from ISETna to  
INn  
OUT  
configuration can operate from a positive input supply  
rail, V , between 3.1V and 40V. The typical application  
INn  
schematic is shown in Figure 45.  
SVOUTn to program the output voltage ramp rate; or,  
the default LTM4655 ramp rate can be set by connect-  
ing ISETna to ISETnb; or, voltage tracking can be imple-  
mented by interfacing rail voltages to the ISETna pin. See  
the Applications Information section.  
A channel in negative-VOUT configuration (see Test  
Circuit 2) can deliver up to 4A output current with a few  
external input and output capacitors. The output current  
capability of the LTM4655 channel in this configuration is  
dependent on its V and V  
, as indicated in Figure 6.  
, the LTM4655 channel  
Multiphase operation can be employed by connecting the  
CLKOUTn pins to their respective CLKINn pins—or, by  
connecting an external clock source to the LTM4655’s  
CLKINn pins. See the Typical Applications section.  
INn  
OUTn  
ISETn  
Set by a single resistor, R  
regulates a negative output voltage, V  
. V  
can  
OUTn  
OUTn  
be set to as low as –26.5V to as high as –0.5V. In this  
negative-VOUT configuration, an LTM4655 channel can  
LDO losses within the module incurred primarily due to  
MOSFET driver power are optionally reduced by connect-  
ing EXTVCCn to VOUTn+ through an RC filter or by connect-  
operate from a positive input supply rail, V , between  
INn  
3.6V and 40V. The LTM4655 channel’s safe operating  
area is defined by: VINn + |VOUTn| ≤ 40V. The typical  
ing EXTV  
to a suitable voltage source.  
CCn  
application schematic is shown in Figure 48. Though  
an LTM4655 channel configured to regulate V  
is  
For channels configured for positive-V  
operation, the  
OUTn  
a ground-referred buck topology, built-in level-shift cir-  
IMONna pin is an analog output currOeUnTt indicator that  
sources a current proportional to its channel’s load current.  
(For channels configured for negative-VOUToperation, the  
cuitry on the RUNn, CLKINn, and PGOODn pins result  
in these pins being conveniently referred to GND (not  
SV  
).  
OUTn  
Rev. 0  
24  
For more information www.analog.com  
LTM4655  
OPERATION  
where D (unitless) is the duty-cycle of M , given by  
n
Tn  
IMONna pin does not support such a feature and must be  
Equation 5:  
connected to V –.) When IMONna is electrically con-  
OUTn  
nected to IMONnb, the voltage on the IMONna/IMONnb  
node is proportional to load current—with 1V correspond-  
ing to 4A load. If desired, IMONna can be interfaced to an  
external parallel RC network instead of the one provided by  
IMONnb. If IMONna ever exceeds 2V, a servo loop reduces  
the LTM4655’s output current in order to keep IMONna  
at or below 2V. Through this servo mechanism, a parallel  
RC network can be connected to IMONna to implement an  
average current limit function—if desired. When the feature  
VOUTn+ VOUTn  
(5)  
Dn =  
V
VOUTn  
INn  
In rare cases where the minimum on-time restriction  
is violated, the channel n frequency of the LTM4655  
automatically and gradually folds back down to approxi-  
mately one-fifth of its programmed switching frequency  
to allow V  
to remain in regulation. See the Frequency  
OUT  
Adjustment section. Be reminded of Notes 2 and 3 in  
the Electrical Characteristics section regarding output  
current guidelines.  
is not needed, connect IMONna to V  
–.  
OUTn  
The LTM4655 features an additional control pin called  
VINREGn, which has a 2V servo threshold. This pin can be  
used to as an extra control pin, e.g., to reduce channel input  
current draw during input line sag (“brownout”) conditions.  
Connect VINREGnto INTVCCn when this feature is not needed.  
TEMP+ and TEMPpins give access to a diode-con-  
nected PNP transistor, making it possible to monitor the  
LTM4655’s internal temperature—if desired.  
Input Capacitors, Positive-V  
Operation  
OUT  
The LTM4655 achieves low input conducted EMI noise  
due to tight layout and high frequency bypassing of  
MOSFETs M and M within the module itself. A small  
Tn  
Bn  
filter inductor (400nH) is integrated in the input line (from  
to V ), providing further noise attenuation—again,  
V
INn  
Dn  
local to the switching MOSFETs. The V and V pins  
External component selection is primarily determined by  
the maximum load current and output voltage. Refer to  
Table 11 and Table 12 and the Test Circuits for recom-  
mended external component values.  
Dn  
INn  
are available for external input capacitors—CDn and  
C
—to form a high-frequency π filter. As shown in  
INHn  
the Simplified Block Diagram, the ceramic capacitor C  
Dn  
on the LTM4655’s V pins handles the majority of the  
Dn  
V to V  
Conversion Ratios  
RMS current into the DC/DC converter power stage and  
IN  
OUT  
requires careful selection, for that reason.  
There are restrictions on the V to V  
conversion ratios  
that the LTM4655 can achieve. The OmUaTximum duty cycle  
of the LTM4655 is 96% typical. The VIN to VOUT mini-  
mum dropout voltage is a function of load current when  
operating in high duty cycle applications. As an example,  
VOUTn(24VDC) from the Electrical Characteristics table  
IN  
See Figure 7 through Figure 9 for demonstration of  
LTM4655’s EMI performance, meeting the radiated emis-  
sions requirements of EN55022B.  
The input capacitance, C , is needed to filter the pulsed  
Dn  
current drawn by M . To prevent excessive voltage sag  
Tn  
highlights the LTM4655’s ability to regulate 24V  
at up  
OUT  
on V , a low-effective series resistance (low-ESR, such  
Dn  
to 4A from 29V , when running at a switching frequency,  
IN  
as an X7R ceramic) input capacitor should be used, sized  
f
, of 1.5MHz.  
SW  
appropriately for the maximum C RMS ripple current  
Dn  
At very low duty cycles, the LTM4655’s on-time of MT  
each switching cycle should be designed to exceed the  
LTM4655 control loop’s specified minimum on-time of  
(Equation 6)  
IOUTn(MAX)  
(6)  
ICDn(RMS)  
=
• Dn (1Dn)  
ηn%  
60ns, t , (guardband to 90ns) see Equation 4.  
ON(MIN)  
Dn  
fSWn  
where ηn% is the estimated efficiency of the chan-  
nel n power module. (See Typical Performance  
> TON(MIN)n  
(4)  
Characteristics graphs.)  
Rev. 0  
25  
For more information www.analog.com  
LTM4655  
OPERATION  
Several capacitors may be paralleled to meet the appli-  
External loop compensation can be applied from COMPna  
cation’s target size, height, and C RMS ripple current  
to SV  
, if needed, for transient response optimization.  
Dn  
OUTn  
rating. For lower input voltage applications, sufficient bulk  
input capacitance is needed to counteract line sag and  
transient effects during output load changes. The bulk  
capacitor can be a switcher-rated aluminum electrolytic  
capacitor or a Polymer capacitor. Suggested values for  
Forced Continuous Operation  
Leave the CLKINn pin open circuit to command chan-  
nel n of the LTM4655 for forced continuous operation.  
In this mode, the control loop is allowed to command the  
inductor peak current to approximately –1A, allowing for  
significant negative average current. Clocking the CLKINn  
pin at a frequency within 40% of the target switching fre-  
C
and C  
are found in Table 11.  
Dn  
INHn  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM4655’s VINn  
,
quency commanded by the f  
pin synchronizes M ’s  
SVINn, and VDn pins. A ceramic input capacitor combined  
with trace or cable inductance forms a high Q (under-  
damped) tank circuit. If the LTM4655 circuit is plugged  
into a live supply, the input voltage can ring to twice its  
nominal value, possibly exceeding the device’s rating.  
This situation is easily avoided; see the Hot Plugging  
Safely section.  
SETn  
Tn  
turn-on to the rising edge of the CLKINn pin.  
Output Voltage Programming, Tracking and Soft-Start  
+
The LTM4655 regulates its output voltage, V  
– V  
,
OUTn  
OUTn  
according to the differential voltage present from ISETna to  
SV  
. In most applications, the output voltage is set by  
OUTn  
simply connecting a resistor, R  
according to Equation 7.  
, from ISETna to SV  
,
ISETn  
OUTn  
Output Capacitors, Positive-V  
Operation  
OUT  
Output capacitors C  
the LTM4655’s V  
Sufficient capacitance and low ESR are called for, to  
meet the output voltage ripple, loop stability, and tran-  
sient requirements. C  
or polymer capacitor. C  
typical output capacitance is 22μF (type X5R material, or  
better), if ceramic-only output capacitors are used.  
and C  
are applied across  
OUTLn  
VOUTn+ VOUTn  
OUTHn  
OUTn  
+/VOUTn power output pins.  
(7)  
RISETn  
=
50µA  
Since the LTM4655 control loop servos its output voltage  
can be a low ESR tantalum  
is a ceramic capacitor. The  
OUTLn  
according to the voltage between ISETna and SV  
:
OUTn  
OUTHn  
placing a capacitor, C , parallel to R  
configures the  
ramp-up rate of ISETna and thus theISoEuTtnput. In the time  
domain, the output voltage ramp-up after the RUNn pin is  
toggled from low to high (t = 0s) is given by Equation 8.  
SSn  
Table 11 shows a matrix of suggested output capacitors  
optimized for 2A transient step-loads applied at 2A/μs.  
Additional output filtering may be required by the system  
designer, if further reduction of output ripple or dynamic  
transient spike is required. The LTpowerCAD design tool is  
available for transient and stability analysis. Stability crite-  
ria are considered in the Table 11 matrix, and LTpowerCAD  
is available for stability analysis. Multiphase operation will  
reduce effective output ripple as a function of the num-  
ber of phases. Application Note 77 discusses this noise  
reduction versus output ripple current cancellation, but  
the output capacitance should be considered carefully as a  
function of stability and transient response. LTpowerCAD  
can be used to calculate the output ripple reduction as the  
number of implemented phases increases by N times.  
t
RISETn• CSSn  
VOUTn(t)+ VOUTn(t)=IISETna RISETn • 1e  
(8)  
The soft-start time, t , is defined as the time it takes for  
SS  
channel n’s output voltage to ramp from 0V to 90% of its  
final value (Equation 9 or Equation 10)  
tSSn = –RISETn CSSn •In(10.9)  
(9)  
or  
tSSn =2.3 RISETn CSSn  
(10)  
Rev. 0  
26  
For more information www.analog.com  
LTM4655  
OPERATION  
A default value of C  
= 1.5nF can be implemented by  
The LTM4655’s minimum on-time, t  
, is specified  
SSn  
connecting ISETna to ISETnb. For other ramp-up rates,  
as 60ns. For a practical design, it OisNnr(eMcIoNm) mended to  
guardband to 90ns.  
connect an external C capacitor parallel to R  
.
SS  
ISET  
When starting up into a pre-biased V , the LTM4655  
To configure channel n of the LTM4655 for a higher  
OUT  
stays in a sleep mode, keeping MTn and MBn off until  
switching frequency than its default of 400kHz, apply  
VISETna equals VOSNSn+—after which, the DC/DC con-  
a resistor, RfSETn, between the fSETn pin and SVOUTn  
fSETn  
.
+
verter commences switching action and V  
is ramped  
R
is given (in MΩ) by Equation 13.  
OUT  
according to the voltage commanded by ISETna.  
1
RfSETn(MΩ)=  
(13)  
+
Since the LTM4655 control loop servos its V  
volt-  
10pF •[fSWn(MHz)0.4(MHz)]  
age to match that of ISETna’s, the LTM465O5SsNScnhannel  
The relationship of R to programmed f  
is shown  
SWn  
n output can be configured to track any voltage applied  
fSETn  
in Figure 1. See Table 11 and Table 12 for recommended  
to ISETna, referenced to SV  
. See Figure 52 for an  
OUTn  
f
and corresponding R  
values for various com-  
example of the LTM4655 configured as a DAC-controlled  
bipolar-output programmable power supply.  
SWn  
fSETn  
and V  
+
binations of V , V  
.
INn OUTn  
OUTn  
The LTM4655 can track the mirror-image of a posi-  
tive rail to generate the negative half of a split-sup-  
ply, as seen in Figure 50 (note the use of RTRACK and  
ꢀ0  
R
= R  
|| R  
).  
ISET2  
ISET1  
TRACK  
Frequency Adjustment  
The default switching frequency (f  
Rꢀ  
ꢄꢅꢃ ꢆꢁꢂꢇ  
ꢁꢂꢃn  
) of channel n of the  
SWn  
LTM4655 is 400kHz. This is suitable for low-V (V  
IN INn  
+
5V) applications and low-V  
(V  
– V  
≤ 3.3V)  
OUT OUTn  
OUTn  
applications. For a practical design, the LTM4655’s induc-  
tor ripple current (∆I  
) is suggested to be less than  
0.ꢀ  
nPK-PK  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀ0ꢁ  
~2A  
. Choose f  
according to Equation 11.  
PK-PK  
SWn  
Rf  
(kΩ)  
SETn  
ꢀꢁꢂꢂ ꢃ0ꢄ  
VOUTn+ VOUTn • 1D  
(
)
n
(11)  
Figure 1. Relationship Between RfSETn and Target fSWn  
fSWn  
=
Ln InPK-PK  
where the value of LTM4655’s power inductor, Ln, is 4μH.  
To avoid cycle-skipping, impose restrictions on f  
, to  
SWn  
ensure minimum on-time criteria is met (Equation 12).  
Dn  
TONn(MIN)  
(12)  
fSWn  
<
Rev. 0  
27  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
Power Module Protection  
UVLO. Resistors are chosen by first selecting R (refer  
Bn  
to Figure 2 and Equation 14). Then:  
The LTM4655’s current mode control architecture pro-  
vides fast cycle-by-cycle current limit in an overcur-  
rent condition, as shown in the Typical Performance  
Characteristics section. If the output voltage collapses  
sufficiently due to an overload or short-circuit condition,  
minimum on-time will be violated and the internal oscil-  
lator will then fold-back automatically to one-fifth of the  
LTM4655’s programmed switching frequency—thereby  
reducing the output current and affording the load a  
chance to recover.  
ꢇꢀꢂꢂꢉ  
R
n  
Rꢀꢁn ꢂꢃꢁ  
R
n  
ꢊꢋꢌꢌ ꢍ0ꢎ  
Figure 2. Undervoltage Lockout Resistive Divider  
The LTM4655 ceases channel n switching action if the  
channel’s internal temperatures exceed 165°C. The chan-  
nel’s control IC resumes operation after a 10°C cool-down  
hysteresis. Note that these typical parameters are based  
on measurements in a lab oven and are not production  
tested. This overtemperature protection is intended to  
protect the device during momentary overload condi-  
tions. The maximum rated junction temperature will be  
exceeded when this overtemperature protection is active.  
Continuous operation above the specified absolute maxi-  
mum operating junction temperature may impair device  
reliability or permanently damage the device. See Note 1  
of the Electrical Characteristics table.  
V
(14)  
RAn =RBn  
INn(ON) 1  
1.2V  
where V  
is the input voltage at which the under-  
voltage lockout is overcome and the supply turns on. The  
turn-off voltage, V is given by Equation 15.  
INn(ON)  
V
INn  
INn(OFF)  
R
(15)  
V
INn(OFF) =1.07V • An +1  
⎜ ⎟  
R n  
B
If UVLO is not needed, RUNn can be connected to  
LTM4655’s LDO pin.  
OUT  
When RUNn is below its threshold, UVLO of channel n  
is engaged, M and M are turned off, INTV  
ceases  
The LTM4655 does not feature any specialized output  
overvoltage protection beyond what is inherent to the  
control loop’s servo mechanism.  
Tn  
Bn  
CCn  
to be regulated, and ISETna is discharged to SV  
by  
OUTn  
internal circuitry.  
Loop Compensation  
RUN Pin Enable  
External loop compensation may be preferred for some  
applications and can be implemented easily, as follows:  
The RUNn pin is used to enable the power module or  
sequence the power module. The threshold is 1.2V. The  
RUNn pin can be used to provide an undervoltage lockout  
(UVLO) function by connecting a resistor divider from  
the input supply to the RUNn pin, as shown in Figure 2.  
Undervoltage lockout keeps channel n of the LTM4655  
in shutdown until the supply input voltage is above a  
certain voltage programmed by the user. The RUNn pin  
hysteresis voltage prevents noise from falsely tripping  
leave COMPnb open circuit; connect a series-RC net-  
work R  
and C  
from COMPnb to SV  
; in some  
THn  
THn  
OUTn  
instances, connect a capacitor (C  
) from COMPna to  
series-RC network).  
THPn  
THn THn  
SV  
(paralleling the R –C  
OUTn  
See Table 10 for suggested input and output capaci-  
tances for a variety of operating conditions. Additionally,  
the LTpowerCAD design tool is available for transient and  
stability analysis.  
Rev. 0  
28  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
(Figure 4). Applications with loads that experience large  
load-step release, load dump or other mechanisms that  
invoke reverse energy flow in the Figure 3 circuit may  
need a suitably-rated Zener diode protection clamp, to  
Hot Plugging Safely  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitors (CDn and CINHn) of the LTM4655.  
However, these capacitors can cause problems if the  
LTM4655 is plugged into a live supply (see Analog Devices  
Application Note 88 for a complete discussion). The low  
loss ceramic capacitor combined with stray inductance in  
series with the power source forms an under damped tank  
limit the resulting transient voltage rise on SV /V  
INn INn  
and C  
.
INHn  
ꢀꢁn  
ꢀꢁn  
ꢀꢁ  
ꢀꢁn  
circuit, and the voltage at the V pin of the LTM4655 can  
INn  
ꢀꢁ  
ꢂꢃꢄ  
n
ꢂꢃꢄꢅꢅ  
ring to twice the nominal input voltage, possibly exceed-  
ing the LTM4655’s rating and damaging the part. If the  
input supply is poorly controlled or the user will be plug-  
ging the LTM4655 into an energized supply, the input  
network should be designed to prevent this overshoot by  
introducing a damping element into the path of current  
flow. This is often done by adding an inexpensive elec-  
ꢀꢁꢂn  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
Figure 3. Schottky Diode in Series with the Supply  
trolytic bulk capacitor (C  
of the LTM4655. The selection criteria for C  
) across the input terminals  
INLn  
calls for:  
INLn  
ꢀꢁꢂn  
ꢀꢁꢂn  
ꢀꢁn  
ꢀꢁn  
an ESR high enough to damp the ringing; a capacitance  
value several times larger than CINHn; a suitable ripple cur-  
ꢀꢁ  
ꢀꢁn  
rent rating. C  
does not need to be located physically  
ꢂꢃꢄꢅꢅ  
ꢀꢁꢂn  
ꢀꢁꢂꢃ  
INLn  
ꢀꢁꢂn  
ꢀ.ꢁꢂꢃ  
close to the LTM4655; it should be located close to the  
application board’s input connector, instead.  
ꢀꢁꢂꢂ ꢃ0ꢀ  
Input Disconnect/Input Short Considerations  
Figure 4. Schottky Diode from VOUTn+ to VINn  
If at any point the input supply is removed with the output  
voltage still held high through its capacitor, power will be  
drawn from the output capacitor to power the module,  
INTV  
and EXTV  
Connection  
CCn  
CCn  
When RUNn is logic high, an internal low dropout regula-  
tor regulates an internal supply, INTVCCn, that powers the  
control circuitry for driving LTM4655’s channel n internal  
MOSFETs. INTV  
the LTM4655’s INTV  
by default. The gate driver current through the INTV  
LDO is about 20mA for a typical 1MHz application. The  
internal LDO power dissipation can be calculated as  
shown in Equation 16.  
until the output voltage drops below the minimum SV  
/
INn  
V
INn  
requirements of the module.  
is regulated at 3.3V. In this manner,  
However, if the SV /V pins are grounded while the  
CCn  
INn INn  
is directly powered from SV  
,
output is held high, regardless of the RUNn state, para-  
CCn  
INn  
sitic body diodes inside the LTM4655 will pull current  
CCn  
+
from the output through the V  
pins. Depending on  
OUTn  
the size of the output capacitor and the resistivity of the  
short, high currents may flow through the internal body  
diode, and cause damage to the part. If discharge of  
P
= 20mA •(SV  
V  
3V)  
(16)  
INn  
LDO_LOSSn(INTVCC)  
OUTn  
SV /V by the input source is possible, preventative  
INn INn  
measures should be taken to prevent current flow through  
the internal body diode. Simple solutions would be plac-  
The LDO draws current off of EXTV  
instead of SV  
CCn  
INn  
when EXTV –V  
exceeds 3.2V and SV –SV  
CCn OUTn  
INn OUTn  
ing a Schottky diode in series with the supply (Figure 3),  
exceeds 5V. For output voltages of 4V and higher, EXTVCCn  
+
or placing a Schottky diode from V  
to SV /V  
OUTn  
INn INn  
Rev. 0  
29  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
+
can be connected to V  
through an RC-filter. When  
OUTn  
Note that for parallel applications, VOUT can be set by a single,  
the internal LDO derives power from EXTV  
SV , the internal LDO power dissipation is shown in  
instead of  
CCn  
common resistor on the ISETna net (see Equation 18).  
INn  
VOUTn+ VOUTn  
Equation 17.  
(18)  
RISETn  
=
50µA •N  
(17)  
P
= 20mA •(V  
V  
3V)  
LDO_LOSSn(EXTVCC)  
OUTn  
OUTn  
where N is the number of LTM4655 channels in parallel  
configuration.  
+
The recommended value of the resistor between V  
OUTn  
+
and EXTV  
is roughly (V  
– V ) • 4Ω/V. This  
CCn  
OUTn  
OUTn  
Depending on the duty cycle of operation, the output  
voltage ripple achieved by paralleled, synchronized  
LTM4655 modules may be considerably smaller than  
what is yielded by a single-phase solution. Application  
Note 77 provides a detailed explanation of multiphase  
operation (relevant to parallel LTM4655 applications)  
pertaining to noise reduction and output and input ripple  
current cancellation. Regardless of ripple current cancel-  
lation, it remains important for the output capacitance of  
paralleled LTM4655 applications to be designed for loop  
stability and transient response. LTpowerCAD is available  
for such analysis.  
resistor, R  
, must be rated to continually dissipate  
EXTVCCn  
(0.02A) • R  
²
. The primary purpose of this resistor  
EXTVCCn  
is to prevent EXTV  
overstress under a fault condition.  
CCn  
For example, when an inductive short-circuit is applied  
+
to the module’s output, VOUT may be briefly dragged  
below V  
—forward biasing the V  
-to-EXTV  
OUTn  
OUTn CCn  
body diode. This resistor limits the magnitude of current  
flow in EXTV . If the application requires a low resistive  
CCn  
path to EXTV , apply a protective Schottky diode across  
CCn  
EXTV  
OUTn  
and V  
; see Figure 52. Bypass EXTV  
to  
CCn  
OUTn  
CCn  
V
with 1μF of X5R (or better) MLCC.  
Multiphase Operation  
Figure 5 illustrates the RMS ripple current reduction as a  
function of the number of interleaved (paralleled and syn-  
chronized) LTM4655 modules—derived from Application  
Note 77.  
Multiple LTM4655 channels and modules can be paralleled  
for higher output current applications. For lowest input  
and output voltage and current ripples, it is advisable to  
synchronize paralleled LTM4655s to a clock (within 40%  
0.ꢄ0  
ꢈꢝꢜꢞꢙꢛꢐ  
ꢇꢝꢜꢞꢙꢛꢐ  
of the target switching frequency set by f  
.
SETn  
0.ꢁꢁ  
ꢆꢝꢜꢞꢙꢛꢐ  
ꢃꢝꢜꢞꢙꢛꢐ  
ꢄꢝꢜꢞꢙꢛꢐ  
LTM4655 channels and modules can be paralleled with-  
out synchronizing circuits: just be aware that some beat-  
frequency ripple will be present in the output voltage and  
reflected input current by virtue of the fact that such mod-  
ules are not operating at identical, synchronized switching  
frequencies.  
0.ꢁ0  
0.ꢃꢁ  
0.ꢃ0  
0.ꢆꢁ  
0.ꢆ0  
0.ꢇꢁ  
0.ꢇ0  
0.ꢈꢁ  
0.ꢈ0  
0.0ꢁ  
The LTM4655 device is an inherently current mode con-  
trolled device, so parallel channels and modules will have  
good current sharing as shown in Figure 45 and Figure 47.  
To parallel LTM4655 channels and/or modules, con-  
+
nect the respective COMPna, ISETna, and V  
pins  
of each LTM4655 together to share the curOreSnNtSnevenly.  
In addition, tie the respective RUNn pins of paralleled  
LTM4655 channels and/or modules together, to ensure  
proper start-up and shutdown behavior.  
0
0.ꢈ 0.ꢈꢁ 0.ꢇ 0.ꢇꢁ 0.ꢆ 0.ꢆꢁ 0.ꢃ 0.ꢃꢁ 0.ꢁ 0.ꢁꢁ 0.ꢄ 0.ꢄꢁ 0.ꢀ 0.ꢀꢁ 0.ꢂ 0.ꢂꢁ 0.ꢉ  
ꢊꢋꢌꢍ ꢎꢍꢎꢏꢐ ꢑꢒꢓ  
ꢕ ꢓ ꢒ ꢓ ꢘ  
ꢖꢗ ꢔꢋꢌ  
ꢔꢋꢌ  
ꢃꢄꢁꢁ ꢅ0ꢁ  
Figure 5. Normalized Input RMS Ripple Current vs Duty Cycle for  
One to Six LTM4655 Channels (Phases)  
Rev. 0  
30  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
Negative Output Current Capability Varies as a  
these effects is shown the plots in Figure 6 and described  
by Equation 19.  
Function of V to V  
Conversion Ratios,  
INn  
OUTn  
Negative-V  
Operation  
OUT  
ΔInPK–PK  
V
• I  
η  
n
INn  
nPK  
2
In negative-VOUT operation, the output current capability of  
(19)  
IOUTn(CAPABILITY)  
where:  
=
the LTM4655 has a strong dependency on the operating  
V
INn – VOUTn  
input (V ) and output (V  
) voltages. See Figure 6.  
INn  
OUTn  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
∆InPK-PK is the channel n inductor ripple current, in  
amps, and η (unitless) is the channel efficiency of the  
n
LTM4655.  
For completeness, ∆I  
is given by Equation 20.  
nPK-PK  
ꢁ ꢀ0.ꢂꢃ  
ꢁ ꢀꢂ.ꢂꢃ  
ꢁ ꢀꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
1
ΔInPK–PK  
=
1
1
ꢁ ꢀꢂꢃ  
(20)  
Ln fSWn  
ꢁ ꢀꢂꢃꢄ  
ꢁ ꢀꢂꢃꢄ  
ꢁ ꢀꢂ0ꢃ  
ꢁ ꢀꢂꢃꢄ  
V
VOUTn  
INn  
0
ꢀ0 ꢀꢁ ꢀ0 ꢀꢁ ꢀ0 ꢀꢁ ꢀ0  
where:  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢂ ꢃ0ꢁ  
L is 4μH, the LTM4655 channel’s power inductor value,  
and fSWn is the switching frequency of the LTM4655’s  
channel, in MHz.  
n
Figure 6. Channel Output Current Capability*,  
Negative-VOUT Operation  
*Current limit frequency-foldback activates at load cur-  
rents higher than indicated curves. Continuous channel  
output current capability subject to details of appli-  
cation implementation. Switching frequency set per  
Table 1. See Notes 2 and 3.  
For a practical design, ∆InPK-PK is designed to be less  
than ~2A  
.
PK-PK  
For a practical design, the LTM4655’s on-time of M  
Tn  
each switching cycle should be designed to exceed the  
LTM4655 control loop’s specified minimum on-time  
of 60ns, tON(MIN), (guardband to 90ns). For example,  
Equation 21.  
The reason for this is inherent in the two-switch buck-boost  
topology employed by the LTM4655 when so-configured  
for negative-VOUT operation. To protect the primary power  
MOSFET (MTn) from overstress (see Simplified Block  
Diagram), its peak current (InPK) is limited by control  
circuitry to 6A. When M is on, observe that no current  
flows to LTM4655’s ouTtnput; furthermore, observe that  
Dn  
fSWn  
> TONn(MIN)  
(21)  
where D (unitless) is the duty-cycle of M , given by  
n
Tn  
Equation 22.  
only when M is off does current flow to the output of  
Tn  
VOUTn+ – VOUTn  
the LTM4655. As a consequence of this arrangement: for  
a given output voltage, current limit inception activates  
sooner at low line (higher, larger duty cycle) than at high  
line (lower, smaller duty cycle). A further consequence  
D=  
(22)  
VINn – VOUTn  
Combining Equation 22 with Equation 19, it can be illus-  
trative to see Equation 23.  
is: for a given input voltage, the output power capability  
of the LTM4655 is higher for lower-magnitude V  
OUTn  
ΔInPK–PK  
(lower, smaller duty cycle) than for higher-magnitude  
VOUTn (higher, larger duty cycle). The combination of  
IOUTn(CAPABILITY) =(1Dn)• I  
η  
n
(23)  
nPK  
2
Rev. 0  
31  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
In rare cases where the minimum on-time restric-  
tion is violated, the frequency of the affected LTM4655  
channel(s) automatically and gradually folds back down to  
filter inductor (400nH) is integrated in the input line (from  
to V ) provides further noise attenuation—again,  
V
INn  
Dn  
local to the switching MOSFETs. The V and V pins  
Dn  
INn  
one-fifth of its programmed switching frequency to allow  
are available for external input capacitors—CDn and  
C —to form a high-frequency � filter. As shown in  
INHn  
V
to remain in regulation.  
OUTn  
the Simplified Block Diagram, the ceramic capacitor C  
Dn  
Be reminded of Notes 2, and 3 in the Electrical  
Characteristics section regarding output current  
guidelines.  
on the LTM4655’s V pins handles the majority of the  
Dn  
RMS current into the DC/DC converter power stage and  
requires careful selection, for that reason.  
Input Capacitors, Negative-V  
Operation  
OUT  
To meet the radiated emissions requirements of  
EN55022B, an additional filter capacitor, CINOUTn, is  
The LTM4655 achieves low input conducted EMI noise  
due to tight layout and high-frequency bypassing of  
needed—connecting from V to V  
–. See Figure 7  
OUTn  
INn  
through Figure 9 for EMI performance.  
MOSFETs M and M within the module itself. A small  
Tn  
Bn  
ꢓ0  
ꢒ0  
ꢑ0  
ꢔ0  
ꢕ0  
ꢖ0  
ꢗ0  
0
ꢓ0  
ꢢꢗꢣ ꢞꢤRꢄꢥꢤꢛꢅꢀꢃ  
ꢢꢖꢣ ꢍꢈRꢅꢄꢜꢀꢃ  
ꢚꢂꢦ ꢃꢄꢁꢄꢅ  
ꢁꢈꢀꢧ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢧꢂꢈꢜ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢁꢈꢀꢧ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢒ0  
ꢑ0  
ꢔ0  
ꢕ0  
ꢖ0  
ꢗ0  
0
ꢧꢂꢈꢜ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢙꢤRꢁꢀꢃ  
ꢢꢗꢣ ꢞꢤRꢄꢥꢤꢛꢅꢀꢃ  
ꢢꢖꢣ ꢍꢈRꢅꢄꢜꢀꢃ  
ꢚꢂꢦ ꢃꢄꢁꢄꢅ  
ꢙꢤRꢁꢀꢃ  
ꢘꢗ0  
ꢘꢗ0  
ꢕ0  
ꢗꢕ0 ꢖꢕ0 ꢕꢕ0 ꢔꢕ0 ꢑꢕ0 ꢒꢕ0 ꢓꢕ0 ꢠꢕ0 ꢡꢕ0 ꢗ000  
ꢕ0  
ꢗꢕ0 ꢖꢕ0 ꢕꢕ0 ꢔꢕ0 ꢑꢕ0 ꢒꢕ0 ꢓꢕ0 ꢠꢕ0 ꢡꢕ0 ꢗ000  
ꢔꢒꢑꢑ ꢙ0ꢠ  
ꢔꢒꢑꢑ ꢙ0ꢒ  
ꢙRꢈꢚꢆꢈꢛꢜꢝ ꢉꢁꢞꢟꢐ  
ꢙRꢈꢚꢆꢈꢛꢜꢝ ꢉꢁꢞꢟꢐ  
Figure 7. Radiated Emissions Scan of the LTM4655. Producing  
24VOUT at 7A, from 36VIN. DC2898A Hardware. fSW = 1.2MHz.  
Measured in a 10m Chamber. Peak Detect Method  
Figure 8. Radiated Emissions Scan of the LTM4655. Producing  
–24VOUT at 2A, from 12VIN , DC2899A Hardware. fSW = 1.2MHz.  
Measured in a 10m Chamber. Peak Detect Method  
ꢓ0  
ꢁꢈꢀꢧ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢧꢂꢈꢜ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢒ0  
ꢑ0  
ꢔ0  
ꢕ0  
ꢖ0  
ꢗ0  
0
ꢢꢗꢣ ꢞꢤRꢄꢥꢤꢛꢅꢀꢃ  
ꢢꢖꢣ ꢍꢈRꢅꢄꢜꢀꢃ  
ꢚꢂꢦ ꢃꢄꢁꢄꢅ  
ꢙꢤRꢁꢀꢃ  
ꢘꢗ0  
ꢕ0  
ꢗꢕ0 ꢖꢕ0 ꢕꢕ0 ꢔꢕ0 ꢑꢕ0 ꢒꢕ0 ꢓꢕ0 ꢠꢕ0 ꢡꢕ0 ꢗ000  
ꢔꢒꢑꢑ ꢙ0ꢡ  
ꢙRꢈꢚꢆꢈꢛꢜꢝ ꢉꢁꢞꢟꢐ  
Figure 9. Radiated Emissions Scan of the LTM4655. Producing  
–12VOUT at 4A, from 12VIN. DC2899A Hardware. fSW = 700kHz.  
Measured in a 10m Chamber. Peak Detect Method  
Rev. 0  
32  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
The input capacitance, C , is needed to filter the pulsed  
capacitor. C  
is a ceramic capacitor. The typical out-  
Dn  
OUTHn  
current drawn by M . To prevent excessive voltage sag  
put capacitance is 22μF (type X5R material, or better), if  
ceramic-only output capacitors are used.  
Tn  
on V , a low-effective series resistance (low-ESR) input  
capaDcnitor should be used, sized appropriately for the  
For highest reliability designs, polarized output capaci  
-
maximum C RMS ripple current (see Equation 24).  
Dn  
tors (C  
) are not recommended, as there is a pos-  
OUTLn  
(24)  
sibility of a diode-drop of reverse voltage appearing tran-  
ICDn(RMS) =InPK • Dn (1Dn)  
siently on V  
during rapid application of input volt-  
OUTn  
age or when RUNn is toggled logic high (see Figure 49).  
I
I
is maximum for D = 1/2. For D = 1/2,  
CDn(RMS)  
CDn(RMS)  
n
n
When polarized capacitors are used on V  
, contact  
= 1/2 • I  
or 3A. This simplification of the  
OUTn  
nPK  
the capacitor vendor to understand what reverse volt-  
age their polarized capacitor can withstand. Be advised,  
polarized capacitor reverse voltage rating is sometimes  
temperature-dependent.  
worst-case condition is commonly used for design pur-  
poses because even significant deviations in D do not  
n
offer much relief, in practice. Furthermore: note that ripple  
current ratings from capacitor manufacturers are often  
based on 2000 hours of life; therefore, it is advisable to  
significantly over-design C , and/or choose a capacitor  
rated at a higher temperatDunre than required. Err on the  
side of caution and contact the capacitor manufacturer to  
understand the capacitor vendor’s derating methodology.  
Output voltage ripple (∆VOUTn(PK-PK)) is governed by  
charge lost in COUTHn and COUTLn while MTn is on, in  
addition to the contribution of a resistive drop across  
the ESR of the output capacitors. This is expressed by  
Equation 25.  
Several capacitors may be paralleled to meet the appli-  
ILOADn •D ILOADn •ESRn  
(25)  
ΔVOUTn(PK–PK)  
+
cation’s target size, height, and C RMS ripple current  
Dn  
COUTn fSWn  
Dn  
rating. For lower input voltage applications, sufficient bulk  
input capacitance is needed for C  
to counteract line  
sag and transient effects during IoNuLntput load changes.  
Table 12 shows a matrix of suggested output capacitors  
optimized for transient step-loads that are 50% of the full  
Suggested values for C and C  
are found in Table 12.  
INHn  
Take note that CDn isDcnonnected from VDn to VOUTn,  
whereas CINHn and CINLn are connected from VINn to  
power ground; this is deliberate.  
load capability for that combination of V , V  
, and  
INn OUTn  
f
. The table optimizes total equivalent ESR and total  
SW  
bulk capacitance to yield the stated transient-load per-  
formance. Additional output filtering may be required by  
the system designer, if further reduction of output ripple  
or dynamic transient spike is required. The LTpowerCAD  
design tool is available for transient and stability analysis.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM4655’s VINn  
,
SVINn, and VDn pins. A ceramic input capacitor combined  
with trace or cable inductance forms a high Q (under-  
damped) tank circuit. If the LTM4655 circuit is plugged  
into a live supply, the input voltage can ring to twice its  
nominal value, possibly exceeding the device’s rating.  
This situation is easily avoided; see the Hot Plugging  
Safely section.  
Optional Diodes to Guard Against Overstress,  
Negative-V  
Operation  
OUT  
Just prior to output voltage start-up, a mechanism exists  
whereby a diode-drop of reverse polarity can appear on  
V
. See the Simplified Block Diagram and observe:  
OUTn  
just prior to output voltage start-up, SV bias current  
INn  
Output Capacitors, Negative-V  
Operation  
OUT  
(ISVINn) flows through the module’s control IC, to SVOUTn  
;
from there, the bias current (now I  
) flows into  
Output capacitors C  
the LTM4655’s V  
and C  
OUTn  
are applied across  
SVOUTn  
OUTHn  
OUTLn  
+
V
and through M ’s body diode, to SW . This cur-  
/V  
power output pins: suffi-  
OUTn  
Bn n  
OUTn  
rent (now I ) continues to flow—though the 4μH power  
cient capacitance and low ESR are called for, to meet the  
output voltage ripple, loop stability, and transient require-  
Ln  
+
inductor—to V  
and thus ground, closing the con-  
OUTn  
trol IC bias circuit’s path. It is this current through M ’s  
ments. C  
can be a low ESR tantalum or polymer  
Bn  
Rev. 0  
OUTLn  
33  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
body diode that creates a diode-drop of reverse polarity  
Frequency Adjustment, Negative-V  
Operation  
OUT  
(positive voltage) on V  
, as shown in Figure 49. The  
OUTn  
The default switching frequency (f  
) of channel n of the  
LTM4655 is 400kHz. This is suitable for mainly low-V or  
SWn  
voltage excursion is highest when RUNn toggles high  
IN  
because that is the instant when INTV  
powers-up, with  
a corresponding increase in ISVINn/ICSCVnOUTn/ILn current  
flow. With higher current flow, the forward voltage drop  
low-V  
applications (V < 5V or |V  
| < 5V). For  
OUT  
INn  
OUTn  
a practical design, the LTM4655’s inductor ripple current  
(∆  
) is suggested to be less than ~2A  
. From  
PK–PK  
nPK–PK  
(V ) of M ’s body diode—and thus, the positive voltage  
F
Bn  
Equation 20, it follows that f should be chosen such  
SW  
excursion on V  
is higher.  
OUTn  
that Equation 26).  
If this transient voltage excursion is unwelcome for the  
load or polarized output capacitors, minimize it with a  
1
fSWn  
=
1
1
+
(26)  
Ln InPK-PK  
low V Schottky diode that straddles V  
and V  
F
OUTn  
(see Figure 48 circuit and Figure 4O9UTpnerformance).  
Additionally, the voltage excursion can be empirically  
reduced by increasing output capacitance.  
V
VOUTn  
INn  
In some cases, the value of f  
violates the supported minimum on-time of the LTM4655  
(see Equation 21). If this occurs, choose f  
according to Equation 12.  
yielded by Equation 26  
SWn  
Lastly: in applications where it is anticipated that VINn  
may be rapidly applied (e.g., <10μs) and CINOUTn is  
instead  
SWn  
used, the resulting capacitor-divider network formed by  
The primary consequence of using a lower switching fre-  
quency than that dictated by Equation 26 is that the output  
current capability of the LTM4655 is reduced, according  
to Equation 23.  
C
and C  
||C  
may transiently drag V  
INOUTn  
INLn INHn OUTn  
positive. It is recommended to apply a low V Schottky  
F
+
diode from V  
to V  
in such applications. The  
OUTn  
OUTn  
reverse mechanism applies, as well: in applications where  
it is anticipated that V may be rapidly discharged and  
To configure the channel n of the LTM4655 for a higher  
INn  
switching frequency than 400kHz default, apply a resistor,  
C
is used, the resulting capacitor-divider network  
INOUTn  
formed by C  
R
, between the f  
pin and SV  
. R  
is given  
and C  
||C  
may transiently drag  
fSETn  
OUTn  
fSETn  
(in MΩ) by EquationS1ET3n.  
INOUTn  
INLn INHn  
VOUTnexcessively negative. It is recommended to strad-  
+
dle V  
and V  
with a TVS diode, if output voltage  
excursions durinOgUVTn -discharge are anticipated.  
OUTn  
The relationship of R  
in Figure 1.  
to programmed f  
is shown  
SWn  
fSETn  
INn  
See Table 1 and Table 12 for Recommended fSWn and  
associated R  
values for various combinations of V  
fSETn  
INn  
and V  
.
OUTn  
Table 1. Recommended Channel n Switching Frequency (fSWn) and RfSETn for Common Combinations of VINn and VOUTn  
,
Negative-VOUTnOperation  
V
(V)  
OUTn  
–0.5  
–3.3  
–5  
–8  
–12  
–15  
–20  
–24  
3.6  
400kHz,  
400kHz,  
425kHz,  
4.3MΩ  
450kHz,  
2.2MΩ  
400kHz,  
No R  
No R  
No R  
fSETn  
fSETn  
400kHz,  
fSETn  
No R  
400kHz,  
400kHz,  
fSETn  
5
450kHz,  
2.2MΩ  
475kHz,  
1.3MΩ  
500kHz,  
1MΩ  
525kHz,  
806kΩ  
550kHz,  
665kΩ  
No R  
No R  
fSETn  
fSETn  
12  
550kHz,  
665kΩ  
700kHz,  
332kΩ  
825kHz,  
237kΩ  
875kHz,  
210kΩ  
900kHz,  
200kΩ  
1MHz,  
165kΩ  
24 Drive CLKIN with a 200kHz  
450kHz,  
2.2MΩ  
600kHz,  
499kΩ  
800kHz,  
249kΩ  
1.1MHz,  
143kΩ  
1.2MHz,  
124kΩ  
N/A  
N/A  
n
Clock, No R  
fSETn  
36  
Not Recommended Due to  
On-Time Criteria Violation  
500kHz,  
1MΩ  
N/A Due to SOA Criteria Violation  
Rev. 0  
34  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
Radiated EMI Noise  
1. θ , the thermal resistance from junction-to-ambient,  
JA  
is the natural convection junction-to-ambient air ther-  
mal resistance measured in a one cubic foot sealed  
enclosure. This environment is sometimes referred to  
as “still air” although natural convection causes the  
air to move. This value is determined with the part  
mounted to a JESD51-9 defined test board, which  
does not reflect an actual application or viable operat-  
ing condition.  
The generation of radiated EMI noise is an inherent  
disadvantage of switching regulators. Fast switching  
turn-on and turn-off of the power MOSFETs—necessary  
for achieving high efficiency—create high-frequency  
(~30MHz+) ∆ /∆ changes within DC/DC converters. This  
l
t
activity tends to be the dominant source of high-frequency  
EMI radiation in such systems. The high level of device  
integration within LTM4655—including optimized gate-  
driver and critical front-end � filter inductor—delivers  
low radiated EMI noise performance. Figure 7 through  
Figure 9 show typical examples of LTM4655 meeting the  
radiated emission limits established by EN55022 Class B.  
2. θ  
, the thermal resistance from junction to the  
JCbottom  
bottom of the product case, is determined with all of  
the component power dissipation flowing through the  
bottom of the package. In the typical µModule regulator,  
the bulk of the heat flows out the bottom of the pack-  
age, but there is always heat flow out into the ambient  
environment. As a result, this thermal resistance value  
may be useful for comparing packages but the test  
conditions don’t generally match the user’s application.  
Thermal Considerations and Output Current Derating  
The thermal resistances reported in the Pin Configuration  
section are consistent with those parameters defined by  
JESD51-12 and are intended for use with finite element  
analysis (FEA) software modeling tools that leverage the  
outcome of thermal modeling, simulation, and correlation  
to hardware evaluation performed on a µModule package  
mounted to a hardware test board. The motivation for pro-  
viding these thermal coefficients is found in JESD51-12  
(“Guidelines for Reporting and Using Electronic Package  
Thermal Information”).  
3. θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
component power dissipation flowing through the top  
of the package. As the electrical connections of the  
typical µModule regulator are on the bottom of the  
package, it is rare for an application to operate such  
that most of the heat flows from the junction to the top  
of the part. As in the case of θ  
, this value may  
JCbottom  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to predict the  
µModule regulator’s thermal performance in their appli-  
cation at various electrical and environmental operating  
conditions to compliment any FEA activities. Without  
FEA software, the thermal resistances reported in the  
Pin Configuration section are, in and of themselves, not  
relevant to providing guidance of thermal performance;  
instead, the derating curves provided in this data sheet  
can be used in a manner that yields insight and guid-  
ance pertaining to one’s application-usage, and can be  
adapted to correlate thermal performance to one’s own  
application.  
be useful for comparing packages but the test condi-  
tions don’t generally match the user’s application.  
4. θJB, the thermal resistance from junction to the printed  
circuit board, is the junction-to-board thermal resis-  
tance where almost all of the heat flows through the  
bottom of the µModule regulator and into the board,  
and is really the sum of the θ  
and the thermal  
JCbottom  
resistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured a specified distance from the  
package, using a two sided, two layer board. This board  
is described in JESD51-9.  
The Pin Configuration section gives four thermal coeffi-  
cients explicitly defined in JESD51-12; these coefficients  
are quoted or paraphrased below:  
A graphical representation of the aforementioned thermal  
resistances is given in Figure 10; blue resistances are  
contained within the µModule regulator, whereas green  
resistances are external to the µModule package.  
Rev. 0  
35  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
ꢅꢆꢇꢈꢉꢊe ꢋꢌꢍꢎꢏꢌ  
θ
ꢐꢓꢔꢏꢕꢎꢖꢔꢗꢕꢖꢗꢘꢆꢝꢎꢌꢔꢕ Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢐꢘ  
θ
ꢐꢓꢔꢏꢕꢎꢖꢔꢗꢕꢖꢗꢏꢘꢙꢌ  
ꢏꢘꢙꢌ ꢚꢕꢖꢛꢜꢗꢕꢖꢗꢘꢆꢝꢎꢌꢔꢕ  
ꢐꢏꢑꢇꢒ  
ꢚꢕꢖꢛꢜ Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢐꢓꢔꢏꢕꢎꢖꢔ  
ꢘꢆꢝꢎꢌꢔꢕ  
θ
ꢐꢏꢞꢇꢑ  
ꢐꢓꢔꢏꢕꢎꢖꢔꢗꢕꢖꢗꢏꢘꢙꢌ  
ꢏꢘꢙꢌ ꢚꢝꢖꢕꢕꢖꢆꢜꢗꢕꢖꢗꢝꢖꢘRꢋ  
Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢝꢖꢘRꢋꢗꢕꢖꢗꢘꢆꢝꢎꢌꢔꢕ  
Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢚꢝꢖꢕꢕꢖꢆꢜ Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢀꢁꢂꢂ ꢃꢄ0  
Figure 10. Graphical Representation of JESD51-12 Thermal Coefficients  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD51-12 or provided in the Pin  
Configuration section replicates or conveys normal oper-  
ating conditions of a µModule regulator. For example, in  
normal board-mounted applications, never does 100%  
of the device’s total power loss (heat) thermally conduct  
exclusively through the top or exclusively through bot-  
tom of the µModule package—as the standard defines  
temperature readings at different interfaces that enable  
the calculation of the JEDEC-defined thermal resistance  
values; (3) the model and FEA software is used to evaluate  
the LTM4655 with heat sink and airflow; (4) having solved  
for and analyzed these thermal resistance values and  
simulated various operating conditions in the software  
model, a thorough laboratory evaluation replicates the  
simulated conditions with thermocouples within a con-  
trolled environment chamber while operating the device  
at the same power loss as that which was simulated. The  
outcome of this process and due diligence yields the set  
of derating curves provided in later sections of this data  
sheet, along with well-correlated JESD51-12-defined θ  
values provided in the Pin Configuration section.  
for θ  
and θ  
, respectively. In practice, power  
JCtop  
JCbottom  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow, a majority of the heat flow is into the board.  
Within the LTM4655, be aware there are multiple power  
devices and components dissipating power, with a con-  
sequence that the thermal resistances relative to differ-  
ent junctions of components or die are not exactly linear  
with respect to total package power loss. To reconcile this  
complication without sacrificing modeling simplicity—  
but also not ignoring practical realities—an approach has  
been taken using FEA software modeling along with labo-  
ratory testing in a controlled-environment chamber to rea-  
sonably define and correlate the thermal resistance values  
supplied in this data sheet: (1) Initially, FEA software is  
used to accurately build the mechanical geometry of the  
LTM4655 and the specified PCB with all of the correct  
material coefficients along with accurate power loss  
source definitions; (2) this model simulates a software-  
defined JEDEC environment consistent with JESD51-9 and  
JESD51-12 to predict power loss heat flow and  
For positive-VOUT applications, the 12VIN and 24VIN power  
loss curves in Figure 11 and Figure 12, respectively, can  
be used with the load current derating curves in Figure 13  
to Figure 24 for calculating an approximate θ thermal  
JA  
resistance for the LTM4655 with various heat sinking  
and air flow conditions. For negative-V  
applications:  
use instead the –5VOUT, –12VOUT andOU2T4VOUT power  
loss curves in Figure 25 to Figure 27, respectively, in  
combination with the load current derating curves in  
Figure 28 to Figure 43. For split-supply applications,  
total power loss within the module will dictate the thermal  
derating; interpolate the relevant derating curves. These  
thermal resistances represent demonstrated performance  
of the LTM4655 on DC2898A and DC2899A hardware;  
4-layer FR4 PCB measuring 97mm × 116mm × 1.6mm  
using outer and inner copper weights of 2oz and 1oz,  
Rev. 0  
36  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
respectively. The power loss curves are taken at room  
temperature, and are increased with multiplicative factors  
with ambient temperature. These approximate factors are  
listed in Table 1. (Compute the factor by interpolation,  
for intermediate temperatures.) The derating curves  
are plotted with the LTM4655’s outputs paralleled and  
inteleaved, sourcing its maximum output capability, in  
an environment with temperature-controlled ambient.  
power loss curve at 4.9W (Figure 25), with the 1.1  
multiplying factor at 60°C ambient (from Table 2). If the  
60°C ambient temperature is subtracted from the 120°C  
junction temperature, then the difference of 60°C divided  
by 5.39W yields a thermal resistance, θ , of 11.1°C/W—  
JA  
in good agreement with Table 6. Table 3 to Table 5 provide  
equivalent thermal resistances for 1V, 5V, and 15V outputs  
with and without airflow and heatsinking. Table 6 to  
Table 8 provide equivalent thermal resistances for –5V,  
–15V and –24V outputs with and without airflow and  
heatsinking. The derived thermal resistances in Table 3  
to Table 8 for the various conditions can be multiplied  
by the calculated power loss as a function of ambient  
temperature to derive temperature rise above ambient,  
thus maximum junction temperature. Room temperature  
power loss can be derived from the efficiency curves  
in the Typical Performance Characteristics section and  
adjusted with ambient temperature multiplicative factors  
from Table 2.  
The output voltages are 1V , 5V , 15V , –5V ,  
OUT  
OUT  
OUT  
OUT  
–15V  
and –24V . These are chosen to include the  
OUT  
OUT  
lower and higher output voltage ranges for correlating  
the thermal resistance. Thermal models are derived  
from several temperature measurements in a controlled  
temperature chamber along with thermal modeling  
analysis. The junction temperatures are monitored while  
ambient temperature is increased with and without air  
flow, and with and without a heat sink attached with  
thermally conductive adhesive tape. The power loss  
increase with ambient temperature change is factored  
into the derating curves. The junctions are maintained at  
120°C maximum while lowering output current or power  
while increasing ambient temperature. The decreased  
output current decreases the internal module loss as  
ambient temperature is increased. The monitored junction  
temperature of 120°C minus the ambient operating  
temperature specifies how much module temperature  
rise can be allowed. As an example in Figure 30, the load  
current is derated to 3.05A per channel (6.1A, combined)  
at 60°C ambient with no airflow and no heat sink and the  
room temperature (25°C) per channel power loss for this  
Table 2. Power Loss Multiplicative Factors vs Ambient  
Temperature  
POWER LOSS MULTIPLICATIVE  
AMBIENT TEMPERATURE  
FACTOR  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
Up to 40°C  
50°C  
60°C  
70°C  
80°C  
90°C  
100°C  
110°C  
120°C  
24V to –5V  
at 3.05A out condition is 2.45W; 4.9W,  
IN  
OUT  
combined. A 5.39W loss is calculated by multiplying the  
4.9W room temperature loss from the 24V to –5V  
IN  
OUT  
Rev. 0  
37  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
Table 3. 1V Output  
DERATING CURVE  
V
(V)  
POWER LOSS CURVE  
Figure 11, Figure 12  
Figure 11, Figure 12  
Figure 11, Figure 12  
Figure 11, Figure 12  
Figure 11, Figure 12  
Figure 11, Figure 12  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
Figure 13, Figure 14, Figure 15  
Figure 13, Figure 14, Figure 15  
Figure 13, Figure 14, Figure 15  
Figure 16, Figure 17, Figure 18  
Figure 16, Figure 17, Figure 18  
Figure 17, Figure 17, Figure 18  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
11.9  
10.9  
10.0  
11.2  
10.1  
9.1  
200  
400  
0
None  
None  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
200  
400  
Table 4. 5V Output  
DERATING CURVE  
Figure 19, Figure 20  
Figure 19, Figure 20  
Figure 19, Figure 20  
Figure 21, Figure 22  
Figure 21, Figure 22  
Figure 21, Figure 22  
V
(V)  
POWER LOSS CURVE  
Figure 11, Figure 12  
Figure 11, Figure 12  
Figure 11, Figure 12  
Figure 11, Figure 12  
Figure 11, Figure 12  
Figure 11, Figure 12  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
0
11.9  
10.9  
10.0  
11.2  
10.1  
9.1  
200  
400  
0
None  
None  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
200  
400  
Table 5. 15V Output  
DERATING CURVE  
Figure 23  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 12  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
24  
0
11.9  
10.9  
10.0  
11.2  
10.1  
9.1  
Figure 23  
24  
24  
24  
24  
24  
Figure 12  
200  
400  
0
None  
Figure 23  
Figure 12  
None  
Figure 24  
Figure 12  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 24  
Figure 12  
200  
400  
Figure 24  
Figure 12  
Rev. 0  
38  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
Table 6. –5V Output  
DERATING CURVE  
V
(V)  
POWER LOSS CURVE  
Figure 25  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
Figure 28, Figure 29, Figure 30  
Figure 28, Figure 29, Figure 30  
Figure 28, Figure 29, Figure 30  
Figure 31, Figure 32, Figure 33  
Figure 31, Figure 32, Figure 33  
Figure 31, Figure 32, Figure 33  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
11.9  
10.9  
10.0  
11.2  
10.1  
9.1  
Figure 25  
200  
400  
0
None  
Figure 25  
None  
Figure 25  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 25  
200  
400  
Figure 25  
Table 7. 15V Output  
DERATING CURVE  
V
(V)  
POWER LOSS CURVE  
Figure 26  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
Figure 34, Figure 35, Figure 36  
Figure 34, Figure 35, Figure 36  
Figure 34, Figure 35, Figure 36  
Figure 37, Figure 38, Figure 39  
Figure 37, Figure 38, Figure 39  
Figure 37, Figure 38, Figure 39  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
11.9  
10.9  
10.0  
11.2  
10.1  
9.1  
Figure 26  
200  
400  
0
None  
Figure 26  
None  
Figure 26  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 26  
200  
400  
Figure 26  
Table 8. –24V Output  
DERATING CURVE  
V
(V)  
POWER LOSS CURVE  
Figure 27  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
Figure 40, Figure 41  
Figure 40, Figure 41  
Figure 40, Figure 41  
Figure 42, Figure 43  
Figure 42, Figure 43  
Figure 42, Figure 43  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
11.9  
10.9  
10.0  
11.2  
10.1  
9.1  
Figure 27  
200  
400  
0
None  
Figure 27  
None  
Figure 27  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 27  
200  
400  
Figure 27  
Table 9. Heat Sink Manufacturer (Thermally Conductive Adhesive Tape Pre-Attached)  
HEAT SINK MANUFACTURER  
PART NUMBER  
WEBSITE  
Aavid Thermalloy  
Cool Innovations  
375424B00034G  
4-050503PT411  
LTN20069  
www.aavid.com  
www.coolinnovations.com  
www.wakefield.com  
Wakefield Engineering  
Table 10. Thermally Conductive Adhesive Tape Vendor  
THERMALLY CONDUCTIVE ADHESIVE  
TAPE MANUFACTURER  
PART NUMBER  
WEBSITE  
Chomerics  
T411  
www.chomerics.com  
Rev. 0  
39  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
Table 11. Positive Output Voltage Response vs Component Matrix. Performance of a Channel of LTM4655 in Figure 51 Circuit, with  
Values Here Indicated. Load-Stepping from 2A to 4A Load Current, at 2A/μs. Typical Measured Values  
C
VENDORS  
PART NUMBER  
C
VENDORS  
PART NUMBER  
OUTHn  
OUTHn  
AVX  
12066D107MAT2A (100μF, 6.3V, 1206 Case Size)  
GRM31CR60J107M (100μF, 6.3V, 1206 Case Size)  
JMK316BBJ107MLHT (100μF, 6.3V, 1206 Case Size)  
C3216X5R0J107M (100μF, 6.3V, 1206 Case Size)  
1210YD476MAT2A (47μF, 16V, 1210 Case Size)  
GRM32ER61C476M (47μF, 16V, 1210 Case Size)  
EMK325BJ476MM (47μF, 16V, 1210 Case Size)  
12103D226MAT2A (22μF, 25V, 1210 Case Size)  
TMK325BJ226MM (22μF, 25V, 1210 Case Size)  
C3225X5R1E226M (22μF, 25V, 1210 Case Size)  
AVX  
12105D106MAT2A (10μF, 50V, 1210 Case Size)  
GRM32ER61H106M (10μF, 50V, 1210 Case Size)  
UMK325BJ106M (10μF, 50V, 1210 Case Size)  
C3225X5R1H106M (10μF, 50V, 1210 Case Size)  
PART NUMBER  
Murata  
Murata  
Taiyo Yuden  
TDK  
Taiyo Yuden  
TDK  
AVX  
C
/C VENDORS  
INHn Dn  
Murata  
Taiyo Yuden  
AVX  
Murata  
AVX  
GRM32ER71K475M (4.7μF, 80V, 1210 Case Size)  
12065C475MAT2A (4.7μF, 50V, 1206 Case Size)  
GRM31CR71H475M (4.7μF, 50V, 1206 Case Size)  
UMK316AB7475ML (4.7μF, 50V, 1206 Case Size)  
C3216X5R1H475M (4.7μF, 50V, 1206 Case Size)  
Murata  
Taiyo Yuden  
TDK  
Taiyo Yuden  
TDK  
LOAD STEP LOAD STEP  
TRANSIENT  
DROOP  
(mV)  
PK-PK  
DEVIATION  
(mV)  
RECOVERY  
TIME  
(μs)  
V
V
R
C
R
R
f
R
R
EXTVCCn  
OUTn  
(V)  
INn  
(V)  
THn  
THn  
ISETn  
(kΩ)  
PGDFBn  
(kΩ)  
SWn  
fSETn  
C
C
C
OUTHn  
(Ω)  
681  
681  
681  
665  
665  
665  
665  
665  
665  
665  
665  
665  
665  
665  
649  
649  
649  
649  
604  
604  
604  
604  
499  
499  
499  
499  
499  
499  
499  
499  
499  
(nF)  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
8.2  
8.2  
8.2  
8.2  
8.2  
8.2  
8.2  
8.2  
10  
(kHz)  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
550  
575  
500  
800  
1100  
750  
1200  
1200  
(kΩ)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
665  
576  
1000  
249  
143  
287  
124  
124  
(Ω)  
INHn  
Dn  
1
5
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 2  
100μF x 2  
100μF x 2  
100μF x 2  
47μF x 2  
20  
3.32  
3.32  
3.32  
4.99  
4.99  
4.99  
7.5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
20  
70  
70  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
190  
190  
185  
180  
260  
260  
260  
350  
350  
350  
350  
350  
430  
55  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
45  
45  
45  
40  
40  
40  
40  
40  
35  
1
12  
24  
5
20  
1
20  
70  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
5
24  
70  
12  
24  
5
24  
70  
24  
70  
30.1  
30.1  
30.1  
30.1  
36  
70  
12  
24  
36  
5
7.5  
70  
7.5  
70  
7.5  
70  
10  
70  
12  
24  
36  
5
36  
10  
70  
36  
10  
70  
36  
10  
70  
50  
15.8  
15.8  
15.8  
15.8  
22.6  
22.6  
22.6  
22.6  
36.5  
36.5  
36.5  
95.3  
95.3  
95.3  
121  
121  
196  
70  
12  
24  
36  
5
50  
70  
50  
70  
50  
70  
66.5  
66.5  
66.5  
66.5  
100  
100  
100  
240  
240  
240  
301  
301  
481  
90  
12  
24  
36  
12  
24  
36  
15  
24  
36  
24  
36  
36  
10  
90  
10  
90  
10  
90  
10  
130  
130  
130  
170  
170  
170  
170  
170  
220  
5
47μF x 2  
10  
20  
5
47μF x 2  
10  
20  
12  
12  
12  
15  
15  
24  
22μF x 2  
10  
49.9  
49.9  
49.9  
60.4  
60.4  
100  
22μF x 2  
10  
22μF x 2  
10  
22μF x 2  
10  
22μF x 2  
10  
10μF x 2  
10  
Rev. 0  
40  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
Table 12. Negative Output Voltage Response vs Component Matrix. Performance of Figure 48 Circuit with Values Here Indicated.  
Load-Stepping from 50% of Full Scale (F.S.) to 100% of F.S. Load Current, in 1μs. Typical Measured Values.  
C
VENDORS  
PART NUMBER  
C /C VENDORS  
INHn Dn  
PART NUMBER  
OUTHn  
AVX  
12066D107MAT2A (100µF, 6.3V, 1206 Case Size)  
GRM31CR60J107M (100µF, 6.3V, 1206 Case Size)  
JMK316BBJ107MLHT (100µF, 6.3V, 1206 Case Size)  
C3216X5R0J107M (100µF, 6.3V, 1206 Case Size)  
1210YD476MAT2A (47µF, 16V, 1210 Case Size)  
GRM32ER61C476M (47µF, 16V, 1210 Case Size)  
EMK325BJ476MM (47µF, 16V, 1210 Case Size)  
12103D226MAT2A (22µF, 25V, 1210 Case Size)  
TMK325BJ226MM (22µF, 25V, 1210 Case Size)  
C3225X5R1E226M (22µF, 25V, 1210 Case Size)  
12105D106MAT2A (10µF, 50V, 1210 Case Size)  
GRM32ER61H106M (10µF, 50V, 1210 Case Size)  
UMK325BJ106M (10µF, 50V, 1210 Case Size)  
C3225X5R1H106M (10µF, 50V, 1210 Case Size)  
Murata  
AVX  
GRM32ER71K475M (4.7µF, 80V, 1210 Case Size)  
12065C475MAT2A (4.7µF, 50V, 1206 Case Size)  
GRM31CR71H475M (4.7µF, 50V, 1206 Case Size)  
UMK316AB7475ML (4.7µF, 50V, 1206 Case Size)  
C3216X5R1H475M (4.7µF, 50V, 1206 Case Size)  
Murata  
Taiyo Yuden  
TDK  
Murata  
Taiyo Yuden  
TDK  
AVX  
Murata  
Taiyo Yuden  
AVX  
Taiyo Yuden  
TDK  
AVX  
Murata  
Taiyo Yuden  
TDK  
LOAD STEP LOAD STEP  
C
C
C
Dn  
(V TO V  
BYPASS CAP)  
CDGNDn  
INHn  
INOUTn  
F. S.  
C
TRANSIENT  
DROOP  
(mV)  
PK-PK  
DEVIATION  
(mV)  
RECOVERY  
TIME  
(μs)  
OUTHn  
V
V
LOAD (V  
TO GND (V  
TO V  
(V TO GND  
(CERAMIC  
OUTPUT CAP)  
R
R
f
R
R
EXTVCCn  
(Ω)  
OUTn  
(V)  
INn  
INn  
INn  
OUTn  
Dn  
OUTn  
Dn  
ISETn  
(kΩ)  
PGDFBn  
(kΩ)  
SWn  
fSETn  
(kΩ)  
(V) (A)  
BYPASS CAP)  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
BYPASS CAP)  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
BYPASS CAP)  
(kHz)  
400  
400  
200**  
400  
400  
450  
500  
400  
550  
600  
450  
700  
800  
475  
825  
1100  
500  
875  
1200  
550  
1000  
–0.5  
–0.5  
5
3.2  
4
4.7µF  
4.7µF  
100µF × 4  
100µF × 4  
100µF × 4  
100µF  
10  
N/A  
N/A  
2.2  
75  
150  
190  
190  
130  
330  
355  
310  
235  
340  
380  
235  
340  
330  
270  
290  
325  
170  
380  
400  
220  
275  
55  
60  
60  
25  
50  
50  
40  
45  
60  
55  
30  
30  
27  
32  
25  
25  
25  
32  
28  
45  
30  
12  
4.7µF  
4.7µF  
10  
N/A  
N/A  
2.2  
90  
–0.5* 24  
4
4.7µF  
4.7µF  
10  
N/A  
N/A  
2.2  
90  
–3.3  
–3.3  
–3.3  
–3.3  
–5  
5
2.2  
4.7µF  
4.7µF  
66.5  
66.5  
66.5  
66.5  
100  
100  
100  
160  
160  
160  
240  
240  
240  
301  
301  
301  
481  
481  
22.6  
22.6  
22.6  
22.6  
36.5  
36.5  
36.5  
61.9  
61.9  
61.9  
95.3  
95.3  
95.3  
121  
N/A  
15  
65  
12 3.5  
4.7µF  
4.7µF  
100µF × 2  
100µF × 2  
100µF × 2  
47µF × 2  
47µF × 2  
47µF × 2  
47µF  
N/A  
15  
165  
175  
160  
125  
175  
185  
125  
185  
180  
140  
157  
170  
90  
24  
36  
5
4
4
4.7µF  
4.7µF  
2200  
1000  
N/A  
15  
4.7µF  
4.7µF  
15  
1.75  
4.7µF  
4.7µF  
20  
–5  
12 3.2  
24 3.85  
4.7µF  
4.7µF  
665  
499  
2200  
332  
249  
1300  
237  
143  
1000  
210  
124  
665  
165  
20  
–5  
4.7µF  
4.7µF  
20  
–8  
5
1.2  
4.7µF  
4.7µF  
32.4  
32.4  
32.4  
49.9  
49.9  
49.9  
60.4  
60.4  
60.4  
100  
100  
–8  
12 2.3  
24 3.1  
4.7µF  
4.7µF  
47µF  
–8  
4.7µF  
4.7µF  
47µF  
–12  
–12  
–12  
–15  
–15  
–15  
–24  
–24  
5
0.9  
4.7µF  
4.7µF  
22µF  
12 1.9  
24 2.75  
4.7µF  
4.7µF  
22µF  
4.7µF  
4.7µF  
22µF  
5
0.75  
4.7µF  
4.7µF  
22µF  
12 1.75  
24 2.5  
4.7µF  
4.7µF  
22µF  
121  
200  
205  
105  
140  
4.7µF  
4.7µF  
22µF  
121  
5
0.55  
4.7µF × 2  
4.7µF × 2  
4.7µF × 2  
4.7µF × 2  
10µF × 2  
10µF × 2  
196  
12 1.25  
196  
*Internal loop compensation is used with Table 12 settings. COMPna connects to COMPnb in Figure 48.  
**To avoid violating minimum on-time criteria, drive CLKIN with a 200kHz, 50% duty cycle clock.  
Rev. 0  
41  
For more information www.analog.com  
LTM4655  
Settings per Table 11 and Table 12.  
APPLICATIONS INFORMATION—DERATING CURVES  
0
0
0
ꢀꢁꢂ ꢀ ꢁꢂ0ꢃꢄꢅ  
ꢀ.0ꢁ ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀ ꢁ00ꢂꢃꢄ  
ꢀ.ꢀꢁ ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.0ꢁ ꢀ ꢁꢁ0ꢂꢃꢄ  
ꢀ.ꢁꢂ ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢀꢁ ꢀ ꢁ00ꢂꢃꢄ  
ꢀ.ꢁꢂ ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ ꢀ ꢁ00ꢂꢃꢄ  
ꢀ.ꢁꢂ ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ ꢀ ꢁ00ꢂꢃꢄ  
ꢀ.ꢁꢂ ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ ꢀ ꢁ00ꢂꢃꢄ  
ꢀ.0ꢁ ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀ.0ꢁ ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁꢂ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
0
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉ  
ꢀꢁꢂꢂ ꢃꢄ0  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢄ  
Figure 11. 12VIN Power Loss  
Curve  
Figure 12. 24VIN Power Loss Curve  
Figure 13. 5V to 1VOUT Derating  
Curve, No Heat Sink  
0
0
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢄꢀ  
ꢀꢁꢂꢂ ꢃꢄꢂ  
ꢀꢁꢂꢂ ꢃꢄꢁ  
Figure 14. 12V to 1VOUT  
Derating Curve, No Heat Sink  
Figure 15. 24V to 1VOUT  
Derating Curve, No Heat Sink  
Figure 16. 5V to 1VOUT Derating  
Curve, with BGA Heat Sink  
0
0
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
Figure 19. 12V to 5VOUT  
Derating Curve, No Heat Sink  
Figure 17. 12V to 1VOUT Derating  
Curve, with BGA Heat Sink  
Figure 18. 24V to 1VOUT Derating  
Curve, with BGA Heat Sink  
Rev. 0  
42  
For more information www.analog.com  
LTM4655  
Settings per Table 11 and Table 12.  
APPLICATIONS INFORMATION—DERATING CURVES  
0
0
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢄꢄ  
ꢀꢁꢂꢂ ꢃꢄ0  
ꢀꢁꢂꢂ ꢃꢄꢅ  
Figure 20. 24V to 5VOUT  
Derating Curve, No Heat Sink  
Figure 21. 12V to 5VOUT Derating  
Curve, with BGA Heat Sink  
Figure 22. 24V to 5VOUT Derating  
Curve, with BGA Heat Sink  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
0
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀꢁ ꢄ ꢅ00ꢆꢇꢈ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢆꢆ0ꢇꢈꢉ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢆ00ꢇꢈꢉ  
ꢃꢄ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢃꢄꢅ ꢆꢇꢈꢉꢇꢈ ꢀꢇRRꢄꢃꢈꢊꢂꢋ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢄꢂ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢂ  
Figure 25. –5VOUT Power  
Loss Curve  
Figure 23. 24V to 15VOUT Derating  
Curve, No Heat Sink  
Figure 24. 24V to 15VOUT Derating  
Curve, with BGA Heat Sink  
0
0
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
0.ꢀ0  
0
ꢀꢁ ꢄ ꢀ00ꢅꢆꢇ  
ꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀꢁꢂ ꢅ ꢆꢇꢈꢉꢊ  
ꢃꢄ  
ꢀꢁ ꢄ ꢀꢀ0ꢅꢆꢇ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢆ.ꢀꢇꢈꢉ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢀꢆꢇꢈ  
ꢃꢄ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢃꢄꢅ ꢆꢇꢈꢉꢇꢈ ꢀꢇRRꢄꢃꢈꢊꢂꢋ  
ꢀꢁꢂꢃꢃꢄꢅ ꢆꢇꢈꢉꢇꢈ ꢀꢇRRꢄꢃꢈꢊꢂꢋ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢁ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
Figure 28. 5V to –5VOUT Derating  
Curve, No Heat Sink  
Figure 26. –15VOUT Power Loss  
Curve  
Figure 27. 24VOUT Power  
Loss Curve  
Rev. 0  
43  
For more information www.analog.com  
LTM4655  
Settings per Table 11 and Table 12.  
APPLICATIONS INFORMATION—DERATING CURVES  
ꢀ.ꢁ0  
ꢀ.ꢁ0  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.ꢁ0  
ꢀ.ꢁ0  
0.ꢀ0  
0
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
0.ꢀ0  
0
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄ0  
Figure 31. 5V to –5VOUT Derating  
Curve, with BGA Heat Sink  
Figure 29. 12V to –5VOUT  
Derating Curve, No Heat Sink  
Figure 30. 24V to –5VOUT  
Derating Curve, No Heat Sink  
ꢀ.ꢁ0  
ꢀ.ꢁꢂ  
ꢀ.00  
0.ꢀꢁ  
0.ꢀ0  
0.ꢀꢁ  
0
ꢀ.ꢁ0  
ꢀ.ꢁ0  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.ꢁ0  
ꢀ.ꢁ0  
0.ꢀ0  
0
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
ꢀ.ꢀ0  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢄꢀ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢄ  
Figure 34. 5V to –15VOUT  
Derating Curve, No Heat Sink  
Figure 32. 12V to –5VOUT Derating  
Curve, with BGA Heat Sink  
Figure 33. 24V to –5VOUT Derating  
Curve, with BGA Heat Sink  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
0.ꢀ0  
0
ꢀ.ꢁ0  
ꢀ.ꢁꢂ  
ꢀ.00  
0.ꢀꢁ  
0.ꢀ0  
0.ꢀꢁ  
0
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
0.ꢀ0  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢄꢂ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢁ  
Figure 35. 12V to –15VOUT  
Derating Curve, No Heat Sink  
Figure 36. 24V to –15VOUT  
Derating Curve, No Heat Sink  
Figure 37. 5V to –15VOUT Derating  
Curve, with BGA Heat Sink  
Rev. 0  
44  
For more information www.analog.com  
LTM4655  
Settings per Table 11 and Table 12.  
APPLICATIONS INFORMATION—DERATING CURVES  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
0.ꢀ0  
0
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
ꢀ.ꢁ0  
ꢀ.00  
0.ꢀ0  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
Figure 39. 24V to –15VOUT Derating  
Curve, with BGA Heat Sink  
Figure 38. 12V to –15VOUT Derating  
Curve, with BGA Heat Sink  
ꢀ.ꢀ0  
ꢀ.00  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0
ꢀ.ꢁ0  
ꢀ.ꢀꢁ  
ꢀ.00  
ꢀ.ꢁꢂ  
ꢀ.ꢁ0  
ꢀ.ꢁꢂ  
ꢀ.00  
0.ꢀꢁ  
0.ꢀ0  
0.ꢀꢁ  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢀ0  
ꢀꢁꢂꢂ ꢃꢀꢄ  
Figure 41. 12V to –24VOUT Derating  
Curve, No Heat Sink  
Figure 40. 5V to –24VOUT Derating  
Curve, No Heat Sink  
ꢀ.ꢀ0  
ꢀ.00  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0.ꢀ0  
0
ꢀ.ꢁ0  
ꢀ.ꢀꢁ  
ꢀ.00  
ꢀ.ꢁꢂ  
ꢀ.ꢁ0  
ꢀ.ꢁꢂ  
ꢀ.00  
0.ꢀꢁ  
0.ꢀ0  
0.ꢀꢁ  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢀꢁꢂꢂ ꢃꢀꢄ  
ꢀꢁꢂꢂ ꢃꢀꢄ  
Figure 43. 12V to –24VOUT Derating  
Curve, with BGA Heat Sink  
Figure 42. 5V to –24VOUT Derating  
Curve, with BGA Heat Sink  
Rev. 0  
45  
For more information www.analog.com  
LTM4655  
APPLICATIONS INFORMATION  
Safety Considerations  
• Use large PCB copper areas for high current paths,  
+
including V , V  
and V  
. Doing so helps to  
INn OUTn  
OUTn  
The LTM4655 does not provide galvanic isolation from  
VINn to VOUTn+/VOUTn. There is no internal fuse. If  
required, a slow blow fuse with a rating twice the maxi-  
mum input current needs to be provided to protect the  
unit from catastrophic failure.  
minimize the PCB conduction loss and thermal stress.  
• Place high frequency ceramic input and output (and, if  
used, input-to-output) capacitors next to the V , V ,  
INn Dn  
+
V
/V  
pins to minimize high frequency noise.  
OUTn  
OUTn  
The fuse or circuit breaker, if used, should be selected to  
limit the current to the regulator in case of a MTn MOSFET  
• Place a dedicated power ground layer underneath the  
LTM4655.  
fault. If M fails, the system’s input supply will source  
Tn  
• To minimize the via conduction loss and reduce module  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
very large currents to VOUTn+ through MTn. This can cause  
excessive heat and board damage depending on how  
much power the input voltage can deliver to this system.  
A fuse or circuit breaker can be used as a secondary fault  
protector in this situation. Each channel of the LTM4655  
features its own, independent overcurrent and overtem-  
perature protection.  
• Do not put vias directly on pads, unless they are capped  
or plated over.  
• For each channel, use a separate SVOUTncopper plane  
for components connected to signal pins. Connect  
SV  
to V  
directly under the module.  
OUTn  
OUTn  
Layout Checklist/Example  
+
• For parallel applications, connect the respective VOUTn  
,
The high integration of LTM4655 makes the PCB board  
layout straightforward. However, to optimize its electrical  
and thermal performance, some layout considerations  
are still necessary.  
+
V
, V  
, RUNn, ISETna, COMPna, PGOODn  
OUTn  
OSNSn  
and IMONna pins, accordingly (see Figure 45).  
• Bring out test points on the signal pins for monitoring.  
Figure 44 gives a good example of the recommended  
LTM4655 layout.  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢈꢉꢄ  
ꢁꢂꢃꢆ  
ꢈꢉꢆ  
ꢁꢂꢃꢆ  
ꢁꢂꢃꢆ  
ꢁꢂꢃꢆ  
ꢊꢋꢌꢌ ꢍꢊꢊ  
Figure 44. Recommended PCB Layout, Package Top View  
Rev. 0  
46  
For more information www.analog.com  
LTM4655  
TYPICAL APPLICATIONS  
+
24V  
,
OUT  
UP TO 8A  
SW1  
SW2  
NC  
V
V
V
OUT1  
IN  
29V TO 40V  
IN1  
47µF  
×4  
4.7μF  
4.7μF  
90.9k  
+
V
OSNS1  
SV  
IN1  
LOAD  
SV  
OUT1  
V
D1  
V
OUT1  
f
196k  
SET1  
PGDFB1  
INTV  
CC1  
VINREG1  
100Ω  
1μF  
EXTV  
CC1  
+
SV  
SV  
INF1  
INF2  
V
OSNS2  
196k  
LDO  
IN  
PGDFB2  
100Ω  
1μF  
CLKOUT1  
CLKIN1  
EXTV  
CC2  
V
IN2  
+
4.7μF  
4.7μF  
V
OUT2  
SV  
INF2  
SV  
OUT2  
LTM4655  
V
D2  
V
OUT2  
INTV  
CC2  
f
SET2  
PGOOD1  
PGOOD2  
100k  
90.9k  
RUN1  
PGOOD  
5V  
,
OUT  
LDO  
OUT  
RUN  
RUN2  
INTV  
UP TO 25mA  
>1.2V = ON  
TYP  
66.5k  
CC2  
<1.07V = OFF  
TYP  
INTV  
CC2  
VINREG2  
COMP1a  
COMP1b  
CLKSET  
IMON1a  
IMON1b  
IMON2a  
IMON2b  
COMP2a  
COMP2b  
CLKOUT2  
0.1µF  
+
V
+
CC  
V
D
D
TEMP  
REF  
470pF  
LTC2997*  
CLKIN2  
MOD  
>1k  
4mV/K  
V
V
PTAT  
TEMP  
GND  
PTAT(FILTER)  
C
FILTER  
GND ISET1a ISET1b ISET2b ISET2a  
4655 F45  
OPTIONAL ANALOG OUTPUT  
TEMPERATURE INDICATOR  
240k  
+
* PLACE 470pF DIRECTLY ACROSS THE LTC2997'S D /D PINS.  
+
+
ROUTE TEMP /TEMP DIFFERENTIALLY TO D /D AND PROTECT FROM NOISE WITH GROUND SHIELDING.  
+
TERMINATE (CONNECT) THE D /D GROUND SHIELD AT THE LTC2997 GND PIN, ONLY.  
FOR BEST V PERFORMANCE, THE V PIN OF THE LTC2997 MUST BE LOCALLY BYPASSED AND QUIET.  
PTAT CC  
SEE LTC2997 DATA SHEET AND APRIL 2017 LT JOURNAL TECHNICAL ARTICLES.  
Figure 45. Single 8A, 24V Output DC/DC μModule Regulator with Optional Analog Temperature Indicator  
Rev. 0  
47  
For more information www.analog.com  
LTM4655  
TYPICAL APPLICATIONS  
Rꢈꢍ  
ꢌꢆꢃꢄꢅꢆ  
ꢇꢈꢉ  
ꢀ0ꢆꢃꢄꢅꢆ  
ꢊꢋꢇꢇꢄ  
ꢌꢆꢃꢄꢅꢆ  
ꢀꢁꢂꢂ ꢃꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
Figure 46. Start-Up Waveforms at 36VIN, Figure 45 Circuit  
0
ꢎꢗꢊꢐꢐꢏꢋ ꢀ  
ꢎꢗꢊꢐꢐꢏꢋ ꢁ  
ꢔꢀ  
0
ꢈꢉꢈꢊꢋ ꢉꢌꢈꢍꢌꢈ ꢎꢌRRꢏꢐꢈ ꢑꢊꢒ  
ꢃꢅꢄꢄ ꢓꢃꢆ  
Figure 47. Current Sharing Performance of LTM4655 Channels in Figure 45 Circuit  
Rev. 0  
48  
For more information www.analog.com  
LTM4655  
TYPICAL APPLICATIONS  
R
PGOODn  
100k  
V
IN  
3.3V  
V
PGOODn  
INn  
12V  
C
4.7μF  
+
C
4.7μF  
INHn  
INOUTn  
SV  
V
INn  
OSNSn  
GND  
+
V
Dn  
C
10µF  
×2  
V
OUTn  
OUTn  
D1*  
RUNn  
RUNn  
LOAD  
LTM4655**  
C
4.7μF  
DGNDn  
–24V  
UP TO 1.25A  
OUT  
V
OUTn  
C
Dn  
INTV  
SV  
CCn  
OUTn  
4.7μF  
R
PGDFBn  
196k  
VINREGn  
COMPna  
COMPnb  
PGDFBn  
R
100Ω  
EXTVCCn  
EXTV  
CCn  
f
IMONna  
SETn  
ISETna ISETnb  
C
1µF  
EXTVCCn  
4655 F48  
R
165k  
fSETn  
R
ISETn  
481k  
*D1 OPTIONAL (SEE EFFECT IN FIGURE 49): CENTRAL SEMICONDUCTOR P/N CMMSH1-40L  
**ONE CHANNEL SHOWN. PINS NOT USED AND NOT SHOWN IN THIS CIRCUIT: NC, SV , IMONnb,  
INFn  
+
LDO , LDO , CLKSET, MOD, CLKOUTn, CLKINn, TEMP , TEMP  
IN  
OUT  
Figure 48. 1.25A, –24V Output DC/DC μModule Regulator  
Rꢈꢌnꢍ ꢎꢆꢃꢄꢅꢆ  
Rꢈꢌnꢍ ꢎꢆꢃꢄꢅꢆ  
ꢏꢐꢇꢇꢄnꢍ ꢎꢆꢃꢄꢅꢆ  
ꢏꢐꢇꢇꢄnꢍ ꢎꢆꢃꢄꢅꢆ  
ꢇꢈꢉn  
ꢇꢈꢉn  
ꢀ0ꢆꢃꢄꢅꢆ  
ꢀ0ꢆꢃꢄꢅꢆ  
ꢇꢈꢉn  
ꢇꢈꢉn  
ꢋ00ꢁꢆꢃꢄꢅꢆ  
ꢋ00ꢁꢆꢃꢄꢅꢆ  
ꢀꢁꢂꢂ ꢃꢀꢄꢅ  
ꢀꢁꢂꢂ ꢃꢀꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
(b) Start-up Performance with D1 Installed.  
(a) Start-up Performance with D1 Not Installed.  
V
Reverse-Polarity at Start-Up is Transiently  
V
Reverse-Polarity at Start-Up Transiently  
OUTn  
Limited to 360mV  
OUTn  
Reaches 500mV  
Figure 49. Start-Up Waveforms at 12VIN, Figure 48 Circuit  
Rev. 0  
49  
For more information www.analog.com  
LTM4655  
TYPICAL APPLICATIONS  
+
12V  
,
SW1  
SW2  
NC  
OUT  
UP TO 4A  
V
V
OUT1  
V
IN1  
SV  
IN  
C
4.7μF  
+
13V TO 28V  
INH1  
C
22µF  
×2  
V
OUTH1  
IN1  
OSNS1  
LOAD1  
V
D1  
RUN1  
SV  
OUT1  
C
4.7μF  
D1  
LDO  
V
OUT  
OUT1  
R
PGDFB1  
95.3k  
f
SET1  
INTV  
INTV  
CC1  
PGDFB1  
PGOOD1  
EXTV  
CC1  
IMON1a  
IMON1b  
CC1  
R
fSET1  
124k  
100k  
VINREG1  
COMP1a  
COMP1b  
SV  
SV  
INF2  
LDO  
CLKOUT1  
CLKIN1  
V
IN2  
SV  
V
D2  
RUN2  
R
EXTVCC1  
49.9Ω  
INTV  
CC1  
C
1μF  
EXTVCC1  
R
TH1  
499Ω  
INF1  
5V  
,
LDO  
OUT  
UP TO 25mA  
IN  
OUT  
C
TH1  
10nF  
R
CLKSET  
84.5k  
CLKSET  
+
LTM4655  
V
OUT2  
+
C
47µF  
×2  
C
OUTH2  
INH2  
4.7μF  
V
SV  
V
OSNS2  
IN2  
LOAD2  
PGDFB2  
OUT2  
–12V  
,
OUT2  
OUT  
UP TO 2.9A  
C
D2  
4.7μF  
C
R
DGND2  
4.7μF  
LDO  
OUT  
95.3k  
f
SET2  
INTV  
PGDFB2  
PGOOD2  
INTV  
CC2  
100k  
R
CC2  
EXTVCC2  
49.9Ω  
INTV  
CC2  
VINREG2  
COMP2a  
COMP2b  
CLKOUT2  
CLKIN2  
MOD  
R
fSET2  
124k  
EXTV  
CC2  
IMON2a  
IMON2b  
R
TRACK  
10k  
C
1μF  
EXTVCC2  
+
TEMP  
TEMP  
GND ISET1a ISET1b ISET2b ISET2a  
4655 F50  
R
ISET1  
240k  
R
ISET2  
240k || 10k  
(R = R  
ISET2  
|| R  
)
TRACK  
ISET1  
Figure 50. Concurrent ±12V Output DC/DC μModule Regulator  
+
12V  
,
SW1  
SW2  
NC  
OUT  
UP TO 4A  
V
V
V
IN1  
SV  
OUT1  
IN  
13V TO 40V  
C
+
INH1  
4.7μF  
C
22µF  
×2  
V
OUTH1  
IN1  
OSNS1  
LOAD1  
V
D1  
RUN1  
SV  
OUT1  
C
4.7μF  
D1  
V
LDO  
OUT1  
OUT  
R
PGDFB1  
95.3k  
f
SET1  
INTV  
INTV  
CC1  
PGDFB1  
PGOOD1  
EXTV  
CC1  
IMON1a  
IMON1b  
CC1  
R
fSET1  
124k  
100k  
VINREG1  
COMP1a  
COMP1b  
SV  
SV  
INF2  
LDO  
R
EXTVCC1  
49.9Ω  
INTV  
CC1  
C
1μF  
EXTVCC1  
R
TH1  
499Ω  
INF1  
5V  
OUT  
UP TO 25mA  
,
LDO  
IN  
OUT  
C
TH1  
10nF  
R
CLKOUT1  
CLKIN1  
CLKSET  
84.5k  
CLKSET  
+
LTM4655  
5V  
OUT  
UP TO 4A  
,
V
IN2  
V
V
SV  
V
OUT2  
+
C
INH2  
4.7μF  
OSNS2  
C
47µF  
×2  
SV  
IN2  
V
D2  
RUN2  
OUTH2  
LOAD2  
PGDFB2  
OUT2  
C
OUT2  
D2  
4.7μF  
R
LDO  
OUT  
36.5k  
f
SET2  
INTV  
PGDFB2  
PGOOD2  
R
fSET2  
INTV  
CC2  
100k  
R
CC2  
EXTVCC2  
20Ω  
124k  
INTV  
CC2  
VINREG2  
COMP2a  
COMP2b  
CLKOUT2  
CLKIN2  
MOD  
EXTV  
CC2  
C
1μF  
EXTVCC2  
IMON2a  
IMON2b  
R
TH2  
499Ω  
+
TEMP  
TEMP  
C
TH2  
10nF  
GND ISET1a ISET1b ISET2b ISET2a  
4655 F51  
R
ISET2  
100k  
R
ISET1  
240k  
Figure 51. Dual 4A, 12V and 5V Output DC/DC μModule Regulator  
Rev. 0  
50  
For more information www.analog.com  
LTM4655  
TYPICAL APPLICATIONS  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ ꢃꢄ ꢅꢆꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢀꢆꢇꢈꢉ  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢀꢁ ꢂꢃ ꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ00ꢅꢆꢂꢇ  
1Ω  
R
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢀꢁ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢀꢁ  
ꢀꢁꢂ  
R
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
R
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢂꢃꢄꢅꢅ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀꢃ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢀꢆꢇꢈꢉ  
ꢀꢁꢂ ꢃꢄ ꢀꢅꢆ ꢇ  
ꢀꢁ ꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ00ꢅꢆꢂꢇ  
ꢀꢁꢂꢃ  
ꢀꢀꢁ  
ꢀꢁꢂꢂꢃꢄ  
R
1Ω  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢀꢁꢂꢃꢄꢅ ꢀꢁꢂꢃꢄꢅ ꢀꢁꢂꢃꢄꢅ ꢀꢁꢂꢃꢄꢅ  
10Ω  
ꢀꢁ.ꢂꢃ  
0.ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ ꢂ.ꢃꢄ ꢅ ꢆ  
ꢀꢁRꢂꢃꢀꢄꢁꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢁꢇꢈꢉ  
0.ꢀꢁꢂ  
ꢀ0ꢁ  
0.ꢀꢁ  
ꢀꢁꢂ ꢅ0ꢀꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢀꢁ.ꢂꢃ  
0.ꢀꢁ  
0.ꢀꢁꢂ  
ꢀꢀ  
10Ω  
ꢀꢁꢂ  
Rꢀꢁ  
ꢀꢁꢂ  
ꢂꢃꢄ  
ꢀꢁꢂꢃ  
0.ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁꢂ  
ꢂꢃꢄꢅꢃꢆꢇꢈ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁRꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀ0ꢁ  
0.ꢀꢁ  
ꢀꢁꢂ ꢅ0ꢀꢅꢆꢆ  
ꢀꢁꢂꢃ  
CSꢀꢁꢂ  
ꢂꢃꢃꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
0.ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢂ ꢇ ꢄꢈꢉ ꢄꢊꢊꢆꢋꢌꢄꢃꢋꢍꢈꢁ ꢋꢈꢎꢍRꢏꢄꢃꢋꢍꢈ ꢁꢂꢌꢃꢋꢍꢈ ꢎꢍR ꢈꢂꢐꢄꢃꢋꢑꢂ ꢍꢒꢃꢊꢒꢃ ꢌꢒRRꢂꢈꢃ ꢌꢄꢊꢄꢅꢋꢆꢋꢃꢓ  
ꢀꢀꢁꢂꢃꢄ ꢄꢅꢈꢉ ꢂꢊ ꢋ0ꢌꢋ ꢂꢍ ꢉꢅꢎꢈ ꢉꢏꢐꢐꢑ  
Figure 52. A DAC-Controlled Bipolar-Output Programmable Power Supply  
Rev. 0  
51  
For more information www.analog.com  
LTM4655  
PACKAGE DESCRIPTION  
Table 13. LTM4655 Component BGA Pinout  
PIN ID  
A1  
FUNCTION  
PIN ID  
B1  
FUNCTION  
CLKIN1  
PIN ID  
C1  
FUNCTION  
IMON1b  
IMON1a  
PIN ID  
D1  
FUNCTION  
PGOOD1  
PGDFB1  
PIN ID  
E1  
FUNCTION  
COMP1b  
COMP1a  
PIN ID  
F1  
FUNCTION  
ISET1b  
V
IN1  
V
IN1  
V
IN1  
A2  
B2  
CLKOUT1  
C2  
D2  
E2  
F2  
ISET1a  
A3  
B3  
V
IN1  
C3  
SV  
D3  
VINREG1  
E3  
f
F3  
EXTV  
CC1  
IN1  
D1  
SET1  
A4  
V
B4  
V
C4  
V
D4  
GND  
E4  
SV  
OUT1  
F4  
RUN1  
D1  
D1  
A5  
V
B5  
V
C5  
V
OUT1  
D5  
V
OUT1  
E5  
V
F5  
V
OUT1  
OUT1  
OUT1  
OUT1  
A6  
V
V
V
B6  
CLKIN2  
C6  
IMON2b  
IMON2a  
D6  
PGOOD2  
PGDFB2  
VINREG2  
E6  
COMP2b  
COMP2a  
F6  
ISET2b  
IN2  
IN2  
IN2  
A7  
B7  
CLKOUT2  
C7  
D7  
E7  
F7  
ISET2a  
A8  
B8  
V
IN2  
C8  
SV  
D8  
E8  
f
F8  
EXTV  
CC2  
IN2  
D2  
SET2  
A9  
V
B9  
V
C9  
V
D9  
GND  
E9  
SV  
OUT2  
F9  
RUN2  
D2  
D2  
A10  
A11  
A12  
V
V
V
B10  
B11  
B12  
V
C10  
C11  
C12  
V
OUT2  
D10  
D11  
D12  
V
OUT2  
V
OUT2  
E10  
E11  
E12  
V
V
F10  
F11  
F12  
V
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
SV  
SV  
V
INF1  
INF2  
LDO  
CLKOUT2  
GND  
MOD  
CLKSET  
IN  
PIN ID  
G1  
FUNCTION  
PIN ID  
H1  
FUNCTION  
PIN ID  
J1  
FUNCTION  
PIN ID  
K1  
FUNCTION  
PIN ID  
L1  
FUNCTION  
PIN ID  
M1  
FUNCTION  
+
+
+
+
+
V
V
NC  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT2  
V
V
V
V
V
V
V
V
V
V
V
V
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT2  
OSNS1  
OSNS1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
G2  
SV  
H2  
SV  
J2  
NC  
K2  
L2  
M2  
OUT1  
OUT1  
G3  
INTV  
H3  
V
J3  
V
V
V
K3  
L3  
M3  
CC1  
OUT1  
OUT1  
OUT1  
OUT1  
+
G4  
V
V
H4  
SW1  
J4  
K4  
L4  
M4  
OUT1  
G5  
H5  
V
J5  
K5  
L5  
M5  
OUT1  
OUT1  
+
+
G6  
V
H6  
V
J6  
TEMP  
TEMP  
K6  
L6  
M6  
OSNS2  
OSNS2  
G7  
SV  
H7  
SV  
J7  
K7  
L7  
M7  
OUT2  
OUT2  
G8  
INTV  
H8  
V
J8  
V
V
V
K8  
L8  
M8  
CC2  
OUT2  
OUT2  
OUT2  
G9  
V
V
V
H9  
SW2  
J9  
K9  
L9  
M9  
OUT2  
G10  
G11  
G12  
H10  
H11  
H12  
V
J10  
J11  
J12  
K10  
K11  
K12  
L10  
L11  
L12  
M10  
M11  
M12  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
V
V
NC  
LDO  
NC  
OUT  
Rev. 0  
52  
For more information www.analog.com  
LTM4655  
PACKAGE DESCRIPTION  
ꢵ ꢵ ꢥ ꢥ ꢥ  
ꢧ . ꢭ ꢎ ꢌ 0  
ꢌ . ꢮ ꢏ ꢌ 0  
ꢙ . ꢙ ꢙ ꢌ 0  
ꢣ . ꢏ ꢮ ꢌ 0  
ꢏ . ꢭ 0 ꢌ 0  
0 . ꢧ ꢣ ꢌ 0  
0 . 0 0 0 0  
0 . ꢧ ꢣ ꢌ 0  
ꢏ . ꢭ 0 ꢌ 0  
ꢣ . ꢏ ꢮ ꢌ 0  
ꢙ . ꢙ ꢙ ꢌ 0  
ꢌ . ꢮ ꢏ ꢌ 0  
ꢧ . ꢭ ꢎ ꢌ 0  
ꢟ ꢟ ꢟ  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
53  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTM4655  
PACKAGE PHOTOGRAPH  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
Digital Power System Management  
Analog Devices’ family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4651  
LTM4653  
LTM8045  
LTM8053  
LTM8024  
LTM8049  
LTM8071  
LTM8073  
EN55022B Compliant 58V , 24W Inverting-Output DC/DC  
3.6V ≤ V ≤ 58V, –26.5V ≤ V  
≤ –0.5V, I  
≤ 4A,  
IN  
IN  
OUT  
OUT  
μModule Regulator  
15mm × 9mm × 5.01mm BGA  
EN55022B Compliant 58V , 4A Step-Down DC/DC  
3.1V ≤ V ≤ 58V, 0.5V ≤ V  
≤ 0.94V • V ,  
IN  
IN  
IN  
OUT  
μModule Regulator  
15mm × 9mm × 5.01mm BGA  
SEPIC or Inverting µModule DC/DC Converter  
2.8V ≤ V ≤ 18V, 2.5V ≤ V  
≤ 15V. I  
≤ 700mA,  
IN  
OUT  
OUT(DC)  
6.25mm × 11.25mm × 4.92mm BGA  
40V, Dual 3.5A Silent Switcher Step-Down µModule Regulator  
40V, 3.5A Silent Switcher Step-Down µModule Regulator  
Dual, SEPIC and/or Inverting µModule DC/DC Converter  
60V, 5A Silent Switcher® Step-Down µModule Regulator  
60V, 3A Silent Switcher Step-Down µModule Regulator  
3.4V ≤ V ≤ 40V, 0.97V ≤ V ≤ 15V,  
IN  
OUT  
6.25mm × 9mm × 3.32mm BGA  
3V ≤ V ≤ 40V, 0.8V ≤ V ≤ 8V,  
IN  
OUT  
9mm × 11.25mm × 3.32mm BGA  
2.6V ≤ V ≤ 20V, 2.5V ≤ V  
≤ 24V. I  
≤ 15V,  
≤ 1A/Channel,  
IN  
OUT  
OUT(DC)  
9mm × 15mm × 2.42mm BGA  
3.6V ≤ V ≤ 60V, 0.97V ≤ V  
IN  
OUT  
6.25mm × 9mm × 3.32mm BGA  
3.4V ≤ V ≤ 60V, 0.8V ≤ V  
≤ 15V,  
IN  
OUT  
9mm × 11.25mm × 3.32mm BGA  
Rev. 0  
04/21  
www.analog.com  
ANALOG DEVICES, INC. 2021  
54  

相关型号:

LTM4655MPY

EN55022B Compliant 40V, Dual 4A or Single 8A Step-Down or 50W Inverting μModule Regulator
ADI

LTM4656

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656-1

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656EY

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656EY-1

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656IY

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656IY-1

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4657

20VIN, 8A Step-Down DC/DC μModule Regulator
ADI

LTM4657IY

20VIN, 8A Step-Down DC/DC μModule Regulator
ADI

LTM4661

15V, 4A Step-Up μModule Regulator
Linear

LTM4661

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4662

20VIN, 8A Step-Down DC/DC μModule Regulator
ADI